RWTH Aachen

Department of Computer Science

Symbolic vs. Algorithmic
Differentiation of
GSL Integration Routines

Niloofar Safiran, Uwe Naumann

ISSN 0935-3232 . Aachener Informatik-Berichte

Technical Report

AlB-2015-14

RWTH Aachen : Department of Computer Science

November 2015

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Symbolic vs. Algorithmic Differentiation of
GSL Integration Routines

Niloofar Safiran, Uwe Naumann

LuFG Informatik 12: Software and Tools for Computational Engineering,
RWTH Aachen University, Germany.
Email: {safiran, naumann}@stce.rwth-aachen.de

Abstract. Forward and reverse modes of algorithmic differentiation (AD) trans-
form implementations of multivariate vector functions F' : IR"™ — IR as com-
puter programs into tangent and adjoint code, respectively. The adjoint mode is of
particular interest in large-scale functions due to the independence of its compu-
tational cost on the number of free variables. The additional memory requirement
for the computation of derivatives of the output with respect to parameters by
a fully algorithmic method (derived by AD) can quickly become prohibitive for
large values of n. This can be reduced significantly by the symbolic approach to
differentiation of the underlying integration routine. Vectorizing gsl routines for
integration and applying symbolic adjoint on them has considerably less mem-
ory requirement with nearly the same runtime overhead and in most cases faster
convergence in comparison with algorithmic adjoint.

1 Differentiation of Integrals

Let us consider an interval which the limits of the integral are themselves func-
tions of « € IR, it follows that:

b(a)
u®=/mfmmm=mewammw>, (1)

which yields the partial derivatives

oI oI

o = flasb@) == = —f(a,a(e))

Considering chain rule and Leibniz’s rule for differentiation under the integral
sign [Fla73],

Il

da /b(a) Of (o, x)
= = d
da o

ot o~ fea@ g+ [RS)

Now suppose that, a € IR", i.e.,

b(a1,02,...,0m)
I(al,ag,...,an):/ flag,ag,...,ap,x)dx . (3)

a(a1,0250-,0n)

Differentiating the above equation with respect to all parameters a = (v, ..., ay)
yields:

=f(a, b(a)) — fle,a(@)) + ————dx

dI db(cx) da(cx) /b<a> Of (o,)

dTOél da1 da1 () 8041

ar db(cx) da(a) /b<a> of (v,)

dT.éQ _f(a7 b(a)) dag - f(a7 a(a)) dCYQ + a(e) aa2 dx)
dr db(cx) da(a) ") of (o, x)

=1 (e ble) G~ Sl ale) G+ | w dan ©

doy,

In other words

b(ax)
VI = f(a, b)) Vb — f(a,a(a))Va+/ Vf(a,x)dx . (4)

a(a)

This means that we have gradients of bounds multiplied by integrand and one
quadrature instead of gradient of quadrature.

2 Numerical Integration in GSL

In gsl [GDTT09], there are routines for adaptive and non-adaptive integration
of general functions, with specialised routines for specific cases. These include
integration over infinite and semi-infinite ranges, singular integrals, including
logarithmic singularities, computation of Cauchy principal values and oscillatory
integrals.

Each algorithm computes an approximation to a definite integral of the form,

1= [s

where w(z) is a weight function (for general integrands w(x) = 1). The user
provides absolute and relative error bounds (epsabs, epsrel) which specify the
following accuracy requirement,

|RESULT — I| <= maz(epsabs, epsrel|l])

where RESU LT is the numerical approximation computed by the algorithm. The
algorithms attempt to estimate the absolute error ABSERR = |RESULT — |
in such a way that the following inequality holds,

|IRESULT — I| <= ABSERR <= max(epsabs, epsrel|I|)

In short, the routines return the first approximation which has an absolute
error smaller than epsabs or a relative error smaller than epsrel.

The algorithms in QUADPACK use a naming convention based on the fol-
lowing letters,

— Q@ - quadrature routine

— N - non-adaptive integrator

— A - adaptive integrator

— G - general integrand (user-defined)

— W - weight function with integrand

— S - singularities can be more readily integrated
— P - points of special difficulty can be supplied
— I - infinite range of integration

— O - oscillatory weight function, cos or sin

— F - Fourier integral

— C - Cauchy principal value

The algorithms are built on combination of quadrature rules, a lower order
rule and a higher order rule. The higher order rule is used to compute the best
approximation of the integral over a small range. The difference between the
results of the higher order rule and the lower order rule gives an estimate of the
error in the approximation.

The gsl_function contains the value x as well as the parameters and is defined
as

Listing 1.1: Definition of gsl_function with Parameters
struct gsl_function_struct{
double (% function) (double x, void % params);
void * params;
}s
typedef struct gsl_function_struct gsl_function ;
#define GSLFNEVAL(F,x) (x((F)—>function))(x,(F)—>params)

The integration region in the adaptive integration algorithms in gsl is divided
into subintervals, and on each iteration the subinterval with the largest estimated
error is bisected. This reduces the overall error rapidly, as the subintervals be-
come concentrated around local difficulties in the integrand. These subintervals
are managed by a gsl_integration_workspace struct, which handles the memory
for the subinterval ranges, results and error estimates.

Function: gsl_integration_workspace * gsl_integration_workspace_alloc (size_t
n-maz)

This function allocates a workspace sufficient to hold n_max double precision
intervals, their integration results and error estimates.

Listing 1.2: workspace

typedef struct{
size_t limit;
size_t size;
size_t nrmax;
size_t 1;
size_t maximum_level;
double xalist ;

10

double xblist ;

double xrlist ;

double xelist ;

size_t xorder;

size_t xlevel;}
gsl_integration _workspace ;

In gsl_workspace_alloc function, n_max is the amount of memory allocated to
workspace members alist, blist, rlist, elist, order and level.

2.1 Integrands Without Weight Functions

The algorithms for general functions (without a weight function) are based on
Gauss-Kronrod rules. A Gauss-Kronrod rule begins with a classical Gaussian
quadrature rule of order m. This is extended with additional points between
each of the abscissae to give a higher order Kronrod rule of order 2m + 1. The
Kronrod rule is efficient because it reuses existing function evaluations from the
Gaussian rule. The higher order Kronrod rule is used as the best approximation
to the integral, and the difference between the two rules is used as an estimate
of the error in the approximation.

2.2 Integrands With Weight Functions

For integrands with weight functions the algorithms use Clenshaw-Curtis quadra-
ture rules. A Clenshaw-Curtis rule begins with an m-th order Chebyshev polyno-
mial approximation to the integrand. This polynomial can be integrated exactly
to give an approximation to the integral of the original function. The Chebyshev
expansion can be extended to higher orders to improve the approximation and
provide an estimate of the error.

2.3 Integrands With singular Weight Functions

The presence of singularities (or other behaviour) in the integrand can cause
slow convergence in the Chebyshev approximation. The modified Clenshaw-
Curtis rules used in QUADPACK separate out several common weight functions
which cause slow convergence. These weight functions are integrated analyti-
cally against the Chebyshev polynomials to pre-compute modified Chebyshev
moments. Combining the moments with the Chebyshev approximation to the
function gives the desired integral. The use of analytic integration for the sin-
gular part of the function allows exact cancellations and substantially improves
the overall convergence behaviour of the integration.

3 Algorithmic Differentiation of GSL Integration Routines

Algorithmic tangent and adjoint versions of the integration routine in gsl com-
pute the directional derivatives of the approximation of the solution, which is
actually computed by the algorithm [GWO08,Naul2], in which AD is applied to
the individual statements of the given implementation. In tangent mode, this
yields an increase of roughly two in memory requirement as well as operation

10

15

count. In the adjoint mode, data required within the reverse section is recorded
in the forward section. The resulting memory requirement is likely to exceed the
available resources for most real-world applications . In the adjoint version, the
number of operations is two times the operations (OPS) performed by the algo-
rithm itself. The required memory in this case is proportional to the number of
operations.

In order to apply AD tool 2 to the gsl integration routines, a separate library
integration-multidim is built according to integration library in gsl but with the
following changes:

— Include dco.hpp in gsl_math.h file, so that gsl knows the dco data types.

— Define the gsl_function with dco types dco :: gtls < double >:: type and
dco :: gals < double >:: type for tangent and adjoint version respectively.

— Define the related functions and routines with dco types.

— In some cases only the real value of the input is needed. In this case use the
get function of dco. This returns the real part (double) of the input.

Note that gsl is written in C' and dco is written in C++. In order to run dco
in gsl, configure gsl with g++. For implementation set the right seed in the main
function, call the integration routine and get the result of integration as well as

the derivatives of the integral with respect to its parameters.

Listing 1.3: Algorithmic Tangent

gsl_integration_workspace_tls_typex w =
gsl_integration_workspace_alloc_t1ls_type (100000);
struct my_f_params<dco:: gtls<double>::type> params;
for (int i=0; i<n; i++) {
params.alpha = vec_alpha;
dco:: gtls<double>::set (params.alpha[i], 1., 1);
initialise_boundaries (a, b, params.alpha);
gsl_function_tls_type F;
F.function = &func;
F.params = ¶ms;
gsl_integration_qags(&F, a, b, le—7, le—7, w—>limit ,
w, &result , &error);
dco:: gtls<double>::get (result , presult);
dco::gtls<double>::get(result , dresult, 1);
printf(”dI/da[%d]=%f_\n", i, dresult);
sum_deriv += dresult;}
printf(” Diff._of_Integration:%f._.\n"” ,sum_deriv);
printf(”The_.integration: .. .%f_.\n”, presult);
gsl_integration _workspace_free(w); }

)

In listing 1.3 the algorithmic tangent mode of AD is used to differentiate the

integration of a gsl function (listing 1.1), which in the above listing is evaluated

! Checkpointing techniques can help keeping the required memory feasible at the expense of

additional function evaluations, See [Gri92]. for details.
2 AD tools are: dco (Derivative Code by Overloading) and dcc (Derivative Code Compiler). In
this paper we apply dco as AD tool.

10

15

20

with qags routine. For this purpose, a workspace of size 100000 is defined. The
function has n parameters and the boundaries a,b € IR are dependent to the
parameters. Differentiating this function with respect to all parameters with
algorithmic tangent, a loop of size n is defined in line 4. After setting the function
with its parameters, the integration routine is called in line 11. Furthermore, with
every call of the integration routine (i.e. for each «;,i = 1,...,n), v, number of
iterations will be applied in order to approximate the integral. In algorithmic
tangent mode, v in every call of the integration routine is the same.

Listing 1.4: Algorithmic Adjoint
gsl_integration_workspace_als_typex w =
gsl_integration_workspace_alloc_als_type (100000);
struct my_f_params<dco:: gals<double>::type> params;
params. alpha = vec_alpha;
dco:: gals<double>::global_tape
—> register_variable (params.alpha);
initialise_boundaries (a, b, params.alpha);
gsl_function_als_type F;
F.function = &func;
F.params = ¶ms;
gsl_integration_qags(&F, a, b, le—7, le—7, w—>limit ,
w, &result , &error);
dco::gals<double>::set (result, 1, —1);
dco::gals<double>::get (result , presult);
dco::gals<double>::global_tape—>interpret_adjoint ();
for (int 11=0; ii<n; ii++) {
dco::gals<double>::get (params.alpha[ii], aux, —1);
printf(”dI/da[%d]=%f_\n", ii, aux);
dresult += aux;}
dco:: gals<double>::global _tape—>reset ();
printf(” Diff._of_.Integration:.. %f_\n” ,dresult);
printf(”The_integration:%f_\n”, presult);

gsl_integration_workspace_free (w); }

In listing 1.4 the algorithmic adjoint mode of AD is used to differentiate the
integration of a gsl function. The same as tangent mode, a workspace of size
100000 is defined, the function has n parameters and the boundaries a,b € IR
are dependent to the parameters. Differentiating this function with respect to
all parameters with algorithmic adjoint, the parameters should be registered in
tape for backward interpretation. After setting the function with its parameters,
the integration routine is called just once in line 11, and like algorithmic tangent
mode, by the call of integration routine, 1 iterations will be applied in order
to approximate the integral. With one interpretation we evaluate the integral as
well as the derivative of the integration routine with respect to all parameters.

Computational complexity of n projections with algorithmic tangent and
adjoint modes for differentiating the gsl integration routine with v iterations is
vy - O(n) and 14 - O(1) respectively, and the memory requirement of algorithmic
adjoint mode for n projections is v; - O(n).

10

10

4 Symbolic Differentiation of GSL Integration routines

The symbolic differentiation of the integral I(a) = f;((s))
to a is evaluated by computing Equation (4) with a € IR™. In order to evaluate
the derivatives in the symbolic mode we apply AD tool, it means the evaluation
of Va, Vb and V f are done with dco. After computing the derivatives with AD,
the integration routine can be called with its original data type double. There
are two possibilities to compute the derivatives in dco, either with tangent mode
AD or with adjoint mode AD. Evaluating the derivatives with tangent mode AD

and then integrating the function is straightforward.

f (e, z)dx with respect

Listing 1.5: Function Wrapper Tangent

double f_wrapper_tl(double x, void xparams){
struct my_f_params<dco_tl_type> param_alpha =
x(struct my_f_params<dco_tl_type> *)params;

dco_tl_type x_active = x;

dco_tl_type prod;

dco:: gtls<double>::set
(param_alpha.alpha[indx], 1., 1);

prod = func(x_active , ¶m_alpha);

double derivative = 0;

dco:: gtls<double>::get (prod, derivative, 1);

dco:: gtls<double>::set
(param_alpha.alpha[indx], 0, 1);

return derivative;}

According to Equation (4), computing the derivatives of the integral with
symbolic mode, the differentiation of the function should be passed to the inte-
gration routine as integrand instead of the function itself. The above implementa-
tion defines the differentiation (with tangent mode) of the function which should
be integrated, with respect to one parameter, i.e. dF'.Tg = (%), where

indz € [1,n]. The output is scalar and this function is actually the integrand in
the symbolic tangent mode.

Listing 1.6: Symbolic Tangent

gsl_integration_workspacedoublex w =
gsl_integration_workspace_allocdouble (100000);

struct my_f_params<double> cont_params;

for (int i=0; i<n; i++) {

params. alpha = vec_alpha;
dco:: gtls<double>::set (params.alpha[i], 1., 1);
indx = i;

initialise_boundaries (a, b, params.alpha);
dco:: gtls<double>::get(a, pa);
dco:: gtls<double>::get (b, pb);
dco:: gtls<double>::get(a, da, 1);
dco:: gtls<double>::get (b, db, 1);
pre_result = func(pb, &cont_params)xdb

— func(pa, &cont_params)xda;

15

20

25

gsl_functiondouble dF_Tg;
dF_Tg. function = &f_wrapper_t1;
dF_Tg.params = ¶ms;
gsl_integration_qags(&dF_Tg, pa, pb, le—7, le—7,
w—>limit , w, &result , &error);
dco:: gtls<double>::set (params.alpha[i], 0, 1);
cont_integral [i] = pre_result + result;
printf(”dI/da[%d]=%f\n", i, cont_integral[i]);
sum_deriv += cont_integral [i]; }
printf(” Diff._of_Integration:%f_\n” ,sum_deriv);
gsl_integration_workspace_free(w); }

Listing 1.6 is defined to differentiate the integration of a gsl function with
symbolic tangent mode. The function has n parameters and the boundaries a and
b are dependent to the parameters. Differentiating this function with respect to
all parameters with symbolic tangent, a loop of size n is defined in line 4, which
implies the integration routine should be called n times. Furthermore, with every
call of the integration routine, v number of iterations will be applied in order
to approximate the integral. In symbolic tangent mode, the number of v itera-
tions in every call of the integration routine can be different. This is because the
integrand is the differentiation of the gsl function (%ﬁﬂ) ,i=1,...,n, which

can be different for each 7.

The differences between this evaluation with the one in listing 1.3 are: in the
above implementation, the data type of the variables in the integration routine
as well as in gsl function is double, whereas in algorithmic tangent they are of
dco :: gtls < double >:: type type, the function which is passed to the inte-
gration routine in symbolic tangent is the differentiation of the function which
should be passed to the integration routine in algorithmic tangent, additionally
pre_result = Vbf(a,b) — Vaf(a,a) should be evaluated.

For some routines in gsl, the function which is defined to be integrated differs
from the original function which should be integrated. For example, suppose a
function which is defined as f(a,z) = > i —} Sm(o?;i'x). Applying gsl_integration_gawc

routine (which is an integration routine for intelgrating the functions with a sin-
gularity at ¢ and ¢ € (a,b)) on it, then gsl considers this function as f(a,x) =

ZZZL Zl; ((il_z)) (which in this paper we call the original function), just because of
applying gsl_integration_gawc on it. Differentiating the integrals with symbolic
mode, it should be noticed that for computing f(a,) and f(b,) the original

function should be considered as f.

Evaluating the derivatives with adjoint mode AD and then integrating it, is
tricky, because in adjoint mode in case of scalar output, with one function call
we get the derivative of the output of that function with respect to all inputs.

As it is shown in Equation 4, in order to evaluate the derivatives of the integral

with respect to its parameters with symbolic mode, instead of the integrand, the
derivative of the integrand with respect to parameters should be integrated.

10

Differentiating the gsl_function with adjoint mode AD in order to calculate V f,
the output will not be scalar any more, but a vector of size n. According to
this reason, a vectorized version of gsl integration routines should be defined.
For this purpose, we build a new library e.g. integration-multidim, in which the
dimension n should be added to the structure of gsi_function. Therefore, we define
a gsl_function_vec as

Listing 1.7: Definition of gsl function_vec with Parameters

struct gsl_function_vec_struct{
int dim;
std :: vector <double> (% function)
int dim, double x, void * params);
void * params;
=
typedef struct gsl_function_vec_struct gsl_function_vec;
#define GSLFN_VECEVAL(F,x)
(x((F)—=>function)) ((F)—>dim,x, (F)—>params)

Hence, the whole routines, classes, structures and functions should be changed
in a way that they can deal with a vector function (and not scalar function as
default). In this case, the evaluation of all of the results (i.e. the differentiation
of the integral with respect to all parameters) and all of the respective absolute
errors are done simultaneously, therefore, result and abserr (which are outputs)
in the integration routines, should be defined as vectors.

The value n_max in workspace determines the maximum number of bisec-
tions and as result the maximum number of approximations of the results and
absolute errors in the interval. The adaptive integration routines in gsl iterate
and bisect the integration region until reach to the tolerance. For the cases that
we need more iterations (bisections) of the integral region than n_max, we get a
GSL_ERROR : the number of iterations was insufficient to reach the tolerance.
By using the adjoint mode AD in the symbolic version the dimension of rlist and
elist in Listing 1.2 should be increased to n_max x n (instead of n_max), because
the approximation of the integral for our integrand V f as well as the absolute
error estimates for all a;,7 = 1,...,n will be done at the same time. Allocating
n_max X n memory to result and abserr especially for cases that we need signif-
icantly less iterations than n_max is not efficient. Therefore, we allocate at first
n units of memory to them and with every bisection we increase the size of al-
located memory by 1. The dimensions of other workspace members stay the same.

In the adaptive routines of gsl integration routines the error estimates are
compared and the interval with the largest error is bisected. What should we
do now that we have n error estimates for each interval? The answer is, in this
paper, we compare the n error estimates and determine the maximum one on
each interval and the interval with the largest error would be bisected. It results
that, at the end the number of iterations performed by the routine is nearly
equal to the largest number of iterations performed by symbolic tangent for each
parameter.

11

10

15

10

15

20

Listing 1.8: Function Wrapper Adjoint

std :: vector <double> f_wrapper_al
(int n, double x, void xparams) {
struct my_f_params<dco_alm_type> param_alpha =
*(struct my_f_params<dco_alm_type> x)params;
ad_mode:: tape_t_options options;
options.chunksize () = 10xalpha_dim;
static ad_mode:: tape_t xtape =
ad_mode:: tape_t :: create (options);
dco_alm_type x_active = x, prod;
std :: vector <double> deriv(n, 0);
tape —> register_variable (param_alpha.alpha);
prod = func(x_active , ¶m_alpha);
ad_mode :: set (prod, 1., —1);
tape—>interpret_adjoint ();
ad_mode :: get (param_alpha.alpha, deriv, —1);
tape—>reset ();

return deriv;}

Listing 1.8 defines the differentiation (with adjoint mode) of the function
which should be integrated dF'_Adj = V f. This function is actually the integrand
in the symbolic adjoint mode. As shown in lines 6 — 7 in Listing 1.8, a local tape
of size (10 x n) is defined to store the intermediate variables for the reverse
interpretation in order to evaluate dF _Adj.

Listing 1.9: Symbolic Adjoint
gsl_integration _workspacex w =
gsl_integration_workspace_alloc (100000, n);
std :: vector <double> result (n), error(mn);
struct my_f_params<dco::gals<double>::type> params;
params.alpha = vec_alpha;
struct my_f_params<double> cont_params;
dco::gals<double>::global_tape —>
register_variable (params.alpha);
initialise_boundaries(a, b, params.alpha);
dco::gals<double>::global_tape —
register_output_variable (a);
dco::gals<double>::global_tape —
register_output_variable(b);
dco::gals<double>::set(a, 1, —1);
dco::gals<double>::global _tape—>interpret_adjoint ();
dco::gals<double>::get(a, pa);
dco::gals<double>::get (params.alpha, deriv_a, —1);
dco::gals<double>::global_tape—>zero_adjoints ();
dco::gals<double>::set (b, 1, —1);
dco::gals<double>::global_tape—>interpret_adjoint ();
dco::gals<double>::get (b, pb);
dco::gals<double>::get (params.alpha, deriv_b, —1);

cont_params.alpha = glob_vec_alpha;

12

25

30

35

40

aux0) = func(pb, &cont_params);

auxl = func(pa, &cont_params);
for (int i=0; i<n; i++)
pre_result [i] = auxOxderiv_b[i] — auxlsderiv_a[i];

d_params.alpha = vec_alpha_d;

gsl_function_vec dF_Adj;

dF_Adj.dim = n;

dF_Adj. function = &f_wrapper_al;

dF_Adj.params = &d_params;

gsl_integration_qags(&dF_Adj, pa, pb, le—7, le—7,

w—>limit , w, result, error);
for (int i=0; i<n; i++) {
printf(dIl/da[%d]=%f \n” ,i,pre_result[i]+result[i]);

uuuuu sum_deriv.4=_pre_result [i]|.+_.result[i]; .}
~.dco::gals<double >::global_tape—>reset ();
ceprintf(”Diff. of Integration:%f \n”,sum_deriv);
-.gsl_integration_workspace_free (w);..}

Listing 1.9 is defined to differentiate the integration of a gsl function with
symbolic adjoint mode. For this purpose, the dimension of the parameters (n) is
added to the structure of workspace_alloc in order to allocate memory of n to
rlist and elist in the workspace (listing 1.2). The outputs result and abserr are
defined as vectors of size n. The gsl function is here a vector function (listing
1.7). The vector function which should be passed to the integration routine is
the adjoint differentiation of the integrand (listing 1.8). After setting the func-
tion with its parameters and computing pre_result = Vbf(a,b) —Vaf(a,a), the
integration routine is called just once in line 33, and by the call of integration
routine, 1o iterations will be applied in order to approximate the integral. In
the symbolic adjoint mode, the number of v5 iterations is nearly equal to the
maximum s number of iterations in symbolic tangent.

Computational complexity of n projections with symbolic tangent and adjoint
modes for differentiating the gsl integration routine (e.g. qags) with v iterations
is v9 - O(n) and v - O(1) respectively. The memory requirement of symbolic
adjoint mode for n projections is O(n), which contains the memory requirement
for evaluating V f, that in this paper is defined to be (10 x n), and the memory
requirement of computing Va and Vb, that is also O(n) .

5 Test Cases

This chapter describes and compares routines for performing numerical inte-
gration (quadrature) of a function with multi dimensional parameters and the
differentiation of the integration with different methods, i.e. algorithmic tan-
gent /adjoint and symbolic tangent/adjoint. It is important to choose a function
as test case, in which the corresponding integration routine is suitable for that
test case and also the same integration routine is suitable for the differentiation
of that function, because in this paper we use the same integration routine for
both symbolic and algorithmic modes. The duration of the computation depends
strongly on the number of iterations performed by the integration routine and

13

the number of iteration depends on the integrand and the specified accuracy. As
mentioned in the previous section, the number of iterations for algorithmic and
symbolic computation can differ, because in algorithmic version, the integrand
is the function, however, in symbolic mode, the integrand is the derivative of the
function with respect to its parameters. Furthermore, the number of iterations
in symbolic tangent differentiation can be different for each parameter, but with
applying symbolic adjoint, we have just one number of iterations, which is nearly
the same as maximum number of iterations applied by symbolic tangent. In this
section, in case of illustrating the number of iterations with symbolic mode, we
consider the number of iterations applied by symbolic adjoint .

All of the following measurements are done on a machine with 2x Intel(R)
Xeon(R) CPU E5-2630 0 @ 2.30GHz (2x 6 Cores (12 Threads)), 128 GB RAM.

1. QAG adaptive integration: The QAG algorithm is a simple adaptive in-
tegration procedure. The adaptive functions apply an integration rule adap-
tively until an estimate of the integral of f over (a,b) is achieved within the
desired absolute and relative error limits, epsabs and epsrel. The function
returns the final approximation, result, and an estimate of the absolute error,
abserr.

As case study, we consider evaluating the differentiation of the integral

ble) I cos(ad -z
Ia) = /a Z Mdm

(@) =1 v

where a(a) = Y. ; o; and b(a) = Y, o? with respect to its parameters
a; > 0,7 =1,...,n using qag routine. Differentiating this integral with al-
gorithmic and symbolic tangent and adjoint for different dimensions of «,
the computational overhead is shown in Figure 1 and in Table 1 the memory
requirement as well as number of iterations are illustrated.

250 —e— Symbolic Tg
—— Algorithmic Tg
—— Symbolic Adj
—— Algorithmic Adj
—e— Finite Difference

Symbolic |Algorithmic|Finite
n| Tg | Adj | Tg | Adj | Diff
510.43|0.16| 0.4 | 0.16 | 0.43
10| 1.17 { 0.56 | 2.11 | 0.44 | 2.25
15/ 3.34| 0.8 | 6.19 | 0.84 | 6.55
20} 8.16 | 2.08 |21.52| 2.21 | 23.55
50(91.79|10.08|266.4| 10.8 |286.12
80| - |31.85| - |34.21 -

200

150

run time in seconds

100

20 40 60 80

problem dimension n

Fig. 1: Run time overhead in seconds for gag routine. Missing values indicate
failure to converge within 300 seconds.

In this test case, absolute error is set as well as relative error to 10~7. To reach
this accuracy, e.g. for n = 10, the number of iterations applied by symbolic
and algorithmic is 2041 and 1523 respectively. As illustrated in Figure 1, eval-
uating derivatives with adjoint modes is considerably more efficient in terms

14

Symbolic | Algorithmic
n|Adj| v Adj v

5 10.001| 1024 | 97.02 | 1024
10(0.002| 2041 | 250.62 | 1523
15(0.003| 2048 | 479.96 | 2048
20{0.004| 4096 [1233.82| 4056
50{ 0.01 | 8192 [5923.07| 8192
80(0.018(16384|18647.4|16330

Table 1: Memory Requirement in MB and number of iterations (v) for qag rou-
tine.

of runtime than applying tangent modes. For this function with this accu-
racy, symbolic tangent is faster than algorithmic tangent, whereas symbolic
and algorithmic adjoint have nearly the same runtime overhead. However,
the memory requirement of algorithmic adjoint is significantly higher than
the one for symbolic adjoint.

(a) QAGn=15 (b) QAG n =50

10

0

500 1,000 1,500 2,000 2,500
v v

1034 1036 1038 10*

Fig. 2: Discrepancy and run time (in seconds) for evaluation of adjoints of the
integration of the reference problem with gag routine using different approaches
to differentiation.

Figure 2 illustrates the convergence (blue lines) and run time (red lines)
for computing adjoints with different number of iterations v using different
differentiation methods in the integration of the reference problem with qag
routine for n = 15 and n = 50. In this section the discrepancy between the
adjoints computed in vth iteration of the integration routine with its value
in the previous iteration yields:

Q = Ha(l)l/j - a(l)l/(j,l) ”)] € (1,n_maaz) . (5)

Suppose the convergence § = 10~8, Figure 2 shows that to reach this accuracy,
algorithmic adjoint requires v = 2500 and v = 10000 iterations whereas
symbolic adjoint needs v = 1800 and 8000 iterations for n = 15 and n = 50
respectively. The behaviour of symbolic and algorithmic adjoints in terms of
runtime overhead is nearly the same, however symbolic adjoint is a bit faster.
2. QAGS adaptive integration with singularities:The presence of an inte-
grable singularity in the integration region causes an adaptive routine to con-
centrate new subintervals around the singularity. As the subintervals decrease

15

in size the successive approximations to the integral converge in a limiting
fashion. This approach to the limit can be accelerated using an extrapolation
procedure. The QAGS algorithm combines adaptive bisection with the Wynn
epsilon-algorithm to speed up the integration of many types of integrable sin-
gularities.

As case study, we consider evaluating the differentiation of the integral

be) I 03 . g
I(a) = / " PP 2“(””)@
ala) ;¢

where a(a) = =Y | o; and b(a) = > | a? with respect to its parameters
a; > 0,79 = 1,...,n using gags routine. This function has a singularity in
x = 0. Differentiating this integral with algorithmic and symbolic tangent
and adjoint for different dimensions of «, the computational overhead as well
as memory requirement are shown in Figure 3 and Table 3 respectively.

Symbolic | Algorithmic | Finite
Tg | Adj| Tg | Adj | Diff. 3 —e— Symbolic Tg
] —<— Algorithmic Tg

10 0.01 | 0.01| 0.01 {0.004| 0.01 g —— Symbolic Adj
50 0.4 [0.04]| 0.31 |0.04| 0.28 e ?ft%HAdJ
100 2.3 014 2.01 |0.19]| 2.05 £
300 |51.45(1.19|50.49 | 1.63 | 47.05 g
500 [203.88] 2.81 [191.17| 3.8 |180.11
1000 - 11.74 - 15.1 -
1500] - [32.66] - |42.47] - 200 400 600 800 1,000 1,200 1,400

problem dimension n

Fig. 3: Run time overhead in seconds for qags routine. Missing values indicate
failure to converge within 300 seconds.

Symbolic | Algorithmic
n Adj | v Adj v
10 |0.002| 31 | 1.75 | 31
50 |0.01]128| 31.82 | 128
100 | 0.02 | 254 | 124.18 | 254
300 | 0.07 | 722 (1047.01| 722
500 | 0.1 [{1022{2464.34]{1022
1000{ 0.2 |2043(9836.12|2043
1500| 0.3 |3880| 28006 |3880

Table 2: Memory Requirement in MB and number of iterations (v) for qags
routine.

In this test case, absolute error is set as well as relative error to 10~7. To
reach this accuracy, e.g. for n = 100, the number of iterations for both sym-
bolic and algorithmic is 254. As illustrated in Figure 3, for this function with
this accuracy, algorithmic tangent is faster than symbolic tangent, whereas
symbolic adjoint is faster than algorithmic adjoint. Furthermore, the memory

16

requirement of algorithmic adjoint is considerably higher than the memory
requirement of the symbolic adjoint.

Figure 4 illustrates the convergence (blue lines) and run time (red lines) for
computing adjoints with different vs using different differentiation methods
in the integration of the reference problem with qags routine and shows that
symbolic adjoint converges faster in comparison with algorithmic adjoint, e.g.
for § = 107'° and n = 300, symbolic adjoint needs v = 722 and algorithmic
adjoint requires v = 1022 iterations. Furthermore, the time spent by symbolic
adjoint is less than time spent by algorithmic adjoint. By increasing n and v,
the difference between duration of computation by adjoint algorithmic and
symbolic becomes larger.

(a) QAGS n =300 (b) QAGS n = 1000

2.5

——Qsp
——Qap

2
ol
—+—taD

1.5

10* |

10

107"

10-° 107*

1072 ¢F 1 107

10 12 |
10713 0.5 10
500 600 700 800 900 1,000 2,000 2,010 2,020 2,030 2,040 2,050 2,060

v v

Fig. 4: Discrepancy and run time (in seconds) for evaluation of adjoints of the
integration of the reference problem with qags routine using different approaches
to differentiation.

As mentioned before, we should take care of choosing right integrand in order
to be able to apply the same integration routine on the corresponding inte-
grand for both symbolic and algorithmic differentiation. For example, suppose
a function f(a,z) => 1", %M which has singularity at = = 0, therefore
the integration routine qags can be applied on it, but the differentiation of
the function Vf = 3" | 2a2 cos(c -) which will be the integrand by using
symbolic differentiation has no singularity at x = 0, therefore applying qags
routine on it is not efficient.

3. QAGI adaptive integration on infinite intervals: This algorithm uses
the QAGS algorithm, which computes the integral of the function f over the
infinite interval (— inf, + inf). The integral is mapped onto the semi-open in-
terval (0,1] using the transformation z = (1 —t)/t.

4. QAGIU adaptive integration with infinite upper boundary: This al-
gorithm uses the QAGS algorithm, which computes the integral of the func-
tion f over the semi-infinite interval (a,+ inf). The integral is mapped onto
the semi-open interval (0, 1] using the transformation z = a + (1 —t)/t.

5. QAGIL adaptive integration with infinite upper boundary: This al-
gorithm uses the QAGS algorithm, which computes the integral of the func-

17

tion f over the semi-infinite interval (—inf,b). The integral is mapped onto
the semi-open interval (0, 1] using the transformation z = b — (1 —t)/t.

QAWC adaptive integration with one singularity at x=c: This func-
tion computes the Cauchy principal value of the integral of f over (a,b), with
a singularity at ¢, I = ff dzxf(x)/(x — ¢). The adaptive bisection algorithm
of QAG is used, with modifications to ensure that subdivisions do not occur
at the singular point x = ¢. When a subinterval contains the point z = ¢ or
is close to it then a special 25-point modified Clenshaw-Curtis rule is used to
control the singularity. Further away from the singularity the algorithm uses
an ordinary 15-point Gauss-Kronrod integration rule.

This routine is used by integrands with weight functions and for evaluation
of integrals with this method, table of chebyshev moments in every iteration
of the integration routine should be computed. For this purpose, there exist
two variables: Cheb12 and Cheb24 of size 13 and 25 respectively. In the vec-
torized version of gsl, the size of Cheb12 and Cheb24 should be increased by
factor of n in order to make the simultaneous computation for all parameters
possible.

As case study, we consider evaluating the differentiation of the integral

3

b)) N sin(ad -)
a(ar) i—1

where ¢ € (a,b), a(a) = =3I, o; and b(er) = Y7, a? with respect to its
parameters a; > 0,7 = 1,...,n using qawc routine. This function has a singu-
larity in ¢ € (a,b) in both symbolic and algorithmic versions. Differentiating
this integral with algorithmic and symbolic tangent and adjoint for different
dimensions of «, the computational overhead as well as memory requirement
are shown in Figure 5 and Table 5 respectively.

500

—— Symbolic Tg

400 —=— Algorithmic Tg
—— Symbolic Adj
—— Algorithmic Adj
—e— Finite Difference

Symbolic | Algorithmic | Finite
Tg | Adj | Tg | Adj | Diff.

300

10
20
30
35

1.290.76 | 2.05 | 0.73 | 2.84

4 [1.34] 798 |1.36 | 9.97
28.57| 8.46 |101.23| 7.72 {133.81
67.27|15.29|273.66|14.85|390.26 100
99.18(17.28|361.85(17.17|510.17

200

run time in seconds

5 10 15 20 25 30 35

problem dimension n

Fig. 5: Run time overhead in seconds for qawc routine.

In this test case, absolute error is set as well as relative error to 10~7. To
reach this accuracy, e.g. for n = 10, the number of iterations for symbolic
and algorithmic is 16614 and 17906 respectively. As illustrated in Figure 5, for
this function with this accuracy, symbolic tangent is faster than algorithmic
tangent, whereas the behaviour of adjoint symbolic and algorithmic in terms

18

Symbolic | Algorithmic

n|Adj| v Adj v

5 10.001{15860| 368.34 |15693
10(0.002{16614| 686.17 {17906
20(0.004 {48034 |3276.37|48109
30{0.007{64540(6269.02|64065
35(0.008(66374|7460.27|66198

Table 3: Memory Requirement in MB and number of iterations (v) for qawc
routine.

of runtime is the same. However, the memory requirement of algorithmic
adjoint is considerably higher than the memory requirement of the symbolic
adjoint.

(a) QAWC n =10 (b) QAWC n = 35

1038 10* 10%2 1045 1046 1047 10%8 1049 10°
v v

Fig. 6: Discrepancy and run time (in seconds) for evaluation of adjoints of the
integration of the reference problem with qawc routine using different approaches
to differentiation.

Figure 6 illustrates the convergence (blue lines) and run time (red lines) for
computing adjoints with different vs using different differentiation methods
in the integration of the reference problem with qawc routine and shows that
at first (v < 11000 and v < 65000 for n = 15 and n = 35 respectively)
symbolic adjoint converges faster in comparison with algorithmic adjoint,
but after that the convergence of algorithmic adjoint gets more speed. For
n = 10 adjoint algorithmic spends less time, but for n = 35 the time spent
for both methods is nearly the same.

7. QAWS adaptive integration for functions with singular endpoints:
The QAWS algorithm is designed for integrands with algebraic-logarithmic
singularities at the end-points of an integration region. In order to work effi-
ciently the algorithm requires a precomputed table of Chebyshev moments.
The adaptive bisection algorithm of QAG is used. When a subinterval con-
tains one of the endpoints then a special 25-point modified Clenshaw-Curtis
rule is used to control the singularities. For subintervals which do not include
the endpoints an ordinary 15-point Gauss-Kronrod integration rule is used.
This routine is used by integrands with weight functions and for evaluation
of integrals with this method, table of chebyshev moments in every iteration
of the integration routine should be computed.

19

As case study, we consider evaluating the differentiation of the integral

o= [o
a=0 i=1 33‘) ai

with respect to its parameters o; > 0,7 = 1,...,n using qaws routine. This
function is singular in endpoints a and b, therefore, the endpoints should not
depend on «, because in case of dependent boundaries in symbolic differenti-
ation of integrals, f(a,«) and f(b,«) should be computed, which in this case
do not exit because of the singularity. Differentiating this integral with algo-
rithmic and symbolic tangent and adjoint for different dimensions of «, the
computational overhead as well as memory requirement are shown in Figure
7 and Table 4 respectively.

Symbolic |Algorithmic|Finite ,
n Teg | Adj | Tg | Adj | Diff. Y
10 0.05 [0.01]0.04] 0.01 | 0.04 Lo
100 2.68 |0.06 | 2.58 | 0.05 | 3.2 ER
500 | 71.04 | 0.29 |72.29| 0.28 | 87.62) y
700 138.68| 0.41 |141.5| 0.40 |172.37 F 10 _
1000 |- |074| -] 06 | - R
5000 - 319 - |288| - CR —— " Symbolic Adj
i I L I S o P Diffeenen
20000 | - [1253] - | 116 - 10-2
50000 - 31.83| - 28.92 - 10 102 10% 10 10°
100000| - |65.27| - |57.84| - problem dimension n

Fig.7: Run time overhead in seconds for qaws routine. Missing values indicate

failure to converge within 300 seconds.

Symbolic|Algorithmic
n Adj|v| Adj | v
10 0.002|49| 3.61 |46
100 0.02 |50 | 31.97 |49
500 0.09 |50 | 157.06 | 49
700 0.12 |50 | 219.6 | 49
1000 |0.18 |50 | 313.41 | 49
5000 | 0.89 |50 [1564.24| 49
10000 | 1.75 |50 [3127.77| 49
20000 | 3.51 |50 |6254.83| 49
50000 | 8.77 |50 | 15636 | 49
100000|17.55| 50 [31271.4| 49

Table 4: Memory Requirement in MB and number of iterations (v) for qaws
routine.

In this test case, absolute error is set as well as relative error to 107'2. To
reach this accuracy, e.g. for n = 500, the number of iterations for symbolic
and algorithmic is 50 and 49 respectively. As illustrated in Figure 7, for this
function with this accuracy, for small n tangent methods as well as adjoint

20

methods have the same runtime overhead, but by increasing the size n, algo-
rithmic adjoint spends less time compared to other differentiation methods.
The memory requirement of algorithmic adjoint is significantly higher than
the memory requirement of symbolic adjoint.

(a) QAWS n = 100 (b) QAWS n = 1000

0.1
0 ——Qsp
——Qap
8102

—e—1tsp
—+—tap

T 610"

4-1072

2-1072

10 20 30 40 50

Fig. 8: Discrepancy and run time (in seconds) for evaluation of adjoints of the
integration of the reference problem with qaws routine using different approaches
to differentiation.

Figure 8 illustrates the convergence (blue lines) and run time (red lines) for
computing adjoints with different vs using different differentiation methods
in the integration of the reference problem with qaws routine. Because of
independence of the boundaries to parameters, in Equation (4) we have Vb =
0 and Va = 0. It results the same behaviour in terms of convergence for both
adjoint algorithmic and symbolic methods. However, because of computation
of the Chebyshev table of moments in qaws and increasing the size of it in
the symbolic adjoint mode, the symbolic adjoint methods spends more time
than algorithmic adjoint method. The difference of duration for symbolic and
algorithmic for n = 100 is ~ 0.03 and for n = 1000 is = 0.12 seconds.

8. QAWO adaptive integration for oscillatory functions: This algorithm
is designed for integrands with an oscillatory factor, sin(wz) or cos(wz). In
order to work efficiently the algorithm requires a table of Chebyshev mo-
ments which must be pre-computed. Those subintervals with large widths
where dw > 4 are computed using a 25-point Clenshaw-Curtis integration
rule, which handles the oscillatory behavior. Subintervals with a small widths
where dw < 4 are computed using a 15-point Gauss-Kronrod integration.
This routine is used by integrands with weight functions and for evaluation
of integrals with this method, table of chebyshev moments in every iteration
of the integration routine should be computed.

QAWF routine (see below) uses QAWO in the computation of integrals.

9. QAGP adaptive integration with known singular points: This func-
tion applies the adaptive integration algorithm QAGS taking account of the
user-supplied locations of singular points. The array pts of length npts should
contain the endpoints of the integration ranges defined by the integration re-
gion and locations of the singularities. If you know the locations of the singu-
lar points in the integration region then this routine will be faster than QAGS.

21

As case study, we consider evaluating the differentiation of the integral

b & (2% = p}) - (2% — p3)
I{a) = 3. 231 1 2 > d
(o) /a(a) ; a; - x” log (PO i

where p1,p2 € (a,b), p1 < p2, ale) = 321 i and b(a) = 4% 370 oy
with respect to its parameters a; > 0,7 = 1,...,n using qagp routine. This
function is singular in x = p; and x = +ps, however, £ = —ps is not in our
integration region. Therefore, we have 2 singular points.

std: :vector<double> pts(4, 0);

pts[0] = a;
pts[1] = pi;
pts[2] = p2;
pts[3] = b;

gsl_integration_qagp (&f, pts, n, le-7, le-7, w->limit,
w, &result, &abserr) ;

Differentiating this integral with algorithmic and symbolic tangent and ad-
joint for different dimensions of «, the computational overhead as well as
memory requirement are shown in Figure 9 and Table 5 respectively.

Symbolic Algorithmic | Finite 10

n Tg Adj Tg Adj | Diff.
50 0.22 [001] 0.19 | 0.01 | 0.26 10°
100 0.75 | 0.01 | 062 | 0.01 | 0.94

10

1000 62.74 | 0.14 | 61.93 | 0.14 | 92.59
5000 1715.54| 0.72 (1569.16| 0.74 |2321.33

run time in seconds

10° "
10000 s o | 14| - ! T e
50000 - o - |73t - 107 —— Symbolic Adj
100000 | - |1531| - |1468]| - R o P Difteene
500000 | - [81.04| - |7385| - T
1000000| - |167.91] - |156.56] - oblem dimension

Fig.9: Run time overhead in seconds for qagp routine. Missing values indicate
failure to converge within 3000 seconds.

In this test case, absolute error is set as well as relative error to 10~7. To
reach this accuracy, e.g. for n = 5000, the number of iterations for both
symbolic and algorithmic is 21. As illustrated in Figure 9, for this function
with this accuracy, algorithmic and symbolic adjoint methods have nearly the
same runtime overhead, but the memory requirement of algorithmic adjoint
is significantly higher.

Figure 10 illustrates the convergence (blue lines) and run time (red lines) for
computing adjoints with different vs using different differentiation methods
in the integration of the reference problem with qagp routine. It shows that,
for n = 100 and different number of iterations, algorithmic adjoint spends
less time, however algorithmic and symbolic adjoint have nearly the same
runtime behaviour for n = 1000. The convergence of both methods are nearly
the same.

22

Symbolic|Algorithmic
n Adj| v Adj | v
50 0.01] 20 | 4.88 |21
100 0.02| 21 9.56 |21
1000 0.21] 21 | 93.72 | 21
5000 1.03| 21 |467.81 | 21
10000 [2.06] 21 |935.42 | 21
50000 |10.3| 21 |4676.28| 21
100000 (20.6| 21 |9352.33| 21
500000 |103| 21 |46760.8| 21
1000000| 206 | 21 |93521.4| 21

Table 5: Memory Requirement in MB and number of iterations (v) for qagp
routine.

(a) QAGP n =100 (b) QAGP n = 10000
1078 Qsp s
:
107° 17 10*
—e—tsp
—+—taD 10!
@ 107 @

10t

10712

107 L - 0
5 10 15 20 25 30 5 10 15 20 25 30
v

v

Fig. 10: Discrepancy and run time (in seconds) for evaluation of adjoints of the
integration of the reference problem with qagp routine using different approaches
to differentiation.

10. QNG nonadaptive Gauss-Kronrod integration: The QNG algorithm is
a non-adaptive procedure which uses fixed Gauss-Kronrod-Patterson abscis-
sae to sample the integrand at a maximum of 87 points. It is provided for
fast integration of smooth functions.

As case study, we consider evaluating the differentiation of the integral

b(a) n—1 o
I(a) = / > gloiteit) +sin(—)
ale) 359

where a(a) = Y1, o; and b(a) = 3- Y L, o? with respect to its parameters
a; > 0,7 =1,...,n using qng routine. Differentiating this integral with algo-
rithmic and symbolic tangent and adjoint for different dimensions of «, the
computational overhead as well as memory requirement are shown in Figure
11 and Table 6 respectively.

In this test case, the absolute error as well as relative error is set to 1077.
As illustrated in Figure 11, for this function with this accuracy, algorithmic
tangent has nearly the same behaviour as symbolic tangent, symbolic adjoint
spends less time than algorithmic adjoint for large ms. This routine is not
adaptive and therefore it has always the same number of iterations. Mem-
ory requirement of algorithmic adjoint is significantly higher than memory
requirement of symbolic adjoint.

23

Symbolic | Algorithmic | Finite
n Tg | Adj | Tg | Adj | Diff.
10 0.003 |0.0004{0.003{0.0004| 0.002
100 0.2 10.002|0.16 | 0.002 | 0.1
1000 13.52 | 0.01 |13.54| 0.02 | 8.08
5000 339.82| 0.08 |336.3| 0.1 (205.49
10000 - 0.21 - 0.21 -
100000 - 1.61 - 1.79 -
1000000 - 15.46 | - 17.91 -
5000000 - 7843 | - 90.26 -

10?

10"

10°

run time in seconds

1072

1073

—— Symbolic Tg
—=— Algorithmic Tg
—— Symbolic Adj

—— Algorithmic Adj
—e— Finite Difference

10

10?

10% 10* 10° 10°

problem dimension n

Fig. 11: Run time overhead in seconds for gng routine. Missing values indicate
failure to converge within 500 seconds.

Symbolic|Algorithmic

n Adj Adj

10 0.002 0.05

100 0.02 0.51
1000 0.22 5.05
5000 1.11 25.26
10000 221 50.51
100000 | 22.12 505.07
1000000| 221.25 5050.68
5000000| 1106.26 | 25253.4

Table 6: Memory Requirement in MB for qng routine.

11. QAWF adaptive integration for Fourier integrals: This function at-

tempts to compute a Fourier integral of the function f over the semi-infinite
interval [a, +00). The subintervals and their results are stored in the memory
provided by workspace. The integration over each subinterval uses the mem-
ory provided by cycle_workspace as workspace for the QAWO algorithm.

As case study, we consider evaluating the differentiation of the integral

Ho)= [3 i

“ /amé(a%ﬂ)-m
where a(a) = Y | a? with respect to its parameters a; > 0,i = 1,...,n
using qawf routine. Differentiating this integral with algorithmic and sym-
bolic tangent and adjoint for different dimensions of «, the computational
overhead as well as memory requirement are shown in Figure 12 and Table 7
respectively.

In this test case, the absolute error is set to 1078. To reach this accuracy,
e.g. for n = 5000, the number of iterations for symbolic and algorithmic is
9 and 11 respectively. As illustrated in Figure 12, for this function with this
accuracy, symbolic tangent is faster than algorithmic tangent, algorithmic
adjoint and symbolic adjoint have the same behaviour.

Figure 13 illustrates the convergence (blue lines) and run time (red lines)
for computing adjoints with different number of iterations v using different
differentiation methods in the integration of the reference problem with qawf
routine for n = 100 and n = 100000. For both cases the convergence of

24

Symbolic | Algorithmic | Finite

n Tg | Adj | Tg | Adj | Diff. -
10 0.01 |0.002] 0.01 | 0.01 | 0.004
50 0.07 |0.004| 0.05 |0.01 | 0.04 10!
100 0.2 |0.01| 0.18 |0.01 | 0.14

500 2.95(0.02| 3.62 |0.03| 2.8
1000 11.31] 0.05 | 13.42 | 0.05 | 10.34

10°

—— Symbolic Tg
—<— Algorithmic Tg

H
2

run time in seconds

5000 272.4| 0.22 |308.36| 0.25 {239.56

10000 0.45 0.5 —— Symbolic Adj
50000 | - [1.89] - [211] - 1072 B
100000 | - [3.82| - [4.18] - e
500000 - 16.42 - 16.45 - problem dimension n

1000000{ - [33.07 - 33.96 -

Fig. 12: Run time overhead in seconds for qawf routine. Missing values indicate
failure to converge within 400 seconds.

Symbolic |Algorithmic

n Adj |v| Adj v
10 0.002 {10| 0.55 | 9
50 0.01 |10| 2.29 |10
100 0.02 |11 4.74 |11
500 0.1 |10 22.93 |11

1000 0.2 (10| 42.41 |12
5000 099 |9 195.1 |11
10000 1.98 [91390.03 | 11
50000 9.92 | 716252 | 9
100000 | 19.84 | 7 (3250.27| 9
500000 | 99.18 | 5|13008.2| 7
1000000(198.36| 5 [26016.4| 7

Table 7: Memory Requirement in MB and number of iterations (v) for qawf
routine.

symbolic is faster than algorithmic. Furthermore, symbolic adjoint takes less
time than algorithmic adjoint for n = 100, however, it is not the case for
n = 100000. This is because, qawf uses qawo in its implementation and in
gawo table of Chebyshev moments should be computed.

(a) QAWF n = 100 (b) QAWF n = 100000

1072

107

Fig. 13: Discrepancy and run time (in seconds) for evaluation of adjoints of the
integration of the reference problem with qawf routine using different approaches
to differentiation.

25

12. GLFIXED Gauss-Legendre integration: The fixed-order Gauss-Legendre
integration routines are provided for fast integration of smooth functions with
known polynomial order. The m-point Gauss-Legendre rule is exact for poly-
nomials of order 2-m — 1 or less. Unlike other numerical integration routines
within the library, these routines do not accept absolute or relative error
bounds.

As case study, we consider evaluating the differentiation of the integral

ble) 2 20 3aix zm=1 ;T 2m—1
I(O‘):/a(a);zm—l’ <100> - (59)

where a(a) = > | a; and b(a) = Y, 3aF with respect to its parameters
a; > 0,7 = 1,...,n using glfixed routine. In this test case, we set m =
10. Differentiating this integral with algorithmic and symbolic tangent and
adjoint for different dimensions of «, the computational overhead as well as
memory requirement are shown in Figure 14 and Table 8 respectively.

Symbolic | Algorithmic |Finite 10?
n Tg | Adj Tg | Adj | Diff. 10t
10 0.001 [0.0002] 0.001 |0.0001]0.0001
100 0.07 | 0.001 | 0.05 |0.001 | 0.004 10°

1000 3.68 | 0.01 | 3.62 | 0.005 | 0.34
5000 88.95| 0.03 |92.16 | 0.03 | 9.31
10000 |360.91| 0.05 |371.51| 0.05 | 34.31

107!

—— Symbolic Tg

-2
10 —<— Algorithmic Tg

run time in seconds

) —+— Symbolic Adj
100000 - 0.65 - 0.54 - 107 g —=— Algorithmic Adj
1000000, - | 559 | - |531| - L |+ Finie Diffrence |
5000000 - 27.95 - 26.93 - 0t 100 10° 10* 10° 10°

problem dimension n

Fig. 14: Run time overhead in seconds for glfixed routine. Missing values indicate
failure to converge within 500 seconds.

Symbolic|Algorithmic

n Adj Adj
10 0.003 0.02
100 0.03 0.2
1000 0.3 2.04
5000 1.49 10.19
10000 2.98 20.37

100000 29.75 203.71
1000000| 297.55 2037.05
5000000| 1487.73 10185.3

Table 8: Memory Requirement in MB for glfixed routine.

As illustrated in Figure 14, for this function with this accuracy, symbolic tan-
gent is faster than algorithmic tangent for large ns, algorithmic and symbolic
adjoint have the same behaviour in terms of runtime, however, algorithmic
adjoint requires higher memory requirement.

26

13. CQUAD doubly-adaptive integration: CQUAD is a new doubly-adaptive
general-purpose quadrature routine which can handle most types of singular-
ities, non-numerical function values such as Inf or NalNV, as well as some
divergent integrals. It generally requires more function evaluations than the
integration routines in QUADPACK, yet fails less often for difficult inte-
grands. The underlying algorithm uses a doubly-adaptive scheme in which
Clenshaw-Curtis quadrature rules of increasing degree are used to compute
the integral in each interval. The L_2-norm of the difference between the un-
derlying interpolatory polynomials of two successive rules is used as an error
estimate. The interval is subdivided if the difference between two successive
rules is too large or a rule of maximum degree has been reached.

As case study, we consider evaluating the differentiation of the integral

b(a) ™
I(a) N /a(a) 2_:

7

o?

)

(a?—i—l)-a:

where a(a) = > | a; and b(a) = Y., 3a7 with respect to its parameters
a; > 0,7 = 1,...,n using cquad routine. Differentiating this integral with
algorithmic and symbolic tangent and adjoint for different dimensions of «,
the computational overhead as well as memory requirement are shown in
Figure 15 and Table 9 respectively.

Symbolic | Algorithmic |Finite
n Tg | Adj Tg | Adj | Diff.
10 0.0005{0.0002{0.0004|0.0002{0.0004
100 0.03 |0.001 | 0.02 | 0.001 | 0.02
1000 1.51 | 0.007 | 1.34 | 0.003 | 1.06
5000 36.44 | 0.04 | 33.48 | 0.02 | 26.67
10000 |[157.85(0.07 [134.93| 0.05 |107.57
100000 - 0.89 - 0.48 -
1000000 - 8.96 - 4.8 -

run time in seconds

—— Symbolic Tg
—— Algorithmic Tg
—— Symbolic Adj
—=— Algorithmic Adj
—e— Finite Difference

10" 10° 10° 10* 10° 10°
problem dimension n

Fig. 15: Run time overhead in seconds for cquad routine. Missing values indicate
failure to converge within 300 seconds.

Symbolic|Algorithmic

n Adj Adj

10 0.002 0.12

100 0.02 0.47
1000 0.24 3.99
5000 1.18 19.61
10000 2.37 39.14
100000 23.65 390.71
1000000| 236.51 3906.34

Table 9: Memory Requirement in MB for cquad routine.

27

In this test case, the absolute and relative error is set to 107'2. In the im-
plementation of cquad routine with symbolic adjoint, additional operations
should be done, in order to compute the n results and errors simultaneously.
As illustrated in Figure 15, for this function with this accuracy, algorithmic
tangent is faster than symbolic tangent, algorithmic adjoint has less runtime
in comparison to other methods, however, algorithmic adjoint requires higher
memory requirement.

6 Summary

In this paper we discussed algorithmic and symbolic differentiation of integrals
with multi-dimensional parameters. The run time and memory overhead for al-
gorithmic and symbolic approaches to the differentiation of the integrals with vy
and vy (e.g. qags) iterations is shown in Table 10.

Symbolic Algorithmic
Tangent Adjoint | Tangent Adjoint
Memory O(n) O(n) O(n) wv1-0(n)
Run Time|vs - O(n) vz - O(1)|v1 - O(n) v1 - O(1)

Table 10: Computational complexity and memory requirement of n projections
of the integral with algorithmic/symbolic tangent and adjoint modes of differen-
tiation for v algorithmic and vy symbolic (e.g. qags) iterations applied to the
integrand /differentiation of the integrand with n parameters.

Computing the differentiation of the integral with symbolic tangent and al-
gorithmic modes, the integration routine stays the same and just the data types
should be changed. As shown in Section 1, in symbolic tangent/adjoint mode,
the differentiation of the function should be passed to the integration routine.
Evaluating the derivative of the integral with symbolic adjoint, the differentiation
of the function is not scalar any more, but a vector. This should be considered
in every function and routine of the integration and this is the reason to build
vectorized functions and integration routines in gsl in order to make the results
and errors be evaluated simultaneously.

In Section 5, we observe the differences between algorithmic and symbolic in
evaluation of the derivative of the integrals with different routines. Note that, the
number of iterations in symbolic and algorithmic is not always the same, because
the algorithmic one integrates the function, whereas the symbolic one integrates
the differentiation of the function with respect to parameters. Furthermore, in
the symbolic tangent version, the numbers of iterations are different (or at least
should not be the same) in every projection, due to integrating the differenti-
ation of the function and having different values for each parameter, however,
in algorithmic tangent all of the projections are done with the same number of
iterations. Evaluation of tangents of the integrals with symbolic and algorithmic
modes has nearly the same runtime overhead. This is also the case in evaluation
of adjoints. Applying adjoint differentiation of the integrals is better alternative

28

than applying the tangent one, because of independence of the computational
cost to the n in adjoint mode.

It is also shown that the runtime overhead of symbolic and algorithmic modes
depends on the problem size n and number of iterations v. In computation of
the adjoints, for small n and v algorithmic version is slightly faster, because of
additional computation of f(a, b(a))Vb— f(e, a(ax))Va in the symbolic version.
By increasing v, the symbolic mode will be faster, because the algorithmic one
should go through the algorithm line by line v times and register the active
variables for reverse interpretation and compute the derivatives. This requires
memory as well as runtime. Increasing n and having the same v, symbolic and
algorithmic would have the same runtime (Figure 10), except the cases that
the table of Chebyshev moments should be computed, in this case because of
increasing the dimensions Cheb12 and Cheb24 in every iteration with factor of
n in vectorized gsl, the symbolic version requires more runtime (Figure 13).

Furthermore, in most of the integration routines the convergence of symbolic
is faster than algorithmic one. Additionally, the memory requirement of algorith-
mic adjoint is significantly higher than the memory requirement of the symbolic
adjoint.

References

[Fla73] H. Flanders. Differentiation under the integral sign. The American Mathematical
Monthly, 80(6):615-627, Jun. - Jul., 1973.

[GDTT09] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, and
F. Rossi. GNU Scientific Library Refrence Manual. Network Theory Ltd, Berlin,
third edition, 2009.

[Gri92] A. Griewank. Achieving logarithmic growth of temporal and spatial complexity in
reverse automatic differentiation. Optimization Methods and Software, 1:35-54, 1992.

[GWO08] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation. Number 105 in Other Titles in Applied Mathematics.
SIAM, Philadelphia, PA, 2nd edition, 2008.

[Naul2] U. Naumann. The Art of Differentiating Computer Programs. An Introduction to
Algorithmic differentiation. Number 24 in Software, Environments, and Tools. STAM,
Philadelphia, PA, 2012.

29

30

Aachener Informatik-Berichte

This is the list of all technical reports since 1987. To obtain copies of reports
please consult

http://aib.informatik.rwth-aachen.de/
or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,
Email: biblio@informatik.rwth-aachen.de

1987-01 * Fachgruppe Informatik: Jahresbericht 1986

1987-02 * David de Frutos Escrig, Klaus Indermark: Equivalence Relations of Non-
Deterministic Tanov-Schemes

1987-03 * Manfred Nagl: A Software Development Environment based on Graph
Technology

1987-04 * Claus Lewerentz, Manfred Nagl, Bernhard Westfechtel: On Integration
Mechanisms within a Graph-Based Software Development Environment

1987-05 * Reinhard Rinn: Uber Eingabeanomalien bei verschiedenen Inferenzmod-
ellen

1987-06 * Werner Damm, Gert Dohmen: Specifying Distributed Computer Archi-
tectures in AADL*

1987-07 * Gregor Engels, Claus Lewerentz, Wilhelm Schéfer: Graph Grammar En-
gineering: A Software Specification Method

1987-08 * Manfred Nagl: Set Theoretic Approaches to Graph Grammars

1987-09 * Claus Lewerentz, Andreas Schiirr: Experiences with a Database System
for Software Documents

1987-10 * Herbert Klaeren, Klaus Indermark: A New Implementation Technique
for Recursive Function Definitions

1987-11 * Rita Loogen: Design of a Parallel Programmable Graph Reduction Ma-
chine with Distributed Memory

1987-12 J. Borstler, U. Moncke, R. Wilhelm: Table compression for tree automata

1988-01 * Gabriele Esser, Johannes Riickert, Frank Wagner Gesellschaftliche As-
pekte der Informatik

1988-02 * Peter Martini, Otto Spaniol: Token-Passing in High-Speed Backbone
Networks for Campus-Wide Environments

1988-03 * Thomas Welzel: Simulation of a Multiple Token Ring Backbone

1988-04 * Peter Martini: Performance Comparison for HSLAN Media Access Pro-
tocols

1988-05 * Peter Martini: Performance Analysis of Multiple Token Rings

1988-06 * Andreas Mann, Johannes Riickert, Otto Spaniol: Datenfunknetze

1988-07 * Andreas Mann, Johannes Riickert: Packet Radio Networks for Data Ex-
change

1988-08 * Andreas Mann, Johannes Riickert: Concurrent Slot Assignment Protocol
for Packet Radio Networks

1988-09 * W. Kremer, F. Reichert, J. Riickert, A. Mann: Entwurf einer Netzw-
erktopologie fiir ein Mobilfunknetz zur Unterstiitzung des offentlichen
Straenverkehrs

31

1988-10 *
1988-11 *
1988-12 *
1988-13 *
1988-14 *

1988-15 *
1988-16 *
1988-17 *
1988-18 *
1988-19 *
1988-20 *
1988-21 *
1988-22 *
1988-23 *
1988-24 *
1989-01 *
1989-02 *
1989-03 *
1989-04 *

1989-05

1989-06 *
1989-07 *

1989-08 *

1989-09 *
1989-10 *

1989-11 *

1989-12 *

1989-13 *
1989-14 *

Kai Jakobs: Towards User-Friendly Networking

Kai Jakobs: The Directory - Evolution of a Standard

Kai Jakobs: Directory Services in Distributed Systems - A Survey
Martine Schiimmer: RS-511, a Protocol for the Plant Floor

U. Quernheim: Satellite Communication Protocols - A Performance
Comparison Considering On-Board Processing

Peter Martini, Otto Spaniol, Thomas Welzel: File Transfer in High Speed
Token Ring Networks: Performance Evaluation by Approximate Analysis
and Simulation

Fachgruppe Informatik: Jahresbericht 1987

Wolfgang Thomas: Automata on Infinite Objects

Michael Sonnenschein: On Petri Nets and Data Flow Graphs

Heiko Vogler: Functional Distribution of the Contextual Analysis in
Block-Structured Programming Languages: A Case Study of Tree Trans-
ducers

Thomas Welzel: Einsatz des Simulationswerkzeuges QNAP2 zur Leis-
tungsbewertung von Kommunikationsprotokollen

Th. Janning, C. Lewerentz: Integrated Project Team Management in a
Software Development Environment

Joost Engelfriet, Heiko Vogler: Modular Tree Transducers

Wolfgang Thomas: Automata and Quantifier Hierarchies

Uschi Heuter: Generalized Definite Tree Languages

Fachgruppe Informatik: Jahresbericht 1988

G. Esser, J. Riickert, F. Wagner (Hrsg.): Gesellschaftliche Aspekte der
Informatik

Heiko Vogler: Bottom-Up Computation of Primitive Recursive Tree
Functions

Andy Schiirr: Introduction to PROGRESS, an Attribute Graph Gram-
mar Based Specification Language

J. Borstler: Reuse and Software Development - Problems, Solutions, and
Bibliography (in German)

Kai Jakobs: OSI - An Appropriate Basis for Group Communication?
Kai Jakobs: ISO’s Directory Proposal - Evolution, Current Status and
Future Problems

Bernhard Westfechtel: Extension of a Graph Storage for Software Doc-
uments with Primitives for Undo/Redo and Revision Control

Peter Martini: High Speed Local Area Networks - A Tutorial

P. Davids, Th. Welzel: Performance Analysis of DQDB Based on Simu-
lation

Manfred Nagl (Ed.): Abstracts of Talks presented at the WG ’89 15th
International Workshop on Graphtheoretic Concepts in Computer Sci-
ence

Peter Martini: The DQDB Protocol - Is it Playing the Game?

Martine Schiimmer: CNC/DNC Communication with MAP

Martine Schiimmer: Local Area Networks for Manufactoring Environ-
ments with hard Real-Time Requirements

32

1989-15 *

1989-16 *

1989-17 *

1989-18
1989-19 *

1989-20
1990-01 *

1990-02 *

1990-03 *
1990-04
1990-05
1990-06 *

1990-07 *

1990-08 *
1990-09 *

1990-11

1990-12 *

1990-13 *

1990-14

1990-15 *

1990-16
1990-17 *

1990-18 *

1990-20

1990-21 *

1990-22

M. Schiimmer, Th. Welzel, P. Martini: Integration of Field Bus and
MAP Networks - Hierarchical Communication Systems in Production
Environments

G. Vossen, K.-U. Witt: SUXESS: Towards a Sound Unification of Ex-
tensions of the Relational Data Model

J. Derissen, P. Hruschka, M.v.d. Beeck, Th. Janning, M. Nagl: Integrat-
ing Structured Analysis and Information Modelling

A. Maassen: Programming with Higher Order Functions

Mario Rodriguez-Artalejo, Heiko Vogler: A Narrowing Machine for Syn-
tax Directed BABEL

H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:
Graph-based Implementation of a Functional Logic Language
Fachgruppe Informatik: Jahresbericht 1989

Vera Jansen, Andreas Potthoff, Wolfgang Thomas, Udo Wermuth: A
Short Guide to the AMORE System (Computing Automata, MOnoids
and Regular Expressions)

Jerzy Skurczynski: On Three Hierarchies of Weak SkS Formulas

R. Loogen: Stack-based Implementation of Narrowing

H. Kuchen, A. Wagener: Comparison of Dynamic Load Balancing Strate-
gies

Kai Jakobs, Frank Reichert: Directory Services for Mobile Communica-
tion

Kai Jakobs: What’s Beyond the Interface - OSI Networks to Support
Cooperative Work

Kai Jakobs: Directory Names and Schema - An Evaluation

Ulrich Quernheim, Dieter Kreuer: Das CCITT - Signalisierungssystem
Nr. 7 auf Satellitenstrecken; Simulation der Zeichengabestrecke

H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:
Lazy Narrowing in a Graph Machine

Kai Jakobs, Josef Kaltwasser, Frank Reichert, Otto Spaniol: Der Com-
puter fahrt mit

Rudolf Mathar, Andreas Mann: Analyzing a Distributed Slot Assign-
ment Protocol by Markov Chains

A. Maassen: Compilerentwicklung in Miranda - ein Praktikum in funk-
tionaler Programmierung (written in german)

Manfred Nagl, Andreas Schiirr: A Specification Environment for Graph
Grammars

A. Schiirr: PROGRESS: A VHL-Language Based on Graph Grammars
Marita Moller: Ein Ebenenmodell wissensbasierter Konsultationen - Un-
terstiitzung fiir Wissensakquisition und Erklarungsfahigkeit

Eric Kowalewski: Entwurf und Interpretation einer Sprache zur Beschrei-
bung von Konsultationsphasen in Expertensystemen

Y. Ortega Mallen, D. de Frutos Escrig: A Complete Proof System for
Timed Observations

Manfred Nagl: Modelling of Software Architectures: Importance, No-
tions, Experiences

H. Fassbender, H. Vogler: A Call-by-need Implementation of Syntax Di-
rected Functional Programming

33

1991-01
1991-03

1991-04

1991-05

1991-06 *

1991-07 *

1991-09 *

1991-10

1991-11

1991-12 *

1991-13 *

1991-14 *

1991-15

1991-16

1991-17

1991-18 *

1991-19

1991-20

1991-21 *

1991-22

1991-23
1991-24

1991-25 *
1991-26
1991-27

1991-28

1991-30
1991-31

1992-01

Guenther Geiler (ed.), Fachgruppe Informatik: Jahresbericht 1990

B. Steffen, A. Ingolfsdottir: Characteristic Formulae for Processes with
Divergence

M. Portz: A new class of cryptosystems based on interconnection net-
works

H. Kuchen, G. Geiler: Distributed Applicative Arrays

Ludwig Staiger: Kolmogorov Complexity and Hausdorff Dimension
Ludwig Staiger: Syntactic Congruences for w-languages

Eila Kuikka: A Proposal for a Syntax-Directed Text Processing System
K. Gladitz, H. Fassbender, H. Vogler: Compiler-based Implementation
of Syntax-Directed Functional Programming

R. Loogen, St. Winkler: Dynamic Detection of Determinism in Func-
tional Logic Languages

K. Indermark, M. Rodriguez Artalejo (Eds.): Granada Workshop on the
Integration of Functional and Logic Programming

Rolf Hager, Wolfgang Kremer: The Adaptive Priority Scheduler: A More
Fair Priority Service Discipline

Andreas Fasbender, Wolfgang Kremer: A New Approximation Algorithm
for Tandem Networks with Priority Nodes

J. Borstler, A. Ziindorf: Revisiting extensions to Modula-2 to support
reusability

J. Borstler, Th. Janning: Bridging the gap between Requirements Anal-
ysis and Design

A. Ziindorf, A. Schiirr: Nondeterministic Control Structures for Graph
Rewriting Systems

Matthias Jarke, John Mylopoulos, Joachim W. Schmidt, Yannis Vassil-
iou: DAIDA: An Environment for Evolving Information Systems

M. Jeusfeld, M. Jarke: From Relational to Object-Oriented Integrity
Simplification

G. Hogen, A. Kindler, R. Loogen: Automatic Parallelization of Lazy
Functional Programs

Prof. Dr. rer. nat. Otto Spaniol: ODP (Open Distributed Processing):
Yet another Viewpoint

H. Kuchen, F. Liicking, H. Stoltze: The Topology Description Language
TDL

S. Graf, B. Steffen: Compositional Minimization of Finite State Systems
R. Cleaveland, J. Parrow, B. Steffen: The Concurrency Workbench: A
Semantics Based Tool for the Verification of Concurrent Systems
Rudolf Mathar, Jirgen Mattfeldt: Optimal Transmission Ranges for Mo-
bile Communication in Linear Multihop Packet Radio Networks

M. Jeusfeld, M. Staudt: Query Optimization in Deductive Object Bases
J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem

J. Knoop, B. Steffen: Unifying Strength Reduction and Semantic Code
Motion

T. Margaria: First-Order theories for the verification of complex FSMs
B. Steffen: Generating Data Flow Analysis Algorithms from Modal Spec-
ifications

Stefan Eherer (ed.), Fachgruppe Informatik: Jahresbericht 1991

34

1992-02 * Bernhard Westfechtel: Basismechanismen zur Datenverwaltung in struk-
turbezogenen Hypertextsystemen

1992-04 S. A. Smolka, B. Steffen: Priority as Extremal Probability

1992-05 * Matthias Jarke, Carlos Maltzahn, Thomas Rose: Sharing Processes:
Team Coordination in Design Repositories

1992-06 O. Burkart, B. Steffen: Model Checking for Context-Free Processes

1992-07 * Matthias Jarke, Klaus Pohl: Information Systems Quality and Quality
Information Systems

1992-08 * Rudolf Mathar, Jiirgen Mattfeldt: Analyzing Routing Strategy NFP in
Multihop Packet Radio Networks on a Line

1992-09 * Alfons Kemper, Guido Moerkotte: Grundlagen objektorientierter Daten-
banksysteme

1992-10 Matthias Jarke, Manfred Jeusfeld, Andreas Miethsam, Michael Gocek:
Towards a logic-based reconstruction of software configuration manage-
ment

1992-11 Werner Hans: A Complete Indexing Scheme for WAM-based Abstract
Machines

1992-12 'W. Hans, R. Loogen, St. Winkler: On the Interaction of Lazy Evaluation
and Backtracking

1992-13 * Matthias Jarke, Thomas Rose: Specification Management with CAD

1992-14 Th. Noll, H. Vogler: Top-down Parsing with Simultaneous Evaluation on
Noncircular Attribute Grammars

1992-15 A. Schuerr, B. Westfechtel: Graphgrammatiken und Graphersetzungssys-
teme(written in german)

1992-16 * Graduiertenkolleg Informatik und Technik (Hrsg.): Forschungsprojekte
des Graduiertenkollegs Informatik und Technik

1992-17 M. Jarke (ed.): ConceptBase V3.1 User Manual

1992-18 * Clarence A. Ellis, Matthias Jarke (Eds.): Distributed Cooperation in
Integrated Information Systems - Proceedings of the Third International
Workshop on Intelligent and Cooperative Information Systems

1992-19-00 H. Kuchen, R. Loogen (eds.): Proceedings of the 4th Int. Workshop on
the Parallel Implementation of Functional Languages

1992-19-01 G. Hogen, R. Loogen: PASTEL - A Parallel Stack-Based Implementation
of Eager Functional Programs with Lazy Data Structures (Extended
Abstract)

1992-19-02 H. Kuchen, K. Gladitz: Implementing Bags on a Shared Memory MIMD-
Machine

1992-19-03 C. Rathsack, S.B. Scholz: LISA - A Lazy Interpreter for a Full-Fledged
Lambda-Calculus

1992-19-04 T.A. Bratvold: Determining Useful Parallelism in Higher Order Func-
tions

1992-19-05 S. Kahrs: Polymorphic Type Checking by Interpretation of Code

1992-19-06 M. Chakravarty, M. Kéhler: Equational Constraints, Residuation, and
the Parallel JUMP-Machine

1992-19-07 J. Seward: Polymorphic Strictness Analysis using Frontiers (Draft Ver-
sion)

1992-19-08 D. Gartner, A. Kimms, W. Kluge: pi-Red"+ - A Compiling Graph-
Reduction System for a Full Fledged Lambda-Calculus

35

1992-19-09 D. Howe, G. Burn: Experiments with strict STG code

1992-19-10 J. Glauert: Parallel Implementation of Functional Languages Using
Small Processes

1992-19-11 M. Joy, T. Axford: A Parallel Graph Reduction Machine

1992-19-12 A. Bennett, P. Kelly: Simulation of Multicache Parallel Reduction

1992-19-13 K. Langendoen, D.J. Agterkamp: Cache Behaviour of Lazy Functional
Programs (Working Paper)

1992-19-14 K. Hammond, S. Peyton Jones: Profiling scheduling strategies on the
GRIP parallel reducer

1992-19-15 S. Mintchev: Using Strictness Information in the STG-machine

1992-19-16 D. Rushall: An Attribute Grammar Evaluator in Haskell

1992-19-17 J. Wild, H. Glaser, P. Hartel: Statistics on storage management in a lazy
functional language implementation

1992-19-18 W.S. Martins: Parallel Implementations of Functional Languages

1992-19-19 D. Lester: Distributed Garbage Collection of Cyclic Structures (Draft
version)

1992-19-20 J.C. Glas, R.F.H. Hofman, W.G. Vree: Parallelization of Branch-and-
Bound Algorithms in a Functional Programming Environment

1992-19-21 S. Hwang, D. Rushall: The nu-STG machine: a parallelized Spineless
Tagless Graph Reduction Machine in a distributed memory architecture
(Draft version)

1992-19-22 G. Burn, D. Le Metayer: Cps-Translation and the Correctness of Opti-
mising Compilers

1992-19-23 S.L. Peyton Jones, P. Wadler: Imperative functional programming (Brief
summary)

1992-19-24 W. Damm, F. Liu, Th. Peikenkamp: Evaluation and Parallelization of
Functions in Functional + Logic Languages (abstract)

1992-19-25 M. Kesseler: Communication Issues Regarding Parallel Functional Graph
Rewriting

1992-19-26 Th. Peikenkamp: Charakterizing and representing neededness in func-
tional loginc languages (abstract)

1992-19-27 H. Doerr: Monitoring with Graph-Grammars as formal operational Mod-
els

1992-19-28 J. van Groningen: Some implementation aspects of Concurrent Clean on
distributed memory architectures

1992-19-29 G. Ostheimer: Load Bounding for Implicit Parallelism (abstract)

1992-20 H. Kuchen, F.J. Lopez Fraguas, J.J. Moreno Navarro, M. Rodriguez
Artalejo: Implementing Disequality in a Lazy Functional Logic Language

1992-21 H. Kuchen, F.J. Lopez Fraguas: Result Directed Computing in a Func-
tional Logic Language

1992-22 H. Kuchen, J.J. Moreno Navarro, M.V. Hermenegildo: Independent
AND-Parallel Narrowing

1992-23 T. Margaria, B. Steffen: Distinguishing Formulas for Free

1992-24 K. Pohl: The Three Dimensions of Requirements Engineering

1992-25 * R. Stainov: A Dynamic Configuration Facility for Multimedia Commu-
nications

1992-26 * Michael von der Beeck: Integration of Structured Analysis and Timed
Statecharts for Real-Time and Concurrency Specification

36

1992-27

1992-28 *

1992-29
1992-30

1992-32 *

1992-33 *

1992-34

1992-35

1992-36

1992-37 *

1992-38

1992-39

1992-40 *

1992-41 *

1992-42 *

1992-43

1992-44

1993-01 *
1993-02 *

1993-03

1993-05

1993-06

1993-07 *

1993-08 *

1993-09

W. Hans, St. Winkler: Aliasing and Groundness Analysis of Logic Pro-
grams through Abstract Interpretation and its Safety

Gerhard Steinke, Matthias Jarke: Support for Security Modeling in In-
formation Systems Design

B. Schinzel: Warum Frauenforschung in Naturwissenschaft und Technik
A. Kemper, G. Moerkotte, K. Peithner: Object-Orientation Axiomatised
by Dynamic Logic

Bernd Heinrichs, Kai Jakobs: Timer Handling in High-Performance
Transport Systems

B. Heinrichs, K. Jakobs, K. Lenflen, W. Reinhardt, A. Spinner: Euro-
Bridge: Communication Services for Multimedia Applications

C. Gerlhof, A. Kemper, Ch. Kilger, G. Moerkotte: Partition-Based Clus-
tering in Object Bases: From Theory to Practice

J. Borstler: Feature-Oriented Classification and Reuse in IPSEN

M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, Y. Vassiliou: Theories Un-
derlying Requirements Engineering: An Overview of NATURE at Gen-
esis

K. Pohl, M. Jarke: Quality Information Systems: Repository Support for
Evolving Process Models

A. Zuendorf: Implementation of the imperative / rule based language
PROGRES

P. Koch: Intelligentes Backtracking bei der Auswertung funktional-
logischer Programme

Rudolf Mathar, Jiirgen Mattfeldt: Channel Assignment in Cellular Radio
Networks

Gerhard Friedrich, Wolfgang Neidl: Constructive Utility in Model-Based
Diagnosis Repair Systems

P. S. Chen, R. Hennicker, M. Jarke: On the Retrieval of Reusable Soft-
ware Components

W. Hans, St.Winkler: Abstract Interpretation of Functional Logic Lan-
guages

N. Kiesel, A. Schuerr, B. Westfechtel: Design and Evaluation of GRAS,
a Graph-Oriented Database System for Engineering Applications
Fachgruppe Informatik: Jahresbericht 1992

Patrick Shicheng Chen: On Inference Rules of Logic-Based Information
Retrieval Systems

G. Hogen, R. Loogen: A New Stack Technique for the Management of
Runtime Structures in Distributed Environments

A. Ziindorf: A Heuristic for the Subgraph Isomorphism Problem in Ex-
ecuting PROGRES

A. Kemper, D. Kossmann: Adaptable Pointer Swizzling Strategies in
Object Bases: Design, Realization, and Quantitative Analysis
Graduiertenkolleg Informatik und Technik (Hrsg.): Graduiertenkolleg In-
formatik und Technik

Matthias Berger: k-Coloring Vertices using a Neural Network with Con-
vergence to Valid Solutions

M. Buchheit, M. Jeusfeld, W. Nutt, M. Staudt: Subsumption between
Queries to Object-Oriented Databases

37

1993-10

1993-11 *

1993-12 *

1993-13
1993-14

1993-15

1993-16 *

1993-17 *

1993-18
1993-19

1993-20 *

1993-21

1994-01

1994-02

1994-03 *

1994-04 *

1994-05 *

1994-06 *

1994-07

1994-08 *

1994-09 *

1994-11

1994-12

1994-13
1994-14

O. Burkart, B. Steffen: Pushdown Processes: Parallel Composition and
Model Checking

R. Grofle-Wienker, O. Hermanns, D. Menzenbach, A. Pollacks, S. Repet-
zki, J. Schwartz, K. Sonnenschein, B. Westfechtel: Das SUKITS-Projekt:
A-posteriori-Integration heterogener CIM-Anwendungssysteme

Rudolf Mathar, Jiirgen Mattfeldt: On the Distribution of Cumulated
Interference Power in Rayleigh Fading Channels

O. Maler, L. Staiger: On Syntactic Congruences for omega-languages
M. Jarke, St. Eherer, R. Gallersdoerfer, M. Jeusfeld, M. Staudt: Con-
ceptBase - A Deductive Object Base Manager

M. Staudt, H.-W. Nissen, M.A. Jeusfeld: Query by Class, Rule and Con-
cept

M. Jarke, K. Pohl, St. Jacobs et al.: Requirements Engineering: An In-
tegrated View of Representation Process and Domain

M. Jarke, K. Pohl: Establishing Vision in Context: Towards a Model of
Requirements Processes

W. Hans, H. Kuchen, St. Winkler: Full Indexing for Lazy Narrowing
W. Hans, J.J. Ruz, F. Saenz, St. Winkler: A VHDL Specification of a
Shared Memory Parallel Machine for Babel

K. Finke, M. Jarke, P. Szczurko, R. Soltysiak: Quality Management for
Expert Systems in Process Control

M. Jarke, M.A. Jeusfeld, P. Szczurko: Three Aspects of Intelligent Co-
operation in the Quality Cycle

Margit Generet, Sven Martin (eds.), Fachgruppe Informatik: Jahres-
bericht 1993

M. Lefering: Development of Incremental Integration Tools Using Formal
Specifications

P. Constantopoulos, M. Jarke, J. Mylopoulos, Y. Vassiliou: The Software
Information Base: A Server for Reuse

Rolf Hager, Rudolf Mathar, Jiirgen Mattfeldt: Intelligent Cruise Control
and Reliable Communication of Mobile Stations

Rolf Hager, Peter Hermesmann, Michael Portz: Feasibility of Authenti-
cation Procedures within Advanced Transport Telematics

Claudia Popien, Bernd Meyer, Axel Kuepper: A Formal Approach to
Service Import in ODP Trader Federations

P. Peters, P. Szczurko: Integrating Models of Quality Management Meth-
ods by an Object-Oriented Repository

Manfred Nagl, Bernhard Westfechtel: A Universal Component for the
Administration in Distributed and Integrated Development Environ-
ments

Patrick Horster, Holger Petersen: Signatur- und Authentifikationsver-
fahren auf der Basis des diskreten Logarithmusproblems

A. Schiirr: PROGRES, A Visual Language and Environment for PRO-
gramming with Graph REwrite Systems

A. Schiirr: Specification of Graph Translators with Triple Graph Gram-
mars

A. Schiirr: Logic Based Programmed Structure Rewriting Systems

L. Staiger: Codes, Simplifying Words, and Open Set Condition

38

1994-15 *

1994-16

1994-17

1994-18

1994-19

1994-20 *

1994-21

1994-22

1994-24 *

1994-25 *

1994-26 *

1994-27 *

1994-28

1995-01 *
1995-02

1995-03

1995-04

1995-05

1995-06
1995-07

1995-08

1995-09

1995-10

1995-11 *
1995-12 *

Bernhard Westfechtel: A Graph-Based System for Managing Configura-
tions of Engineering Design Documents

P. Klein: Designing Software with Modula-3

I. Litovsky, L. Staiger: Finite acceptance of infinite words

G. Hogen, R. Loogen: Parallel Functional Implementations: Graphbased
vs. Stackbased Reduction

M. Jeusfeld, U. Johnen: An Executable Meta Model for Re-Engineering
of Database Schemas

R. Gallersdorfer, M. Jarke, K. Klabunde: Intelligent Networks as a Data
Intensive Application (INDIA)

M. Mohnen: Proving the Correctness of the Static Link Technique Using
Evolving Algebras

H. Fernau, L. Staiger: Valuations and Unambiguity of Languages, with
Applications to Fractal Geometry

M. Jarke, K. Pohl, R. Démges, St. Jacobs, H. W. Nissen: Requirements
Information Management: The NATURE Approach

M. Jarke, K. Pohl, C. Rolland, J.-R. Schmitt: Experience-Based Method
Evaluation and Improvement: A Process Modeling Approach

St. Jacobs, St. Kethers: Improving Communication and Decision Making
within Quality Function Deployment

M. Jarke, H. W. Nissen, K. Pohl: Tool Integration in Evolving Informa-
tion Systems Environments

O. Burkart, D. Caucal, B. Steffen: An Elementary Bisimulation Decision
Procedure for Arbitrary Context-Free Processes

Fachgruppe Informatik: Jahresbericht 1994

Andy Schiirr, Andreas J. Winter, Albert Ziindorf: Graph Grammar En-
gineering with PROGRES

Ludwig Staiger: A Tight Upper Bound on Kolmogorov Complexity by
Hausdorff Dimension and Uniformly Optimal Prediction

Birgitta Konig-Ries, Sven Helmer, Guido Moerkotte: An experimental
study on the complexity of left-deep join ordering problems for cyclic
queries

Sophie Cluet, Guido Moerkotte: Efficient Evaluation of Aggregates on
Bulk Types

Sophie Cluet, Guido Moerkotte: Nested Queries in Object Bases
Sophie Cluet, Guido Moerkotte: Query Optimization Techniques Ex-
ploiting Class Hierarchies

Markus Mohnen: Efficient Compile-Time Garbage Collection for Arbi-
trary Data Structures

Markus Mohnen: Functional Specification of Imperative Programs: An
Alternative Point of View of Functional Languages

Rainer Gallersdorfer, Matthias Nicola: Improving Performance in Repli-
cated Databases through Relaxed Coherency

M.Staudt, K.von Thadden: Subsumption Checking in Knowledge Bases
G.V.Zemanek, H.W.Nissen, H.Hubert, M.Jarke: Requirements Analy-
sis from Multiple Perspectives: Experiences with Conceptual Modeling
Technology

39

1995-13 *

1995-14 *

1995-15 *

1995-16 *

1996-01 *
1996-02

1996-03 *
1996-04
1996-05
1996-06 *
1996-07
1996-08 *

1996-09

1996-09-0

1996-09-1

1996-09-2

1996-09-3
1996-09-4

1996-09-5

1996-10

1996-11 *

1996-12 *

1996-13 *

1996-14 *

1996-15 *

M.Staudt, M.Jarke: Incremental Maintenance of Externally Materialized
Views

P.Peters, P.Szczurko, M.Jeusfeld: Oriented Information Management:
Conceptual Models at Work

Matthias Jarke, Sudha Ram (Hrsg.): WITS 95 Proceedings of the 5th
Annual Workshop on Information Technologies and Systems

W.Hans, St.Winkler, F.Saenz: Distributed Execution in Functional Logic
Programming

Jahresbericht 1995

Michael Hanus, Christian Prehofer: Higher-Order Narrowing with Defi-
nitional Trees

W.Scheufele, G.Moerkotte: Optimal Ordering of Selections and Joins in
Acyclic Queries with Expensive Predicates

Klaus Pohl: PRO-ART: Enabling Requirements Pre-Traceability

Klaus Pohl: Requirements Engineering: An Overview

M.Jarke, W.Marquardt: Design and Evaluation of Computer—Aided Pro-
cess Modelling Tools

Olaf Chitil: The Sigma-Semantics: A Comprehensive Semantics for Func-
tional Programs

S.Sripada: On Entropy and the Limitations of the Second Law of Ther-
modynamics

Michael Hanus (Ed.): Proceedings of the Poster Session of ALP96 - Fifth
International Conference on Algebraic and Logic Programming
Michael Hanus (Ed.): Proceedings of the Poster Session of ALP 96 -
Fifth International Conference on Algebraic and Logic Programming:
Introduction and table of contents

Ilies Alouini: An Implementation of Conditional Concurrent Rewriting
on Distributed Memory Machines

Olivier Danvy, Karoline Malmkjeer: On the Idempotence of the CPS
Transformation

Victor M. Gulias, José L. Freire: Concurrent Programming in Haskell
Sébastien Limet, Pierre Réty: On Decidability of Unifiability Modulo
Rewrite Systems

Alexandre Tessier: Declarative Debugging in Constraint Logic Program-
ming

Reidar Conradi, Bernhard Westfechtel: Version Models for Software Con-
figuration Management

C.Weise, D.Lenzkes: A Fast Decision Algorithm for Timed Refinement
R.Domges, K.Pohl, M.Jarke, B.Lohmann, W.Marquardt: PRO-
ART/CE* — An Environment for Managing the Evolution of Chemical
Process Simulation Models

K.Pohl, R.Klamma, K.Weidenhaupt, R.Démges, P.Haumer, M.Jarke: A
Framework for Process-Integrated Tools

R.Gallersdorfer, K.Klabunde, A.Stolz, M.Emajor: INDIA — Intelligent
Networks as a Data Intensive Application, Final Project Report, June
1996

H.Schimpe, M.Staudt: VAREX: An Environment for Validating and Re-
fining Rule Bases

40

1996-16 *

1996-17

1996-18

1996-19 *

1996-20

1996-21 *

1996-22 *

1996-23 *

1997-01

1997-02

1997-03

1997-04

1997-05 *

1997-06

1997-07

1997-08

1997-09

1997-10

1997-11 *

1997-13

1997-14

1997-15

1998-01 *
1998-02

M.Jarke, M.Gebhardt, S.Jacobs, H.Nissen: Conflict Analysis Across Het-
erogeneous Viewpoints: Formalization and Visualization

Manfred A. Jeusfeld, Tung X. Bui: Decision Support Components on the
Internet

Manfred A. Jeusfeld, Mike Papazoglou: Information Brokering: Design,
Search and Transformation

P.Peters, M.Jarke: Simulating the impact of information flows in net-
worked organizations

Matthias Jarke, Peter Peters, Manfred A. Jeusfeld: Model-driven plan-
ning and design of cooperative information systems

G.de Michelis, E.Dubois, M.Jarke, F.Matthes, J.Mylopoulos, K.Pohl,
J.Schmidt, C.Woo, E.Yu: Cooperative information systems: a manifesto
S.Jacobs, M.Gebhardt, S.Kethers, W.Rzasa: Filling HTML forms simul-
taneously: CoWeb architecture and functionality

M.Gebhardt, S.Jacobs: Conflict Management in Design

Michael Hanus, Frank Zartmann (eds.): Jahresbericht 1996

Johannes Faassen: Using full parallel Boltzmann Machines for Optimiza-
tion

Andreas Winter, Andy Schiirr: Modules and Updatable Graph Views for
PROgrammed Graph REwriting Systems

Markus Mohnen, Stefan Tobies: Implementing Context Patterns in the
Glasgow Haskell Compiler

S.Gruner: Schemakorrespondenzaxiome unterstiitzen die paargramma-
tische Spezifikation inkrementeller Integrationswerkzeuge

Matthias Nicola, Matthias Jarke: Design and Evaluation of Wireless
Health Care Information Systems in Developing Countries

Petra Hofstedt: Taskparallele Skelette fiir irreguldr strukturierte Prob-
leme in deklarativen Sprachen

Dorothea Blostein, Andy Schiirr: Computing with Graphs and Graph
Rewriting

Carl-Arndt Krapp, Bernhard Westfechtel: Feedback Handling in Dy-
namic Task Nets

Matthias Nicola, Matthias Jarke: Integrating Replication and Commu-
nication in Performance Models of Distributed Databases

R. Klamma, P. Peters, M. Jarke: Workflow Support for Failure Manage-
ment in Federated Organizations

Markus Mohnen: Optimising the Memory Management of Higher-Order
Functional Programs

Roland Baumann: Client/Server Distribution in a Structure-Oriented
Database Management System

George Botorog: High-Level Parallel Programming and the Efficient Im-
plementation of Numerical Algorithms

Fachgruppe Informatik: Jahresbericht 1997

Stefan Gruner, Manfred Nagel, Andy Schiirr: Fine-grained and
Structure-Oriented Document Integration Tools are Needed for Devel-
opment Processes

41

1998-03

1998-04 *

1998-05

1998-06 *

1998-07

1998-09 *

1998-10 *

1998-11 *

1998-12 *

1998-13

1999-01 *
1999-02 *

1999-03 *
1999-04

1999-05 *

1999-06 *

1999-07
1999-08

2000-01 *
2000-02

2000-03

2000-04

2000-05
2000-06

2000-07 *

Stefan Gruner: Einige Anmerkungen zur graphgrammatischen Spezifika-
tion von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und
Schiirr

O. Kubitz: Mobile Robots in Dynamic Environments

Martin Leucker, Stephan Tobies: Truth - A Verification Platform for
Distributed Systems

Matthias Oliver Berger: DECT in the Factory of the Future

M. Arnold, M. Erdmann, M. Glinz, P. Haumer, R. Knoll, B. Paech, K.
Pohl, J. Ryser, R. Studer, K. Weidenhaupt: Survey on the Scenario Use
in Twelve Selected Industrial Projects

Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am
Beispiel intraoraler Radiographien

M. Nicola, M. Jarke: Performance Modeling of Distributed and Repli-
cated Databases

Ansgar Schleicher, Bernhard Westfechtel, Dirk Jager: Modeling Dynamic
Software Processes in UML

W. Appelt, M. Jarke: Interoperable Tools for Cooperation Support using
the World Wide Web

Klaus Indermark: Semantik rekursiver Funktionsdefinitionen mit Strik-
theitsinformation

Jahresbericht 1998

F. Huch: Verifcation of Erlang Programs using Abstract Interpretation
and Model Checking — Extended Version

R. Gallersdorfer, M. Jarke, M. Nicola: The ADR Replication Manager
Maria Alpuente, Michael Hanus, Salvador Lucas, German Vidal: Spe-
cialization of Functional Logic Programs Based on Needed Narrowing
W. Thomas (Ed.): DLT 99 - Developments in Language Theory Fourth
International Conference

Kai Jakobs, Klaus-Dieter Kleefeld: Informationssysteme fiir die ange-
wandte historische Geographie

Thomas Wilke: CTL+ is exponentially more succinct than CTL

Oliver Matz: Dot-Depth and Monadic Quantifier Alternation over Pic-
tures

Jahresbericht 1999

Jens Vége, Marcin Jurdzinski A Discrete Strategy Improvement Algo-
rithm for Solving Parity Games

D. Jager, A. Schleicher, B. Westfechtel: UPGRADE: A Framework for
Building Graph-Based Software Engineering Tools

Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic
Structure of Technical Document Collections: A Cooperative Systems
Approach

Mareike Schoop: Cooperative Document Management

Mareike Schoop, Christoph Quix (eds.): Proceedings of the Fifth Interna-
tional Workshop on the Language-Action Perspective on Communication
Modelling

Markus Mohnen, Pieter Koopman (Eds.): Proceedings of the 12th Inter-
national Workshop of Functional Languages

42

2000-08

2001-01 *
2001-02

2001-03
2001-04

2001-05
2001-06

2001-07

2001-08

2001-09

2001-10
2001-11

2002-01 *
2002-02

2002-03

2002-04

2002-05

2002-06

2002-07

2002-08
2002-09
2002-10
2002-11
2003-01 *
2003-02

2003-03
2003-04

2003-05

2003-06

Thomas Arts, Thomas Noll: Verifying Generic Erlang Client-Server Im-
plementations

Jahresbericht 2000

Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz
Traces

Thierry Cachat: The power of one-letter rational languages

Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model
Checking for the Alternation Free mu-Calculus

Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages
Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-
Order Logic

Martin Grohe, Stefan Wohrle: An Existential Locality Theorem
Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-
tional Workshop on the Language-Action Perspective on Communication
Modelling

Thomas Arts, Jirgen Giesl: A collection of examples for termination of
term rewriting using dependency pairs

Achim Blumensath: Axiomatising Tree-interpretable Structures

Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-
sprachen und Grundlagen der Programmierung

Jahresbericht 2001

Jiirgen Giesl, Aart Middeldorp: Transformation Techniques for Context-
Sensitive Rewrite Systems

Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular
MSC Languages

Jirgen Giesl, Aart Middeldorp: Innermost Termination of Context-
Sensitive Rewriting

Horst Lichter, Thomas von der Maflen, Thomas Weiler: Modelling Re-
quirements and Architectures for Software Product Lines

Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party
Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic
Finite Automata

Jorg Dahmen: Invariant Image Object Recognition using Gaussian Mix-
ture Densities

Markus Mohnen: An Open Framework for Data-Flow Analysis in Java
Markus Mohnen: Interfaces with Default Implementations in Java
Martin Leucker: Logics for Mazurkiewicz traces

Jurgen Giesl, Hans Zantema: Liveness in Rewriting

Jahresbericht 2002

Jirgen Giesl, René Thiemann: Size-Change Termination for Term
Rewriting

Jurgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations
Jurgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:
Improving Dependency Pairs

Christof Loding, Philipp Rohde: Solving the Sabotage Game is PSPACE-
hard

Franz Josef Och: Statistical Machine Translation: From Single-Word
Models to Alignment Templates

43

2003-07

2003-08

2004-01
2004-02

2004-03

2004-04

2004-05

2004-06

2004-07

2004-08

2004-09

2004-10

2005-01

2005-02

2005-03

2005-04

2005-05

2005-06

2005-07

2005-08

2005-09

2005-10
2005-11

Horst Lichter, Thomas von der Maflen, Alexander Nyflen, Thomas
Weiler: Vergleich von Ansétzen zur Feature Modellierung bei der Soft-
wareproduktlinienentwicklung

Jurgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:
Mechanizing Dependency Pairs

Fachgruppe Informatik: Jahresbericht 2003

Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-
sively equivalent to EMSO logic

Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 — 2nd
International Workshop on Higher-Order Rewriting

Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 — Fifth In-
ternational Workshop on Rule-Based Programming

Herbert Kuchen (ed.): WFLP 04 — 13th International Workshop on Func-
tional and (Constraint) Logic Programming

Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 — 4th International
Workshop on Reduction Strategies in Rewriting and Programming
Michael Codish, Aart Middeldorp (eds.): WST 04 — 7th International
Workshop on Termination

Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-
piling Recursive Function Definitions with Strictness Information
Joachim Kneis, Daniel Molle, Stefan Richter, Peter Rossmanith: Param-
eterized Power Domination Complexity

Zinaida Benenson, Felix C. Géartner, Dogan Kesdogan: Secure Multi-
Party Computation with Security Modules

Fachgruppe Informatik: Jahresbericht 2004

Maximillian Dornseif, Felix C. Gartner, Thorsten Holz, Martin Mink: An
Offensive Approach to Teaching Information Security: “Aachen Summer
School Applied IT Security”

Jurgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-
proving Termination of Higher-Order Functions

Daniel Mélle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for
the Steiner Tree Problem

Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing
Honeypots

Simon Fischer, Berthold Vicking: Adaptive Routing with Stale Informa-
tion

Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-
ploring a Root-Cause Methodology to Prevent Distributed Denial-of-
Service Attacks

Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With
Applications To Max-Cut

Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General
Hybrid Adversary Structures

Benedikt Bollig: Automata and Logics for Message Sequence Charts
Simon Fischer, Berthold Vécking: A Counterexample to the Fully Mixed
Nash Equilibrium Conjecture

44

2005-12

2005-13
2005-14
2005-15
2005-16

2005-17

2005-18

2005-19

2005-20

2005-21

2005-22

2005-23

2005-24

2006-01

2006-02

2006-03

2006-04

2006-05

2006-06

2006-07

2006-08

2006-09

Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-
ficient Reductions for Wait-Free Termination Detection in Faulty Dis-
tributed Systems

Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting
Failure Detection and Consensus in Omission Failure Environments
Felix C. Freiling, Sukumar Ghosh: Code Stabilization

Uwe Naumann: The Complexity of Derivative Computation

Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-
Linear Code)

Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-
ral Adjoint Code)

Thomas von der Maflen, Klaus Miiller, John MacGregor, Eva Geis-
berger, Jorg Dorr, Frank Houdek, Harbhajan Singh, Holger Wuimann,
Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-
Entwicklungsprozess - Abschluibericht des GI-Arbeitskreises “Features”
Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented
LL-Parsers

Felix C. Freiling, Martin Mink: Bericht {iber den Workshop zur Ausbil-
dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-
bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-
gust 2005 in Koln organisiert von RWTH Aachen in Kooperation mit
BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.
Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-
ited

Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-
ized Fair Exchange with Secret Shared Coins

Heiner Ackermann, Alantha Newman, Heiko Roglin, Berthold Vocking:
Decision Making Based on Approximate and Smoothed Pareto Curves
Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering
with Motes: Real-World Physical Attacks on Wireless Sensor Networks
Fachgruppe Informatik: Jahresbericht 2005

Michael Weber: Parallel Algorithms for Verification of Large Systems
Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated
by the Differentiation-Enabled NAGWare Fortran Compiler

Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static
Memory Jacobian Accumulation

Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,
Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint
Code by Source Transformation with OpenAD/F

Joachim Kneis, Daniel Mélle, Stefan Richter, Peter Rossmanith: Divide-
and-Color

Thomas Colcombet, Christof Loding: Transforming structures by set in-
terpretations

Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-
Expression-Use Graphs

Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic
Model Checking

45

2006-10

2006-11

2006-12

2006-13

2006-14

2006-15

2006-16

2006-17

2007-01

2007-02

2007-03

2007-04

2007-05
2007-06

2007-07

2007-08

2007-09

2007-10

2007-11
2007-12
2007-13

Mesut Giines, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,
Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid
MCG-Mesh Testbed

Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:
Model Checking Software for Microcontrollers

Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:
Replaying Play in and Play out: Synthesis of Design Models from Sce-
narios by Learning

Wong Karianto, Christof Loding: Unranked Tree Automata with Sibling
Equalities and Disequalities

Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,
Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli
Kolagari, Thomas von der Maflen, Andreas Wolfram: Report of the GI
Work Group “Requirements Management Tools for Product Line Engi-
neering”

Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical
sensors from mice for new input devices

Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for
Pointing Devices with Low Expressiveness

Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-
ing Interfaces for Searching and Navigating Continuous Audio Timelines
Fachgruppe Informatik: Jahresbericht 2006

Carsten Fuhs, Jirgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,
René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-
ysis with Polynomial Interpretations

Jurgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-
Kamp: Proving Termination by Bounded Increase

Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A
System to Support Collaborative Jazz Improvisation

Uwe Naumann: On Optimal DAG Reversal

Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-
current List-Manipulating Programs by LTL Model Checking
Alexander NyfBen, Horst Lichter: MeDUSA - MethoD for UML2-based
Design of Embedded Software Applications

Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-
bedded Software: An empirical evaluation of different approaches

Tina Kraufler, Heiko Mantel, and Henning Sudbrock: A Probabilistic
Justification of the Combining Calculus under the Uniform Scheduler
Assumption

Martin Neuh&ufler, Joost-Pieter Katoen: Bisimulation and Logical
Preservation for Continuous-Time Markov Decision Processes

Klaus Wehrle (editor): 6. Fachgespriach Sensornetzwerke

Uwe Naumann: An L-Attributed Grammar for Adjoint Code

Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:
Second-Order Adjoints by Source Code Manipulation of Numerical Pro-
grams

46

2007-14

2007-15

2007-16

2007-17

2007-18
2007-19

2007-20

2007-21

2007-22

2008-01

2008-02

2008-03

2008-04

2008-05

2008-06

2008-07

2008-08

2008-09

2008-10

2008-11

2008-12

2008-13

2008-14
2008-15

Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,
Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modular,
Open-Source Tool for Automatic Differentiation of Fortran Codes
Volker Stolz: Temporal assertions for sequential and concurrent programs
Sadeq Ali Makram, Mesut Giineg¢, Martin Wenig, Alexander Zimmer-
mann: Adaptive Channel Assignment to Support QoS and Load Balanc-
ing for Wireless Mesh Networks

René Thiemann: The DP Framework for Proving Termination of Term
Rewriting

Uwe Naumann: Call Tree Reversal is NP-Complete

Jan Riehme, Andrea Walther, Jorg Stiller, Uwe Naumann: Adjoints for
Time-Dependent Optimal Control

Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:
Three-Valued Abstraction for Probabilistic Systems

Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-
sitional Modeling and Minimization of Time-Inhomogeneous Markov
Chains

Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Roglin,
and Berthold Vocking: Uncoordinated Two-Sided Markets

Fachgruppe Informatik: Jahresbericht 2007/2008

Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

Carsten Fuhs, Jiirgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,
René Thiemann, Harald Zankl: Maximal Termination

Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the
AD-Enabled NAGWare Fortran Compiler

Frank G. Radmacher: An Automata Theoretic Approach to the Theory
of Rational Tree Relations

Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,
Jean Utke: A Framework for Proving Correctness of Adjoint Message
Passing Programs

Alexander NyBen, Horst Lichter: The MeDUSA Reference Manual, Sec-
ond Edition

George B. Mertzios, Stavros D. Nikolopoulos: The A-cluster Problem on
Parameterized Interval Graphs

George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-
endpoint path cover on proper interval graphs

George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-
Length Jobs in Polynomial Time

George B. Mertzios: Fast Convergence of Routing Games with Splittable
Flows

Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-
straction for stochastic systems by Erlang’s method of stages

Beatriz Alarcén, Fabian Emmes, Carsten Fuhs, Jirgen Giesl, Raul
Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-
proving Context-Sensitive Dependency Pairs

Bastian Schlich: Model Checking of Software for Microcontrollers
Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm
for Finding Trees with Many Leaves

47

2008-16

2008-17

2008-18

2008-19

2009-01

2009-02

2009-03

2009-05

2009-06

2009-07

2009-08

2009-09

2009-10

2009-11

2009-12

2009-13
2009-14

2009-15

2009-16

2009-17

2009-18

2010-01
2010-02

2010-03

Hendrik vom Lehn, Elias Weingartner and Klaus Wehrle: Comparing
recent network simulators: A performance evaluation study

Peter Schneider-Kamp: Static Termination Analysis for Prolog using
Term Rewriting and SAT Solving

Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-
tems

Dirk Wilking: Empirical Studies for the Application of Agile Methods to
Embedded Systems

Fachgruppe Informatik: Jahresbericht 2009

Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:
Quantitative Model Checking of Continuous-Time Markov Chains
Against Timed Automata Specifications

Alexander Nyflen: Model-Based Construction of Embedded & Real-Time
Software - A Methodology for Small Devices

George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model
and Improved Algorithms for Tolerance Graphs

George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-
erance and Bounded Tolerance Graphs is NP-complete

Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing
Non-uniform Color-Coding I

Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-
dependent Set on Sparse Graphs

Michael Nett: Implementation of an Automated Proof for an Algorithm
Solving the Maximum Independent Set Problem

Felix Reidl, Fernando Sanchez Villaamil: Automatic Verification of the
Correctness of the Upper Bound of a Maximum Independent Set Algo-
rithm

Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The
Longest Path Problem is Polynomial on Interval Graphs

Martin Neuh&ufler, Lijun Zhang: Time-Bounded Reachability in
Continuous-Time Markov Decision Processes

Martin Zimmermann: Time-optimal Winning Strategies for Poset Games
Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium
on Systems Software Verification (DS SSV’09)

Joost-Pieter Katoen, Daniel Klink, Martin Neuhaufler: Compositional
Abstraction for Stochastic Systems

George B. Mertzios, Derek G. Corneil: Vertex Splitting and the Recog-
nition of Trapezoid Graphs

Carsten Kern: Learning Communicating and Nondeterministic Au-
tomata

Paul Hansch, Michaela Slaats, Wolfgang Thomas: Parametrized Regular
Infinite Games and Higher-Order Pushdown Strategies

Fachgruppe Informatik: Jahresbericht 2010

Daniel Neider, Christof Loding: Learning Visibly One-Counter Au-
tomata in Polynomial Time

Holger Krahn: MontiCore: Agile Entwicklung von doménenspezifischen
Sprachen im Software-Engineering

48

2010-04

2010-05

2010-06

2010-07

2010-08

2010-09

2010-10

2010-11

2010-12

2010-13
2010-14

2010-15

2010-16

2010-17

2010-18

2010-19
2010-20

2011-01
2011-02

2011-03

2011-04

2011-06

2011-07

2011-08

2011-09

René Worzberger: Management dynamischer Geschéftsprozesse auf Ba-
sis statischer Prozessmanagementsysteme

Daniel Retkowitz: Softwareunterstiitzung fiir adaptive eHome-Systeme

Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:
Computing maximum reachability probabilities in Markovian timed au-
tomata

George B. Mertzios: A New Intersection Model for Multitolerance
Graphs, Hierarchy, and Efficient Algorithms

Carsten Otto, Marc Brockschmidt, Christian von Essen, Jiirgen Giesl:
Automated Termination Analysis of Java Bytecode by Term Rewriting
George B. Mertzios, Shmuel Zaks: The Structure of the Intersection of
Tolerance and Cocomparability Graphs

Peter Schneider-Kamp, Jiirgen Giesl, Thomas Stroder, Alexander Sere-
brenik, René Thiemann: Automated Termination Analysis for Logic Pro-
grams with Cut

Martin Zimmermann: Parametric LTL Games

Thomas Stroder, Peter Schneider-Kamp, Jiirgen Giesl: Dependency
Triples for Improving Termination Analysis of Logic Programs with Cut
Ashraf Armoush: Design Patterns for Safety-Critical Embedded Systems
Michael Codish, Carsten Fuhs, Jiirgen Giesl, Peter Schneider-Kamp:
Lazy Abstraction for Size-Change Termination

Marc Brockschmidt, Carsten Otto, Christian von Essen, Jirgen Giesl:
Termination Graphs for Java Bytecode

Christian Berger: Automating Acceptance Tests for Sensor- and
Actuator-based Systems on the Example of Autonomous Vehicles

Hans Gronniger: Systemmodell-basierte Definition objektbasierter Mod-
ellierungssprachen mit semantischen Variationspunkten

Ibrahim Armac: Personalisierte eHomes: Mobilitéit, Privatsphiare und
Sicherheit

Felix Reidl: Experimental Evaluation of an Independent Set Algorithm
Wladimir Fridman, Christof Loding, Martin Zimmermann: Degrees of
Lookahead in Context-free Infinite Games

Fachgruppe Informatik: Jahresbericht 2011

Marc Brockschmidt, Carsten Otto, Jiirgen Giesl: Modular Termination
Proofs of Recursive Java Bytecode Programs by Term Rewriting

Lars Noschinski, Fabian Emmes, Jirgen Giesl: A Dependency Pair
Framework for Innermost Complexity Analysis of Term Rewrite Systems
Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, Thomas Noll:
A Local Greibach Normal Form for Hyperedge Replacement Grammars
Johannes Lotz, Klaus Leppkes, and Uwe Naumann: dco/c++ - Deriva-
tive Code by Overloading in C++

Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe: An Operational
Semantics for Activity Diagrams using SMV

Thomas Stroder, Fabian Emmes, Peter Schneider-Kamp, Jirgen Giesl,
Carsten Fuhs: A Linear Operational Semantics for Termination and
Complexity Analysis of ISO Prolog

Markus Beckers, Johannes Lotz, Viktor Mosenkis, Uwe Naumann (Edi-
tors): Fifth STAM Workshop on Combinatorial Scientific Computing

49

2011-10

2011-11

2011-12

2011-13
2011-14

2011-16
2011-17

2011-18

2011-19

2011-24

2011-25

2011-26

2012-01

2012-02

2012-03

2012-04

2012-05

2012-06

2012-07

2012-08
2012-09

2012-10

2012-12

Markus Beckers, Viktor Mosenkis, Michael Maier, Uwe Naumann: Ad-
joint Subgradient Calculation for McCormick Relaxations

Nils Jansen, Erika Abrahzim, Jens Katelaan, Ralf Wimmer, Joost-Pieter
Katoen, Bernd Becker: Hierarchical Counterexamples for Discrete-Time
Markov Chains

Ingo Felscher, Wolfgang Thomas: On Compositional Failure Detection
in Structured Transition Systems

Michael Forster, Uwe Naumann, Jean Utke: Toward Adjoint OpenMP
Daniel Neider, Roman Rabinovich, Martin Zimmermann: Solving Muller
Games via Safety Games

Niloofar Safiran, Uwe Naumann: Toward Adjoint OpenFOAM

Carsten Fuhs: SAT Encodings: From Constraint-Based Termination
Analysis to Circuit Synthesis

Kamal Barakat: Introducing Timers to pi-Calculus

Marc Brockschmidt, Thomas Stréder, Carsten Otto, Jiirgen Giesl: Au-
tomated Detection of Non-Termination and NullPointerExceptions for
Java Bytecode

Callum Corbett, Uwe Naumann, Alexander Mitsos: Demonstration of a
Branch-and-Bound Algorithm for Global Optimization using McCormick
Relaxations

Callum Corbett, Michael Maier, Markus Beckers, Uwe Naumann, Amin
Ghobeity, Alexander Mitsos: Compiler-Generated Subgradient Code for
McCormick Relaxations

Hongfei Fu: The Complexity of Deciding a Behavioural Pseudometric on
Probabilistic Automata

Fachgruppe Informatik: Annual Report 2012

Thomas Heer: Controlling Development Processes

Arne Haber, Jan Oliver Ringert, Bernhard Rumpe: MontiArc - Architec-
tural Modeling of Interactive Distributed and Cyber-Physical Systems
Marcus Gelderie: Strategy Machines and their Complexity

Thomas Stroder, Fabian Emmes, Jirgen Giesl, Peter Schneider-Kamp,
and Carsten Fuhs: Automated Complexity Analysis for Prolog by Term
Rewriting

Marc Brockschmidt, Richard Musiol, Carsten Otto, Jiirgen Giesl: Auto-
mated Termination Proofs for Java Programs with Cyclic Data

André Egners, Bjorn Marschollek, and Ulrike Meyer: Hackers in Your
Pocket: A Survey of Smartphone Security Across Platforms

Hongfei Fu: Computing Game Metrics on Markov Decision Processes
Dennis Guck, Tingting Han, Joost-Pieter Katoen, and Martin R.
Neuh&ufler: Quantitative Timed Analysis of Interactive Markov Chains
Uwe Naumann and Johannes Lotz: Algorithmic Differentiation of Nu-
merical Methods: Tangent-Linear and Adjoint Direct Solvers for Systems
of Linear Equations

Jurgen Giesl, Thomas Stroder, Peter Schneider-Kamp, Fabian Emmes,
and Carsten Fuhs: Symbolic Evaluation Graphs and Term Rewriting —
A General Methodology for Analyzing Logic Programs

50

2012-15

2012-16
2012-17
2013-01
2013-02

2013-03

2013-04

2013-05

2013-06

2013-07

2013-08

2013-10

2013-12

2013-13

2013-14

2013-16
2013-19

2013-20

2014-01
2014-02

2014-03
2014-04

Uwe Naumann, Johannes Lotz, Klaus Leppkes, and Markus Towara:
Algorithmic Differentiation of Numerical Methods: Tangent-Linear and
Adjoint Solvers for Systems of Nonlinear Equations

Georg Neugebauer and Ulrike Meyer: SMC-MuSe: A Framework for Se-
cure Multi-Party Computation on MultiSets

Viet Yen Nguyen: Trustworthy Spacecraft Design Using Formal Methods
Fachgruppe Informatik: Annual Report 2013

Michael Reke: Modellbasierte Entwicklung automobiler Steuerungssys-
teme in Klein- und mittelstandischen Unternehmen

Markus Towara and Uwe Naumann: A Discrete Adjoint Model for Open-
FOAM

Max Sagebaum, Nicolas R. Gauger, Uwe Naumann, Johannes Lotz, and
Klaus Leppkes: Algorithmic Differentiation of a Complex C++ Code
with Underlying Libraries

Andreas Rausch and Marc Sihling: Software & Systems Engineering Es-
sentials 2013

Marc Brockschmidt, Byron Cook, and Carsten Fuhs: Better termination
proving through cooperation

André Stollenwerk: Ein modellbasiertes Sicherheitskonzept fiir die ex-
trakorporale Lungenunterstiitzung

Sebastian Junges, Ulrich Loup, Florian Corzilius and Erika Abrahdm: On
Grobner Bases in the Context of Satisfiability-Modulo-Theories Solving
over the Real Numbers

Joost-Pieter Katoen, Thomas Noll, Thomas Santen, Dirk Seifert, and
Hao Wu: Performance Analysis of Computing Servers using Stochastic
Petri Nets and Markov Automata

Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and
Jiirgen Giesl: Alternating Runtime and Size Complexity Analysis of In-
teger Programs

Michael Eggert, Roger HauBling, Martin Henze, Lars Hermerschmidt,
René Hummen, Daniel Kerpen, Antonio Navarro Pérez, Bernhard
Rumpe, Dirk Thiflen, and Klaus Wehrle: SensorCloud: Towards the In-
terdisciplinary Development of a Trustworthy Platform for Globally In-
terconnected Sensors and Actuators

Jorg Brauer: Automatic Abstraction for Bit-Vectors using Decision Pro-
cedures

Carsten Otto: Java Program Analysis by Symbolic Execution

Florian Schmidt, David Orlea, and Klaus Wehrle: Support for error tol-
erance in the Real-Time Transport Protocol

Jacob Palczynski: Time-Continuous Behaviour Comparison Based on
Abstract Models

Fachgruppe Informatik: Annual Report 2014

Daniel Merschen: Integration und Analyse von Artefakten in der mod-
ellbasierten Entwicklung eingebetteter Software

Uwe Naumann, Klaus Leppkes, and Johannes Lotz: dco/c++ User Guide
Namit Chaturvedi: Languages of Infinite Traces and Deterministic Asyn-
chronous Automata

51

2014-05

2014-06

2014-07

2014-08

2014-09

2014-14

2014-15

2014-16

2015-01
2015-02

2015-05

2015-06

2015-07

2015-08

2015-09

2015-11

2015-12

Thomas Stroder, Jirgen Giesl, Marc Brockschmidt, Florian Frohn,
Carsten Fuhs, Jera Hensel, and Peter Schneider-Kamp: Automated Ter-
mination Analysis for Programs with Pointer Arithmetic

Esther Horbert, German Martin Garcia, Simone Frintrop, and Bastian
Leibe: Sequence Level Salient Object Proposals for Generic Object De-
tection in Video

Niloofar Safiran, Johannes Lotz, and Uwe Naumann: Algorithmic Dif-
ferentiation of Numerical Methods: Second-Order Tangent and Adjoint
Solvers for Systems of Parametrized Nonlinear Equations

Christina Jansen, Florian Gobe, and Thomas Noll: Generating Inductive
Predicates for Symbolic Execution of Pointer-Manipulating Programs
Thomas Stroder and Terrance Swift (Editors): Proceedings of the In-
ternational Joint Workshop on Implementation of Constraint and Logic
Programming Systems and Logic-based Methods in Programming Envi-
ronments 2014

Florian Schmidt, Matteo Ceriotti, Niklas Hauser, and Klaus Wehrle:
HotBox: Testing Temperature Effects in Sensor Networks

Dominique Giickel: Synthesis of State Space Generators for Model
Checking Microcontroller Code

Hongfei Fu: Verifying Probabilistic Systems: New Algorithms and Com-
plexity Results

Fachgruppe Informatik: Annual Report 2015

Dominik Franke: Testing Life Cycle-related Properties of Mobile Appli-
cations

Florian Frohn, Jirgen Giesl, Jera Hensel, Cornelius Aschermann, and
Thomas Stroder: Inferring Lower Bounds for Runtime Complexity
Thomas Stroder and Wolfgang Thomas (Editors): Proceedings of the
Young Researchers’ Conference “Frontiers of Formal Methods”

Hilal Diab: Experimental Validation and Mathematical Analysis of Co-
operative Vehicles in a Platoon

Mathias Pelka, J6 Agila Bitsch, Horst Hellbriick, and Klaus Wehrle (Ed-
itors): Proceedings of the 1st KuVS Expert Talk on Localization

Xin Chen: Reachability Analysis of Non-Linear Hybrid Systems Using
Taylor Models

Stefan Wiiller, Marian Kiihnel, and Ulrike Meyer: Information Hiding in
the Public RSA Modulus

Christoph Matheja, Christina Jansen, and Thomas Noll: Tree-like Gram-
mars and Separation Logic

* These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

52

