
Aachen
Department of Computer Science

Technical Report

Complexity Analysis for Term

Rewriting by Integer Transition

Systems

M. Naaf, F. Frohn, M. Brockschmidt, C. Fuhs, and J. Giesl

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2017-05

RWTH Aachen · Department of Computer Science · June 2017

The publications of the Department of Computer Science of RWTH Aachen

University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Complexity Analysis for Term Rewriting by
Integer Transition Systems?

M. Naaf1, F. Frohn1, M. Brockschmidt2, C. Fuhs3, and J. Giesl1

1 LuFG Informatik 2, RWTH Aachen University, Germany
2 Microsoft Research, Cambridge, UK
3 Birkbeck, University of London, UK

Abstract. We present a new method to infer upper bounds on the inner-
most runtime complexity of term rewrite systems (TRSs), which benefits
from recent advances on complexity analysis of integer transition systems
(ITSs). To this end, we develop a transformation from TRSs to a gener-
alized notion of ITSs with (possibly non-tail) recursion. To analyze their
complexity, we introduce a modular technique which allows us to use
existing tools for standard ITSs in order to infer complexity bounds for
our generalized ITSs. The key idea of our technique is a summarization
method that allows us to analyze components of the transition system
independently. We implemented our contributions in the tool AProVE,
and our experiments show that one can now infer bounds for significantly
more TRSs than with previous state-of-the-art tools for term rewriting.

1 Introduction

There are many techniques for automatic complexity analysis of programs with in-
teger (or natural) numbers, e.g., [1,2,4,11,13,14,16–18,23,26–28,34]. On the other
hand, several techniques analyze complexity of term rewrite systems (TRSs),
e.g., [7, 8, 12, 19, 20, 24, 29, 32, 36]. TRSs are a classical model for equational
reasoning and evaluation with user-defined data structures and recursion [9].

Although the approaches for complexity analysis of term rewriting support
modularity, they usually cannot completely remove rules from the TRS after
having analyzed them. In contrast, approaches for integer programs may regard
small program parts independently and combine the results for these parts to
obtain a result for the overall program. In this work, we show how to obtain such
a form of modularity also for complexity analysis of TRSs.

After recapitulating TRSs and their complexity in Sect. 2, in Sect. 3 we in-
troduce a transformation from TRSs into a variant of integer transition systems
(ITSs) called recursive natural transition systems (RNTSs). In contrast to stan-
dard ITSs, RNTSs allow arbitrary recursion, and the variables only range over
the natural numbers. We show that the innermost runtime complexity of the
original TRS is bounded by the complexity of the resulting RNTS, i.e., one can
now use any complexity tool for RNTSs to infer complexity bounds for TRSs.

? Supported by DFG grant GI 274/6-1 and the Air Force Research Laboratory (AFRL).

2 M. Naaf et al.

Unfortunately, many existing techniques and tools for standard ITSs do not
support the non-tail recursive calls that can occur in RNTSs. Therefore, in Sect. 4
we develop an approach to infer complexity bounds for RNTSs which can use arbi-
trary complexity tools for standard ITSs as a back-end. The approach from
Sect. 4 is completely modular, as it repeatedly finds bounds for parts of the
RNTS and combines them. In this way, our technique benefits from all advances
of any ITS tools, irrespective of whether they support non-tail recursion (e.g.,
CoFloCo [16,17]) or not (e.g., KoAT [13]). As demonstrated by our implementation
in AProVE [22], our contributions allow us to derive complexity bounds for many
TRSs where state-of-the-art tools fail, cf. Sect. 5. App. A presents improvements
to increase the precision when abstracting TRSs to RNTSs. All proofs can be
found in App. B.

2 Complexity of Term Rewriting

We assume basic knowledge of term rewriting [9] and recapitulate innermost
(relative) term rewriting and its runtime complexity.

Definition 1 (Term Rewriting [8, 9]). We denote the set of terms over a
finite signature Σ and the variables V by T (Σ,V). The size |t| of a term t is

defined as |x| = 1 if x ∈ V and |f(t1, . . . , tk)| = 1 +
∑k
i=1|ti|. A TRS R is a set

of rules {`1 → r1, . . . , `n → rn} with `i, ri ∈ T (Σ,V), `i 6∈ V, and V(ri) ⊆ V(`i)
for all 1 ≤ i ≤ n. The rewrite relation is defined as s →R t iff there is a rule
`→ r ∈ R, a position π ∈ Pos(s), and a substitution σ such that s|π = `σ and
t = s[rσ]π. Here, `σ is called the redex of the rewrite step.

For two TRSs R and S,R/S is a relative TRS, and its rewrite relation→R/S
is →∗S ◦ →R ◦ →∗S , i.e., it allows rewriting with S before and after each R-step.
We define the innermost rewrite relation as s i→R/S t iff s →∗S s′ →R s′′ →∗S t
for some terms s′, s′′, where the proper subterms of the redexes of each step with
→S or →R are in normal form w.r.t. R∪ S. We write i→R instead of i→R/∅.

ΣR∪Sd = {root(`) | `→r ∈ R∪S} and ΣR∪Sc = Σ\ΣR∪Sd are the defined (resp.
constructor) symbols of R/S. A term f(t1, . . . , tk) is basic iff f ∈ΣR∪Sd and t1, ...,
tk ∈ T (ΣR∪Sc ,V). R/S is a constructor system iff ` is basic for all `→ r ∈ R∪S.

In this paper, we will restrict ourselves to the analysis of constructor systems.

Example 2. The following rules implement the insertion sort algorithm.

isort(nil, ys)→ ys (1)
isort(cons(x, xs), ys)→ isort(xs, ins(x, ys)) (2)

ins(x, nil)→ cons(x, nil) (3)
ins(x, cons(y, ys))→ if(gt(x, y), x, cons(y, ys)) (4)

if(true, x, cons(y, ys))→ cons(y, ins(x, ys)) (5)
if(false, x, cons(y, ys))→ cons(x, cons(y, ys)) (6)

gt(0, y)→ false (7)
gt(s(x), 0)→ true (8)

gt(s(x), s(y))→ gt(x, y) (9)

Relative rules are useful to model built-in operations in programming lan-
guages since applications of these rules are disregarded for the complexity of a

Complexity Analysis for TRSs by ITSs 3

TRS. For example, the translation from RAML programs [27] to term rewriting
in [8] uses relative rules to model the semantics of comparisons and similar op-
erations on RAML’s primitive data types. Thus, we decompose the rules above
into a relative TRS R/S with R = {(1), . . . , (6)} and S = {(7), (8), (9)}.4

In our example, we have ΣR∪Sd = {isort, ins, if, gt} and ΣR∪Sc = {cons, nil, s, 0,
true, false}. Since all left-hand sides are basic, R/S is a constructor system. An
example rewrite sequence to sort the list [2, 0] is

t = isort(cons(s(s(0)), cons(0, nil)), nil) i→R isort(cons(0, nil), ins(s(s(0)), nil)) i→R
isort(cons(0, nil), cons(s(s(0)), nil)) i→R isort(nil, ins(0, cons(s(s(0)), nil))) i→R
isort(nil, if(gt(0, s(s(0))), . . . , . . .)) i→S isort(nil, if(false, . . . , . . .)) i→R
isort(nil, cons(0, cons(s(s(0)), nil))) i→R cons(0, cons(s(s(0)), nil))

Note that ordinary TRSs are a special case of relative TRSs (where S = ∅).
We usually just write “TRSs” to denote “relative TRSs”. We now define the
runtime complexity of a TRS R/S. In Def. 3, ω is the smallest infinite ordinal,
i.e., ω > e holds for all e ∈ N, and for any M ⊆ N∪{ω}, supM is the least upper
bound of M , where sup∅ = 0.

Definition 3 (Innermost Runtime Complexity [24,25,32,36]). The deri-
vation height of a term t w.r.t. a relation → is the length of the longest sequence
of →-steps starting with t, i.e., dh(t,→) = sup{e | ∃ t′ ∈ T (Σ,V). t →e t′}.
If t starts an infinite →-sequence, this yields dh(t,→) = ω. The innermost
runtime complexity function ircR/S maps any n ∈ N to the length of the longest
sequence of i→R/S-steps starting with a basic term whose size is at most n, i.e.,
ircR/S(n) = sup{dh(t, i→R/S) | t is basic, |t| ≤ n}.

Example 4. The rewrite sequence for t in Ex. 2 is maximal, and thus, dh(t, i→R/S)
= 6. So the i→S -step does not contribute to t’s derivation height. As |t| = 9, this
implies ircR/S(9) ≥ 6. We will show how our new approach proves ircR/S(n) ∈
O(n2) automatically.

3 From TRSs to Recursive Natural Transition Systems

We now reduce complexity analysis of TRSs to complexity analysis of recursive
natural transition systems (RNTSs). In contrast to term rewriting, RNTSs offer
built-in support for arithmetic, but disallow pattern matching. To analyze TRSs,
it suffices to regard RNTSs where all variables range over N. We use the signature
Σexp = {+, ·} ∪ N for arithmetic expressions and Σfml = Σexp ∪ {true, false, <,∧}
for arithmetic formulas (“constraints”). We will also use relations like = in
constraints, but these are just syntactic sugar. To extend the rewrite relation
with semantics for these symbols, let J.K evaluate all arithmetic and Boolean

4 In this way, the complexity of gt is 0, whereas comparisons have complexity 1 with
the slightly more complicated encoding from [8]. Since this difference does not affect
the asymptotic complexity of Ex. 2, we use the simpler encoding for the sake of
readability.

4 M. Naaf et al.

expressions in a term. So for example, Jgt(1 + 2, 5 + y)K = gt(3, 5 + y) and
J3 > 5 ∧ trueK = false. We allow substitutions with infinite domains and call σ a
natural substitution iff σ(x) ∈ N for all x ∈ V.

Definition 5 (Recursive Natural Transition System). An RNTS over a
finite signature Σ with Σ ∩Σfml = ∅ is a set of rules P = {`1 w1−→ r1 [ϕ1] , . . . ,
`n

wn−→ rn [ϕn]} with `i = f(x1, . . . , xk) for f ∈ Σ and pairwise different variables
x1, . . . , xk, ri ∈ T (Σ] Σexp,V), constraints ϕi ∈ T (Σfml,V), and weights wi ∈
T (Σexp,V). An RNTS P induces a rewrite relation

m−→P on ground terms from
T (Σ] Σexp,∅), where s

m−→P t iff there are ` w−→ r [ϕ] ∈ P, π ∈ Pos(s), and
a natural substitution σ such that s|π = `σ, JϕσK = true, m = JwσK ∈ N, and
t = Js[rσ]πK. We sometimes just write s →P t instead of s

m−→P t. Again, let
ΣPd = {root(`) | ` w−→ r [ϕ] ∈ P} and ΣPc = Σ \ΣPd .

A term f(n1, . . . , nk) with f ∈ Σ and n1, . . . , nk ∈ N is nat-basic, and its size
is ||f(n1, . . . , nk)|| = 1 +n1 + . . .+nk. To consider weights for derivation heights,
we define dhw(t,→P) to be the maximum weight of any →P -sequence starting
with t, i.e., dhw(t0,→P) = sup{

∑e
i=1mi | ∃t1, . . . , te ∈ T (Σ]Σexp,∅). t0

m1−−→P
. . .

me−−→P te}. Then ircP maps n ∈ N to the maximum weight of any →P -
sequence starting with a nat-basic term whose size is at most n, i.e., ircP(n) =
sup{dhw(t,→P) | t is nat-basic, ||t|| ≤ n}.

Note that the rewrite relation for RNTSs is “innermost” by construction, as
rules do not contain symbols from Σ below the root in left-hand sides, and they
are only applicable if all variables are instantiated by numbers.

The crucial idea of our approach is to model the behavior of a TRS by a
corresponding RNTS which results from abstracting constructor terms to their
size. Thus, we use the following transformation H·I from TRSs to RNTSs.

Definition 6 (Abstraction H·I from TRSs to RNTSs). For a TRS R/S,
the size abstraction HtI of a term t ∈ T (Σ,V) is defined as follows:

HxI = x for x ∈ V
Hf(t1, . . . , tk)I = 1 + Ht1I + . . .+ HtkI if f ∈ ΣR∪Sc

Hf(t1, . . . , tk)I = f(Ht1I, . . . , HtkI) if f ∈ ΣR∪Sd

We lift H·I to rules with basic left-hand sides. For `=f(t1, . . . , tk) with t1, . . . , tk∈
T (ΣR∪Sc ,V) and w ∈ T (Σexp,V), we define

H`→ rIw = f(x1, . . . , xk)
w−→ HrI

[∧k

i=1
xi = HtiI ∧

∧
x∈V(`)

x ≥ 1

]
for pairwise different fresh variables x1, . . . , xk. For a constructor system R/S,
we define the RNTS HR/SI = {H`→ rI1 | `→ r ∈ R} ∪ {H`→ rI0 | `→ r ∈ S}.

Example 7. For the TRS R/S from Ex. 2, HR/SI corresponds to the following
RNTS.

Complexity Analysis for TRSs by ITSs 5

isort(xs, ys) 1→ ys [xs = 1 ∧ . . .] (1′)

isort(xs ′, ys) 1→ isort(xs, ins(x, ys)) [xs ′ = 1 + x+ xs ∧ . . .] (2′)

ins(x, ys) 1→ 2 + x [ys = 1 ∧ . . .] (3′)

ins(x, ys ′) 1→ if(gt(x, y), x, ys ′) [ys ′ = 1 + y + ys ∧ . . .] (4′)

if(b, x, ys ′) 1→ 1 + y + ins(x, ys) [b = 1 ∧ ys ′ = 1 + y + ys ∧ . . .] (5′)

if(b, x, ys ′) 1→ 1 + x+ ys ′ [b = 1 ∧ ys ′ = 1 + y + ys ∧ . . .] (6′)

gt(x, y)
0→ 1 [x = 1 ∧ . . .] (7′)

gt(x′, y) 0→ 1 [x′ = 1 + x ∧ y = 1 ∧ . . .] (8′)

gt(x′, y′) 0→ gt(x, y) [x′ = 1 + x ∧ y′ = 1 + y ∧ . . .] (9′)

In these rules, “∧ . . .” stands for the constraint that all variables have to be
instantiated with values ≥ 1. Note that we make use of fresh variables like x
and xs on the right-hand side of (2′) to simulate matching of constructor terms.
Using this RNTS, the rewrite steps in Ex. 2 can be simulated as follows.

t′ = isort(7, 1)
1→ isort(3, ins(3, 1))

1→ isort(3, 5)
1→ isort(1, ins(1, 5)) 1→ isort(1, if(gt(1, 3), 1, 5)) 0→ isort(1, if(1, 1, 5))
1→ isort(1, 7) 1→ 7

For the nat-basic term t′, we have ||t′|| = 1 + 7 + 1 = 9. So the above
sequence proves dhw(t′,→P) ≥ 6 and hence, ircP(9) ≥ 6. Note that unlike
Ex. 2, here rewriting nat-basic terms is non-deterministic as, e.g., we also have
isort(7, 1)

1→ isort(2, ins(4, 1)). The reason is that H·I is a blind abstraction [10],
which abstracts several different terms to the same number.

JH·IK maps basic ground terms to nat-basic terms, e.g., JHins(s(0), nil)IK =
Jins(1+1, 1)K = ins(2, 1). We now show that under certain conditions, dh(t, i→R/S)
≤ dhw(JHtIK,→HR/SI) holds for all ground terms t, i.e., rewrite sequences of a TRS
R/S can be simulated in the RNTS HR/SI resulting from its transformation. We
would like to conclude that in these cases, we also have ircR/S(n) ≤ ircHR/SI(n).
However, irc considers arbitrary (basic) terms, but the above connection between
the derivation heights of t and JHtIK only holds for ground terms t. For full rewrit-
ing, we clearly have dh(t,→R) ≤ dh(tσ,→R) for any substitution σ. However,
this does not hold for innermost rewriting. For example, f(g(x)) has an infinite
innermost reduction with the TRS {f(g(x)) → f(g(x)), g(a) → a}, but f(g(a))
is innermost terminating. Nevertheless, we show in Thm. 9 that for constructor
systems R, dh(t, i→R) ≤ dh(tσ, i→R) holds for any ground substitution σ.

However, for relative rewriting with constructor systemsR and S, dh(t, i→R/S)
≤ dh(tσ, i→R/S) does not necessarily hold if S is not innermost terminating. To
see this, consider R = {f(x) → f(x)} and S = {g(a) → g(a)}. Now f(g(x))
has an infinite reduction w.r.t. i→R/S since g(x) is a normal form w.r.t. R ∪ S.
However, its instance f(g(a)) has the derivation height 0 w.r.t. i→R/S , as g(a)
is not innermost terminating w.r.t. S and no rule of R can ever be applied. To
solve this problem, we extend the TRS S by a terminating variant N .

6 M. Naaf et al.

Definition 8 (Terminating Variant). A TRS N is a terminating variant of S
iff i→N terminates and every N -normal form is also an S-normal form.

So if one can prove innermost termination of S, then one can use S as a ter-
minating variant of itself. For instance in Ex. 2, termination of S = {(7), (8), (9)}
can easily be shown automatically by standard tools like AProVE [22]. Otherwise,
one can for instance use a terminating variant {f(x1, . . . , xk) → tf | f ∈ ΣSd }
where for each f , we pick some constructor ground term tf ∈ T (ΣR∪Sc ,∅). Now
one can prove that for innermost (relative) rewriting, the derivation height of a
term does not decrease when it is instantiated by a ground substitution.

Theorem 9 (Soundness of Instantiation and Terminating Variants).
Let R, S be constructor systems and N be a terminating variant of S. Then
dh(t, i→R/S) ≤ dh(tσ, i→R/(S∪N)) holds for any term t where tσ is ground.

However, the restriction to ground terms t still does not ensure dh(t, i→R/S)
≤ dhw(JHtIK,→HR/SI). The problem is that i→R/S can rewrite a term t at position
π also if there is a defined symbol below t|π as long as no rule can be applied to
that subterm. So for Ex. 2, we have isort(nil, if(true, 0, nil)) i→R if(true, 0, nil), but
HR/SI cannot rewrite JHisort(nil, if(true, 0, nil))IK = isort(1, if(1, 1, 1)) since the if-
rules of HR/SI may be applied only if the third argument is ≥ 3, and the variables
in the isort-rule may be instantiated only by numbers (not by normal forms like
if(1, 1, 1)). This problem can be solved by requiring that R/S is completely
defined, i.e., that R∪S can rewrite every basic ground term. However, this is too
restrictive as we, e.g., would like gt(true, false) to be in normal form. Fortunately,
(innermost) runtime complexity is persistent w.r.t. type introduction [6]. Thus,
we only need to ensure that every well-typed basic ground term can be rewritten.

Definition 10 (Typed TRSs (cf. e.g. [21, 37])). In a many-sorted (first-
order monomorphic) signature Σ over the set of types Ty, every symbol f ∈ Σ
has a type of the form τ1 × . . .× τk → τ with τ1, . . . , τk, τ ∈ Ty. Moreover, every
variable has a type from Ty, and we assume that V contains infinitely many
variables of every type in Ty. We call t ∈ T (Σ,V) a well-typed term of type τ
iff either t ∈ V is a variable of type τ or t = f(t1, . . . , tk) where f has the type
τ1 × . . .× τk → τ and each ti is a well-typed term of type τi.

A rewrite rule `→ r is well typed iff ` and r are well-typed terms of the same
type. A TRS R/S is well typed iff all rules of R ∪ S are well typed. (W.l.o.g.,
here one may rename the variables in every rule. Then it is not a problem if the
variable x is used with type τ1 in one rule and with type τ2 in another rule.)

Example 11. For any TRS R/S, standard algorithms can compute a type as-
signment to make R/S well typed (and to decompose the terms into as many
types as possible). For the TRS from Ex. 2 we obtain the following type assign-
ment. Note that for this type assignment the TRS is not completely defined since
if(true, 0, nil) is a well-typed basic ground term in normal form w.r.t. R∪ S.

isort :: List× List→ List 0 :: Nat gt :: Nat×Nat→ Bool
ins :: Nat× List→ List s :: Nat→ Nat true, false :: Bool
if :: Bool×Nat× List→ List nil :: List cons :: Nat× List→ List

Complexity Analysis for TRSs by ITSs 7

Definition 12 (Completely Defined). A well-typed TRS R/S over a many-
sorted signature with types Ty is completely defined iff there is at least one con-
stant for each τ ∈ Ty and no well-typed basic ground term in R∪S-normal form.

For completely defined TRSs, the transformation from TRSs to RNTSs is sound.

Theorem 13 (Soundness of Abstraction H·I). Let R/S be a well-typed,
completely defined constructor system. Then dh(t, i→R/S) ≤ dhw(JHtIK,→HR/SI)
holds for all well-typed ground terms t. Let N be a terminating variant of S such
that R/(S ∪ N) is also well typed. If R/(S ∪ N) is completely defined, then we
have ircR/S(n) ≤ ircHR/(S∪N)I(n) for all n ∈ N.

As every TRS R/S is well typed w.r.t. some type assignment (e.g., the one
with just a single type), the only additional restriction in Thm. 13 is that the
TRS has to be completely defined. This can always be achieved by extending
S by a suitable terminating variant N of S automatically. Based on standard
algorithms to detect well-typed basic ground terms f(. . .) in (R ∪ S)-normal
form [30, 31], we add the rules f(x1, . . . , xk) → tf to N , where again for each
f , we choose some constructor ground term tf ∈ T (ΣR∪Sc ,∅). As shown by
Thm. 9, we have dh(t, i→R/S) ≤ dh(tσ, i→R/(S∪N)) for any terminating variant
N , i.e., adding such rules never decreases the derivation height. So even if R/S
is not completely defined and just R/(S ∪N) is completely defined, we still have
ircR/S(n) ≤ ircR/(S∪N)(n) ≤ ircHR/(S∪N)I(n).

Example 14. To make the TRS of Ex. 2 completely defined, we add rules for all
defined symbols in basic ground normal forms. In this example, the only such
symbol is if. Hence, for instance we add if(b, x, xs)→ nil to S. The resulting TRS
S ∪ {if(b, x, xs) → nil} is clearly a terminating variant of S. Hence, to analyze
complexity of the insertion sort TRS, we now extend the RNTS of Ex. 7 by

Hif(b, x, xs)→ nilI0 = if(b, x, xs)
0−→ 1 [b ≥ 1 ∧ x ≥ 1 ∧ xs ≥ 1] (10)

4 Analyzing the Complexity of RNTSs

Thm. 13 allows us to reduce complexity analysis of term rewriting to the analysis
of RNTSs. Our RNTSs are related to integer transition systems (ITSs), a for-
malism often used to abstract programs. The main difference is that RNTSs can
model procedure calls by nested function symbols f(. . . g(. . .) . . .) on the right-
hand side of rules, whereas ITSs may allow right-hand sides like f(. . .) + g(. . .),
but no nesting of f, g ∈ Σ. So ITSs cannot pass the result of one function as a
parameter to another function. Note that in contrast to the usual definition of
ITSs, in our setting reductions can begin with any (nat-basic) terms instead of
dedicated start terms, and it suffices to regard natural instead of integer numbers.
(An extension to recursive transition systems on integers would be possible by
measuring the size of integers by their absolute value, as in [13].)

Definition 15 (ITS). An RNTS P over the signature Σ is an ITS iff symbols
from Σ occur only at parallel positions in right-hand sides of P. Here, π and π′

are parallel iff π is not a prefix of π′ and π′ is not a prefix of π.

8 M. Naaf et al.

Upper runtime complexity bounds for an ITS P can, for example, be inferred
by generating ranking functions which decrease with each application of a rule
from P. Then, the ranking functions are multiplied with the weight of the rules.

However, many analysis techniques for ITSs (e.g., [1,4,13,34]) cannot handle
the RNTSs generated from standard TRSs. Thus, we now introduce a new mod-
ular approach that allows us to apply existing tools for ITSs to analyze RNTSs.
Our approach builds upon the idea of alternating between runtime and size
analysis [13]. The key insight is to summarize procedures by approximating their
runtime and the size of their result, and then to eliminate them from the program.
In this way, our analysis decomposes the “call graph” of the RNTS into “blocks”
of mutually recursive functions and exports each block of mutually recursive
functions into a separate ITS. Thus, in each analysis step it suffices to analyze
just an ITS instead of an RNTS. We use weakly monotonic runtime and size
bounds from T (Σexp,V) to compose them easily when analyzing nested terms.

Definition 16 (Runtime and Size Bounds). For any terms t1, . . . , tk, let
{x1/t1, . . . , xk/tk} be the substitution σ with xiσ = ti for 1 ≤ i ≤ k and yσ = y
for y ∈ V \{x1, . . . , xk}. Then rt : Σ → T (Σexp,V)∪{ω} is a runtime bound for
an RNTS P iff we have dhw(f(n1, . . . , nk),→P) ≤ Jrt(f) {x1/n1, . . . , xk/nk}K
for all n1, . . . , nk ∈ N and all f ∈ Σ. Similarly, sz : Σ → T (Σexp,V) ∪ {ω} is a
size bound for P iff n ≤ Jsz(f) {x1/n1, . . . , xk/nk}K for all n1, . . . , nk ∈ N, all
f ∈ Σ, and all n ∈ N with f(n1, . . . , nk)→∗P n.

Example 17. For the RNTS {(1′), . . . , (9′), (10)} from Ex. 14, any function rt with
rt(isort) ≥ bx1−1

2 c ·x2 +1, rt(ins) ≥ x2, rt(if) ≥ x3−1, and rt(gt) ≥ 0 is a runtime
bound (recall that the gt-rules have weight 0). Similarly, any sz with sz(isort) ≥
x1 + x2− 1, sz(ins) ≥ x1 + x2 + 1, sz(if) ≥ x2 + x3 + 1, sz(gt) ≥ 1 is a size bound.

A runtime bound clearly gives rise to an upper bound on the runtime complexity.

Theorem 18 (rt and irc). Let rt be a runtime bound for an RNTS P. Then for
all n ∈ N, we have ircP(n) ≤ sup{Jrt(f) {x1/n1, . . . , xk/nk}K | f ∈ Σ,n1, ..., nk ∈
N,
∑k
i=1 ni < n}. So in particular, ircP(n) ∈ O(

∑
f∈ΣJrt(f) {x1/n, . . . , xk/n}K).

Thus, a suitable runtime bound rt for the RNTS {(1′), . . . , (9′), (10)} yields
irc(n) ∈ O(n2), cf. Ex. 17. In Sect. 4.2 we present a new technique to infer
runtime and size bounds rt and sz automatically with existing complexity tools
for ITSs. As these tools usually return only runtime bounds, Sect. 4.1 shows how
they can also be used to generate size bounds.

4.1 Size Bounds as Runtime Bounds

We first present a transformation for a large class of ITSs that lets us obtain size
bounds from any method that can infer runtime bounds. The transformation ex-
tends each function symbol from Σ by an additional accumulator argument. Then
terms that are multiplied with the result of a function are collected in the accumu-
lator. Terms that are added to the result are moved to the weight of the rule.

Complexity Analysis for TRSs by ITSs 9

Theorem 19 (ITS Size Bounds). Let P be an ITS whose rules are of the form
` w→ u+ v · r [ϕ] or ` w→ u [ϕ] with u, v ∈ T (Σexp,V) and root(r) ∈ Σ. Let Psize =

{f ′(x1, ..., xk, z)
u·z−−→ g′(t1, ..., tn, v · z) [ϕ] | f(x1, ..., xk)

w→ u+ v · g(t1, ..., tn) [ϕ] ∈ P}
∪ {f ′(x1, ..., xk, z)

u·z−−→ 0 [ϕ] | f(x1, ..., xk)
w→ u [ϕ] ∈ P}

for a fresh variable z ∈ V. Let rt be a runtime bound for Psize. Then sz with
sz(f) = rt(f ′){xk+1/1} for any f ∈ Σ is a size bound for P.

Thm. 19 can be generalized to right-hand sides like f(x)+2·g(y) with f, g ∈ Σ,
cf. App. B. However, it is not applicable if the results of function calls are
multiplied on right-hand sides (e.g., f(x) · g(y)) and our technique fails in such
cases.

Example 20. To get a size bound for Pgt = {(7′), (8′), (9′)}, we construct Pgt
size:

gt′(x, y, z)
z→ 0 [x = 1 ∧ . . .] gt′(x′, y, z)

z→ 0 [x′ = 1 + x ∧ y = 1 ∧ . . .]
gt′(x′, y′, z)

0→ gt′(x, y, z) [x′ = 1 + x ∧ y′ = 1 + y ∧ . . .]

Existing ITS tools can compute a runtime bound like rt(gt′) = x3 for Pgt
size. Hence,

by Thm. 19 we obtain the size bound sz for Pgt with sz(gt) = rt(gt′){x3/1} = 1.

4.2 Complexity Bounds for Recursive Programs

Now we show how complexity tools for ITSs can be used to infer runtime and
size bounds for RNTSs. We first define a call-graph relation A to determine in
which order we analyze symbols of Σ. Essentially, f A g holds iff f(. . .) rewrites
to a term containing g.

Definition 21 (A). For an RNTS P, the call-graph relation A is the tran-
sitive closure of {(root(`), g) | ` w→ r[ϕ] ∈ P, g ∈ Σ occurs in r}. An RNTS
has nested recursion iff it has a rule `

w→ r [ϕ] with root(r|π) A root(`) and
root(r|π′) A root(`) for positions π < π′. As usual, π < π′ means that π is a
proper prefix of π′ (i.e., that π′ is strictly below π). A symbol f ∈ ΣPd is a bot-
tom symbol iff f A g implies g A f for all g ∈ ΣPd . The sub-RNTS of P induced
by f is Pf = {` w→ r[ϕ] ∈ P | f w root(`)}, where w is the reflexive closure of A.

Example 22. For the RNTS P from Ex. 14 and 17, we have isort A ins A if A ins
A gt. The only bottom symbol is gt. It induces the sub-RNTS Pgt = {(7′), (8′),
(9′)}, ins induces {(3′), . . . , (9′), (10)}, and isort induces the full RNTS of Ex. 14.

Our approach cannot handle programs like f(. . .) → f(. . . f(. . .) . . .) with
nested recursion, but such programs rarely occur in practice. To compute bounds
for an RNTS P without nested recursion, we start with the trivial bounds rt(f) =
sz(f) = ω for all f ∈ ΣPd . In each step, we analyze the sub-RNTS Pf induced by
a bottom symbol f and refine rt and sz for all defined symbols of Pf . Afterwards
we remove the rules Pf from P and continue with the next bottom symbol. By
this removal of rules, the former defined symbol f becomes a constructor, and
former non-bottom symbols are turned into bottom symbols.

10 M. Naaf et al.

Algorithm 1 Computing Runtime and Size Bounds for RNTSs

1 Let rt(f) := sz(f) := ω for each f ∈ ΣPd and rt(f) := sz(f) := 0 for each f ∈ ΣPc .
2 If P has nested recursion, then return rt and sz.
3 While P is not empty:

3.1 Choose a bottom symbol f of P and let Pf be the sub-RNTS induced by f .
3.2 Construct Pf

sz according to Thm. 27 and (Pf
sz)size according to Thm. 19 (resp.

its generalization) if possible, otherwise return rt and sz.
3.3 Compute a runtime bound for (Pf

sz)size using existing ITS tools and let szf be
this bound (cf. Thm. 19).

3.4 For each g ∈ ΣP
f

d , let sz(g) := szf (g).
3.5 Construct Pf

rt,sz according to Thm. 27.

3.6 Compute a runtime bound rtf for Pf
rt,sz using existing ITS tools.

3.7 For each g ∈ ΣP
f

d , let rt(g) := rtf (g).
3.8 Let P := P \ Pf .

4 Return rt and sz.

To analyze the RNTS Pf , Thm. 27 will transform Pf into two ITSs Pfsz and

Pfrt,sz by abstracting away calls to functions which we already analyzed. Then

existing tools for ITSs can be used to compute a size resp. runtime bound for Pfsz
resp. Pfrt,sz. Our overall algorithm to infer bounds for RNTSs is summarized in
Alg. 1. It clearly terminates, as every loop iteration eliminates a defined symbol
(since Step 3.8 removes all rules for the currently analyzed symbol f).

When computing bounds for a bottom symbol f ∈ ΣPd , we already know
(weakly monotonic) size and runtime bounds for all constructors g ∈ ΣPc . Hence to
transform RNTSs into ITSs, outer calls of constructors g in terms g(. . . f(. . .) . . .)
can be replaced by sz(g). In Def. 23, while sz(t) replaces all calls to procedures g ∈
Σ in t by their size bound, the outer abstraction aosz(t) only replaces constructors
g ∈ ΣPc by their size bound sz(g), provided that they do not occur below defined
symbols f ∈ ΣPd .

Definition 23 (Outer Abstraction). Let P be an RNTS with the size bound
sz. We lift sz to terms by defining sz(x) = x for x ∈ V and

sz(g(s1, . . . , sn)) =

{
sz(g) {xj/sz(sj) | 1 ≤ j ≤ n} if g ∈ Σ
g(sz(s1), . . . , sz(sn)) if g ∈ Σexp

The outer abstraction of a term is defined as aosz(x) = x for x ∈ V and

aosz(g(s1, . . . , sn)) =


sz(g) {xj/aosz(sj) | 1 ≤ j ≤ n} if g ∈ ΣPc
g(aosz(s1), . . . , aosz(sn)) if g ∈ Σexp

g(s1, . . . , sn) if g ∈ ΣPd
Example 24. Consider the following variant R× of AG01/#3.16.xml from the
TPDB5 and its RNTS-counterpart HR×I:

5 Termination Problems Data Base, the collection of examples used at the annual
Termination and Complexity Competition, see http://termination-portal.org.

Complexity Analysis for TRSs by ITSs 11

R× :
f+(0, y) → y
f+(s(x), y)→ s(f+(x, y))
f×(0, y) → 0
f×(s(x), y)→ f+(f×(x, y), y)

HR×I :
f+(x, y)

1→ y [x = 1 ∧ . . .] (11)
f+(x′, y)

1→ 1 + f+(x, y) [x′ = x+ 1 ∧ . . .] (12)
f×(x, y) 1→ 1 [x = 1 ∧ . . .] (13)
f×(x′, y) 1→ f+(f×(x, y), y) [x′ = x+ 1 ∧ . . .] (14)

Assume that we already analyzed its only bottom symbol f+ and obtained
sz(f+) = x1 + x2 and rt(f+) = x1. Afterwards, (11) and (12) were removed. Now
Def. 23 is used to transform the sub-RNTS {(13), (14)} induced by f× into an
ITS. The only rule of HR×I that violates the restriction of ITSs is (14). Thus, let
(14′) result from (14) by replacing its right-hand side by aosz(f+(f×(x, y), y)) =
sz(f+) {x1/f×(x, y), x2/y} = f×(x, y)+y. Now {(13), (14′)} is an ITS, and together
with Thm. 19, existing ITS tools can generate a size bound like sz(f×) = x1 · x2.

To finish the transformation of RNTSs to ITSs, we now handle terms like
f(. . . g(. . .) . . .) where f ∈ ΣPd is the bottom symbol we are analyzing and we
have an inner call of a constructor g ∈ ΣPc . We would like to replace g by
sz(g) again. However, f might behave non-monotonically (i.e., f might need less
runtime on greater arguments). Therefore, we replace all inner calls g(. . .) of
constructors by fresh variables x. The size bound of the replaced call g(. . .) is an
upper bound for the value of x, but x can also take smaller values.

Definition 25 (Inner Abstraction). Let P be an RNTS with size bound sz,
t be a term, and Postopc ⊆ Pos(t) be the topmost positions of ΣPc -symbols below
ΣPd -symbols in t. Thus, µ ∈ Postopc iff root(t|µ) ∈ ΣPc , there exists a π < µ with
root(t|π) ∈ ΣPd , and root(t|π′) ∈ Σexp for all π < π′ < µ. For Postopc = {µ1, . . . ,
µk}, t’s inner abstraction is ai(t) = t[x1]µ1 . . . [xk]µk

where x1, . . . , xk are pairwise
different fresh variables, and its condition is ψi

sz(t) =
∧

1≤i≤k xi ≤ sz(t|µi
).

Example 26. For the RNTS of Ex. 14 and 17, we start with analyzing Pgt which
yields sz(gt) = 1 and rt(gt) = 0, cf. Ex. 20. After removing the gt-rules, the new
bottom symbols are ins and if. The right-hand side of Rule (4′) contains a call of
gt below the symbol if. With the size bound sz(gt) = 1, the inner abstraction of
this right-hand side is ai(if(gt(x, y), x, ys ′)) = if(x1, x, ys ′), and the corresponding
condition ψi

sz(if(gt(x, y), x, ys ′)) is x1 ≤ 1, since sz(gt(x, y)) = 1.

Thm. 27 states how to transform RNTSs into ITSs in order to compute run-
time and size bounds. Suppose that we have already analyzed the function sym-
bols g1, . . . , gm, that f becomes a new bottom symbol if the rules for g1, . . . , gm
are removed, that Q is the sub-RNTS induced by f , and that P results from Q
by deleting the rules for g1, . . . , gm. Thus, if gi occurs in P, then gi ∈ ΣPc .

So in our leading example, we have g1 = gt (i.e., all gt-rules were analyzed and
removed). Thus, ins is a new bottom symbol. If we want to analyze it by Thm. 27,
then Q contains all ins-, if-, and gt-rules and P just contains all ins- and if-rules.

Since we restricted ourselves to RNTSs Q without nested recursion, P has
no nested defined symbols. To infer a size bound for the bottom symbol f of P,
we abstract away inner occurrences of gi by ai (e.g., gt on the right-hand side

12 M. Naaf et al.

of Rule (4′) in our example), and we abstract away outer occurrences of gi by
aosz. So every right-hand side r is replaced by aosz(a

i(r)) and we add the condition
ψi
sz(r) which restricts the values of the fresh variables introduced by ai.

To infer runtime bounds, inner occurrences of gi are also abstracted by ai,
and outer occurrences of gi are simply removed. So every right-hand side r is
replaced by

∑
π∈Posd(r) a

i(r|π), where Posd(r) = {π ∈ Pos(r) | root(r|π) ∈ ΣPd }.
However, we have to take into account how many computation steps would be
required in the procedures gi that were called in r. Therefore, we compute the
cost of all calls of gi in a rule’s right-hand side and add it to the weight of the
rule. To estimate the cost of a call gi(s1, . . . , sn), we “apply” rt(gi) to the size
bounds of s1, . . . , sn and add the costs for evaluating s1, . . . , sn.

Theorem 27 (Transformation of RNTSs to ITSs). Let Q be an RNTS
with size and runtime bounds sz and rt and let P = Q\ (Qg1 ∪ . . .∪Qgm), where
g1, . . . , gm ∈ Σ and Qgi is the sub-RNTS of Q induced by gi. We define

Psz = { ` w→ aosz(a
i(r))

[
ϕ ∧ ψi

sz(r)
]
| `

w→ r [ϕ] ∈ P }

Let sz′ be a size bound for Psz where sz′(f) = sz(f) for all f ∈ Σ \ΣPd . If P does
not have nested defined symbols, then sz′ is a size bound for Q.

To obtain a runtime bound for Q, we define an RNTS Prt,sz′ . To this end, we
define the cost of a term as crt,sz′(x) = 0 for x ∈ V and

crt,sz′(g(s1, . . . , sn)) =

{∑
1≤j≤n crt,sz′(sj) + rt(g) {xj/sz′(sj) | 1 ≤ j ≤ n} if g ∈ ΣPc∑
1≤j≤n crt,sz′(sj) otherwise

Now Prt,sz′ = {`
w+crt,sz′ (r)−−−−−−−→

∑
π∈Posd(r) a

i(r|π)
[
ϕ ∧ ψi

sz′(r)
]
| ` w→ r [ϕ] ∈ P}.

Then every runtime bound rt′ for Prt,sz′ with rt′(f) = rt(f) for all f ∈ Σ \ΣPd is
a runtime bound for Q. Here, all occurrences of ω in Psz or Prt,sz′ are replaced
by pairwise different fresh variables.

If P does not have nested defined symbols, then Psz and Prt,sz′ are ITSs and
thus, they can be analyzed by existing ITS tools.

Example 28. We now finish analyzing the RNTS HR×I after updating sz as in Ex.
24. The cost of the right-hand side of (14) is crt,sz(f+(f×(x, y), y)) = rt(f+) {x1/x·y,
x2/y} = x · y. So for the sub-RNTS P = {(13), (14)} induced by f×, Prt,sz is

f×(x, y) 1→ 0 [x = 1 ∧ . . .] f×(x′, y)
1+x·y−−−−→ f×(x, y) [x′ = x+ 1 ∧ . . .]

Hence, existing ITS tools like CoFloCo [16, 17] or KoAT [13] yield a bound like
rt(f×) = x21 · x2. So by Thm. 13 and 18 we get ircR×(n) ≤ ircHR×I(n) ∈ O(n3).

Example 29. To finish the analysis of the RNTS from Ex. 14, we continue Ex. 26.
After we removed Pgt, the new bottom symbols ins and if both induce P ins =
{(3′), . . . , (6′), (10)}. Constructing P ins

sz yields the rules (3′), (5′), (6′), (10), and

ins(x, ys ′) 1→ if(x1, x, ys ′) [ys ′ = 1 + y + ys ∧ . . . ∧ x1 ≤ 1] (4′′)

Complexity Analysis for TRSs by ITSs 13

Existing tools like CoFloCo or KoAT compute size bounds like 1 + x1 + x2 for
ins and 1 + x2 + x3 for if using Thm. 19. After updating sz, we construct P ins

rt,sz

which consists of (4′′) and variants of (3′), (5′), (6′), (10) with unchanged weights
(as crt,sz(gt(x, y)) = rt(gt) = 0). ITS tools now infer runtime bounds like 2 ·x2 for
ins and 2 · x3 for if. After removing ins and if, we analyze the remaining RNTS
P isort = {(1′), (2′)}. Since the right-hand side of (2′) contains an inner occurrence
of ins below isort, (2′) is replaced by

isort(xs ′, ys)
w→ isort(xs, ys ′) [xs ′ = 1 + x+ xs ∧ ys ′ ≤ 1 + x+ ys ∧ . . .]

where w = 1 in P isort
sz and w = 1 + rt(ins){x1/x, x2/ys} = 1 + 2 · ys in P isort

rt,sz .
Using Thm. 19, one can now infer bounds like sz(isort) = x1 + x2 and rt(isort) =
x21 + 2 · x1 · x2. Hence, by Thm. 18 one can deduce irc(n) ∈ O(n2).

Based on Thm. 27, we can now show the correctness of our overall analysis.

Theorem 30 (Alg. 1 is Sound). Let P be an RNTS and let rt and sz be the
result of Alg. 1 for P. Then rt is a runtime bound and sz is a size bound for P.

5 Related Work, Experiments, and Conclusion

To make techniques for complexity analysis of integer programs also applicable
to TRSs, we presented two main contributions: First, we showed in Sect. 3 how
TRSs can be abstracted to a variant of integer transition systems (called RNTSs)
and presented conditions for the soundness of this abstraction. While abstractions
from term-shaped data to numbers are common in program analysis (e.g., for
proving termination), soundness of our abstraction for complexity of TRSs is
not trivial. In [3] a related abstraction technique from first-order functional
programs to a formalism corresponding to RNTSs is presented. However, there
are important differences between such functional programs and term rewriting:
In TRSs, one can also rewrite non-ground terms, whereas functional programming
only evaluates ground expressions. Moreover, overlapping rules in TRSs may lead
to non-determinism. The most challenging part in Sect. 3 is Thm. 9, i.e., showing
that the step from innermost term rewriting to ground innermost rewriting
is complexity preserving, even for relative rewriting. Mappings from terms to
numbers were also used for complexity analysis of logic programs [15]. However,
[15] operates on the logic program level, i.e., it does not translate programs to
ITSs and it does not allow the application of ITS-techniques and tools.

Our second contribution (Sect. 4) is an approach to lift any technique for
runtime complexity of ITSs to handle (non-nested, but otherwise arbitrary) re-
cursion as well. This approach is useful for the analysis of recursive arithmetic
programs in general. In particular, by combining our two main contributions we
obtain a completely modular approach for the analysis of TRSs. To infer runtime
bounds, we also compute size bounds, which may be useful on their own as well.

There exist several approaches that also analyze complexity by inferring both
runtime and size bounds. Wegbreit [35] tries to generate closed forms for the
exact runtime and size of the result of each analyzed function, whereas we esti-

14 M. Naaf et al.

mate runtime and size by upper bounds. Hence, [35] fails whenever finding such
exact closed forms automatically is infeasible. Serrano et al. [33] also compute
runtime and size bounds, but in contrast to us they work on logic programs, and
their approach is based on abstract interpretation. Our technique in Sect. 4 was
inspired by our work on the tool KoAT [13], which composes results of alternating
size and runtime complexity analyses for ITSs. In [13] we developed a “bottom-up”
technique that corresponds to the approach of Sect. 4.2 when restricting it to
ordinary ITSs without (non-tail) recursion. But in contrast to Sect. 4.2, KoAT’s
support for recursion is very limited, as it disregards the return values of “inner”
calls. Moreover, [13] does not contain an approach like Thm. 19 in Sect. 4.1 which
allows us to obtain size bounds from techniques that compute runtime bounds.

RAML [26–28] reduces the inference of resource annotated types (and hence
complexity bounds) for ML programs to linear optimization. Like other techniques
for functional programs, it is not directly applicable to TRSs due to the differences
between ML and term rewriting.6 Moreover,RAML has two theoretical boundaries
w.r.t. modularity [26]: (A) The number of linear constraints arising from type
inference grows exponentially in the size of the program. (B) To achieve context-
sensitivity, functions are typed differently for different invocations. In our setting,
a blow-up similar to (A) may occur within the used ITS tool, but as the program is
analyzed one function at a time, this blow-up is exponential in the size of a single
function instead of the whole program. To avoid (B), we analyze each function
only once. However, RAML takes amortization effects into account and obtains
impressive results in practice. Further leading tools for complexity analysis of
programs on integers (resp. naturals) are, e.g., ABC [11], C4B [14], CoFloCo [16,17],
LoAT [18], Loopus [34], PUBS [1, 2], Rank [4], and SPEED [23].

Finally, there are numerous techniques for automated complexity analysis
of TRSs, e.g., [7, 8, 24, 32, 36]. While they also allow forms of modularity, the
modularity of our approach differs substantially due to two reasons:

(1) Most previous complexity analysis techniques for TRSs are top-down
approaches which estimate how often a rule g(. . .)→ . . . is applied in reductions
that start with terms of a certain size. So the complexity of a rule depends on
the context of the whole TRS. This restricts the modularity of these approaches,
since one cannot analyze g’s complexity without taking the rest of the TRS into
account. In contrast, we propose a bottom-up approach which analyzes how the
complexity of any function g depends on g’s inputs. Hence, one can analyze g
without taking into account how g is called by other functions f .

(2) In our technique, if a function g has been analyzed, we can replace it
by its size bound and do not have to regard g’s rules anymore when analyzing
a function f that calls g. This is possible because we use a fixed abstraction
from terms to numbers. In contrast, existing approaches for TRSs cannot remove
rules from the original TRS after having oriented them (with a strict order �),
except for special cases. When other parts of the TRS are analyzed afterwards,
these previous rules still have to be oriented weakly (with %), since existing TRS

6 See [29] for an adaption of an amortized analysis as in [27] to term rewriting. However,
[29] is not automated, and it is restricted to ground rewriting with orthogonal rules.

Complexity Analysis for TRSs by ITSs 15

approaches do not have any dedicated size analysis. This makes the existing
approaches for TRSs less modular, but also more flexible (since they do not use a
fixed abstraction from terms to numbers). In future work, we will try to improve
our approach by integrating ideas from [3] which could allow us to infer and to
apply multiple norms when abstracting functional programs to RNTSs.

We implemented our contributions in the tool AProVE [22] and evaluated its
power on all 922 examples of the category “Runtime Complexity - Innermost
Rewriting” of the Termination and Complexity Competition 2016.7 Here, we
excluded the 100 examples where AProVE shows irc(n) = ω.

In our experiments, we consider the previous version of AProVE (AProVE ’16),
a version using only the techniques from this paper (AProVE RNTS), and AProVE
’17 which integrates the techniques from this paper into AProVE’s previous ap-
proach to analyze irc. In all these versions, AProVE pre-processes the TRS to
remove rules with non-basic left-hand sides that are unreachable from basic terms,
cf. [19]. AProVE RNTS uses the external tools CoFloCo, KoAT, and PUBS to com-
pute runtime bounds for the ITSs resulting from the technique in Sect. 4. While
we restricted ourselves to polynomial arithmetic for simplicity in this paper,
KoAT’s ability to prove exponential bounds for ITSs also enables AProVE to infer
exponential upper bounds for some TRSs. Thus, the capabilities of the back-
end ITS tool determine which kinds of bounds can be derived by AProVE. We
also compare with TcT 3.1.0 [7], since AProVE and TcT were the most powerful
complexity tools for TRSs at the Termination and Complexity Competition 2016.

Note that while the approach of Sect. 4 allows us to use any existing (or future)
ITS tools for complexity analysis of RNTSs, CoFloCo can also infer complexity
bounds for recursive ITSs directly, i.e., it does not require the technique in Sect. 4.
To this end, CoFloCo analyzes program parts independently and uses linear invari-
ants to compose the results. So CoFloCo’s approach differs significantly from Sect.
4, which can also infer non-linear size bounds. Thus, the approach of Sect. 4 is
especially suitable for examples where non-linear growth of data causes non-linear
runtime. For instance, in Ex. 28 the quadratic size bound for f× is crucial to
prove a (tight) cubic runtime bound with the technique of Sect. 4. Consequently,
CoFloCo’s linear invariants are not sufficient and hence it fails for this RNTS.
See [5] for a list of 17 examples with non-linear runtime where Sect. 4 was superior
to all other considered techniques in our experiments. However, CoFloCo’s amor-
tized analysis often results in very precise bounds, i.e., both approaches are ortho-
gonal. Therefore, as an alternative to Sect. 4, AProVE RNTS also uses CoFloCo
to analyze the RNTSs obtained from the transformation in Sect. 3 directly.

ircR(n) TcT AProVE RNTS AProVE ’16 AProVE & TcT AProVE ’17

O(1) 47 43 48 53 53
≤ O(n) 276 254 320 354 379
≤ O(n2) 362 366 425 463 506
≤ O(n3) 386 402 439 485 541
≤ O(n>3) 393 412 439 491 548
≤ EXP 393 422 439 491 553

The table on
the right shows
the results of our
experiments. As
suggested in [8],
we used a timeout
of 300 seconds per

7 See http://termination-portal.org/wiki/Termination_Competition/

16 M. Naaf et al.

example (on an Intel Xeon with 4 cores at 2.33 GHz each and 16 GB of RAM).
AProVE & TcT represents the former state of the art, i.e., for each example here
we took the best bound found by AProVE ’16 or TcT. A row “≤ O(nk)” means
that the corresponding tools proved a bound ≤ O(nk) (e.g., TcT proved constant
or linear upper bounds in 276 cases). Clearly, AProVE ’17 is the most powerful
tool, i.e., the contributions of this paper significantly improve the state of the
art for complexity analysis of TRSs. This also shows that the new technique
of this paper is orthogonal to the existing ones. In fact, AProVE RNTS infers
better bounds than AProVE & TcT in 127 cases. In 102 of them, AProVE &
TcT fails to prove any bound at all. The main reasons for this orthogonality are
that on the one hand, our approaches loses precision when abstracting terms to
numbers. But on the other hand, our approach allows us to apply arbitrary tools
for complexity analysis of ITSs in the back-end and to benefit from their respec-
tive strengths. Moreover as mentioned above, the approach of Sect. 4 succeeds
on many examples where non-linear growth of data leads to non-linear runtime,
which are challenging for existing techniques.

For further details on our experiments including a detailed comparison of
AProVE RNTS and prior techniques for TRSs, and to access AProVE ’17 via a
web interface, we refer to [5].

Acknowledgments. We thank A. Flores-Montoya for his help with CoFloCo
and the anonymous reviewers for their suggestions and comments.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-form upper bounds in static
cost analysis. Journal of Automated Reasoning 46(2), 161–203 (2011)

2. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
object-oriented bytecode programs. Theoretical Comp. Sc. 413(1), 142–159 (2012)

3. Albert, E., Genaim, S., Gutiérrez, R.: A transformational approach to resource
analysis with typed-norms. In: LOPSTR ’13. pp. 38–53

4. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, program
termination, and complexity bounds of flowchart programs. In: SAS ’10. pp. 117–133

5. AProVE: https://aprove-developers.github.io/trs_complexity_via_its/.

6. Avanzini, M., Felgenhauer, B.: Type introduction for runtime complexity analysis.
In: WST ’14. pp. 1–5, available from http://www.easychair.org/smart-program/

VSL2014/WST-proceedings.pdf

7. Avanzini, M., Moser, G., Schaper, M.: TcT: Tyrolean complexity tool. In:
TACAS ’16. pp. 407–423

8. Avanzini, M., Moser, G.: A combination framework for complexity. Information
and Computation 248, 22–55 (2016)

9. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge U. Press (1998)

10. Baillot, P., Dal Lago, U., Moyen, J.Y.: On quasi-interpretations, blind abstractions
and implicit complexity. Math. Structures in Comp. Sc. 22(4), 549–580 (2012)

11. Blanc, R., Henzinger, T.A., Hottelier, T., Kovács, L.: ABC: Algebraic bound com-
putation for loops. In: LPAR (Dakar) ’10. pp. 103–118

Complexity Analysis for TRSs by ITSs 17

12. Bonfante, G., Cichon, A., Marion, J.Y., Touzet, H.: Algorithms with polynomial
interpretation termination proof. J. Functional Programming 11(1), 33–53 (2001)

13. Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Analyzing runtime and
size complexity of integer programs. ACM TOPLAS 38(4) (2016)

14. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.
In: PLDI ’15. pp. 467–478

15. Debray, S., Lin, N.: Cost analysis of logic programs. TOPLAS 15(5), 826–875 (1993)
16. Flores-Montoya, A., Hähnle, R.: Resource analysis of complex programs with cost

equations. In: APLAS ’14. pp. 275–295
17. Flores-Montoya, A.: Upper and lower amortized cost bounds of programs expressed

as cost relations. In: FM ’16. pp. 254–273
18. Frohn, F., Naaf, M., Hensel, J., Brockschmidt, M., Giesl, J.: Lower runtime bounds

for integer programs. In: IJCAR ’16. pp. 550–567
19. Frohn, F., Giesl, J.: Analyzing runtime complexity via innermost runtime complexity.

In: LPAR ’17. pp. 249–268
20. Frohn, F., Giesl, J., Hensel, J., Aschermann, C., Ströder, T.: Lower bounds for

runtime complexity of term rewriting. J. Aut. Reasoning 59(1), 121–163 (2017)
21. Fuhs, C., Giesl, J., Parting, M., Schneider-Kamp, P., Swiderski, S.: Proving termi-

nation by dep. pairs and inductive theorem proving. JAR 47(2), 133–160 (2011)
22. Giesl, J., Aschermann, C., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Hensel,

J., Otto, C., Plücker, M., Schneider-Kamp, P., Ströder, T., Swiderski, S., Thiemann,
R.: Analyzing program termination and complexity automatically with AProVE.
Journal of Automated Reasoning 58, 3–31 (2017)

23. Gulwani, S.: SPEED: Symbolic complexity bound analysis. In: CAV ’09. pp. 51–62
24. Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency

pair method. In: IJCAR ’08. pp. 364–379
25. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations. In:

RTA ’89. pp. 167–177
26. Hoffmann, J.: Types with Potential: Polynomial Resource Bounds via Automatic

Amortized Analysis. Ph.D. thesis, Ludwig-Maximilians-University Munich (2011)
27. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.

ACM Transactions on Programming Languages and Systems 34(3) (2012)
28. Hoffmann, J., Das, A., Weng, S.C.: Towards automatic resource bound analysis for

OCaml. In: POPL ’17. pp. 359–373
29. Hofmann, M., Moser, G.: Multivariate amortised resource analysis for term rewrite

systems. In: TLCA ’15. pp. 241–256
30. Kapur, D., Narendran, P., Zhang, H.: On sufficient completeness and related prop-

erties of term rewriting systems. Acta Informatica 24, 395–415 (1987)
31. Kounalis, E.: Completeness in data type specifications. EUROCAL ’85. pp. 348–362
32. Noschinski, L., Emmes, F., Giesl, J.: Analyzing innermost runtime complexity of

term rewriting by dependency pairs. Journal of Aut. Reasoning 51(1), 27–56 (2013)
33. Serrano, A., López-Garćıa, P., Hermenegildo, M.: Resource usage analysis of logic

programs via abstract interpretation using sized types. Theory and Practice of
Logic Programming 14(4-5), 739–754 (2014)

34. Sinn, M., Zuleger, F., Veith, H.: Complexity and resource bound analysis of imper-
ative programs using difference constraints. J. Aut. Reasoning 59(1), 3–45 (2017)

35. Wegbreit, B.: Mechanical program analysis. Comm. ACM 18, 528–539 (1975)
36. Zankl, H., Korp, M.: Modular complexity analysis for term rewriting. Logical Meth-

ods in Computer Science 10(1) (2014)
37. Zantema, H.: Termination of term rewriting: Interpretation and type elimination.

Journal of Symbolic Computation 17(1), 23–50 (1994)

18 M. Naaf et al.

A Improving the Precision of the Size Abstraction H·I

In this section we present improvements to increase the precision when abstract-
ing TRSs to RNTSs. In App. A.1 we adapt the abstraction H·I to distinguish
different constant constructors, and in App. A.2 we improve the precision of our
analysis by narrowing.

A.1 Improved Size Abstraction

Example 31. The TRS Rloop (Beerendonk 07/1.xml, on which all tools failed
in the Termination and Complexity Competition 2016) contains the gt-rules (7),
(8), (9), and

loop(true, x, y)→ loop(gt(x, y), p(x), y) (15)

loop(false, x, y)→ 0 (16)

p(0)→ 0 (17)

p(s(x))→ x (18)

Rloop is completely defined for the obvious type assignment, and HRloopI contains
the rules (7′), (8′), (9′) for gt from Ex. 7 and the following rules.

loop(b, x, y) 1→ loop(gt(x, y), p(x), y) [b = 1 ∧ . . .] (15′)

loop(b, x, y) 1→ 1 [b = 1 ∧ . . .] (16′)

p(x) 1→ 1 [x = 1] (17′)

p(x′) 1→ x [x′ = 1 + x ∧ . . .] (18′)

Rloop terminates with the runtime complexity ircRloop(n) ∈ O(n2), but HRloopI
does not terminate, as gt(n1, n2) →∗HRloopI 1 holds for all n1, n2 ∈ N \ {0} and

thus, we have loop(1, 1, 1)→+
HRloopI loop(1, 1, 1).

Ex. 31 shows that abstracting all constants to 1 loses critical information. To
distinguish different constants after applying H·I, we now improve the abstraction.

Definition 32 (Abstraction H·Icon from TRSs to RNTSs). Let R/S be
a TRS with the constants Σ0

c = {f ∈ ΣR∪Sc | arity(f) = 0}. For a mapping
con : Σ0

c → N from constants to numbers, the improved size abstraction HtIcon
of a term t is defined as follows:

HxIcon = x for x ∈ V
HfIcon = con(f) if f ∈ Σ0

c

Hf(t1, . . . , tk)Icon = 1 + Ht1Icon + . . .+ HtkIcon if f ∈ ΣR∪Sc \Σ0
c

Hf(t1, . . . , tk)Icon = f(Ht1Icon, . . . , HtkIcon) if f ∈ ΣR∪Sd

We lift H·Icon to rules and TRSs analogous to H·I (cf. Def. 6), where instead of
the condition

∧
x∈V(`) x ≥ 1 we now use

∧
x∈V(`) x ≥ min{con(f) | f ∈ Σ0

c}.

Complexity Analysis for TRSs by ITSs 19

The following adaption of Thm. 13 shows how H·Icon is used in order to infer
bounds on the runtime complexity of TRSs via the transformation to RNTSs.

Theorem 33 (Soundness of Abstraction H·Icon). Let R/S be a well-typed
constructor system and let conmax = max({1} ∪ {con(f) | f ∈ Σ0

c}). Let N be
a terminating variant of S such that R/(S ∪ N) is well typed and completely
defined. Then we have ircR/S(n) ≤ ircHR/(S∪N)Icon(conmax · n) for all n ∈ N.

Example 34. Using con(0) = con(false) = 0 and con(true) = 1, the TRS Rloop

from Ex. 31 is transformed to the RNTS HRloopIcon which consists of

gt(x, y) 1→ 0 [x = 0] (7′′)

gt(x′, y) 1→ 1 [x′ = 1 + x ∧ y = 0] (8′′)

loop(b, x, y) 1→ 0 [b = 0] (16′′)

p(x) 1→ 0 [x = 0] (17′′)

and rules corresponding to (9′), (15′), (18′). Now the information on the control
flow is kept and we have ircHRloopIcon(n) ∈ O(n2), which implies ircRloop(n) ∈ O(n2)
by Thm. 33.

A.2 Pre-Processing TRSs by Narrowing

Although HRloopIcon from Ex. 34 terminates, our approach of Sect. 4 still fails.

Example 35. For the two bottom symbols gt and p of HRloopIcon, we can easily
infer the size bounds sz(gt) = 1 and sz(p) = x1. However, when abstracting
the inner calls of gt and p in Rule (15′) using these bounds, we obtain the
non-terminating rule

loop(b, x, y)→ loop(b′, x′, y) [b = 1 ∧ b′ ≤ 1 ∧ x′ ≤ x]

The problem is that our size bounds are too imprecise to distinguish whether
p returns x1 or x1 − 1 and whether gt returns 1 or 0 (resp. true or false).

To make such case analyses explicit, we apply narrowing to the original TRS
in a pre-processing step. Related applications of narrowing for complexity analysis
of TRSs were proposed in [32], for example. If the TRS is a completely defined
constructor system, then a rule ` → r with r|π = f(. . . g(. . .) . . .) for f, g ∈ Σd
can be replaced by those rules that result from performing all possible narrowing
steps on g(. . .). The reason is that in any reduction of ground terms, the inner
subterm g(. . .) must be reduced to normal form before a rule can be applied to
the outer symbol f .

Theorem 36 (Narrowing for Complexity). Let R/S be a completely de-
fined constructor system, `→ r ∈ R ∪ S, r|π = f(. . .) for some f ∈ ΣR∪Sd , and
let r|µ be a basic term for some µ > π. Let `1→ r1, . . . , `m→ rm∈R ∪ S be all

20 M. Naaf et al.

(variable-renamed) rules where `i unifies with r|µ and let σi = mgu(r|µ, `i) for
1 ≤ i ≤ m. Let

R′ = (R \ {`→ r}) ∪ {`σi → r[ri]µσi | 1 ≤ i ≤ m} and S ′ = S \ {`→ r}.

Then we have dh(t, i→R/S) ≤ 2 · dh(t, i→R′/S′) for all ground terms t.

If both `→ r and `i → ri are just rules of S, then one can slightly improve
the above construction by adding `σi → r[ri]µσi to S ′ instead of R′. Together
with Thm. 9, Thm. 36 implies that even if R/S is not completely defined, if
N is a terminating variant of S where R/(S ∪ N) is completely defined, then
pre-processing R/(S∪N) by k narrowing steps to a TRS R′/M′ does not change
the asymptotic complexity, i.e., ircR/S(n) ≤ ircR/(S∪N)(n) ≤ 2k · ircR′/M′(n).

Ex. 37 shows that narrowing is indeed useful as a pre-processing step. On
the other hand, it usually increases the number of rules. So as a heuristic, our
implementation applies just one narrowing step to all basic terms below defined
symbols on right-hand sides.

Example 37. In the TRS of Ex. 31, there are two ways to narrow the basic
subterm p(x) below the symbol loop in Rule (15). Hence, (15) is replaced by

loop(true, 0, y)→ loop(gt(0, y), 0, y) using (17), mgu: {x/0} (151)

loop(true, s(x′), y)→ loop(gt(s(x′), y), x′, y) using (18), mgu: {x/s(x′)} (152)

A next narrowing step simplifies gt in both rules and replaces (151) and (152) by

loop(true, 0, y′)→ loop(false, 0, y′) by narrowing (151) with (7)

loop(true, s(x′′), 0)→ loop(true, x′′, 0) by narrowing (152) with (8)

loop(true, s(x′′), s(y′))→ loop(gt(x′′, y′), x′′, s(y′)) by narrowing (152) with (9)

When we replace (15) by these three rules and use the improved size abstraction,
our technique now automatically infers the complexity O(n2) for Ex. 31.

Complexity Analysis for TRSs by ITSs 21

B Proofs

To ease the formulation, we use the following notion. For two TRSs R and Q,
Q→R is the Q-restricted rewrite relation, where s Q→R t iff all proper subterms of
the redex of the rewrite step are in normal form w.r.t. Q (i.e., no left-hand side of
Q matches a proper subterm of the redex). So R→R= i→R is the innermost rewrite
relation of R and ∅→R is the ordinary full rewrite relation. So then the innermost
rewrite relation i→R/S of a relative TRS R/S is R∪S−→ ∗S ◦

R∪S−→ R ◦ R∪S−→ ∗S .

B.1 Proofs for Sect. 3

To prove Thm. 9 for relative rewriting, we need the following crucial properties
of terminating variants.

Lemma 38 (Properties of Terminating Variants). Let R and S be TRSs
and let N be a terminating variant of S. Then we have the following:

(a) If a term t has an infinite reduction w.r.t. i→R∪N then it also has an infinite
reduction w.r.t. i→R/N .

(b) For any terms s and t, s i→R/N t implies s i→R/(S∪N) t.

Proof. (a) Suppose that t starts an infinite reduction w.r.t. i→R∪N . Since N is

innermost terminating,
R∪N−−−→N is also innermost terminating and thus, after

a finite number of steps with
R∪N−−−→N , there must be a step with

R∪N−−−→R,

etc. So the reduction has the form t = t0
R∪N−−−→∗N t0

R∪N−−−→R t1
R∪N−−−→∗N

t1
R∪N−−−→R t2

R∪N−−−→∗N . . . This implies t = t0
i→R/N t1

i→R/N t2
i→R/N . . .

(b) Recall that s i→R/N t means s
R∪N−−−→∗N s

R∪N−−−→R t
R∪N−−−→∗N t. So all proper

subterms of all redexes are in normal form w.r.t. R∪N . Hence, they are also

in normal form w.r.t. S and we have s
R∪S∪N−−−−−→∗N s

R∪S∪N−−−−−→R t
R∪S∪N−−−−−→∗N t.

This implies s i→R/(S∪N) t. ut

Now for any constructor system Q, we define the notion of a saturated ground
system X of Q. The idea is that X consists of (possibly infinitely many) instan-
tiations of rules from Q, where all variables are instantiated by ground normal
forms. Moreover, the conditions on X ensure that X can reduce any ground redex
of Q and that it is confluent.

Definition 39 (Saturated Ground System). Let Q be a constructor system.
Then a possibly infinite TRS X is called a saturated ground system of Q iff the
following conditions hold:

• For all `→ r ∈ Q and all substitutions σ where xσ is a ground normal form
w.r.t. Q for all x ∈ V(`), there is a rule in X whose left-hand side is `σ.
• For all `′ → r′ ∈ X there exists a rule `→ r ∈ Q such that `′ → r′ = `σ →
rσ for a substitution σ where xσ is a ground normal form w.r.t. Q for all
x ∈ V(`).

22 M. Naaf et al.

• X does not contain two rules with the same left-hand side.

So a saturated ground system can be obtained by first taking the infinite set
{`σ → rσ | ` → r ∈ Q, σ instantiates all variables by ground normal forms}.
Afterwards, whenever two rules with the same left-hand side are contained in this
set, we delete one of them. The following observations about saturated ground
systems are obvious.

Lemma 40 (Properties of Saturated Ground Systems). Let X be a sat-
urated ground system for a constructor system Q. Then we have the following
properties:

(a) X is confluent.
(b) Every ground term that is innermost terminating w.r.t. Q is also terminating

w.r.t. X .
(c) Every ground normal form w.r.t. X is also a normal form w.r.t. Q.

Proof. For (a), note that the rules in X do not contain any variables (so in
particular, X is left-linear). Moreover, X is non-overlapping as all its rules have
distinct left-hand sides of the form `σ for a basic term ` and a substitution σ
that instantiates all variables of ` by ground normal forms. Every orthogonal
(i.e., left-linear non-overlapping) TRS is confluent.

Claim (b) follows from the fact that every rewrite step with X is an innermost
rewrite step with Q. The reason is that t→X s means that there is a π ∈ Pos(t)
with t|π = `′ and s = t[r′]π for a (ground) rule `′ → r′ ∈ X , i.e., t|π = `σ and
s = t[rσ]π for a rule `→ r ∈ Q and a substitution σ that instantiates all variables
of ` by ground normal forms. Since ` is a basic term, this implies that `σ does
not have any redex below the root.

For (c), note that every ground term that is not in Q-normal form contains
an innermost Q-redex `σ, which is also a redex w.r.t. X . ut

For any substitution µ that instantiates all variables by ground terms, any
saturated ground system X (for some constructor system Q), and any constructor
system U , we now define a relation _X ,µ,U on terms. Here, t _X ,µ,U s holds iff
s results from tµ by rewriting qµ w.r.t. X for some subterms q of t that are in
U-normal form.

Definition 41 (_X ,µ,U). Let U be a constructor systems, X be a TRS, and µ
be a substitution such that xµ is a ground term for all x ∈ V. Then for any terms
t and s, we have t _X ,µ,U s iff

• t = f(t1, . . . , tk), s = f(s1, . . . , sk), and ti _X ,µ,U si for all 1 ≤ i ≤ k or
• t is in U-normal form and tµ→∗X s

Now we show some properties of the _X ,µ,U -replacement that will be needed
afterwards. If X , µ, and U are clear from the context, we write _ instead of
_X ,µ,U . As usual, we use ε to denote the empty position and π.π′ is the concate-
nation of the positions π and π′.

Complexity Analysis for TRSs by ITSs 23

Lemma 42 (Properties of _X ,µ,U). Let U , X , and µ be as in Def. 41. Then
we have the following:

(a) For all terms t ∈ T (Σ,V), we have t _ tµ.

(b) For all terms t, s ∈ T (Σ,V), t _ s implies tµ→∗X s.
(c) Let t ∈ T (Σ,V) and let σ, σ′ be substitutions such that xσ _ xσ′ for all

x ∈ V(t). Then we have tσ _ tσ′.

(d) Let t, s, r, q ∈ T (Σ,V) where t|π is not in normal form w.r.t. U for some
π ∈ Pos(t). Then t _ s and r _ q imply t[r]π _ s[q]π.

Proof. (a) We use induction on t. Every variable x is in U-normal form, which
implies x _ xµ. If t = f(t1, . . . , tk), then we have ti _ tiµ for all 1 ≤ i ≤ k
by the induction hypothesis, which implies t _ tµ.

(b) We again use induction on t. If t _ s and tµ 6→∗X s, then we have t =
f(t1, . . . , tk), s = f(s1, . . . , sk), and ti _ si for all 1 ≤ i ≤ k. Hence, we have
tiµ→∗X si by the induction hypothesis, which implies tµ→∗X s.

(c) We use induction on t. For variables, the desired property holds by the
prerequisites on σ and σ′. If t = f(t1, . . . , tk), then we have tiσ _ tiσ

′ by the
induction hypothesis. Hence, by the definition of _, we also have tσ _ tσ′.

(d) We use induction on π. If π = ε, then the claim is trivial. Thus, we now
consider π = j.π′. Hence, t = f(t1, . . . , tk) with π′ ∈ Pos(tj). As t is not in
U -normal form, we have s = f(s1, . . . , sk) with si _ ti for all 1 ≤ i ≤ k. Since
tj |π′ is not in normal form, the induction hypothesis implies tj [r]π′ _ sj [q]π′ .
Hence, t[r]π = f(t1, . . . , tj [r]π′ , . . . , tk) _ f(s1, . . . , sj [q]π′ , . . . , sk) = s[q]π.

ut

The following lemma is the crucial observation needed to show that for any
ground substitution µ, the derivation height of any term t is at most as large
as the derivation height of tµ. To prove this, we will show in Thm. 9 that any
(finite or infinite) rewrite sequence t = t0

i→R/S t1
i→R/S t2

i→R/S . . . can
be transformed into a rewrite sequence tµ = s0

i→R/(S∪N)
+ s1

i→R/(S∪N)
+

s2
i→R/(S∪N)

+ . . . of at least the same length. For this proof, the essential idea is
to show that if ti _X ,µ,R∪S si and ti

i→R/S ti+1, then there exists an si+1 with
ti+1 _X ,µ,R∪S si+1 and si

i→R/(S∪N)
+ si+1, where X is a saturated ground

system for R ∪ N . This step is provided by the following lemma when setting
Q = R ∪N and U = R ∪ S, and when setting P = R resp. P = S in order to
simulate steps with R or S.

Lemma 43 (Simulating Innermost Rewriting by Ground Innermost
Rewriting). Let Q, U , P be constructor systems such that every Q-normal
form is also an U-normal form and every U-normal form is also a P-normal

form, let t, t′ be terms with t
U−→P t′, and let µ instantiate all variables of t by

ground terms. Then for any saturated ground system X for Q and for any term
s with t _X ,µ,U s where s is innermost terminating w.r.t. Q, there exists a term

s′ with t′ _X ,µ,U s′ and s
Q−→∗Q ◦

Q−→P s′.

24 M. Naaf et al.

Proof. Since t
U−→P t′, there is a rule ` → r ∈ P, a position π ∈ Pos(t), and a

substitution σ such that t|π = `σ and t′ = t[rσ]π. Thus, ` = f(`1, . . . , `k) and
t|π = f(t1, . . . , tk) for a defined symbol f ∈ Σd, and `1, . . . , `k are constructor
terms with `iσ = ti for all 1 ≤ i ≤ k. Let t _ s where s is innermost terminating
w.r.t. Q. Since t|π is a P-redex, no subterm of t at a position on or above π is
in P-normal form. As every U-normal form is also a P-normal form, we have
π ∈ Pos(s) and s|π = f(s1, . . . , sk) with ti _ si for all 1 ≤ i ≤ k. For all x ∈ V(`),
let κx1 , . . . , κ

x
nx

be all positions of ` where x occurs. As f(t1, . . . , tk) = `σ, this
implies f(t1, . . . , tk)|κx

j
= xσ for all 1 ≤ j ≤ nx. Note that on positions that are

below the root but above the positions κxj , f(t1, . . . , tk) has the same symbol
as `. Thus, f(t1, . . . , tk) only contains constructors on these positions since `
is basic. As ti _ si for all 1 ≤ i ≤ k, this also means that f(s1, . . . , sk) and
f(t1, . . . , tk) have the same symbols on all positions above the positions κxj .
Moreover, since ti _ si implies tiµ→∗X si by Lemma 42 (b), we therefore have
xσµ →∗X f(s1, . . . , sk)|κx

j
for all 1 ≤ j ≤ nx. Recall that X is confluent by

Lemma 40 (a) and s is innermost terminating w.r.t. Q (and by Lemma 40 (b)
therefore also w.r.t. X). Thus, f(s1, . . . , sk) is also terminating w.r.t. X and hence,
there exists a unique term sx in normal form such that f(s1, . . . , sk)|κx

j
→∗X sx

for all 1 ≤ j ≤ nx. For all variables x ∈ V(`), we define xσ′ = sx. As xσ is in
U-normal form (since `σ contains no U-redex below the root due to the step

`σ
U−→P rσ), xσµ→∗X sx = xσ′ implies xσ _ xσ′. Note that since sx is in normal

form w.r.t. X it is also in normal form w.r.t. Q by Lemma 40 (c).
Then we have f(s1, . . . , sk)→∗X `σ′ since for V(`) = {x1, . . . , xm}, we have:

f(s1, . . . , sk)
= f(t1, . . . , tk) [f(s1, . . . , sk)|κx1

1
]κx1

1
. . . [f(s1, . . . , sk)|κx1

n1
]κx1

n1

...
[f(s1, . . . , sk)|κxm

1
]κxm

1
. . . [f(s1, . . . , sk)|κxm

nm
]κxm

nm

= ` [f(s1, . . . , sk)|κx1
1

]κx1
1

. . . [f(s1, . . . , sk)|κx1
n1

]κx1
n1

...
[f(s1, . . . , sk)|κxm

1
]κxm

1
. . . [f(s1, . . . , sk)|κxm

nm
]κxm

nm

→∗X ` [sx1]κx1
1

. . . [sx1]κx1
n1

...
[sxm]κxm

1
. . . [sxm]κxm

nm

= `σ′

As every rewrite step with X is obviously an innermost step with Q, this implies

s = s[f(s1, . . . , sk)]π
Q−→∗Q s[`σ′]π. Note that σ′ instantiates all variables x ∈ V(`)

by the Q-normal form sx. Thus, as ` is a basic term, `σ′ does not have any
Q-redex below the root. This implies that we can continue the above reduction

by s
Q−→∗Q s[`σ′]π

Q−→P s[rσ′]π.
It remains to show that t′ = t[rσ]π _ s[rσ′]π holds. As xσ _ xσ′ for all

x ∈ V(r), Lemma 42 (c) implies rσ _ rσ′. As t|π is not in normal form w.r.t.

Complexity Analysis for TRSs by ITSs 25

P and therefore also not in normal form w.r.t. U , we can use Lemma 42 (d) to
conclude t′ = t[rσ]π _ s[rσ′]π which proves the current lemma. ut

Now we can show Thm. 9.

Theorem 9 (Soundness of Instantiation and Terminating Variants).
Let R, S be constructor systems and N be a terminating variant of S. Then
dh(t, i→R/S) ≤ dh(tσ, i→R/(S∪N)) holds for any term t where tσ is ground.

Proof. If tµ is not terminating w.r.t. i→R/(S∪N), then we get dh(tµ, i→R/(S∪N)) =
ω and the theorem obviously holds. Otherwise, note that termination of tµ w.r.t.
i→R/(S∪N) implies innermost termination of tµ w.r.t. R∪N . To see this, assume

that tµ has an infinite innermost reduction w.r.t. R∪N . By Lemma 38 (a), then
tµ also has an infinite reduction w.r.t. i→R/N . Then Lemma 38 (b) implies that
tµ also has an infinite reduction w.r.t. i→R/(S∪N).

Let Q = R∪N and let U = R∪ S. Then every Q-normal form is also an U-
normal form by the definition of terminating variants. Moreover, every U -normal
form is also an S-normal form and an R-normal form. Let X be a saturated
ground system for Q and consider a finite or infinite sequence t i→R/S t1 i→R/S
t2

i→R/S . . . Thus, we have

t = t0
U−→∗S t0

U−→R t1
U−→∗S t1

U−→R . . .

We always have t _ tµ by Lemma 42 (a) (where we again write _ instead

of _X ,µ,U). Hence, by using Lemma 43 for P = S, we have tµ
Q−→∗Q∪S s0 for

a term s0 with t0 _ s0. Clearly termination of tµ w.r.t. i→R/(S∪N) implies
that any term that is reachable from tµ by i→R∪S∪N is also terminating w.r.t.
i→R/(S∪N). Recall that tµ

Q−→∗Q∪S s0 means tµ
R∪N−−−→∗R∪S∪N s0 and as every

N -normal form is also an S-normal form, we also have tµ
R∪S∪N−−−−−→∗R∪S∪N s0, i.e.,

tµ i→R∪S∪N ∗ s0. Thus, termination of tµ w.r.t. i→R/(S∪N) implies that s0 is also
terminating w.r.t. i→R/(S∪N). With the same argumentation as in the beginning
of the proof, Lemma 38 implies that s0 is innermost terminating w.r.t. R ∪N
and hence, we can apply Lemma 43 for P = R to obtain tµ

Q−→∗Q∪S s0
Q−→∗Q

◦ Q−→R s1 for a term s1 with t1 _ s1. Note that since Q = R ∪ N , this means

tµ
R∪N−−−→∗R∪S∪N ◦

R∪N−−−→R s1. As every N -normal form is also an S-normal form,

we have tµ
R∪S∪N−−−−−→∗R∪S∪N ◦

R∪S∪N−−−−−→R s1, i.e., tµ i→R/(S∪N)
+ s1.

By repeating this construction, we obtain a rewrite sequence tµ i→R/(S∪N)
+

s1
i→R/(S∪N)

+ s2
i→R/(S∪N)

+ . . . of at least the same length as the original
rewrite sequence for t. ut

To prove Thm. 13, we need an auxiliary lemma which shows that every rewrite
step on ground terms with a constructor system R can also be simulated by its
abstraction HRI.

Note that J.K : T (Σ]Σfml,V)∪{ω} → T (Σ]Σfml,V)∪{ω} is defined as JxK =
x for x ∈ V ∪ {ω}. For ◦ ∈ {+, ·, <}, let J◦(t1, t2)K = •(Jt1K, Jt2K) if Jt1K, Jt2K ∈ N,
where • is the arithmetic function associated with the symbol ◦. Similarly,

26 M. Naaf et al.

J∧(t1, t2)K = •(Jt1K, Jt2K) if Jt1K, Jt2K ∈ {true, false}, where • is the Boolean con-
junction. In all other cases, we define Jf(t1, . . . , tk)K = f(Jt1K, . . . , JtkK).

Lemma 44 (Size Abstraction Does Not Decrease dh). Let R,Q be well-
typed TRSs where R is a constructor system and Q is completely defined w.r.t.
a many-sorted signature Σ. Let m ∈ N and P = {H` → rIm | ` → r ∈ R}. Let
s, t ∈ T (Σ,∅) be (well-typed) ground terms. Then s Q→R t implies JHsIK m−→P
JHtIK.

Proof. Since s Q→R t, there is a rule ` → r ∈ R with s|π = `σ and t = s[rσ]π
for some substitution σ and some position π. Moreover, no proper subterm of
`σ is a Q-redex. As Q is completely defined, this means that `σ is a basic
ground term and σ instantiates every x ∈ V by a constructor ground term. So if
` = f(t1, . . . , tk), then t1σ, . . . , tkσ are constructor ground terms. Hence for all
1 ≤ i ≤ k, we have HtiσI ∈ T (Σexp,∅) and ni = JHtiσIK ∈ N. Let δ be a natural
substitution with xiδ = ni for fresh variables x1, . . . , xk and xδ = JHxσIK for all
other variables x ∈ V.

Note that P contains the rule H` → rIm, which is f(x1, . . . , xk)
m−→ HrI [c]

where c is the constraint
∧k
i=1 xi = HtiI ∧

∧
x∈V(`) x ≥ 1. Clearly JcδK = true,

because JxiδK = JniK = ni = JHtiσIK = JHtiIσK = JHtiIδK and JxδK = JHxσIK ≥ 1,
as σ instantiates every x ∈ V by a constructor ground term.

We now prove that JHsIK m−→P JHtIK holds by induction on the position π. In
the induction base, we have π = ε. Thus, s = `σ and t = rσ. Hence, we obtain

JHsIK
= JH`σIK
= f(n1, . . . , nk)
m−→P JHrIδK as JcδK = true
= JHrσIK
= JHtIK

In the induction step, we have π = i.π′ for some 1 ≤ i ≤ k. So there is some
g ∈ Σ with s = g(s1, . . . , si, . . . , sd), si|π′ = `σ, and t = g(s1, . . . , si[rσ]π′ , . . . , sd).
The induction hypothesis states that JHsiIK

m−→P JHsi[rσ]π′IK. Now we have

JHsIK
= JHg(s1, . . . , si, . . . , sd)IK
= g(JHs1IK, . . . , JHsiIK, . . . , JHsdIK)
m−→P Jg(JHs1IK, . . . , JHsi[rσ]π′IK, . . . , JHsdIK)K
= Jg(Hs1I, . . . , Hsi[rσ]π′I, . . . , HsdI)K
= JHg(s1, . . . , si[rσ]π′ , . . . , sd)IK
= JHtIK

ut

Theorem 13 (Soundness of Abstraction H·I). Let R/S be a well-typed,
completely defined constructor system. Then dh(t, i→R/S) ≤ dhw(JHtIK,→HR/SI)

Complexity Analysis for TRSs by ITSs 27

holds for all well-typed ground terms t. Let N be a terminating variant of S such
that R/(S ∪ N) is also well typed. If R/(S ∪ N) is completely defined, then we
have ircR/S(n) ≤ ircHR/(S∪N)I(n) for all n ∈ N.

Proof. By Lemma 44, for any well-typed ground term s, s i→R/S t implies
JHsIK →HR/SI

+ JHtIK, where the sum of the weights of the rewrite steps is 1.
Therefore,

dh(t, i→R/S) ≤ dhw(JHtIK,→HR/SI) holds for all well-typed ground terms t.
(19)

By the requirement on completely defined TRSs, for every type τ there is a
constant cτ of type τ . Let µ instantiate every variable of type τ by cτ . Thus, we
obtain:

ircR/S(n)

= sup{dh(t, i→R/S) | t basic, |t| ≤ n}
= sup{dh(t, i→R/S) | t well typed and basic, |t| ≤ n} by persistence of irc [6]

≤ sup{dh(tµ, i→R/(S∪N)) | t well typed and basic, |t| ≤ n}
by Thm. 9

≤ sup{dh(s, i→R/(S∪N)) | s well typed, basic, and ground, |s| ≤ n}
since |t| = |tµ| for all terms t

≤ sup{dhw(JHsIK, i→HR/(S∪N)I) | s well typed, basic, and ground, |s| ≤ n}
by (19)

≤ sup{dhw(q,→HR/(S∪N)I) | q nat-basic, ||q|| ≤ n} since |s| = ||JHsIK|| for all

basic ground terms s

= ircHR/(S∪N)I(n)

ut

B.2 Proofs for Sect. 4

Theorem 18 (rt and irc). Let rt be a runtime bound for an RNTS P. Then for
all n ∈ N, we have ircP(n) ≤ sup{Jrt(f) {x1/n1, . . . , xk/nk}K | f ∈ Σ,n1, ..., nk ∈
N,
∑k
i=1 ni < n}. So in particular, ircP(n) ∈ O(

∑
f∈ΣJrt(f) {x1/n, . . . , xk/n}K).

Proof. For any n ∈ N we have

ircP(n)
= sup{dhw(t,→P) | t is nat-basic, ||t|| ≤ n} Def. 5

= sup{dhw(f(n1, . . . , nk),→P) | f ∈ Σ,n1, . . . , nk ∈ N ∧ 1 +
∑k

i=1 ni ≤ n} Def. 5

≤ sup{Jrt(f){x1/n1, . . . , xk/nk}K | f ∈ Σ,n1, . . . , nk ∈ N ∧ 1 +
∑k

i=1 ni ≤ n} Def. 16

= sup{Jrt(f){x1/n1, . . . , xk/nk}K | f ∈ Σ,n1, . . . , nk ∈ N ∧
∑k

i=1 ni < n}

The second statement of the theorem follows by weak monotonicity of rt(f)
for all f ∈ Σ, i.e., by

Jrt(f){x1/n1, . . . , xi/ni, . . . , xk/nk}K ≤ Jrt(f){x1/n1, . . . , xi/ni + 1, . . . , xk/nk}K

28 M. Naaf et al.

for all n1, . . . , nk ∈ N and all 1 ≤ i ≤ k. The reason is due to the construction of
rt(f): constant functions and variables are monotonic w.r.t. ≤, combinations of
monotonic functions by + or · are again monotonic, and the special value ω is
monotonic as well. ut

Instead of Thm. 19, we prove the following generalization to an arbitrary
number of defined symbols on the right-hand side. In the following, instead of

t0
m1−−→P . . .

mn−−→P tn, we often write t0
m−→∗P tn, where m = m1 + . . .+mn.

Theorem 45 (ITS Size Bounds (Generalized)). Let P be an ITS whose
rules are of the form ` w→ u [ϕ] or ` w→ u+

∑
1≤i≤m vi ·ri [ϕ] for u, vi ∈ T (Σexp,V)

and root(ri) ∈ Σ. Let

Psize =

{
f ′(x1, . . . , xk, z)

u·z−−→
∑

1≤i≤m g
′
i(ti,1, . . . , ti,ki , vi · z) [ϕ]

| f(x1, . . . , xk) w→ u+
∑

1≤i≤m vi · gi(ti,1, . . . , ti,ki) [ϕ] ∈ P

}
∪ {f ′(x1, . . . , xk, z)

u·z−−→ 0 [ϕ] | f(x1, . . . , xk) w→ u [ϕ] ∈ P}

for a fresh variable z ∈ V. Let rt be a runtime bound for Psize. Then sz with
sz(f) = rt(f ′){xk+1/1} for any f ∈ Σ is a size bound for P.

Proof. To be able to use the runtime bound rt for Psize as a size bound for P,

we prove that if f(n1, . . . , nk) −→∗P n, then we have f ′(n1, . . . , nk, 1)
e−→∗Psize

0 with
e ≥ n for all f ∈ Σ and n, n1, . . . , nk ∈ N. Instead, we prove the following
generalized statement for all numbers d ≥ 0:

f(n1, . . . , nk) −→∗P n implies f ′(n1, . . . , nk, d)
e−→∗Psize

0 with e ≥ n · d. (20)

From this, the claim of Thm. 45 follows.
We prove (20) by induction on the length of the derivation. In the base case,

we have f(n1, . . . , nk)→P n with some rule f(x1, . . . , xk) −→ u [ϕ] ∈ P and some

substitution σ with JuσK = n, and thus by construction f ′(n1, . . . , nk, d)
n·d−−→Psize

0, from which (20) trivially follows.
In the induction step, we have

f(n1, . . . , nk) −→P ũ+
∑

1≤i≤m
ṽi · gi(t̃i,1, . . . , t̃i,ki) −→∗P n

for ground terms ũ, ṽi ∈ T (Σexp,∅). Thus, by construction

f ′(n1, . . . , nk, d)
ũ·d−−→Psize

∑
1≤i≤m

ṽi · g′i(t̃i,1, . . . , t̃i,ki , ṽi · d).

Let ñi ∈ N be the P-normal forms of gi(t̃i,1, . . . , t̃i,ki) such that n = ũ +∑
1≤i≤m ṽi · ñi.
From the induction hypothesis (20), we obtain g′i(t̃i,1, . . . , t̃i,ki , ṽi · d)

ei−→∗Psize
0

with ei ≥ ñi · ṽi ·d. Hence, the total weight of the Psize-derivation f ′(n1, . . . , nk, d)
→∗Psize

0 is ũ · d +
∑

1≤i≤m ei ≥ ũ · d +
∑

1≤i≤m ñi · ṽi · d = n · d. Thus, (20)
follows. ut

Complexity Analysis for TRSs by ITSs 29

To ease notation, we now introduce abbreviations for the RNTSs that result
from applying the inner and the outer abstraction, respectively (Pirt,sz resp. Posz).
We also introduce a third abstraction as, which eliminates outer constructors as
in the construction of Prt,sz. The result of this new abstraction is Pc. Moreover,
we introduce ci and co, which correspond to the costs of applying ai resp. as.
We also introduce an RNTS P̂rt,sz which rewrites every nat-basic term to any
results bounded by the size bound sz. Finally, we introduce P ′rt,sz, which results

from first applying ai and then applying as to all rules of a RNTS (and adding
the corresponding costs and conditions to the resulting rules). While P ′rt,sz and
Prt,sz are very similar, their rules have slightly different costs. However, later we
will see that every runtime bound for Prt,sz is also a runtime bound for P ′rt,sz (cf.
Corollary 52).

To ease readability, in the following we write Σd and Σc instead of ΣPd and
ΣPc .

Definition 46 (Abstraction and Resulting Costs and RNTSs). Let P be
an RNTS with size and runtime bounds sz and rt. We define:

cirt,sz(t) =


0 if t ∈ V∑

1≤i≤k c
i
rt,sz(ti) if t = f(t1, . . . , tk), f /∈ Σd

crt,sz(t) if t = f(t1, . . . , tk), f ∈ Σd

Pirt,sz =

{
`
w+cirt,sz(r)−−−−−−→ ai(r)

[
ϕ ∧ ψi

sz(r)
] ∣∣∣∣ ` w−→ r [ϕ] ∈ P

}

cort,sz(t) =


0 if t ∈ V or root(t) ∈ Σd∑

1≤i≤k c
o
rt,sz(ti) if t = f(t1, . . . , tk), f ∈ Σexp

rt(f)(sz(t1), . . . , sz(tk)) +
∑

1≤i≤k c
o
rt,sz(ti) if t = f(t1, . . . , tk), f ∈ Σc

Posz =
{
`
w−→ aosz(r) [ϕ]

∣∣∣ ` w−→ r [ϕ] ∈ P
}

as(t) =
∑
π∈Posd(t) t|π

Pcrt,sz =

{
`
w+cort,sz(r)−−−−−−→ as(r) [ϕ]

∣∣∣∣ ` w−→ r [ϕ] ∈ P
}

P ′rt,sz =

{
`
w+cirt,sz(r)+cort,sz(a

i(r))
−−−−−−−−−−−−−−→ as(ai(r))

[
ϕ ∧ ψi

sz(r)
] ∣∣∣∣ ` w−→ r [ϕ] ∈ P

}
P̂rt,sz =

{
f(x1, . . . , xk)

rt(f)−−−→ x [x ≤ sz(f)]

∣∣∣∣ f ∈ Σc}
For ψi, ao, c, ci, Pi, co, Po, Pc, and P̂, from now on we often omit the indices
indicating the used runtime and size bound unless they differ from rt resp. sz.
Moreover, we assume that all occurrences of ω in Pi, Po, Pc, P ′, and P̂ are
replaced by pairwise different fresh variables.

The following corollary shows that our notations Pi, Po, and Pc from Def. 46
can be used to express Psz from Thm. 27 and P ′rt,sz.

Corollary 47 (Expressing Psz and P ′rt,sz with Pi and Po). Let P be an

RNTS with size and runtime bounds sz and rt. Then we have (Pi)o = Psz up to
the weights of the rules in Psz (which do not matter, since Psz is only used to
compute size bounds, but no runtime bounds). Moreover, we have (Pi)c = P ′rt,sz.

30 M. Naaf et al.

Proof. We have:

(Pi)o

=

{
`
wi

−→ ao(ri)
[
ϕi
] ∣∣∣∣ ` wi

−→ ri
[
ϕi
]
∈ Pi

}

=


`
wi

−→ ao(ri)
[
ϕi
] ∣∣∣∣ ` wi

−→ ri
[
ϕi
]
∈{

`
w+ci(r)−−−−−→ ai(r)

[
ϕ ∧ ψi(r)

] ∣∣∣∣ ` w−→ r [ϕ] ∈ P
}


=

{
`
w+ci(r)−−−−−→ ao(ai(r))

[
ϕ ∧ ψi(r)

] ∣∣∣∣ ` w−→ r [ϕ] ∈ P
}

= Psz

and

(Pi)c

=

{
`
wi+co(ri)−−−−−−→ as(ri)

[
ϕi
] ∣∣∣∣ ` wi

−→ ri
[
ϕi
]
∈ Pi

}

=


`
wi+co(ri)−−−−−−→ as(ri)

[
ϕi
] ∣∣∣∣ ` wi

−→ ri
[
ϕi
]
∈{

`
w+ci(r)−−−−−→ ai(r)

[
ϕ ∧ ψi(r)

] ∣∣∣∣ ` w−→ r [ϕ] ∈ P
}


=

{
`
w+ci(r)+co(ai(r))−−−−−−−−−−−→ as(ai(r))

[
ϕ ∧ ψi(r)

] ∣∣∣∣ ` w−→ r [ϕ] ∈ P
}

= P ′rt,sz
ut

The following straightforward lemma states that bounds for P are also valid for
P̂ and, in some cases, for certain supersets of P̂.

Lemma 48 (Runtime and Size Bounds of P and P̂). Let P be an RNTS
with size and runtime bounds sz and rt. Then sz and rt are also size and runtime
bounds for P̂. Moreover, if sz(f) = ω resp. rt(f) = ω for all f ∈ Σd, then sz resp.

rt is also a size resp. runtime bound for P ∪ P̂ and for Pi ∪ P̂.

Proof. Let s = f(n1, . . . , nk) be a nat-basic term such that s
m−→+

P̂
q (resp.

s
m−→+

P∪P̂
q or s

m−→+

Pi∪P̂
q) for some term q (the case where the rewrite sequence

is empty is trivial).
If f ∈ ΣPc , then s can neither be reduced by P nor by Pi, but just by

P̂. Hence, we have s
m−→
P̂
q ∈ N where the rule used for this rewrite step is

f(x1, . . . , xk)
rt(f)−−−→ x [x ≤ sz(f)] by definition of P̂. Thus, we get m = Jrt(f)σK,

and q ≤ Jsz(f)σK where σ = {x1/n1, . . . , xk/nk}.
If f ∈ ΣPd , then s is in P̂-normal form and hence we just have to consider the

cases s
m−→+

P∪P̂
q and s

m−→+

Pi∪P̂
q. If rt(f) = ω, we clearly have m ≤ Jrt(f)σK for

each natural substitution σ. Moreover, if sz(f) = ω and q ∈ N, we clearly have
q ≤ Jsz(f)σK for each natural substitution σ. ut

Complexity Analysis for TRSs by ITSs 31

B.2.1 Properties of sz, c, ci, and co

The following auxiliary lemma shows that our lifting of sz from function symbols
to terms is sound. From now on, we sometimes write rt(f)(t1, . . . , tk) instead of
rt(f){x1/t1, . . . , xk/tk} and sz(f)(t1, . . . , tk) instead of sz(f){x1/t1, . . . , xk/tk}
to ease readability.

Lemma 49 (Soundness of sz on Terms). Let P be an RNTS with size bound
sz. If n ∈ N is a normal form of s ∈ T (Σ ∪Σexp,∅) w.r.t. P, then Jsz(s)K ≥ n.

Proof. We use structural induction on s. If s ∈ T (Σexp,∅), then s = n as
s is already in normal form w.r.t. P and by Def. 23 we have Jsz(s)K = s. If
s = g(s1, . . . , sm) and g ∈ Σ, then

sz(s) = sz(g)(sz(s1), . . . , sz(sm)). (21)

For each sj , let nj ∈ N be the normal form obtained for sj in the rewrite sequence
s→∗P n, i.e., we have g(s1, . . . , sm)→∗P g(n1, . . . , nm)→∗P n and hence

Jsz(g(n1, . . . , nm))K ≥ n (22)

by Def. 16, as sz is a size bound for P. By the induction hypothesis, we have

Jsz(sj)K ≥ nj for each 1 ≤ j ≤ m. (23)

Hence, we get:

Jsz(s)K
= Jsz(g)(sz(s1), . . . , sz(sm))K by (21)
≥ Jsz(g)(n1, . . . , nm)K by weak monotonicity of sz(g) and (23)
= Jsz(g(n1, . . . , nm))K by def. of sz
≥ n by (22)

ut

According to the following lemma, our lifting of sz to terms is also weakly
monotonic, i.e., replacing a subterm of a term q with a “smaller” term results in
a term whose evaluation is smaller or equal to q. In the following, we often write
T instead of T (Σ,V).

Lemma 50 (Lifting of sz is Monotonic). Let t, q ∈ T and π ∈ Pos(q) such
that Jsz(q|π)K ≥ Jsz(t)K. Then Jsz(q)K ≥ Jsz(q[t]π)K.

Proof. Let t be an arbitrary term. We use induction on π. If π = ε we get:

Jsz(q)K ≥ Jsz(q[t]π)K
⇐⇒ Jsz(q)K ≥ Jsz(t)K
⇐⇒ true by assumption Jsz(q|π)K = Jsz(q)K ≥ Jsz(t)K

32 M. Naaf et al.

If π = i.π′, then q = f(q1, . . . , qk) and the induction hypothesis implies

Jsz(qi)K ≥ Jsz(qi[t]π′)K. (24)

If f ∈ Σ, then we get:

Jsz(q)K
= Jsz(f)(sz(q1), . . . , sz(qk))K by def. of sz
≥ Jsz(f)(sz(q1), . . . , sz(qi[t]π′), . . . , sz(qk))K by (24) and monotonicity of sz(f)
= Jsz(q[t]π)K by def. of sz

If f ∈ Σexp, then the proof is analogous, since Σexp only contains the non-constant
functions + and · which are weakly monotonic. ut

The following lemma clarifies the relation between the costs imposed by P ′rt,sz
and Prt,sz. Hence, it allows us to show that runtime bounds for Prt,sz are also
runtime bounds for P ′rt,sz.

Lemma 51 (Relation of c, ci, and co). Let P be an RNTS with size and
runtime bounds sz and rt. Let t be a term and let θ be a substitution with Jψi(t)θK =
true. Then Jci(t) + co(ai(t))θK ≤ Jc(t)K.

Proof. Structural induction on t. If t ∈ V, then we have

Jci(t) + co(ai(t))θK = 0 = Jc(t)K.

Let t = f(t1, . . . , tk). By the induction hypothesis, we have

Jci(ti) + co(ai(ti))θ
′K ≤ Jc(ti)K (25)

for all 1 ≤ i ≤ k and all substitutions θ′ with Jψi(ti)θ
′K = true. If f ∈ Σexp, then

we have

Jci(t) + co(ai(t))θK
=
∑

1≤i≤kJc
i(ti)K +

∑
1≤i≤kJc

o(ai(t)|i)θK by def. of ci and co

=
∑

1≤i≤kJc
i(ti)K +

∑
1≤i≤kJc

o(ai(ti)µ)θK where µ is a variable renaming

such that ai(ti)µ = ai(t)|i
=
∑

1≤i≤kJc
i(ti)K +

∑
1≤i≤kJc

o(ai(ti))µθK
≤
∑

1≤i≤kJc(ti)K by (25) and (‡)
= Jc(t)K by def. of c

For the step marked with (‡), note that we have

Jψi(ti)µθK = true (26)

as we have

Jψi(t)θK = true
⇐⇒ Jψi(f(t1, . . . , tk))θK = true
⇐⇒ J∧1≤i≤kψi(ti)µθK = true as f ∈ Σexp and as µ is a variable renaming

such that ai(ti)µ = ai(t)|i

Complexity Analysis for TRSs by ITSs 33

Moreover, note that the variable renaming µ exists as all variables introduced
by ai (which in turn occur in ψi) are fresh.

If f ∈ Σc, then we have

Jci(t) + co(ai(t))θK
=
∑

1≤i≤kJc
i(ti)K +

∑
1≤i≤kJc

o(ai(t)|i)θK + Jrt(f)(sz(ai(t)|1), . . . , sz(ai(t)|k))θK
by def. of ci and co

=
∑

1≤i≤kJc
i(ti)K +

∑
1≤i≤kJc

o(ai(ti)µ)θK + Jrt(f)(sz(ai(t)|1), . . . , sz(ai(t)|k))θK
see below (†)

=
∑

1≤i≤kJc
i(ti)K +

∑
1≤i≤kJc

o(ai(ti))µθK + Jrt(f)(sz(ai(t)|1), . . . , sz(ai(t)|k))θK
≤
∑

1≤i≤kJc(ti)K + Jrt(f)(sz(ai(t)|1), . . . , sz(ai(t)|k))θK by (25) and (26)

≤
∑

1≤i≤kJc(ti)K + Jrt(f)(sz(t1), . . . , sz(tk))K see below (††)
= Jc(t)K by def. of c

In the step marked with (†), µ is again a variable renaming such that ai(ti)µ =
ai(t)|i for all 1 ≤ i ≤ k. The step marked with (††) holds as Jψi(t)θK = true and
f ∈ Σc implies

Jai(t)|i.πθK = Jai(t)|iθ|πK ≤ Jsz(t|i.π)K for each 1 ≤ i ≤ k and π ∈ Postopc (t|i).

As ai(t)|i.π ∈ V, this implies

Jsz(ai(t)|iθ|π)K ≤ Jsz(t|i.π)K.

By Lemma 50, we know

Jsz(s)K ≤ Jsz(q|π)K implies Jsz(q[s]π)K ≤ Jsz(q)K.

With s = ai(t)|iθ|π and q = t|i, we get

Jsz(t|i[ai(t)|iθ|π]π)K ≤ Jsz(t|i)K.

Hence, we have

Jsz(t|i[ai(t)|iθ|π1
]π1

. . . [ai(t)|iθ|πm
]πm

)K ≤ Jsz(t|i)K

where {π1, . . . , πm} = Postopc (t|i). As t|i and ai(t)|iθ only differ at the positions
π1, . . . , πm, by the definition of ai, this implies

Jsz(ai(t)|iθ)K ≤ Jsz(t|i)K.

With monotonicity of rt, this implies (††).
If f ∈ Σd, then we have

Jci(t) + co(ai(t))θK = Jc(t) + 0K = Jc(t)K.

ut

34 M. Naaf et al.

Corollary 52. Every runtime bound for Prt,sz is also a runtime bound for P ′rt,sz.

Proof. Immediate consequence of Lemma 51. ut

The following lemmas introduce alternative equivalent representations of c
and ci as switching from one representation to the other is handy in later proofs.

Lemma 53 (Alternative Representation of c). Let P be an RNTS with size
and runtime bounds sz and rt. Then for every term t ∈ T with root(t) ∈ Σd we
have c(t) =

∑
π∈Postopc (t) c(t|π).

Proof. Immediate consequence of the definition of c. ut

Lemma 54 (Alternative Representation of ci). Let P be an RNTS with
size and runtime bounds sz and rt. Then for every term t ∈ T we have ci(t) =∑

π∈Postopc (t) c(t|π).

Proof. Structural induction on t. If t ∈ V, we have

ci(t) = 0 =
∑

π∈Postopc (t)=∅

c(t|π).

Let t = f(t1, . . . , tk). If f /∈ Σd, then we have

ci(t)
=
∑

1≤i≤k c
i(ti) by def. of ci

=
∑

1≤i≤k
∑
π∈Postopc (ti)

c(ti|π) by the induction hypothesis

=
∑
π∈Postopc (t) c(t|π) as f /∈ Σd

If f ∈ Σd, then we have

ci(t)
= c(t) by def. of ci

=
∑
π∈Postopc (t) c(t|π) by Lemma 53

ut

Similar to Lemma 50 for sz, the following lemma proves monotonicity of c.
More precisely, replacing a subterm q|π of q with a “smaller” term decreases the
cost of q weakly even if we re-add the costs of the replaced subterm q|π.

Lemma 55 (c is Monotonic). Let q ∈ T , t ∈ T (Σexp,∅), π ∈ Pos(q), and
Jsz(q|π)K ≥ Jsz(t)K. Then Jc(q)K ≥ Jc(q[t]π)K + Jc(q|π)K.

Proof. Let t be an arbitrary ground term. We use induction on π. If π = ε, then
we have

Jc(q)K ≥ Jc(q[t]π)K + Jc(q|π)K
⇐⇒ Jc(q)K ≥ Jc(t)K + Jc(q)K as π = ε
⇐⇒ 0 ≥ Jc(t)K
⇐⇒ true as t ∈ T (Σexp,∅)

Complexity Analysis for TRSs by ITSs 35

If π = i.π′, then q = f(q1, . . . , qk). By the induction hypothesis, we have

Jc(qi)K ≥ Jc(qi[t]π′)K + Jc(qi|π′)K. (27)

By Lemma 50, the assumption Jsz(q|π)K = Jsz(q|i.π′)K ≥ Jsz(t)K implies

Jsz(qi)K ≥ Jsz(qi[t]π′)K. (28)

If f ∈ Σc, we get:

Jc(q)K
= Jrt(f)(sz(q1), . . . , sz(qk)) + c(q1) + . . .+ c(qk)K by def. of c
= Jrt(f)(sz(q1), . . . , sz(qk))K + Jc(q1)K + . . .+ Jc(qk)K
≥ Jrt(f)(sz(q1), . . . , sz(qk))K

+Jc(q1)K + . . .+ Jc(qi[t]π′)K + . . .+ Jc(qk)K + Jc(qi|π′)K by (27)
= Jrt(f)(sz(q1), . . . , sz(qk))

+c(q1) + . . .+ c(qi[t]π′) + . . .+ c(qk)K + Jc(qi|π′)K
≥ Jrt(f)(sz(q1), . . . , sz(qi[t]π′), . . . sz(qk)) by (28) and

+c(q1) + . . .+ c(qi[t]π′) + . . .+ c(qk)K + Jc(qi|π′)K monotonicity of rt(f)
= Jrt(f)(sz(q1), . . . , sz(q[t]π|i), . . . sz(qk)) as π = i.π′

+c(q1) + . . .+ c(q[t]π|i) + . . .+ c(qk)K + Jc(qi|π′)K
= Jc(q[t]π)K + Jc(qi|π′)K by def. of c
= Jc(q[t]π)K + Jc(q|π)K as π = i.π′

Otherwise, we get:

Jc(q)K
= Jc(q1) + . . .+ c(qk)K by def. of c
= Jc(q1)K + . . .+ Jc(qk)K
≥ Jc(q1)K + . . .+ Jc(qi[t]π′)K + . . .+ Jc(qk)K + Jc(qi|π′)K by (27)
= Jc(q1) + . . .+ c(qi[t]π′) + . . .+ c(qk)K + Jc(qi|π′)K
= Jc(q1) + . . .+ c(q[t]π|i) + . . .+ c(qk)K + Jc(qi|π′)K as π = i.π′

= Jc(q[t]π)K + Jc(qi|π′)K by def. of c
= Jc(q[t]π)K + Jc(q|π)K as π = i.π′

ut

The following lemma proves the soundness of our definition of c. To this end,
we show that the cost of rewriting with P̂ (whose costs are determined by rt) is
indeed bounded by c.

Lemma 56 (Soundness of c). Let P be an RNTS with size and runtime bounds

sz and rt and let q be a normal form of t w.r.t. P̂, i.e., we have t
m−→∗
P̂
q. Then

Jc(t)K ≥ m.

Proof. We use induction on the length n of the reduction t
m−→n
P̂
q. If n = 0, we

have m = 0 and hence the claim is trivial. If n > 0, we have t
m1−−→
P̂
t′

m2−−→n−1
P̂

q
with m = m1 +m2 and, by the induction hypothesis,

Jc(t′)K ≥ m2. (29)

36 M. Naaf et al.

Let `→ r [ϕ], σ, and π be the rule, the natural substitution, and the position of

the rewrite step t
m1−−→
P̂
t′ and let t|π = f(t1, . . . , tk). By definition of P̂, we have

f ∈ Σc, t1, . . . , tk ∈ N, m1 = Jrt(f)(t1, . . . , tk)K, JrσK = e ∈ N, t′ = Jt[e]πK, and
Jsz(t|π)K ≥ e. By Lemma 55, we get

Jc(t)K ≥ Jc(t[e]π)K + Jc(t|π)K = Jc(t′)K + Jc(t|π)K. (30)

With (29), (30) implies
Jc(t)K ≥ m2 + Jc(t|π)K. (31)

As t|π = f(t1, . . . , tk) with f ∈ Σc and t1, . . . , tk ∈ N, we have

Jc(t|π)K = Jrt(f)(t1, . . . , tk)K ≥ m1 (32)

by definition of c and hence

Jc(t)K ≥ m2 +m1 = m

by (31) and (32) ut

Lemma 56 shows that c measures the costs of constructors correctly if they
are evaluated with P̂. However, Lemma 56 does not deal with evaluating defined
symbols. The following lemma shows that c remains an upper bound on the cost
of possible P̂-derivations if subterms are normalized w.r.t. P∪P̂. So in particular,
it also applies if rules of P are used to evaluate defined symbols.

Lemma 57 (Normalization Preserves c). Let P be an RNTS with size bound
sz and runtime bound rt, let t be a ground term with t = JtK, let Posd(t) =

{π1, . . . , πn} be parallel positions, let q1, . . . , qn be P∪P̂-normal forms of t|π1 , . . . ,

t|πn
, respectively, and let s be a P̂-normal form of Jt[q1]π1

. . . [qn]πn
K, i.e., we have

Jt[q1]π1
. . . [qn]πn

K m−→∗
P̂
s. Then Jc(t)K ≥ m.

Proof. We use structural induction on t. If root(t) ∈ Σd, then Posd(t) = {ε}. So

we have t −→∗
P∪P̂

q
m−→∗
P̂
s, but since q is already a normal form, we have s = m

and m = 0. Hence, the claim is trivial.
Now we consider t = f(t1, . . . , tk) and f ∈ Σexp. W.l.o.g., we assume that the

positions π1, . . . , πn are ordered lexicographically. Then each ti either contains
no defined symbols or there exist 1 ≤ ai ≤ bi ≤ k such that πai , . . . , πbi are those
positions from {π1, . . . , πn} that are in the subterm ti (i.e., these positions start

with i). If ti does not contain defined symbols, then we have ti = JtiK
mi−−→∗
P̂
si

and by Lemma 56 we obtain Jc(ti)K ≥ mi. If ti contains defined symbols, then we

have ti −→∗P∪P̂ Jti[qai]πai
. . . [qbi]πbi

K mi−−→∗
P̂
si and the induction hypothesis implies

Jc(ti)K ≥ mi. Thus, s = Jf(s1, . . . , sk)K and m = m1 + . . . + mk. Moreover, we
get:

Jc(t)K
= Jc(f(t1, . . . , tk))K
= Jc(t1)K + . . .+ Jc(tk)K by def. of c
≥ m1 + . . .+mk

= m

Complexity Analysis for TRSs by ITSs 37

Finally, let t = f(t1, . . . , tk) and f ∈ Σc. Again each ti either contains
no defined symbols or there exist 1 ≤ ai ≤ bi ≤ k such that πai , . . . , πbi
are those positions from {π1, . . . , πn} that are in the subterm ti. As in the

previous case, if ti does not contain defined symbols, then ti = JtiK
mi−−→∗
P̂
si

and Jc(ti)K ≥ mi by Lemma 56. If ti contains defined symbols, then ti −→∗P∪P̂
Jti[qai]πai

. . . [qbi]πbi
K mi−−→∗

P̂
si and Jc(ti)K ≥ mi by the induction hypothesis. So

our overall reduction has the form

t −→∗P∪P̂ Jt[q1]π1 . . . [qn]πnK m1+...+mk−−−−−−−→∗P̂ f(s1, . . . , sk)
m′−−→∗P̂ s,

where m = m1 + . . . + mk + m′ and Jc(f(s1, . . . , sk))K ≥ m′ by Lemma 56.
Moreover, we get:

Jc(t)K
= Jc(f(t1, . . . , tk))K
= Jrt(f)(sz(t1), . . . , sz(tk))K + Jc(t1)K + . . .+ Jc(tk)K by def. of c
≥ Jrt(f)(sz(t1), . . . , sz(tk))K +m1 + . . .+mk

If {s1, . . . , sk} 6⊂ N, then f(s1, . . . , sk) is a P̂-normal form and thus we have
m = m1 + . . .+mk. Now assume {s1, . . . , sk} ⊂ N. Then:

Jrt(f)(sz(t1), . . . , sz(tk))K +m1 + . . .+mk

≥ Jrt(f)(s1, . . . , sk)K +m1 + . . .+mk (†)
= Jc(f(s1, . . . , sk))K +m1 + . . .+mk

≥ m′ +m1 + . . .+mk

= m

The step (†) holds because ti −→∗P∪P̂ si and sz is a size bound of P and hence

also of P ∪ P̂ by Lemma 48, and because of weak monotonicity of rt(f). ut

B.2.2 Properties of P̂

We use P̂ to “summarize” a sub-RNTS U of a larger RNTS Q by the size
and runtime bounds of U . Hence, it is important that the RNTS that results
from this summarization behaves similar to the original RNTS. The following
two lemmas state that our summarization indeed preserves normal forms from
N and over-approximates the costs of the original RNTS.

Lemma 58 (Replacing Rules With P̂ Preserves Normal Forms from N
and Costs). Let Q = P ∪ U be an RNTS with size and runtime bounds sz and

rt. If t ∈ T (ΣPc ∪Σexp,∅) and t
m−→∗Q n ∈ N, then t

e−→∗
P̂
n for some e ≥ m.

Proof. We use structural induction on t = f(t1, . . . , tk). Let n1, . . . , nk be the

normal forms obtained for t1, . . . , tk in the rewrite sequence f(t1, . . . , tk)
m−→∗Q n

38 M. Naaf et al.

and let m1, . . . ,mk be the costs of normalizing t1, . . . , tk. First assume f ∈ Σexp,
i.e., we have

f(t1, . . . , tk)
m1+...+mk−−−−−−−→∗Q Jf(n1, . . . , nk)K = n and (33)

m1 + . . .+mk = m. (34)

By the induction hypothesis, we have

f(t1, . . . , tk)
e1+...+ek−−−−−−→∗P̂ Jf(n1, . . . , nk)K with ei ≥ mi for all 1 ≤ i ≤ k (35)

and hence e1 + . . .+ ek ≥ m by (34).
Now assume f ∈ Σc, i.e., we have

f(t1, . . . , tk)
m1+...+mk−−−−−−−→∗Q Jf(n1, . . . , nk)K m′−−→∗Q n and (36)

m1 + . . .+mk +m′ = m. (37)

By the induction hypothesis, we again have (35). Moreover, we have

Jf(n1, . . . , nk)K = f(n1, . . . , nk) and (38)

f(x1, . . . , xk)
rt(f)−−−→ x [x ≤ sz(f)] ∈ P̂ (39)

by definition of J·K and P̂. As sz is a size bound for Q, (36) implies

Jsz(f)(n1, . . . , nk)K ≥ n. (40)

Hence, (38), (39), and (40) imply

Jf(n1, . . . , nk)K Jrt(f)(n1,...,nk)K−−−−−−−−−−→P̂ n. (41)

Thus, we have

f(t1, . . . , tk)
e1+...+ek−−−−−−→∗P̂ Jf(n1, . . . , nk)K Jrt(f)(n1,...,nk)K−−−−−−−−−−→P̂ n

by (35) and (41). As rt is a runtime bound for Q, (36) implies

Jrt(f)(n1, . . . , nk)K ≥ m′. (42)

Finally, (37), (35), and (42) imply e1 + . . .+ ek + Jrt(f)(n1, . . . , nk)K ≥ m. ut

Lemma 59 (Replacing Rules With P̂ Preserves Costs for Arbitrary
Normal Forms). Let Q = P ∪ U be an RNTS with size and runtime bounds sz

and rt. If t ∈ T (ΣPc ∪Σexp,∅), t
m−→∗Q q, and q is a Q-normal form, then t

e−→∗
P̂
n

for some n ∈ N and e ≥ m.

Proof. We use structural induction on t = f(t1, . . . , tk). Let q1, . . . , qk be the

Q-normal forms of t1, . . . , tk obtained in the rewrite sequence f(t1, . . . , tk)
m−→∗Q q

Complexity Analysis for TRSs by ITSs 39

and let m1, . . . ,mk be the costs of reducing ti to qi for each 1 ≤ i ≤ k. First
assume f ∈ Σexp, i.e., we have

f(t1, . . . , tk)
m1+...+mk−−−−−−−→∗Q Jf(q1, . . . , qk)K = q and (43)

m = m1 + . . .+mk. (44)

By the induction hypothesis, we have

ti
ei−→P̂ ni with ei ≥ mi and ni ∈ N for all 1 ≤ i ≤ k. (45)

With (44), we get e1 + . . .+ ek ≥ m. Furthermore, we have Jf(n1, . . . , nk)K ∈ N
by definition of J·K.

Now assume f ∈ Σc, i.e., we have

f(t1, . . . , tk)
m1+...+mk−−−−−−−→∗Q f(q1, . . . , qk)

m′−−→∗Q q and (46)

m = m1 + . . .+mk +m′. (47)

By the induction hypothesis, we again get (45). Moreover, we have

f(x1, . . . , xk)
rt(f)−−−→ x [x ≤ sz(f)] ∈ P̂ (48)

by definition of P̂. If f(q1, . . . , qk) is a Q-normal form, then we have m′ = 0 and
thus e1 + . . .+ ek ≥ m by (45) and (47). Moreover we have:

f(t1, . . . , tk)
e1+...+ek−−−−−−→∗

P̂
f(n1, . . . , nk) by (45)

rt(f)(n1,...,nk)−−−−−−−−−→
P̂

0 by (48)

If f(q1, . . . , qk) is not a normal form, then we have q1, . . . , qk ∈ N by definition
of →Q. Hence, by Lemma 58, we have

ti
ei−→P̂ qi with ei ≥ mi for each 1 ≤ i ≤ k. (49)

Thus, we get:
f(t1, . . . , tk)

e1+...+ek−−−−−−→∗
P̂

f(q1, . . . , qk) by (49)
Jrt(f)(q1,...,qk)K−−−−−−−−−−→

P̂
0 by (48)

Moreover, we have Jrt(f)(q1, . . . , qk)K ≥ m′, as rt is a runtime bound for Q. Thus,
we have e1 + . . .+ ek + Jrt(f)(q1, . . . , qk)K ≥ m by (47). ut

The following lemma allows us to replace subterms where the evaluation “got
stuck” by other terms.

Lemma 60 (Replacing Subterms in Reductions). If JsK m−→k
P JtK and

Js|πK /∈ N is a P-normal form, then for all q ∈ T we have Js[q]πK
m−→k
P Jt[q]πK.

40 M. Naaf et al.

Proof. We use induction on the length of the reduction k. If k = 0, then the claim

is trivial. Let k > 0, i.e., we have JsK m1−−→P Js′K m2−−→∗P JtK with m = m1 + m2.
Let ` → r [ϕ], σ, and κ be the rule, the natural substitution, and the position

used for the rewrite step JsK w1−−→P Js′K. Since Js|πK /∈ N is in P-normal form and
Σexp-symbols above π cannot be evaluated, κ and π are parallel. Hence we have:

Js[q]πK
= Js[q]πK[`σ]κ
m1−−→P JJs[q]πK[rσ]κK
= JJs[rσ]κK[q]πK as π and κ are parallel and (†)
= Js′[q]πK
m2−−→k−1
P Jt[q]πK by the induction hypothesis

For the step marked with (†), note that Σexp-symbols above π resp. κ cannot be
evaluated by J·K as Js|πK /∈ N resp. Js|κK /∈ N. ut

Building upon the previous two lemmas, the following theorem shows that
replacing a larger RNTS Q by a subsystem P and the rules P̂ which summarize
the function symbols whose rules have been removed is indeed sound for size as
well as runtime bounds. In the following, for any RNTS U let ΣU consist of all
function symbols occurring U except the ones from Σfml.

Theorem 61 (Approximating Removed Rules by P̂). Let Q = P ∪ U be
an RNTS with size and runtime bounds sz and rt such that ΣPd ∩ΣU = ∅. Then

every size bound sz′ and every runtime bound rt′ for P ∪ P̂ is also a size resp.
runtime bound for Q. Here, we assume sz′(f) = rt′(f) = ω for all symbols f from
Σ that do not occur in P.

Proof. To prove that every size bound sz′ for P ∪ P̂ is also a size bound for Q,

let t be a nat-basic term such that t
m−→∗Q n ∈ N where root(t) occurs in P. We

assume a rewrite strategy where U-rules are applied with a higher priority than
P-rules (i.e., P-rules are only applied to U-normal forms). This assumption can
be made without loss of generality, because P and U share no defined symbols
and the variables in rules of RNTSs can only be instantiated by numbers (i.e.,
every U redex is in P-normal form and vice versa). Hence, the rewrite sequence

t
m−→∗Q n has the form

t = t0
e1−→∗U s1

m1−−→∗P t1
e2−→∗U . . .

ek−→∗U sk
mk−−→∗P tk = n (50)

where each si is in U-normal form. Note that we have

t0, s1, t1, . . . , sk, tk ∈ T (ΣPd ∪
(
ΣPc ∩ΣUd

)
∪Σexp,∅). (51)

To see why symbols from ΣUc ∪
(
ΣPc \ΣUd

)
cannot occur, recall that we have

ΣPd ∩ΣU = ∅ (52)

ΣQd = ΣPd ∪ΣUd (53)

ΣUd ∩ΣUc = ∅ and ΣPd ∩ΣPc = ∅ (54)

Complexity Analysis for TRSs by ITSs 41

and hence

ΣQd ∩ΣUc
=
(
ΣPd ∪ΣUd

)
∩ΣUc by (53)

=
(
ΣPd ∩ΣUc

)
∪
(
ΣUd ∩ΣUc

)
= ΣUd ∩ΣUc by (52), as ΣUc ⊆ ΣU
= ∅ by (54)

(55)

Moreover, we have

ΣQd ∩ (ΣPc \ΣUd)

= (ΣQd ∩ΣPc) \ΣUd
=
(
(ΣPd ∪ΣUd) ∩ΣPc

)
\ΣUd by (53)

=
((
ΣPd ∩ΣPc

)
∪
(
ΣUd ∩ΣPc

))
\ΣUd

=
(
ΣUd ∩ΣPc

)
\ΣUd by (54)

= ∅

(56)

Hence, by (55) and (56), symbols from ΣUc ∪ (ΣPc \ΣUd) cannot be reduced using
Q and thus every term containing symbols from ΣUc ∪ (ΣPc \ ΣUd) cannot be
reduced to a natural number. With (50), this implies (51).

For any 0 ≤ i ≤ k − 1, if the length of the U-reduction of ti is not 0, there
exist positions π such that

(A) root(ti|π) ∈ ΣUd ,

(B) ti|π ∈ T (ΣUd ∪Σexp,∅) and hence ti|π ∈ T (ΣPc ∪Σexp,∅) due to (51), and

(C) there is no proper prefix κ of π that satisfies (A) and (B)

Let n′ ∈ N be the normal form obtained for ti|π in the rewrite sequence t→∗Q n.
Note that we have n′ ∈ N as otherwise ti and hence t could not be reduced to
a natural number. With (B) and (52), we get ti|π →∗U n′. Hence, we can apply
Lemma 58 to ti|π for each position π satisfying (A), (B), and (C). Thus, we

get t0
e′1−→∗
P̂
s1

m1−−→∗P t1
e′2−→∗
P̂
. . .

e′k−→∗
P̂
sk

mk−−→∗P tk = n where e′i ≥ ei for all

0 ≤ i ≤ k− 1. Hence, if sz′ is a size bound for P ∪ P̂, then it is also a size bound
for Q.

To prove that every runtime bound rt′ for P ∪ P̂ is also a runtime bound for
Q, we additionally have to consider the case that we obtain a normal form q /∈ N.
This time, let t ∈ T (ΣPd ∪

(
ΣPc ∩ΣUd

)
∪ {�} ∪Σexp,∅) be an arbitrary ground

term, i.e., t does not have to be nat-basic. Here, � is a fresh constant. (This is
needed for the generalized statement that we need to prove the claim.) Again,

the rewrite sequence t
m−→∗Q q has the form

t = t0
e1−→∗U s1

m1−−→∗P . . .
ek−→∗U sk

mk−−→∗P tk = q

where each si is in U -normal form. We prove the following statement by induction
on k. This suffices to show that every runtime bound rt′ for P∪P̂ is also a runtime

42 M. Naaf et al.

bound for Q.

For all t0, s1, t1, . . . , tk, sk ∈ T (ΣPd ∪
(
ΣPc ∩ΣUd

)
∪ {�} ∪Σexp,∅)

where t0 = Jt0K and each si is in U-normal form

t0
e1−→∗U s1

m1−−→∗P . . .
ek−→∗U sk

mk−−→∗P tk implies

t0
e−→∗
P∪P̂

q′ for some q′ ∈ T , e ≥ e1 +m1 + . . .+ ek +mk

(57)

If k = 0, the claim is trivial. Let k > 0. Then we have

t0
d1+...+dn−−−−−−→∗U s1
= Jt0[q1]π1 . . . [qn]πnK

where π1, . . . , πn are the positions satisfying (A), (B), and (C) for the term t0,
qi is the U -normal form of t0|πi

obtained in the rewrite sequence t0 →∗U s1, di is
the cost of reducing t0|πi

to qi, and d1 + . . .+ dn = e1.
W.l.o.g, assume q1, . . . , qc ∈ N and qc+1, . . . , qn /∈ N for some 1 ≤ c ≤ n.

Then, due to (B) and (52), each U -normal form qc+1, . . . , qn contains at least one
ΣU -symbol and no ΣPd -symbol. Hence, we have s1|πi

= t1|πi
= . . . = sk|πi

=
tk|πi

= qi for each c < i ≤ n as Σexp-symbols above πi can never be evaluated by
J·K and no rules are applicable above πi (as qi contains ΣU -symbols). Hence, we
have

t0
e1−→∗U s1[qc+1]πc+1

. . . [qn]πn

m1−−→∗P t1[qc+1]πc+1
. . . [qn]πn

e2−→∗U . . .
ek−→∗U sk[qc+1]πc+1 . . . [qn]πn

mk−−→∗P tk[qc+1]πc+1 . . . [qn]πn

With the definition of −→U and −→P and t0 = Jt0K this implies

t0
e1−→∗U Js1[qc+1]πc+1

. . . [qn]πn
K

m1−−→∗P Jt1[qc+1]πc+1
. . . [qn]πn

K
e2−→∗U . . .
ek−→∗U Jsk[qc+1]πc+1

. . . [qn]πn
K

mk−−→∗P Jtk[qc+1]πc+1
. . . [qn]πn

K

By applying Lemma 60, we obtain8

Jt1[�]πc+1
. . . [�]πn

K
e2−→∗U . . .
ek−→∗U Jsk[�]πc+1

. . . [�]πn
K

mk−−→∗P Jtk[�]πc+1
. . . [�]πn

K

(58)

8 See Footnote 9 for an explanation why this replacement by � is needed.

Complexity Analysis for TRSs by ITSs 43

By the induction hypothesis, (58) implies

Jt1[�]πc+1
. . . [�]πn

K e−→∗P∪P̂ q
′with e ≥ e2 +m2 + . . .+ ek +mk (59)

By applying Lemma 58 to t0|πi
for 1 ≤ i ≤ c (which is applicable due to (B)),

we get

t0|πi

d′i−→P̂ qi with d′i ≥ di. (60)

By applying Lemma 59 to t0|πi
for c < i ≤ n (which is applicable due to (B)),

we get

t0|πi

d′i−→P̂ bi with d′i ≥ di and bi ∈ N (61)

Hence, we have

t0
d′1+...+d

′
k−−−−−−→
P̂

Jt0[q1]π1
. . . [qc]πc

[bc+1]πc+1
. . . [bn]πn

K by (60) and (61)

= Jt0[q1]π1
. . . [qn]πn

[bc+1]πc+1
. . . [bn]πn

K
= JJt0[q1]π1

. . . [qn]πn
K[bc+1]πc+1

. . . [bn]πn
K (†)

= Js1[bc+1]πc+1 . . . [bn]πnK

(62)

The step marked with (†) holds as qc+1, . . . , qn contain ΣU -symbols and hence
Σexp-symbols above πc+1, . . . , πn cannot be evaluated by J·K.

By applying Lemma 60 to the rewrite step

Js1[qc+1]πc+1 . . . [qn]πnK m1−−→∗P Jt1[qc+1]πc+1 . . . [qn]πnK

we get

Js1[bc+1]πc+1
. . . [bn]πn

K m1−−→∗P Jt1[bc+1]πc+1
. . . [bn]πn

K (63)

Moreover, by applying Lemma 60 to (59), we obtain9

Jt1[bc+1]πc+1
. . . [bn]πn

K e−→∗P∪P̂ Jq′[bc+1]πc+1
. . . [bn]πn

K (64)

Thus, we have

t0
d′1+...+d

′
k−−−−−−→
P̂

Js1[bc+1]πc+1 . . . [bn]πnK by (62)
m1−−→∗P Jt1[bc+1]πc+1

. . . [bn]πn
K by (63)

e−→∗
P∪P̂

Jq′[bc+1]πc+1
. . . [bn]πn

K by (64)

I remains to show d′1 + . . . + d′k + m1 + e ≥ e1 + m1 + . . . + ek + mk. By (60)
and (61), we have d′1 + . . . + d′k ≥ d1 + . . . dk = e1. Hence, it suffices to show
e ≥ e2 +m2 + . . .+ ek +mk, which follows by (59). ut
9 Here, one can see why we need the construction with �. Otherwise, Lemma 60

would not apply here, as qc+1, . . . , qn are in U-normal form, but not necessarily in
P ∪ P̂-normal form.

44 M. Naaf et al.

The outer abstraction eliminates constructors above defined symbols. This
elimination should be over-approximating the size of the result in the sense that
reducing the resulting term does not yield smaller results than reducing the
original term. The following lemma shows that ao indeed has this property.

Lemma 62 (Soundness of Outer Abstraction for Size). Let P be an RNTS
with size bound sz. If JsK→∗

P̂
n ∈ N, then Jao(s)K→∗

P̂
n′ with n′ ≥ n.

Proof. We use structural induction on s. If s ∈ T (Σexp,∅) then the claim is
trivial. Otherwise, we have s = f(s1, . . . , sk) and JsK = f(Js1K, . . . , JskK). Let
n1, . . . , nk be the normal forms of Js1K, . . . , JskK obtained in the rewrite sequence
f(s1, . . . , sk)→∗

P̂
n, i.e., we have

JsK = f(Js1K, . . . , JskK)→∗P̂ Jf(n1, . . . , nk)K→∗P̂ n. (65)

Clearly, n ∈ N implies n1, . . . , nk ∈ N by definition of →P̂ . By the induction
hypothesis, we have

Jao(si)K→∗P̂ n
′
i with n′i ≥ ni for each 1 ≤ i ≤ k. (66)

If f ∈ Σexp, then we have Jf(n1, . . . , nk)K = n and hence Jf(n′1, . . . , n
′
k)K ≥ n by

(66) and monotonicity of f ∈ Σexp.

If f ∈ Σc, then we have f(n′1, . . . , n
′
k) = Jf(n′1, . . . , n

′
k)K and

f(x1, . . . , xk)
w−→ x [x ≤ sz(f)] ∈ P̂

for some w, by definition of P̂. Hence, we get

Jf(n′1, . . . , n
′
k)K→P̂ sz(f)(n′1, . . . , n

′
k).

As Jf(n1, . . . , nk)K = f(n1, . . . , nk)→∗
P̂
n by (65) and sz is a size bound for P and

thus also for P̂ by Lemma 48, we have sz(f)(n1, . . . , nk) ≥ n. By monotonicity
of sz and (66), this implies sz(f)(n′1, . . . , n

′
k) ≥ n.

Note that f ∈ Σd is not possible, since a term containing defined symbols
cannot be reduced to a natural number using P̂. ut

B.2.3 Properties of Pi

The following lemma shows the soundness of our inner abstraction from Def. 25
for ground terms whose only defined symbol is at the root position.

Lemma 63 (Soundness of Inner Abstraction). Let P be an RNTS with
size bound sz, let t be a ground term whose only defined symbol is at position ε,
and let q be a normal form of t w.r.t. P̂. Then there is a substitution θ such that
Jai(t)θK = JqK and Jψi(t)θK = true.

Complexity Analysis for TRSs by ITSs 45

Proof. If t is already in normal form w.r.t. P̂, then the claim is trivial since
ai(t) = t and ψi(t) = true. Otherwise, let Postopc (t) = {µ1, . . . , µk}, let gi =

root(t|µi
) for each 1 ≤ i ≤ k, and let ni ∈ N be the P̂-normal form obtained for

t|µi
in the rewrite sequence t→∗

P̂
q for each 1 ≤ i ≤ k, i.e., we have:

t
→∗
P̂

Jt[n1]µ1
. . . [nk]µk

K
= q as root(t) ∈ Σd

(67)

To see why the normal forms ni are in N, note that we have t|µi
∈ T (Σc∪Σexp,∅),

as t is ground and its only defined symbol is at position ε. Moreover, every P̂-
normal form of a term from T (Σc ∪Σexp,∅) is in N by definition of P̂. Since sz

is a size bound for P and hence, by Lemma 48, also for P̂, we get

ni ≤ Jsz(t|µi
)K. (68)

By definition of ai, ai(t)|µ1
= y1, . . . , a

i(t)|µk
= yk are pairwise different fresh

variables and these are the only positions where t and ai(t) differ. Let θ = {yi/ni |
1 ≤ i ≤ k}. Then (67) implies

Jai(t)θK = JqK.

Moreover, we get:

Jψi(t)θK
=

r(∧
1≤i≤k yi ≤ sz(t|µi

)
)
θ
z

by def. of ψi

=
r(∧

1≤i≤k ni ≤ sz(t|µi
)
)z

by def. of θ

= true by (68)

ut

Lemma 64 shows that rewrite steps with P on nat-basic terms can be simu-
lated by the RNTS Pi that results from the inner abstraction.

Lemma 64 (Simulating P-steps with Pi). Let P be an RNTS with size and
runtime bounds sz and rt, where P does not have nested defined symbols, and let

s be a nat-basic term such that s
m1−−→P t

m2−−→∗
P̂
t′ where t′ is a P̂-normal form.

Then s
e−→∗
Pi∪P̂

t′ where e ≥ m1 +m2.

Proof. Let Posd(t) = {π1, . . . , πm}. Since P does not contain nested defined

symbols, these positions are parallel. Let qi be the P̂-normal form of t|πi
obtained

in the rewrite sequence t→∗
P̂
t′ for each 1 ≤ i ≤ m, i.e., we have

t
m2,1−−−→∗P̂ Jt[q1]π1

. . . [qm]πm
K m2,2−−−→∗P̂ t

′ where m2,1 +m2,2 = m2. (69)

By definition, ai only modifies subterms below defined symbols. Hence,

t and ai(t) only differ below π1, . . . , πm. (70)

46 M. Naaf et al.

By Lemma 63, for each 1 ≤ i ≤ m there is a substitution θi such that

Jai(t|πi
)θiK = JqiK and (71)

Jψi(t|πi
)θiK = true. (72)

As t does not have nested defined symbols, we have

ai(t)|πi = ai(t|πi)µ and (73)

ψi(t) =
∧

1≤i≤m ψ
i(t|πi)µ (74)

for each 1 ≤ i ≤ m where µ is a variable renaming such that ai(t|πi
)µ = ai(t)|πi

for all i ≤ i ≤ m. Note that such a variable renaming exists, as all variables
introduced by ai are fresh. Let `

w−→ r [ϕ] and σ be the rule and substitution used
for the rewrite step s→P t. Note that we have

t = JrσK (75)

as s is nat-basic. By definition of Pi and Lemma 54, we have

`
w+u−−−→ ai(r)

[
ϕ ∧ ψi(r)

]
∈ Pi where u =

∑
µ∈Postopc (r)

c(r|µ). (76)

Let µ−1 = {x/y | µ(y) = x} be the inverse of the variable renaming µ and let
θ be the substitution that behaves like µ−1θi on the fresh variables in ai(t|πi

)µ

and like σ on the variables of the applied rule `
w+u−−−→ r [ϕ]. Then we have

J(ϕ ∧ ψi(r))θK
= Jϕσ ∧ ψi(r)θK since ϕθ = ϕσ
= Jϕσ ∧ ψi(r)θ1 . . . θmσK by def. of θ
= Jϕσ ∧ ψi(rσ)θ1 . . . θmK as xθi = x for all x ∈ V(r), 1 ≤ i ≤ m,

and σ is nat. subst.
= Jϕσ ∧ ψi(t)θ1 . . . θmK by (75)

= Jϕσ ∧
(∧

1≤i≤m ψ
i(t|πi

)µ
)
θ1 . . . θmK by (74)

= Jϕσ ∧
(∧

1≤i≤m ψ
i(t|πi

)µµ−1θi

)
K by def. of θi

= Jϕσ ∧
(∧

1≤i≤m ψ
i(t|πi

)θi

)
K by def. of µ−1

= true by (72)
(77)

Complexity Analysis for TRSs by ITSs 47

and hence

`θ
Jwθ+uθK−−−−−−→Pi Jai(r)θK by (76) and (77)
= Jai(rσ)θK since rθ = rσ and

σ is nat. subst.
= Jai(t)θK by (75)
= Jai(t)[ai(t|π1

)µ]π1
. . . [ai(t|πm

)µ]πm
θK by (73)

= Jt[ai(t|π1
)µ]π1

. . . [ai(t|πm
)µ]πm

θK by (70)
= Jt[ai(t|π1

)µµ−1θ1]π1
. . . [ai(t|πm

)µµ−1θm]πm
K by def. of θ

= Jt[ai(t|π1
)θ1]π1

. . . [ai(t|πm
)θm]πm

K by def. of µ−1

= Jt[Jai(t|π1
)θ1K]π1

. . . [Jai(t|πm
)θmK]πm

K (†)
= Jt[Jq1K]π1

. . . [JqmK]πm
K by (71)

= Jt[q1]π1 . . . [qm]πmK (†)
m2,2−−−→∗

P̂
t′. by (69)

The steps marked with (†) hold as we clearly have Jt[q]πK = Jt[JqK]πK for all
t, q ∈ T and all positions π ∈ Pos(t).

It remains to show Jwθ + uθK +m2,2 ≥ m1 +m2. We have:

Jwθ + uθK +m2,2 ≥ m1 +m2

⇐⇒ JwθK + JuθK +m2,2 ≥ m1 +m2,1 +m2,2 by (69)
⇐⇒ JwθK + JuθK ≥ m1 +m2,1

⇐⇒ JwθK + JuθK ≥ JwσK +m2,1

⇐⇒ JwσK + JuσK ≥ JwσK +m2,1 by def. of θ
⇐⇒ JuσK ≥ m2,1

⇐⇒
∑
µ∈Postopc (r)Jc(r|µ)σK ≥ m2,1 by (76)

⇐⇒
∑
µ∈Postopc (r)Jc(rσ|µ)K ≥ m2,1 σ is nat. subst.

⇐⇒
∑
µ∈Postopc (t)Jc(t|µ)K ≥ m2,1 by (75)

⇐⇒ Jc(t)K ≥ m2,1 by Lemma 53
⇐⇒ true by Lemma 56

For the last step, recall that m2,1 is the cost of normalizing all terms t|π with P̂,
for all π ∈ Posd(t). ut

In the special case where the term after the rewrite step is already in normal
form w.r.t. P̂, the corresponding rewrite step can of course also be done with Pi.

Lemma 65 (Simulating P-steps with Pi for P̂-normal forms). Let P be

an RNTS with size and runtime bounds sz and rt. If s
m−→P t and t is in P̂-normal

form, then s
m−→Pi t.

Proof. Let `
w−→ r [ϕ] be the rule used for the rewrite step s →P t. As t is in

P̂-normal form, r does not have constructors below defined symbols. Hence, we
have `

w−→ r [ϕ] ∈ Pi. ut

48 M. Naaf et al.

Now we can show that every size resp. time bound for Pi ∪ P̂ is also a size
resp. time bound for P ∪ P̂.

Theorem 66 (Bounds for P ∪ P̂ and Pi ∪ P̂). Let P be an RNTS with size
and runtime bounds sz and rt, where P does not have nested defined symbols. Then
every size bound for Pi ∪ P̂ is also a size bound for P ∪ P̂ and every runtime
bound for Pi ∪ P̂ is also a runtime bound for P ∪ P̂.

Proof. To prove that every size bound for Pi ∪ P̂ is also a size bound for P ∪ P̂,
it suffices to show that if a nat-basic term has a normal form n ∈ N w.r.t. P ∪P̂,
then it has the same normal form w.r.t. Pi ∪ P̂. To this end, we show a slightly
generalized claim: If s ∈ T is a ground term in P̂-normal form without nested
defined symbols and s→k

P∪P̂
n for n ∈ N, then we also have s→∗

Pi∪P̂
n.

We use induction on k and assume a reduction strategy that applies rules
from P̂ with a higher preference than rules from P, i.e., P-rules are just applied to
P̂-normal forms. This assumption can be made without loss of generality, because
the variables in the rules of RNTSs may only be instantiated by numbers.

In the induction base (k = 0) we have s = n and hence the claim is trivial.
In the induction step (k > 0) there are two cases:

Case 1: We first consider the case s →k
P n. Note that due to the reduction

strategy, all terms in this sequence are in P̂-normal form. Then we have
s→k

Pi n due to Lemma 65.

Case 2: Now we consider the case s →a
P s′ →P s′′ →b

P̂
ŝ →k−a−b−1

P∪P̂
n for

a, b ≥ 0 where ŝ is in P̂-normal form. Note that in this case there is at least
one P-step before the first P̂-step, as s is in P̂-normal form. Let ` → r [ϕ],
σ, and π be the rule, the substitution, and the position of the rewrite step
s′ →P s′′. Then, by Lemma 64, we get s′|π →∗Pi∪P̂

q where q is the P̂-normal

form of JrσK obtained in the rewrite sequence s′′ →b
P̂
ŝ, i.e., we have

s′ →∗Pi∪P̂ Js′[q]πK→∗P̂ ŝ.

By the induction hypothesis, we know that n is a Pi ∪ P̂-normal form of
ŝ. Moreover, we have s →a

Pi s′ due to Lemma 65 since by the assumption

on the reduction strategy, rules from P are just applied to P̂-normal forms.
Hence, we obtain

s→a
Pi s′ →∗Pi∪P̂ Js′[q]πK→∗P̂ ŝ→

∗
Pi∪P̂ n.

To prove that every runtime bound for Pi ∪ P̂ is also a runtime bound for

P ∪ P̂, it suffices to show that if we have s
m−→∗
P∪P̂

t for a nat-basic term s and a

term t in P̂-normal form, then we have s
m′−−→∗
Pi∪P̂

t for some m′ ≥ m. Note that

we can assume that t is in P̂-normal form, as P̂ is trivially terminating. Again,
we show a slightly generalized claim: If s ∈ T is a ground term in P̂-normal form

Complexity Analysis for TRSs by ITSs 49

without nested defined symbols and s
m−→k
P∪P̂

t for some term t in P̂-normal

form, then s
m′−−→∗
Pi∪P̂

t for some m′ ≥ m.
We again use induction on k and assume a reduction strategy that applies

rules from P̂ with a higher preference than rules from P.
In the induction base (k = 0) we have s = t and m = 0 and hence the claim

is trivial. In the induction step (k > 0) there are two cases:

Case 1: We first consider the case s
m−→k
P t. Since again all terms in this sequence

are in P̂-normal form by the reduction strategy, we have s
m−→k
Pi t due to

Lemma 65.
Case 2: Now we consider the case s

m1−−→a
P s
′ m2−−→P s′′

m3−−→b
P̂
ŝ
m4−−→k−a−b−1
P∪P̂

t for

a, b ≥ 0 where ŝ is in P̂-normal form. Let `
w−→ r [ϕ], σ, and π be the rule,

the substitution, and the position of the rewrite step s′
m2−−→P s′′ and let q be

the P̂-normal form of JrσK obtained in the rewrite sequence s′′
m3−−→b
P̂
ŝ, i.e.,

we have

s′
m2−−→P ◦

m3,1−−−→∗P̂ Js′[q]πK
m3,2−−−→∗P̂ ŝ where m3,1 +m3,2 = m3. (78)

Then, by Lemma 64, we get

s′|π
e2,3−−→∗Pi∪P̂ q where e2,3 ≥ m2 +m3,1. (79)

By the induction hypothesis, we know

ŝ
e4−→∗Pi∪P̂ t for some e4 ≥ m4. (80)

Moreover, we have

s
m1−−→a
Pi s′ (81)

due to Lemma 65 since by the assumption on the reduction strategy, rules
from P are just applied to P̂-normal forms. Hence, we obtain

s
m1−−→a
Pi s′ by (81)

e2,3−−→∗
Pi∪P̂

Js′[q]πK by (79)
m3,2−−−→∗

P̂
ŝ by (78)

e4−→∗
Pi∪P̂

t by (80)

and we have
m1 + e2,3 +m3,2 + e4

≥ m1 +m2 +m3,1 +m3,2 + e4 by (79)
≥ m1 +m2 +m3,1 +m3,2 +m4 by (80)
= m1 +m2 +m3 +m4 by (78)

ut

50 M. Naaf et al.

B.2.4 Properties of Po

Now we want to prove a similar theorem for P o instead of P i. Here, however,
we are not interested in the runtime of Po, but just in the size of the results
computed by Po. The reason is that ao (which is used to obtain Po) is just used
to construct Psz, but not for Prt,sz. In other words, ao is just needed to compute
size bounds, but not for time bounds.

As a first auxiliary lemma towards this goal, we show how to exchange the
order of replacing subterms in a term and of applying ao.

Lemma 67 (Subterm Replacement and ao). Let P be an RNTS with size
bound sz, let s be a term, and let π ∈ Pos(s). Then there are positions π1, . . . , πm
with ao(s[t]π) = ao(s)[t]π1

. . . [t]πm
for every ground term t where constructors

just occur below defined symbols.

Proof. Note that we have ao(t) = t, as constructors just occur below defined
symbols in t. We use induction on π. If π = ε, let m = 1 and π1 = ε. Then we
get ao(s[t]π) = ao(t) = t = ao(s)[t]π1

. In the induction step, let π = i.π′ and
s = g(s1, . . . , sn). By the induction hypothesis, there exist positions π′1, . . . , π

′
k

with
ao(si[t]π′) = ao(si)[t]π′1 . . . [t]π′k . (82)

If g ∈ Σexp, we have

ao(g(s1, . . . , sn)[t]π)
= ao(g(s1, . . . , sn)[t]i.π′)
= ao(g(s1, . . . , si[t]π′ , . . . , sn)
= g(ao(s1), . . . , ao(si[t]π′), . . . a

o(sn)) by Def. 23
= g(ao(s1), . . . , ao(si)[t]π′1 . . . [t]π′k , . . . , a

o(sn)) by (82)

= g(ao(s1), . . . , ao(si), . . . , a
o(sn))[t]i.π′1 . . . [t]i.π′k

= ao(g(s1, . . . , sn))[t]i.π′1 . . . [t]i.π′k by Def. 23

Now we consider the case g ∈ Σc. Let κ1, . . . , κd be the positions of xi in
sz(g) (†). Then we get:

ao(g(s1, . . . , sn)[t]π)
= ao(g(s1, . . . , sn)[t]i.π′)
= ao(g(s1, . . . , si[t]π′ , . . . , sn))
= sz(g)(ao(s1), . . . , ao(si[t]π′), . . . , a

o(sn)) by Def. 23
= sz(g)(ao(s1), . . . , ao(si)[t]π′1 . . . [t]π′k , . . . , a

o(sn)) by (82)

= sz(g)(ao(s1), . . . , ao(si), . . . , a
o(sn))

[t]κ1.π′1
. . . [t]κ1.π′k

. . . [t]κd.π′1
. . . [t]κd.π′k

by (†)
= ao(g(s1, . . . , sn))[t]κ1.π′1

. . . [t]κ1.π′k
. . . [t]κd.π′1

. . . , [t]κd.π′k
by Def. 23

If g ∈ Σd, then the claim is trivial since ao(s[t]π) = s[t]π and ao(s) = s. ut

Now we show that every rewrite step with P can be simulated with Po when
applying ao.

Complexity Analysis for TRSs by ITSs 51

Lemma 68 (Simulating P-steps with Po). Let P an RNTS with size bound
sz and let s be a term without nested defined symbols. If s→P t, then

ao(s)→∗Po Jao(t)K.

Proof. Let `
w−→ r [ϕ], π, and σ be the rule, the position, and the natural sub-

stitution used for the rewrite step s →P t. By Lemma 67 there are positions
π1, . . . , πm such that

ao(s)[q]π1
. . . [q]πm

= ao(s[q]π)

for every ground term q where constructors just occur below defined symbols.
Hence, we have

ao(s)[s|π]π1
. . . [s|π]πm

= ao(s) (83)

as root(s|π) ∈ Σd and

ao(s)[Jao(rσ)K]π1
. . . [Jao(rσ)K]πm

= ao(s[Jao(rσ)K]π)
(84)

as, by definition of ao, constructors just occur below defined symbols in ao(rσ)
and hence also in Jao(rσ)K. Since s does not have nested defined symbols and
root(s|π) ∈ Σd, s does not have defined symbols above the position π. Hence,
since Js[rσ]πK = t, we get

ao(s[Jao(rσ)K]π) = ao(Js[rσ]πK) = ao(JtK). (85)

By definition, we have `
w−→ ao(r) [ϕ] ∈ Po. Hence, we get

ao(s)
= ao(s)[s|π]π1

. . . [s|π]πm
by (83)

→∗Po Jao(s)[ao(r)σ]π1
. . . [ao(r)σ]πm

K as `σ = s|π and JϕσK = true
= Jao(s)[ao(rσ)]π1

. . . [ao(rσ)]πm
K as σ is a natural substitution

= Jao(s[ao(rσ)]π)K by (84)
= Jao(t)K. by (85)

ut

The following lemma shows that rewrite steps with Po can still be performed
when applying ao.

Lemma 69 (Simulating Po-steps When Applying ao). Let P be an RNTS
with size bound sz and let s be a term without nested defined symbols. If s→Po t,
then

Jao(s)K→∗Po Jao(t)K.

Proof. Let `
w−→ r [ϕ], π, and σ be the rule, the position, and the natural sub-

stitution used for the rewrite step s →P t. By Lemma 67 there are positions
π1, . . . , πm such that

ao(s)[q]π1
. . . [q]πm

= ao(s[q]π)

52 M. Naaf et al.

for every ground term q where constructors just occur below defined symbols.
Hence, we have

ao(s)[s|π]π1
. . . [s|π]πm

= ao(s) (86)

as root(s|π) ∈ Σd and

ao(s)[JrσK]π1
. . . [JrσK]πm

= ao(s[JrσK]π),

as constructors just occur below defined symbols in r (and hence rσ) by definition
of Po. As Js[rσ]πK = t, this implies

Jao(s)[rσ]π1 . . . [rσ]πmK = Jao(t)K. (87)

Hence, we get:
Jao(s)K

= Jao(s)[s|π]π1 . . . [s|π]πmK by (86)
→∗Po Jao(s)[rσ]π1 . . . [rσ]πmK
= Jao(t)K by (87)

ut

Similar to Thm. 66 for Pi, we can now show that every size bound for Po∪P̂
is also a size bound for P ∪ P̂.

Theorem 70 (Size Bounds for P ∪ P̂ and Po ∪ P̂). Let P be an RNTS with
size bound sz, where P does not have Σ-symbols below defined symbols. Then
every size bound for Po ∪ P̂ is also a size bound for P ∪ P̂.

Proof. Let t ∈ T be a nat-basic term and let n ∈ N such that t →k
P∪P̂

n. We

prove t→k
Po∪P̂

n′ ≥ n by induction on k. If k = 0, then the claim is trivial. Let

k > 0. As t is nat-basic, we have t→P t′ →k−1
P∪P̂

n and

t = ao(t). (88)

By Lemma 68 we get

ao(t)→∗Po Jao(t′)K. (89)

Let Posd(t
′) = {π1, . . . , πm}. Since P does not contain nested defined symbols,

these positions are parallel. Let ni ∈ N be the normal form of t′|πi
obtained in

the rewrite sequence t→k−1
P∪P̂

n, i.e., we have

t→P t′ →∗P∪P̂ Jt′[n1]π1
. . . [nm]πm

K→∗P̂ n. (90)

(If Posd(t
′) = ∅, then we have just t′ instead of Jt′[n1]π1 . . . [nm]πmK, but the

proof works analogously.) Note that as P does not have Σ-symbols below defined
symbols, t′|πi

= Jt′|πi
K is nat-basic. By the induction hypothesis, we therefore

have t′|πi
→∗
Po∪P̂

n′i with n′i ≥ ni for each 1 ≤ i ≤ m. As P and hence Po and

t′ do not have Σ-symbols below defined symbols, the reduction has the form

Complexity Analysis for TRSs by ITSs 53

t′|πi
→∗Po t′′ →∗P̂ n

′
i, i.e., we can first reduce t′|πi

to its Po-normal form t′′ and

reduce the constructors in t′′ afterwards. Hence, we obtain

Jao(t′|πi
)K→∗Po Jao(t′′)K→∗P̂ n

′′
i ≥ n′i (91)

by Lemma 69 and 62. (To see why we can apply Lemma 62, note that t′′ results
from a rewrite step with an RNTS and thus, t′′ = Jt′′K.) For each 1 ≤ i ≤ m, as
root(t′|πi

) ∈ Σd, by Lemma 67 there are positions κi1, . . . , κ
i
ki

such that

ao(t′)[q]κi
1
. . . [q]κi

ki

= ao(t′[q]πi
)

for every ground term q where constructors just occur below defined symbols.
Hence, we have

ao(t′) = ao(t′)[t′|πi]κi
1
. . . [t′|πi]κi

ki

as root(t′|πi) ∈ Σd and hence

ao(t′) = ao(t′)[ao(t′|πi)]κi
1
. . . [ao(t′|πi)]κi

ki

(92)

as ao(q) = q for each term q with root(q) ∈ Σd. Moreover, we have

ao(t′[n′′i]πi) = ao(t′)[n′′i]κi
1
. . . [n′′i]κi

ki

. (93)

Thus, we get

t by
= ao(t) by (88)
→∗Po Jao(t′)K by (89)
= Jao(t′)[ao(t′|πi)]κi

1
. . . [ao(t′|πi)]κi

ki

K by (92)

→∗
Po∪P̂

Jao(t′)[n′′i]κi
1
. . . [n′′i]κi

ki

K by (91)

= Jao(t′[n′′i]πi)K by (93)

for each 1 ≤ i ≤ m and hence:

t
→∗
Po∪P̂

Jao(t′[n′′1]π1 . . . [n
′′
m]πm)K

→∗
P̂

Jsz(t′[n′′1]π1
. . . [n′′m]πm

)K as t′[n′′1]π1
. . . [n′′m]πm

∈ T (Σc ∪Σexp,∅)

≥ Jsz(t′[n1]π1
. . . [nm]πm

)K by monotonicity of sz

By Lemma 48, sz is a size bound for P̂. By (90), n is a P̂-normal form of
Jt′[n1]π1 . . . [nm]πmK. Hence, we have Jsz(t′[n1]π1 . . . [nm]πm)K ≥ n, which proves
our claim. ut

B.2.5 Properties of Pc

Finally, we also want to prove a similar theorem for Pc. Here, however, we are
just interested in the runtime of Pc. The reason is that as (which is used to

54 M. Naaf et al.

obtain Pc) is just used to construct P ′rt,sz, but not for Psz. In other words, as is
just needed to compute time bounds, but not for size bounds.

As a first step towards this goal, we show how P-steps can be simulated using
Pc.

Lemma 71 (Simulating P-steps With Pc). Let P be an RNTS with size
bound sz and runtime bound rt without constructors below defined symbols and

let s be a nat-basic term. If s
m−→P t, then

Jas(s)K Jm+c(t)K−−−−−−→Pc Jas(t)K.

Proof. Let `
w−→ r [ϕ] and σ be the rule and the natural substitution used for the

rewrite step s→P t. We get

Jas(s)K
= s as s is nat-basic
Jwσ+co(r)σK−−−−−−−−→Pc Jas(r)σK by def. of Pc
= Jas(rσ)K as σ is nat. subst.
= Jas(t)K

We have JwσK = m and Jco(r)σK = Jco(rσ)K = Jco(t)K. Moreover, we have
Jco(t)K = Jc(t)K as P and thus t does not have constructors below defined sym-
bols. ut

The next lemma shows that Pc-steps can still be applied if the reduced term
is abstracted using as.

Lemma 72 (Simulating Pc-steps When Applying as). Let P be an RNTS
with size bound sz and runtime bound rt without Σ-symbols below defined symbols

and let s be a nat-basic term. If s
m−→Pc t, then

Jas(s)K m−→Pc Jas(t)K.

Proof. Let `
w−→ r [ϕ] ∈ Pc and σ be the rule and the natural substitution used for

the rewrite step s→Pc t. As P does not have Σ-symbols below defined symbols
and r is a sum of terms with defined root symbols, we have

r = as(r). (94)

We get
Jas(s)K

= s as s is nat-basic
JwσK−−−→Pc JrσK
= Jas(r)σK by (94)
= Jas(rσ)K σ is nat. subst.
= Jas(t)K

As we have JwσK = m, this proves the claim. ut

Complexity Analysis for TRSs by ITSs 55

Now we can show that time bounds for Pc ∪ P̂ are indeed also time bounds
for P ∪ P̂.

Theorem 73 (Time Bounds for P ∪ P̂ and Pc ∪ P̂). Let P be an RNTS
with size and runtime bounds sz and rt without Σ-symbols below defined symbols.
Then every runtime bound for Pc ∪ P̂ is also a runtime bound for P ∪ P̂.

Proof. Let t be a nat-basic term and let q be a P ∪ P̂-normal form such that

t
m−→k
P∪P̂

q. We prove t
e−→∗
Pc∪P̂

q′ for some term q′ with e ≥ m by induction on

k. If k = 0, then the claim is trivial. Let k > 0. If root(t) ∈ ΣPc , as t is nat-basic

we obtain t
m−→
P̂
q ∈ N, i.e., k = 1 and the claim is again trivial. If root(t) ∈ ΣPd ,

we have t
m1−−→P t′

m2−−→k−1
P∪P̂

q,

m = m1 +m2, and (95)

t = as(t). (96)

By Lemma 71 we get

Jas(t)K Jm1+c(t′)K−−−−−−−→Pc Jas(t′)K. (97)

Let Posd(t
′) = {π1, . . . , πn}. Since P does not contain nested defined symbols,

these positions are parallel. For all 1 ≤ i ≤ n, let qi be the normal form of t′|πi

obtained in the rewrite sequence t′
m2−−→k−1
P∪P̂

q and let di be the cost of reducing

t′|πi to qi, i.e., we have

t
m1−−→P t′

d1+...+dn−−−−−−→∗
P∪P̂

Jt′[q1]π1 . . . [qn]πnK m2,2−−−→∗
P̂
q where (98)

d1 + . . .+ dn +m2,2 = m2. (99)

Note that as P does not have Σ-symbols below defined symbols, t′|πi
is nat-basic.

By the induction hypothesis, we therefore have

t′|πi

ei−→∗Pc∪P̂ q
′
i for some term q′i with ei ≥ di for each 1 ≤ i ≤ n. (100)

As P does not have Σ-symbols below defined symbols, t′|πi
and the right-hand

sides of Pc do not contain any symbols from ΣPc . Hence, we get t′|πi

ei−→∗Pc q′i.
Thus, we obtain

Jas(t′|πi
)K ei−→∗Pc Jas(q′i)K (101)

by Lemma 72. As Posd(t
′) = {π1, . . . , πn} and t′|πi = as(t′|πi) (as t′ does not

have nested defined symbols and root(t′|πi
) is defined), we have

as(t′) =
∑

1≤i≤n
t′|πi =

∑
1≤i≤n

as(t′|πi). (102)

56 M. Naaf et al.

Thus, we get

t
= JtK as t is nat-basic
= Jas(t)K by (96)
Jm1+c(t′)K−−−−−−−→Pc Jas(t′)K by (97)
=

∑
1≤i≤nJa

s(t′|πi)K by (102)
e1+...+en−−−−−−→∗Pc

∑
1≤i≤nJa

s(q′i)K by (101)

It remains to show Jm1 + c(t′)K + e1 + . . .+ en ≥ m. We have:

Jm1 + c(t′)K + e1 + . . .+ en ≥ m
⇐⇒ m1 + Jc(t′)K + e1 + . . .+ en ≥ m1 +m2 by (95)
⇐⇒ Jc(t′)K + e1 + . . .+ en ≥ m2

⇐⇒ Jc(t′)K + e1 + . . .+ en ≥ d1 + . . .+ dn +m2,2 by (99)
⇐= Jc(t′)K ≥ m2,2 by (100)
⇐⇒ true (†)

The step marked with (†) holds because of Lemma 57. To see this, recall that

m2,2 is the cost of normalizing Jt′[q1]π1
. . . [qn]πn

K with P̂ and qi is a P∪P̂-normal
form of t′|πi

for each 1 ≤ i ≤ n. Hence, Lemma 57 applies. ut

B.2.6 Properties of Psz and Prt,sz

Now we can show the soundness of our construction of Psz when considering size
bounds of P ∪ P̂.

Theorem 74 (Soundness of Psz for Size Bounds of P ∪ P̂). Let P be an
RNTS with size and runtime bounds sz and rt, where P does not have nested
defined symbols. Let Psz be defined as in Thm. 27. Then every size bound sz′ for
Psz (where we assume sz′(f) = ω if f does not occur in Psz) is also a size bound

for P ∪ P̂.

Proof. The size bound sz′ for Psz is also a size bound for Psz ∪ P̂. The reason
is that Psz does not contain symbols from ΣPc and thus, we have sz′(f) = ω for

all f ∈ ΣPc . Moreover, the rules from P̂ cannot be applied in (Psz ∪ P̂)-rewrite
sequences that start with a nat-basic term whose root is from ΣPd .

W.l.o.g., let sz(f) = ω for all f ∈ ΣPd . Then sz is clearly still a size bound for

P and this change of sz does not influence the construction of Pi, Po, or P̂ since
they only rely on the size bound for constructors (as P does not have nested
defined symbols). Moreover w.l.o.g., let rt(f) = ω for all f ∈ ΣPd . Again, this

does not influence the construction of Pi or P̂ as they only rely on the runtime
bound for constructors. By Lemma 48, then sz is also a size bound for Pi ∪ P̂
and thus in particular for Pi. Clearly, Pi does not have Σ-symbols below defined

symbols. So by Thm. 70, every size bound for (Pi)o ∪ P̂i is also a size bound

Complexity Analysis for TRSs by ITSs 57

for Pi ∪ P̂i. With Corollary 47, we have (Pi)o = Psz, i.e., every size bound for

Psz ∪ P̂i is also a size bound for Pi ∪ P̂i. As sz′ is a size bound for Psz ∪ P̂, it is

clearly also a size bound for Psz ∪ P̂i (as P̂i ⊆ P̂). Thus, it is also a size bound

for Pi ∪ P̂i. Clearly, defined symbols from Pi ∪ P̂ that do not occur in Pi ∪ P̂i
do not occur in Psz. As we assumed sz′(f) = ω if f does not occur in Psz, sz

′ is

also a size bound for Pi ∪ P̂.
Finally, by Thm. 66, every size bound for Pi∪P̂ is a size bound for P∪P̂. ut

Similarly, the following theorem shows the soundness of our construction of
Prt,sz when considering time bounds of P ∪ P̂.

Theorem 75 (Soundness of Prt,sz for Time Bounds of P ∪ P̂). Let P be
an RNTS with size and runtime bounds sz and rt, where P does not have nested
defined symbols and sz is also a size bound for Pi. Then every time bound rt′ for
Prt,sz (where we assume rt′(f) = ω if f does not occur in Prt,sz) is also a time

bound for P ∪ P̂.

Proof. The time bound rt′ for Prt,sz is also a time bound for P ′rt,sz by Corollary 52

and hence it is also a time bound for P ′rt,sz ∪ P̂. The reason is that Prt,sz does not

contain symbols from ΣPc and thus, we have rt′(f) = ω for all f ∈ ΣPc . Moreover,

the rules from P̂ cannot be applied in (P ′rt,sz ∪ P̂)-rewrite sequences that start

with a nat-basic term whose root is from ΣPd .
W.l.o.g., let rt(f) = ω for all f ∈ ΣPd . Then rt is clearly still a time bound

for P and this change of rt does not influence the construction of Pi, Pc, or P̂
since they only rely on the time bound for constructors (as P does not have

nested defined symbols). Hence, by Lemma 48, rt is also a time bound for Pi ∪ P̂
and thus in particular also for Pi. Moreover, by the prerequisites, sz is a size
bound for Pi. Clearly, Pi does not have Σ-symbols below defined symbols. So

by Thm. 73, every time bound for (Pi)c ∪ P̂i is also a time bound for Pi ∪ P̂i.
With Corollary 47, we have (Pi)c = P ′rt,sz, i.e., every time bound for P ′rt,sz∪P̂i

is also a time bound for Pi ∪ P̂i. As rt′ is a time bound for P ′rt,sz ∪ P̂, it is clearly

also a time bound for P ′rt,sz ∪ P̂i (as P̂i ⊆ P̂). Thus, it is also a time bound for

Pi ∪ P̂i. Clearly, defined symbols from Pi ∪ P̂ that do not occur in Pi ∪ P̂i do
not occur in Prt,sz. As we assumed rt′(f) = ω if f does not occur in Prt,sz, rt

′ is

also a time bound for Pi ∪ P̂.
Finally, by Thm. 66, every time bound for Pi ∪ P̂ is a time bound for P ∪ P̂.

ut

In contrast to Thm. 74, Thm. 75 requires that sz is also a size bound for Pi.
The following auxiliary lemma allows us to ensure this requirement.

Lemma 76 (Size Bounds for P and Pi). Let P be an RNTS with size and
runtime bounds sz and rt and without nested defined symbols and let sz′ be a size
bound for Psz such that

Jsz′(f)σK ≤ Jsz(f)σK for all f ∈ Σ and all natural substitutions σ. (103)

58 M. Naaf et al.

Then sz′ is a size bound for Pirt,sz′ .

Proof. In the following, we write Pisz′ instead of Pirt,sz′ . Let s be an arbitrary
term such that s→Pi

sz′
t and let

`→ ai(r)
[
ϕ ∧ ψi

sz′(r)
]

and σ be the rule and the substitution used for this rewrite step. We omit
the weights here, since they are not of interest. By construction, we have ` →
ai(r)

[
ϕ ∧ ψi

sz(r)
]
∈ Pisz. By definition of ψi, J(ϕ ∧ ψi

sz′(r))σK = true and (103)
implies J(ϕ ∧ ψi

sz(r))σK = true. Hence, we get s →Pi
sz
t. So s →Pi

sz′
t implies

s→Pi
sz
t and hence

every size bound for Pisz is also a size bound for Pisz′ . (104)

Now we want to apply Thm. 74 to deduce that every size bound for (Pisz)sz is

also a size bound for Pisz ∪ P̂isz. To apply Thm. 74, we need to know that Pisz
does not have nested defined symbols (which is the case by Def. 46) and that

sz is a size bound for Pisz. W.l.o.g., assume sz(f) = ω for each f ∈ ΣPd = Σ
Pi

sz

d .
Clearly, this assumption does not affect the construction of Pisz and (Pisz)sz, which
just require size bounds for constructors. Then, sz is trivially a size bound for
Pisz and hence Thm. 74 applies. By Corollary 47, we have (Pisz)sz = ((Pisz)isz)osz.
Moreover, as an immediate consequence of Def. 46, we have (Pisz)isz = Pisz. Hence,
by Thm. 74 every size bound for (Pisz)sz = ((Pisz)isz)osz = (Pisz)osz is also a size

bound for Pisz ∪ P̂isz. By Corollary 47, we have (Pisz)osz = Psz and hence every size

bound for Psz is also a size bound for Pisz ∪ P̂isz. Since sz′ is a size bound for Psz,

this implies that sz′ is a size bound for Pisz ∪ P̂isz. As Pisz is a subset of Pisz ∪ P̂isz,
sz′ is also a size bound for Pisz. With (104), this proves the claim.

ut

Now we can finally prove the soundness of Thm. 27.

Theorem 27 (Transformation of RNTSs to ITSs). Let Q be an RNTS
with size and runtime bounds sz and rt and let P = Q\ (Qg1 ∪ . . .∪Qgm), where
g1, . . . , gm ∈ Σ and Qgi is the sub-RNTS of Q induced by gi. We define

Psz = { ` w→ aosz(a
i(r))

[
ϕ ∧ ψi

sz(r)
]
| ` w→ r [ϕ] ∈ P }

Let sz′ be a size bound for Psz where sz′(f) = sz(f) for all f ∈ Σ \ΣPd . If P does
not have nested defined symbols, then sz′ is a size bound for Q.

To obtain a runtime bound for Q, we define an RNTS Prt,sz′ . To this end, we
define the cost of a term as crt,sz′(x) = 0 for x ∈ V and

crt,sz′(g(s1, . . . , sn)) =

{∑
1≤j≤n crt,sz′(sj) + rt(g) {xj/sz′(sj) | 1 ≤ j ≤ n} if g ∈ ΣPc∑
1≤j≤n crt,sz′(sj) otherwise

Complexity Analysis for TRSs by ITSs 59

Now Prt,sz′ = {`
w+crt,sz′ (r)−−−−−−−→

∑
π∈Posd(r) a

i(r|π)
[
ϕ ∧ ψi

sz′(r)
]
| ` w→ r [ϕ] ∈ P}.

Then every runtime bound rt′ for Prt,sz′ with rt′(f) = rt(f) for all f ∈ Σ \ΣPd is
a runtime bound for Q. Here, all occurrences of ω in Psz or Prt,sz′ are replaced
by pairwise different fresh variables.

Proof. By Thm. 74, every size bound for Psz is a size bound for P ∪ P̂. By
Thm. 61, every size bound for P ∪ P̂ is a size bound for Q, as ΣPd ∩ΣQ\P = ∅
by construction.

Now we want to apply Lemma 76 to establish that sz′ is a size bound for
Pisz′ . To this end, w.l.o.g. assume sz(f) = rt(f) = ω for all f ∈ ΣPd as in the
proof of Thm. 74. Then we clearly have Jsz′(f)σK ≤ Jsz(f)σK for all f ∈ Σ and
all natural substitutions σ by definition of sz′. Hence, by Lemma 76, sz′ is a size
bound for Pisz′ . With Thm. 75, this implies that every time bound for Prt,sz′ is a

time bound for P ∪ P̂. By Thm. 61, every time bound for P ∪ P̂ is a time bound
for Q, as ΣPd ∩ΣQ\P = ∅ by construction. ut

Theorem 30 (Alg. 1 is Sound). Let P be an RNTS and let rt and sz be the
result of Alg. 1 for P. Then rt is a runtime bound and sz is a size bound for P.

Proof. Let Pin be the analyzed RNTS. We prove that

sz is a size bound for Pin and (105)

rt is a runtime bound for Pin (106)

are loop invariants. Then our claim follows, since the algorithm obviously termi-
nates. Initially, sz and rt are clearly size and runtime bounds for Pin by construc-
tion. If Pin has nested recursion, the algorithm returns these initial bounds in
Step 2, so from now on we assume that Pin does not have nested recursion. As-
sume that (105) and (106) hold at the beginning of the loop body. First consider
the case that (Pfsz)size is not well defined (as Pfsz does not satisfy the preconditions
of Thm. 45 (i.e., the generalization of Thm. 19)). Then the algorithm soundly
returns rt and sz.

Now consider the case that (Pfsz)size is well defined. When entering the loop for
the first time, we have P = Pin. But in general, we have P = Pin\(Pg1in∪. . .∪P

gn
in)

for some g1, . . . , gn ∈ Σ such that gi 6A g for all g ∈ ΣPd . For the bottom symbol

f of P, we have Pf = Pfin \ (Pg1in ∪ . . . ∪ P
gn
in).

By Thm. 45, szf is a size bound for Pfsz. Let sz′ and rt′ be the values of sz
and rt at the end of the loop body. As sz′ is like szf for all defined symbols of
Pf and like sz for all other symbols of Σ, we obtain that

sz′ is a size bound for Pfin

by Thm. 27. As sz is a size bound for Pin and sz and sz′ only differ for symbols

from ΣP
f

d ⊆ ΣP
f
in

d , sz′ is a size bound for Pin, which finishes the proof of (105).
It remains to show that (106) is a loop invariant. Recall that we have Pf =

Pfin \ (Pg1in ∪ . . .∪P
gn
in). Note that rtf is a runtime bound for Pfrt,sz′ . As rt′ is like

60 M. Naaf et al.

rtf for all defined symbols of Pf and like rt for all other symbols of Σ, we obtain
that

rt′ is a runtime bound for Pfin
by Thm. 27. As rt is a runtime bound for Pin and rt and rt′ only differ for symbols

from ΣP
f

d ⊆ Σ
Pf

in

d , rt′ is a runtime bound for Pin, which finishes the proof of
(106). ut

B.3 Proofs for Appendix A

Theorem 33 (Soundness of Abstraction H·Icon). Let R/S be a well-typed
constructor system and let conmax = max({1} ∪ {con(f) | f ∈ Σ0

c}). Let N be
a terminating variant of S such that R/(S ∪ N) is well typed and completely
defined. Then we have ircR/S(n) ≤ ircHR/(S∪N)Icon(conmax · n) for all n ∈ N.

Proof. Lemma 44 can easily be adapted to the improved size abstraction H·Icon.
Thus, for any well-typed ground term s, s i→R/S t implies JHsIconK →HR/SIcon

+

JHtIconK, where the sum of the weights of the rewrite steps is 1. Therefore,
dh(t, i→R/S) ≤ dhw(JHtIconK,→HR/SIcon) holds for all well-typed ground terms t.

Now ircR/S(n) ≤ ircHR/(S∪N)Icon(conmax · n) can be shown similar as in the
proof of Thm. 13. The only main difference is the following step:

sup{dhw(JHsIconK, i→HR/(S∪N)Icon) | s well typed, basic, and ground, |s| ≤ n}
≤ sup{dhw(q,→HR/(S∪N)Icon) | q nat-basic, ||q|| ≤ conmax · n}

To see why this step is correct, note that JHsIconK ≤ conmax · |s| holds for all
constructor ground terms s. Thus, we have ||JHsIconK|| ≤ conmax · |s| for all basic
ground terms s. ut

Theorem 36 (Narrowing for Complexity). Let R/S be a completely defined
constructor system, ` → r ∈ R ∪ S, r|π = f(. . .) for some f ∈ ΣR∪Sd , and let
r|µ be a basic term for some µ > π. Let `1→ r1, . . . , `m→ rm ∈ R ∪ S be all
(variable-renamed) rules where `i unifies with r|µ and let σi = mgu(r|µ, `i) for
1 ≤ i ≤ m. Let

R′ = (R \ {`→ r}) ∪ {`σi → r[ri]µσi | 1 ≤ i ≤ m} and S ′ = S \ {`→ r}.

Then we have dh(t, i→R/S) ≤ 2 · dh(t, i→R′/S′) for all ground terms t.

Proof. A maximal (finite or infinite) i→R/S -derivation of t has the form

t = t0
R∪S−−−→P0

t1
R∪S−−−→P1

t2
R∪S−−−→P2

. . .

where Pj ∈ {R,S} for all j. Let i be the first step where the reduction ti
R∪S−−−→Pi

ti+1 is performed via the rule `→ r. Thus, ti = ti[`ρ]κ
R∪S−−−→Pi ti[rρ]κ = ti+1 for

some substitution ρ and some position κ ∈ Pos(ti). Note that ρ instantiates all
variables of ` by constructor ground terms. The reason is that all other ground
terms are not in normal form w.r.t. R∪ S, as R/S is completely defined.

Complexity Analysis for TRSs by ITSs 61

Since r|π is a basic term, ti+1|κπ = rρ|π = r|πρ is a basic ground term as ρ
instantiates r’s variables by constructor ground terms. Since R/S is completely
defined, ti+1|κπ is not in normal form w.r.t. R∪ S.

As we consider innermost rewriting and the derivation is maximal, w.l.o.g.
we can assume that the next rewriting step is performed below κ (otherwise one
can rearrange the derivation steps without changing the length of the reduction).
Then we have

ti = ti[`ρ]κ
R∪S−−−→Pi

ti[rρ]κ = ti[rρ[`′δ]π]κ
R∪S−−−→Pi+1

→ ti[rρ[r′δ]π]κ = ti+2

for some rule `′ → r′ ∈ R ∪ S and some substitution δ.
W.l.o.g. we can assume that ` → r and `′ → r′ have distinct variables. We

know that r|πρ = `′δ. Instead of using δ, we can extend ρ to the variables of `′

and obtain r|πρ = `′ρ. Thus, ρ unifies r|π and `′. Hence, there exists an mgu σ
of r|π and `′ and we have ρ = σρ′ for some substitution ρ′.

So we have ti|κ = `ρ = (`σ)ρ′, i.e., the narrowed rule `σ → r[r′]πσ is appli-
cable. Moreover, its application is again an innermost step w.r.t. R ∪ S since
`σρ′ = `ρ has no redex as a proper subterm. Applying this narrowed rule to ti
results in

ti = ti[(`σ)ρ′]κ
R∪S−−−→R′ ti[(r[r′]πσ)ρ′]κ

= ti[r[r
′]πρ]κ = ti[rρ[r′ρ]π]κ = ti[rρ[r′δ]π]κ = ti+2

Thus, we have ti
R∪S−−−→R′ ti+2. We proceed in the same way for all such steps

i. Note that by the construction of the narrowed rules, a ground term is a normal
form w.r.t. R ∪ S iff it is a normal form w.r.t. R′ ∪ S ′. Hence, every rewrite

step with
R∪S−−−→P is also a rewrite step with

R′∪S′−−−−→P . Therefore, our construction
yields a derivation w.r.t. i→R′/S′ which is at least half as long as the original
i→R/S -derivation, i.e., we obtain dh(t, i→R/S) ≤ 2 · dh(t, i→R′/S′). ut

Aachener Informatik-Berichte

This list contains all technical reports published during the past three
years. A complete list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request
to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,
Email: biblio@informatik.rwth-aachen.de

2014-01 ∗ Fachgruppe Informatik: Annual Report 2014
2014-02 Daniel Merschen: Integration und Analyse von Artefakten in der mod-

ellbasierten Entwicklung eingebetteter Software
2014-03 Uwe Naumann, Klaus Leppkes, and Johannes Lotz: dco/c++ User Guide
2014-04 Namit Chaturvedi: Languages of Infinite Traces and Deterministic Asyn-

chronous Automata
2014-05 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,

Carsten Fuhs, Jera Hensel, and Peter Schneider-Kamp: Automated Ter-
mination Analysis for Programs with Pointer Arithmetic

2014-06 Esther Horbert, Germán Mart́ın Garćıa, Simone Frintrop, and Bastian
Leibe: Sequence Level Salient Object Proposals for Generic Object De-
tection in Video

2014-07 Niloofar Safiran, Johannes Lotz, and Uwe Naumann: Algorithmic Dif-
ferentiation of Numerical Methods: Second-Order Tangent and Adjoint
Solvers for Systems of Parametrized Nonlinear Equations

2014-08 Christina Jansen, Florian Göbe, and Thomas Noll: Generating Inductive
Predicates for Symbolic Execution of Pointer-Manipulating Programs

2014-09 Thomas Ströder and Terrance Swift (Editors): Proceedings of the In-
ternational Joint Workshop on Implementation of Constraint and Logic
Programming Systems and Logic-based Methods in Programming Envi-
ronments 2014

2014-14 Florian Schmidt, Matteo Ceriotti, Niklas Hauser, and Klaus Wehrle:
HotBox: Testing Temperature Effects in Sensor Networks

2014-15 Dominique Gückel: Synthesis of State Space Generators for Model
Checking Microcontroller Code

2014-16 Hongfei Fu: Verifying Probabilistic Systems: New Algorithms and Com-
plexity Results

2015-01 ∗ Fachgruppe Informatik: Annual Report 2015
2015-02 Dominik Franke: Testing Life Cycle-related Properties of Mobile Appli-

cations
2015-05 Florian Frohn, Jürgen Giesl, Jera Hensel, Cornelius Aschermann, and

Thomas Ströder: Inferring Lower Bounds for Runtime Complexity

2015-06 Thomas Ströder and Wolfgang Thomas (Editors): Proceedings of the
Young Researchers’ Conference “Frontiers of Formal Methods”

2015-07 Hilal Diab: Experimental Validation and Mathematical Analysis of Co-
operative Vehicles in a Platoon

2015-08 Mathias Pelka, Jó Agila Bitsch, Horst Hellbrück, and Klaus Wehrle (Ed-
itors): Proceedings of the 1st KuVS Expert Talk on Localization

2015-09 Xin Chen: Reachability Analysis of Non-Linear Hybrid Systems Using
Taylor Models

2015-11 Stefan Wüller, Marián Kühnel, and Ulrike Meyer: Information Hiding in
the Public RSA Modulus

2015-12 Christoph Matheja, Christina Jansen, and Thomas Noll: Tree-like Gram-
mars and Separation Logic

2015-13 Andreas Polzer: Ansatz zur variantenreichen und modellbasierten En-
twicklung von eingebetteten Systemen unter Berücksichtigung regelungs-
und softwaretechnischer Anforderungen

2015-14 Niloofar Safiran and Uwe Naumann: Symbolic vs. Algorithmic Differen-
tiation of GSL Integration Routines

2016-01 ∗ Fachgruppe Informatik: Annual Report 2016
2016-02 Ibtissem Ben Makhlouf: Comparative Evaluation and Improvement of

Computational Approaches to Reachability Analysis of Linear Hybrid
Systems

2016-03 Florian Frohn, Matthias Naaf, Jera Hensel, Marc Brockschmidt, and
Jürgen Giesl: Lower Runtime Bounds for Integer Programs

2016-04 Jera Hensel, Jürgen Giesl, Florian Frohn, and Thomas Ströder: Proving
Termination of Programs with Bitvector Arithmetic by Symbolic Exe-
cution

2016-05 Mathias Pelka, Grigori Goronzy, Jó Agila Bitsch, Horst Hellbrück, and
Klaus Wehrle (Editors): Proceedings of the 2nd KuVS Expert Talk on
Localization

2016-06 Martin Henze, René Hummen, Roman Matzutt, Klaus Wehrle: The Sen-
sorCloud Protocol: Securely Outsourcing Sensor Data to the Cloud

2016-07 Sebastian Biallas : Verification of Programmable Logic Controller Code
using Model Checking and Static Analysis

2016-09 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,
Carsten Fuhs, Jera Hensel, Peter Schneider-Kamp, and Cornelius As-
chermann: Automatically Proving Termination and Memory Safety for
Programs with Pointer Arithmetic

2016-10 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel: Towards Privacy-
Preserving Multi-Party Bartering

2017-01 ∗ Fachgruppe Informatik: Annual Report 2017
2017-02 Florian Frohn and Jürgen Giesl: Analyzing Runtime Complexity via In-

nermost Runtime Complexity

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

