
Aachen
Department of Computer Science

Technical Report

Information Hiding in the Public RSA

Modulus

Stefan Wüller, Marián Kühnel, and Ulrike Meyer

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2015-11

RWTH Aachen · Department of Computer Science · June 2015

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Information Hiding in the Public RSA Modulus

Stefan Wüller, Marián Kühnel, and Ulrike Meyer

Research Group IT-Security
RWTH Aachen, Germany

Email: {wueller, kuehnel, meyer}@itsec.rwth-aachen.de

Abstract. The manufacturer of an asymmetric backdoor for a public key cryp-
tosystem manipulates the key generation process in such a way that he can ex-
tract the private key or other secret information from the user’s public key by
involving his own public/private key pair. All backdoors in major public key cryp-
tosystems, including RSA, differ substantially in their implementation approaches
and in their quality in satisfying backdoor related properties like confidentiality
or concealment. While some of them meet neither of these two properties very
well, others provide a high level of confidentiality but none of them is concealing,
which limits their use for covert implementation. In this work we introduce two
novel asymmetric RSA backdoors, both following the approach to embed bits of
one of the RSA prime factors in the user’s public RSA modulus. While our first
backdoor provides confidentiality for a sufficiently large key length, it might be
detected under certain circumstances. The second backdoor extends the first one
such that it additionally provides concealment and is thus particularly suitable
for covert implementation.

1 Introduction

Public key cryptosystems are used worldwide to provide confidentiality, integrity,
and non-repudiation to electronic communication. This raises the question of
whether those cryptosystems can be trusted in the case that they are imple-
mented on a cryptographic device, i.e., in a kind of black box which inhibits the
access to authenticity and integrity validation of its internal design. How can
users of cryptographic devices preclude the existence of a backdoor which leaks
secret information to a third party in order to recover the user’s secret key?

Backdoors designed for asymmetric cryptosystems act up to the principle
that the manufacturer of a cryptographic device modifies the underlying cryp-
tosystem which enables him to reconstruct the target user’s private key from
the corresponding public key, i.e., the manufacturer has the exclusive ability to
decrypt eavesdropped messages sent to the user and to sign messages in his place.

Generally, there can be distinguished between two purposes for the imple-
mentation of cryptographic backdoors: to illegitimately spy out the users of
backdoored cryptographic devices or to design a legitimate auto-escrowing key
system1.

The background for the illegitimate distribution of backdoored cryptosys-
tems, i.e., the user of a cryptographical device is unaware of its contamina-
tion, might be economic interest or the internal security of a country. Thus,
companies—especially hard- and software manufacturer’s—and the government

1An auto-escrowing key system enables a legitimate third party or the cooperation of a
specified number of legitimate third parties to gain access to the private keys of involved users.
Usually, the access to reconstruct private keys is only possible under controlled condition, e.g.,
a court decision.

or security agencies are considered to be potential stakeholders. Companies might
benefit from spying on their customers in combination with data collection
which might be used internally for advertising purposes or for selling-on to any
prospects. Moreover—especially in the light of current events
[Sch13,Maj13,Kno13]—it seems not to be far-fetched that a government forces
or bribes companies of the hard- and software sector to embed backdoors into
several of their products. If it is the case that the legal situation of a country pre-
vents its government to implement a (forced) auto-escrowing key system, e.g., for
privacy protection, the only remaining possibility of implementing such a system
is a subliminal distribution. The cooperation between government and hard- and
software manufacturer seems to be indispensable for this purpose—no matter if
the cooperation is law enforced or basing on benefits or corruption.

The legitimate application of backdoored cryptosystems comprises the case
where the users of cryptographic devices are aware of the modification made
to the underlying cryptosystem. The rational behind legitimate backdoors is to
design an auto-escrowing key system which enables private key retrieval for legit-
imate recipients of encrypted messages who lost their keys. Besides key retrieval
services for ordinary users, companies are enabled to access proprietary encrypted
files or mails of laid off or deceased employees while law enforcement agencies
have the possibility to access the contents of encrypted messages attributed to
suspects and criminals. In the USA, an auto-escrowing key system, the Escrowed
Encryption Standard, was developed by the NSA in 1993 which addresses to an
on-chip backdoored encryption scheme. Those chips were intended to be installed
on telephones (Clipper Chips) and on computers (Capstone Chips) forced by law.
Exploiting the backdoor, i.e., retrieving the secret key of a target, demands the
cooperation of two state authorities which in turn require a judicial interven-
tion to become active. The legal situation in the USA prohibited the practical
implementation of the Escrowed Encrpytion Standard which was discarded 1996.

Cryptographic backdoors have to be well studied because of their security in-
terfering behavior. The essential properties a backdoor can have are the following:
the backdoored cryptosystem remains secure against attackers (Confidentiality);
the manufacturer is able to reconstruct the private key from each user’s public
key which was generated with the backdoored cryptosystem (Completeness); the
backdoored cryptosystem remains hidden from users who additionally are given
access to an implementation of the corresponding honest cryptosystem (Conceal-
ment).

For all major cryptosystems, backdoors have been designed—first of all RSA
due to its broad dissemination. Those backdoors differ substantially in their hid-
ing and reconstruction techniques as well as their quality in satisfying Confiden-
tiality and Concealment: in some neither of two properties are met very well (e.g.,
[YY96,YY97]), others satisfy Confidentiality but unfortunately do not meet the
Concealment to a satisfying extent (e.g., [YY06]). In this work we propose two
novel RSA backdoors RSAPHPGEN1 and RSAPHP

′

GEN1 (Prime (P) Hiding (H) Prime
(P)). The first backdoor, RSAPHPGEN1, modifies the RSA key generation function in
such a way that the information required for the reconstruction of the private key
is directly hidden in the user’s RSA modulus. The second backdoor, RSAPHP

′

GEN1,
additionally blinds the secret information to hide the backdoor from the user
and thus from an (external) attacker. In order to reduce the amount of secret

4

information hidden in the RSA modulus, RSAPHP
′

GEN1 takes advantage of Copper-
smith’s factorization attack [Cop97]. The analyses of both backdoors prove that
RSAPHPGEN1 is confidentiality preserving for sufficiently large key lengths, com-
plete, but (under certain circumstances) not concealing whereas RSAPHP

′

GEN1 is
confidentiality preserving for sufficiently large key lengths, complete, and con-
cealing at the same time.

In order to give a proof of work and to conduct a running time analysis
we implemented our new backdoors comprising the corresponding key recovery
methods for OpenSSL.

The remainder of this work is organized as follows. Section 2 and 3 give an
introduction to the cryptographic and mathematical foundations which are re-
quired to comprehend the functionality of RSAPHPGEN1 and RSAPHP

′

GEN1 as well as
the corresponding key reconstruction functions. After reviewing the most promi-
nent backdoors and backdoor definitions from literature in Section 4, we intro-
duce a more straight forward approach to analyze the security of a backdoor
basing on the definition of essential backdoor related properties in Section 5.
The introduction of the novel backdoors RSAPHPGEN1 and RSA

PHP ′

GEN1 as well as the
corresponding security analysis is the focus of Section 6 which can be considered
as the major contribution of this work. Section 7 presents the implementation
of both backdoors as well as the corresponding key reconstruction functions fol-
lowed by an evaluation of the running time. Finally, a conclusion is provided in
Section 8.

2 Cryptographic Foundations

In this section we briefly refresh the terms of symmetric and asymmetric cryptog-
raphy, outline the fundamental mathematical problems asymmetric cryptography
relies on, and outline certain selected cryptosystems.

Since the focus lies on backdoors for asymmetric cryptosystems, we restrict
ourselves to outline those cryptosystem whose infiltration by a backdoor is con-
sidered in sections below. In this work the principle of symmetric cryptography
merely comes into play within the construction of a backdoor for an asymmetric
cryptosystem.

Notations. We denote the set of all prime numbers of bit size ln where ln
refers to the number of bits of integer n with Φln . To indicate that an element
m is chosen uniformly at random from set M , we write m ∈rnd M . As usual we
write ϕ to refer to Euler’s totient function.

2.1 Symmetric Cryptography

The characteristic of symmetric encryption is that two communicating parties
(Alice and Bob) who want to confidentially exchange messages share the same
key which is used for encryption and decryption. Before any communication
between Alice and Bob takes place, they have to negotiate a secret key over a
secure channel. Usually, asymmetric encryption is used to solve this task (see
Section 2.2). Suppose Alice wants to send a message encrypted with a symmetric
encryption algorithm E to Bob. Alice uses E and the shared key k to encrypt
the plaintext message m. E outputs the ciphertext c = E(k,m) corresponding to

5

m. The message reaches Bob over an insecure channel. Bob uses the decryption
algorithm D depending on E and his shared key to obtain the plaintext message
m = D(k, c).

2.2 Asymmetric Cryptography

The general idea of asymmetric encryption (also called public key encryption) is
that each communication party possesses two keys: a public key for encryption
and a private key for decryption. As the name suggests, the public key of every
party is ideally publicly available to everyone who wants to send a message to
a key owner. If Alice sends a message to Bob, she looks up Bob’s public key
inquiring a public directory and encrypts the message using it. Only with the
help of the corresponding private key, a receiver is able to decrypt the message. If
Bob’s private key gets compromised, everyone else who can access the stolen key
is able to decrypt messages issued for Bob until he revokes his key2. The most
serious advantage of public key encryption is the circumvention of distributing a
symmetric key.

Apart from encrypting messages, public key encryption can be used to sign
messages. If Alice wants to sign a message m for Bob, she encrypts it with her
private key s = signprivKeyAlice(m) and sends (m, s) to Bob. Bob applies Alice’s
public key to s and obtains m′. If m = m′, Bob knows that Alice is the valid
creator of m.

The mathematical fundamentals necessary to implement public key encryp-
tion are one way functions, which base, e.g., on the factorization problem (see
Section 2.2.1) or the discrete logarithm problem (see Section 2.2.2).

The authenticity of public keys is essential. Bob can not be sure if the public
key he got from the public directory is a valid one of Alice. An attacker might
have manipulated the directory and replaced his one with Alice’s. To authenticate
public keys, trusted third parties are involved. They issue certificates consisting
of the user’s identity and his public key, signed with their private keys. In com-
bination with the public key, the certificate is published. When Bob looks up the
public key for Alice he simultaneously checks its authenticity by verifying the
corresponding certificate with the help of the trusted third party’s public key.
The whole public key system, called public key infrastructure (PKI), consists
of methods to generate keys, to authenticate parties, to distribute, and verify
public keys.

Since asymmetric encryption is computational more expensive than symmet-
ric encryption, it is generally used to establish a symmetric key between com-
munication parties. Subsequently, for message exchanges symmetric encryption
is used.

2.2.1 The Factorization Problem.

Definition 2.1 (Factorization Problem). The factorization problem for in-
tegers is the problem to compute the prime factors of a given integer.

2Key revocation solves this problem only for messages encrypted with the novel key and
only for the case that perfect forward secrecy is provided.

6

To date, it is not known if the factorization problem is hard, i.e., no efficient
algorithm for solving the factorization problem has been published yet. Never-
theless, it is widely believed that is computationally not possible to factorize
an integer with properly chosen large prime factors (≥ 512 bits) of equal size
[DK07].

2.2.2 The Discrete Logarithm Problem. Let p be a prime number and g be
a generator of Zp. For each h ∈ Zp there exists an exponent a ∈ {0, 1, 2, ..., p−1}
such that

h ≡ ga mod p.

a is called the discrete logarithm of h for base g w.r.t. Zp. The discrete
logarithm problem is defined as follows:

Definition 2.2 (Discrete Logarithm Problem). Let p, g, h, and a be defined
as above. The problem to compute a given p, g, and h such that h = ga mod p
is called the discrete logarithm problem.

The computation of discrete logarithms is considered to be hard—to date,
there are no polynomial time algorithms known which compute the discrete log-
arithm on the input of p, g, and h [Buc10].

2.2.3 Asymmetric Cryptosystems. The following three asymmetric cryp-
tosystems are those which are considered in the remaining sections w.r.t. the
embedding of backdoors.

2.2.3.1 RSA. The RSA cryptosystem, named after its designers Rivest, Shamir,
and Adleman, was the first published public key cryptosystem [DH76] and seems
to be the most widely used one today [YY04].

To generate a key pair, two large primes of bitsize ln/2 are randomly chosen
and their product n is computed. The bitsize of p and q (also referred to as secu-
rity parameter) is responsible for the security of the system and the cardinality of
the message space. Today, ln should be at least 1024 bits to guarantee confiden-
tiality. Subsequently, another random number, the public exponent e, is chosen.3

It is necessary that e satisfies the condition that gcd(e, ϕ(n)) = 1 that is e and
ϕ(n) are relatively prime. This is necessary to assure that the inverse of e exists
in Zϕ(n). The pair (n, e) is published as the public key. The private exponent d
which is the multiplicative inverse of e in Zϕ(n), i.e., e · d ≡ 1 mod ϕ(n), can be
computed with the extended euclidean algorithm. The private key is constituted
by the tuple (n, d).

If Bob wants to send a message m such that 1 < m < n and gcd(m,n) = 1 to
Alice, he computes the ciphertext c = me mod n using Alice’s public key. Alice
is able to decrypt the encrypted message c and receive the plaintext message
m = cd mod n.

It has been shown that the problem of computing the private key d from the
public key (n, e) (known as the RSA problem) is equivalent to the factorization

3There exist implementations of RSA, e.g., the one in OpenSSL which use a fix e and choose
p and q appropriately.

7

problem (see Section 2.2.1) [BMS84]. Thus, the security of RSA relies on the
difficulty of finding the prime factors p and q of n.

The RSA cryptosystem can be divided into the functions GEN, ENC, and DEC

where GEN can be divided further into GEN1 - GEN3:

key generation:
(p, q, n)← GEN1(ln) : p, q ∈rnd Φln/2, lp = lq = ln/2, n = p · q
e← GEN2(p, q) : e ∈rnd N\{1, 2}, gcd(e, ϕ(n)) = 1
d← GEN3(p, q, e) : e · d = 1 mod ϕ(n)

encryption:
c← ENC(m,n, e) = me mod n

decryption:
m← DEC(c, n, d) = cd mod n

2.2.3.2 Diffie-Hellman. The Diffie-Hellman protocol [DH76], proposed by
Whitfield Diffie and Martin Hellman in 1976, was the inception of public-key
cryptography and the first solution to the problem of how two parties that have
never met before can negotiate a symmetric key over a public channel.

A sufficiently large prime p and a generator g ∈ Z
∗
p form the public key shared

between two parties: Alice and Bob. They are able to negotiate a secret sym-
metric key by conducting the following protocol. Alice chooses a random number
rA in the range 2 ≤ rA ≤ p − 1 and computes the value A = grA mod p. Bob
does the same obtaining rB and B. The values A and B are exchanged over
an insecure channel. Alice computes KA = BrA mod p and Bob analogously
computes KB = BrB mod p. It holds that KA = KB since it can be shown
that (grA)rB ≡ (grB)rA mod p [Gal12]. The security of the Diffie-Hellman key
exchange protocol is based on the Diffie-Hellman Assumption also known as
the Diffie-Hellman Problem [DH76] which is closely related to the discrete log-
arithm problem (see Section 2.2.2), i.e., if someone is able to solve the discrete
logarithm problem, he is able to solve the Diffie-Hellman Problem. The proto-
col only provides security against passive attackers but can be extended with
an authentication technique basing on certificates to ensure robustness against
active attackers, too [DK07]. The following functions have to be applied by each
communication party except GEN1. GEN1 has to be executed by only one party
followed by publishing the result:

distributed key generation:
(p, g)← GEN1(lp) : p ∈rnd Φlp , g ∈rnd Z∗

p

(rx,X)← GEN2(p, g) : rx ∈rnd {0, ..., p − 1},X = grx mod p
K ← GEN3(rx, Y) : K = Y rx mod p

If the Diffie-Hellman protocol is implemented over the group of elliptic curves,
the protocol is called Elliptic Curve Diffie-Hellman (ECDH).

8

2.2.3.3 ElGamal. The ElGamal cryptosystem is a generalization of the Diffie-
Hellman key exchange. The security of ElGamal depends on the discrete loga-
rithm problem (see Section 2.2.2). The recipient, Bob, chooses a large prime p
of bit length lp in such a way that p− 1 has a large prime factor and a generator
g ∈ Z

∗
p. Subsequently, he computes y = gx mod p, where x is a random integer

in the range 0 ≤ x ≤ p − 1. (p, g, y) is Bob’s public key while his private key is
given by the tuple (p, g, x).

If Alice wants to send an encrypted message to Bob, she uses Bob’s public
key to compute the ciphertext c = (c1, c2) of plaintext message m ∈ Zp: c1 =
gk mod p, c2 = yk ·m mod p where k is an random integer in the range 1 ≤ k ≤
p − 1. By using his private key, Bob first computes the inverse c−x1 of cx1 in Zp.
With a second computation step, Bob is able to receive the plaintext:

m = c−x1 · c2 mod p = y−k · yk ·m mod p = m.

The ElGamal cryptosystem can be divided into three functions:

key generation:

((p, g, y), (p, g, x))← GEN(lp) : p ∈rnd Φlp , x ∈rnd N and 0 < x ≤ p− 1, g ∈rnd Z
∗
p, y = gx mod p

encryption:

(c1, c2)← ENC(m, (p, g, y)) : k ∈rnd N, 0 < k ≤ p− 1, c1 = gk mod p, c2 = yk ·m mod p

decryption:

m← DEC(c, (p, g, x)) : m = c−x
1 · c2 mod p

3 Mathematical Foundations

With his paper Small Solutions to Polynomial Equations, and Low Exponent RSA
Vulnerabilities [Cop97] (published in 1997), Coppersmith proposed a method
for finding small roots of bivariate integer polynomials [Cop96] based on lattice
reduction. As an application of his technique, he presented an attack on an RSA
variant, referred to as Coppersmith’s factorization attack, where the high- or
low-order bits of one of the RSA prime factors are known to the attacker.

Eight years later, Coron presented a simpler approach for Coppersmith’s
method which is easier to implement and additionally heuristically extensible to
multivariate polynomials [Cor04]. Nevertheless, this approach was less efficient
than Coppersmith’s algorithm.

In 2007, Coron came up with a novel direct approach [Cor07] for finding
small roots of bivariate integer polynomial equations with the same complexity as
achieved in [Cop96]. Both of Coron’s approaches followed the technique proposed
by Howgrave-Graham for the univariate case to simplify Coppersmith’s method
[HG97].

In this section we first give an introduction to lattice reduction by focussing
on the LLL algorithm which is an important tool in the area of finding roots
of integer polynomials. Subsequently, we present the results of Coron’s paper
Finding Small Roots of Bivariate Integer Polynomial Equations: A Direct Ap-
proach [Cor07] which plays a crucial role in the context of one of our backdoors
we introduce in Section 6.

9

3.1 Lattices

Lattices—subgroups of the Euclidean vector space—are a fundamental tool in
the area of cryptoanalysis of public key systems. There exists various attacks
on knapsack cryptosystems, on RSA signatures, and on RSA variants involving
lattices [Gal12].

Notations. Note that we write lattice vectors as row vectors, as it became a
common practice. Let the notation of b∗i , b

∗
j denote that the vectors bi and bj are

orthogonal.

Definition 3.1 (Lattice, Lattice Basis, Lattice Rank, Sublattice). Let
{b1, ...bω} be a linearly independent set of vectors in R

n with (n ≥ ω). Lattice L
is generated by all linear integer combinations of the bi vectors:

L =

{

ω
∑

i=1

ni · bi | ni ∈ Z

}

(1)

The vectors b1, ..., bω are called lattice basis (LB) of L. The lattice rank ω is
given by the number of vectors of LB. A sublattice of L is a subset of row vectors
of L which is a lattice itself.

Fig. 1: Visualization of two different lattice bases ({u, v} and {u′, v′}) of a lattice in the 2-
dimensional space

Consider Figure 1 depicting an extract of a lattice in the 2-dimensional space.
Every vertex of a parallelogram represents one point of the lattice. The vectors
u and v constitute a basis of the lattice, i.e., each point of the lattice can be
reached by linear combinations of u and v. Another basis of the lattice is given
by the vectors u′ and v′ which have the property to be orthogonal and of minimal
length. In the following, we assume that bi ∈ Z

n holds, as it is usually the case
for cryptographic applications [Gal12].

The determinant of a lattice (det(L)) belongs to the most important numer-
ical invariants attached to lattices [Len08]. Geometrically, the determinant of a
lattice is the volume of the parallelepiped spanned by the lattice. The determi-
nant of a lattice L is independent of the choice of the basis and is defined as the

10

square root of the Gramian determinant of L (see Appendix A.4). For a full rank
lattice, i.e., n = ω, it holds that det(L) = |det(LB)| = |det(b1, ..., bω)|.

A lot of computational problems are related to lattices. Some of them can
be efficiently solved, others seem to be hard in general [Gal12]. The problem we
are interested in is called the shortest vector problem (SVP) which seems to be
hard.

Definition 3.2 (SVP). The shortest vector problem is the problem to compute
a non-zero vector b ∈ L given the lattice basis LB of lattice L such that the length
of b is minimal.

For lattice bases of rank 2 in R
2 there exists an algorithm which solves the

SVP in polynomial time [Gal12]. For higher dimensions there exists no poly-
nomial time algorithm except heuristic algorithm which sufficiently reduce the
vector length for practical purposes. In the following subsection the technique
of lattice basis reduction is introduced which reduces the Euclidean norm (see
Appendix A.2) of a lattice basis in polynomial time in order to approximate the
result of the SVP.

3.1.1 Lattice Basis Reduction. The goal to approximate the shortest vector
problem will be clear in Section 3.2 when the relationship between the Euclidean
norm of a lattice basis vector and the possibility to compute the roots of bivariate
polynomials is introduced. Lattice basis reduction is a method to compute on
input LB another basis LRB of L such that the Euclidean norm of the vectors
of LRB is smaller than the vectors of LB and the vectors of LRB are close to
orthogonal. Orthogonality is an important property in the context of lattice
basis reduction. This is because for orthogonal basis vectors the SVP is easy to
solve. For sufficiently close to orthogonal basis vectors the SVP achieves adequate
results as it is the case below where the orthogonal vectors are rounded to the
closest integer. Quite often it is the case that the approximation of the SVP
corresponds to the proper solution.

In the following, we present the LLL basis reduction algorithm [LLL82]
named after their inventors Lenstra, Lenstra, and Lovász which plays an im-
portant role in practical applications for approximating the SVP, i.e., solving the
SVP up to an exponential factor, but not guaranteeing that the shortest vector
of the considered lattice is computed [Gal12].

The purpose of the LLL algorithm is to compute an LLL-reduced basis which
is given by the following definition:

Definition 3.3 (LLL-reduced Basis). Let LB = {b1, ..., bω} be an ordered
lattice basis and

µi,j =
〈bi, b∗j 〉
〈b∗j , b∗j 〉

the coefficients from the Gram-Schmidt orthogonalization process (see Appendix
A.5). For a fixed δ ∈ (1/4, 1), {b′1, ..., b′ω} is called δ-LLL-reduced if it holds that

|µi,j| ≤ 0.5, 1 ≤ j < i ≤ ω (Size reduced)

and

||b∗i ||22 = 〈b∗i , b∗i 〉 ≥ (δ − µ2i,i−1) · 〈b∗i−1, b
∗
i−1〉, 2 ≤ i ≤ ω (Lovász condition).

11

Unless otherwise specified, δ = 3/4 is assumed. The LLL-reduced lattice basis
is denoted with LRB = {b′1, ..., b′ω}.

The following theorem gives an upper bound for the shortest vector of an
LLL-reduced basis.

Theorem 3.1. Let LRB = {b′1, ..., b′ω} be an LLL-reduced basis with δ = 3/4 for
a lattice L ⊂ R

n, then the following inequality holds:

||b′1||2 ≤ 2(ω−1)/4 · det(L)1/ω .

Proof. See [LLL82].

Since lattice reduction plays a crucial role in the remaining work, we take
a closer look at the interior of the LLL algorithm provided by Algorithm 3.1
basing on [Gal12]. The algorithm starts with computing a Gram-Schmidt basis
(see Appendix A.5) of the input lattice basis LB . The following computations
are performed by iterating over the vectors of LB .

The first condition of Definition 3.3 (Size reduced) is met by performing a size
reduction, i.e., choosing suitable linear integer combinations of the vectors of LB

(Line 5-9 of Algorithm 3.1). Subsequently, the second condition of Definition 3.3
(Lovász condition) is checked (Line 10 of Algorithm 3.1). If the Lovász condition
is not satisfied, i.e., bi is not significantly longer than bi−1, both vectors are
swapped and backtracking is performed until the second condition is satisfied
(line 12-19 of Algorithm 3.1).

It can be shown that the output of the LLL algorithm is an LLL-reduced
lattice basis and by construction it holds that b′1 is the shortest computed vector
[LLL82].

Analysing the complexity of the LLL algorithm leads to Corollary 1.

Corollary 1. Let L ∈ Z
n with LB = {b1, ..., bω} and let X ∈ Z≥2 such that

||bi||22 ≤ X for 1 ≤ i ≤ ω. Then the LLL algorithm requires O(ω3 · n · log(X))
arithmetic operations on integers of size O(ω · log(X)). Using naive arithmetic,
the running time is given by O(ω5 · n · log(X)3) bit operations.

Proof. See [Gal12].

Given that LB is a full rank lattice basis, i.e., n = ω, the following theorem
can be formulated:

Theorem 3.2. Let L ∈ Z
n be a lattice with basis {b1, ..., bn} where the Euclidean

norm of each basis vector is bounded by X ∈ Z≥2, then the LLL algorithm com-
putes a vector b′1 with ||b′1||2 ≤ 2(n−1)/4 · det(L)1/n using O(n6 · log(X)3) bit
operations.

Proof. Follows directly from combining Theorem 3.1 and Corollary 1.

12

Input: LB = {b1, ..., bω} ∈ Z
n

Output: LRB = {b′1, ..., b′ω} ∈ Z
n

1 compute Gram-Schmidt basis {b∗1, ..., b∗ω} and coefficients µi,j,
1 ≤ j < i ≤ ω.

2 compute ||b∗i ||22, 1 ≤ i ≤ n.
3 set k = 2.
4 while k ≤ ω do
5 for j = k − 1 downto 1 do
6 set qj = ⌊(µk,j + 0.5)⌋.
7 set bk = bk − qjbj .
8 recompute µk,j, 1 ≤ j < k.

9 end
10 if ||b∗k||22 ≥ (δ − µ2k,k−1) · ||b∗k−1||22 then

11 set k = k + 1.
12 else
13 swap bk with bk−1.
14 recompute b∗k, b

∗
k−1.

15 recompute ||b∗k||22, ||b∗k−1||22.
16 recompute µk,j, µk−1,j, 1 ≤ j < k.
17 recompute µi,k, µi,k−1j, k < i < ω.
18 set k = max{2, k − 1}.
19 end

20 end
21 set {b′1, ..., b′ω} = {b1, ..., bω}.
22 return {b′1, ..., b′ω}.

Algorithm 3.1: The LLL algorithm with δ = 3/4

3.2 Finding Small Roots of Bivariate Integer Polynomial Equations

In this section we present the results of Finding Small Roots of Bivariate In-
teger Polynomial Equations: A Direct Approach [Cor07] by strictly separating
between describing the algorithm and proving its functionality as opposed to
[Cor04] and [Cor07]. Subsequently, the application on factorization and a sample
calculation are provided to get a better understanding of Coron’s algorithm and
its parameters.

Given a bivariate polynomial p(x, y) =
∑

0≤i,j≤δ pi,jx
iyj with pi,j, x, y ∈ Z

and maximum degree δ in each variable separately, the goal is to find its roots
(x0, y0) such that p(x0, y0) = 0. Solving systems of multivariate polynomial equa-
tions (and thus computing the roots of bivariate polynomial equations) is as-
sumed to be NP-hard.4 Nevertheless, using the following algorithm and satisfying
that x0 < X, y0 < Y , and XY < W 2/(3δ) with W = maxi,j|pij|XiY j , the roots
of the input polynomial bounded by X and Y can be computed. The existence of
such an algorithm was shown by Coppersmith by proving the following theorem
in [Cop97]:

4For solving systems of multivariate polynomials over a finite field instead over the integers
the NP-hardness has been proven [GJ79].

13

Theorem 3.3. (Coppersmith). Let p(x, y) be an irreducible polynomial in two
variables over Z, of maximum degree δ in each variable, separately. Let X and Y
be upper bounds on the desired integer solution (x0, y0), and let
W = maxi,j|pij |XiY j. If XY < W 2/(3δ), then in time polynomial in
(log(W), 2δ), one can find all integer pairs (x0, y0) such that p(x0, y0) = 0, with
|x0| ≤ X and |y0| ≤ Y .

We divide Coron’s proof of Theorem 3.3 by first presenting the algorithm
followed by the proof that the algorithm finds (x0, y0) in polynomial time.

Consider the set of polynomials

S = {sa,b(x, y)|sa,b(x, y) = xa · yb · p(x, y), 0 ≤ a, b < k} (2)

with k ∈ N\{0} (how to determine the value of k is described below).
The algorithm makes use of two indices (i0, j0) ∈ N × N with 0 ≤ i0, j0 ≤ δ

to define the matrix S ∈ Z
k2×k2 whose rows are build from the coefficients of

polynomials contained in S restricted to the monomials xi0+iyj0+j for 0 ≤ i, j,<
k. Each column of S is associated with a monomial. (i0, j0) has to be chosen
according to Lemma 3.2 (see below) which, i.a., implies that the determinate of
S is unequal to zero. After computing (i0, j0) and constructing S, n is set to
|det(S)|.

Next, consider the second set of polynomials

R = {ri,j(x, y)|ri,j(x, y) = xi · yj · n, 0 ≤ i, j < k + δ}. (3)

From the coefficients of the polynomials in S and R, a lattice
M ∈ Z

(k2+(k+δ)2)×(k+δ)2 of rank (k + δ)2 is constructed. Each column of M
is associated with a monomial. Complying with [Cor07], S forms the upper left
k2 × k2 block of M which is done by reordering the monomials identifying the
columns of M accordingly. Furthermore, the rows formed by the polynomials of
R are ordered in such a way that the corresponding coefficients form a diagonal
matrix (compare to the example depicted in Figure 2).

M is a matrix consisting of the blocks S ∈ Z
k2×k2 , T ∈ Z

k2×(δ2+2kδ), and
L ∈ Z

(k+δ)2×(k+δ)2 :

M =

[

S T
L

]

.

The next goal is to compute a basis of a sublattice L2 of L which has a smaller
dimension than L. This is to reduce the calculation steps for the lattice reduction
which is applied in a subsequent step.

Let adj(S) be the adjugate matrix of S (see Appendix A.6) and ω = δ2+2kδ.
Before computing L2, the auxiliary matrix M2 has to be computed:

M2 =





Ik2×k2 0k2×k2 0k2×ω
adj(S)k2×k2 Ik2×k2 0k2×ω

0ω×k2 0ω×k2 Iω×ω



 ·M =





Sk2×k2 Tk2×ω
0k2×k2 T

′
k2×ω

0ω×k2 nIω×ω





whereupon L2 can be extracted:

L2 =

[

T ′
k2×ω

nIω×ω

]

. (4)

14

x3y2 x2y2 x3y x2y x3y3 x2y3 xy3 xy2 xy x3 y3 x2 y2 x y 1
s1,1(x, y) a2 a4 a5 a7 a1 a3 a6 a8 a8 a9 0 0 0 0 0 0
s1,0(x, y) a1 a3 a2 a4 0 0 0 a6 a8 a5 0 a7 0 a9 0 0
s0,1(x, y) 0 a2 0 a5 0 a1 a3 a4 a7 0 a6 0 a8 0 a9 0
s0,0(x, y) 0 a1 0 a2 0 0 0 a3 a4 0 0 a5 a6 a7 a8 a9
r3,2(x, y)nX3Y 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r2,2(x, y) 0 nX2Y 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r3,1(x, y) 0 0 nX3Y 0 0 0 0 0 0 0 0 0 0 0 0 0
r2,1(x, y) 0 0 0 nX2Y 0 0 0 0 0 0 0 0 0 0 0 0
r3,3(x, y) 0 0 0 0 nX3Y 3 0 0 0 0 0 0 0 0 0 0 0
r2,3(x, y) 0 0 0 0 0 nX2Y 3 0 0 0 0 0 0 0 0 0 0
r1,3(x, y) 0 0 0 0 0 0 nXY 3 0 0 0 0 0 0 0 0 0
r1,2(x, y) 0 0 0 0 0 0 0 nXY 2 0 0 0 0 0 0 0 0
r1,1(x, y) 0 0 0 0 0 0 0 0 nXY 0 0 0 0 0 0 0
r3,0(x, y) 0 0 0 0 0 0 0 0 0 nX3 0 0 0 0 0 0
r0,3(x, y) 0 0 0 0 0 0 0 0 0 0 nY 3 0 0 0 0 0
r2,0(x, y) 0 0 0 0 0 0 0 0 0 0 0 nX2 0 0 0 0
r0,2(x, y) 0 0 0 0 0 0 0 0 0 0 0 0 nY 2 0 0 0
r1,0(x, y) 0 0 0 0 0 0 0 0 0 0 0 0 0 nX 0 0
r0,1(x, y) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 nY 0
r0,0(x, y) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n

Fig. 2: Lattice M for polynomial a1x2y2 + a2x2y + a3xy2 + a4xy + a5x2 + a6y2a7x + a8y + a9 with
k = 2 and (i0, j0) = (2, 1)

LB2 ∈ Z
ω×ω is obtained from the Hermite normal form (see Appendix A.6) of

L2 by removing the zero row vectors. Each column of LB2 is multiplied with the
upper bound XiY j for xiyj where i, j correspond to the powers of the monomial
xiyj associated with the regarded column and obtain L′B

2 . Subsequently, the
reduced lattice basis L′RB

2 is computed by applying the LLL algorithm on L′B
2 .

The shortest row vector b1 is extracted from L′RB
2 in order to construct the

polynomial h(xX, yY) by associating the vector entries with their corresponding
monomials. Dividing the coefficients of h(xX, yY) by the appropriate divisor
XiY j results in h(x, y).

By construction of the polynomials in S and R, for all sa,b(x, y) ∈ S and
ri,j(x, y) ∈ R it holds that sa,b(x0, y0) = 0 mod n and
ri,j(x0, y0) = 0 mod n. Since h(x, y) is a linear combination of the elements
in S and R, it holds that h(x0, y0) = 0 mod n. By satisfying the restrictions on
h(xX, yY) which are described below, h(x0, y0) = 0 holds over the integers.

Since S is invertible because det(S) 6= 0, it can be shown that h(x, y) is not
a multiple of p(x, y) (see [Cor07]). Otherwise, p(x, y) can not be a multiple of
h(x, y) because p(x, y) is irreducible by assumption. It follows that p(x, y) and
h(x, y) are algebraically independent and have at least one common root (x0, y0).
The resultant Q(x) = Resy(p(x, y), h(x, y)) returns a non-zero univariate integer
polynomial with y eliminated and sharing the common roots of p(x, y) and h(x, y)
for variable x, i.e., Q(x0) = 0. With the knowledge of x0, y0 can be computed
by solving p(x0, y) = 0. The roots of Q(x) and p(x0, y) can be computed by
common root finding algorithms. Algorithm 3.2 gives an overview of the method
described above.

Next, it is shown according to [Cor07] that the presented algorithm computes
the roots (x0, y0) of p(x, y) with x0 < X, y0 < Y and performs the computation
in polynomial time.

Due to the calculation steps of the lattice reduction algorithm h(x, y) and
h(xX, yY) are linear combinations of sa,b(x, y), ri,j(x, y) and sa,b(xX, yY),

15

Input: p(x, y), k, X, Y

Output: (x0, y0)
1 Compute i0, j0 as defined in Lemma 3.2.
2 Construct M from sa,b(x, y), ri,j(x, y), column, and row permutation.
3 Compute M2

= [[Ik2×k2 , 0k2×k2 , 0k2×ω], [adj(S)k2×k2 , Ik2×k2 , 0k2×ω], [0ω×k2 , 0ω×k2 , Iω×ω]] ·M
= [[Sk2×k2 , Tk2×ω], [0k2×k2 , T ′

k2×ω], [0ω×k2 , nIω×ω]].

4 Define L2 = [T ′
k2×ω, nIω×ω].

5 Obtain LB
2 ∈ Z

ω×ω by computing the HNF of L2.

6 Compute L′B
2 by multiplying each column with the corresponding XiY j .

7 Compute L′RB
2 = [[b1], [b2], ..., [bω]] = LLL(L′B

2), with bi ∈ Z
1×ω.

8 Construct h(x, y) from b1, dividing each coefficient hij of h by XiY j .
9 Compute Q(x) = Resy(h(x, y), p(xy)).

10 Compute x0 = roots(Q(x)).
11 Compute y0 = roots(p(x0, y)).
12 return (x0, y0).

Algorithm 3.2: Finding small roots of bivariate integer equations

ri,j(xX, yY), respectively. Basing on the construction of sa,b(x, y) and ri,j(x0, y0),
these polynomials have the same roots in Zn as p(x, y) and thus, h(x0, y0) =
0 mod n.

The goal is to satisfy the restrictions |x0| < X and |y0| < Y such that
h(x0, y0) = 0 holds over the integers. To determine appropriate bounds the fol-
lowing Lemma due to Howgrave-Graham is considered:

Lemma 3.1. (Howgrave-Graham). Let h(x, y) ∈ Z[x, y] which is a sum of
at most ω monomials. Suppose that h(x0, y0) = 0 mod n where |x0| ≤ X and
|y0| ≤ Y and ||h(xX, yY)|| < n/

√
ω. Then h(x0, y0) = 0 holds over the integers.

As it was mentioned above, L′B
2 is the same matrix as LB2 with the difference

that each column was multiplicated with the term XiY j where i and j coincide
with the exponents of the monomial the regarded column is associated with. The
reduced lattice base L′RB

2 of L′B
2 is a ω×ω matrix with ω = δ2+2·k ·δ. h(xX, yY)

is constructed from the shortest row vector of L′RB
2 .

According to Theorem 3.2 h(xX, yY) satisfies:

||h(xX, yY)|| ≤ 2(ω−1)/4 · det(LB2)1/ω. (5)

With respect to Lemma 3.1 it has to be shown that

2(ω−1)/4 · det(LB2)1/ω ≤
n√
ω
. (6)

As a result of some simple matrix calculations as presented in [Cor07] the
determinant of L′B

2 can be derived as:

det(L′B
2) = nω−1 · (XY)δ+k−1·(δ+k)2/(2−(k−1)·k2)/2

(Xi0Y j0)

Combining this result with Inequality 6, exponentiate both sides with ω,
followed by a division with nω−1,

2ω·(ω−1)/4 · (XY)δ+k−1·(δ+k)2/(2−(k−1)·k2)/2

(Xi0Y j0)
≤ n

ωω/2
(7)

16

has to be satisfied in order to apply Lemma 3.1 to h(x, y). The following Lemma
gives a lower and an upper bound for n = |det(S)|, the remaining term which
has to be estimated.

Lemma 3.2. (Coron). Given (u, v) such that W = |puv|XuY u, let indices
(i0, j0) maximize the quantity 8(i−u)

2+(j−v)2 |pij |XiY j. Then

(

W

Xi0Y j0

)k2

· 2−6k2δ2−2k2 ≤ |det(S)| ≤
(

W

Xi0Y j0

)k2

· 2k2 . (8)

Substituting n with its lower estimate, given by Lemma 3.3 and
√
ω by its

upper estimate 2ω/2 given by 7, the following equation has to be satisfied:

2ω·(ω−1)/4 · (XY)(δ+k−1)·(δ+k)2/2−(k−1)·k2/2 ≤W k2 · 2−6k2·δ−2·k2 · 2−ω2/2

⇔ XY ≤W
k2

(δ+k−1)·(δ+k)2/2−(k−1)·k2/2 · 2
−6k2δ2−2k2−ω2/2−ω·(ω−1)/4

(δ+k−1)·(δ+k)2/2−(k−1)·k2/2

⇒ XY < W
2k2

δ·(3k2+k·(3δ−2)+δ2−δ) · 2−9δ

⇒ XY < W 2/(3δ)−1/k · 2−9δ

By defining k := ⌊log(W)⌋ and knowing or guessing the O(δ) high or low
order bits of x0 or y0, XY < W 2/(3δ) has to be satisfied.

To complete the proof of Theorem 3.3 it has to be shown that the roots
(x0, y0) can be computed in polynomial time.

Since the runtime of Algorithm 3.2 is dominated by arithmetic operations
of the lattice reduction (compare to section 3.1), a runtime of O(ω6log(B)3) is
achieved by applying Theorem 3.2. ω is the column rank of the lattice (in our
case ω = δ2+2kδ) and B is an upper bound for the values occurring in the lattice
which has to be reduced. By reducing the columns of L′B

2 by a modulo nXiY j

computation with i, j chosen according to the exponents of the monomials xiyj

associated with the respective column and calling up the upper bound of n given
by Lemma 3.3, an upper bound for the entries of L′B

2 is given by O(W k2) and
thus B =W k2. The running time for Algorithm 3.2 is in

O((δ2 + 2kδ)6 · log(W k2)3)
k>δ
= O((δ6k6) · k6 · log(W)3)

k=⌊log(W)⌋
= O(δ6 · log(W)15)

(9)

Altogether, Algorithm 3.2 achieves a polynomial runtime in (2δ , log(W))
which follows from Equation 9 and the fact that the O(δ) high order bits of
x0 or y0 have to be known.

Using Algorithm 3.2 for recovering the factorization of N = p · q, δ = 1 and
thus a polynomial runtime in O(log(W)).

3.2.1 Factorization Using Coron’s Direct Approach. Algorithm 3.2 has
an application on factorizing composites N = p · q with p, q ∈ Φ. It is premised
that half of the most or least significant bits of one of the prime factors of N are
known and that p and q have the same order, i.e., lp = lq.

The following theorem has been proven by Coppersmith in [Cop97]:

17

Theorem 3.4. (Coppersmith). Given N = pq and the high- or low-order 1/4·
ld(N) bits of p, one can recover the factorization of N in time polynomial in
log(N).

First, we consider the case that the 1/2 high-order bits of p are known which
are stored in variable P0. By dividing N by P0 the 1/2 high-order bits of q are
obtained and variable Q0 is set to the result. When p · q was computed it might
have been that a borrow bit modified the upper order bits of N . Therefore the
computation has to be repeated with Q0 increased by 1 if the factorization with
Q0 fails. Let x and y be the unknown bits of p and q, respectively. N can be
represented by the following equation:

N = (P0 + x) · (Q0 + y).

This equation can be transferred into the bivariate polynomial

p(x, y) = (N − P0 ·Q0) + P0 · y +Q0 · x+ xy (10)

whose integer root represents the unknown bits of p and q. To compute the
integer root of Polynomial 10, Algorithm 3.2 can be applied.

Coron proposed the following parameter values for applying his algorithm
[Cor07]:

X = Y = N1/4,

W = P0 ·X,
k = ⌊log(W)⌋.

Note that if more than 1/4 · ld(N) bits of p or q are known, the value of X
and Y has to be adapted and k can be reduced appropriately.

If the low-order 1/4 · ld(N) bits of p are known, the procedure to factorize
N has to be slightly modified. Q0 can by computed from the 1/4 · ld(N) bits of
p and N by applying the Multivariate Hensel’s Lemma [GCL92] to obtain the
following equation derived by Heninger and Shacham in [HS09]:

Q0[i] ≡ (N −Q0,i−1P0,i−1)[i]− P0[i] mod 2.

The notation of V ar[i] denotes the i-th bit of integer V ar. Q0[1] is initialized
with 1 because q is a prime number. Q0,i and P0,i denote the value of Q0 and P0

through bit 0 to bit i.
Let lp and lP0 be the bit length of p and P0, respectively. In [Cop97] Copper-

smith defines

p(x, y) = 2lP0xy +Q0x+ P0y + (P0Q0 −N)/2lP0

such that the unknown bits x0 and y0 of

p = 2lP0x0 + P0

and
q = 2lP0y0 +Q0

are the integer roots of

p(x, y) =
pq −N

2k
.

18

The upper bounds X and Y are defined by

|x0| < X lp−lP0 ,

|y0| < Y = X.

Constructing the target polynomial p(x, y) with the same approach as for the
case that the high-order bits of p are known yields

p′(x, y) = (2lP0 + P0) · (2lP0 +Q0)−N

which can not be used as input for Algorithm 3.2 because p′(x, y) is not irre-
ducible since all coefficients of p′(x, y) have the common factor 2lP0 and thus the
premises for Theorem 3.3 are not satisfied.

3.2.2 Sample Calculation on Factorization. Consider the natural number
N = 337237 which is the product of the two prime numbers p = 563 and q = 599.
According to Theorem 3.3 it is sufficient to know the high-order (or low-order)
1/4 · ld(N) bits of p to factorize N in polynomial time using the algorithm
introduced by Coron in [Cor07]. In practice there might be one or two additional
bits to be known which is referable to lost information caused by roundings. By
complying with Coron’s proposed bounds of W,X and Y we obtain W = 5328
and X = Y = 9. We choose k = 2 to illustrate Algorithm 3.2. The computation
of (i0, j0) gives i0 = 1, j0 = 0 which implicates the value n = 122825015296 as a
result of determining the determinate of S.

Knowing the 1/4 · ld(N) + 1 high-order bits of p we have P0 = 560 and
Q0 = 592. The polynomial its root we have to compute to factorize N results in
p(x, y) = −xy − 592x − 560y + 5717.

Following the algorithm, we construct M from sa,b and ri,j, moving the
columns in such a way that the monomials xi0+iyj0+j with 0 ≤ i, j < k cor-
respond to the matrix left-hand block, and alternating the row vectors formed
by the ri,j-polynomials that the coefficients are located on the diagonal of L:

M =

x2y x2 xy x x2y2 xy2 y2 y 1

s1,1(x, y) −592 5717 0 0 −1 −560 0 0 0
s1,0(x, y) −1 −560 −592 5717 0 0 0 0 0
s0,1(x, y) 0 −592 0 0 0 −1 −560 5717 0
s1,1(x, y) 0 −1 0 −592 0 0 0 −560 5717

r1,1(x, y) nX2Y 0 0 0 0 0 0 0 0
r1,0(x, y) 0 X2 0 0 0 0 0 0 0
r0,1(x, y) 0 0 nXY 0 0 0 0 0 0
r0,0(x, y) 0 0 0 nX 0 0 0 0 0
r2,2(x, y) 0 0 0 0 nX2Y 2 0 0 0 0
r2,1(x, y) 0 0 0 0 0 nXY 2 0 0 0
r1,2(x, y) 0 0 0 0 0 0 nY 2 0 0
r2,0(x, y) 0 0 0 0 0 0 0 nY 0
r0,2(x, y) 0 0 0 0 0 0 0 0 n

To compute the basis of sublattice L2 we compute we first compute M2 and

transform
[

T ′ nIω
]T

into HNF which gives us LB2 after removing the zero row

19

vectors:

LB2 =













350464 110112 12981167616 52484009824 101789114624
0 350464 196259840 4635587328 80707653632
0 0 122825015296 0 0
0 0 0 122825015296 0
0 0 0 0 122825015296













Subsequently, the columns of LB2 are multiplicated with the associated XiY j

terms. Applying the LLL-algorithm on L′B
2 gives us the reduced lattice basis:

L′RB
2 =









20694548736 8642580768 7253411328 17407971936 −21061134080
22993943040 −7883884224 25419930624 −11204251200 −6618863104
−20694548736 −8387092512 8643635712 24312314016 −21056227584
20694548736 8898069024 23150458368 59128257888 59646519552
87376983552 −160717649472 −80451947520 50229165888 36136343040









From the shortest vector of L′RB
2

b1 =
[

20694548736 8642580768 7253411328 17407971936 −21061134080
]

and dividing each entry by the corresponding XiY j term, we build the polyno-
mial

h(x, y) = 3154176x2y2+11855392xy2+89548288y2+1934219104y−21061134080

which has the same roots (x0, y0) as p(x, y) with |x0| < X and |y0| < Y . From
the construction of p(x, y) we know that for the root (x0, y0), we are interested
in, both conditions hold. Computing the resultant Q(x) = Resy(h(x, y), p(x, y))
gives us

Q(x) = 110542513766x4−17195502141440x3 + 53060406607872x2

− 872426083647488x + 2514473713139712.

Applying a root-finding algorithm on Q(x) and p(x0, y) we obtain the root
(3, 7) with which we can recover p = P0+x0 and q = Q0+ y0 - the prime factors
of N .

4 Related Backdoors in Cryptographic Systems

Among Anderson who was one of the firsts discussing tampering on key gen-
eration procedures of cryptosystems [And93], Young and Yung inaugurated the
era of asymmetric5 backdoors6 for cryptosystems (especially for RSA) with their
work [YY96] - [YY08] and their definition of a Secretly Embedded Trapdoor With
Universal Protection (SETUP). They introduced a three person model involv-
ing the user, the manufacturer, and the (external) attacker. The manufacturer
provides the user with a tampered publicly specified asymmetric cryptosytem
(the SETUP) implemented on a cryptographic black-box device which itself is

5Note that the term asymmetric refers to the manufacturer’s keys and not to the underlying
(asymmetric) cryptosystem.

6Note that we use the term backdoor to refer to the mechanism which subverts a cryptosys-
tem as well as to denote the whole backdoored cryptosystem depending on the context.

20

tamper-resistant after it has been issued. Furthermore, if the black-box device is
successfully reverse engineered the reverse engineer should not be able to utilize
the SETUP.7 With the issued black-box device the user generates public and pri-
vate key pairs as well as de- and encrypts messages. The output of the device can
be observed by him. The SETUP contains the manufacturer’s public key used to
encrypt secret information which is included into the public output (the user’s
public key) of the black-box device. The encrypted secret information enables
the manufacturer, after decrypting it, to efficiently reconstruct the user’s private
key.

As well as the manufacturer, the attacker aims to reconstruct the user’s pri-
vate key but only on the basis of the user’s public key. By carefully designing the
backdoor, the manufacturer strives to achieve that breaking the SETUP mech-
anism is as hard as breaking the underlying asymmetric cryptosystem, i.e., the
manufacturer has the exclusive ability to derive the private keys of users which
utilize the black-box device issued by him.

The properties an asymmetric backdoor has to fulfill in order to be considered
as a SETUP (later called regular SETUP [YY97]) are listed in the following
definition first introduced in [YY96].

Definition 4.1 ((Regular) SETUP). A (regular) SETUP is defined as a mod-
ification made to a cryptosystem C resulting in C

′ fulfilling the following proper-
ties:

1. (in/out) Modifications on C do not transgress the input and output specifi-
cations.

2. (pub) C
′ comprises the manufacturer’s public encryption function E.

3. (priv) C
′ does not contain the manufacturer’s private decryption function D.

4. (hidden bits) The public key output of C′ contains secret information en-
crypted with E where the manufacturer is able to derive the user’s private
key from.

5a. (indistinguishability) The output of C and C
′ are computationally indis-

tinguishable (except by the manufacturer).

6. (confidentiality) Irrespective of whether or not the SETUP has been dis-
covered, only the manufacturer is able to derive past and future keys.

Later on, Young and Yung refined their definition of a SETUP in [YY97] by
distinguishing between weak and strong SETUPs:

Definition 4.2 (Weak SETUP). A weak SETUP is a regular SETUP with
property 5a (indistinguishably) weakened:

5b. (weak indistinguishability) The output of C and C
′ are polynomially in-

distinguishable (except by the manufacturer and the user).

Definition 4.3 (Strong SETUP). A strong SETUP is a regular SETUP with
two additional properties:

7Actually, reverse engineering a black-box device means in the context of SETUPs that the
reverse engineer is given the code of the SETUP and with this the public key of the manufacturer
but nevertheless this excludes the information if the SETUP has been implemented on the
present device.

21

7. (RE robustness) Although the user is able to reverse engineer C′, he can not
derive past and future keys. The output of C and C

′ remains computationally
indistinguishable to the user.

8. (uniformity) The SETUP is identical in each device it is implemented.

After there were denoted some deficiencies on Young’s and Yung’s previous
work which violate the SETUP property of indistinguishability, the focus of suc-
ceeding backdoors lay on eliminating those deficiencies resulting in additional
conditions a SETUP has to satisfy to particularly ensure indistinguishability.

The first issue, Young and Yung were aware of, was the lack of timing re-
sistance mentioned in [CS03], i.e., basing on measurements of the running time
of the operations performed by black-box devices it is possible to distinguish
between C and C

′. Heretofore, all of the SETUPs proposed by Young and Yung
have not been resistant against timing analysis. This issue led to an additional
property a SETUP should satisfy w.r.t. condition 5a and 5b called time-strong.

Definition 4.4 (time-strong). A SETUP is considered to be time-strong if
on the basis of time measurements the user and the attacker are not able to
distinguish between C and C

′.

The second issue, also denoted in [CS03], concerns the distribution of the
most significant bits (MSBs) of the user’s public RSA modulus n w.r.t. a SETUP
proposed by Young and Young in [YY96] which generates n uniformly at random.
In fact, the MSBs of a number resulting from two factors of the same bit size
are not uniformly distributed (see [CS03]). To avoid methods which are able to
distinguish between C and C

′ by analyzing the distribution of n outputted by the
black box device, a SETUP has to be MSB-strong otherwise property 5a/5b is
not satisfied.

Definition 4.5 (MSB-strong). An RSA-SETUP is considered to be MSB-
strong if the distribution of the most significant bits of the RSA modulus converge
to the distribution of a regular RSA modulus.

Among asymmetric backdoors, there has been a lot of work on symmetric
backdoors, whereas the roots can be attributed to Anderson [And93]. Due to the
nature of symmetric cryptossystems, those backdoors do not belong to the group
of SETUPs because of conditions 2 and 3 can not be satisfied.

Furthermore, symmetric backdoors rely on the assumption that it is not pos-
sible to reverse engineer the black-box device they are implemented on. Other-
wise, the reverse engineer would be able to learn the symmetric key and thus
could use the backdoor in the same way as the manufacturer does. Thus, RE-
robustness can not inherently be satisfied by symmetric backdoors. However, all
other SETUP properties mentioned before can be satisfied.

Notation. We write a||b for the concatenation of a and b. n⌋l and n⌉l indicate
the l low and high order bits of integer n, respectively. To identify a backdoored
cryptosystem we use the notation CSvf . CS refers to the target cryptosystem, f is
the subfunction of CS which is affected by the backdoor, and v is the name for the
backdoor to distinguish between backdoors for the same cryptosystem affecting
the same subfunction. For example, RSAPHPGEN1 refers to the RSA backdoor PHP
which modifies GEN1 of RSA.

22

Any cryptographic keys written in lower case letters are owned by the cryp-
tosystem’s user while upper case letter are used to indicate the manufacturer’s
keys.

4.1 Backdoors

In the following we discuss the mechanisms and the properties of the most promi-
nent asymmetric and symmetric backdoors from literature.8

4.1.1 Asymmetric Backdoors. Characteristically, asymmetric backdoors
involve the manufacturer’s public key E to hide information enabling the man-
ufacturer to reconstruct the user’s secret key using the manufacturer’s private
key D.

4.1.1.1 Backdoors for the Diffie-Hellman Key Exchange Protocol. DHβ1
GEN2 is a

strong SETUP for the Diffie-Hellman Key exchange protocol and was proposed
by Young and Yung in [YY97]. More precisely, it is a (1, 2)-leakage system (see
Appendix B.2) because there have to be two Diffie-Hellman key exchanges to
enable the manufacturer to reconstruct one negotiated Diffie-Hellman key. To
leak the necessary information, it is sufficient that DHβ1

GEN2 is implemented for
one communication party.

Let H be a cryptographically strong hash function, X and Y the manufac-
turer’s private and public ElGamal key, and W an odd integer. W is used as a
precaution measure to ensure that the user is not able to detect the presence of
the SETUP in the case that H is discovered to be invertible. a and b are two
integer values chosen in a way that g1 = g−Xb−W , g2 = g−Xb, and g3 = g1−aX

are generators in Zp where p is the user’s public key prime.

The first of the two DH key exchanges proceeds as usual with the difference
that GEN2 stores the randomly chosen value rA (see Algorithm 4.1). The calcu-

lation steps in the second DH key exchange of DHβ1
GEN2 are modified. First, a

random value t ∈ {0, 1} is chosen to compute the uniformly distributed value
z = grA−Wt · Y −arA−b mod p in Zp. The value of t decides if W is involved into
the computation or not. To obtain rA′ , the hash value H(z) has to be computed.
A′ = gr

′
A is send over a public channel to the other communication party in or-

der to negotiate the DH key. Algorithm 4.2 gives an overview of the computation
steps performed.

Input: p, g
Output: (rA, A)

1 pick rA ∈rnd Zp−1.
2 compute A = grA mod p.
3 store rA.
4 return (rA, A).

Algorithm 4.1: Modified GEN2 of DHβ1.1
GEN2

8The properties are discussed as far as it has been done in the corresponding publications.

23

Input: p, g, (Y,W, a, b)
Output: (r′A, A

′)
1 pick t ∈rnd {0, 1}.
2 compute z = grA−Wt · Y −arA−b mod p.
3 compute r′A = H(z).

4 compute A′ = gr
′
A mod p.

5 return (r′A, A
′).

Algorithm 4.2: Modified GEN2 of DHβ1.2
GEN2

In order to reconstruct the latter DH key, the manufacturer needs to intercept
the messages A, A′, and message B′ which is sent by the opposite communication
party. Ultimately, an ElGamal encryption on z is accomplished. By utilizing
Algorithm 4.3, the manufacturer is able to compute rA′ . Exponentiating B′ with
rA′ modulo p yields the negotiated DH key of the second DH key exchange.

The two if-conditions in Algorithm 4.3 are necessary to determine the value
of t which was used in DHβ1

GEN2. If both if-conditions fail, the manufacturer has
to assume the absence of the backdoor.

For the case t = 0, the manufacturer is able to compute z with the following
equation:

z = z1 = m1 · r−X mod p = grA · gX(−arA−b) = grA · Y −arA−b.

Otherwise, for t = 1 the same computation is repeated by involving z2 = z1/g
W

instead of z1.

Input: p, g, (X,W, a, b)
Output: (r′A)

1 compute r = ma
1 · gb mod p.

2 compute z1 = m1/r
X mod p.

3 if A′ == gH(z1) mod p then
4 compute r′A = H(z1).
5 end
6 compute z2 = z1/g

W .

7 if A′ == gH(z2) mod p then
8 compute r′A = H(z2).
9 end

10 return (r′).

Algorithm 4.3: DHβ1
GEN2 symmetric key reconstruction

DHβ1
GEN2 can be extended to an (l, l + 1)-leakage scheme by chaining the

leaked values. For this purpose, the i-th application of the scheme (i ≤ l) involves
the previous rA value in the computation of z. After the SETUP has been utilized
l-times, a new random value rA is chosen.

4.1.1.2 Backdoors for RSA. The following two RSA backdoors were proposed
by Young and Yung in [YY96].

24

The first one (RSAβ1GEN2), a regular SETUP, is outlined in Algorithm 4.4.
It is implemented into the RSA key generation function GEN2 and the hidden
information to reconstruct the prime factors of the user’s public modulus n is
embedded within the public exponent e = pE mod N , where (N,E) is the public

key of the manufacturer which is available in GEN2 of RSAβ1GEN2. e and ϕ(n) have
to be relatively prime, otherwise GEN1 has to be invoked again to determine a
new prime p of the same bit length.

Given the user’s public key (n, e), the manufacturer is able to factorize n
by utilizing his own private key (N,D): p = eD mod N (see Algorithm 4.5).
This backdoor has the disadvantage that e is in size of N . This fact makes the
backdoor inapplicable for several software which commonly require small public
exponents as it is the case for PGP (Pretty Good Privacy) [Zim95]. Another
disadvantage is, that if the user gets to know the public key of the manufacturer,
e.g., by reverse engineering the SETUP device, he is able to distinguish between
C and C

′ in polynomial time by checking if e = pE mod N holds.

Input: (N,E), p, q
Output: e

1 e = pE mod N .
2 while gcd(e, ϕ(n)) 6= 1 do
3 pick p ∈rnd Φlp .
4 e = pE mod N .

5 end
6 return e.

Algorithm 4.4: Modified GEN2 of RSAβ1GEN2

Input: (n, e), (N,D)
Output: p, q

1 given (n, e), compute p = eD mod N .
2 compute q = n · p−1.
3 return p, q.

Algorithm 4.5: RSAβ1GEN2 prime factor reconstruction

The second RSA backdoor RSAPAPGEN1,2 is called Pretty-Awful-Privacy (PAP)
which gives the manufacturer of PAP the exclusive ability to reconstruct the
user’s private keys. The rough idea of RSAPAPGEN1,2 is to hide one of the RSA
prime factors into the user’s public modulus n. Notice that the implementation
of PAP modifies the RSA key generation functions GEN1 and GEN2.

RSAPAPGEN1,2 includes the manufacturer’s public RSA key (N,E) and subverts
RSA as described in the following. First, a random prime p of bitsize lN = ln/2
is drawn. Utilizing an invertible keyed pseudo-random function9 FEK , p is ran-
domized as long as the result p′ is smaller than N by increasing K by i which is
initialized with 0 and incremented for the case that p′ is greater than or equal

9An invertible function to achieve pseudo-randomness including key K in its computation
(not further specified in [YY96]). FD

K is denoted to be the inverse of FE
K .

25

to N . This can be done up to B1 = 16 times whereupon a new p is drawn if the
required condition of p′ was not satisfied after at most B1 iterations. Random-
izing p is necessary to enable that p can be larger than N . Subsequently, p′ is
encrypted with the manufacturer’s RSA key resulting in p′′. p′′′ is obtained by
applying another invertible keyed pseudo-random function GEK on p′′ to ensure
the randomness of p′′′. A random number r of bitsize lN is drawn and concate-
nated with p′′′ resulting in X = p′′′||r. The pending value q is the result of X/p. If
q does not pass a certain primality test, p′′ is recomputed by applying GEK+1(p

′′).
This can be done up to B2 = 512 times. If a prime q is not found by then, a new
prime p is drawn and all previous computations have to be repeated. Finally, the
user’s public exponent e is set to 17 and increased by 2 as long as e and ϕ(n)
are relatively prime. GEN3 computes the user’s private key as usual on the base
of the output of RSAPAPGEN1,2. Note that the bitsize of the generated keys is twice
as long as the bitsize of the manufacturer’s key because p and q both are lN -bit
quantities. RSAPAPGEN1,2 is illustrated in Algorithm 4.6.

Input: (N,E)
Output: (p, q, n, e)

1 pick p ∈rnd ΦlN .
2 set i = 0.
3 repeat
4 compute p′ = FEK+i(p).
5 set i = i+ 1.

6 until p′ ≥ N and i < 16
7 if i == 16 then
8 goto 1.
9 end

10 compute p′′ = p′E mod N .
11 set j = 0.
12 repeat
13 compute p′′′ = GEK+j(p

′′).

14 pick r ∈rnd {0, 1}lN .
15 set X = p′′′||r.
16 compute q = X/p.

17 until PrimalityTest(q) == True and j < 512
18 if j == 512 then
19 goto 1.
20 end
21 compute n = p · q.
22 set e = 17.
23 while gcd(e, ϕ(n)) 6= 1 do
24 set e = e+ 2.
25 end
26 return (p, q, n, e).

Algorithm 4.6: Modified GEN1 and GEN2 of RSAPAPGEN1,2

26

The prime factor reconstruction for RSAPAPGEN1,2 (see Algorithm 4.7) is sophis-
ticated because the manufacturer does not know the exact values of key K which
were used for randomization purposes but only the intervals they were chosen
from. Therefore, the manufacturer has to compute all possible values until he
finds a prime factor of n.

First, a variable U is set to the ln/2 high order bits of n. Subsequently, all 512
possible values for p′′ are computed applying GDK+j(U) for each j ∈ {0, ..., B2−1}.
These values are decrypted with the manufacturer’s private key. The resulting
values which are candidates for p′ are passed to FDK+i with i ∈ {0, ..., B1 − 1}.
For each candidate of p′ at most 16 possible values are computed. This process
is stopped once a prime factor of n is found; p and q are returned. If it was not
possible to find the prime factor p, the same algorithm has to be applied on the
value U + 1 because a borough bit might have modified the upper order bits of
n when n was computed in RSAPAPGEN1,2.

Input: (n, e), (N,D)
Output: (p, q)

1 set repeat = False.
2 set U = n⌉ln/2.
3 set listG = [].
4 for j ← 0 to 511 do
5 compute p′′ = GDK+j(U).

6 append p′′ to listG.

7 end
8 set listF = [].
9 for l in listG do

10 p′ = lD mod N .
11 append p′ to listF .

12 end
13 set listp = [].
14 for p in listF do
15 for i← 0 to 15 do
16 compute p = FDK+i(p).
17 if n mod p == 0 then
18 compute q = n/p.
19 return (p, q).

20 end

21 end

22 end
23 if repeat == False then
24 set repeat = True.
25 set U = U + 1.
26 goto 3.

27 end
28 return −1.

Algorithm 4.7: RSAPAPGEN1,2 prime factor reconstruction

27

RSAPAPGEN1,2 satisfies the properties of a regular SETUP except property 5a/5b
because the MSB-strong property is not given as denoted in [CS03].

Furthermore, with the knowledge of the interior of RSAPAPGEN1,2, comprising
the manufacturer’s public key, the user is able to repeat the computation steps
for q and compare the result to n. If the most significant bits of n coincide,
the user is able to decide in polynomial time that the output was computed by
RSAPAPGEN1,2 and thus RE-robustness is not given.

Nevertheless, RSAPAPGEN1,2 can be extended to RSAPAP
′

GEN1,2 fulfilling the RE-
robustness property. The extension is implemented by involving the Probabilistic
Bias Removal Method (see Appendix B.3) and DHβ1

GEN2 in the generation pro-
cess of p and q (see [YY97]). RSAPAP

′

GEN1,2 contains a public ElGamal key of the
manufacturer instead of a public RSA key.

The next backdoor, RSAECGEN1, proposed by Young and Yung in [YY06] sat-
isfies the conditions of a strong SETUP. The focus of RSAECGEN1 lies on the lack
of security the previous SETUPs from above entailed: the user’s 1024-bit key
provides only the security of the manufacturer’s 512-bit key. Since in 2003 it was
shown that a 576-bit RSA composite can be factorized [Wei03] (in 2005 a 640
bit RSA composite was factored [Wei05]), the SETUPs from [YY96] can not be
considered to be secure anymore for the common key size of 1024 bit.

To overcome this issue RSAECGEN1 involves an Elliptic Curve Diffie-Hellman
(ECDH) manufacturer key basing on the security of solving the Elliptic Curve
Discrete Logarithm Problem [CFA+06].

Elliptic curves over the binary field F2m where m is a prime greater than
2 are used to enable a space efficient way to communicate prime factor bits of
the user’s private key from the SETUP device to the manufacturer using point
compression (see below). The manufacturer has to choose two elliptic curves
which can be described by a Weierstrass equation. Both curves Ea,b and Ea′,b
have to be twists of each other.

The utilization of two elliptic curves which are twists of each other is necessary
to exploit the entire Fq for choosing elliptic curve points since usually only about
the half of the elements in Fq represent x-coordinates on a single elliptic curve.
For two twisted curves it holds that for each x ∈ F2m there exists an y ∈ F2m

such that the point (x, y) either lies on Ea,b or Ea′,b. Young and Yung suggest
E0,b and E1,b to be used by the manufacturer which resist known cryptographic
attacks [YY06].

After selecting an appropriate pair of elliptic curves, the manufacturer cre-
ates an ECDH key pair by first choosing a base point (a generator) G0 on
E0,b(F2m) and a base point G1 on E1,b(F2m). The private key consists of two
randomly chosen integers (x0, x1) where x0 ∈ {1, 2, ..., h0} and x1 ∈ {1, 2, ..., h1}.
h0 and h1 are the cofactors of E0,b and E1,b, respectively. The cofactor of an el-
liptic curve over a finite field can be computed by dividing the number of points
of an elliptic curve by the order of G0 and G1, respectively. The order of a base
point is defined to be the smallest scalar of the base point such that the product
results in P∞.

The manufacturer’s public key is composed of G0, G1, Y0 = x0 · G0, and
Y1 = x1 ·G1.

To reduce the bit size needed to represent a point on an elliptic curve and
thus utilizing the space offered by the SETUP to hide information to reconstruct

28

the user’s private key efficiently there exists the method of point compression.
To represent a point (x, y) on E(F2m), m+1 bits are necessary. The compressed
point consists of x and an ybit ∈ {0, 1}. A decompression algorithm computes
(x, y) from x||ybit. For more information on point compression see [CFA+06].

RSAECGEN1 is composed of different subfunctions (blocks) we will introduce
subsequently. First, Young and Yung describe an algorithm GenDHParamAnd-

DHSecret which is an essential subfunction of RSAECGEN1. Including the manu-
facturer’s public EC key (G0, G1, Y0, Y1), it computes an ECDH key exchange
parameter (spub) and a secret ECDH key (spriv) which both are represented as
compressed points on one of the chosen elliptic curve pair of bit length m+1. By
displaying spub in the upper order bits of the public RSA modulus n generated
by RSAECGEN1, the manufacturer is able to compute spriv from spub and (x0, x1)
by applying the RecoverDHSecret algorithm. This method enables the exchange
of spriv between the SETUP device and the manufacturer.

Before we start to describe how the RSA primes p and q are generated in
RSAECGEN1, we have to introduce three more functions involved in this process:

– H(s, l, v) is a function which invokes a random oracle R (see Appendix B.1)
on the input bit string s and returns v consecutive bits of R(s) starting at
the l-th bit position.

– A(p, l, e) returns true if p is a prime of bit length l with the uppermost bit
set to 1 and gcd(p, e) = 1. Those primes are called acceptable primes [YY06].
Otherwise, if p is not an acceptable prime A returns false.

– G(s, l, e) computes an acceptable prime. For this purpose, G calls H(s, i, l/2)
to compute the uppermost l/2-bits of p′ with i is initially set to zero. The l/2
lowermost bits of p′ are chosen uniformly at random. If p′ is an acceptable
prime, G returns p = p′. Otherwise, the whole computation is repeated and
i is incremented by l/2.

Let e be an RSA exponent and let ln be the bit length of the RSA modulus
n which has to be computed beside the RSA primes p and q. Πθ refers to the
set of all permutations from {0, 1}θ to {0, 1}θ where θ is an even integer. πθ is
chosen uniformly at random from Πθ and it is presumed that its inverse π−1

θ can
be computed efficiently.

RSAECGEN1 computes p and q on the input of spub, spriv, ln, and e as listed in
Algorithm 4.8.

29

Input: spub, spriv, ln, e
Output: (p, q, n)

1 compute p = G(spriv, ln, e).

2 pick r1 ∈rnd {0, 1}θ−(m+1).
3 compute t = πθ(r1||spub).
4 pick r2 ∈rnd {0, 1}ln−θ.
5 set nc = (t||r2).
6 compute (q, rc) such that nc = p · q + rc is satisfied.
7 if A(q, ln/2, e) == false then
8 goto 2.
9 end

10 compute n = p · q.
11 return (p, q, n).

Algorithm 4.8: GenPrimes()

Ultimately, RSAECGEN1 is composed of GenDHParamAndDHSecret() and
GenPrimes().

Input: (G0, G1, Y0, Y1)
Output: (p, q, n)

1 compute (spub, spriv) = GenDHParamAndDHSecret(G0, G1, Y0, Y1).
2 compute (p, q, n) = GenPrimes(spub, spriv).
3 return (p, q, n).

Algorithm 4.9: Modified GEN1 of RSAECGEN1

To recover the prime factors of the user’s public modulus, the recovery al-
gorithm utilizes Coppersmith’s factorization attack which is used to factorize a
composite n = p ·q into its prime factors p and q by knowing the 1/4 · ld(n) high-
or low-bits of p or q.

The algorithm to recover p and q considers a potential borrow bit for the
computation of nc which would influence the recovery process of p or q. Thus,
for the case that the primes could not be found for b = 0 the computation is
repeated for b = 1 (see Algorithm 4.10). The other operations performed by
the reconstruction method are derived analogously to the computation steps of
RSAECGEN1 which merely have to be inverted.

30

Input: (n, e), (x0, x1)
Output: (p, q)

1 set t1 = G(n, 0, θ).
2 for b = 0 to 1 do
3 while j < upperBound do
4 set t2 = t1 + b mod 2θ.

5 compute spub = G(π−1
θ (t2), θ − (m+ 1),m+ 1).

6 compute spriv = RecoverDHSecret(spub,x0,x1).
7 set j = 0.
8 compute u = G(R(spriv), j · T, T).
9 compute (p, q) = Coppersmith(u, n).

10 if p · q = n then
11 return (p, q).
12 end
13 set j = j + 1.

14 end

15 end
16 return (p, q).

Algorithm 4.10: RSAECGEN1 prime factor reconstruction

Young and Yung propose a RSAECGEN1 configuration with ln = 768, m = 191,
θ = 320, and upperBound = ⌈ln/4 · 160 · ln(2)⌉ to satisfy the presumed re-
quirements and to reduce the probability of a potential borrow bit. In [YY08],
Young and Yung propose an approach they call algorithm engineering approach
for RSAECGEN1 to secure the strong SETUP against exposure on the basis of
run time analysis, i.e., comparing the key generation running time of RSA and
RSAECGEN1. For this purpose RSA

EC
GEN1 basically remains unmodified. Instead of

calling OpenSSL routines, routines for prime testing were redesigned in order
to accelerate the total running time of RSAECGEN1. Following the algorithm en-
gineering approach, Young and Yung have shown that their implementation of
RSAECGEN1 into OpenSSL can be considered to be time-strong.

4.1.1.3 Backdoors for ElGamal. The following three Backdoors, embedded into
the ElGamel cryptosystem, were conceived by Young and Yung [YY96] and ex-
pect that x and p or g is chosen by the key generation function.

The first proposed Backdoor, we call ElGamalβ1GEN (see Algorithm 4.11),
expects that x and g are chosen by the key generation function. A random
integer x in the range of 0 ≤ x ≤ p− 2 is chosen as long as the result of applying
a randomization function FEK on x encrypted with the manufacturer’s public
RSA key (N,E) is a generator in Zp. If such a value is found, g is set to it. The
randomization function is used to broaden the domain of g.

The manufacturer’s private key reconstruction method is shown in Algorithm
4.12. From the user’s public key (p, g, y) and his own private RSA key (N,D),
the manufacturer is able to compute x and thus the user’s private key (p, g, x):
first, he decrypts g utilizing FDK followed by decrypting the result with his private
key.

31

Input: p, (N,E)
Output: ((p, g, y), (p, g, x))

1 repeat
2 pick x ∈rnd N.
3 compute x′ = xE mod N .
4 compute x′′ = FEK (x′).

5 until x′′ ≤ p, x′′ ∈ Z
∗
p

6 set g = x′′.
7 compute y = gx mod p.
8 return ((p, g, y), (p, g, x)).

Algorithm 4.11: Modified GEN of ElGamalβ1GEN

Input: (p, g, y), (N,D)
Output: (p, g, x)

1 compute x′ = FDK (g).
2 compute x = x′D mod N .
3 return (p, g, x).

Algorithm 4.12: ElGamalβ1GEN private key reconstruction

The second backdoor, called ElGamalβ2GEN , is implemented analogously to

ElGamalβ1GEN by interchanging the role of p and g. The termination condition
for the loop is replaced by x′′ ∈ Φlp , x′′ > g.

The third backdoor ElGamalβ1GEN which was introduced in [YY96] is a pure
ElGamal system, i.e., there are no other cryptosystems involved in spite of ElGa-
mal. This has the advantage that all necessary encryption routines are available
in the host cryptosystem. It is assumed that both p and g can be chosen by the
key generation function.

Let (P,G, Y) and (P,G,X) be the public and private key of the manufacturer,
respectively. Instead of using RSA for encryption, the private key of the user is
encrypted with ElGamal. First, the random values x, k ∈ N are generated where
k and P − 1 have to be relatively prime. b is computed using the public key
of the manufacturer: b = Y k · x mod P . A randomization function basing on
ENC of ElGamal is used to meet the distribution required for b. After computing
a = Gk mod P , it is checked that a and b satisfy the required conditions as
presented in Algorithm 4.13. If this is not the case, a new k is randomly drawn
and the depending values have to be recomputed. Otherwise, p is set to b, g is
set to a, and y is computed as usual.

The private key of the user is reconstructed by decrypting p using the ap-
plied randomization function and the manufacturer’s private key (P,G,X) (see
Algorithm 4.14).

32

Input: lp, (P,G, Y)
Output: ((p, g, y), (p, g, x))

1 pick x ∈rnd N.
2 repeat
3 pick k ∈rnd N, with gcd(k, P − 1) = 1.

4 compute b′ = Y k · x mod P .
5 compute b = FEK (b′).

6 compute a = Gk mod P .

7 until b ∈ Φlp , x < b, a < b
8 set p = b.
9 set g = a.

10 compute y = gx mod p.
11 return ((p, g, y), (p, g, x)).

Algorithm 4.13: Modified GEN of ElGamalβ3GEN

Input: (p, g, y), (P,G,X)
Output: (p, g, x)

1 compute b′ = FDK (p).
2 compute x = g−X · b′ mod P .
3 return (p, g, x)

Algorithm 4.14: ElGamalβ3GEN private key reconstruction

4.1.2 Symmetric Backdoors. Symmetric backdoors involve the
manufacturer’s secret symmetric key K to hide information enabling him to re-
construct the user’s private key. If symmetric backdoors are not secured against
reverse engineering they are considered to be impractical.

The following three backdoors were proposed by Crépeau and Slakmon in
[CS03] for the RSA key generation process. They have in common to hide secret
bits in the user’s public exponent e enabling the manufacturer to factorize n.
Instead of hiding the secret bits by encryption with the manufacturer’s public
key as it is the case for asymmetric backdoors, keyed permutation mappings from
the set of odd integers smaller than the user’s public modulus into itself are used
(see [CS03] for possible permutations). Key K on which a concrete permutation
depends is only known by the manufacturer.

Unfortunately, it holds that the bit size of e is affected depending on which
of the three backdoors is implemented.

The first backdoor, called RSAHSDGEN2 (HSD - Hidden Small Private Exponent
δ) and listed in Algorithm 4.15, relies on the attack on short RSA private ex-
ponents d where d < n1/4/3 introduced by Wiener [Wie90] which was further
improved by Boneh and Durfee in [BD00] who achieved a weaker bound on d:
d < n.292. First, on the basis of the two randomly chosen primes p and q by GEN1

of RSA a weak exponent δ is chosen uniformly at random. The corresponding
public exponent ǫ is the result of inverting δ modulo ϕ(n). Utilizing the permu-
tation function πK the user’s public exponent e is the result of applying πK(ǫ).

33

If e and ϕ(n) are relative primes, d is computed as usual. Otherwise, a new δ is
chosen and the computation steps have to be repeated.

Input: p, q
Output: e

1 repeat
2 pick δ ∈rnd {2 · k + 1|k ∈ N} such that gcd(δ, ϕ(n)) = 1 and

lδ ≤ ln/4.
3 compute ǫ = δ−1 mod ϕ(n).
4 compute e = πK(ǫ).

5 until gcd(e, ϕ(n)) = 1
6 return e.

Algorithm 4.15: Modified GEN2 of RSAHSDGEN2

From the user’s public key (n, e) the manufacturer is able to compute the
corresponding private key by recovering ǫ from applying π−1

K (e) and breaking
the vulnerable public key (n, ǫ) to obtain δ. From the knowledge of δ and n, the
manufacturer computes the prime factors of p and q of n. Given p, q, and e the
manufacturer is able to compute d.

The main drawbacks of RSAHSDGEN2 are that e has the same bit size as n and
that e and thus d are not drawn randomly from the natural numbers, instead
e is drawn from a smaller subset determined by the images of inverses modulo
ϕ(n) of δ-values with bit size smaller than ln/4.

Input: (n, e)
Output: (p, q)

1 compute ǫ = π−1
K (e).

2 compute δ = LowPrivateExponentAttack(n, ǫ).
3 compute p, q from n, δ, ǫ.
4 return (p, q).

Algorithm 4.16: RSAHSDGEN2 prime factor reconstruction

The next two backdoors, RSAHSPEGEN2 (HSPE - Hidden Small Prime Public
Exponent ǫ) and RSAHSEGEN2 (HSE - Hidden Small Public Exponent ǫ), are very
similar w.r.t. their construction. They distinguish in the bits of the private ex-
ponent δ which are hidden in the user’s public exponent e. Thus, we merely take
a closer look to the former one.

RSAHSPEGEN2 , listed in Algorithm 4.17, relies on the low public prime exponent
attack [BDF98]: For the case that e ∈ [2t, 2t+1] where t ∈ [ln/4, ln/2] is an integer
and e is a prime it can be shown that in combination with the knowledge of the
t most significant bits of d the user’s private exponent d can be reconstructed in
polynomial time [BDF98].

34

Input: p, q
Output: e

1 repeat
2 pick ǫ ∈ Φln/4 such that gcd(ǫ, ϕ(n)) = 1.

3 compute δ = ǫ−1 mod ϕ(n).

4 compute e = πK(δ⌉ln/4||ǫ).
5 until gcd(e, ϕ(n)) = 1
6 return e.

Algorithm 4.17: Modified GEN2 of RSAHSPEGEN2

The manufacturer is able to reconstruct the user’s private key from the public
key (n, e) from extracting δ⌉ln/4 and computing ǫ by applying π−1

K (e). The low
public prime exponent attack applied on n, δ⌉ln/4, and ǫ provides δ which allows
the manufacturer to factorize n. Finally, the user’s private key can be constructed
from p and q.

Input: (n, e)
Output: (p, q)

1 compute δ⌉ln/4||ǫ = π−1
K (e).

2 compute δ = LowPublicPrimeExponentAttack(n, δ⌉ln/4, ǫ).
3 compute p, q from n, δ, ǫ.
4 return (p, q).

Algorithm 4.18: RSAHSPEGEN2 prime factor reconstruction

Besides its simplicity, RSAHSPEGEN2 has the same drawbacks as RSAHSDGEN2 w.r.t.
the restricted domain of e and thus d. Additionally, the running time of
RSAHSPEGEN2 deviates significantly from RSA due to the additional prime genera-
tion for ǫ. RSAHSEGEN2 avoids this runtime overhead by exploiting another variant
of the low public prime exponent attack described in [BDF98].

The forth RSA backdoor, RSAHPGEN1,2 (HP - Hidden Prime), proposed by
Crépeau and Slakmon in [CS03] and listed in Algorithm 4.19 is a symmet-
ric variant of RSAPAPGEN1,2 which was introduced in Section 4.1.1. The focus of

RSAHPGEN1,2 lies on the proper distribution of the most significant bits of the
user’s public modulus n resulting from the multiplication of two randomly cho-
sen primes which was ignored by Young and Yung in [YY96].

Crépeau and Slakmon achieve the proper distribution of the most significant
bits of n by choosing a prime p and an odd number q′ uniformly at random
both of bit size ln/2. The ln/8 most significant bits of the product p · q′ = n′ are
taken to be the ln/8 most significant bits of the user’s public modulus n. The
remaining bits of n a determined by the permutated ln/4 upper bits of p which
enable the manufacturer to reconstruct p utilizing Coppersmith’s factorization
attack in combination with the 5ln/8 bits of n′. Subsequently, q = ⌊n/p⌋ and n
have to be adapted such that q is prime, e (determined in advance) and q are
relatively prime, and n = p · q. For this purpose, a random even number m of
bit size ln/8 which is xored with the ln/8 least significant bits of q is chosen as
long as the conditions from above are fulfilled. Since only the ln/8 bits of q are

35

modified, the hidden ln/4 bits of p within n do not change by recomputing n
with the new value of q.

Input: ln
Output: (p, q, n, e)

1 pick e ∈rnd N\{1}.
2 pick p ∈rnd Φln/2 such that gcd(e, p − 1) = 1. pick

q′ ∈rnd {2 · k + 1|k ∈ N} of bit size ln/2.
3 compute n′ = p · q′.
4 compute n1 = n′⌉ln/8, n2 = πK(p⌉ln/4), n3 = n′⌋5ln/8.
5 set n = n1||n2||n3.
6 compute q = ⌊n/p⌋+ (1± 1)/2 such that q is odd.
7 while gcd(e, q − 1)! = 1 and not(isPrime(q)) do
8 pick m ∈rnd {2 · k|k ∈ N} of bit size ln/8.
9 recompute q = q ⊕m.

10 recompute n = p · q.
11 end
12 return (p, q, n, e).

Algorithm 4.19: Modified GEN1 and GEN2 of RSAHPGEN2

By applying the inverse permutation of πK on the bits of n⌉3ln/8⌋ln/4 which
are extracted from the user’s public key, the manufacturer obtains the upper ln/4
bits of p. Applying Coppersmith’s factorization attack on p⌉ln/4 and n gives the
prime factors of n, enabling the manufacturer to compute the user’s private key.

Input: (n, e)
Output: (p, q)

1 compute p⌉ln/4 = π−1
K (n⌉3ln/8⌋ln/4).

2 compute (p, q) = Coppersmith(p⌉ln/4, n).
3 return (p, q).

Algorithm 4.20: RSAHPGEN2 prime factor reconstruction

5 Backdoor Formalization Revision

In her dissertation [Arb08], Arboit devised a general backdoor definition oriented
towards the SETUP definition of [YY06] which is more precise w.r.t. the prop-
erties a backdoor has to fulfill. In the following, we orientate ourselves towards
Arboit’s backdoor definition in combination with our own extensions in order to
analyze the security of RSAPHPGEN1 and RSAPHP

′

GEN1 in Section 6.
The three person model introduced in Section 4 stays the same in the re-

mainder except that we use the term user and internal attacker interchangeable.
Analogously to the definition of C and C

′, we define G and G
′ to be the honest

and the backdoored cryptosystem with emphasizing its key generation purpose.
kpub and kpriv refer to the user’s public and private key, respectively. KG denotes
the key space of G and KG′ the one of G′. Let B and B

′ be the blackbox devices
provided by the manufacturer where G and G

′ are implemented on, respectively.

36

We consider the black box device to be a physical oracle the user can access to
generate keys as well as to de- and encrypt messages. The user has access to its
input and output as well as physical measures, e.g., the time spend for key gen-
eration or the memory consumption. Additionally, we expect that the user has
access to the source code of G and G

′ particularly including the manufacturer’s
public key if G′ is an asymmetric backdoor. Given two blackbox devices B and
B

′ the user tries to distinguish between B and B
′ basing on statistical analyses

w.r.t. the inputs and outputs of both devices and on side channel analyses by
performing external physical measures.

According to [Arb08], each G
′ can be modeled by the composition of an

information compression function C, an encryption function E , and an embedding
functionM:

k′pub =M◦ E ◦ C(k′priv),
where k′pub is either kpub itself or a component of kpub and k′priv is either equal
to kpriv, a part of the private key, or information allowing to compute kpriv.
Breaking a backdoor down in those three functions facilitates the analysis and
the comparison of backdoors. For the case that M, E , or C is probabilistic, a
sufficient amount of random bits are assumed to be provided by an implicit
parameter.

The purpose of function C(k′priv) = kC is to extract a piece of information kC
from k′priv such that if kC is communicated through kpub to the manufacturer, he
is able to recover kpriv from this piece of information.

Definition 5.1 (Information Compression Function C). C is an arbitrary
function of k′priv which extracts sufficient information kC from its input in order
to efficiently reconstruct kpriv from the knowledge of kC and kpub only.

Function E is an asymmetric encryption function which is applied to kC in
order to hide this sensitive piece of information from unauthorized parties except
the manufacturer who possesses the appropriate secret key K or Kpriv which
allows to decrypt E(kC).

Definition 5.2 (Encryption Function E). E is a symmetric or asymmetric
encryption function of kC = C(k′priv) where the output value distribution of kE =
E(kC) is computationally indistinguishable from uniform.

The third function,M, accomplishes the embedding of E ◦ C(k′priv) into kpub
chosen in such a way that the backdoored keys ideally have the same statistical
properties as the honest keys.

Definition 5.3 (Embedding Function M). M is an invertible function ap-
plied on E ◦C(k′priv) determining the bit positions of the embedding and the prob-
abilistic assignation of those bits of k′pub which are not involved in the embedding
of backdoor information.

We refer to the function applied on kpub by the manufacturer in order to
reconstruct k′priv as

RG′ = C−1 ◦ E−1 ◦M−1(kpub).

Emerged from literature, the essential properties a backdoor can have are
Confidentiality, Completeness, and Concealment [YY96,YY97,Arb08].

37

Confidentiality considers if the confidentiality of the underlying cryptosys-
tem is influenced through the existence of a backdoor. Evaluating this property
involves analyzing if the effective key size of the user’s key generated with B

′

corresponds to the desired key size.

Definition 5.4 (Confidentiality). The external attacker and the user are not
able to invert M◦ E ◦ C(k′priv).

Completeness considers whether or not the manufacturer is able to recon-
struct the user’s private key from the corresponding public key for each public
key which was generated with a backdoor distributed by the manufacturer.

Definition 5.5 (Completeness). For each kpub generated with G
′, the manu-

facturer is able to reconstruct k′priv from kpub by computing RG′(kpub) = C−1 ◦
E−1 ◦M−1(kpub) = k′priv.

Concealment considers to what extent a backdoor is traceable for the exter-
nal attacker and the user. This requires the analysis of a set of subproperties
Concealment directly depends on.

Definition 5.6 (Concealment). Given access to B and B
′, for the external

attacker and the user it is not possible to distinguish between B and B
′ by ana-

lyzing the following related subproperties:

KCC: Analyzing the keyspaces KG and KG′ does not contribute to efficiently
distinguish between B and B

′ (Keyspace (K) Cardinality (C) Consistency
(C)).
DC: Analyzing the distribution of the bits of keys generated with G and G

′

does not contribute to efficiently distinguish between B and B
′ (Bit Distri-

bution (D) Consistency (C) of Generated Keys).
VCC: Differences w.r.t. the correlation of variables in G and G

′ do not con-
tribute to efficiently distinguish between B and B

′ (Variable (V) Correlation
(C) Consistency (C)).
CC: Differences w.r.t. the time complexities of G and G

′ do not contribute to
efficiently distinguish between B and B

′ (Complexity (C) Consistency (C)).
AM: B

′ does not make use of additional memory for purposes of conceal-
ment (Absence (A) of Additional Memory (M) Usage for Purposes of Con-
cealment).
RT: The statistical properties of the key generation running times of G and
G

′ do not significantly deviate from each other (Running (R) Time (T)).

The subproperties of Concealment can be divided into three groups: key re-
lated, algorithm related, and side channel related properties (see Figure 3). In
the following we give an informal description of how to evaluate each of these
subproperties based on [Arb08]. Subsequently, we present a classification scheme
for the defined backdoor related properties.

Key Related Properties:

KCC. In practice, modifications made to an honest key generator G to hide
secret information within kpub typically affects the key space KG′ of G′ which

38

Fig. 3: The composition of Concealment.

might contribute to efficiently distinguish between B and B
′. To evaluate KCC

for G
′ w.r.t. the security parameter s of G, the ratio of cardinality of KG′ and

KG is computed: R(s) = NG′(s)/NG(s). In practice, the ratio of cardinality for
RSA is of the form R(s) = 2c(s)·s · f(s) where c(s) ≤ 0 and log2(1/f(s)) ∈ o(s),
i.e., 1/f(s) is negligible [Arb08].

DC. DC considers to which degree the bits of kpub are influenced by the em-
bedding of kE . For G and G

′, it is not necessarily the case that all bits in kpub
have the same distribution [CS03]. If some bits of kpub in G

′ underlie another
distribution than the appropriate bits in G, then this may reveal the existence of
the backdoor by analyzing generated keys. To evaluate DC for G

′, we compare
the distributions of the concatenation of the influenced bits of kpub by M(kE)
w.r.t. G and G

′ via their statistical distance referred to as DG′ ∈ [0, 1]. If DG′

is negligible, the distributions of kpub are considered to be statistically indistin-
guishable for G and G

′.

Algorithm Related Properties:

VCC. VCC concerns key regeneration [CS03,Arb08] which is the possibility of the
user to generate a new key pair keeping certain key parameters fixed while others
are refreshed. In G

′, there may exist key components of successively generated
keys which are more correlated than those in G. Furthermore, VCC covers the
case where no key regeneration is necessary since the backdoor can be revealed
solely on the basis of the key parameters. We distinguish the case whether or not
the manufacturer’s key (K/Kpub) is publicly known.

CC. CC considers the time complexity TG′ of G′. If the time complexity of G′ is
linear in the time complexity of G, then adapting the hardware of B or B

′ for
matching the running times of G and G

′ is feasible. According to [Arb08], the
complexity of a backdoored RSA key generator in terms of the complexity of an
honest RSA key generator can be expressed in practice by TG′ = ta1 · t(F)b + tc2,
where t1 and t2 refer to the complexities of the key parameter generations in G,
a, b, and c are constant integer exponents, and t(F) denotes the time complexity
of a non-instantiated function F which does not occur in G. The complexity of
key generators of other cryptosytems can be expressed similarly (see [Arb08]).

39

Side Channel Related Properties:

AM. There are two types of memory a backdoor might make use of in order
to hide itself from the user: non-volatile memory (NM) and volatile memory
(VM). Backdoors which transmit information of the previous key generation in
order to reconstruct private keys make use of non-volatile memory. Other back-
doors require volatile memory to satisfy the variable correlation property under
key regeneration analysis. The usage of NM is easier to detect than the usage of
VM. Since it is less discreet, it may require more system resources, and if it is
reset then the variable correlation and the functioning of the backdoor might be
influenced.

RT.10 RT captures statistical properties of the key generation running times
which can not be achieved by analyzing CC. In order to evaluate this property
for G′ the mean µ and the coefficient of variation cv of the key generation running
times of G and G

′ are compared. We write µG, cv,G and µG′ , cv,G′ in order to
refer to the median and the coefficient of variation of the key generation running
times of G and G

′, respectively.

failed poor good

Confidentiality
effective keysize is
reduced more than

50%

effective keysize is at
most halved

no reduction of
effective keysize

Completeness ¬∀kpub RG′ (kpub) =
k′priv

—
∀kpub RG′ (kpub) =

k′priv

KCC (RSA) c(s) ≤ −3/2 −3/2 < c(s) < −1/2 c(s) ≥ −1/2

C
o
n
ce
a
lm

en
t

DC DG′ > 0
DG′ ≈ 0 with

restrictions on the
bounds of KG′

DG′ ≈ 0

VCC variable correlation
w/o Kpub

variable correlation
given Kpub

no var. correlation

CC TG′ is at least
quadratic in TG

TG′ is more than
linear but less than
quadratic in TG

TG′ is linear in TG

AM NM (and VM) is used only VM is used
neither VM nor NM is

used

RT

|µ
G′−µG|

µG

≥ 0.1 or

|cv,G′−cv,G|

cv,G
≥ 0.1

|µ
G′−µG|

µG

< 0.1 and

|cv,G′−cv,G|

cv,G
< 0.1

µG ≈ µG′ and
cv,G ≈ cv,G′

Table 1: Classification scheme for backdoor related properties.

10We declare the property of running time to be an optional feature of Concealment because
it seems to be unavoidable that the modifications made to G resulting in G

′ involve a significant
increase of the key generation running time.

40

The classification scheme we use in order to evaluate the defined backdoor
related properties (see Table 1) is inspired by [Arb08]. The bounds of c(s) used
to evaluate KCC are restricted to RSA backdoors. Those bounds have to be
adapted accordingly for backdoors of other cryptosystems (cf. [Arb08]). If a
backdoor related property is classified with good we consider the property to
be satisfied while a property classified with failed is considered to be unsat-
isfied. The additional classifier poor allows for a more subtle differentiation
between different backdoors w.r.t. their properties. Additionally to the classi-
fication given in Table 1, we characterize KCC to be asymptotically exact if
lims→∞c(s) = 0 holds.

6 Novel RSA Backdoors

In this section we present two new asymmetric backdoors: RSAPHPGEN1 and
RSAPHP

′

GEN1. We use the acronym PHP—Prime Hiding Prime—to refer to the
essential mechanism behind both backdoors which is to hide information of the
first RSA prime factor in the second RSA prime factor. After describing the me-
chanics of both backdoors in Section 6.1 and 6.2, a comparative security analysis
considering the backdoor properties discussed in Section 5 follows.

6.1 Design of RSAPHP

GEN1

The first backdoor we want to introduce is called RSAPHPGEN1. The RSA key gener-
ation function GEN1 is modified in such a way that it involves the manufacturer’s
public RSA key (N,E) to hide secret information in one of the prime factors of
the user’s public modulus n. This information can be used by the manufacturer
in combination with his private key (N,D) to reconstruct the user’s private key.
Note that the bit length of N has to be equal to ln/2 in order to generate primes
of the appropriate bit size.

First, the random prime p of bit size ln/2 is chosen. If the encryption of p with
the manufacturer’s public key and the subsequent multiplication with the inverse
of p modulo N results in a prime of Φln/2, the pending prime q is set. Otherwise,
a fresh random prime p is picked and the computation steps are repeated. If q is
found, n is computed as usual. The RSA key generation functions GEN2 and GEN3

stay unmodified. The computation steps of RSAPHPGEN1 are listed in Algorithm 6.1.

Input: ln, (N,E)
Output: p, q, n

1 repeat
2 pick a p ∈rnd Φln/2.
3 compute q = pE · p−1 mod N .

4 until q is prime.
5 compute n = p · q.
6 return p, q, n.

Algorithm 6.1: Modified GEN1 of RSAPHPGEN1

41

From a user’s public key generated with RSAPHPGEN1, the manufacturer is able
to compute one of the prime factors of n by decrypting n with his private key D:

nD ≡ (p · q)D ≡ (p · pE · p−1)D ≡ pE·D ≡ p mod N.

Thus, the manufacturer is able to factorize n and to reconstruct the user’s
corresponding private key. The prime factor reconstruction of RSAPHPGEN1 is given
by Algorithm 6.2.

Input: (n, e), (N,D)
Output: p, q

1 compute p = nD mod N .
2 compute q = n · 1/p.
3 return p, q.

Algorithm 6.2: RSAPHPGEN1 factor reconstruction

In order to motivate our second backdoorRSAPHP
′

GEN1, we anticipate one crucial
deficiency of RSAPHPGEN1. If the internal attacker comes into possession of the
manufacturer’s public key (N,E), he can distinguish between key pairs generated
with RSAPHPGEN1 and RSA efficiently (see Section 6.3). To overcome this issue, we
provide an extension of RSAPHPGEN1 in the next section.

6.2 Design of RSAPHP ′

GEN1

RSAPHP
′

GEN1 is an extension of RSAPHPGEN1 eradicating the addressed weakness of
RSAPHPGEN1. To that end, ln/4 bits are chosen uniformly at random and concate-
nated with the ln/4 least significant bits of p. The result is denoted as p′ (see
Algorithm 6.3, Line 3 and 4). Subsequently, q is computed in the same way as in
RSAPHPGEN1 with the difference that instead of encrypting p with the manufactur-
ers public RSA key as it is done in line 3 of Algorithm 6.1, p′ is encrypted. This
modification eradicates the weakness of RSAPHPGEN1 (see Section 6.3.2). Another
advantage of RSAPHP

′

GEN1 is, that if the computed value of q fails the primality
test, p has not to be regenerated: it is sufficient to choose another random value
for x. The remaining computation steps of RSAPHPGEN1 coincide with RSAPHP

′

GEN1.

Input: ln, (N,E)
Output: p, q, n

1 pick p ∈rnd Φln/2.
2 repeat
3 pick a random x of the bit size ln/4.
4 set p′ = x | p⌋ln/4.
5 compute q = (p′)E · p−1 mod N .

6 until q is prime.
7 compute n = p · q.
8 return p, q, n.

Algorithm 6.3: Modified GEN1 of RSAPHP
′

GEN1

42

To reconstruct the prime factors of the user’s public modulus n which was
generated by RSAPHP

′

GEN1, first the manufacturer decrypts n with his private RSA
key and obtains p′:

nD ≡ (p · q)D ≡ (p · p′E · p−1)D ≡ p′E·D ≡ p′ mod N.

The lower ln/4 bits of p′ correspond to the ln/4 least significant bits of one
of the prime factors of n. Applying Coppersmith’s factorization attack on n and
p⌋ln/4, the manufacturer is able to factorize n and thus to compute the corre-
sponding user’s private key. Algorithm 6.2 summarizes the computation steps to
factorize n with the knowledge of (N,D).

Input: (n, e), (N,D)
Output: p, q

1 compute x | p⌋ln/4 = p′ = nD mod N .

2 compute (p, q) = Coppersmith(n, p⌋ln/4).
3 return p, q.

Algorithm 6.4: RSAPHP
′

GEN1 factor reconstruction

Remark. For RSAPHPGEN1 it is not necessary to satisfy the condition p < N in
order to properly decrypt p. Since N and p are of bit size ln/2, at no time the
condition 2N < p is violated. If p ≥ N and p is encrypted with the manufacturer’s
public key pE mod N ≡ (p mod N)E mod N , the original value of p can be
obtained by slightly modifying the decryption function of the manufacturer:

p = (nD mod N) +N.

The same argument holds for integer p′ used in RSAPHP
′

GEN1 to hide p⌋ln/4
within n.

6.3 Security Analysis

This section provides the security analysis of RSAPHPGEN1 and RSAPHP
′

GEN1 basing
on the backdoor related properties defined in Section 5. Subsequently, both es-
tablished backdoors are compared to those backdoors presented in Section 4.

For estimating the keyspace of RSAPHPGEN1 and RSAPHP
′

GEN1 in our security
analysis, we use the prime number theorem which is defined as follows:

Theorem 6.1 (Prime Number Theorem). Let π(n) be the number of all
primes less than or equal to n. It holds that π(n) ∼ n

ln(n) .

6.3.1 Security Analysis of RSAPHP

GEN1
. For RSAPHPGEN1, we set kpriv, C,

E , and M as follows: k′priv equals the first prime factor of n. C is chosen to

be the identity since RSAPHPGEN1 communicates the entire information of p to
the manufacturer: C(p) = p = kC . E(kC) corresponds to the RSA encryption
of kC with the manufacturer’s public key (N,E): E(kC) = kEC mod N = kE .

43

kE is embedded into the user’s public RSA modulus n by applying M(kE) =
(kE · p−1 mod N) · p = n = k′pub.

In the following, we analyze the properties of RSAPHPGEN1 according to the
definitions given in Section 5.

Confidentiality (poor). Assume that an external attacker is in possession
of (n, e) and (N,E). The external attacker is able to invert M by computing
kE = n mod N . kE is the encryption of p with the manufacturer’s public RSA
key of bit length lN which is half of the length of the user’s RSA key of bit length
ln. To invert E , i.e., to compute p and with that kpriv, the external attacker has
to break RSA of key size lN instead of key size ln. Thus, to ensure that kpriv
remains secret the bit size of N has to be chosen large enough. Since the security
of the user’s RSA key pair depends on N , Confidentiality is classified as poor. If,
however, the external attacker does not know (N,E), then the user’s private key
retains the intended security.

Completeness (good). The manufacturer is able to compute k′priv from kpub
by applying C−1 ◦ E−1 ◦ M−1(kpub), where M−1(kpub = (n, e)) = n mod N ,
E−1 = kDE mod N , and C−1(kC) = C(kC). The composition of the three functions
can be simplified to

RRSAPHP
GEN1

(kpub = (n, e)) = nD mod N = p = k′priv.

According to the classification scheme presented in Table 1, Completeness is
classified as good.

Concealment. To analyze Concealment for RSAPHPGEN1, we have to consider
the subproperties Concealment directly depends on (see Section 5).

KCC (good, asym. exact). Instead of considering the cardinality of KRSAPHP
GEN1

,

it is sufficient to analyze the space q is chosen from: Since RSAPHPGEN1 does not
influence the choice of the public and private exponents e, d, NRSA,e is equal to
NRSAPHP

GEN1,e
and NRSA,d is equal to NRSAPHP

GEN1,d
. The difference of NRSA,n and

NRSAPHP
GEN1,n

directly depends on the cardinality of the set of possible primes for q

in RSAPHPGEN1 referred to as Λ. Thus, the task to determine the difference between
NRSA and NRSAPHP

GEN1
is reduced to determine the difference between Φln/2 and

Λ. For RSA, the security parameter s corresponds to half of the bits of the key,
whereas the length of the key is considered to be ln.

Let N ≈ 2ln/2 so that p is randomly chosen from Φln/2 in RSAPHPGEN1. We can
estimate the cardinality of the set of all primes by applying the prime number
theorem:

|Φln/2| = π(2ln/2)− π(2ln/2−1) ≈ 1

2
· π(2ln/2) ≈ 2ln/2−1−log2(ln/2).

Let Ψ be defined as follows:

Ψ = {f(p)|f(p) = pE · p−1 mod N, p ∈ Φln/2},

where pE · p−1 mod N = f(p) = pE−1 mod N . For

Ψ∗ = {f(x)|f(x) = pE−1 mod N, x ∈ ZN},

44

we have

|Ψ∗| = (1 +
p− 1

gcd(p − 1, E − 1)
) · (1 + q − 1

gcd(q − 1, E − 1)
).

Since E − 1 is even, |Ψ∗| is maximal for the case that E − 1 satisfies

gcd(p − 1, E − 1) = gcd(q − 1, E − 1) = 2. (11)

Since the manufacturer can freely choose E, we assume Equation 11 in the fol-
lowing and thus |Ψ∗| > N/4. This result can be used to estimate the cardinality
of Ψ as |Ψ | ≈ |Φln/2|/4.

Assuming that the elements in Ψ are close to be uniformly distributed over
ZN , about half of the elements in Ψ are ln/2-bit integers. Let Ψ

′ ⊂ Ψ be the set
of all elements in Ψ of bit length ln/2: Ψ

′ := {ψ | ψ ∈ Ψ, lψ = ln/2}. It holds
that |Ψ ′| ≈ 1/2 · |Ψ | = 2ln/2−4−log2(ln/2).

The probability that an element in Ψ ′ is a prime can be estimated by dividing
the cardinality of the set of all ln/2-bit primes by the cardinality of all ln/2-bit
integers:

P(q ∈ Φln/2|q ∈rnd Nln/2) =
|Φln/2|
|Nln/2|

=
2ln/2−1−log2(ln/2)

2ln/2 − 2ln/2−1
= 2−log2(ln/2).

Finally, the number of primes in Ψ ′ can be estimated by

|Λ| = |Ψ ′| · P(q ∈ Φln/2|q ∈rnd Nln/2) = 2ln/2−4−2·log2(ln/2).

To evaluate the cardinality of Λ w.r.t. Φln/2 we compute R(ln/2):

R(ln/2) =
NRSAPHP

GEN1
(ln/2)

NRSA(ln/2)
=

2ln/2−4−2·log2(ln/2)

2ln/2−1−2·log2(ln/2)
= 2−3−log2(ln/2) = 2c(ln/2)·ln/2,

where c(ln/2) = (−3 − log2(ln/2))/(ln/2). Assume that the security parameter
is larger or equal than 512 bits. We have that c(ln/2) ≥ c(512) = −0.02343 and
thus KCC is rated with good. Note that for increasing ln values, the whole term
converges to 0. Thus, KCC is considered to be asymptotic exact.

DC (good). The bits of kpub in RSA
PHP
GEN1 which are influenced by the backdoor

are the bits of n whereas the generation of the public exponent e is not influenced.
Thus, to show that DRSAPHP

GEN1
≈ 0, it is sufficient to show that the distribution

of the bits of p and q generated with RSAPHPGEN1 is close to the corresponding
distribution for the case that p and q are generated with RSA.

As, for instance, it is the case in [The03], we assume that the primes p and q
in RSA are generated by first choosing a random odd ln/2 bit integer followed by
testing it for primality. If the chosen odd integer fails the applied primality test, a
new random ln/2-bit odd integer is drawn or the former prime is incremented by
two. In any case, the primes generated in RSA are uniformly distributed in Φln/2.

In RSAPHPGEN1, the first prime p is chosen in the same way as in RSA. Assume
that N ≈ 2ln/2 and that all odd values q = pE · p−1 mod N with lq < ln/2 are
discarded. According to the considerations of KCC w.r.t. Λ, we have that for a
sufficiently large security parameter, q is close to be uniformly distributed over

45

Φln/2 and thus the distribution of the bits of q generated with RSAPHPGEN1 is close
to the distribution of bits of q generated with RSA. Consequently, DRSAPHP

GEN1
≈ 0

and DC is classified as good.

VCC (failed). The user is able to distinguish between RSAPHPGEN1 and RSA by
analyzing the correlation of variables for RSAPHPGEN1 because the generation of q
depends on p. Hence, if the user fixes p or q and initiates a key regeneration, the
pending prime will be identical to the corresponding prime of the previous key
generation. If the user additionally knows the manufacturer’s public key (N,E),
he is able to distinguish between RSAPHPGEN1 and RSA without performing a key
regeneration. From his private key (n, d) the user is able to compute p and q
[May04]. To proof the presence of the RSAPHPGEN1 backdoor, the user solely has
to check if p = qE · q−1 mod N or q = pE · p−1 mod N holds. According to the
classification scheme presented in Table 1, VCC is classified as failed.

CC (failed). Let tp and tq be the time complexity of RSA for the generation
of p and q where tp = tq. Let F = pE · p−1 mod N . Then the time complexity
for the generation of p and q in RSAPHPGEN1, denoted by TRSAPHP

GEN1,p,q
, leads to:

TRSAPHP
GEN1,p,q

≈ tq · (tp + t(F)) = tq · t(F) + t2p > tq + tp ≈ TRSA,p,q

For large lp, lq, t(F) is negligible w.r.t. tp and tq since t(F) ∈ O(n2) and
tp, tq ∈ O(l4p/log(lp)) [JPV00]. CC for RSAPHPGEN1 is classified as failed because
TRSAPHP

GEN1,p,q
is quadratic in TRSA,p,q.

AM (good). RSAPHPGEN1 does not use additional memory in order to avoid the
correlation of variables or to communicate backdoor information to the manu-
facturer. Thus, AM is rated with good.

RT (failed). A detailed evaluation of the running time analysis of RSAPHPGEN1

is given in Section 7. For the sake of completeness of the security analysis, a
synopsis of the evaluation is given at this point. To evaluate the running time
of RSAPHPGEN1 we accomplished time measurements of 1000 1024-bit key genera-
tions with RSAPHPGEN1 and RSA, respectively. The analysis revealed a significant
difference between the statistical properties of RSA and RSAPHPGEN1 w.r.t. the
running time. We measured a mean running time of 0.03859s for RSA and a
mean running time of 12.2393s for RSAPHPGEN1 which differ by a factor of ≈ 3100.
For keys of larger key sizes the deviation of the mean runtime for RSAPHPGEN1

from the mean runtime of RSA increases rapidly. The coefficient of variation of
RSAPHPGEN1 resulted in 0.9442 which is almost 40% above the result for RSA which
was determined to be 0.5665. Consequently, by analyzing the statistical proper-
ties of the key generation running time of a given blackbox device the presence
of RSAPHPGEN1 can definitely be ascertained. Thus, the running time property of
RSAPHPGEN1 has to be evaluate with failed.

6.3.2 Security Analysis of RSAPHP
′

GEN1
. The security analysis of RSAPHP

′

GEN1

proceeds analogously to the analysis of RSAPHPGEN1. We set k′priv, C, E , and M
as follows: k′priv equals to the first prime factor p of n generated by RSAPHP

′

GEN1.

46

Confidentiality bisected effective key size ©

Completeness RRSAPHP
GEN1

(kpub) = nD mod N
√

Concealment

key related
properties

KCC asym. exact
√

DC DRSAPHP
GEN1

≈ 0
√

algorithm rel.
properties

VCC variable correlation ×

CC quadratic in TRSA,p,q ×

side channel
rel. properties

AM no additional memory
√

RT significant deviation ×

Table 2: Overview of the properties of RSAPHP
GEN1 (

√
: good, ©: poor, ×: failed)

The information compression function C concatenates the ln/4 least significant
bits of p with a ln/4-bit value x ∈rnd {0, 1}ln/4: C(p) = x || p⌋ln/4. E andM are

defined analogously to RSAPHPGEN1.

In the following, we analyze the properties of RSAPHP
′

GEN1 according to the
definitions given in Section 5.

Confidentiality (poor). For RSAPHP
′

GEN1 and RSAPHPGEN1, the analysis of Confi-
dentiality is identical: kC is encrypted with an ln/2-bit RSA key which bisects
the effective key size of RSAPHP

′

GEN1. Thus, Confidentiality is rated with poor.

Completeness (good). To extract k′priv from kpub, the manufacturer has to

apply C−1 ◦ E−1 ◦M−1(kpub). M−1 and E−1 are computed in the same way as
for RSAPHPGEN1. Inverting C corresponds to the reconstruction of the prime fac-
tor p. This is achieved by applying Coppersmith’s factorization attack on n and
on the ln/4 least significant bits of kC , since kC⌋ln/4 = p⌋ln/4. Coppersmith’s
factorization attack returns both prime factors of n. One of them equals to k′priv.

Let Coppersmith′(n, p⌋ln/4) be a modified version of Coppersmith(n, p⌋ln/4)
which only returns prime factor p of n with p⌋ln/4 = kC⌋ln/4. The definition of
C−1 is given by

C−1(kC) = Coppersmith′(n, kC⌋ln/4).
Aggregating the computation steps of C−1 ◦E−1 ◦M−1(kpub) yields the prime

factor reconstruction function of the manufacturer:

R
RSAPHP ′

GEN1
(kpub = (n, e)) = Coppersmith′(n, (nD mod N)⌋ln/4) = p = k′priv.

Knowing one of the prime factors of the user’s public modulus, the manufac-
turer is able to compute the user’s private key kpriv. According to the classifica-
tion scheme presented in Table 1, Completeness is classified as good.

Concealment. To analyze Concealment of RSAPHP
′

GEN1 we have to consider the
subproperties Concealment directly depends (see Section 5).

47

KCC (good, asym. exact). To analyze KCC of KRSAPHP ′
GEN1

it is again sufficient

to analyze the set q is chosen from. The RSA security parameter s equals to the
bit length of the prime factors p and q of n which is lp = lq = ln/2.

We assume that the manufacturer’s public modulusN is of size 2ln/2. The first
prime factor p of n is chosen randomly from Φln/2, where |Φln/2|
≈ 2ln/2−1−log2(ln/2) (see Subsection 6.3.1). In order to compute the cardinality of

Θ = {p′ | p′ = x || p⌋ln/4, x ∈rnd Nln/4, p ∈rnd Φln/2},

we have to determine the cardinality of Nln/4 where x is randomly chosen from
as well as the cardinality of the set Υ formed by all possible values for p⌋ln/4.
The cardinality of Nln/4, corresponds to

|Nln/4| = 2ln/4 − 2ln/4−1 = 2ln/4−1.

Υ is defined as follows:
Υ = {p⌋ln/4 | p ∈ Φln/2}.

Since p is a prime, we can deduce that Υ does not contain any integer divisible by
2 and 5. All other ln/4-bit integers are potential elements in Υ . Truncating the
ln/4 least significant bits of a ln/2-bit prime can be considered to be a mapping
from Φln/2 to Υ . Due to the substantial difference in size of the domain and the
image of the mapping as well as the unpredictable distribution of prime numbers
we can assume that approximately all ln/4-bit integers which are coprime to 2
and 5 appear in Υ . Thus, we can estimate the cardinality of Υ by the following
formula:

|Υ | ≈ 2ln/4−1 − 2ln/4

10
≈ 2ln/4−1 − 2ln/4−3 =

3

4
· 2ln/4−1 ≈ 2ln/4−1.4.

Now, we are able to compute the cardinality of Θ by multiplying the cardinality
of Nln/4 and Υ :

|Θ| = |Nln/4| · |Υ | ≈ 2ln/4−1 · 2ln/4−1.4 = 2ln/2−2.4.

Analogous to the analysis of RSAPHPGEN1 we define Ψ and Ψ ′:

Ψ = {f(p, p′) | f(p, p′) = (p′)E · p−1 mod N},

Ψ ′ = {ψ | ψ ∈ Ψ, lψ = ln/2},
with p and p′ defined as above. Similarly as for RSAPHPGEN1 we can estimate the
cardinality of Ψ and Ψ ′ by |Ψ | ≈ |Θ|/4 and thus |Ψ ′| ≈ 1/2 · |Ψ |.

Finally, we can estimate the cardinality of the set of the possible prime candi-
dates for the second prime factor q of n. In order to do this, we follow the analysis
of KCC for RSAPHPGEN1 and multiply |Ψ ′| by the probability that an element in
Ψ ′ is prime:

|Λ| ≈ |Ψ ′| · P(q ∈ Φln/2 | q ∈rnd Nln/2) = 2ln/2−3.4 · 2−log2(ln/2)

= 2ln/2−5.4−log2(ln/2).

48

To evaluate the cardinality of Λ w.r.t. Φln/2 we compute R(ln/2):

R(ln/2) =
N
RSAPHP ′

GEN1
(ln/2)

NRSA(ln/2)
=

2ln/2−5.4−log2(ln/2)

2ln/2−1−log2(ln/2)
= 2−4.4 = 2c(ln/2)·ln/2,

where c(ln/2) = −4.4/(ln/2). For a secure usage of RSA, s = ln/2 ≥ 512 is
required and we have that c(ln/2) ≥ c(512) = −0.008593 wherefore KCC is
rated with good. For RSAPHP

′

GEN1, KCC is asymptotic exact, too. Compared to
RSAPHPGEN1, the convergence of c(s) to 0 is even faster by a logarithmic factor.

DC (good). DC (good). The analysis of DC for RSAPHP
′

GEN1 can be carried out
analogously to RSAPHPGEN1 which leads to the fact that DC is classified as good.

VCC (good). The user is not able to distinguish between RSAPHP
′

GEN1 and RSA
based on analyzing the correlation of variables for RSAPHP

′

GEN1. We verify this as-
sertion in two steps: first we argue that with key regeneration in combination
with fixing key parameters a distinction is not possible whereupon we show that
the same holds if additionally (N,E) is known to the user.

Since the user’s private and public exponent (e,d) are not affected by
RSAPHP

′

GEN1, we can exclude them from analysis. It remains to show that there
is no variable correlation between p and q which enables the user to distinguish
between the backdoored key generator and the honest one. Suppose the user
fixes one of the prime factors of n. Recall from Section 6.2 how the second RSA
prime factor is generated for RSAPHP

′

GEN1. Since the fresh prime factor cannot be
efficiently distinguished from a randomly generated one, there is no connection
between p and q which can be computed efficiently.

If additionally the manufacturer’s public key is known to the user, he might be
able to distinguish between RSAPHP

′

GEN1 and RSA if he is able to guess the random
integer x ∈ {0, 1}ln/4 which has been used for key generation in RSAPHP

′

GEN1. The
user can check if his guess was correct if the following equation is satisfied:

(x || p⌋ln/4)E · p−1 mod N = q. (12)

Since x is chosen uniformly at random, the best strategy for the user to guess x is
equivalent to iterating through all possible x values until Equation 12 is satisfied.
In the context of RSA, this approach is computationally infeasible since other-
wise it would be possible to factorize RSA modules by first guessing ln/4 bits of
one of the prime factors of n followed by applying Coppersmith’s factorization
attack on those bits and n. Since factoring in general is hard, the user is not
able to distinguish between RSAPHP

′

GEN1 and RSA on the basis of analyzing the
correlation of variables for RSAPHP

′

GEN1 given (N,E). Overall, VCC is classified as
good.

CC (good). Let tp and tq be the time complexity of RSA for generating the
prime factors p and q of n where tp = tq. For RSA

PHP ′

GEN1, we can specify F ex-
plicitly by F = C(p)E · p−1 mod N . The time complexity for the generation of p
and q in RSAPHP

′

GEN1 can be estimated as follows:

TRSAPHP ′
GEN1,p,q

≈ tp + tq · t(F) ≈ tp + tq ≈ TRSA,p,q

49

As for RSAPHPGEN1, for large lp, lq, t(F) is negligible w.r.t. tp and tq since
t(F) ∈ O(n2) and tp, tq ∈ O(l4p/log(lp)) [JPV00]. According to the classification

scheme in Table 1, CC for RSAPHP
′

GEN1 is rated as good.

AM (good). RSAPHP
′

GEN1 does not use additional memory to avoid the correla-
tion of variable or to communicate backdoor information to the manufacturer.
Thus, AM is rated with good.

RT (failed). A detailed evaluation of the running time analysis of RSAPHP
′

GEN1

is given in Section 7. For the sake of completeness of the security analysis, a
synopsis of the evaluation is given at this point. To evaluate the running time of
RSAPHP

′

GEN1 we accomplished time measurements of 1000 1024-bit key and 2048-bit
key generations with RSAPHP

′

GEN1 and RSA, respectively. For 1024-bit key genera-
tion we measured a mean running time of 0.03959s for RSA and a mean running
time of 0.2308s for RSAPHP

′

GEN1, differing by a factor of ≈ 6. For RSAPHP
′

GEN1 the
coefficient of variation was ascertained by 0.8601 which is more than 30% above
the ascertained value for RSA (0.559). For 2048-bit key generation we achieved
similar results. The mean running time resulted in 2.3095s for RSAPHP

′

GEN1 and
0.2625s for RSA, differing by a factor of ≈ 9. As expected, the difference between
the coefficient of variation which could be ascertained by 0.8995 and 0.6695 for
RSAPHP

′

GEN1 and RSA decreases for increasing the key size. Although the running
time of RSAPHP

′

GEN1 could be reduced significantly w.r.t. RSAPHPGEN1, altogether the
running time property for RSAPHP

′

GEN1 has to be classified as failed for 1024- and
2048-bit key generation because of the non neglectable increase of variation of
the running time compared to RSA.

Confidentiality bisected effective key size ©

Completeness R
RSAPHP ′

GEN1

(kpub) =

Coppersmith′(n, (nD mod N)⌋ln/4)

√

Concealment

key related
properties

KCC asym. exact
√

DC DRSAPHP
GEN1

≈ 0
√

algorithm rel.
properties

VCC no variable correlation
√

CC linear in TRSA,p,q
√

side channel
rel. properties

AM no additional memory
√

RT significant deviation ×

Table 3: Overview of the properties of RSAPHP ′

GEN1 (
√
: good, ©: poor, ×: failed)

50

6.3.3 Discussion. Table 4 provides a comparative overview of the analysis
results for the backdoor related properties of RSAPHPGEN1, RSA

PHP ′

GEN1, as well as the
prominent backdoors which were discussed in Section 4. The analysis results of
the backdoors presented in Section 4 have been extracted from [Arb08]. Although
no backdoor can be considered to be confidential, complete, and concealing at
the same time, it is noticeable that w.r.t. the statistical backdoor properties
RSAPHP

′

GEN1 is superior to the other backdoors. Particularly, the achieved results
for KCC for RSAPHP

′

GEN1 are outstanding since the difference between N
RSAPHP ′

GEN1

and NRSA can be neglected for a sufficiently large security parameter. We are not
aware of any other RSA backdoors achieving asymptotic exactness for KCC. In
addition, as opposed to the reference backdoors, RSAPHP

′

GEN1 is the only backdoor
which satisfies all mandatory subproperties of Concealment.

The only disadvantage of RSAPHP
′

GEN1 is the bisection of the effective key size
leading to the classification as poor w.r.t. Confidentiality.

7 Implementation and Evaluation

To give a proof of concept and to accomplish a timing analysis for the proposed
backdoors involving a comparison with the timing results of an unmodified RSA
version, we embedded RSAPHPGEN1 and RSAPHP

′

GEN1 into the RSA implementation
of OpenSSL11 version 1.0.1e. OpenSSL can be seen as two tools in one: a crypto-
graphic library and an SSL (Secure Socket Layer) toolkit, both written in C. The
library provides implementations of the industry’s best-regarded algorithms like
encryption algorithms, message digest algorithms, message authentication codes,
and a pseudo number generator [VMC02]. Additionally, OpenSSL comes with a
command line interface which provides access to much of its functionality. We
use the OpenSSL command line interface below for instance to generate RSA
key pairs. The RSA implementation of OpenSSL can be found in openssl-1.0.1e

/crypto/rsa. The source file rsa_gen.c in the rsa folder contains the relevant code
for generating the RSA key pair components, i.e., e, p, q, n, d.

Basically, a call of the RSA key generator works as follows:

1. Unless otherwise specified, e is set to 6553712.
2. p and q are generated subsequently without considering the properties of safe

primes13 by default.
3. n is computed by multiplying p and q.
4. d is computed by inverting e mod ϕ(n).

According to the design of RSAPHPGEN1 and RSAPHP
′

GEN1 the code for generat-
ing p and q in rsa_gen.c has to be modified to implement the backdoors into
OpenSSL.

To support arithmetic and the representation of large integers as it is neces-
sary for RSA, OpenSSL provides the BN (Big Number) library which declares
routines for the BIGNUM data type. The size of a number a variable of type BIGNUM

can hold is only restricted by the available memory [VMC02].

11http://www.openssl.org/
1265537 is a Fermat prime which has favorable properties concerning the security of RSA

and the computation time for encryption.
13A safe prime is a prime which satisfies a set of security relevant properties which are not

satisfied by every prime.

51

Backdoor Confidentiality Completeness Concealment

Name Alg. sym./asym. KCC DC VCC CC RT AM

DH
β1

GEN2 4.1,4.2 asym. © © © © √ √
— ×

RSA
β1

GEN2 4.4 asym. © √ × © × © —
√

RSAPAP
GEN1,2 4.6 asym. © √ © © √ √

—
√

RSAPAP ′

GEN1,2 — asym. © √ © © √ √
—

√

RSAEC
GEN1 4.10 asym.

√ √ © © √ © √ √

ElGamal
β1

GEN 4.11 asym. © √ × × © © —
√

ElGamal
β2

GEN — asym. © √ × × © © —
√

ElGamal
β3

GEN 4.13 asym.
√ √ √ © × × —

√

RSAHSD
GEN2 4.15 sym.

√ √ × © © √
— ×

RSAHSPE
GEN2 4.17 sym.

√ √ © © © √
—

√

RSAHSE
GEN2 — sym.

√ √ © © © √
—

√

RSAHP
GEN2 4.19 sym.

√ √ © √ © √
—

√

RSAPHP
GEN1 6.3 asym. © √ √ √ × × × √

RSAPHP ′

GEN1 6.1 asym. © √ √ √ √ √ × √

Table 4: Overview of the properties of discussed backdoors (
√
: good, ©: poor, ×: failed, —: not available)

52

In the following sections, we will successively elucidate the implementation
of RSAPHPGEN1 and RSAPHP

′

GEN1, the corresponding methods to reconstruct private
keys from public keys which were generated with one of our backdoors, and con-
clusively we will present an evaluation. The evaluation consists of the comparison
of measured running times of RSAPHPGEN1 and RSAPHP

′

GEN1 with those of the un-
modified RSA implementation in OpenSSL and additionally a discussion of the
running times of the corresponding private key reconstruction functions. The
source code for the key reconstruction functions of both backdoors is included in
Appendix C.

7.1 Implementation of RSAPHP

GEN1

We generated a 512-bit and a 1024-bit RSA key pair for the manufacturer and
included the corresponding public keys into the modified version of rsa gen.c.
Exemplary, the backdoor is implemented for 1024-bit and 2048-bit RSA key
generation, i.e., if the user generates a 1024-bit or a 2048-bit RSA key pair with
the underminded OpenSSL version, a backdoored key is returned. For other key
lengths RSA keys are generated trustworthy.

In doing so, the generation of p and q in rsa_gen.c was replaced by the compu-
tation steps depicted in Algorithm 6.1. The implementation is straightforward—
for each required mathematical operation, there exists a corresponding BN
routine—and thus not discussed explicitly.

7.1.1 Private Key Reconstruction Function. The python script to recon-
struct the user’s private key is included in Appendix C.1. It is called by

./RPK_RSA_GEN1_PHP.py pubKey recPrivKey manPrivKey

where pubKey is the user’s public key, recPrivKey is the name of the file the cor-
responding reconstructed user’s private key is stored to and manPrivKey is the
manufacturer’s private key which is needed to decrypt the user’s public modu-
lus.

We use the python package PyCrypt14 to access an RSA implementation.
The following listing constitutes the main functionality of RPK_RSA_GEN1_PHP.

1 #reconstruct the hidden prime factor p

2 p = pow(n,D,N)

4 #compute q

5 q = n/p

7 #compute d

8 ePhi = (p-1) *(q-1)

9 d = modInv(e,ePhi)

Listing 1.1: Private key reconstruction

First n is decrypted to obtain p. By dividing n by p, we obtain q. Knowing
the prime factors of n one can efficiently compute ϕ(n) and d, the inverse of e
modulo ϕ(n).

14https://www.dlitz.net/software/pycrypto/

53

From n, e, d, p, q an RSA instance is created which provides a method to
export the private key in the PEM15 format compliant to the PKCS#116 speci-
fication. Finally, the user’s private key is written to recPrivKey (see Listing 1.2).

1 #construct the user ’s RSA instance from n,e,d,p,q

2 rsaUser = RSA.construct ((n,e,d,p,q))

4 #write the user ’s private key to the output file

5 extractedKey = rsaUser. exportKey (’PEM ’,pkcs =1)

6 privKeyUser = file (recPrivKey , "w")

7 privKeyUser .write(extractedKey)

8 privKeyUser .write("\n")

Listing 1.2: Private key export

In the following, we demonstrate the combination of RSAPHPGEN1 and the pri-
vate key reconstruction function. We consider only keys in PEM format because
it is the default format of OpenSSL for RSA keys. Other common formats can
be converted to PEM using the OpenSSL command line tool.

Before the user of RSAPHPGEN1 can encrypt or sign messages he has to create
an RSA key pair:

openssl genrsa -out privKey.pem 1024

openssl rsa -in privKey.pem -pubout -out pubKey.pem

Afterwards, the user publishes his public key to enable communication parties
to send him encrypted messages or verify messages containing his signature. With
the knowledge of the user’s public key and his own private key, the manufacturer
is able to reconstruct the user’s private key. For this purpose the manufacturer
uses the key reconstruction method RPK_RSA_GEN1_PHP.py from above:

./RPK_RSA_GEN1_PHP.py pubKey.pem recPrivKey.pem manPrivKey.pem

The reconstructed private key is stored to recPrivKey.pem. Now, the manufac-
turer is able to decrypt eavesdropped public key encrypted messages issued for
the target user and to sign messages in the user’s place.

If instead of a pure public key a certificate was published, the manufacturer
can simply extract the user’s public key by the following command and proceed
as described above:
openssl x509 -inform pem -in crt.pem -pubkey -out crt.pem

Other certificate formats can be converted to PEM format using OpenSSL.
For example a certificate in DER17 format can be converted to the PEM format
by the following command:

openssl x509 -inform der -in crt.der -out crt.pem -outform pem

15http://tools.ietf.org/html/rfc5280
16http://tools.ietf.org/html/rfc3447
17http://www.itu.int/rec/T-REC-X.690/en

54

7.1.2 Evaluation. To compare the key generation running time (RT) of
RSAPHPGEN1 and RSA, we did time measurement for 1000 1024-bit key genera-
tion on a 3.1 GHz PC under OSX.

As one might expect from the complexity analysis of RSAPHPGEN1 in Section 6,
the runtime difference between RSAPHPGEN1 and RSA is significant. The mean
runtime for 1024 bit RSA key generation of the unmodified RSA version resulted
in 0.03859s while the mean runtime of RSAPHPGEN1 is 12.2393s. On average, the
generation of RSAPHPGEN1 backdoored keys takes ≈ 3100 times longer than usual
which makes the exposure of the backdoor trivial using timing analysis.

To compare the variation of the key generation time of both algorithms we
use the coefficient of variation, a normalized measure of variation. The coefficient
of variation of RSA and RSAPHPGEN1 resulted in 0.5665 and 0.9442, respectively.
The coefficient of variation of RSAPHPGEN1 is almost 40% higher than for RSA, i.e.,
the variation around the mean value is 40% higher. Thus, even if the hardware
of the black box device is adapted for the implementation of RSAPHPGEN1, the
backdoor can be detected by analyzing the variation of the computation times
for key generation.

For the key generation of 2048-bit keys the difference of the mean running
time between RSAPHPGEN1 and RSA increases rapidly, while the difference of the
coefficient of variation decreases only neglectable so that we can conclude that
overall the evaluation does not improve when increasing the keysize.

The running time of RPK_RSA_GEN1_PHP.py is less than 0.5 seconds and its com-
plexity corresponds to the complexity of RSA decrpytion. As well as the complex-
ity, the running time of the private key reconstruction function is not relevant
w.r.t. side channel attacks, merely a polynomial running time in the input pa-
rameters has to be assured.

7.2 Implementation of RSAPHP ′

GEN1

As for RSAPHPGEN1 we exemplary implement RSAPHP
′

GEN1 for 1024-bit and 2048-bit
RSA key generation by modifying rsa_gen.c. We include the manufacturer’s 512-
bit and 1024-bit public key into rsa_gen.c and replace the generation procedure
of the second RSA prime q for the 1024-bit and the 2048-bit key case. In the
following we discuss Listing 1.3 which depicts the C code for the backdoored
prime generation of q.

1 do

2 {

3 /* generate x */

4 BIGNUM *x = NULL ;

5 x = BN_new ();

6 BN_rand(x,bitsx ,0,0);

8 BIGNUM *lsbp = NULL ;

9 lsbp = BN_new ();

10 BN_copy(lsbp ,rsa ->p);

12 /* compute the lp/2 least significant bits of p */

13 int i = 0;

14 for(i = bitsp - 1; i >= (bitsp - bitsx); i--)

15 {

55

16 BN_clear_bit (lsbp ,i);

17 }

19 /* concatenate x with the lp/2 least significant bits of p

20 * first do a bitspl - leftshift of x */

21 BIGNUM *xPrime = NULL;

22 xPrime = BN_new ();

23 if(! BN_lshift (xPrime ,x,bitspl)) goto err;

25 /* concatenation by addition */

26 BIGNUM *pPrime = NULL;

27 pPrime = BN_new ();

28 if(! BN_add(pPrime ,xPrime ,lsbp)) goto err;

30 /* compute q */

31 BIGNUM *tmp1 = NULL ;

32 tmp1 = BN_new ();

33 BIGNUM *tmp2 = NULL ;

34 tmp2 = BN_new ();

35 if(! BN_mod_exp (tmp1 , pPrime , E, N, ctx)) goto err;

36 if(! BN_mod_inverse (tmp2 , rsa ->p, N, ctx)) goto err;

37 if(! BN_mod_mul (rsa ->q,tmp1 ,tmp2 ,N,ctx)) goto err;

38 } while((BN_is_prime_ex (rsa ->q,BN_prime_checks ,NULL ,NULL) ==

0) || (BN_cmp(rsa ->p, rsa ->q) == 0) || BN_num_bits (rsa ->q)

!= 1024); /* repeat until q is a 1024 bit prime */

Listing 1.3: Backdoored generation of the second RSA prime for 2048-bit
keys

First, a random number x of bit size bitsx (512/1024 for 1024/2048-bit RSA
keys) is generated (Listing 1.3, Line 3 − 6). This random number has to be
concatenated with the ln/4 least significant bits of the previously generated prime
p to obtain p′ (compare to Algorithm 6.3). Next, we compute the ln/4 least
significant bits of p by clearing the ln/4 most significant bits (Listing 1.3, Line
12 − 17). Since the BN-library only provides standard arithmetic routines for
the BIGNUM datatype, we have to implement the concatentation x||p⌋ln/4 by first
performing a 256/512 bit leftshift of x followed by an addition of p′ (Listing
1.3, Line 19 − 28). The backdoored prime q is computed in three steps: p′ is
encrypted with the manufacturer’s public key; next, the inverse of p modulo N
is computed; both results are multiplied modulo N which results in q (Listing
1.3, Line 35− 37).

The whole procedure is repeated until q passes the primality test, q is a
512/1024 bit integer, and p 6= q (Listing 1.3, Line 38).

7.2.1 Private Key Reconstruction Function. The implementation of the
private key reconstruction function for RSAPHP

′

GEN1 is more involved than the one
for RSAPHPGEN . This is because Coppersmith’s factorization attack has to be in-
volved into the factorization process of n = p · q from the knowledge of n and
the ln/4 least significant bits of p or q. First, we will introduce the implementa-
tion of the factorization attack which is implemented as a Sage18 module (see
Appendix C.3), followed by the presentation of the Sage script which allows the

18http://www.sagemath.org/

56

reconstruction of the user’s private RSA key by calling the factorization attack
as a subfunction (see Appendix C.2).

To get access to Coppersmith’s factorization attack we implemented Coron’s
algorithm on finding small roots of bivariate integer polynomial equations
which was extensively discussed in Section 3. The implementation follows the out-
lined computation steps presented with Algorithm 3.2. We implemented
Coron’s algorithm in Sage to get access to complex mathematical algorithms,
e.g., a lattice reduction algorithm or an algorithm to compute the resultant of
two polynomials. Basing on code snippets, we successively discuss the most im-
portant computation steps of Coron’s algorithm in order to factorize n. The vari-
able names are chosen analogously to the variables used for introducing Coron’s
algorithm in Section 3. Note that for the following part describing the implemen-
tation of Coron’s algorithm N refers to the user’s public modulus whereas n refers
to the absolute value of the determinant of Matrix S introduced in Section 3.

Coron’s algorithm expects the following input parameters:

– N: the user’s public modulus which should be factorized in order to compute
the user’s private key

– P0: the ln/4 least significant bits of one of the prime factors of n

– k: the parameter to control the dimension of the lattice which has to be
reduced (given addBits, k has to be determined experimentally)

– addBits: notifies how many additional bits of p are known (in order to keep k
small)

Given P0 as input parameter, we can compute the lN/4 least significant bits of
q, referred to as Q0, by applying the multivariate Hensel lemma as described in
Section 3 (see Listing 1.4).

1 nob = int(math .ceil (0.25 * _numberOfBits (N))) + addBits

2 pi = 1

3 qi = 1

4 bits = nob

5 for i in range(1,nob):

6 b = multHensel (pi ,qi ,N,P0 ,i)

7 if (P0 >> i)&1:

8 pi = _setBit (pi ,i)

9 else :

10 pi = _clearBit (pi ,i)

11 if b == 1:

12 qi = _setBit (qi ,i)

13 else :

14 qi = _clearBit (qi ,i)

15 Q0 = qi

Listing 1.4: Compute Q0 by applying the multivariate Hensel lemma

_numberOfBits(a) computes the bit length of integer a. The value of pi and qi

which are successively constructed within the for-loop correspond to the i least
significant bits of P0 and Q0 where i is the iterator of the for-loop. From pi and
qi the (i + 1)-bit of Q0 is determined by calling multHensel(pi,qi,N,P0,i). The
auxillary function _setBit(n,i) sets the i-th bit of integer n to 1. _clearBit(n,i)
works vice versa.

57

From P0 and Q0 the bivariate polynomial pxy can be computed:

pxy = 2^bitLengthQ0 * x * y + Q0 * x + P0 * y + int((P0*Q0 - N)

/2^bitLengthQ0)

The roots of pxy (x0, y0) are later used to determine the prime factors of N.
Note that degree δ of pxy is equal to 1.

According to [Cor07], we compute X, Y, the upperbounds for x0 and y0, and W

which bounds the product of X and Y (see Listing 1.5).

1 X = 2^(bitLengthQ - bitLengthQ0)

2 Y = X

3 W = abs(int(pxy.coefficient ({x:1,y:0})))*X

Listing 1.5: Computing the upper bounds for the roots of pxy

The indices i0 and j0 which describe matrix S are computed by maximizing
8(i−u)

2+(j−v)2 |pij |XiY j according to Lemma 3.2. In the first nested loop (see Line
4-9 of Listing 1.6) we compute the indices u and v which maximize |puv|XuY v.
The second nested loop computes i0, j0 by maximizing 8(i−u)

2+(j−v)2 |pij |XiY j

for 0 ≤ i, j < k.

1 print "\n\ ncomputing (i0 ,j0)..."

2 maxW = 0

3 maxUV = (0,0)

4 for u in range(0, delta+1):

5 for v in range(0, delta +1):

6 W = abs(int(pxy. coefficient ({x:u,y:v})))*X^u*Y^v

7 if W > maxW :

8 maxW = W

9 maxUV = (u,v)

10 u,v = maxUV

11 maxV = 0

12 maxIJ = (0,0)

13 for i in range(0, delta+1):

14 for j in range(0, delta +2):

15 V = 8^((i-u)^2 + (j-v)^2) * abs(int(pxy.coefficient ({x:i,y

:j})))*X^i*Y^j

16 if V > maxV :

17 maxV = V

18 maxIJ = (i,j)

19 i0 , j0 = maxIJ

Listing 1.6: Computation of the indices i0 and j0

Next, matrices S and M have to be constructed. In doing so, we first compute
the upper part of M consisting of the monomials of the polynomials sa,b ∈ S.
Listing 1.7 outlines the code for constructing matrix S. From i0 and j0 the row
indices of S are computed and stored to selectedCols. unselectedCols contains the
row indices which were excluded from S. Subsequently, the polynomials sa,b ∈ S
are constructed from which the upper part of M is formed. The rows of M which
correspond to the monomials of pxy are ordered according to [Cor07]. The row
orderings of S and M are provided by the variables listK and listKDelta of type
list, respectively. S can be obtained from the upper part of M by extracting those

58

rows which are stored in selectedCols. In the last computation step of Listing
1.7, n is set to the absolute value of the determinant of S.

1 #compute row number of monomials with x^(i0 + i) * y^(j0 + j)

for 0 <= i,j < k (selectedColumns)

2 columnCounter = (k+delta)^2 - 1

3 selectedCols = []

4 unselectedCols = []

5 for i in range(0,(k+delta)^2):

6 a,b = listKDelta [i]

7 if _monomialSelection (a,b,i0 ,j0 ,k):

8 selectedCols .append(columnCounter)

9 else :

10 unselectedCols .append(columnCounter)

11 columnCounter = columnCounter - 1

12 selectedCols .reverse ()

13 unselectedCols .reverse ()

15 #compute the polynomials sab

16 s = []

17 for i in range(0,k^2):

18 a, b = listK[i]

19 s.append(x^a * y^b * pxy)

20 s.reverse ()

22 #compute upper part of MM consting of the row vectors of sab ’s

23 rowCounter = 0

24 for se in s:

25 vector = []

26 for i in range(0,(k+delta)^2):

27 a,b = listKDelta [i]

28 vector.append(se. coefficient ({x:a,y:b}))

29 vector.reverse ()

30 M.set_row (rowCounter ,vector)

31 rowCounter = rowCounter + 1

33 S = M. matrix_from_rows_and_columns([0..(k^2 - 1)], selectedCols)

35 #compute the determinant of SS

36 n = S.det ().abs()

Listing 1.7: Construction of matrix S

To complete the computation of M the polynomials ri,j ∈ R are computed.
The monomials of each polynomial provide the pending rows of M which are ap-
pended to the upper part of M ordered according to [Cor07] (see Listing 1.8).

1 #compute polynomials rij

2 r = []

3 for iterator in range(0,(k + delta)^2):

4 i, j = listKDelta [iterator]

5 r.append(x^i * y^j * n)

6 r.reverse ()

8 #compute the lower part of M

9 #current value of rowCounter is used to continue the

construction of M

10 for ra in r:

59

11 vector = []

12 for iterator in range(0,(k + delta)^2):

13 i,j = listKDelta [iterator]

14 vector.append(ra. coefficient ({x:i,y:j}))

15 vector.reverse ()

16 M.set_row (rowCounter ,vector)

17 rowCounter = rowCounter + 1

Listing 1.8: Construction of matrix M

From an elongated sequence of matrix multiplications as described in Section
3 L2Prime which corresponds to L′B

2 in Section 3 is computed (see Appendix C.3).
It is not necessary to compute the HNF of L2Prime before applying the LLL algo-
rithm because the computation of the basis for the input matrix is an inherent
operation of the implementation of the LLL algorithm we use. Thus, the LLL
algorithm can directly be applied on L2prime. To obtain the reduce lattice base
we have to cut the 0 rows of the resulting matrix:

L2Red = L2Prime.LLL().matrix_from_rows_and_columns([k^2..(k^2 +

delta^2 + 2 * k * delta - 1)],[0..(delta^2 + 2 * k

* delta - 1)])

From the first row of L2Red which equals to the shortest row vector of L2Red

(referred to as L′RB
2 in Section 3) we extract the coefficients of the corresponding

monomials to construct the bivariate polynomial hxy which has the same integer
roots as pxy (see Listing 1.9).

1 #read coefficiants of hxy

2 hcoeffs = L2Red.row (0).list ()

4 #create hxy

5 columnCounter = (k + delta)^2 - 1

6 hxy = 0 * x * y

7 hcoeffs.reverse ()

8 coeffCounter = 0

9 for iterator in range(0,(k+delta)^2):

10 i,j = listKDelta [iterator]

11 if columnCounter in unselectedCols :

12 hxy = hxy + ((hcoeffs [coeffCounter]//X^i)//Y^j) * x^i * y^j

13 coeffCounter = coeffCounter + 1

14 columnCounter = columnCounter - 1

15 if debug : print "\n\nhxy :";print hxy

Listing 1.9: Construction of polynomial hxy

Subsequently, we compute the resultant of pxy and hxy. We obtain a non-zero
univariate integer polynomial with root x0.

There might be the case that more than one root has been found by the al-
gorithm. For each root x0 we have to compute p(x0, y). From the collected pairs
(x0,y0) we select the unique one with x0 ≥ 0, y0 ≥ 0 which is the root we were
looking for (see Appendix C.3). Finally, if the root of pxy could be computed
succesfully we obtain the prime factors of N by concatenating x0 and P0 as well
as y0 and Q0.

60

1 #compute the prime factors of N

2 p = P0 + targetRoot [0]*2^ bitLengthQ0

3 q = Q0 + targetRoot [1]*2^ bitLengthQ0

4 return (p,q)

Listing 1.10: Computation of the prime factors of N

Next, we describe the Sage script to reconstruct the user’s private key which
calls coronFactorization() as a subfunction (for the remaining section, N denotes
the manufacturer’s and n denotes the user’s public modulus). The script is called
by

sage RPK_RSA_GEN1_PHPP.sage pubKey recPricKey manPrivKey addBits k

where pubKey, recPricKey, and manPrivKey correspond to the user’s public key, the
file name for the reconstructed private key, and the manufacturer’s private key.
addBits indicates the number of additional bits known from p w.r.t. p⌋ln/4

. Pa-
rameter k enables to reduce the dimension of matrixM depending on the number
of additional bits known. As for the implementation of RSAPHPGEN1, we use the
python package PyCrypt to access an RSA implementation.

After readingD and N from the manufacturer’s private key as well as n and e
from the user’s public key, the least significant bits of p are computed by decrypt-
ing n and dismissing the ln/4 most significant bits of the decrypted value. If n, k,
addBits, and P0 = p⌋ln/4

satisfy the required restrictions for Coron’s algorithm
given in Section 3 we are able factorize n by calling coronFactorization(n,P0,k,

addBits). To allow p ∈ Φln/2
> N we have to consider a case differentiation for

the result of the first call of coronFactorization() which is illustrated in Figure 4.
If the first call of coronFactorization() successfully computes p and q, we have to
distinguish two cases: If p ·q = n, the prime factors of n are returned. Otherwise,
it may be the case that p > N . Nevertheless, we can compute the proper value
P0 by adding N to p′. coronFactorization() is called again with the updated value
of P0. For the case that coronFactorization() succeeds, n could be factorized in a
second attempt; p and q are returned. Otherwise, an error message is outputted.

If the first call of coronFactorization() failed it might be the that p > N , too.
In that case, the reconstruction algorithm proceeds analogously to the treated
case that the first call of coronFactorization() was successfully but n 6= p · q.

If the factorization of n finally has been successful, eventually we have to
switch p and q because OpenSSL requires p ≥ q for private RSA keys. Sub-
sequently, the user’s private exponent can be computed and his private key is
exported in PEM format compliant to the PKCS#1 specification and written to
recPrivKey as described for RPK_RSA_GEN1_PHP.py.

In the following, we provide an example19 for the interaction between
RSAPHP

′

GEN1 and RPK_RSA_GEN1_PHPP.sage. First, the user generates a 2048-bit RSA
key pair using the following commands

openssl genrsa -out privKey.pem 2048

openssl rsa -in privKey.pem -pubout -out pubKey.pem

19In this example 38 additional bits of p are contained in p′.

61

Fig. 4: Calling flow of coronFactorization()

and publishes his public key. From the user’s public key and his own private key,
the manufacturer is able to compute the user’s private key by calling
RPK_RSA_PHPP.sage with the following parameters:

sage RPK_RSA_GEN1_PHPP.sage pubKey.pem recPrivKey.pem

manPrivKey.pem 38 7

For the reconstructed private key, a new file called recPrivKey.pem is created
with which the manufacturer is able to decrypt messages of the target user and
to sign messages in his place.

7.2.2 Evaluation. To compare the key generation running time (RT) of
RSAPHP

′

GEN1 and RSA, we did time measurements for 1000 1024-bit and 2048-bit
key generations on a 3.1 GHz PC under OSX.

62

The mean running time for 1024-bit key generations of the unmodified RSA
version resulted in 0.03959s while the mean running time of RSAPHP

′

GEN1 could be
estimated with 0.2308s. On average, RSAPHP

′

GEN1 takes ≈ 6 times longer for gener-
ating 1024-bit keys. This difference might not necessarily give rise to suspection
of the existence of a backdoor without performing a side channel analysis.

The coefficient of variation of RSAPHP
′

GEN1 was ascertained with 0.8601 which
is more than 30% higher than the corresponding value of RSA which was ascer-
tained with 0.559.

For the 2048-bit key generation we achived similar results. The deviation
of the mean running time between RSAPHP

′

GEN1 (2.3095s) and RSA (0.2625s) in-
creases slightly which can be described by the factor of ≈ 9. In contrast, the
difference of the coefficient of variation for RSAPHPGEN1 (0.8995) and RSA (0.6695)
decreases, but the deviation still exceeds 20%.

As for RSAPHPGEN1, the substantial differences of the variation between
RSAPHP

′

GEN1 and RSA inhibit the possibility to adapt the key generation running
time of RSAPHP

′

GEN1 to RSA for arbitrary key sizes by hardware modification.

The box plots for the key generation running times for 1024-bit and 2048-bit
keys (see Figure 5) provide additional statistical measures and give a graphical
illustration of the measurements which confirm our results.

Fig. 5: Boxplot for the running time of RSA and RSAPHP ′

GEN1 for generating 1024-bit keys (left)
and 2048-bit keys (right)

Table 5 presents the determined values of each considered statistical meassure
of RSAPHP

′

GEN1 compared to those of RSA for 1024-bit and 2048-bit key generation,
respectively. For a p-quantile it holds that at least p ·100% of all measured values

63

1024-bit keys 2048-bit keys

stat. measure RSA RSAPHP ′

GEN1 RSA RSAPHP ′

GEN1

mean [s] 0.03959 0.2308 0.2625 2.3095

median [s] 0.0355 0.172 0.221 1.703

coef. of variation 0.559 0.8601 0.6695 0.8995

maximum [s] 0.165 1.269 1.15 14.52

minimum [s] 0.008 0.008 0.022 0.023

0.25-quantile [s] 0.023 0.088 0.132 0.8058

0.75-quantile [s] 0.052 0.31425 0.352 3.269

quartile range [s] 0.029 0.2262 0.22 2.4633

Table 5: Statitical measures for the key generation running time of RSAPHP ′

GEN1 and RSA

are smaller than or equal to the determined value of the quantile. The 0.25-
quantile and the 0.75-quantile are indicated by the upper and lower border of
the box for each box plot. Within this box 50% of all meassurements are located.

The median (the horizontal line in a box) is more resistant against out-
liers than the mean. Since even for the median the running time of RSA and
RSAPHP

′

GEN1 significantly deviates, we can conclude that for the mean running
time difference between RSA and RSAPHP

′

GEN1 the contribution of outliers is not
decisive. In each box plot, outliers can be identified by those meassurements
which lie beyond the whiskers.

The complexity of the private key reconstruction function is determined by
the complexity of Coron’s algorithm which is polynomial in k (for the application
of factoring a composite of two prime factors we have that δ = 1). To achieve
running times < 1h for the factorization of N , in practice it is the case that
additional bits of p have to be known. Note that this does not have a pratical
implication on the properties of RSAPHP

′

GEN1 as discussed in Section 6.
The results of practical experiments with our implementation of Coron’s al-

gorithm on a 3.1 GHz PC under OSX are summarized in Table 6. Consider the
first row of the 1024-bit key block of Table 6 which has to be read as follows: a
1024-bit composite N of two prime factors, both of bitsize lN/2, is factorized in
2s for k = 5 and 280 bits of p known, i.e., 24 additonal bits of p are known. The
dimension of the lattice base which is reduced by applying the LLL-algorithm is
equal to 11 and the running time for LLL equals approximatelly to the running
time of the whole factorization process.

If it is premised that no additional bits of p are known, practical experiments
showed that it is more efficient to guess some bits of p instead of setting k =
⌊log(W)⌋. The amount of bits which have to be guessed depends on the keysize
which in turn is responsible for the relationship between k, the minimal number
of additional bits which have to be known, and the running time to factorize N .
For keys of bitsize 512, it is possible to factorize N on average in ≈ 9 min by
guessing 10 bits and choosing k = 6:

1

2
· 2

10 · 1s
3600

≈ 9 min

If the key size equals to 1024 bits the best running time to factorize N can
be achieved by guessing 14 bits with k = 9 which is on average ≈ 11 days.

64

The optimal setting to factorize 2048-bit keys has been determined to guess 23
additional bits with k = 11: an average running time of ≈ 110000 days has to
be expected.

The estimated minimal running times for factoring without additional bits
known assume that for RSAPHP

′

GEN1 it holds that the number of prime factors
for the user’s public modulus which are larger that the manufacturer’s public
modulus can be neglected. If this is not the case, we have to assume that for
each guess of the unknown bits of p coronFactorization() has to be called twice
(see Figure 4). Thus, the estimated running times have to be doubled.

Note that the job of guessing the correct missing bits of p can be split into a set
of single jobs which can be processed in parallel since each guess is indepedent of
previous and upcoming guesses. Thus, the estimated running time of the private
key recovery function of RSAPHP

′

GEN1 can approximately be reduced by a factor of
1/#processors.

N k bits of p given dimension of L′B
2 LLL factorization

512 4 142 9 < 1 s < 1 s
512 5 140 11 < 1 s < 1 s
512 6 138 13 < 1 s < 1 s
512 7 137 15 2 s 3 s
512 8 136 17 12 s 16 s
512 9 135 19 28 s 48 s
512 11 134 23 2 min 3 min
512 12 133 25 4 min 7 min

1024 5 280 11 2 s 2 s
1024 6 276 13 6 s 7 s
1024 7 273 15 17 s 19 s
1024 8 271 17 42 s 55 s
1024 9 270 19 2 min 2 min
1024 10 269 21 4 min 5 min
1024 11 268 23 7 min 11 min
1024 12 267 25 15 min 21 min

2048 5 559 11 6 s 7 s
2048 6 552 13 21 s 23 s
2048 7 546 15 1 min 1 min
2048 8 543 17 3 min 3 min
2048 9 540 19 6 min 8 min
2048 10 537 22 14 min 17 min
2048 11 535 23 30 min 38 min

Table 6: Running times for factoring N = p · q given the lN/2 least significant bits of p using
Coron’s algorithm implemented with Sage on a 3.1 GHz PC under OSX

8 Conclusion

The primary goal of this paper has been to introduce, implement, and analyze
two novel RSA backdoors: RSAPHPGEN1 and RSAPHP

′

GEN1. The basic mechanism of
both backdoors which distinguishes them from a lot of existing RSA backdoors is
to hide the first RSA prime factor into the second one. RSAPHP

′

GEN1 is an extension
of RSAPHPGEN1. It invokes Coppersmith’s factorization attack to bisect the number

65

of bits of the first prime factor which have to be known by the manufacturer—and
thus the bits which have to be hidden in the second prime factor of n—to recon-
struct the user’s private key. Due to the modifications distinguishing RSAPHPGEN1

from RSAPHP
′

GEN1 additional backdoor related properties could be satisfied or at
least could be improved.

In order to present our results, we first introduced context-relevant crypto-
graphic and mathematical foundations in Section 2 and 3. Subsequently, we gave
a wide-ranged overview of existing backdoors for different cryptosystems based
on various ideas and concepts in Section 4. To provide a comprehensive and
comparative security analysis for RSAPHPGEN1 and RSAPHP

′

GEN1, it was necessary to
revise the established definition of a SETUP in Section 5. In Section 6 we finally
introduced RSAPHPGEN1 and RSAPHP

′

GEN1, provided the corresponding security anal-
ysis basing on Section 5, and compared our results to the properties of existing
backdoors which were introduced in Section 4. To be able to evaluate RSAPHPGEN1

and RSAPHP
′

GEN1 w.r.t. their functionality and run time behavior, we implemented
both backdoors into OpenSSL. The implementation and its evaluation was ex-
tensively discussed in Section 7.

The essential contributions of this work can be divided into those which con-
cern the comparative security analysis and those concerning the implementation
of RSAPHPGEN1 and RSAPHP

′

GEN1.
The security analysis of both novel backdoors revealed a high correlation

w.r.t. the properties of an honest RSA implementation. Particularly, the second
proposed backdoor, RSAPHP

′

GEN1, can be considered to be unique w.r.t. the quality
it satisfies the subproperties of Concealment compared to previously published
prominent RSA backdoors. The implementation of RSAPHPGEN1 and RSAPHP

′

GEN1 in
combination with the corresponding private key recovering functions give a proof
of work for our novel backdoors and would allow a direct comparison of the key
generation running time to other backdoors as soon as corresponding results will
be available.

66

Appendices

A Fundamentals of Linear Algebra

A.1 Inner Product

Let v = (v1, ..., vn) and w = (w1, ..., wn) be two vectors of the same length over
the same field. The inner product of v and w, written 〈v,w〉, is defined as

〈v,w〉 =
n
∑

i=1

viwi.

A.2 Euclidean Norm

Let v be a vector in the Euclidean space R
n. The Euclidean norm of v written

||v||2 is defined as
||v||2 =

√

〈v, v〉

A.3 Adjugate Matrix

The adjugate matrix of a square matrix M ∈ K
n×n is defined as the transpose

of the cofactor matrix of M :

adj(M) = Cof(M)T

The entries of cofactor matrix Cof(M), called cofactors m̃ij of M = (mij)ij ,
can be computed with the following formula:

m̃ij = (−1)i+j ·Minorij .

The Minor Minorij is defined to be the determinant of the submatrix M ′ of
M which is obtained after deleting the i-th row and the j-th column.

An important property of the adjugate matrix is the following one:

M · adj(M) = adj(M) ·M = det(M) ·E.

A.4 Gramian Determinant

Let M ∈ K
m×n. The Gramian determinant is defined to be the determinant of

the Gramian matrix of M (MTM):

Gram(M) = det(MTM).

The Gramian determinant of M is equal to zero iff the columns of M are
linearly independent.

A.5 Gram-Schmidt Algorithm

A Gram-Schmidt orthogonalization algorithm computes an orthogonal basis
{b∗1, ..., b∗ω} (Gram-Schmidt basis) on an input basis {b1, ..., bω} iteratively by
computing

b∗i = bi −
i−1
∑

j=1

〈bi, b∗j 〉
〈b∗j , b∗j 〉

· b∗j

for 2 ≤ i ≤ n and b∗1 = b1.

67

A.6 Hermite Normal Form

According to [Gal12] an n×m integer matrix M =Mi,j (0 ≤ i ≤ n, 0 ≤ j ≤ m)
is in Hermite nomal form (HNF) if there exists an integer r ∈ [1, n] and a strictly
increasing map f : {1, ..., n − r} → {1, ...,m} such that:

1. the last r rows of M are zero,
2. 0 ≤Mj,f(i) < Mi,f(i) for 1 ≤ j < i and Mj,f(i) = 0 for i < j ≤ n.

The HNF of a matrix is of rank m and unique. Algorithms for computing
the HNF which have a polynomial runtime in the input size (O(n2 logM)) are
restricted to elementary row operations which include the addition of rows to
each other, multiplying a row with a non-zero constant, and interchanging rows.

B Backdoor Related Terms and Tools

B.1 Random Oracle Model

A random oracle is a theoretical model which idealizes the properties of hash
functions. The random oracle computes an infinitely random bit string R(s) on
an input bit string s of finite length. For each input string, the random oracle
remembers the output such that for the same input the resulting random bit
stream is always the same.

Definition B.1 (Random Oracle). A random oracle R(s) : {0, 1}∗ → {0, 1}∞
computes on an input bit string of arbitrary length an infinitely bit string with
each bit chosen uniformly at random and independent from s.

Random oracles are a common tool to prove the security of cryptosystems
which rely on the properties of involved cryptographic hash functions. Those
security proofs are accomplished by assuming that the used hash functions have
the same properties as a random oracle.

Since a random oracle is a theoretical model which does not exist in practice
we refer to protocols as defined in [BR93] when random oracles are used in
algorithms presented above.

B.2 Leakage Scheme

The term of leakage scheme was introduced in [YY97], and describes the leakage
bandwidth of the system, i.e, how many times it has to be utilized to leak a
certain amount of secret information to the manufacturer.

Definition B.2 (Leakage Scheme). A (m,n)-leakage scheme is a SETUP
mechanism that leaks m keys/secret messages over n keys/messages with m ≤ n.

B.3 Probabilistic Bias Removal Method

In [YY97] and [YY04] Young and Yung proposed a method called Probabilistic
Bias Removal Method (PBRM) solving the biasing problem which was discovered
by Jo Schueth in [YY96] and reported in the public news group sci.crypt [YY97].
In general, the biasing problem occurres when a random number is drawn from

68

the uniformly distributed set {1, 2, ..., R} but actually the random number has
to be drawn from the uniformly distributed set {1, 2, ..., S} with S > R > S/2
(values in {R + 1, R + 2, ..., S} are drawn with probability zero). In the area of
Kleptography this problem occurres, e.g., when the manufacturer’s public key
(N,E) with N ∈ {0, 1}lN is used to decrypt the user’s key and the result is
treated as uniformly drawn from {0, 1, ..., 2lN }.

The Probabilistic Bias Removal Method solves this problem: from a given uni-
formly random value x ∈ {1, 2, ..., R} an uniformly random value from
{1, 2, ..., S} can be easily derived by calling PBRM(R,S,x) which is given by Al-
gorithm B.1. Additionally, the access to an unbiased coin c is necessary.

Input: R,S, x
Output: (e, x′)

1 set e = 1.
2 set x′ = 0.
3 if x ≤ S −R and c = 1 then
4 set x′ = x.
5 end
6 if x ≤ S −R and c = 0 then
7 set x′ = S − 1− x.
8 end
9 if x > S −R and c = 1 then

10 set x′ = x.
11 end
12 if x > S −R and c = 0 then
13 set e = −1.
14 end
15 return (e, x′).

Algorithm B.1: The Probabilistic Bias Removal Method

Since there is the possibility for PBRM to fail which is the case if
PBRM(R,S,x) returns e = −1 and the method has to be invoked again, PBRM
belongs to category of Monte Carlo algorithms.

The following lemma argues the correctness of PBRM. The appropriate
proof is detailed in [YY04].

Lemma B.1. Let S > R > S/2, let x be a value chosen uniformly at random
from {1, 2, ..., R}, and let (e, x′) = PBRM(R,S,x). If e = 1 then x′ is uniformly
distributed in {1, 2, ..., S}.

C Program Code

C.1 RSAPHP

GEN1
: Private Key Reconstruction Function

1 #!/ usr/bin/python

2 #This script reconstructs private keys from public keys generated with

RSA_GEN1_PHP

3 from Crypto . PublicKey import RSA

4 import sys

69

6 def extendedEuclideanAlgorithm (n, m):

7 if n == 0:

8 return (m, 0, 1)

9 else:

10 g, y, x = extendedEuclideanAlgorithm (m % n, n)

11 return (g, x - (m // n) * y, y)

13 def modInv (a, m):

14 g, x, y = extendedEuclideanAlgorithm (a, m)

15 if g != 1:

16 print "Error: inverse of e mod Phi(n) does not exist."

17 sys.exit (1)

18 else:

19 return x % m

21 debug = True

22 print "recontructing private key ... "

24 if len (sys.argv) < 4:

25 sys.exit("Usage: %s input -public -key -file output -private -key -file

manufacturer -private -key -file" % sys .argv [0])

27 pubKeyUserInput = sys.argv [1]

28 privKeyUserOutput = sys.argv [2]

29 privKeyManufacturerInput = sys.argv [3]

31 pubKeyUser = open(pubKeyUserInput ,’r’)

32 privKeyManufacturer = open(privKeyManufacturerInput ,’r’)

34 #read D and N from the manufacturer’s private key

35 rsaManufacturer = RSA.importKey (privKeyManufacturer.read())

36 D = rsaManufacturer.d

37 N = rsaManufacturer.n

39 #read n and e from the user’s public key

40 rsaUserPub = RSA.importKey (pubKeyUser .read())

41 n = rsaUserPub .n

42 e = rsaUserPub .e

44 #reconstruct the hidden prime factor p

45 p = pow(n,D,N)

46 if n % p != 0:

47 p = p + N

48 if debug : print "\n\np:"; print p;

50 #compute q

51 q = n/p

52 if debug : print "\n\nq:"; print q;

54 #adaption to openSSL rsa_gen.c

55 if p < q:

56 tmp = q

57 q = p

58 p = tmp

60 #compute d

61 ePhi = (p-1) *(q -1)

62 d = modInv (e,ePhi)

63 if debug : print "\n\nd:"; print d;

65 #construct the user ’s RSA instance from n,e,d,p,q

66 rsaUser = RSA.construct ((n,e,d,p,q))

68 #write the user’s private key to the output file

69 extractedKey = rsaUser .exportKey (’PEM ’,pkcs =1)

70 if debug : print "\n\ nextracted key :"; print extractedKey;

71 privKeyUser = file(privKeyUserOutput , "w")

72 privKeyUser .write(extractedKey)

70

73 privKeyUser .write("\n")

75 pubKeyUser .close

76 privKeyManufacturer.close ()

77 privKeyUser .close ()

C.2 RSAPHP
′

GEN1
: Private Key Reconstruction Script

1 #!/ usr/bin/python

2 #This script reconstructs private keys from public keys generated with

RSA_GEN_PHP’

3 from Crypto . PublicKey import RSA

4 from sage.all_cmdline import *

5 import c2007Module

6 import math

7 import sys

9 def extendedEuclideanAlgorithm (n, m):

10 if n == 0:

11 return (m, 0, 1)

12 else:

13 g, y, x = extendedEuclideanAlgorithm (m % n, n)

14 return (g, x - (m // n) * y, y)

16 def modInv (a, m):

17 g, x, y = extendedEuclideanAlgorithm (a, m)

18 if g != 1:

19 print "Error: inverse of e mod Phi(n) does not exist."

20 sys.exit (1)

21 else:

22 return x % m

24 def clearBit (n, offset):

25 mask = ~(int (1) << offset)

26 return (n & mask)

28 def numberOfBits(n):

29 return (int(math.log(n,2)) + 1)

31 debug = True

33 print "recontructing private key ... "

35 if len (sys.argv) < 6:

36 sys.exit("Usage: %s input -public -key -file output -private -key -file

manufacturer -private -key -file additional -bits k" % sys .argv [0])

38 pubKeyUserInput = sys.argv [1]

39 privKeyUserOutput = sys.argv [2]

40 privKeyManufacturerInput = sys.argv [3]

41 addBits = int(sys.argv [4])

42 k = int(sys.argv [5])

44 pubKeyUser = open(pubKeyUserInput ,’r’)

45 privKeyManufacturer = open(privKeyManufacturerInput ,’r’)

47 #read D and N from the manufacturer’s private key

48 rsaManufacturer = RSA.importKey (privKeyManufacturer.read())

49 D = rsaManufacturer.d

50 N = rsaManufacturer.n

52 #read n and e from the user’s public key

53 rsaUserPub = RSA.importKey (pubKeyUser .read())

54 n = long(rsaUserPub .n)

55 e = long(rsaUserPub .e)

56 secPar = numberOfBits(n)/2

71

58 #compute the hidden least significant bits of p

59 pPrime = pow (n,D,N)

60 pLow = pPrime

61 for i in range(secPar -1, secPar -secPar /2+ addBits -1,-1):

62 pLow = clearBit (pLow ,i)

63 if debug : print "\n\nlower bits of p:"; print pLow;

65 #compute p and q basing on the least significant bits of p

66 result = c2007Module . coronFactorization(n,pLow ,k,addBits)

67 if result == -1:

69 #if p’ might be larger than N

70 pLow = pPrime + N

72 #compute least significant bits of p’

73 for i in range (secPar -1, secPar -secPar /2+ addBits -1,-1):

74 pLow = clearBit (pLow ,i)

75 if debug : print "\n\nlower bits of p:"; print pLow;

77 result = c2007Module .coronFactorization(n,pLow ,k,addBits)

78 if result == -1:

79 print "\n\nError : n can not be factorized "

80 pubKeyUser .close ()

81 sys.exit (1)

82 else:

83 (p,q) = result

84 else:

85 (p,q) = result

87 #check if the computed roots are the primefactors of n

88 if n == p * q:

89 (p,q) = result

90 else:

92 #p’ might be larger than N

93 pLow = pPrime + N

95 #compute least significant bits of p’

96 for i in range(secPar -1, secPar -secPar /2+ addBits -1,-1):

97 pLow = clearBit (pLow ,i)

98 if debug : print "\n\nlower bits of p:"; print pLow;

100 result = c2007Module . coronFactorization(n,pLow ,k,addBits)

101 if result == -1:

102 print "\n\nError : n can not be factorized "

103 pubKeyUser .close ()

104 sys .exit (1)

105 else:

106 (p,q) = result

107 p = long(p)

108 q = long(q)

110 #adaption to openSSL rsa_gen.c

111 if p < q:

112 tmp = q

113 q = p

114 p = tmp

116 #compute d

117 ePhi = (p-1) *(q -1)

118 d = long(modInv (e,ePhi))

119 if debug : print "\n\nd:"; print d;

121 #construct the user ’s RSA instance from n,e,d,p,q

122 rsaUser = RSA.construct ((n,e,d,p,q))

124 #write the user’s private key to the output file

125 extractedKey = rsaUser .exportKey (’PEM ’,pkcs =1)

72

126 if debug : print "\n\ nextracted key :"; print extractedKey;

127 privKeyUser = file(privKeyUserOutput , "w")

128 privKeyUser .write(extractedKey)

129 privKeyUser .write("\n")

131 pubKeyUser .close ()

132 privKeyManufacturer.close ()

133 privKeyUser .close ()

C.3 RSAPHP ′

GEN1
: Coron’s Factorization Algorithm

1 from itertools import *

2 import sys

3 import copy

4 import math

6 #compute the column indices which are used to compute matrix S

7 def _monomialSelection(a,b,i0 ,j0 ,k):

8 return (a >= i0) and (b >= j0) and (a - i0 < k) and (b - j0 < k)

10 #set the order of monomials

11 def _createCombinationList (maxVal):

12 list = []

13 cx = 0

14 cy = 0

15 base = 0

16 max = maxVal

17 maxit = maxVal

18 for i in range (0, max):

19 list.append ((base ,base))

20 for j in range (1, maxit +1) :

21 cy = cy + j

22 list.append ((cx ,cy))

23 cy = base

24 cx = cx + j

25 list.append ((cx ,cy))

26 cx = base

27 maxit = maxit - 1

28 base = base + 1

29 cx = base

30 cy = base

31 list.append ((max ,max))

32 return list

34 #compute the number of bits for the input

35 def _numberOfBits(n):

36 return (int(math.log(n ,2)) + 1)

38 #returns integer with bit at position offset set to 0

39 def _clearBit (n, offset):

40 mask = ~(int (1) << offset)

41 return (n & mask)

43 #returns integer with bit at position offset set to 1

44 def _setBit (int_type , offset):

45 mask = int (1) << offset

46 return (int_type | mask)

48 #multivariate Hensel lemma

49 def multHensel (p,q,N,P0,i):

50 return ((((N - p*q) >> i)&1) - ((P0 >> i)&1)) % 2

52 #implementation of Coron ’s algorithm for finding small roots of

bivariate integer equations from 2007 adapted for the application

of factorization

53 def coronFactorization(N,P0 ,k,addBits):

73

54 debug = False

56 #define polynomial ring over the integers

57 R.<x,y> = ZZ[]

59 #compute Q0 by applying the multivariate Hensel lemma

60 nob = int(math.ceil (0.25 * _numberOfBits(N))) + addBits

61 pi = 1

62 qi = 1

63 bits = nob

64 for i in range (1, nob):

65 b = multHensel (pi ,qi ,N,P0 ,i)

66 if (P0 >> i)&1:

67 pi = _setBit (pi ,i)

68 else:

69 pi = _clearBit (pi,i)

70 if b == 1:

71 qi = _setBit (qi ,i)

72 else:

73 qi = _clearBit (qi,i)

74 Q0 = qi

76 #compute the target polynomial p(x,y)

77 bitLengthQ = int(_numberOfBits(N)/2)

78 bitLengthQ0 = int(_numberOfBits(N)/4) + addBits

79 pxy = 2^ bitLengthQ0 * x * y + Q0 * x + P0 * y + int ((P0*Q0 - N)/2^

bitLengthQ0)

80 print "\ncompute the roots of the polynomial : " + str(pxy)

82 #assume that this algorithm is only used for bivariate polynomials of

degree 1

83 delta = 1

85 #reduce the upper bounds of x0 ,y0 according to the additional bits

known

86 X = 2^(bitLengthQ - bitLengthQ0)

87 Y = X

89 W = abs (int(pxy. coefficient ({x:1,y:0})))*X

90 if debug : print "\n\nX: " + str(X) + " Y: " + str(Y) + " W: " + str (

W)

92 #definition of matrix dimensions

93 M = matrix (ZZ ,(k^2 + (k + delta)^2) ,(k + delta)^2)

94 S = matrix (ZZ , k^2, k^2)

96 #access the monomial order

97 listKDelta = _createCombinationList (k + delta - 1)

98 listK = _createCombinationList (k - 1)

99 if debug : print "\n\nlistKDelta :";print listKDelta

100 if debug : print "\n\nlistK :";print listK

102 #compute i0j0

103 print "\n\ ncomputing (i0 ,j0)..."

104 maxW = 0

105 maxUV = (0,0)

106 for u in range (0, delta +1):

107 for v in range (0, delta +1) :

108 W = abs(int(pxy.coefficient ({x:u,y:v})))*X^u*Y^v

109 if W > maxW:

110 maxW = W

111 maxUV = (u,v)

112 u,v = maxUV

113 maxV = 0

114 maxIJ = (0,0)

115 for i in range (0, delta +1):

116 for j in range (0, delta +2) :

117 V = 8^((i-u)^2 + (j-v)^2) * abs(int (pxy.coefficient ({x:i,y:j})))*

X^i*Y^j

74

118 if V > maxV:

119 maxV = V

120 maxIJ = (i,j)

121 i0 , j0 = maxIJ

122 if debug : print "(i0,j0) = (" + str (i0) + "," + str(j0) + ")"

124 #compute row number of monomials with x^(i0 + i) * y^(j0 + j) for 0

<= i,j < k

125 columnCounter = (k+delta)^2 - 1

126 selectedCols = []

127 unselectedCols = []

128 for i in range (0,(k+delta)^2):

129 a,b = listKDelta [i]

130 if _monomialSelection(a,b,i0 ,j0 ,k):

131 selectedCols.append (columnCounter)

132 else:

133 unselectedCols.append (columnCounter)

134 columnCounter = columnCounter - 1

135 selectedCols.reverse ()

136 unselectedCols.reverse ()

138 #compute the polynomials sab

139 s = []

140 for i in range (0,k^2):

141 a, b = listK[i]

142 s.append (x^a * y^b * pxy)

143 s.reverse ()

145 #compute upper part of MM consting of the row vectors of sab’s

146 rowCounter = 0

147 for se in s:

148 vector = []

149 for i in range (0,(k+delta)^2):

150 a,b = listKDelta [i]

151 vector .append (se.coefficient ({x:a,y:b}))

152 vector .reverse ()

153 M.set_row (rowCounter ,vector)

154 rowCounter = rowCounter + 1

156 S = M. matrix_from_rows_and_columns ([0..(k^2 - 1)],selectedCols)

158 #compute the determinant of SS

159 n = S.det ().abs ()

161 if debug : print "\n\nS:";print S.str ();

162 if debug : print "\n\nabsolute value of determinant of SS:";print n

164 #compute polynomials rij

165 r = []

166 for iterator in range (0,(k + delta)^2):

167 i, j = listKDelta [iterator]

168 r.append (x^i * y^j * n)

169 r.reverse ()

171 #compute the lower part of M

172 #current value of rowCounter is used to continue the construction of

M

173 for ra in r:

174 vector = []

175 for iterator in range (0,(k + delta)^2):

176 i,j = listKDelta [iterator]

177 vector .append (ra.coefficient ({x:i,y:j}))

178 vector .reverse ()

179 M.set_row (rowCounter ,vector)

180 rowCounter = rowCounter + 1

181 if debug : print "\n\nM:";print M.str ()

183 #prepare M to compute L2

184 SelCols = M. matrix_from_rows_and_columns ([0..(k^2-1)], selectedCols)

75

185 UnselCols = M.matrix_from_rows_and_columns ([0..(k^2-1)],

unselectedCols)

186 L = M. matrix_from_rows_and_columns ([k^2..((k^2 + (k + delta)^2) - 1)

], [0..((k + delta)^2 - 1)])

188 #reorder columns of M

189 M2 = SelCols .augment (UnselCols)

190 M2 = block_matrix([M2,L],nrows =2)

191 if debug : print "\n\nM2 :";print M2.str ()

193 #define auxiliary matrices

194 print "\n\ncompute adjugate matrix of S... "

195 SAdj = S.adjoint ()

196 IdK2 = matrix .identity (k^2)

197 IdOmega = matrix .identity (delta ^2 + 2 * k * delta)

198 ZerosK2 = matrix (ZZ ,k^2,k^2 ,[])

199 ZerosOmega = matrix (ZZ ,delta ^2 + 2 * k * delta ,delta ^2 + 2 * k *

delta ,[])

200 ZerosK2Omega = matrix (ZZ ,k^2, delta ^2 + 2 * k * delta ,[])

201 ZerosOmegaK2 = matrix (ZZ ,delta ^2 + 2 * k * delta ,k^2 ,[])

202 if debug : print "SAdj:";print SAdj.str ()

204 M3 = block_matrix([IdK2 ,ZerosK2 ,ZerosK2Omega ,-SAdj ,IdK2 ,ZerosK2Omega ,

ZerosOmegaK2 ,ZerosOmegaK2 ,IdOmega],ncols = 3)

205 if debug: print "\n\nM3:";print M3.str ()

207 M4 = M3 * M2

208 if debug : print "\n\nM4 :";print M4.str ()

210 L2 = M4.matrix_from_rows_and_columns ([k^2,..,((k^2 + (k + delta)^2) -

1)], [k^2,..,((k + delta)^2 - 1)])

211 if debug : print "\n\nL2 :";print L2

213 #compute L2’ by multiplying each colum with the corresponding X^iY^j

term

214 listKDeltaRev1 = copy. deepcopy (listKDelta)

215 listKDeltaRev1.reverse ()

216 for i in range (0,(k+delta)^2):

217 for j in range (0,(delta ^2 + 2 * k * delta)):

218 a, b = listKDeltaRev1[unselectedCols[j]]

219 L2[i,j] = L2[i,j] * X^a * Y^b

220 L2Prime = L2

221 if debug : print "\n\nL2 ’:";print L2Prime

224 #perform the lattice reduction

225 #it is not necessary to compute the basis of L2 first

226 print "\n\nperform lattice reduction ... "

227 L2Red = L2Prime .LLL (). matrix_from_rows_and_columns ([k^2..(k^2 + delta

^2 + 2 * k * delta - 1)] ,[0..(delta ^2 + 2 * k * delta - 1)])

228 if debug : print "L2Red ’:";print L2Red

230 #read coefficiants of hxy

231 hcoeffs = L2Red.row (0).list ()

233 #create hxy

234 columnCounter = (k + delta)^2 - 1

235 hxy = 0 * x * y

236 hcoeffs .reverse ()

237 coeffCounter = 0

238 for iterator in range (0,(k+delta)^2) :

239 i,j = listKDelta [iterator]

240 if columnCounter in unselectedCols:

241 hxy = hxy + ((hcoeffs [coeffCounter]//X^i)//Y^j) * x^i * y^j

242 coeffCounter = coeffCounter + 1

243 columnCounter = columnCounter - 1

244 if debug : print "\n\nhxy:";print hxy

246 #compute the resultant

76

247 print "\n\ ncomputing resultant ... "

248 Qx = pxy.resultant (hxy ,y)

249 if debug : print "resultant :";print Qx

251 #compute the root of the resultant

252 print "\n\ ncomputing roots of resultant ... "

253 P.<x> = ZZ[]

254 Qx1 = P(Qx)

255 rootsX = Qx1.roots(multiplicities = False)

256 if len(rootsX) == 0:

257 return -1

258 if debug : print "\n\n------------------------------ "

259 targetRoot = []

261 #there can be more than one root

262 for x0 in rootsX :

263 P2.<y> = ZZ[]

264 px0y = P2(pxy(x0,y))

265 if debug : print "px0y:";print px0y

266 rootsY = px0y.roots(multiplicities = False)

267 if len(rootsY) == 0:

268 if debug : print "\n\nno roots computed "

269 if debug : print " ------------------------------ "

270 continue

271 #compute the root of px0y

272 print "\n\ncomputing roots of px0y ... "

273 y0 = rootsY [0] # attention: there can be more than one root!

274 root = (x0,y0)

275 if x0 >= 0 and y0 >= 0:

276 targetRoot .append (x0)

277 targetRoot .append (y0)

278 if debug : print "\n\ncomputed root:";print root

279 if debug : print " ------------------------------ "

280 if len(targetRoot) == 0:

281 return -2

282 print "\n\ntarget root: (" + str(targetRoot [0]) + "," + str (

targetRoot [1]) + ")"

284 #compute the prime factors of N

285 p = P0 + targetRoot [0]*2^ bitLengthQ0

286 q = Q0 + targetRoot [1]*2^ bitLengthQ0

288 print "\n\nprime factors of n: " + "p = " + str (p) + ", q = " + str (

q)

290 #return targetRoot

291 return (p,q)

References

[And93] R. J. Anderson. A Pratical RSA Trapdoor. Journal of Electronics Letters, 29, 1993.
[Arb08] G. Arboit. Two Mathematical Security Aspects of the RSA Cryptosystem. PhD thesis,

McGill University - School of Computer Science, 2008.
[BD00] D. Boneh and G. Durfee. Cryptanalysis of RSA with Private Key d Less Than

N0.292. IEEE Transactions on Information Theory, 46:1339–1349, 2000.
[BDF98] D. Boneh, G. Durfee, and Y. Frankel. An Attack on RSA Given a Small Fraction

of the Private Key Bits. In Advances in Cryptology – ASIACRYPT 1998, volume
1514 of Lecture Notes in Computer Science, pages 25–34. Springer Berlin Heidelberg,
1998.

[BMS84] E. Bach, G. Miller, and J. Shallit. Sums of Divisors, Perfect Numbers, and Factoring.
In Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing,
STOC 1984, pages 183–190, 1984.

[BR93] M. Bellare and P. Rogaway. Random Oracles Are Practical: A Paradigm for Designing
Efficient Protocols. In Proceedings of the 1st ACM Conference on Computer and

Communications Security, CCS 1993, pages 62–73, 1993.

77

[Buc10] J. Buchmann. Einführung in die Kryptographie. Springer, 5 edition, 2010.
[CFA+06] R. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Niguyen, and F. Vercauteren.

Handbook of Elliptic and Hyperellitptic Curve Cryptography. Chapman & Hall/CRC,
2006.

[Cop96] D. Coppersmith. Finding a Small Root of a Bivariate Integer Equation; Factoring
with High Bits Known. In Proceedings of the 15th Annual International Conference on

Theory and Application of Cryptographic Techniques, volume 1070 of EUROCRYPT

1996, pages 178–189. Springer Berlin Heidelberg, 1996.
[Cop97] D. Coppersmith. Small Solutions to Polynomial Equations, and Low Exponent RSA

Vulnerabilities. Journal of Cryptology, 10:233–260, 1997.
[Cor04] J.-S. Coron. Finding Small Roots of Bivariate Integer Polynomial Equations Revis-

ited. In Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes

in Computer Science, pages 492–505. Springer Berlin Heidelberg, 2004.
[Cor07] J.-S. Coron. Finding Small Roots of Bivariate Integer Polynomial Equations: A Direct

Approach. In Advances in Cryptology – CRYPTO 2007, volume 4622 of Lecture Notes

in Computer Science, pages 379–394. Springer Berlin Heidelberg, 2007.
[CS03] C. Crépeau and A. Slakmon. Simple Backdoors for RSA Key Generation. In Topics

in Cryptology – CT-RSA 2003, volume 2612 of Lecture Notes in Computer Science,
pages 403–416. Springer Berlin Heidelberg, 2003.

[DH76] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions

on Information Theory, 22:644–654, 1976.
[DK07] H. Delfs and H. Knebl. Introduction to Cryptography. Springer, 2007.
[Gal12] S. Galbraith. Mathematics of Public Key Cryptography. Cambridge University Press,

2012.
[GCL92] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for Computer Algebra.

Kluwer Academic Publishers, 1992.
[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. Freeman, 1979.
[HG97] N. Howgrave-Graham. Finding Small Roots of Univariate Modular Equations Revis-

ited. In Proceedings of the 6th IMA International Conference on Cryptography and

Coding, volume 1355 of Lecture Notes in Computer Science, pages 131–142. Springer
Berlin Heidelberg, 1997.

[HS09] N. Heninger and H. Shacham. Reconstructing RSA Private Keys from Random Key
Bits. In Advances in Cryptology – CRYPTO 2009, volume 5677 of Lecture Notes in

Computer Science, pages 1–17. Springer Berlin Heidelberg, 2009.
[JPV00] M. Joye, P. Paillier, and S. Vaudenay. Efficient Generation of Prime Numbers. In

Cryptographic Hardware and Embedded Systems - CHES 2000, volume 1965 of Lecture
Notes in Computer Science, pages 340–354. Springer Berlin Heidelberg, 2000.

[Kno13] F. Knoke. RSA bestreitet Millionen-Deal mit der NSA. http://www.spiegel.de/
netzwelt/web/it-firma-rsa-dementiert-10-millionen-deal-mit-nsa-a-940620.html,
2013.

[Len08] H. W. Lenstra. Lattices. Algorithmic Number Theorie: Lattices, Number Fields,

Curves, and Cryptography, pages 127–181, 2008.
[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring Polynomials with Rational

Coefficients. Mathematische Annalen, 261:515–534, 1982.
[Maj13] M. Majica. Sicherheitsfirma RSA warnt vor sich selbst. http://www.zeit.de/digital/

datenschutz/2013-09/rsa-bsafe-kryptografie-nsa, 2013.
[May04] A. May. Computing the RSA Secret Key is Deterministic Polynomial Time Equiva-

lent to Factoring. In Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture
Notes in Computer Science, pages 213–219. Springer Berlin Heidelberg, 2004.

[Sch13] J. Schmidt. Todesurteil für Verschlüsselung in den USA. http://www.heise.de/
security/artikel/Todesurteil-fuer-Verschluesselung-in-den-USA-1972561.html, 2013.

[The03] The OpenSSL Project. OpenSSL: The Open Source Toolkit for SSL/TLS.
www.openssl.org, April 2003.

[VMC02] J. Viega, M. Messier, and P. Chandra. Network Security with OpenSSL. O’Reilly, 1
edition, 2002.

[Wei03] E. Weisstein. RSA-576 Factored. http://mathworld.wolfram.com/news/ 2003-12-
05/rsa/, 2003.

[Wei05] E. Weisstein. RSA-640 Factored. http://mathworld.wolfram.com/news/ 2005-11-
08/rsa-640/, 2005.

78

[Wie90] M. J. Wiener. Cryptanalysis of short RSA secret exponents. IEEE Transactions on

Information Theory, 36:553–558, 1990.
[YY96] A. Young and M. Yung. The Dark Side of Black-Box Cryptography or: Should We

Trust Capstone? In Advances in Cryptology – CRYPTO 1996, volume 1109 of Lecture
Notes in Computer Science, pages 89–103. Springer Berlin Heidelberg, 1996.

[YY97] A. Young and M. Yung. Kleptography: Using Cryptography Against Cryptography.
In Advances in Cryptology – EUROCRYPT 1997, volume 1233 of Lecture Notes in

Computer Science, pages 62–74. Springer Berlin Heidelberg, 1997.
[YY04] A. Young and M. Yung. Malicious Cryptography - Exposing Cryptovirologie. Wiley,

2004.
[YY06] A. Young and M. Yung. A Space Efficient Backdoor in RSA and Its Applications. In

Selected Areas in Cryptography, volume 3897 of Lecture Notes in Computer Science,
pages 128–143. Springer Berlin Heidelberg, 2006.

[YY08] A. Young and M. Yung. A Timing-Resistant Elliptic Curve Backdoor in RSA. In
Information Security and Cryptology, volume 4990 of Lecture Notes in Computer

Science, pages 427–441. Springer Berlin Heidelberg, 2008.
[Zim95] P. Zimmermann. Building in Big Brother. chapter Pretty Good Privacy: Public Key

Encryption for the Masses, pages 93–107. Springer-Verlag New York, Inc., 1995.

79

80

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years.

A complete list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2012-01 Fachgruppe Informatik: Annual Report 2012

2012-02 Thomas Heer: Controlling Development Processes

2012-03 Arne Haber, Jan Oliver Ringert, Bernhard Rumpe: MontiArc - Architec-

tural Modeling of Interactive Distributed and Cyber-Physical Systems

2012-04 Marcus Gelderie: Strategy Machines and their Complexity

2012-05 Thomas Ströder, Fabian Emmes, Jürgen Giesl, Peter Schneider-Kamp,

and Carsten Fuhs: Automated Complexity Analysis for Prolog by Term

Rewriting

2012-06 Marc Brockschmidt, Richard Musiol, Carsten Otto, Jürgen Giesl: Auto-

mated Termination Proofs for Java Programs with Cyclic Data

2012-07 André Egners, Björn Marschollek, and Ulrike Meyer: Hackers in Your

Pocket: A Survey of Smartphone Security Across Platforms

2012-08 Hongfei Fu: Computing Game Metrics on Markov Decision Processes

2012-09 Dennis Guck, Tingting Han, Joost-Pieter Katoen, and Martin R.

Neuhäußer: Quantitative Timed Analysis of Interactive Markov Chains

2012-10 Uwe Naumann and Johannes Lotz: Algorithmic Differentiation of Nu-

merical Methods: Tangent-Linear and Adjoint Direct Solvers for Systems

of Linear Equations

2012-12 Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp, Fabian Emmes,

and Carsten Fuhs: Symbolic Evaluation Graphs and Term Rewriting —

A General Methodology for Analyzing Logic Programs

2012-15 Uwe Naumann, Johannes Lotz, Klaus Leppkes, and Markus Towara:

Algorithmic Differentiation of Numerical Methods: Tangent-Linear and

Adjoint Solvers for Systems of Nonlinear Equations

2012-16 Georg Neugebauer and Ulrike Meyer: SMC-MuSe: A Framework for Se-

cure Multi-Party Computation on MultiSets

2012-17 Viet Yen Nguyen: Trustworthy Spacecraft Design Using Formal Methods

2013-01 ∗ Fachgruppe Informatik: Annual Report 2013

2013-02 Michael Reke: Modellbasierte Entwicklung automobiler Steuerungssys-

teme in Klein- und mittelständischen Unternehmen

2013-03 Markus Towara and Uwe Naumann: A Discrete Adjoint Model for Open-

FOAM

2013-04 Max Sagebaum, Nicolas R. Gauger, Uwe Naumann, Johannes Lotz, and

Klaus Leppkes: Algorithmic Differentiation of a Complex C++ Code

with Underlying Libraries

2013-05 Andreas Rausch and Marc Sihling: Software & Systems Engineering Es-

sentials 2013

81

2013-06 Marc Brockschmidt, Byron Cook, and Carsten Fuhs: Better termination

proving through cooperation

2013-07 André Stollenwerk: Ein modellbasiertes Sicherheitskonzept für die ex-

trakorporale Lungenunterstützung

2013-08 Sebastian Junges, Ulrich Loup, Florian Corzilius and Erika Ábrahám: On

Gröbner Bases in the Context of Satisfiability-Modulo-Theories Solving

over the Real Numbers

2013-10 Joost-Pieter Katoen, Thomas Noll, Thomas Santen, Dirk Seifert, and

Hao Wu: Performance Analysis of Computing Servers using Stochastic

Petri Nets and Markov Automata

2013-12 Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and

Jürgen Giesl: Alternating Runtime and Size Complexity Analysis of In-

teger Programs

2013-13 Michael Eggert, Roger Häußling, Martin Henze, Lars Hermerschmidt,

René Hummen, Daniel Kerpen, Antonio Navarro Pérez, Bernhard

Rumpe, Dirk Thißen, and Klaus Wehrle: SensorCloud: Towards the In-

terdisciplinary Development of a Trustworthy Platform for Globally In-

terconnected Sensors and Actuators

2013-14 Jörg Brauer: Automatic Abstraction for Bit-Vectors using Decision Pro-

cedures

2013-16 Carsten Otto: Java Program Analysis by Symbolic Execution

2013-19 Florian Schmidt, David Orlea, and Klaus Wehrle: Support for error tol-

erance in the Real-Time Transport Protocol

2013-20 Jacob Palczynski: Time-Continuous Behaviour Comparison Based on

Abstract Models

2014-01 ∗ Fachgruppe Informatik: Annual Report 2014

2014-02 Daniel Merschen: Integration und Analyse von Artefakten in der mod-

ellbasierten Entwicklung eingebetteter Software

2014-03 Uwe Naumann, Klaus Leppkes, and Johannes Lotz: dco/c++User Guide

2014-04 Namit Chaturvedi: Languages of Infinite Traces and Deterministic Asyn-

chronous Automata

2014-05 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,

Carsten Fuhs, Jera Hensel, and Peter Schneider-Kamp: Automated Ter-

mination Analysis for Programs with Pointer Arithmetic

2014-06 Esther Horbert, Germán Mart́ın Garćıa, Simone Frintrop, and Bastian

Leibe: Sequence Level Salient Object Proposals for Generic Object De-

tection in Video

2014-07 Niloofar Safiran, Johannes Lotz, and Uwe Naumann: Algorithmic Dif-

ferentiation of Numerical Methods: Second-Order Tangent and Adjoint

Solvers for Systems of Parametrized Nonlinear Equations

2014-08 Christina Jansen, Florian Göbe, and Thomas Noll: Generating Inductive

Predicates for Symbolic Execution of Pointer-Manipulating Programs

2014-09 Thomas Ströder and Terrance Swift (Editors): Proceedings of the In-

ternational Joint Workshop on Implementation of Constraint and Logic

Programming Systems and Logic-based Methods in Programming Envi-

ronments 2014

2014-14 Florian Schmidt, Matteo Ceriotti, Niklas Hauser, and Klaus Wehrle:

HotBox: Testing Temperature Effects in Sensor Networks

82

2014-15 Dominique Gückel: Synthesis of State Space Generators for Model

Checking Microcontroller Code

2014-16 Hongfei Fu: Verifying Probabilistic Systems: New Algorithms and Com-

plexity Results

2015-01 ∗ Fachgruppe Informatik: Annual Report 2015

2015-02 Dominik Franke: Testing Life Cycle-related Properties of Mobile Appli-

cations

2015-05 Florian Frohn, Jürgen Giesl, Jera Hensel, Cornelius Aschermann, and

Thomas Ströder: Inferring Lower Bounds for Runtime Complexity

2015-06 Thomas Ströder and Wolfgang Thomas (Editors): Proceedings of the

Young Researchers’ Conference “Frontiers of Formal Methods”

2015-07 Hilal Diab: Experimental Validation and Mathematical Analysis of Co-

operative Vehicles in a Platoon

2015-08 Mathias Pelka, Jó Agila Bitsch, Horst Hellbrück, and Klaus Wehrle (Ed-

itors): Proceedings of the 1st KuVS Expert Talk on Localization

2015-09 Xin Chen: Reachability Analysis of Non-Linear Hybrid Systems Using

Taylor Models

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

83

