
Aachen
Department of Computer Science

Technical Report

Reachability Analysis of Non-Linear
Hybrid Systems Using Taylor Models

Xin Chen

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2015-09

RWTH Aachen · Department of Computer Science · April 2015

The publications of the Department of Computer Science of RWTH Aachen University
are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

http://aib.informatik.rwth-aachen.de/

Reachability Analysis of Non-Linear
Hybrid Systems Using Taylor Models

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften

der RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

M. Sc.

Xin Chen

aus

Shanghai, China

Berichter: Prof. Dr. Erika Ábrahám

Prof. Dr. Sriram Sankaranarayanan

Tag der mündlichen Prüfung: 24. März 2015

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

2

Xin Chen
Theory of Hybrid Systems
xin.chen@informatik.rwth-aachen.de

Aachener Informatik Bericht AIB-2015-09

Herausgeber: Fachgruppe Informatik
RWTH Aachen University
Ahornstr. 55
52074 Aachen
GERMANY

ISSN 0935-3232

Abstract

With the ubiquitous use of computers in controlling physical systems, it requires to have
a new formalism that could model both continuous flows and discrete jumps. Hybrid
systems are introduced to this purpose. A hybrid system, which is modeled by a hybrid
automaton in the thesis, is equipped with finitely many discrete modes and continuous
real-valued variables. A state of it is then represented by a mode along with a valuation
of the variables. Given that the system is in a mode `, the variable values are changed
continuously according to the Ordinary Differential Equation (ODE) associated to `, or
discretely by a jump starting from `. The thesis focuses on the techniques to compute all
reachable states over a bounded time horizon and finitely many jumps for a hybrid system
with non-linear dynamics. The results of that can then be used in safety verification of
the system.

Although a great amount of work has been devoted to the reachability analysis of
hybrid systems with linear dynamics, there are few effective approaches proposed for the
non-linear case which is very often in applications. The difficulty is twofold. Firstly, it is
not easy to find an over-approximation with acceptable accuracy for a set of the solutions
of a non-linear ODE. Secondly, to detect and compute the reachable states under a jump
requires solving non-linear real arithmetic problems which is also difficult in general. In
the thesis, we present our approaches to deal with the above difficulties. For the first one,
we present the use of Taylor models as the over-approximate representations for non-
linear ODE solutions. Our work can be viewed as a variant of the Taylor model method
proposed by Berz et al., such that we are able to efficiently deal with some examples
with more than 10 variables. Besides, we also extend the work of Lin and Stadtherr
to handle the ODEs with bounded time-varying parameters. For the second difficulty,
we present two techniques: (a) domain contraction and (b) range over-approximation to
compute an enclosure for the reachable set from which a jump is enabled. They can be
seen as Satisfiability Modulo Theories (SMT) solving algorithms which are specialized for
the reachability analysis of hybrid systems. In order to reduce the computational cost,
we also propose different heuristics for aggregating Taylor models. Besides the above
contributions, we describe a method to fast generate Taylor model over-approximations
for linear ODE solutions. Its performance is demonstrated via a comparison with the tool
SpaceEx.

To make our methods accessible by other people, we implement them in a tool named
Flow*. To examine the effectiveness, we thoroughly compare it with some related tools
which are popularly used, according to their functionalities, over a set of non-trivial
benchmarks that are collected by us from the areas of mechanics, biology, electronic
engineering and medicine. From the experimental results, the advantage of Flow* over
the other tools becomes more apparent when the scale of the system grows. On the other

3

4

hand, it also shows that Flow* can be applied to analyzing realistic systems.

Zusammenfassung

Mit der allgegenwärtigen Verwendung von Computern in der Regelung von physikali-
schen Systemen entstand der Bedarf für neue Formalismen, die in der Lage sind, sowohl
kontinuierliches als auch diskretes Verhalten zu behandeln. Hybride Systeme wurden für
diesen Zweck eingeführt. Ein hybrides System, welches in dieser Arbeit durch hybride
Automaten modelliert wird, ist ausgestattet mit endlich vielen diskreten Modi und kon-
tinuierlichen reell-wertigen Variablen. Der Systemzustand ist repräsentiert durch den ak-
tuellen Modus zusammen mit der Evaluierung der Variablen. In einem gegebenen Modus
`, ändern sich die Variablenwerte entweder kontinuierlich entsprechend den Differential-
gleichungen die ` zugeordnet sind, oder aber diskret einer von ` ausgehenden Transition
folgend. Diese Arbeit konzentriert sich auf Techniken, die es ermöglichen, alle in einem
vorgegebenen Zeithorizont mit einer eingeschränkten Anzahl von diskreten Transitionen
erreichbaren Zustände eines hybriden Systems mit nicht-linearer Dynamik zu bestimmen.

Obwohl die Erreichbarkeitsanalyse für hybride Systeme mit linearer Dynamik bereits
intensiv erforscht wurde, stehen nur wenige Techniken für nicht-lineare Dynamiken, die
in Anwendungen sehr häufig vorkommen, zur Verfügung. Solche Techniken zu entwickeln
ist aus zwei Gründen schwierig. Erstens ist es nicht einfach eine hinreichend präzise
Überapproximation für die Lösungen der nicht-linearen Differentialgleichungen zu finden.
Zweitens müssen, um die Erreichbarkeit entlang diskreter Transitionen zu berechnen,
schwere nicht-lineare reell-arithmetische Probleme gelöst werden. Wir stellen in dieser
Arbeit Ansätze zur Lösung dieser Probleme vor. Um das erste Problem zu lösen, verwen-
den wir Taylor Modelle, um die Lösungen von nicht-linearen Differentialgleichungen über-
approximierend zu repräsentieren. Unser Ansatz kann als eine Variante der Taylor Model
Methode von Berz et al. betrachtet werden. Wir sind in der Lage, hinreichend genaue
überapproximierende Repräsentierungen für die Lösungsmengen von Beispielen mit mehr
als 10 Variablen effizient zu bestimmen. Zusätzlich erweitern wir die Arbeit von Lin und
Stadtherr um Differentialgleichungen mit beschränkten zeit-varianten Parametern behan-
deln zu können. Um die zweite Schwierigkeit zu meistern, stellen wir zwei Techniken vor:
(a) Domänen-Verengung (domain contraction) und (b) Wertebereich-Überapproximation
(range over-approximation), um erreichbare Zustandsmengen, aus denen eine Transition
genommen werden kann, überapproximierend zu beschreiben. Diese Methoden verwenden
SAT Modulo Theories (SMT) Algorithmen, die auf die Erreichbarkeitsanalyse von hybri-
den Systemen angepasst wurden. Um den Berechnungsaufwand zu reduzieren schlagen
wir unterschiedliche Methoden für die Zusammenfassung von mehreren Taylor Modellen
vor. Zusätzlich stellen wir eine Methode zur schnellen Berechnung von Taylor-Modell-
Überapproximationen für Lösungen von linearen Differentialgleichungen vor.

Damit unsere Methoden anderen zugänglich wird, haben wir sie in dem Flow* Pro-
gramm implementiert. Um die Wirksamkeit zu untersuchen, vergleichen wir Flow*

5

6

ausführlich zu anderen häufig verwendeten Programmen anhand mehrerer, nicht-trivialer
Anwendungen, die wir aus den Bereichen der Mechanik, Biologie, Elektrotechnik und
Medizin entnahmen. Aus den experimentellen Ergebnissen werden mit immer größer
werdenden Beispielen die Vorteile von Flow* im Vergleich zu anderen Programmen klar
ersichtlich. Die Ergebnisse zeigen, dass das Programm auf Beispiele realistischer Größe
angewandt werden kann.

(I thank Prof. Erika Ábrahám and Stefan Schupp for the German translation.)

Acknowledgements

The contributions in the thesis are made under the help of many people. First of all, I
thank my advisor Erika Ábrahám for leading me to the topic of hybrid systems. From
her, I learned the basic knowledge of doing research such as finding and solving problems,
reading and writing papers. I am not able to complete my doctoral study without the
help from her.

I am very grateful to Sriram Sankaranarayanan who gave me a great help in my re-
search work. He leads me to being interested in many research topics. His encouragement
and active involvement gave me a tremendous support in my research life.

I want to give my great thanks to my parents Guohua Chen and Weiwei Jin for their
selfless love and support all the time.

I thank Goran Frehse and Oded Maler for the discussion on linear hybrid systems
during my visit to Grenoble. Special thanks to Scott Stoller and Stanley Bak for giving
me valuable advices to improve Flow*.

I thank Yan Zhang, Aleksandar Chakarov, Aditya Zutshi, Bai Xue, Colas Le Guernic,
Matthias Althoff and Ibtissem Ben Makhlouf for many interesting discussions on my
research work. I thank Ming Li for inviting me several times to enjoy typical Chinese
food, and Hao Wu for helping me many times with German translations.

Last but not least, I also thank the members of the group Theory of Hybrid Systems
for sharing fun and happiness during my stay in Aachen.

7

8

Contents

List of Figures 11

List of Tables 14

1 Introduction 17

1.1 Topic . 17

1.1.1 State of the art . 17

1.1.2 Related tools . 19

1.1.3 Models of hybrid systems . 20

1.2 Contributions . 21

1.3 Outline . 23

1.4 Personal publications . 23

1.4.1 Publications included in the thesis 23

1.4.2 Other publications . 25

2 Preliminaries 29

2.1 Notations . 29

2.2 Interval arithmetic . 30

2.2.1 Basic definitions and theorems . 30

2.2.2 Interval evaluation for polynomial functions 35

2.2.3 Applications . 36

2.3 Taylor models . 37

2.3.1 Taylor approximations . 37

2.3.2 Basic theorems of Taylor models 39

2.3.3 Taylor model arithmetic . 42

2.3.4 Applications . 44

2.4 Representations for reachable sets . 44

2.4.1 Convex polyhedra and polytopes 45

2.4.2 Zonotopes . 50

2.4.3 Ellipsoids . 52

2.4.4 Support functions . 53

3 Taylor Model Flowpipes for Continuous Systems 55

3.1 Continuous systems . 55

3.2 High-level flowpipe construction schemes 60

3.2.1 Schemes for linear continuous systems 60

3.2.2 General scheme for non-linear continuous systems 61

9

10 CONTENTS

3.3 Computing Taylor model flowpipes . 62
3.3.1 Standard Taylor model integration method 62
3.3.2 Preconditioned Taylor expansions 67
3.3.3 Fast remainder refinement . 73
3.3.4 Case studies . 74

3.4 Adaptive techniques . 79
3.5 Time-varying uncertainties . 89
3.6 Fast Taylor model flowpipe generation for linear ODEs 92

4 Taylor Model Flowpipes for Hybrid Systems 97
4.1 Hybrid automata . 98
4.2 Framework of the flowpipe construction 101
4.3 Flowpipe/guard intersections . 104

4.3.1 Domain contraction . 105
4.3.2 Range over-approximation . 110

4.4 Intersection aggregation . 113
4.4.1 Aggregation by an oriented rectangular hull 114
4.4.2 Aggregation by a parallelotope . 119
4.4.3 More representations for aggregation 122

4.5 Applications . 123
4.5.1 Simple examples . 123
4.5.2 Spiking neurons . 125
4.5.3 Inverted pendulum . 126
4.5.4 Aircraft collision avoidance maneuver 128
4.5.5 Glycemic Control in Diabetic Patients 129
4.5.6 Non-linear transmission line circuits 130

4.6 Summary . 131

5 The Tool Flow* 133
5.1 Overview . 133
5.2 Basic computational libraries . 135
5.3 Input language . 137

5.3.1 Definition of the system . 137
5.3.2 Initial and unsafe set . 139
5.3.3 Reachability setting . 139
5.3.4 Examples . 141

5.4 Format of Taylor model files . 145
5.5 Performance evaluation . 146

5.5.1 Comparison with VNODE-LP . 146
5.5.2 Comparison with dReach . 147
5.5.3 Comparison with SpaceEx . 149
5.5.4 Scalability evaluation . 149

5.6 Future work . 150

6 Conclusion 151

Bibliography 153

List of Figures

1.1 Bouncing ball . 20

1.2 Hybird automaton model of a bouncing ball 20

1.3 Flowpipe over-approximations of the bouncing ball model 22

2.1 Interval over-approximations of a polynomial function 35

2.2 Taylor approximations for the functions exp(x) and sin(x) 38

2.3 Comparison between Taylor approximation and Chebyshev interpolation
on cos(3x) . 40

2.4 Order k over-approximations for the functions exp(x) and sin(x) 41

2.5 Example of a halfspace and its supporting hyperplane 45

2.6 A polyhedron P defined by the intersection of three halfspaces 46

2.7 Two representations of polytope P . 47

2.8 Polytopic over-approximation of a bounded set 50

2.9 Polytopic under-approximation of a closed and bounded convex set 50

2.10 Construct a zonotope based on the center and generators 51

2.11 Examples of ellipsoids . 53

3.1 Van der Pol circuit . 56

3.2 Vector field of the Van der Pol circuit . 56

3.3 Numerical simulations . 59

3.4 Validated integration . 59

3.5 Step 1: Compute the order k Taylor approximation pl(~xl, t) 66

3.6 Step 2: Evaluate a proper remainder interval Il 66

3.7 Compute the local initial set for the next time step 67

3.8 Example of the relationships among ~xl, ~cl and ~yl. Here, the matrix Al is
identity. 70

3.9 Interval enclosures of the TM flowpipes for the Lotka-Volterra system.
They are computed from the initial set x(0) ∈ [4.9, 5.1], y(0) ∈ [1.9, 2.1] for
the time horizon [0, 4]. 78

3.10 Spring-pendulum of Example 3.3.12 . 79

3.11 Interval enclosures of the TM flowpipes for the spring pendulum example.
They are computed from the initial set r(0) = 1.2, θ(0) = 0.5, vr(0) =
0, vθ(0) = 0 for the time horizon [0, 20]. 80

3.12 Change of the step-size in Test 2 on Brusselator 85

3.13 Change of the TM order in Test 3 on Brusselator 85

3.14 Change of the TM orders in Test 4 on Brusselator. Change of the order in
the dimension X (left). Change of the order in the dimension Y (right). . 85

11

12 LIST OF FIGURES

3.15 Change of the step-size in Test 2 on Lorentz system 86

3.16 Change of the TM order in Test 3 on Lorentz system 86

3.17 Change of the TM orders during the computation of Test 4 on Lorentz
system . 87

3.18 Grid pavings of the TM flowpipes computed in Test 1 on Lorentz system.
Projection on the x-y plane (left). Projection on the y-z plane (right). . . 87

3.19 Change of the step-size in Test 2 on Rössler attractor 88

3.20 Change of the TM order in Test 3 on Rössler attractor 88

3.21 Change of the TM orders in Test 4 on Rössler attractor 89

3.22 Flowpipe over-approximations with disturbances (in red) and without dis-
turbances (in blue) . 91

3.23 Block diagram of a PI controller with disturbance 92

3.24 Flowpipe over-approximations under different bounds on the disturbance
rate u̇ . 93

3.25 Flowpipe over-approximations of the helicopter example 95

4.1 Hybrid automaton of the bouncing ball with air friction 99

4.2 Example of an execution of a hybrid automaton 100

4.3 Flowpipe construction for a hybrid automaton 104

4.4 Example of domain contraction . 105

4.5 Intersections computed by domain contraction with the guard G1 110

4.6 Intersections computed by domain contraction with the guard G2 110

4.7 Invariant constrained and unconstrained flowpipe over-approximations. . . 111

4.8 Example of range over-approximation . 111

4.9 Combination of domain contraction and range over-approximation 113

4.10 Over-approximating a sample set by a rectangular hull 116

4.11 Rectangular aggregation for the flowpipe/guard intersections 117

4.12 A critical direction for an intersection aggregation 120

4.13 Parallelotopic aggregations computed based on different sets of vectors . . 121

4.14 Parallelotopic aggregation computed by selecting critical directions 122

4.15 Flowpipe over-approximations of the bouncing ball with air friction 123

4.16 Hybrid automaton of the 2-dimensional stable system 124

4.17 Flowpipe over-approximations of the 2-dimensional stable system 124

4.18 Flowpipe over-approximations of the 3-dimensional stable system 125

4.19 Flowpipe over-approximations of the non-holonomic integrator 125

4.20 Flowpipe over-approximations of the first spiking neuron model 126

4.21 Flowpipe over-approximations of the second spiking neuron model 126

4.22 Inverted pendulum on a cart . 127

4.23 Flowpipe over-approximations of the inverted pendulum model 127

4.24 Hybrid automaton of the collision avoidance maneuver 128

4.25 Flowpipe over-approximations of the collision avoidance maneuver 129

4.26 Flowpipe over-approximations of the glycemic control model 130

4.27 Transmission line circuit . 131

4.28 Flowpipe over-approximations of the line circuit model with n = 6 132

5.1 Structure of Flow* v1.2.1 . 134

5.2 Example of reachability setting . 140

LIST OF FIGURES 13

5.3 Flowpipe over-approximations of the lac operon model 142
5.4 Flowpipe over-approximations of the non-linear hybrid system 145
5.5 Format of the TM files . 145

14 LIST OF FIGURES

List of Tables

1.1 Tools for reachability analysis of dynamical systems 19

2.1 Complexities of the binary operators on polytopes. Legends: H: H-
representation, V: V-representation, +: easy, −: hard. 49

3.1 Situations for applying different approaches to compute Taylor polynomials 69

3.2 Experiments on the jet engine model with different enhancements 71

3.3 First refinement iteration of Example 3.3.10 75

3.4 Second refinement iteration of Example 3.3.10 76

3.5 Comparison of remainder refinement methods based on the jet engine model 76

3.6 Interval-based integration in VNODE-LP on the Lotka-Volterra system . 77

3.7 TM integration on the Lotka-Volterra system 77

3.8 Interval-based integration in VNODE-LP on the spring pendulum model 78

3.9 TM integration on the spring pendulum model 79

3.10 Flowpipe construction for Brusselator using different settings 83

3.11 Flowpipe construction for Lorentz system using different settings 86

3.12 Flowpipe construction for Rössler attractor using different settings 88

4.1 Decidability of the reachability problem on some subclasses of hybrid au-
tomata. Legends: TA: Timed Automata, RHA: Rectangular Hybrid Au-
tomata, LHA: Linear Hybrid Automata. 101

5.1 Comparison of the two interval evaluation methods. Legends: Var: num-
ber of variables, T : [0, T] is the time horizon, δ: time step-size, k: TM
order, ε: cutoff threshold, t1: time cost of using the first method, W1:
width of the interval enclosure computed using the first method for the
solution at T , t2: time cost of using the second method, W2: width of the
interval enclosure computed using the second method for the solution at T . 136

5.2 Comparison between Flow* and VNODE-LP. Legends: Var: number
of variables, δ: time step-size, k: TM order, Ie: remainder estimation, ε:
cutoff threshold, t: time cost, W : width of the interval enclosure computed
for the solution at T , N : number for subdivision on the initial set. 147

5.3 Comparison between Flow* and dReach. Legends: Var: number of vari-
ables, δ: time step-size, k in Flow* : TM order, Ie: remainder estimation,
ε: cutoff threshold, t: time cost, N : number for subdivision on the initial
set, k in dReach : unrolling depth of bounded model checking, p: value
of numerical perturbation, T.O.: time out, i.e., > 3600. 148

15

16 LIST OF TABLES

5.4 Comparison between Flow* and SpaceEx. Legends: Var: number of vari-
ables, T : time horizon, δ: time step-size, k: TM order, P: precision, box:
box over-approximation, octagon: octagon over-approximation, T.O.:
time out, i.e., > 1800. 149

5.5 Scalability evaluation of Flow* on the non-linear line circuit benchmarks.
Legends: Var: number of variables, δ: time step-size, k: TM order, Ie:
remainder estimation, ε: cutoff threshold, t: time cost. 150

Chapter 1

Introduction

Hybrid systems are a class of dynamical systems which exhibit both continuous and dis-
crete behaviors. They are natural modeling formalism for the systems composed of a
discrete controller interacting with a physical environment. Nowadays, such systems are
also named Cyber-Physical Systems (CPSs) which are ubiquitous in various areas such
as automotive, biology, manufacturing, transportation and so on. Hybrid systems often
appear in safety-critical situations, thus it is significant to verify their safety properties.
Unfortunately, the safety verification of hybrid systems is notoriously difficult. The ex-
isting theories on pure discrete or continuous systems can not be easily extended and
applied to dealing with the mixed behaviors, and hence new techniques are required.

The purpose of a safety verification task is to ensure that no system behavior violates
the given safety property. To do that, most approaches derive a set which captures all
system behaviors and then verify that the safety property is satisfied by the set. A
great amount of work has been devoted to developing effective algorithmic approaches
to produce an over-approximation set of the behavior of a hybrid system. Most of them
combine the existing analysis techniques from computer science and control theory. For
example, we may first compute a finite discrete abstraction of a hybrid system and then
apply a model checking [CGP99] routine to prove the safety. To make the abstraction
as small as possible, we may need to use the techniques developed in control theory for
studying the system behavior under continuous dynamics.

In this thesis, we focus on proving safety properties of non-linear hybrid systems.
We want to compute an over-approximation for the reachable set of a system. If the
over-approximation set does not contain any unsafe state, then we can conclude that the
system is safe. Otherwise we try to improve the approximation quality and check the
inclusion of an unsafe state again.

1.1 Topic

1.1.1 State of the art

One extensively used methodology for detecting unsafe behaviors is simulation [GP06,
DM07, Don07]. A simulation method examines finitely many executions of a system and
tries to find the ones that violate the safety property. Such a method is not able to
handle the case that the system has infinitely many executions unless all executions are

17

18 CHAPTER 1. INTRODUCTION

guaranteed to be in a computable region around the exemplary ones. Besides, it is also not
easy to obtain exact executions for the formal models of hybrid systems, such as hybrid
automata. Thus a safety property may not be easily proved or disproved by simulations.

Another way to verify a safety property on a system is formal verification and it is our
main topic. In a formal verification task, the system is usually defined by a mathematical
model, and we try to prove that no behavior of the model violates the given property. We
usually compute all reachable states of the model, if no unsafe state is included then the
system is safe. Such an approach is also called reachability analysis. For hybrid systems,
widely used mathematical models are hybrid automata. Unfortunately, the problem of
determining the reachability of a state for a hybrid automaton is not decidable [ACH+95],
and hence there is no complete algorithm to determine whether a given hybrid automaton
is safe or not. However, we may resort to computing an over-approximation for the
reachable state set. If the over-approximation does not contain any unsafe state then
neither does the exact reachable set and the system is safe. Otherwise, the safety is
unknown and we may try to refine the over-approximation.

In the past decades, over-approximate reachability analysis for the hybrid automata
with all dynamics defined by linear expressions is intensively studied. Most techniques
use a scheme called flowpipe construction [Zha92]. That is, given a bounded time horizon
[0,∆], an over-approximation of the reachable set in [0,∆] is iteratively computed as a
group of sets F1, . . . , FN such that Fi for each 1 ≤ i ≤ N is an over-approximation of the
reachable set over a time segment in [0,∆], it is also called a flowpipe over-approximation.
Convex geometric objects have been recognized as suitable representations of flowpipe
over-approximations, since the computations on them can be done based on existing al-
gorithms. It has been shown that convex polyhedra [CK98, SDI08], ellipsoids [KV00],
zonotopes [Gir05] and hyper-rectangles [CÁ11, CÁF11] can be successfully used as flow-
pipe over-approximations in the reachability analysis of linear hybrid automata. Besides,
support functions [LG09] which are symbolic representations for general convex sets even
provide a good applicability to handle hundreds of state variables.

For the hybrid automata with non-linear dynamics, convex representations however
are not suitable for flowpipe over-approximations. Since the exact reachable set at a
time point is usually non-convex under a non-linear continuous dynamics, it is better
to use non-convex over-approximations. Some proposed representations are orthogonal
polyhedron [BMP99, Dan00], interval sets [RN11, ERNF11, Gao12], and Taylor mod-
els [BM98, CÁS12]. Besides, the reachability analysis on a non-linear hybrid automaton
may also be done by first deriving a linear or even discrete abstraction of the system and
then performing the reachability analysis on the abstracted model. The abstraction can
be obtained by applying predicate abstraction [ADI03], hybridization [ADG07, ASB08,
DLM09, DMT10] or bisimulation abstraction [HTP05]. A common difficulty of those
techniques is to control the size of the abstraction.

Other than the above methods, invariant computation may also be used to prove
safety of hybrid automata. The main idea is widely used in program analysis [CC77,
CSS03]. Unlike the computation of flowpipe over-approximations, it tries to derive a
system of constraints such that all system states satisfy them. Then if the constraints
are inconsistent with the specification of the unsafe set, then the system is safe. Such
methods may give answers to the verification problems on which flowpipe construction
can not work. Some related work can be found in [SSM04, GT08, Pla10].

All of the methods have advantages and disadvantages in different situations. For

1.1. TOPIC 19

example, flowpipe construction does not work well on unbounded time horizons to which
invariant computation is often applied, but the latter one generally requires a much higher
time cost than the former one in a time-bounded analysis task. For the abstraction
methods, although an abstraction model has simpler dynamics than the original system,
the size of it is often exponential in the size of the original one. Henceforth, a combinatorial
use of those techniques is an interesting topic.

1.1.2 Related tools

The development of the reachability analysis techniques results in the presence of
many tools. We summarize some of them in Table 1.1, the techniques used by those
tools are also briefly described. Since different tools may accept different hybrid system
models, we also list the model name for each tool in the table. We should mention that
some of the tools may have more features, but we only concern the ones which are related
to reachability analysis. More details could be found in the listed references.

Name Hybrid system model Techniques Ref.

HyTech hybrid automata
conservative abstraction,
polyhedral computation

[HHWT95, HHWT97]

CHARON
composed agents

and modes
simulation [AGH+00, ADE+01]

CheckMate hybrid automata
convex polyhedron-based

flowpipe construction
[CK98, SRKC00]

d/dt hybrid automata
orthogonal polyhedron-based

flowpipe construction
[ADM02, Dan00]

PHAVer hybrid automata
conservative abstraction,
polyhedral computation

[Fre05a, Fre05b]

MATISSE constrained linear systems
bisimulation abstraction,

zonotope computation
[GP05]

HSolver hybrid automata
conservative abstraction,

constraint solving
[RS05]

HYSDEL discrete hybrid automata simulation [Bem04, Kva08]
Level set
toolbox

hybrid automata level set method [MT00, MT05]

Ellipsoidal
Toolbox

hybrid automaton with
linear time-varying

continuous dynamics
Ellipsoidal calculus [KV06]

HySAT/iSAT hybrid automata
interval verified integration,

constraint solving
[FHT+07, FH07]

Ariadne hybrid automata
interval verified integration,

constraint solving
[BBC+08]

KeYmaera hybrid programs automated theorem proving [PQ08, Pla10]

SpaceEx
hybrid automata

with linear dynamics
support function-based
flowpipe construction

[Le 09, FLD+11]

NLTOOLBOX
continuous systems,

discrete polynomial systems
hybridization,

Bernstein polynomial technique
[ADG07, TD13]

dReach hybrid automata
interval verified integration,

constraint solving
[Gao12, GKC13]

Table 1.1: Tools for reachability analysis of dynamical systems

20 CHAPTER 1. INTRODUCTION

falling down

bouncing up

Figure 1.1: Bouncing ball

`

ẋ = v
v̇ = −g

x ≥ 0

x = 0 ∧ v < 0

→ v′ := −0.8 · vx := 5

v := 0

Figure 1.2: Hybird automaton model of a bouncing ball

1.1.3 Models of hybrid systems

The models of hybrid systems under our concern are hybrid automata. They are
widely used mathematical models for hybrid systems. The formal definition of a hybrid
automaton will be given in Chapter 4. Here, we present a simple example.

Example 1.1.1. A bouncing ball is illustrated in Figure 1.1. We study its vertical motion
such that the ball is initially in a position which is 5-meter high from the ground and its
velocity is zero. Under the influence of gravity, the ball starts to fall. When it hits the
ground, the velocity is reversed immediately with some loss in the speed. The ball goes
upward until the velocity becomes zero and it then starts to fall again.

The bouncing ball example can be viewed as a hybrid system equipped with two state
variables x and v which represent vertical distance from the ball to the ground and the
velocity of the ball, respectively. The velocity v evolves both continuously when the ball
is moving in the air and discretely when the ball is bouncing up. We give the hybrid
automaton A which models the bouncing ball system in Figure 1.2. The model has two
real-valued variables x, v, a discrete state (or mode, location) ` and a discrete jump.
The constant g is the gravitational acceleration. A state of A is a tuple 〈`, ν〉 such that `
denotes the mode name while ν : {x, v} → R is a valuation of the variables. The condition
x ≥ 0 is the mode invariant which means that if 〈`, ν〉 is a valid state then ν(x) ≥ 0 must
hold. The notation x = 0 ∧ v < 0 → v := −0.8 · v denotes that if the value of x is zero
and v has a negative value then the jump may be executed and after that the value of v is
updated by multiplying it with −0.8. Note that the execution of a jump is not mandatory in
a hybrid automaton. The leftmost assignment x := 5, v := 0 denotes the initial valuation
of the variables.

1.2. CONTRIBUTIONS 21

1.2 Contributions

The main contributions in the thesis are summarized as follows.

A framework of generating Taylor model flowpipes for continuous systems.
It has already been shown in [Ber99, Mak98, BM98, MB03, NJN06, MB09] that Tay-
lor models are powerful flowpipe representations for continuous systems. Even for some
chaotic systems, such as Lorentz system and Rössler attractor, their behaviors in a con-
siderably long time can be tightly wrapped by Taylor models. However, Taylor models
have a terrible scalability on the number of system variables since the largest size (num-
ber of terms) of a fixed-degree polynomial rises heavily with regard to the number of its
variables. In Chapter 3, a general framework for computing Taylor model flowpipes is
presented. We propose some efficient techniques as well as heuristics which can be easily
embedded into the main framework. In order to improve the overall performance, we
present the techniques to adaptively change the time step-sizes or Taylor model orders
during a flowpipe construction according to a user-specified remainder bound. To deal
with the continuous systems with bounded time-varying uncertainties, we describe an
approach using Taylor model arithmetic. Furthermore, to optimize the performance on
linear continuous systems, we present a flowpipe construction method which combines
Taylor model and support function calculus. Based on the experiments, it can be seen
that our method is very competitive to the support function methods implemented in
SpaceEx.

Taylor model flowpipe construction for hybrid systems. The extension of us-
ing Taylor models to generate flowpipe over-approximations for hybrid automata is non-
trivial. Based on the techniques for continuous dynamics, we are able to over-approximate
the reachable set in a mode. However, new techniques are still required to handle jumps
and mode invariants. That is, we need to compute the intersection of a flowpipe over-
approximation and a jump guard (or mode invariant). Such a task is not easy in general
since the intersection is often not a Taylor model. Hence, we seek to compute an over-
approximation of it. To do so, we present two techniques which are named domain
contraction and range over-approximation. In the former one, we try to contract the
domain of the Taylor model as much as possible such that the exact intersection is still
in it. In the latter one, we over-approximate the Taylor model by a polytope, and then
compute the polytope/guard (or polytope/invariant) intersection. An advantage of the
former technique is that we do not need additional over-approximation on the result, since
it is already a Taylor model. For the latter one, we need to further over-approximate the
intersection by a Taylor model, but we can make it entirely lie in the guard (or invariant)
set. Moreover, we also show that the two techniques can be used in combination. To
reduce the computational cost in a reachability analysis task, we present several methods
to aggregate a set of Taylor models. The details will be described in Chapter 4.

Implementation of the tool Flow*. We implement most of our techniques in the
tool Flow*. The main functionalities of it is as follows.

(1) Computing Taylor model flowpipes for non-linear hybrid automata. The results form
an over-approximation of the states which can be reached within a bounded time

22 CHAPTER 1. INTRODUCTION

Figure 1.3: Flowpipe over-approximations of the bouncing ball model

horizon and number of jumps.

(2) Verifying a safety property on a given set of Taylor models. An unsafe set is specified
by a system of polynomial inequalities in Flow*. To ensure that all Taylor models
are safe, we verify the inconsistency of the unsafe set and the Taylor models.

(3) If an unsafe flowpipe is detected, the tool outputs an execution of the automaton
which may possibly lead the system to an unsafe set.

The tool consists of the following main components:

(a) a basic arithmetic library for intervals and Taylor models,

(b) a Taylor model integrator for computing the flowpipes under a continuous dynamics,
and

(c) a Taylor model library for handling mode invariants, jump guards and proving safety
properties.

The basic arithmetic library is implemented based on the GNU Multiple Precision Arith-
metic Library (GMP) and the Multiple Precision Floating-Point Reliable Library (MPFR).
To ensure the conservativeness during a reachability analysis task, we treat every real
number as an interval. Besides, the tool also produces a 2D visualization of Taylor model
flowpipes. For the bouncing ball model given in Example 1.1.1, the octagon enclosures
of the Taylor model flowpipes in 5 jumps are illustrated in Figure 1.3. Heuristics for
improving the overall performance in different situations are also implemented in Flow*.
A detailed description is given in Chapter 5.

1.3. OUTLINE 23

The content in the thesis covers some work packages in the DFG project HyPro, in
which we also plan to collect a set of linear and non-linear hybrid system benchmarks for
evaluating existing tools.

1.3 Outline

The thesis is organized as follows. In Chapter 2, we list our notation convention and
introduce the basic definitions and theorems of interval and Taylor model arithmetic. A
general framework of Taylor model flowpipe construction for continuous systems is pre-
sented in Chapter 3. We extend the related work by introducing more efficient techniques
and the functionality to handle time-varying parameters. In Chapter 4, the approach to
generate Taylor model flowpipes for hybrid automata is discussed in detail. We also show
various techniques and heuristics to improve the overall performance. The implementation
of Flow* is described in Chapter 5.

1.4 Personal publications

1.4.1 Publications included in the thesis

The thesis is partially composed of the work in the following publications.

[1] Xin Chen and Erika Ábrahám. Choice of Directions for the Approximation of Reach-
able Sets for Hybrid Systems. In Proceedings of the 13th International Conference on
Computer Aided Systems Theory (EUROCAST’11), volume 6927 of Lecture Notes in
Computer Science, pages 535-542. Springer, 2011.

Abstract. In this paper we propose an approach to over-approximate the reachable
set (with bounded time and number of transitions) of a hybrid system by a finite set
of polytopes. The constraints of the polytope are determined by a direction choice
method. For the hybrid systems whose (1) continuous dynamics are linear, (2) invari-
ants and guards are defined by linear inequalities, and (3) variable resets are expressed
by invertible affine maps, we show that the over-approximations can be computed in
polynomial time, and the overestimation can be arbitrarily reduced by decreasing the
discretization time step if the continuous dynamics are all deterministic. Some exper-
imental results are also presented to show the effectiveness of our approach.
My contribution: main approach and the experiments.

[2] Xin Chen, Erika Ábrahám, and Goran Frehse. Efficient bounded reachability compu-
tation for rectangular automata. In Proceedings of the 5th International Workshop on
Reachability Problems (RP’11), volume 6945 of Lecture Notes in Computer Science,
pages 139-152. Springer, 2011.

Abstract. We present a new approach to compute the reachable set with a bounded
number of jumps for a rectangular automaton. The reachable set under a flow tran-
sition is computed as a polyhedron which is represented by a conjunction of finitely

24 CHAPTER 1. INTRODUCTION

many linear constraints. If the bound is viewed as a constant, the computation time
is polynomial in the number of variables.
My contribution: main approach and the experiments.

[3] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Taylor model flowpipe con-
struction for non-linear hybrid systems. In Proceedings of the 33rd IEEE Real-Time
Systems Symposium (RTSS’12), pages 183-192. IEEE Computer Society, 2012.

Abstract. We propose an approach for verifying non-linear hybrid systems using
higher-order Taylor models that are a combination of bounded degree polynomials
over the initial conditions and time, bloated by an interval. Taylor models are an
effective mean for computing rigorous bounds on the complex time trajectories of
non-linear differential equations. As a result, Taylor models have been successfully
used to verify properties of non-linear continuous systems. However, the handling of
discrete (controller) transitions remains a challenging problem. In this paper, we pro-
vide techniques for handling the effect of discrete transitions on Taylor model flowpipe
construction. We explore various solutions based on two ideas: domain contraction
and range over-approximation. Instead of explicitly computing the intersection of a
Taylor model with a guard set, domain contraction makes the domain of a Taylor
model smaller by cutting away parts for which the intersection is empty. It is com-
plemented by range over-approximation that translates Taylor models into commonly
used representations such as template polyhedra or zonotopes, on which intersections
with guard sets have been previously studied. We provide an implementation of the
techniques described in the paper and evaluate the various design choices over a set
of challenging benchmarks.
My contribution: main approach and the experiments.

[4] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An analyzer for
non-linear hybrid systems. In Proceedings of the 25th International Conference on
Computer Aided Verification (CAV’13), volume 8044 of Lecture Notes in Computer
Science, pages 258-263. Springer, 2013.

Abstract. The tool Flow* performs Taylor model-based flowpipe construction for
non-linear (polynomial) hybrid systems. Flow* combines well-known Taylor model
arithmetic techniques for guaranteed approximations of the continuous dynamics in
each mode with a combination of approaches for handling mode invariants and discrete
transitions. Flow* supports a wide variety of optimizations including adaptive step
sizes, adaptive selection of approximation orders and the heuristic selection of template
directions for aggregating flowpipes. This paper describes Flow* and demonstrates
its performance on a series of non-linear continuous and hybrid system benchmarks.
Our comparisons show that Flow* is competitive with other tools.
My contribution: improvements of the previous techniques, implementation of the tool,
and experiments.

[5] Xin Chen, Stefan Schupp, Ibtissem Ben Makhlouf, Erika Ábrahám, Goran Frehse, and
Stefan Kowalewski. A Benchmark Suite for Hybrid Systems Reachability Analysis. To
appear in the 7th NASA Formal Methods Symposium (NFM’15), 2015.

1.4. PERSONAL PUBLICATIONS 25

Abstract. Since about two decades, formal methods for continuous and hybrid sys-
tems enjoy increasing interest in the research community. A wide range of analysis
techniques were developed and implemented in powerful tools. However, the lack of
appropriate benchmarks make the testing, evaluation and comparison of those tools
difficult. To support these processes and to ease exchange and repeatability, we present
a manifold benchmark suite for the reachability analysis of hybrid systems. Detailed
model descriptions, classification schemes, and experimental evaluations help to find
the right models for a given purpose.
My contribution: collection of the non-linear benchmarks and the experiments on
Flow*.

The following contributions which have not been published are also included in the
thesis.

(i) An algorithm for fast remainder refinement. The method is described in Sec-
tion 3.3.3. By a comparison with the original method proposed by Berz et al.,
our algorithm may dramatically reduce the time cost of a flowpipe construction
task.

(ii) Generating Taylor model flowpipes for the ODEs with time-varying uncertainties.
We present the method in Section 3.5. Although it is similar to the approach
proposed by Lin and Stadtherr for treating time-invariant uncertainties, our method
can also handle the time-varying case.

(iii) Fast Taylor model flowpipe generation for linear ODEs. The standard Taylor model
integration method can not efficiently compute flowpipe over-approximations for
linear ODEs. To improve it, we present a method that combines Taylor model as
well as support function calculus, such that the performance is very competitive to
the algorithms implemented in SpaceEx. The details are described in Section 3.6.

(iv) An efficient vector selection algorithm for determining a template for Taylor model
aggregation. It is often necessary to over-approximate several Taylor models by one
to relieve the burden in the subsequent computation. However, it is not easy to
keep a good accuracy. In Section 4.4.2, we present an algorithm for determining
a template of the over-approximation. For a system with n variables, the method
selects n linearly independent vectors from the vector set which is derived from the
mode invariants, jump guards and users to form an aggregation template.

1.4.2 Other publications

[6] Sriram Sankaranarayanan, Xin Chen and Erika Ábrahám. Lyapunov Function Syn-
thesis using Handelman Representations. In IFAC Symposium on Nonlinear Control
Systems (NOLCOS’13). 2013.

Abstract. We investigate linear programming relaxations to synthesize Lyapunov
functions that establish the stability of a given system over a bounded region. In
particular, we attempt to discover functions that are more readily useful inside sym-
bolic verification tools for proving the correctness of control systems. Our approach

26 CHAPTER 1. INTRODUCTION

searches for a Lyapunov function, given a parametric form with unknown coefficients,
by constructing a system of linear inequality constraints over the unknown parame-
ters. We examine two complementary ideas for the linear programming relaxation,
including interval evaluation of the polynomial form and “Handelman representations”
for positive polynomials over polyhedral sets. Our approach is implemented as part
of a branch-and-relax scheme for discovering Lyapunov functions. We evaluate our
approach using a prototype implementation, comparing it with techniques based on
Sum-of-Squares (SOS) programming. A comparison with SOSTOOLS is carried out
over a set of benchmarks gathered from the related work. The evaluation suggests
that our approach using Simplex is generally fast, and discovers Lyapunov functions
that are simpler and easy to check. They are suitable for use inside symbolic formal
verification tools for reasoning about continuous systems.
My contribution: discussion on the main approach.

[7] Yan Zhang, Sriram Sankaranarayanan, Fabio Somenzi, Xin Chen and Erika Ábrahám.
From Statistical Model Checking to Statistical Model Inference: Characterizing the Ef-
fect of Process Variations in Analog Circuits. In Proceedings of the 32nd IEEE/ACM
International Conference on Computer-Aided Design (ICCAD’13), pages 662-669,
IEEE/ACM, 2013.

Abstract. This paper studies the effect of parameter variation on the behavior of
analog circuits at the transistor (netlist) level. It is well known that variation in
key circuit parameters can often adversely impact the correctness and performance of
analog circuits during fabrication. An important problem lies in characterizing a safe
subset of the parameter space for which the circuit can be guaranteed to satisfy the
design specification. Due to the sheer size and complexity of analog circuits, a formal
approach to the problem remains out of reach, especially at the transistor level. There-
fore, we present a statistical model inference approach that exploits recent advances in
statistical verification techniques. Our approach uses extensive circuit simulations to
infer polynomials that approximate the behavior of a circuit. A procedure inspired by
statistical model checking is then introduced to produce “statistically sound” models
that extend the polynomial approximation. The resulting model can be viewed as
a statistically guaranteed over-approximation of the circuit behavior. The proposed
technique is demonstrated with two case studies in which it identifies subsets of pa-
rameters that satisfy the design specifications.
My contribution: discussion on the main approach.

[8] Johanna Nellen, Erika Ábrahám, Xin Chen and Pieter Collins. Counterexample Gen-
eration for Hybrid Automata. In Proceedings of the 2nd International Workshop on
Formal Techniques for Safety-Critical Systems (FTSCS’13), volume 419 of Communi-
cations in Computer and Information Science, pages 88-106. Springer, 2013.

Abstract. The last decade brought us a whole range of over-approximative algorithms
for the reachability analysis of hybrid automata, a widely used modeling language
for systems with combined discrete-continuous behavior. Besides theoretical results,
there are also some tools available for proving safety in the continuous time domain.
However, if a given set of critical states is found to be reachable, these tools do not
provide counterexamples for models beyond timed automata.

1.4. PERSONAL PUBLICATIONS 27

This paper investigates the question whether and how available tools can be used to
generate counterexamples, even if this functionality is not directly supported. Using
the tools SpaceEx and Flow*, we discuss possibilities to solve our task with and
without modifying the tools’ source code, report on the effort and the efficiency of
implementation, and propose a simulation-based approach for the validation of the
resulting (possibly spurious) counterexamples.
My contribution: discussion on the main approach and design of the experiments.

[9] Xin Chen, Sriram Sankaranarayanan and Erika Ábrahám. Under-approximate Flow-
pipes for Non-linear Continuous Systems. In Proceedings of the 14th Conference on
Formal Methods in Computer-Aided Design (FMCAD’14), pages 59-66. IEEE, 2014.

Abstract. We propose an approach for computing under- as well as over-approximations
for the reachable sets of continuous systems which are defined by non-linear Ordinary
Differential Equations (ODEs). Given a compact and connected initial set of states,
described by a system of polynomial inequalities, we compute under-approximations
of the set of states reachable over time. Our approach is based on a simple yet
elegant technique to obtain an accurate Taylor model over-approximation for a back-
ward flowmap based on well-known techniques to over-approximate the forward map.
Next, we show that this over-approximation can be used to yield both over- and under-
approximations for the forward reachable sets. Based on the result, we are able to
conclude “may” as well as “must” reachability to prove properties or conclude the
existence of counterexamples. A prototype of the approach is implemented and its
performance is evaluated over a reasonable number of benchmarks.
My contribution: main approach and the experiments.

[10] Mohamed Amin Ben Sassi, Sriram Sankaranarayanan, Xin Chen, and Erika Ábrahám.
Linear Relaxations of Polynomial Positivity for Polynomial Lyapunov Function Syn-
thesis. IMA Journal of Mathematical Control and Information. Accepted January 11,
2015.

Abstract. We examine linear programming (LP) based relaxations for synthesizing
polynomial Lyapunov functions to prove the stability of polynomial ordinary differ-
ential equations (ODEs). Our approach starts from a desired parametric polynomial
form of the polynomial Lyapunov function. Subsequently, we encode the positive defi-
niteness of the function, and the negation of its derivative, over the domain of interest.
We first compare two classes of relaxations for encoding polynomial positivity: relax-
ations by sum-of-squares (SOS) programmes, against relaxations based on Handelman
representations and Bernstein polynomials, that produce linear programmes. Next,
we present a series of increasingly powerful LP relaxations based on expressing the
given polynomial in its Bernstein form, as a linear combination of Bernstein polyno-
mials. Subsequently, we show how these LP relaxations can be used to search for
Lyapunov functions for polynomial ODEs by formulating LP instances. We compare
our techniques with approaches based on SOS on a suite of automatically synthesized
benchmarks.
My contribution: discussion on the methods.

28 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

2.1 Notations

Our notation convention is given as follows.

Sets. We use capital letters such as A, B, etc. to denote sets of elements. A set is
called a singleton if it contains exactly one element. Given a set A, we denote by A its
complement set and by 2A its power set which consists of all subsets of A. For two sets
A and B, we denote by A ∩ B their intersection and by A ∪ B their union. The relative
complement of B w.r.t. A is denoted by A\B. Besides, we use the following notations
to represent sets of numbers. The sets of reals and rationals are denoted by R and Q
respectively. We use Z to denote the set of integers, and use N to denote the set of natural
numbers which are non-negative integers. In the Euclidean space Rn for some n ∈ N and
n > 0, we call an element of Rn a vector as well as a point.

Vectors and matrices. We denote a (column) vector by a tuple (x1, . . . , xn) or a letter
with a vector over it, such as ~x. Row vectors are represented by transposes of column
vectors, for example ~xT . Given a vector ~x, we denote by xi or ~x[i] the i-th component of
~x, and we use Dim(~x) to denote the dimension of ~x, that is, the number of components
in ~x. The symbol ‖ · ‖ stands for Euclidean norm of vectors. Vectors are also used to
collectively represent a set of ordered variables or constants in the thesis. For example,
the variables x1, . . . , xn can be denoted by ~x. Matrices are denoted by capital letters.
We occasionally use a matrix to collectively represent a set of column vectors which are
columns of the matrix.

Functions. Given a function f , we denote by Dom(f) the domain and by Rng(f) the
range of f respectively. The dimension of f is the dimension of its values. Given a set
D, we use Ck(D) to denote the set of functions f such that for any ~x ∈ D, all partial
derivatives of f at ~x up to order k exists and are continuous. Note that D is not necessarily
same as the domain of f but should be a subset of it. Thereby, the symbols C0(D) and
Cω(D) stand for the sets of continuous functions and analytic functions respectively. A
vector-valued function can be defined by a vector of real-valued functions. In the thesis,
we do not distinguish real-valued and vector-valued functions unless it is intentionally
pointed out.

29

30 CHAPTER 2. PRELIMINARIES

2.2 Interval arithmetic

2.2.1 Basic definitions and theorems

A (real) interval is the set of real numbers which are between two real endpoints
a, b ∈ R such that a ≤ b. In the thesis, the four types of intervals are denoted in the
following way.

(a, b) = {c ∈ R | a < c < b}
[a, b) = {c ∈ R | a ≤ c < b}
(a, b] = {c ∈ R | a < c ≤ b}
[a, b] = {c ∈ R | a ≤ c ≤ b}

The endpoints a, b are also allowed to take the infinities −∞ and +∞ when the bound
is strict. We call the intervals with non-strict bounds closed intervals, and we denote the
set of them by IR. For an interval I = [a, b] ∈ IR, we call a the lower bound and b the
upper bound of I. Both of them are also called endpoints.

The width, midpoint and magnitude of an interval [a, b] ∈ IR are defined by

Width: W([a, b]) = b− a
Midpoint: Mid([a, b]) = (a+ b)/2
Magnitude: Mag([a, b]) = max{|a|, |b|}.

We call an interval I degenerate if W(I) = 0, i.e., I is singleton, and symmetric if
Mid(I) = 0.

Similar to reals, intervals can also be organized as vectors or matrices. Given two
interval vectors ~X, ~Y with Dim(~X) = Dim(~Y), we use ~X ⊆ ~Y to denote that ~X[i] ⊆ ~Y [i]
for all 1 ≤ i ≤ Dim(~X). The above three operators on an interval vector ~I are defined as
follows. The midpoint of an interval vector ~I is also a vector such that

Midpoint: Mid(~I)[i] = Mid(~I[i])

for 1 ≤ i ≤ Dim(~I). The width or magnitude of an interval vector is a real value which is
the maximum width or magnitude respectively of the components:

Width: W(~I) = max1≤i≤Dim(~I){W(~I[i])}
Magnitude: Mag(~I) = max1≤i≤Dim(~I){Mag(~I[i])}

In the rest of the thesis, we also call interval vectors intervals and simply discard the
arrow symbol in their notations. For simplicity, we sometimes also denote an interval
vector by a Cartesian product, such as [a, b]n. Besides, intervals are also called boxes or
grids.

Given two intervals X,Y ∈ IR and a binary operator � over reals, the result X � Y is
defined by the set

X � Y = {x � y |x ∈ X, y ∈ Y } (2.1)

which consists of the elements x � y for all x ∈ X and y ∈ Y . If � defines a continuous
mapping from R2 to R, the set (2.1) is also an interval. Hence, the basic four operators
+,−, ·, / over reals can be extended to deal with intervals, and the endpoints of the results

2.2. INTERVAL ARITHMETIC 31

can be computed from the endpoints of the operands.

Addition: [a, b] + [c, d] = [a+ c, b+ d]
Subtraction: [a, b] − [c, d] = [a− d, b− c]
Multiplication: [a, b] · [c, d] = [min{a · c, a · d, b · c, b · d},

max{a · c, a · d, b · c, b · d}]
Division: [a, b] / [c, d] = [a, b] · [1/d, 1/c]

wherein 0 /∈ [c, d] for division. Similar to real arithmetic, the addition and multiplication
operators on intervals are also commutative and associative. However, multiplication is
only sub-distributive over addition on intervals. That is, for any intervals [a1, b1], [a2, b2]
and [a3, b3], we have the following inclusion

[a1, b1] · ([a2, b2] + [a3, b3]) ⊆ ([a1, b1] · [a2, b2]) + ([a1, b1] · [a3, b3])

in which the equivalence does not hold generally.
Standard functions such as exponential, logarithm and square root can also be ex-

tended to their interval versions:

Exponential: exp([a, b]) = [exp(a), exp(b)]
Logarithm: logc([a, b]) = [logc(a), logc(b)]

Square root:
√

[a, b] = [
√
a,
√
b]

wherein c > 1, 0 < a ≤ b must hold for logarithm, and 0 ≤ a ≤ b must hold for square root.
The n-th power of an interval is also an interval which can be computed by Algorithm 1.
Note that in general, the algorithm yields more accurate results than those computed by
merely applying interval multiplications.

Given [a, b] ∈ IR, the interval of sin([a, b]) is computed in the following way. We check
the inclusions of the points (2n− 1

2)π and (2n+ 1
2)π for n ∈ Z in [a, b]. If (2n− 1

2)π ∈ [a, b]
holds for some n ∈ Z, the lower bound of sin([a, b]) is −1. Otherwise the lower bound is
min{sin(a), sin(b)}. On the other hand, if (2n + 1

2)π ∈ [a, b] holds for some n ∈ Z, the
upper bound of sin([a, b]) is 1. Otherwise the upper bound is max{sin(a), sin(b)}. We give
the computation by Algorithm 2. The interval computations for the other trigonometric
functions can be done analogously. Based on the above basic operators, an elementary
function may also be extended to handle interval arguments.

Computing the set of values of a function according to a set of inputs is often required
in many analysis tasks such as verification. Such a computation can not be done by
computing the result for each input, since they are usually infinitely many. Then it is
necessary to introduce set-based arithmetic to function evaluations. Given a function f ,
a united extension F of f , as stated by Definition 2.2.1, always returns the exact value
set of f according to the input of F . However, if we restrict the sets to intervals, the
interval united extension of a function does not exist in general. Therefore, we resort to
a weaker version which is called interval extension. It deals with intervals and produces
the same results as that of f on the degenerate interval (real) inputs.

Definition 2.2.1 (United extension). Given a function f(~x) over the domain D ⊆ Rn
for some n ∈ N. We say that a set-valued function F (X) over X ∈ 2D is the united
extension of f , if

F (C) = {f(~c) |~c ∈ C} (2.2)

for all C ∈ 2D.

32 CHAPTER 2. PRELIMINARIES

Algorithm 1 The n-th power of an interval

Input: an interval [a, b] and n ∈ N
Output: the interval of ([a, b])n

1: if n is odd then
2: c← an;
3: d← bn;
4: else
5: if a ≥ 0 then
6: c← an;
7: d← bn;
8: else if b < 0 then
9: c← bn;

10: d← an;
11: else
12: c← 0;
13: d← max{an, bn};
14: end if
15: end if
16: return [c, d];

Algorithm 2 The interval sine function

Input: an interval [a, b]
Output: the interval of sin([a, b])

1: if ∃n ∈ Z.((2n− 1
2)π ∈ [a, b]) then

2: c← −1;
3: else
4: c← min(sin(a), sin(b));
5: end if
6: if ∃n ∈ Z.((2n+ 1

2)π ∈ [a, b]) then
7: d← 1;
8: else
9: d← max{sin(a), sin(b)};

10: end if
11: return [c, d];

2.2. INTERVAL ARITHMETIC 33

Definition 2.2.2 (Interval extension). Given a function f(~x) over the domain D ⊆ Rn
for some n ∈ N. We say that the interval-valued function F (~X) is an interval extension
of f if for all ~c ∈ D there is

F (~C) = [f(~c), f(~c)] (2.3)

wherein Ci = [ci, ci] for 1 ≤ i ≤ n.

Definition 2.2.3 (Inclusion isotonicity). We call an interval extension F over the domain
D ⊆ IRn inclusion isotonic, if for all ~X, ~Y ∈ D and ~X ⊆ ~Y , there is F (~X) ⊆ F (~Y).

By the fundamental theorem of interval analysis, if an interval extension F of a real-
valued function f is inclusion isotonic, then for any interval input ~C ⊆ Dom(f), F (~C) is
always an interval enclosure (or over-approximation) of the exact function range {f(~c) |~c ∈
~C}.

Theorem 2.2.4 (Fundamental theorem of interval analysis [MKC09]). If F is an inclu-
sion isotonic interval extension of f , then we have that {f(~c) |~c ∈ ~C} ⊆ F (~C) for all
interval inputs ~C ⊆ Dom(f).

For a real-valued function f over an interval domain D, in general, it is not easy to
find an interval extension F of it such that the set F (~C) for an input interval ~C ⊆ D
is always the smallest interval enclosure of {f(~c) |~c ∈ ~C}. As stated by Theorem 6.1
in [MKC09], if the extension F is inclusion isotonic as well as Lipschitz in D, then we
may arbitrarily approach the smallest interval enclosure by performing a finer uniform
subdivision on the input interval. A detailed description is given as follows.

Definition 2.2.5. An interval extension F (~X) is Lipschitz in D if there exists L ∈ R
such that W(F (~C)) ≤ L ·W(~C) for all ~C ⊆ D. F is also called an L-Lipschitz interval
extension of f in D.

Given an n-dimensional interval ~C = ([a1, b1], . . . , [an, bn]) and a number N ∈ N, the
N -uniform subdivision of ~C is the set of intervals

~C~i = ([a1+(i1−1) · (b1−a1

N
), a1+i1 · (

b1−a1

N
)], . . . , [an+(in−1) · (bn−an

N
), an+in · (

bn−an
N

)])

for 1 ≤ i1, . . . , in ≤ N , i.e., we uniformly divide ~C into Nn grids. Then, for an inclusion
isotonic and Lipschitz interval extension F of f , a smaller interval enclosure than F (~C)
can often be obtained by computing the smallest interval enclosure of

⋃{F (~C~i) | 1 ≤
i1, . . . , in ≤ N} for some N > 1. Moreover, when N → +∞, the result converges to the
smallest interval enclosure of {f(~c) |~c ∈ ~C}.

The above fact also holds when f is a vector-valued function, although the range of
it is often not an interval. In the following content, we consider the over-approximation
quality of the set

⋃{F (~C~i) | 1 ≤ i1, . . . , in ≤ N} instead of its smallest interval enclosure.

Definition 2.2.6 (Hausdorff distance). Given two non-empty sets X,Y , the Hausdorff
distance between X,Y is given by

dH(X,Y) = sup{sup
~x∈X

inf
~y∈Y
‖~x− ~y‖, sup

~y∈Y
inf
~x∈X
‖~x− ~y‖}.

34 CHAPTER 2. PRELIMINARIES

For a non-empty set S and its over-approximation S′, the overestimation in S′ can be
measured by the Hausdorff distance between S and S′. If the Hausdorff distance is zero,
then the two sets are identical and there is no overestimation. Hausdorff distance has the
following properties (see [Edg08]).

• Given non-empty sets X,Y, Z, we have that

dH(X,Y) + dH(Y,Z) ≥ dH(X,Z).

• Given non-empty sets X1, X2, Y1, Y2, we have that

dH(X1 ∪X2, Y1 ∪ Y2) ≤ sup{dH(X1, Y1), dH(X2, Y2)}.

When S′ ∈ IRn is an interval over-approximation of S ⊆ Rn, the Hausdorff distance
dH(S′, S) is at most

√
n ·W(S′), since the Euclidean distance between two points in S′

is bounded by
√
n ·W(S′). If the set S is over-approximated by the union of a set of

intervals S1, . . . , Sm such that Si ∩ S 6= ∅ for 1 ≤ i ≤ m, then the overestimation is given
by

sup
1≤i≤m

{dH(Si, Si ∩ S)}.

Theorem 2.2.7 tells that if an interval extension F is inclusion isotonic and Lipschitz,
then we may always have a more accurate over-approximation, which is a set of intervals
obtained by first uniformly subdividing the domain into finer grids and then computing
the the interval values of F over them.

Theorem 2.2.7. Given that F (~X) is an inclusion isotonic and L-Lipschitz interval ex-
tension of the function f(~x) in the domain D ∈ IRn, then

dH({f(~x) | ~x ∈ D},
⋃

~C∈D(N)

F (~C)) ≤
√
m

N
· L ·W(D)

wherein D(N) denotes the N -uniform subdivision of D, and m is the dimension of F .

Proof. We consider the bound on dH({f(~x) | ~x ∈ ~C}, F (~C)) for a grid ~C ∈ D(N). Since

F is inclusion isotonic and L-Lipschitz, we have that F (~C) is an interval enclosure of
{f(~x) | ~x ∈ ~C} and W(F (~C)) ≤ L ·W(~C). Then we may also infer that dH({f(~x) | ~x ∈
~C}, F (~C)) ≤ √m ·W(F (~C)), and thereby, the distance is also bounded by

√
m ·L ·W(~C).

By the definition of uniform subdivision, we have that W(D) = N ·W(~C), hence

dH({f(~x) | ~x ∈ ~C}, F (~C)) ≤
√
m

N
· L ·W(D).

Since the sets {f(~x) | ~x ∈ ~C} and F (~C) are non-empty for all ~C ∈ D(N), we may rewrite

the Hausdorff distance dH({f(~x) | ~x ∈ D},⋃ ~C∈D(N)
F (~C)) as

sup
~C∈D(N)

{dH({f(~x) | ~x ∈ ~C}, F (~C))}.

Hence we have that

dH({f(~x) | ~x ∈ D},
⋃

~C∈D(N)

F (~C)) ≤
√
m

N
· L ·W(D).

2.2. INTERVAL ARITHMETIC 35

p[1]

p[2]

−1 10

(a) Set of Rng(p)

p[1]

p[2]

−1 10

(b) Interval enclosure of Rng(p)

p[1]

p[2]

−1 10

(c) 4-uniform subdivision

p[1]

p[2]

−1 10

(d) 8-uniform subdivision

Figure 2.1: Interval over-approximations of a polynomial function

Example 2.2.8. We consider the polynomial function p(x1, x2) =

(
x1 − x2

x3
2

)
over

the domain x1 ∈ [0, 1] and x2 ∈ [0, 1]. The function P (X1, X2) =

(
X1 −X2

X3
2

)
over

X1 ⊆ [0, 1] and X2 ⊆ [0, 1] is an interval extension of p. It is also not difficult to verify
that P is inclusion isotonic and Lipschitz. The exact range of p, shown in Figure 2.1(a),
is not an interval. An interval over-approximation of Rng(p) can be computed directly
by evaluating P ([0, 1], [0, 1]). As shown in Figure 2.1(b), the overestimation might be too
large. However, if we perform a 4-uniform subdivision on the domain, a better over-
approximation which is presented in Figure 2.1(c) can be obtained. We may even further
improve the accuracy by applying an 8-uniform subdivision, as shown in Figure 2.1(d).

For an n-dimensional domain, the N -uniform subdivision yields Nn grids which may
easily lead the subsequent computation to be intractable when n is large. Therefore,
improving accuracy by subdivision often requires a lot of computational effort.

2.2.2 Interval evaluation for polynomial functions

We focus on the interval evaluation on the functions which are defined by polynomials.
Given a polynomial p, an interval extension P of p can be easily derived as an expression
which is syntactically same as an equivalent expression of p except that the variables
take interval values and the operators are replaced by their interval counterparts. It is
also not difficult to verify that such an extension is inclusion isotonic and Lipschitz. For
example, an interval extension of p = 2− x1 + x2

2x1 can be P = [2, 2]−X1 +X2
2 ·X1 or

36 CHAPTER 2. PRELIMINARIES

P = [2, 2]−X1 · ([1, 1]−X2
2). We denote the set of interval extensions derived in such a

way by Ext(p).

Lemma 2.2.9 ([MKC09]). Given a polynomial function p over an interval domain D,
any interval extension in the set Ext(p) is inclusion isotonic and Lipschitz in D.

If a polynomial is not linear then the interval evaluation on two extensions P, P ′ ∈
Ext(p) may yield different results. To see that, we give Example 2.2.10. The phenomenon
is caused by the dependency problem. In the example, we break the dependency between
the terms x and x2 in the interval computations.

Example 2.2.10. We consider the polynomial p(x) = x−x2 over the domain x ∈ [−1, 1].
It can be verified that the exact range of p is [−2, 1

4]. We consider the interval evaluations
on the following two interval extensions P1, P2 ∈ Ext(p):

P1 = X −X2, P2 = X · ([1, 1]−X)

The interval of P1([−1, 1]) can be computed by

P1([−1, 1]) = [−1, 1]− ([−1, 1])2 = [−1, 1]− [0, 1] = [−2, 1],

and that of P2([−1, 1]) can be computed by

P2([−1, 1]) = [−1, 1] · ([1, 1]− [−1, 1]) = [−1, 1] · [0, 2] = [−2, 2].

Both of the results strictly contain the exact range.

In our work, we always do the evaluation job on the interval extension obtained from a
Horner form of the polynomial. The evaluation on a Horner form-based interval extension
often not only helps to relieve the dependency problem but also requires a smaller number
of operations than that on a monomial form-based one (see [Pen00, CG02]), although it
is not always the case, as it is given by the above example. For a multivariate polynomial,
its Horner form is usually not unique and to choose the best one for accurate interval
evaluation is not easy. We follow a simple but efficient method which will be given in the
next chapter. More heuristics can be found in [CG02, CK04].

2.2.3 Applications

One of the main applications of interval arithmetic is to produce reliable results in
numerical computation. Since we can only use finite precision arithmetic on computers,
it is necessary to round the numbers during a computation. For example, we want to
compute the product of the two decimal numbers 0.872915 and 7.921103, and only six
decimal places are allowed to keep due to the machine precision. The exact result should
be 6.914449625, however we have to round it to a near number such as 6.914449 or
6.914450. The difference of a rounded number from its exact value is called round-off
error. Unfortunately, the round-off errors in a computation could be crucial to the final
result and hence we should take them into account in some situations. Interval arithmetic
provides a feasible and efficient way to carry round-off errors. In the previous example,
the number 6.914449625 can be represented by an interval [6.914449, 6.914450] which

2.3. TAYLOR MODELS 37

contains the exact value. Reliable results for complex numerical computation tasks may
also be obtained by using interval arithmetic [KC91]. Besides, interval arithmetic is
also extensively used in global optimization [IF79], constraint solving [JKDW01, BG06],
validated integration of ODEs [NJC99] and so on.

In the next section, we introduce another class of over-approximate representations
which are called Taylor models. Taylor models can be viewed as a higher-order extension
of intervals, such that the overestimation in a result can be reduced by computing a
polynomial part.

2.3 Taylor models

2.3.1 Taylor approximations

We briefly revisit the approximation method of using Taylor polynomials [Apo67,
Apo69]. Given a univariate function f which is κ times differentiable over the domain
(a, b) ⊆ R. The order k Taylor approximation (or expansion, polynomial) wherein k ≤ κ
of f at x = c for some c ∈ (a, b) is

pk(x) = f(c) + f (1)(c)(x− c) +
1

2!
f (2)(c)(x− c)2 + · · ·+ 1

k!
f (k)(c)(x− c)k (2.4)

such that f (i)(c) denotes the i-th order derivative of f at x = c. If f is also (k + 1)
times differentiable, the approximation error of pk(x) for any x ∈ (a, b), can be explicitly
expressed by the Lagrange remainder term

rk(x) = f(x)− pk(x) =
1

(k + 1)!
f (k+1)(ξ(x))(x− c)k+1 (2.5)

for some constant ξ(x) between x and c. If f ∈ Cω((a, b)) then there is some ε > 0 such
that for any x ∈ (c− ε, c+ ε) ⊆ (a, b), pk(x) converges to f(x) when k →∞.

Taylor polynomials can also be applied to approximating multivariate functions. Given
a multivariate function f ∈ Cκ(D) wherein D ⊆ Rn, its order k Taylor approximation for
k ≤ κ at ~x = ~c for some ~c ∈ D is the polynomial

pk(~x) = f(~c) +
n∑
i=1

(
∂f

∂xi
(~c) · (xi − ci)

)
+ · · ·

+
1

k!

∑
j1+···+jn=k

(
∂kf

∂xj11 · · · ∂xjnn
(~c) ·

n∏
i=1

(xi − ci)ji
) (2.6)

Similarly, if f is also (k + 1) times partially differentiable in D, the Lagrange remainder
term for any ~x ∈ D is given by

rk(~x) =
1

(k + 1)!

∑
j1+···+jn=k+1

(
∂k+1f

∂xj11 · · · ∂xjnn
(~ξ(~x)) ·

n∏
i=1

(xi − ci)ji
)

(2.7)

for some constant ~ξ(~x) on the line segment connecting ~x and ~c. If f ∈ Cω(D), there exists
a non-empty open set C containing ~c such that pk(~x) converges to f(~x) when k →∞ for
any ~x ∈ C.

38 CHAPTER 2. PRELIMINARIES

x

g(x)

−1 10

1

2

3 g(x) = exp(x)

g(x) = 1

(a) Order 0 approximation

x

g(x)

−1 10

1

2

3 g(x) = exp(x)

g(x) = 1 + x

(b) Order 1 approximation

x

g(x)

−1 10

1

2

3 g(x) = exp(x)

g(x) = 1 + x+ 1
2x

2

(c) Order 2 approximation

x

g(x)

−1−2−3 1 2 30

1

−1

g(x) = sin(x)

g(x) = x− x3

3!

(d) Order 3 approximation

x

g(x)

−1−2−3 1 2 30

1

−1

g(x) = sin(x)

g(x) = x− x3

3! + x5

5!

(e) Order 5 approximation

Figure 2.2: Taylor approximations for the functions exp(x) and sin(x)

Example 2.3.1. The Taylor approximations at the point 0 of some elementary functions
are given in Figure 2.2. The Taylor approximations from order 0 to 2 of the function
exp(x) are given by Figure 2.2(a)- 2.2(c). Only the interval [−1, 1] of x is considered.
For the function sin(x), the interval of x under consideration is enlarged to [−3, 3] while
higher-order approximations are presented. Since both of exp(x) and sin(x) are analytic,
the approximation qualities can always be improved in those regions by raising the approx-
imation orders.

Taylor approximations can be computed in a compositional way. Given two univariate
functions f, g such that Rng(f) ⊆ Dom(g). Assume that we have the order k Taylor
polynomial pf (x) of f(x) at x = c and the order k Taylor polynomial pg(x) of g(x) at
the point x = f(c). Then the order k Taylor polynomial of the composite function g ◦ f
at x = c can be obtained by substituting pf (x) in the place of x in pg(x) and retaining
only the terms of degree ≤ k. For example, consider the functions f(x) = sin(x) and
g(x) = exp(x), we choose c = 0 and k = 3. The polynomials pf (x) and pg(x) are given by

pf (x) = x− 1

3!
x3 and pg(x) = 1 + x+

1

2!
x2 +

1

3!
x3

Then the order 3 Taylor approximation of g ◦ f = exp(sin(x)) can be computed by

2.3. TAYLOR MODELS 39

evaluating the polynomial pg(pf (x))

pg(pf (x)) = 1 +

(
x− 1

6
x3

)
+

1

2

(
x− 1

6
x3

)2

+
1

6

(
x− 1

6
x3

)3

= 1 + x+
1

2
x2 − 1

6
x4 − 1

12
x5 +

1

72
x6 +

1

72
x7 − 1

1296
x9

and then removing the items of degrees > 3. The result is 1 + x + 1
2x

2. Taylor approxi-
mations for multivariate functions can also be obtained in a similar way.

Polynomial interpolations. Polynomial approximations may also be obtained by us-
ing polynomial interpolations [Phi03, Tre13]. The task of polynomial interpolation is to
compute a polynomial p which interpolates the given finite pairs of points (c1, d1), . . . ,
(cm, dm), i.e., p(ci) = di for 1 ≤ i ≤ m. If the value di for 1 ≤ i ≤ m is selected as
f(ci) for some function f which is not necessarily continuous, then p can be viewed as a
polynomial approximation of f such that they coincide at the points x = c1, . . . , cm. For
multivariate and vector-valued functions, the points c1, . . . , cm and d1, . . . , dn are real-
valued vectors. A Taylor approximation is only guaranteed to touch the original function
at the expansion point, however a polynomial interpolation is able to pass through several
ones. Unfortunately, this fact does not lead to a conclusion that a polynomial interpola-
tion is always a better approximation than a Taylor expansion of the same order, since the
interpolation quality highly depends on the points selected. In [MH02], it is proved that
interpolating the Chebyshev nodes can produce a near-best polynomial approximation for
a function. We illustrate a comparison between a Taylor approximation and a Chebyshev
interpolation on the function cos(3x) by Figure 2.3. The order 4 Taylor approximation is
the polynomial 1− 9

2x
2 + 27

8 x
4, and the order 4 Chebyshev interpolation is approximately

equivalent to 0.9751857−4.04896519x2 +2.104651873x4. Although interpolation methods
may provide better approximation qualities in general, to replace the Taylor approxima-
tions by some polynomial interpolations in a large computation framework is often not
easy. We will give further discussions in the subsequent sections.

Since the Taylor approximation p(x) of a function f(x) at x = c has an error bound
which generally grows with the size of |x−c|, we often choose the midpoint of the domain
as the expansion point.

2.3.2 Basic theorems of Taylor models

Taylor models are representations which combine Taylor polynomials and intervals.
They are originally developed by Berz and Makino [MB96, Ber99, MB03] to provide
over-approximate representations for continuous functions.

Definition 2.3.2 (Taylor model). A Taylor Model (TM) is denoted by a pair (p, I) such
that p is a polynomial over a set of variables ~x ranging in an interval domain D, and I
is the interval remainder. TMs may also be vector-valued. A vector-valued TM can be
viewed as a vector of real-valued TMs, or in a way that both p and I are vector-valued
and are of the same dimension.

Given a TM (p, I) and a function f which are over the same domain D, we say that

40 CHAPTER 2. PRELIMINARIES

x

g(x)

−1 10

1

−1

(a) Order 4 Taylor approximation (in red)

x

g(x)

−1 10

1

−1

(b) Order 4 Chebyshev interpolation (in red)

Figure 2.3: Comparison between Taylor approximation and Chebyshev interpolation on
cos(3x)

f is over-approximated by (p, I), denoted by f ∈ (p, I) or f ∈ p+ I, if

f(~x) ∈ p(~x) + I for all ~x ∈ D .

A TM forms a convex and compact set of continuous functions over-approximated by it.
A proof can be found in [BM98]. In the rest of the thesis, if f ∈ (p, I), then (p, I) is called
a TM of f .

Definition 2.3.3 (Convex set). A set S is convex if and only if for all x, y ∈ S, we have
that

λx+ (1− λ)y ∈ S for all λ ∈ [0, 1] .

Definition 2.3.4 (Normed vector space). A normed vector space (M, | · |) is a vector
space M equipped with a norm | · |.
Definition 2.3.5 (Bounded set). A set S in a normed vector space (M, | · |) is bounded,
if there exists x ∈ S and r > 0 such that |x− y| < r for all y ∈ S.

Definition 2.3.6 (Open set). A set S in a normed vector space (M, | · |) is open, if for
any x ∈ S there is some ε > 0 such that for any y ∈M if |x− y| < ε then y ∈ S.

Definition 2.3.7 (Closed set). A set S is closed if its complement is open.

Definition 2.3.8 (Compact set). A set S is compact in a normed vector space of finite
dimension if it is bounded and closed.

Theorem 2.3.9. A TM over an interval domain D defines a convex and compact set of
continuous functions which are over-approximated by it over D.

2.3. TAYLOR MODELS 41

x

g(x)

−1 10

1

2

3 g(x) = exp(x)

(a) Order 0 over-approximation

(1, [−0.75, 1.75])

x

g(x)

−1 10

1

2

3 g(x) = exp(x)

(b) Order 1 over-approximation

(1 + x, [0, 0.75])

x

g(x)

−1 10

1

2

3 g(x) = exp(x)

(c) Order 2 over-approximation

(1 + x+ 1
2
x2, [−0.25, 0.25])

x

g(x)

−1−2−3 1 2 30

−1

−2

−3

1

2

3

g(x) = sin(x)

(d) Order 3 over-approximation (x− 1
3!
x3, [−2, 2])

x

g(x)

−1−2−3 1 2 30

−1

−2

−3

1

2

3

g(x) = sin(x)

(e) Order 5 over-approximation (x− 1
3!
x3+ 1

5!
x5, [−0.6, 0.6])

Figure 2.4: Order k over-approximations for the functions exp(x) and sin(x)

Given a function f ∈ Ck(D) for some interval D, an order k TM (p, I) of f can be
obtained by first computing the order k Taylor polynomial p of f at ~x = Mid(D) and
then evaluating an interval I which contains all remainder terms for ~x ∈ D. For example,
an order 4 TM of the function exp(x) over [−1, 1] is given by

(1 + x+
1

2!
x2 +

1

3!
x3 +

1

4!
x4 , [−0.02266, 0.02266])

such that the remainder interval is obtained by interval evaluating 1
5! · exp([−1, 1]) ·

([−1, 1])5. It contains all remainder terms for x ∈ [−1, 1].

Example 2.3.10. In Figure 2.4, we extended the order k approximations presented in
Example 2.3.1 to their order k TM over-approximations.

We consider the overestimation in a TM over-approximation. It may also be measured
by means of Hausdorff distance. If (p, I) is a TM of the function f over the domain D,

42 CHAPTER 2. PRELIMINARIES

then the Hausdorff distance between (p, I) and f can be computed by

dH((p, I), f) = max
~x∈D
{‖f(~x)− p(~x)‖}

which is bounded by
√
m·W(I) whereinm is the dimension of I. Hence, the overestimation

of a TM can be assessed only based on the width of the remainder interval.
Given a function f ∈ Cω(D) for some D. If we have the order k Taylor polynomial

pk of f at ~x = ~c for some ~c ∈ D, and the remainder term f(~x)− pk(~x) converges to zero
when k → ∞ for all ~x ∈ D, then we say that a computation (list of code, algorithm)
R is contractible if the remainder interval R(k) for pk converges to zero when k → ∞.
For example, the interval evaluation R(k) = 1

(k+1)! exp([2, 4])([−1, 1])k+1 is a contractible

computation for the remainder interval over the domain [2, 4] for the Taylor expansion of
exp(x) at x = 3.

Based on a contractible remainder computation, we may arbitrarily reduce the over-
estimation of a TM by raising its order. On the other hand, given a fixed-degree Taylor
polynomial, if the remainder is computed by an inclusion isotonic and Lipschitz inter-
val extension of the exact remainder expression, then the resulting interval can be made
arbitrarily close to the smallest interval enclosure of the remainders by performing finer
subdivision on the domain interval.

2.3.3 Taylor model arithmetic

Similar to intervals, basic operators such as addition, multiplication can also be ex-
tended to deal with TMs. Based on them, we are able to define a TM extension of a
given function. Besides, the inclusion isotonicity as well as the Lipschitz property of TM
extensions may be defined analogously.

Given a function f and its TM (p, I) over the domain D. A TM for h(f) wherein
h is a unary operator can be computed only based on (p, I). For example, the additive
inverse and integral on a TM (p, I) over D are defined by

Additive inverse: −(p, I) = (−p,−I)

Integral: ∂−1
i (p, I) = (

∫ bi
ai

(p(~x)− pe(~x))dxi , (Int(pe) + I) · [ai, bi])

wherein pe consists of the terms of degrees > k in p for some truncation order k ≥ 0,
and [ai, bi] is the range of xi in D. The operation Int(pe) denotes an interval enclosure
of pe over D. Here, the order k is not necessarily same as the degree of p. The reason of
specifying it is to limit the representation size of the resulting TM.

Given two functions f, g over the some domain D, assume that (p1, I1), (p2, I2) are
the TMs of them respectively. For a binary operator ◦, a TM for f ◦ g can be computed
only based on (p1, I1) and (p2, I2). For example, the sum of the two TMs is computed by

(p1, I1) + (p2, I2) = (p1 + p2, I1 + I2)

and for some truncation order k ≥ 0, their order k product is computed by

(p1, I1) · (p2, I2) = (p1 · p2 − pe , Int(p1) · I2 + I1 · Int(p2) + I1 · I2 + Int(pe))

wherein pe consists of the terms of degrees > k in p1 · p2.

2.3. TAYLOR MODELS 43

Algorithm 3 Compute an order k TM for f((p, I))

Input: a TM (p, I), a continuous function f ∈ Cκ(Df) such that (p, I) ⊆ Df

Output: an order k TM for f((p, I)) such that k < κ
1: Compute the order k Taylor polynomial pf (x) of f(x) at the midpoint of Int((p, I));
2: Evaluate a safe remainder interval If for pf (x);
3: Compute the order k TM (pr, Ir) for pf ((p, I));
4: Ir ← Ir + If ;
5: return (pr, Ir);

An order κ TM (p, I) can be simplified by performing a k-truncation on it for some
0 ≤ k < κ. That is, we remove the terms of degrees > k in p and add their interval
enclosure onto the remainder.

Truncation: Trunck((p, I)) = (p− pe , I + Int(pe))

The resulting TM is a simplification as well as an over-approximation of the original one.

The TM division is more complicated. Given two TMs (p1, I1), (p2, I2) such that
0 /∈ Int((p2, I2)). An order k TM of (p1, I1)/(p2, I2) is computed in the following way.
Firstly, we compute the order k Taylor polynomial pk for the function 1

x at x = c wherein
c is the midpoint of Int((p2, I2)),

pk(x) =
1

c
·
(

1− x− c
c

+

(
x− c
c

)2

−
(
x− c
c

)3

+ · · ·+ (−1)k
(
x− c
c

)k)

and a remainder interval for pk is evaluated by

Ir = Int

(
(−1)k+1 1

xk+2
· (x− c)k+1

)
over x ∈ Int((p2, I2)). Secondly, we compute an order k TM (p3, I3) by substituting
(p2 − c, I2) in the place of x in (pk, Ir). Then an order k TM of (p1, I1)/(p2, I2) can be
computed by (p1, I1) · (p3, I3). Such an idea could also be applied to computing TMs for
continuous functions. We present a general procedure by Algorithm 3. For more TM
operations, one may refer to [MB03].

By TM arithmetic, we may compute a TM for a function based on the TMs of its
components. In that case, the resulting remainder interval is computed by a procedure
consists of several subroutines. If the procedure is a contractible remainder evaluation,
then we may still able to improve the accuracy by using a higher TM order during the
computation.

Class of the TM domains. Although the TM domains under our consideration are
always intervals, we can still define a large class of non-convex sets by those TMs. For
a function f with an arbitrary domain set D, we may compute a set of grids that over-
approximate D, and then use the TMs over them to over-approximate the values of f .

44 CHAPTER 2. PRELIMINARIES

2.3.4 Applications

TMs provide higher-order over-approximations for continuous functions. Unlike inter-
vals, the overestimation in a TM can be measured only based on its remainder interval
size which is often very small. They considerably relieve the dependency problem in
many computation jobs. Therefore, TMs are often used as replacements of intervals in
numerical computation tasks when accuracy is critical. However, TM arithmetic is more
computational complex than interval arithmetic in general. It can be seen from their
representations. An interval could be represented by their endpoints which are only two
floating-point numbers. On the other hand, for a TM, we need not only to represent its
interval remainder but also to keep a multivariate polynomial. In the worst case, a poly-
nomial of n variables and k degree can have

(
n+k
k

)
terms. Although the Taylor expansion

of a function is not always a dense polynomial, the resulting polynomial from a complex
computation routine is often of a large size. Lots of heuristics can be used to conserva-
tively simplify the representation of a TM (p, I). For example, we may first remove the
terms whose interval enclosures are smaller than a specified box from the polynomial p,
then compute an interval enclosure of the removed parts and add it onto the remainder
I.

The use of TMs appears in a wide range of numerical analysis tasks. The most well
known application is the validated integration techniques for non-linear ODEs [BM98,
MB09, NJN06]. Besides, TMs can also be applied to global optimization and satisfiability
(SAT) checking [BM09], reachability analysis of non-linear hybrid systems [CÁS12], or
even proof systems [BJMD+12].

Polynomial interpolations as TM polynomial parts. As we discussed previously,
polynomial interpolations such as Chebyshev polynomials may provide better approxi-
mations than Taylor expansions. Thereby if we replace the Taylor approximations in the
TM arithmetic framework by Chebyshev polynomials, the overestimation could be greatly
reduced. To do that, we have to carry out all computations in Chebyshev basis since a
transformation of a polynomial from Chebyshev to monomial basis on a finite-precision
machine may lead to a loss of precision. Such work is proved effective for univariate
functions [BJ10]. However, the multiplication of two multivariate polynomials in Cheby-
shev basis seems not as easy as that in monomial basis. Hence, the use of Chebyshev
polynomials in the framework of TM arithmetic needs further investigation.

2.4 Representations for reachable sets

We revisit some popular reachable set representations for continuous and hybrid sys-
tems in this section. Most of them are convex geometric objects in the Euclidean space
Rn for some n ∈ Z and n > 0.

2.4. REPRESENTATIONS FOR REACHABLE SETS 45

~aT · ~x = b

~a

~aT · ~x ≤ b

Figure 2.5: Example of a halfspace and its supporting hyperplane

2.4.1 Convex polyhedra and polytopes

An n-dimensional (closed) halfspace S is the set of points in Rn which satisfy a linear
polynomial inequality ~aT · ~x ≤ b.1 It is the set defined by S = {~x ∈ Rn |~aT · ~x ≤ b} and
is denoted by S : ~aT · ~x ≤ b.

A hyperplane H in the Euclidean space Rn is the set of points which satisfy a linear
polynomial equation ~aT · ~x = b. It is the set H = {~x ∈ Rn |~aT · ~x = b} which is (n− 1)-
dimensional. We denote it by H : ~aT · ~x = b wherein ~a is a vector which is orthogonal to
H, and we also call it a normal vector (or normal) of H. By Definition 2.4.1, a halfspace
S : ~aT · ~x ≤ b only has one supporting hyperplane which is H : ~aT · ~x = b. We illustrate
an example in Figure 2.5.

Definition 2.4.1 (Supporting hyperplane). Given a set S ⊆ Rn, a hyperplane H : ~aT ·~x =
b is a supporting hyperplane of S if

• S is contained in the halfspace defined by ~aT · ~x ≤ b, and

• S ∩H 6= ∅.

An n-dimensional (convex) polyhedron is defined by an intersection of finitely many
n-dimensional halfspaces. Given m halfspaces S1 : ~aT1 · ~x ≤ b1, . . . , Sm : ~aTm · ~x ≤ bm,
their intersection is the set

P = {~x ∈ Rn |
m∧
i=1

(~aTi · ~x ≤ bi)}

which is denoted by P : A · ~x ≤ ~b wherein the i-th row of A is ~aTi for 1 ≤ i ≤ m. The
notation is also called a H-representation (halfspace representation). We give an example
in Figure 2.6 in which the polyhedron is defined by the intersection of three halfspaces.
When a polyhedron is bounded, we also call it a polytope.

Non-redundant H-representations. Although the H-representation of a polyhedron
P is not unique, there exists a minimum number m such that P can be defined by m

1In the thesis, we also use · to denote the vector or matrix multiplication operator. Therefore, ~aT · ~x
denotes the inner product of ~a and ~x.

46 CHAPTER 2. PRELIMINARIES

~a1

~a2

~a3

P

Figure 2.6: A polyhedron P defined by the intersection of three halfspaces

halfspaces. We also call such a representation non-redundant. The redundant halfspaces
in aH-representation can be removed by Linear Programming (LP) [BV04] in polynomial-
time complexity. Given a H-representation

P : (~aT1 , . . . ,~a
T
m) · ~x ≤ (b1, . . . , bm) .

To check whether the i-th halfspace for 1 ≤ i ≤ m is redundant or not, we solve the
following linear program

sup{~aTi · ~x} subject to
∧

1≤j≤m,j 6=i
(~aTj · ~x ≤ bj) and ~x ∈ Rn .

If the result is no larger than bi then the halfspace Si : ~aTi · ~x ≤ bi is redundant and
can be removed from the representation. By checking every halfspace, we may finally
obtain a non-redundant H-representation for P . If P is an n-dimensional polytope then
a non-redundant H-representation of it contains at least n+ 1 halfspaces (see [Zie95]).

The faces of a polyhedron are its subsets on the boundary. We give the definition as
follows.

Definition 2.4.2 (d-face). Given an n-dimensional polyhedron P . For d ≤ n, a d-
dimensional subset F of P is called a d-face if there exists a supporting hyperplane H
of P such that H ∩ P = F . We also call the (n − 1)- and 0-faces facets and vertices
respectively.

If a polyhedron P is also a polytope, then it can also be defined by the convex hull of
its vertices. Therefore, we may uniquely represent P by its vertices. Such a representation
is called V-representation, i.e., vertex representation. The minimum number of vertices in
an n-dimensional polytope is n+1 [Zie95]. Notice that the V-representation of a polytope
is unique. We give Example 2.4.4 to show the H- and V-representations of a polytope.

Definition 2.4.3 (Convex hull). The convex hull of a set V ⊆ Rn is the smallest convex
set in Rn which contains V . If V = {~v1, . . . , ~vm} is finite, then the convex hull of V is
defined by

Conv(V) =


m∑
i=1

λi · vi

∣∣∣∣∣∣ λ1, . . . , λm ∈ [0, 1],

m∑
j=1

λj = 1

 . (2.8)

2.4. REPRESENTATIONS FOR REACHABLE SETS 47

x

y

1 20

1

2

P

(a) H-representation

x

y

1 20

1

2

P

(b) V-representation

Figure 2.7: Two representations of polytope P

Example 2.4.4. We consider the polytope P defined by the intersection of the following
halfspaces:

S1 = {(x, y) ∈ R2 | 2x+ y − 5 ≤ 0}
S2 = {(x, y) ∈ R2 |x− 2y ≤ 0}
S3 = {(x, y) ∈ R2 | − x− y + 1.5 ≤ 0}
S4 = {(x, y) ∈ R2 | − x+ y − 0.5 ≤ 0}

which are illustrated in Figure 2.7(a). Then a H-representation of P is given by

P :


2 1
1 −2
−1 −1
−1 1

 · (x
y

)
≤


5
0
−1.5
0.5

 .

Since the polytope P has the vertices (2, 1), (1, 0.5), (0.5, 1), (1.5, 2), see Figure 2.7(b),
the V-representation of it is P : {(2, 1), (1, 0.5), (0.5, 1), (1.5, 2)}.

Redundant points in defining a convex hull. Given a set of points V = {~v1, . . . , ~vm},
we say that a point ~vi ∈ V is redundant in defining the convex hull Conv(V) if Conv(V) =
Conv(V \{~vi}). Such redundancy can be checked by solving the following linear problem

find λ1, . . . , λi−1, λi+1, . . . , λm ∈ [0, 1] subject to ~vi =
∑

1≤j≤m,j 6=i
λj · vj ∧

∑
1≤j≤m,j 6=i

λj = 1

that is to check whether the point ~vi is in the convex hull of the other points. If so, then
~vi is redundant.

Translations between H- and V-representations. The equivalent translation from
a H-representation to a V-representation is an interesting problem in computational com-
plexity, it is known as the vertex enumeration problem. Such a problem is intractable
when the dimension of the polytope is high (see [AF92, Tiw08]). On the other hand, the

48 CHAPTER 2. PRELIMINARIES

reverse translation is known as the facet enumeration problem which is as hard as the ver-
tex enumeration problem. Hence, it is often to only use one of the representations during
a computation. When a translation is not avoidable and the efficiency is also required,
we can make it approximately.

Computational aspects of H- and V-representations. Polytopes are closed un-
der many operations which are needed in the reachability analysis for hybrid automata.
However, the computational complexity of an operation highly depends on the rep-
resentations in use. We give a brief summary as below, more details can be found
in [Zie95, HRGZ97, Tiw08].

• Emptiness - To check whether a polytope P ⊆ Rn is empty. If P is given by a
H-representation P : A · ~x ≤ ~b, then we only need to solve the following linear
program

find ~x ∈ Rn subject to A · ~x ≤ ~b .
If no solution can be found, then the polytope is empty. If it is given by a V-
representation P : {~v1, . . . , ~vm}, then the emptiness of P may be checked by solving

find ~x ∈ Rn subject to ~x =

m∑
i=1

λi · vi ∧
m∧
i=1

(λi ∈ [0, 1]) ∧
m∑
i=1

λi = 1 .

Hence the emptiness checking is easy on both H- and V-representations in practice.

• Membership - To check whether ~c ∈ P holds for a given point ~c ∈ Rn and a polytope
P ⊆ Rn. Such a problem can be efficiently solved on aH-representation P : A·~x ≤ ~b,
since we only need to verify whether A · ~c ≤ ~b holds or not. For a V-representation
P : {~v1, . . . , ~vm}, the problem may be solved by linear programming:

find λ1, . . . , λm ∈ [0, 1] subject to ~c =
m∑
i=1

λi · vi ∧
m∑
i=1

λi = 1 .

Therefore, the membership checking is easy on both of the representations.

• Affine mapping - To compute the image of a polytope P ⊆ Rn under an affine
mapping π : ~x 7→ M · ~x + ~c for M ∈ Rn′×n, ~c ∈ Rn. It is the polytope defined by
P ′ = {M · ~x+~c | ~x ∈ P}. If P is given by a V-representation P : {~v1, . . . , ~vm}, then
the V-representation of P ′ can be computed by removing the redundant points from
{M ·~v1 +~c, . . . ,M ·~vm+~c} in defining Conv({M ·~v1 +~c, . . . ,M ·~vm+~c}). However,
the image is easy to compute for a H-representation P : A · ~x ≤ ~b only in the case
that M is an invertible matrix. The result is of the H-representation

P ′ : (A ·M−1) · ~x ≤ (~b+ (A ·M−1) · ~c) .

Otherwise the computation is as hard as the vertex numeration problem on P .

• Intersection - To compute P ∩Q for the given polytopes P,Q. If both of P,Q are
given by H-representations, a H-representation of P ∩Q can be computed by first
collecting the halfspaces defining P,Q and removing the redundant ones. On the
other hand, the computation of either a H-representation or a V-representation for
the intersection is hard when one of P,Q is in V-representation.

2.4. REPRESENTATIONS FOR REACHABLE SETS 49

P Q P ∩Q Conv(P ∪Q) P ⊕Q
H H + (H) − −
H V − − −
V H − − −
V V − + (V) + (V)

Table 2.1: Complexities of the binary operators on polytopes. Legends: H: H-
representation, V: V-representation, +: easy, −: hard.

• Convex hull - To compute Conv(P ∪ Q) for the given polytopes P,Q. If the poly-
topes P,Q are in V-representations, the V-representation of Conv(P ∪ Q) can be
computed by collecting the vertices of P,Q and removing the redundant ones in
defining Conv(P ∪Q). If one of P,Q is in H-representation, then to compute either
of the representations for the convex hull is hard.

• Minkowski sum - To compute P ⊕Q for the given polytopes P,Q. The Minkowski
sum of P,Q is defined by

P ⊕Q = {~x+ ~y | ~x ∈ P, ~y ∈ Q}

which is also a polytope. When P,Q are in V-representations, then the V-representation
of their Minkowski sum can be obtained by first computing the Minkowski sum of
the vertex sets VP , VQ of P,Q, and then removing the redundant points in defining
Conv(VP ⊕VQ). However, if one of the polytopes is in H-representation, then either
of the representations for P ⊕Q is hard to compute.

In Table 2.1, we summarize the hardness of the binary operations on the two polytope
representations. Polytopes could also be used as approximations for a bounded subset of
Rn.

Polytopes as over-approximations. A bounded set S ⊂ Rn for some n ≥ 0 can
be over-approximated by a polytope P based on a template ~l1, . . . ,~lm ∈ Rn. A H-
representation of it is of the form

P : (~l T1 , . . . ,~l Tm) · ~x ≤ (b1, . . . , bm)

wherein the value bi for 1 ≤ i ≤ m is obtained by solving the optimization problem

sup{~l Ti · ~x} subject to ~x ∈ S (2.9)

We illustrate an example in Figure 2.8.

Definition 2.4.5 (Template of a polytopic approximation). A template of a polytopic
over- or under-approximation is a set of vectors ~l1, . . . ,~lm which are nonzero. For an
n-dimensional over-approximation, we also require that there are at least n + 1 vectors
linearly independent.

50 CHAPTER 2. PRELIMINARIES

S

~l1

~l4

~l2~l6

~l3~l5

P

Figure 2.8: Polytopic over-approximation
of a bounded set

S

~l4

~l1

~l3~l5

~l6 ~l2

P

Figure 2.9: Polytopic under-approximation
of a closed and bounded convex set

Polytopes as under-approximations. If a bounded set S ⊂ Rn for some n ≥ 0 is
closed and convex, we may compute an under-approximate polytope P for it based on
a template ~l1, . . . ,~lm ∈ Rn. The polytope P can be computed as the convex hull of the
points ~v1, . . . , ~vm ∈ Rn such that for each 1 ≤ i ≤ m, the point ~vi is obtained from a
solution of the optimization problem (2.9). Therefore, the V-representation of P can be
obtained as a non-redundant subset of those points in defining Conv({~v1, . . . , ~vm}).

We give two examples of over- and under-approximation in Figure 2.8 and 2.9. It
can be seen that the quality of a polytopic approximation highly depends on the given
template. In Chapter 4, several heuristics are proposed to achieve a good accuracy in
doing such jobs.

2.4.2 Zonotopes

A zonotope is a special polytope which can be defined as the image of the unit box
[−1, 1]m for some m ≥ 0 under an affine mapping.

Definition 2.4.6 (Zonotope). A zonotope is defined by the set

Z = {G · ~x+ ~c | ~x ∈ [−1, 1]m} (2.10)

for some G ∈ Rn×m, ~c ∈ Rn, and m,n ≥ 0.

Other than the H- and V-representations for general polytopes, a zonotope can be
represented by the matrix G along with the vector ~c. More precisely, it can be represented
by the tuple Z = (~c,< ~g1, . . . , ~gm >) wherein ~g1, . . . , ~gm are the columns of G. Such a
representation is called G-representation (generator representation) in which ~c is the center
and ~g1, . . . , ~gm are the generators.

On the other hand, the zonotope Z can also be viewed as the Minkowski sum of the
center ~c and the line segments defined by Li = {x · gi |x ∈ [−1, 1]} for 1 ≤ i ≤ m. The
translation from a G-representation to either a H- or V-representation is difficult, some
techniques are discussed elsewhere [Zie95, ASB10, Alt10].

Example 2.4.7. We give an example of how to construct a zonotope based on its center
and generators. Assume that the center is ~c = (2, 3) and the generators are given by ~g1 =

2.4. REPRESENTATIONS FOR REACHABLE SETS 51

~c

(a) Adding the center

~g1

−~g1
~c

(b) Adding the generator ~g1

~g2

~g2

−~g2

−~g2
~c

(c) Adding the generator ~g2

~g3

~g3~g3

~g3

−~g3

−~g3−~g3

−~g3

~c

(d) Adding the generator ~g3

Figure 2.10: Construct a zonotope based on the center and generators

(1, 1), ~g2 = (1,−1) and ~g3 = (0, 1). The zonotope Z = ((2, 3), < (1, 1), (1,−1), (0, 1) >)
is constructed by the steps shown in Figure 2.10.

Zonotopes are closed under the operations of linear mapping and Minkowski sum,
for both of which the computation can be done efficients on G-representations. Given a
zonotope Z = (~c,< ~g1, . . . , ~gm >). The image of Z under the linear mapping π : ~x 7→ A·~x
is still a zonotope whose G-representation is given by

π(Z) = (A · ~c,< A · ~g1, . . . , A · ~gm >) .

Given two zonotopes Z1 = (~c1, < ~g1, . . . , ~gm >) and Z2 = (~c2, < ~h1, . . . ,~hk >). The
Minkowski sum of Z1 and Z2 is also a zonotope whose G-representation is

Z1 ⊕Z2 = (~c1 + ~c2, < ~g1, . . . , ~gm,~h1, . . . ,~hk >) .

Zonotopes are however not closed under the intersection with any set given by a poly-

52 CHAPTER 2. PRELIMINARIES

tope, zonotope or even hyperplane. Some techniques for deriving a zonotopic over-
approximation for such an intersection are described in [GL08, Alt10].

Lemma 2.4.8. An order 1 TM is a zonotope and vice versa.

Proof. Given an order 1 TM (p, I), the range of p is the image of the interval domain
under the linear mapping defined by p. Then it is a zonotope. Since the range of (p, I) is
the Minkowski sum of the range of p and the interval I, it is also a zonotope.

In the other direction, since a zonotope is the image of a unit box under an affine
mapping, it can be expressed in the form of an order 1 TM whose remainder interval is
zero.

We show that the translations between order 1 TMs and G-representations are easy.
Given a TM (p, I) such that p is a linear polynomial over the variables ~x which range in
an interval D ∈ IRm for some m ≥ 0. Assume that the dimension of the TM is n. The
G-representation of the TM range can be obtained as follows.

We first construct the zonotope for the range of p. We reformulate p as a polynomial
q(~y) with ~y ∈ [−1, 1]m such that the ranges of p, q are same. Then the center of the
zonotope is given by the constant part of q. For 1 ≤ i ≤ m and 1 ≤ j ≤ n, the j-th
component of the generator ~gi is the coefficient of yi in the j-th component of q. For
example, the polynomial p = (1 + x1 − x2, x3 − x1) of dimension 2 over x1 ∈ [1, 3],
x2 ∈ [−1, 1] and x3 ∈ [−1, 0] can be reformulated as q = (3 + y1 − y2,−2.5 + 0.5y3 − y1)
with y1, y2, y3 ∈ [−1, 1]. Then the G-representation for the range of q is ((3,−2.5), <
(1,−1), (−1, 0), (0, 0.5) >).

Then the G-representation of the range of (p, I) can be obtained by computing the
Minkowski sum of the above zonotope and I.

The translation in the other direction is easier. Given a zonotope Z = (~c1, < ~g1, . . . , ~gm >
) which is of dimension n, an equivalent order 1 TM is of the form (~c + p(~x), 0) with
~x ∈ [−1, 1]m. It is derived by setting the coefficient of xi in the j-th component of p by
~gi[j] for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

2.4.3 Ellipsoids

As another class of representations, an n-dimensional ellipsoid consists of the points
in Rn which satisfy a given polynomial inequality of degree 2. The definition is presented
as below.

Definition 2.4.9 (Ellipsoid). An ellipsoid E in Rn is defined by the set

E = {~x ∈ Rn | (~x− ~c)T ·Q · (~x− ~c) ≤ 1} (2.11)

wherein ~c ∈ Rn is the center of E and Q ∈ Rn×n is the shape matrix which is positive
definite, i.e., ~xT ·Q · ~x > 0 for all nonzero ~x ∈ Rn. We denote it by E : (~c,Q).

Intuitively, the eigenvectors of Q define the principal axes of E and the eigenvalues of
Q are the reciprocals of the squares of the semi-axes.

2.4. REPRESENTATIONS FOR REACHABLE SETS 53

x

y

1 2 30

1

2

3

(a) Ellipsoid E1

x

y

1 2−1 0

1

2

−1

(b) Ellipsoid E2

Figure 2.11: Examples of ellipsoids

Example 2.4.10. We present two examples of ellipsoids. In Figure 2.11(a), the ellipsoid
E1 is defined by

E1 = {~x ∈ R2 | (~x− (1.5, 1.5))T ·
(

1
2.25 0
0 1

0.49

)
· (~x− (1.5, 1.5))} .

For the ellipsoid shown in Figure 2.11(b), the definition is given by

E2 = {~x ∈ R2 | (~x− (0.5, 1))T ·
(

0.9765625 0.5859375
0.5859375 0.9765625

)
· (~x− (0.5, 1))} .

The emptiness of an ellipsoid E : (~c,Q) can be verified by solving the convex feasibility
problem

find ~x ∈ Rn subject to (~x− ~c)T ·Q · (~x− ~c) ≤ 1 .

The ellipsoid is empty if and only if no solution is found.
For the operators we introduced on polytopes, ellipsoids are only closed under affine

mapping and the intersection with a hyperplane. Given an ellipsoid E : (~c,Q), its image
under an affine mapping π : ~x 7→M · ~x+~b is the ellipsoid defined by

π(E) : (M · ~c+~b, (M ·Q−1 ·MT)−1) .

Some exact and approximate methods to compute the other operations on ellipsoids are
described elsewhere [KV00, KV06, RST02].

However, ellipsoids are not closed under intersection, Minkowski sum and convex
hull. Some over- and under-approximation techniques for those operations are given
in [KV00, KV06, RST02].

2.4.4 Support functions

Support functions can be used as symbolic representations for convex sets. If two
convex and compact sets S1, S2 ⊆ Rn have the same support function, then S1 = S2.

54 CHAPTER 2. PRELIMINARIES

Definition 2.4.11 (Support function). Given a set S in the n-dimensional Euclidean
space Rn, the support function ρS : Rn → R ∪ {−∞,∞} is defined by

ρS(~l) = sup{~l T · ~x | ~x ∈ S} . (2.12)

Support function of a polytope. The support function value of a polytope in either
H- or V-representation w.r.t. a vector can be computed by LP. Given P : A · ~x ≤ ~b, the
support function value ρP (~l) for any constant vector ~l can be obtained by solving

sup{~l T · ~x} subject to A · ~x ≤ ~b .

For a V-representation P : {~v1, . . . , ~vm}, the support function value ρP (~l) can be obtained
by solving

sup{~l T · ~x} subject to ~x =
m∑
i=1

λi · ~vi ∧
m∧
i=1

(λi ∈ [0, 1]) ∧
m∑
i=1

λi = 1 .

Support function of a zonotope. Although the support function value of a zonotope
in G-representation w.r.t. a vector ~l may be derived by LP, it is not necessary. Instead,
an easier way to do that is computing a vector ~x∗ which is the sum of the zonotope center
and those vectors ~v such that either ~v or −~v is a generator and ~l T · ~v > 0. Then the
support function value can be computed by ~l T · ~x∗.

Support function of an ellispoid. The support function value of an ellipsoid E :
(~c,Q) w.r.t. a vector ~l can be computed by

ρE(~l) = ~l T · ~c+

√
~l T ·Q−1 ·~l .

Support function representations are closed under affine mapping, Minkowski sum and
convex hull [Le 09]. Given the support function ρS of a set S, the support function of its
image under an affine mapping π : ~x 7→M · ~x+ ~c is given by

ρπ(S)(~l) = ρS(MT ·~l) +~l T · ~c .

Given two sets S1, S2 which are represented by their support functions ρS1 , ρS2 respec-
tively. The support function of S1 ⊕ S2 can be computed by

ρS1⊕S2(~l) = ρS1(~l) + ρS2(~l)

and the support function of Conv(S1 ∪ S2) is given by

ρConv(S1∪S2)(~l) = sup{ρS1(~l), ρS2(~l)} .

Nevertheless, the support function of the intersection of two support functions is usually
difficult to compute.

Chapter 3

Taylor Model Flowpipes for Continuous
Systems

Continuous systems are mathematical formalisms for physical systems which exhibit only
continuous behavior. The evolution of a continuous system from an initial state is charac-
terized by a solution of an Ordinary Differential Equation (ODE). Then, to compute the
reachable set of a continuous system, it is often needed to solve an initial value problem
for the modeling ODE, and unfortunately, such a job can hardly be done explicitly since
most ODEs do not have closed-form solutions. In this chapter, we focus on the methods
to generate an over-approximation for the reachable set in a bounded time horizon for
a continuous system. The over-approximation set is computed as finitely many Taylor
Model flowpipes.

We briefly revisit the background of validated integration techniques, and then present
the method of Taylor model integration which is originally developed by Berz and Makino
[BM98, MB09]. The method shares the basic framework that is used in the interval-based
integration method [NJC99] but shows better accuracy in most of the applications. We
present our approach to compute Taylor model flowpipes. It follows the main outline
proposed by Berz and Makino but contains new techniques and heuristics to improve the
overall performance. To handle the ODEs with time-varying uncertainties, we present
a Taylor model extension of the method for dealing with time-invariant uncertainties
proposed by Lin and Stadtherr [LS07]. We prove that all behaviors in the time-varying
case can be captured by our method. To improve the performance on linear ODEs, we
propose an efficient method that combines the use of Taylor models and support functions.
Its effectiveness is shown via a comparison with SpaceEx.

3.1 Continuous systems

Given a function g, we denote its time derivative by ġ or dg
dt . Then an ODE is given

by the form ~̇x = f(~x, t).

Definition 3.1.1 (Continuous system). A continuous system S is defined by an ODE
~̇x = f(~x, t) wherein ~x are the state variables and t is the time variable. The function f
is called the vector field of S which associates each state ~c a derivative vector f(~c, t) at
time t.

55

56 CHAPTER 3. TAYLOR MODEL FLOWPIPES FOR CONTINUOUS SYSTEMS

L

C

active resistor

I

Figure 3.1: Van der Pol circuit Figure 3.2: Vector field of the Van der Pol circuit

Example 3.1.2 (Van der Pol circuit). The Van der Pol circuit given in Figure 3.1 is
a typical continuous system. It is an RLC circuit except that the resistor is active. It
pumps energy into the system when the current is low and lets the energy dissipate when
the current is high. The voltage of the active resistor is governed by

VR = −µI + I3 .

Since the voltage drop across an inductor is proportional to the change rate of the current
through it, then we have that VL = L · dIdt . For a capacitor, the current is proportional to

the change rate of the voltage drop, hence we have that I = C · dVCdt . Kirchoff’s Voltage
Law tells that the sum of the voltage drops around a loop is zero, therefore the following
equation holds:

−µI + I3 + VC + L · dI
dt

= 0 .

Hence, we may derive a 2-dimensional ODE{
V̇C = 1

C · I
İ = 1

L ·
(
−VC + µI − I3

)
which is named Van der Pol equation. In Figure 3.2, we present the vector field of the
Van der Pol circuit in the VC-I plane such that the parameters are selected as

C = 1, L = 1, µ = 1 .

The (higher-order) Lie derivatives of a continuous function w.r.t. a vector field is given
by Definition 3.1.3. As an example, assume that we have the ODE(

ẋ
ẏ

)
= f(x, y) =

(
−x+ y
1− y2

)
and a function g(x, y, t) = t+ x− y. The Lie derivatives of g up to order 2 are given as

Lf (g) = (−x+ y)− (1− y2) + 1 = −x+ y + y2

L2
f (g) = Lf (−x+ y + y2) = −(−x+ y) + (1− y2) + 2y(1− y2)

= 1 + x+ y − y2 − 2y3 .

3.1. CONTINUOUS SYSTEMS 57

Definition 3.1.3 (Lie derivative). Given an n-dimensional ODE ~̇x = f(~x, t), the (first-
order) Lie derivative of a differentiable function g(~x, t) w.r.t. the vector field f is defined
by

Lf (g) =
n∑
i=1

(
∂g

∂xi
· fi
)

+
∂g

∂t

wherein fi denotes the i-th component of f . If g is k times differentiable, the higher-order
Lie derivatives of it are defined recursively as

Lm+1
f (g) = Lf (Lmf (g)) for m = 1, 2, . . . , k − 1 .

A function g(t) is said to be a solution of the ODE ~̇x = f(~x, t) in a time interval T
containing 0 w.r.t. the initial condition ~x = ~x0 when t = 0, if

(i) g(0) = ~x0, and

(ii) dg
dt (t) = f(g(t), t) over t ∈ T .

By Picard-Lindelöf theorem, if the function f is Lipschitz continuous w.r.t. ~x in a neigh-
borhood of ~x0 and continuous w.r.t. t, then the solution ~x(t) of the ODE w.r.t. the initial
condition ~x(0) = ~x0 is unique in an open time interval (−∆(~x0),∆(~x0)) wherein ∆(~x0) is
a constant depending on ~x0 (see [Mei07]). The theorem could also be applied to the case
that f is locally Lipschitz continuous w.r.t. ~x and continuous w.r.t. t.

Definition 3.1.4 (Neighborhood). Given a point ~c ∈ Rn for some n ∈ N. A set U ⊆ Rn
is called a neighborhood of ~c if there exists an open set V ⊆ Rn such that ~c ∈ V ⊆ U .

Definition 3.1.5 (Lipschitz continuity). We say that a function f(~x, t) with t ∈ T is
Lipschitz continuous w.r.t. ~x in C, if there exists a real constant L ≥ 0 such that for any
~c1,~c2 ∈ C and s ∈ T the following inequality holds.

‖f(~c1, s)− f(~c2, s)‖ ≤ L · ‖~c1 − ~c2‖ (3.1)

We also call f locally Lipschitz continuous w.r.t. ~x if for any ~c ∈ C there exists a
neighborhood U of ~c such that f is Lipschitz continuous w.r.t. ~x in U .

Theorem 3.1.6 (Picard-Lindelöf theorem). Given an n-dimensional ODE ~̇x = f(~x, t).
If f(~x, t) is Lipschitz continuous w.r.t. the variables ~x in some open set C ⊆ Rn and
continuous w.r.t. t in an interval T containing 0, then for any ~x0 ∈ C, the solution ~x(t)
w.r.t. ~x(0) = ~x0 is unique over t ∈ (−∆(~x0),∆(~x0)) ⊆ T for some real value ∆(~x0) > 0
depending on ~x0.

Example 3.1.7. The ODE ẋ = 0.5x has the unique solution x(t) = exp(0.5t) · c over
t ∈ R for all initial state x(0) = c ∈ R. However, the ODE ẋ =

√
2|x| has the following

two solutions w.r.t. the initial condition x(0) = 0:

(1) x(t) = 0 (2) x(t) =

{
0.5t2, t ≥ 0
−0.5t2, t < 0

since the function
√

2|x| is not Lipschitz continuous over any set containing 0.

58 CHAPTER 3. TAYLOR MODEL FLOWPIPES FOR CONTINUOUS SYSTEMS

For the continuous systems under our consideration, we always assume that the vector
fields are locally Lipschitz continuous w.r.t. the state variables and continuous w.r.t. the
time variable. Therefore, given a time interval [−∆,∆] ∈ IR, if a solution is ensured to
exist there, then it is also unique (see [Mei07]). Besides the notation ~x(t), we sometimes
denote ϕf (~x0, t) as the unique solution of the ODE ~̇x = f(~x, t) w.r.t. ~x(0) = ~x0 at time t.
It is also known as the flow of the continuous system from ~x0. For convenience, we denote
the set of flows {ϕf (~x0, t) | ~x0 ∈ X0, t ∈ ∆} collectively by ϕf (X0,∆) when ϕf (~x0, t) all
exists for ~x0 ∈ X0 and t ∈ ∆. The set is also called a flowpipe.

An initial value problem (IVP) is to find a solution ~x(t) over some time interval T
containing 0 for an ODE ~̇x = f(~x, t) and its initial condition ~x(0) = ~x0. Then for
a continuous system defined by ~̇x = f(~x, t), the problem is similar to computing the
reachable set ϕf (X0, t) for t ∈ T according to a given initial set X0. Since a continuous
system is always defined by an ODE in the thesis, we sometimes also call continuous
systems ODEs, or ODE solutions reachable sets.

Definition 3.1.8 (Continuous reachability problem). Given an n-dimensional continuous
system S : ~̇x = f(~x, t) and an initial set X0 ⊆ Rn. The reachability problem of S is to
verify whether a given state ~c ∈ Rn is reachable in a given time interval T . We also call
the problem bounded when T is bounded.

Since most IVPs do not have a closed-form solution, the reachability problem of a
continuous system can hardly be solved explicitly. Hence, we seek to compute an ap-
proximation of the result. Two state-of-the-art approaches are widely used to generate
approximations for ODE solutions. They are called numerical integration and validated
integration (also named verified integration or guaranteed integration). Both of them can
be applied to yielding approximations for the reachable sets of continuous systems.

Numerical integration. Numerical integration is a task to generate numerical solu-
tions for IVPs. More precisely, it computes numerical approximations for ODE solutions.
Lots of numerical integration techniques are proposed in the past, such as Euler’s method,
Taylor’s method and Runge-Kutta method (see [AHS09]). Those methods compute an
approximation for the solution at a time point by consecutively approaching it via finitely
many time steps which are also called integration steps. Given an ODE ~̇x = f(~x, t) as well
as an initial condition ~x(0) = ~x0, an approximation value ~st for the solution ~x(t) at some
time t > 0 can be computed by the following iterations,

1: for all i = 1, . . . , N do
2: Compute ~si as an approximation of ϕf (~si−1, δi);
3: end for

wherein ~s0 = ~x0 and δ1, . . . , δN are called time step-sizes such that
∑N

i=1 δi = t. The
scheme is based on the fact that a unique solution ϕf (~x0, t) over a time interval T con-
taining 0 satisfies

ϕf (~x0, t1 + t2) = ϕf (ϕf (~x0, t1), t2)

for t1, t2, t1 + t2 ∈ T . The reason to compute the approximation by iterations is that the
step-size in each iteration can be made small enough to control the local approximation
error, although the global error may still accumulate during the iterations. Numeri-
cal integration techniques may be used to generate time-bounded simulation paths for

3.1. CONTINUOUS SYSTEMS 59

Figure 3.3: Numerical simulations Figure 3.4: Validated integration

continuous systems. However, those approximation paths do not help to solve a reacha-
bility problem, since the approximation error is not guaranteed, and we still do not know
whether a state is reachable or not.

Validated integration. Validated integration shares the same framework with numeri-
cal integration except that a flowpipe over-approximation is computed in every integration
step to enclose the reachable set in a time segment. For the same example as above, the
iterations become

1: for all i=1,. . . ,N do
2: Compute Fi as an over-approximation of ϕf (Fi−1, [0, δi]);
3: end for

wherein F0 = {~x0}. Here, the initial set may also contain infinitely many states. Vali-
dated integration methods need to guarantee the inclusion of the exact solution in every
integration step and are usually much more time-consuming than performing a numeri-
cal integration. The representation of a flowpipe over-approximation plays an important
role in the overall computational performance. The sets on which general operations
such as linear mapping, Minkowski sum are easy to compute are considered suitable.
For continuous systems, a validated integration method may compute a reachable set
over-approximation, and then any state that is not included is absolutely not reachable.

Example 3.1.9. We consider the Van der Pol circuit given in Example 3.1.2. The
initial set of interest is the box VC(0) ∈ [1.9, 2.1] and I(0) ∈ [1.9, 2.1]. In Figure 3.3, we
illustrate the 25 simulation trajectories generated by Matlab ode45, their starting points
are uniformly distributed in the initial box. Figure 3.4 presents the over-approximation
sets computed by Flow* for the system behavior, each state which is not included is not
reachable.

60 CHAPTER 3. TAYLOR MODEL FLOWPIPES FOR CONTINUOUS SYSTEMS

3.2 High-level flowpipe construction schemes

We briefly revisit the high-level techniques for validated integration which is also called
flowpipe construction in this thesis. We consider the schemes for linear and non-linear
continuous systems separately, since the linear ones can be handled in more efficient ways.

3.2.1 Schemes for linear continuous systems

We concentrate on the autonomous linear continuous systems defined by homogeneous
ODEs of the form ~̇x = A·~x, since a non-homogeneous ODE ~̇x = A·~x+~b can be equivalently
transformed to a homogeneous one by adding new state variable(s).

Given an n-dimensional linear continuous system S : ~̇x = f(~x) = A·~x and an initial set
X0 ⊆ Rn, the reachable set in the bounded time horizon [0,∆] can be explicitly expressed
by

ϕf (X0, [0,∆]) = {exp(A · t) · ~x0 | ~x0 ∈ X0, t ∈ [0,∆]}
since ~x(t) = exp(A · t) · ~x0 is the solution of the ODE w.r.t. the initial condition ~x(0) =
~x0. Unfortunately, the above set can hardly be computed exactly or even approximated
accurately by one shot when the time interval [0,∆] is large. We may however use flowpipe
over-approximations to wrap the reachable set by segments. In each of them we only need
to over-approximate the matrix exp(A · t) over a small interval of t, and it can be done by
using the methods of approximating matrix exponentials [MV03] and interval arithmetic.

The flowpipe construction for linear continuous systems can be carried out in various
ways. Here, we present two popular schemes. The first one is given by Algorithm 4.
For 1 ≤ i ≤ N , the i-th flowpipe over-approximation Fi is an over-approximation of the
reachable set in the time step [

∑i−1
j=1 δj ,

∑i
j=1 δj], it may be obtained by (conservatively)

solving some optimization problems over the ODE solution set [CK98].

Algorithm 4 Flowpipe construction for linear continuous systems - Scheme I

Input: an ODE ~̇x = A·~x, an initial set X0, N step-sizes δ1, . . . , δN such that
∑N

i=1 δi = ∆
Output: an over-approximation R for the reachable set from X0 in time [0,∆]

1: R ← ∅;
2: for all i = 1, . . . , N do
3: Fi ← overapprox({exp(A · t) · ~x0 | ~x0 ∈ X0, t ∈ [

∑i−1
j=1 δj ,

∑i
j=1 δj]});

4: R ← R∪Fi;
5: end for
6: return R;

In the second scheme, as presented by Algorithm 5, a flowpipe over-approximation,
except the first one, is computed as the image of the previous one under the linear mapping
π : ~x 7→ exp(A · δ) · ~x. It is because of the fact that

exp(A · a) · exp(A · b) = exp(A · (a+ b))

for all constant a, b ∈ R, and by the solution form of linear ODEs, we have that

ϕf (X0, [i · δ, (i+ 1) · δ]) = exp(A · δ) · ϕf (X0, [(i− 1) · δ, i · δ])

3.2. HIGH-LEVEL FLOWPIPE CONSTRUCTION SCHEMES 61

for 1 ≤ i ≤ N − 1. By using the flowpipe representations which are closed under linear
mappings, such as zonotopes [Gir05] and support functions [LG09], the second scheme
often costs less time than the first one does, since there is no need to solve optimization
problems in a time step.

Algorithm 5 Flowpipe construction for linear continuous systems - Scheme II

Input: an ODE ~̇x = A · ~x, an initial set X0, a time horizon [0,∆], a step-size δ
Output: an over-approximation R for the reachable set from X0 in time [0,∆]

1: N ← d∆
δ e;

2: Mδ ← overapprox(exp(A · δ)); # Mδ is an interval matrix
3: F1 ← overapprox({exp(A · t) · ~x0 | ~x0 ∈ X0, t ∈ [0, δ]});
4: R ← F1;
5: for all i = 2, . . . , N do
6: Fi ←Mδ · Fi−1;
7: R ← R∪Fi;
8: end for
9: return R;

The two schemes are different tradeoffs between efficiency and accuracy. For Scheme
I, the overall overestimation does not accumulate during the iterations since the flowpipe
over-approximations are computed independently, although in each step we may need to
solve some optimization problems which could be time-consuming. In Scheme II, except
the first flowpipe over-approximation, we only need to recursively compute images of
linear mappings. However the overall overestimation may accumulate since the matrix
Mδ used in every iteration is an over-approximation of exp(A · δ). In both of the schemes,
it is possible to arbitrarily reduce the overall overestimation by shrinking the step-sizes
when those operations are implemented properly. In Section 3.6, we describe a novel
method which combines the use of Taylor models and support functions in a variant of
Scheme II.

3.2.2 General scheme for non-linear continuous systems

When a continuous system is defined by a non-linear ODE, the reachable set over-
approximations often can not be computed based on the closed-form solutions. In this
case, we may resort to Taylor approximations.

Given a non-linear continuous system S : ~̇x = f(~x, t) and an initial set X0, the i-th
flowpipe over-approximation Fi can be computed by the following procedure.

1: Ωi ← overapprox({pk(~x0, t) | ~x0 ∈ Xl, t ∈ [0, δi]});
2: if there is an interval Il s.t. ϕf (Xl, [0, δi]) ⊆ Ωi ⊕ Il then
3: Fi ← overapprox(Ωi ⊕ Il);
4: else
5: Terminate and return FAIL;
6: end if

wherein Xl denotes the local initial set which is X0 when i = 1, and an over-approximation
of ϕf (X0,

∑i−1
j=1 δj) for i > 1. It can be derived form the previous flowpipe over-approximation.

The value of δi is the i-th step-size. The polynomial pk is a Taylor approximation of the

62 CHAPTER 3. TAYLOR MODEL FLOWPIPES FOR CONTINUOUS SYSTEMS

solution in the current time step, and it can be obtained as

pk(~x0, t) = ~x0 + Lf (ϕf (~x0, t))|t=0 · t+ · · ·+ 1

k!
Lkf (ϕf (~x0, t))|t=0 · tk .

In practice, pk is not necessarily to be the exact Taylor polynomial but should be made
as close as possible. For example, an Interval Taylor series (ITS) is computed for pk in
[NJC99]. After over-approximating pk, we should verify the existence of the solution over
the time step [0, δi] and the initial set Xl. To do so, we try to find an interval Il such that
the result of bloating Ωi by adding Il contains a solution. Since the solution is unique
by our assumption, the set Ωi⊕ Il is an over-approximation of the reachable set in [0, δi].
On the other hand, if such an interval is not found, then the integration task fails. In
that case, a remedy could be to decrease δi and try again. In the next section, we present
a method to compute the flowpipe over-approximations which are represented by Taylor
models.

3.3 Computing Taylor model flowpipes

3.3.1 Standard Taylor model integration method

We consider to compute the flowpipe over-approximations as Taylor Models (TMs)
for a non-linear continuous system. They are also called TM flowpipes. Given an n-
dimensional non-linear continuous system S : ~̇x = f(~x, t) and an interval or TM initial
set X0 ⊆ Rn. Assume that the N time step-sizes are given by δ1, . . . , δN , then for
1 ≤ i ≤ N , the i-th TM flowpipe is of the form Fi(~x0, t) = (pl(~x0, t), Il) such that ~x0 ∈ X0

and t ∈ [0, δi]. It is an over-approximation of the solution ϕf (~x0,
∑i−1

j=1 δj + t), i.e.,

ϕf (~x0,

i−1∑
j=1

δj + t) ∈ pl(~x0, t) + Il for all ~x0 ∈ X0, t ∈ [0, δi] .

The TM flowpipes may be of different orders. The method of computing TM flowpipes
is called TM integration. We give a description of it as follows.

Given an integration task, the initial set Xl in the i-th time step is X0 when i = 1, or
given by the TM Fi−1(~x0, δi−1) for 1 < i ≤ N . We use the following two steps to compute
the i-th TM flowpipe Fi. We assume that the TM order is k.

Step 1. Compute the order k Taylor polynomial of ϕf (~xl, t) at t = 0. It can be obtained
as

pl(~xl, t) = ~xl + Trunck−1(Lf (ϕf (~xl, t)))|t=0 · t+ · · ·

+
1

k!
Trunc0(Lkf (ϕf (~xl, t)))|t=0 · tk

(3.2)

wherein the operation Truncj(p) removes the terms of degrees > j in the polynomial p.
The truncated Lie derivatives in pl can be computed iteratively, that is

Trunck−i(Lif (ϕf (~xl, t))) = Trunck−i(Lf (Trunck−i+1(Li−1
f (ϕf (~xl, t)))))

for i = 1, . . . , k, since the terms of degrees ≤ (k − i) in Lif (ϕf (~xl, t)) are generated only

by the terms of degrees ≤ (k − i+ 1) in Li−1
f (ϕf (~xl, t)).

3.3. COMPUTING TAYLOR MODEL FLOWPIPES 63

Definition 3.3.1 (Picard iteration). Given an ODE ~̇x = f(~x, t) and an initial condition
~x(0) = ~x0, the Picard iteration from a function g0(t) is defined by

gi+1(t) = Pf (gi) = ~x0 +

∫ t

0
f(gi(s), s)ds for i ≥ 0 (3.3)

wherein Pf is called a Picard operator.

Besides the use of Lie derivatives, the polynomial pl can also be generated by Picard
iteration from g0(~xl, t) = ~xl. That is, we set an initial function g0(~xl, t) = ~xl, and apply
the Picard operator as well as truncation operator to compute pl = gk:

gi+1(~xl, t) = Trunci(Pf (gi)) for i = 0, . . . , k − 1

The application of the two methods on an ODE is given by Example 3.3.2.

Example 3.3.2. Given a 2-dimensional ODE

(
ẋ
ẏ

)
= f(x, y) =

(
1 + y
−x2

)
. We want

to compute the order 4 Taylor polynomial pl for the solution. We first generate the Taylor
polynomial up to order k by truncated Lie derivatives. For simplicity, we use x and y to
denote the first and second components respectively for the function ϕf (xl, yl, t).

Trunc3

(
Lf
((

x
y

)))
=

(
1 + y
−x2

)
Trunc2

(
L2
f

((
x
y

)))
= Trunc2

(
Lf
((

1 + y
−x2

)))
=

(
−x2

−2x− 2xy

)
Trunc1

(
L3
f

((
x
y

)))
= Trunc1

(
Lf
((

−x2

−2x− 2xy

)))
=

(
−2x
−2− 4y

)
Trunc0

(
L4
f

((
x
y

)))
= Trunc0

(
Lf
((

−2x
−2− 4y

)))
=

(
−2
0

)

and then the order 4 Taylor expansion is given by

pl(xl, yl, t) =

(
xl + t+ ylt− 1

2x
2
l t

2 − 1
3xlt

3 − 1
12 t

4

yl − x2
l t− xlt2 − 1

3 t
3 − xlylt2 − 2

3ylt
3

)

Then we turn to the second method. We start with the function g0(xl, yl, t) and apply

64 CHAPTER 3. TAYLOR MODEL FLOWPIPES FOR CONTINUOUS SYSTEMS

the Picard iteration with truncations.

g0(xl, yl, t) =

(
xl
yl

)
g1(xl, yl, t) = Trunc1

((
xl
yl

)
+

∫ t

0

(
1 + yl
−x2

l

)
ds

)
=

(
xl + t
yl

)
g2(xl, yl, t) = Trunc2

((
xl
yl

)
+

∫ t

0

(
1 + yl

−(xl + s)2

)
ds

)
=

(
xl + t+ ylt

yl

)
g3(xl, yl, t) = Trunc3

((
xl
yl

)
+

∫ t

0

(
1 + yl

−(xl + s+ yls)
2

)
ds

)
=

(
xl + t+ ylt

yl − x2
l t− xlt2 − 1

3 t
3

)
g4(xl, yl, t) = Trunc4

((
xl
yl

)
+

∫ t

0

(
1 + yl − x2

l s− xls2 − 1
3s

3

−(xl + s+ yls)
2

)
ds

)
=

(
xl + t+ ylt− 1

2x
2
l t

2 − 1
3xlt

3 − 1
12 t

4

yl − x2
l t− xlt2 − 1

3 t
3 − xlylt2 − 2

3ylt
3

)
The function g4 is the Taylor expansion pl.

Step 2. Evaluate a safe remainder interval Il for the Taylor polynomial pl(~xl, t) with
~xl ∈ Xl and t ∈ [0, δi]. We try to find an interval Il such that there exists a function
u(~xl, t) ∈ pl(~xl, t) + Il for all ~xl ∈ Xl and t ∈ [0, δi], and

u(~xl, t) = ~xl +

∫ t

0
f(u(~xl, s), s)ds (3.4)

i.e., u(~xl, t) = ϕf (~xl, t). By our assumption, if the solution in [0, δi] exists then it is
unique. Such a remainder interval could be verified by using Picard operator. Since the
set of continuous functions {g(~xl, t) | ~xl ∈ Xl, t ∈ [0, δi]} with the norm | · | defined by

|g| = sup{g(~xl, t) | ~xl ∈ Xl, t ∈ [0, δi]}

forms a Banach space, and (pl, Il) for an interval Il defines a convex and compact set of
continuous functions, we can infer, by the Schauder fixed point theorem, that there is a
function u ∈ (pl, Il) which satisfies (3.4) when the Picard operator maps (pl, Il) to a subset
of it. To detect this contractiveness, we may use TM arithmetic of order k. The result of
a TM extension Pf ((pl, Il)) of Pf ((pl, Il)) also has the polynomial part pl, therefore if its
remainder is contained in Il then the operator is contractive on (pl, Il).

Definition 3.3.3 (Convergence). Given an infinite sequence s1, s2, s3, . . . in a normed
vector space (S, | · |). We say that the sequence converges to a point s∗ ∈ S if |si−s∗| → 0
when i→∞.

Definition 3.3.4 (Cauchy sequence). An infinite sequence s1, s2, s3, . . . is called a Cauchy
sequence in a normed vector space (S, | · |), if for any ε > 0, there is a positive integer N
such that for all positive integers i, j ≥ N we have that |si − sj | < ε.

3.3. COMPUTING TAYLOR MODEL FLOWPIPES 65

Theorem 3.3.5 (Schauder fixed point theorem). Let U be a convex and compact set in
a Banach space (S, | · |) which is a normed vector space whose Cauchy sequences are all
convergent to an element in S. If f : U → U is continuous, then the mapping f has a
fixed point in U , i.e., there is u ∈ U such that u = f(u).

To find such an interval remainder Il, we may first provide an estimation and succes-
sively enlarge it until we verify the contractiveness of the Picard operator. Afterwards,
the interval may be refined by repeatedly applying the Picard operator to (pl, Il) using
order k TM arithmetic. We show an example as below.

Example 3.3.6. We consider the same ODE as that given by Example 3.3.2. Assume
that the local initial set is given by the box {(xl, yl) |xl ∈ [−1, 1] ∧ yl ∈ [−0.5, 0.5]}, and

the step-size is 0.02. We start with the remainder estimate J0 =

(
[−0.1, 0.1]
[−0.1, 0.1]

)
for the

order 3 Taylor expansion

pl(xl, yl, t) =

(
xl + t+ ylt

yl − x2
l t− xlt2 − 1

3 t
3

)
We compute the following order 3 TM extension of the Picard operation,

Pf ((pl, J0)) =

(
xl
yl

)
+

∫ t

0

(
1 + (yl − x2

l s− xls2 − 1
3s

3 , [−0.1, 0.1])
−((xl + s+ yls, [−0.1, 0.1]))2

)
ds

which yields the TM

(
xl + t+ ylt , [−0.0023, 0.0023]
yl − x2

l t− xlt2 − 1
3 t

3 , [−0.0060, 0.0060]

)
over xl ∈ [−1, 1],

yl ∈ [−0.5, 0.5] and t ∈ [0, 0.02]. Then the remainder is refined to J1 =

(
[−0.0023, 0.0023]
[−0.0060, 0.0060]

)
.

For further refinement, we compute

Pf ((pl, J1)) =

(
xl
yl

)
+

∫ t

0

(
1 + (yl − x2

l s− xls2 − 1
3s

3 , [−0.0060, 0.0060])
−((xl + s+ yls, [−0.0023, 0.0023]))2

)
ds

and it yields a smaller remainder interval

(
[−0.0002, 0.0002]
[−0.0003, 0.0003]

)
.

At last, the i-th TM flowpipe Fi can be computed from evaluating (pl(Xl, t), Il) by
order k TM arithmetic. Notice that a safe remainder interval is not always guaranteed to
be obtained, it might fail when either of the local initial set or the time step is too large.

In Figure 3.5 - 3.7, we give a visualization of the two steps as well as the computation
of the local initial set in the next time step. The current local initial set is simply denoted
by a point ~xl. We should mention that the size of the remainder interval in Xl does not
necessarily increase along with the time steps. An example is given as follows.

Example 3.3.7. We assume that

(pl(~xl, t), Il) = (1 + 2xlt
2 − 0.2x2

l t , [−0.1, 0.1])
Xl = (0.1− x2

0 , [−0.5, 0.5])

wherein x0 ∈ [−1, 1] and t ∈ [0, 0.2]. To compute the order 2 TM for the local initial set
in the next integration step, we first compute

(p′l(~xl), Il) = (pl(~xl, 0.2), Il) = (1 + 0.08xl − 0.04x2
l , [−0.1, 0.1])

66 CHAPTER 3. TAYLOR MODEL FLOWPIPES FOR CONTINUOUS SYSTEMS

~xl

0 δi
t

ϕf (~xl, t)

pl(~xl, t)

Figure 3.5: Step 1: Compute the order k Taylor approximation pl(~xl, t)

~xl

0 δi
t

ϕf (~xl, t)

pl(~xl, t) + Il

Figure 3.6: Step 2: Evaluate a proper remainder interval Il

3.3. COMPUTING TAYLOR MODEL FLOWPIPES 67

~xl

0 δit

ϕf (~xl, t)

pl(~xl, δi) + Il

Figure 3.7: Compute the local initial set for the next time step

Then the substitution (p′l((0.1− x2
0, [−0.5, 0.5])) , Il) results in the TM

(1.0076− 0.072x2
0 , [−0.250, 0.250])

whose remainder size is smaller than that of [−0.5, 0.5].

3.3.2 Preconditioned Taylor expansions

In a TM integration task, the remainders of the flowpipe over-approximations are
often computed via lots of polynomial evaluations. As we pointed out in Chapter 2,
the tightness of them is very sensitive to the evaluation schemes in use. In practice, for
interval evaluating a polynomial p, it is often effective to limit the overestimation by first
reformulating p over a set of variables each of which ranges in [−1, 1] and then computing
an interval for a Horner form of the result. The reason to do the reformulation is that
W(I ·J) ≤W(I ′ ·J) for any intervals I, I ′, J such that I is symmetric and W(I) = W(I ′).
We give an example as below.

Given two TMs (−x+x2, [−0.1, 0.1]) and (1+2x−x2, [−0.1, 0.1]), the domain of them
is given by x ∈ [2, 4]. The order 2 TM of their product can be computed by

(−x+ x2, [−0.1, 0.1]) · (1 + 2x− x2, [−0.1, 0.1])

=

(
−x− x2,

Int(−x+ x2) · [−0.1, 0.1] + [−0.1, 0.1] · Int(1 + 2 · x− x2)
+[−0.1, 0.1] · [−0.1, 0.1] + Int(3x3 − x4)

)
=(−x− x2, [−1.4, 1.4] + [−1.1, 1.1] + [−0.01, 0.01] + [−232, 176])

=(−x− x2, [−234.51, 178.51])

which has a huge remainder interval whose width is 413.02. However, if we translate the
two TMs equivalently to (6+5y+y2, [−0.1, 0.1]) and (−2−4y−y2, [−0.1, 0.1]) respectively

68 CHAPTER 3. TAYLOR MODEL FLOWPIPES FOR CONTINUOUS SYSTEMS

over y ∈ [−1, 1]. The TM multiplication can be done by

(6 + 5y + y2, [−0.1, 0.1]) · (−2− 4y − y2, [−0.1, 0.1])

=

12− 14y − 24y2,
Int(6 + 5y + y2) · [−0.1, 0.1]

+[−0.1, 0.1] · Int(−2− 4y − y2)
+[−0.1, 0.1] · [−0.1, 0.1] + Int(−9y3 − y4)


=(−12− 34y − 28y2, [−1.2, 1.2] + [−0.7, 0.7] + [−0.01, 0.01] + [−10, 9])

=(−12− 34y − 28y2, [−11.91, 10.91])

whose remainder width is only 22.82.

We consider to equivalently express the Taylor expansion pl over another group of
variables ~yl which range in a subset of the unit box [−1, 1]n. The methods to do that are
called preconditioning techniques, and we only consider the translation form ~xl = ~cl+Al ·~yl
for ~cl ∈ Rn and Al ∈ Rn×n which is an invertible matrix. We call ~cl, Al preconditioning
parameters.

Many techniques are proposed to compute the preconditioning parameters. For exam-
ple, the QR preconditioning technique for interval-based integration may also be applied
to the TM case (see [Loh92, MB05]). When a preconditioning technique is used, we will
meet the problem that is how to efficiently compute the preconditioned Taylor expansion
for given ~cl and Al.

We introduce three approaches to compute a preconditioned Taylor expansion. The
simplest one is to use Picard iteration from the initial function g0(~yl, t) = ~cl + Al · ~yl.
We call it Approach I, it involves lots of variable substitutions which might be very time-
consuming when either the vector field is a high-degree polynomial or the TM order is
large. Hence, we also propose the use of the following two approaches for the situations
in which Approach I does not work efficiently.

1. Approach II: Based on a polynomial template. Although the preconditioning param-
eters ~cl, Al are different from step to step, the corresponding Taylor expansions can
always be computed by

pl(~yl, t) =~cl +Al · ~yl + Trunck−1((Lf (ϕf (~xl, t))|t=0)|~xl=~cl+Al·~yl) · t+ · · ·

+
1

k!
Trunc0((Lkf (ϕf (~xl, t))|t=0)|~xl=~cl+Al·~yl) · tk

for which we may first derive a polynomial template over ~xl and t,

pT (~xl, t) = ~xl + Lf (ϕf (~xl, t))|t=0 · t+ · · ·+ 1

k!
Lkf (ϕf (~xl, t))|t=0 · tk

then replace ~xl by ~cl + Al · ~yl and truncate the terms of degrees > k. Note that the
template pT has nothing to do with ~cl, Al, it then can be computed only once and
reused in every time step.

Unfortunately, such a scheme may also be time-costly, since no truncation is applied on
the Lie derivatives in the template pT . In the case that the dimension n is large and the
vector field f has a high-degree polynomial part, the size of pT could be prohibitively
large.

3.3. COMPUTING TAYLOR MODEL FLOWPIPES 69

Method Degree of the vector field TM order

Approach I low low

Approach II low high

Approach III high high

Table 3.1: Situations for applying different approaches to compute Taylor polynomials

2. Approach III: Based on the preconditioned Taylor approximations. The idea is similar
to that described in [MB09]. By the precondition of the initial set ~xl = ~cl +Al · ~yl, we
may derive a preconditioned solution

ϕf (~xl, t) = ϕf (~cl, t) +Al · ϕh(~yl, t)

wherein the evolution from ~yl is determined by another vector field h. It denotes the
evolution of the preconditioned difference between the trajectories from ~xl and ~cl. We
give an intuitive explanation in Figure 3.8.

Then the Taylor expansion pl can be derived as

pl(~yl, t) = p~c(t) +Al · p~y(~yl, t)

wherein p~c is the order k Taylor polynomial of ϕf (~cl, t) and p~y is the order k Taylor
polynomial of ϕh(~yl, t). Since p~c is univariate, we may compute it by mere Picard
iteration and the cost is low. For p~y, we may compute the following polynomial

p~y(~yl, t) = ~yl + Trunck−1(Lh(ϕh(~yl, t)))|t=0 · t+ · · ·+ 1

k!
Trunc0(Lkh(ϕh(~yl, t)))|t=0 · tk

wherein h is unknown but can be replaced by an order (k − 1) Taylor polynomial ph
of it. That is,

ph(~y, t) =A−1
l · (

dϕf (~xl, t)

dt
− dp~c

dt
)

=A−1
l · (f(~x, t)− dp~c

dt
)

=A−1
l · (f(p~c +Al · ~y, t)−

dp~c
dt

)

As we mentioned before, the truncated Lie derivatives can be generated iteratively
based on only lower-order terms, then we do not need to keep the whole part of a Lie
derivative in the computation. Therefore, such an approach could have a lower time
cost than either of the other two when the TM order is high.

This approach might not have a better performance than the other two when the TM
order in use is low, since the preconditioned Taylor expansion could be computed more
efficiently in a more direct way.

Table 3.1 provides a summary of the suitable situations for the three approaches.
In Example 3.3.8, we show the computation of a preconditioned Taylor expansion by
using all of the three approaches. To better understand their applicabilities, we provide
Example 3.3.9 in which we evaluate their performance on a set of variants of a jet engine
model. The experimental platform is a PC with an Intel Core i7-860 Processor (2.80
GHz), 4.0 Gigabyte memory and the operating system of Ubuntu Linux 12.04 LTS.

70 CHAPTER 3. TAYLOR MODEL FLOWPIPES FOR CONTINUOUS SYSTEMS

Xl

ϕf (Xl, t)

~cl

~xl

~yl

ϕf (~cl, t)

ϕf (~xl, t)

ϕf (~yl, t)

Figure 3.8: Example of the relationships among ~xl, ~cl and ~yl. Here, the matrix Al is
identity.

Example 3.3.8. We consider a 1-dimensional ODE ẋ = f(x) = 2 + x2. The precondi-
tioning parameters are given by cl = 1 and Al = (0.5). We present the computation of the
order 4 Taylor expansion pl over yl, t. We first follow the way of using Picard iteration,
i.e., Approach I. The initial function is given by g0(yl, t) = 1 + 0.5yl.

g1(yl, t) =Trunc1(1 + 0.5yl +

∫ t

0
(2 + (1 + 0.5yl)

2)ds) = 1 + 0.5yl + 3t

g2(yl, t) =Trunc2(1 + 0.5yl +

∫ t

0
(2 + (1 + 0.5yl + 3t)2)ds) = 1 + 0.5yl + 3t+ ylt+ 3t2

g3(yl, t) =Trunc3(1 + 0.5yl +

∫ t

0
(2 + (1 + 0.5yl + 3t+ ylt+ 3t2)2)ds)

= 1 + 0.5yl + 3t+ ylt+ 3t2 + 0.25y2
l t+ 2.5ylt

2 + 5t3

g4(yl, t) =Trunc4

(
1 + 0.5yl+∫ t

0 (2 + (1 + 0.5yl + 3t+ ylt+ 3t2 + 0.25y2
l t+ 2.5ylt

2 + 5t3)2)ds

)
=1 + 0.5yl + 3t+ ylt+ 3t2 + 0.25y2

l t+ 2.5ylt
2 + 5t3 + 0.75y2

l t
2

+ 4.66667ylt
3 + 7t4

After 4 iterations we have the preconditioned Taylor expansion pl = g4.
When we use Approach II, the polynomial template is computed by

pT = xl + (2 + x2
l)t+

1

2
(4xl + 2x3

l)t
2 +

1

6
(8 + 16x2

l + 6x4
l)t

3 +
1

24
(64xl + 80x3

l + 24x5
l)t

4

By substituting 1 + 0.5yl in the place of xl and truncating the higher-order part, we obtain
the same result that is

pl = 1 + 0.5yl + 3t+ ylt+ 3t2 + 0.25y2
l t+ 2.5ylt

2 + 5t3 + 0.75y2
l t

2 + 4.6667ylt
3 + 7t4

Now we turn to Approach III. The order 4 Taylor polynomial for the solution ϕf (1, t)
is computed as p~c = 1 + 3t+ 3t2 + 5t3 + 7t4 by Picard iteration. We compute the order 3
Taylor approximation for the vector field of y(t) = ϕh(~yl, t), that is

ph(y, t) =Trunc3(2 · (2 + (1 + 3t+ 3t2 + 5t3 + 7t4 + 0.5y)2 − 3− 6t− 15t2 − 28t3))

=2y + 0.5y2 + 6yt+ 6yt2

3.3. COMPUTING TAYLOR MODEL FLOWPIPES 71

Enhancement TM order Approach I (s) Approach II (s) Approach III (s)

+0 5 2.2 2.3 2.8

+0 8 22.2 19.4 23.7

+0 11 71.5 47.3 67.2

+q6 5 7.7 11.8 7.8

+q6 8 101.8 101.7 86.4

+q6 11 512.9 480.7 368.1

+q6 + q9 5 17.7 24.0 14.1

+q6 + q9 8 234.1 226.5 166.6

+q6 + q9 11 1531.9 1607.2 914.4

Table 3.2: Experiments on the jet engine model with different enhancements

Then the order 4 Taylor approximation for ϕ(1 + 0.5yl, t) is computed by

p~y =yl + Trunc3(Lh(y))|t=0 · t+
1

2!
Trunc2(L2

h(y))|t=0 · t2

+
1

3!
Trunc1(L3

h(y))|t=0 · t3 +
1

4!
Trunc0(L4

h(y))|t=0 · t4

=yl + (2y + 0.5y2 + 6yt+ 6yt2)|t=0 · t

+
1

2
(10y + 3y2 + 36yt)|t=0 · t2

+
1

6
(56y)|t=0 · t3

+
1

24
(0)|t=0 · t4

=yl + 2ylt+ 0.5y2
l t+ 5ylt

2 + 1.5y2
l t

2 + 9.3333ylt
3

Hence, we have that

pl =p~c + (0.5) · p~y
=1 + 0.5yl + 3t+ ylt+ 3t2 + 0.25y2

l t+ 2.5ylt
2 + 5t3 + 0.75y2

l t
2 + 4.6667ylt

3 + 7t4

Example 3.3.9 (Jet engine). The Moore-Greitzer model of a jet engine is described
in [APS08]. It is a 2-dimensional continuous system defined by{

ẋ = −y − 1.5x2 − 0.5x3 − 0.5
ẏ = 3x− y

The vector field is a (vector-valued) polynomial of degree 3. We consider to enhance it by
adding high-degree polynomial terms which are listed as follows.

q6(x, y) =

(
0.2x3y3

0.2x3y3

)
q9(x, y) =

(
−0.1x3y6 − 0.1x6y3

−0.1x3y6 − 0.1x6y3

)
In Table 3.2, we list the experimental results on those enhancements with different TM
orders and approaches. The running time is obtained from computing 100 flowpipes from
the initial set x(0) ∈ [0.9, 1.1] and y(0) ∈ [0.9, 1.1].

72 CHAPTER 3. TAYLOR MODEL FLOWPIPES FOR CONTINUOUS SYSTEMS

TM simplification. It is always necessary to simplify the representation of a TM. Since
a polynomial of n variables and degree k may have as many as

(
n+k
k

)
terms, we need to

remove some terms in a polynomial part regularly during a computation but the resulting
TM is still an over-approximation. To do so, we set a cutoff threshold ε > 0 such that if
a term is verified to be contained in [−ε, ε], we then remove it from the polynomial part
and add its interval enclosure onto the remainder.

Non-polynomial terms in ODEs. If the vector field f(~x, t) of the ODE contains non-
polynomial terms, we recursively compute a TM (pf , If) over the local initial set and time
step on the structure of f , and use (pf , If) instead of f in the subsequent computation.

We give Algorithm 6 as the framework of TM integration. In the algorithm, the
operations of TM substitution and remainder refinement are considered the most time-
consuming part. In the following content, we propose some methods to improve the
efficiency.

Algorithm 6 TM integration for ODEs

Input: an ODE ~̇x = f(~x, t), a TM initial set X0, a time horizon [0,∆], step-sizes
δ1, . . . , δN such that

∑N
i=1 δi = ∆, a positive integer k for the TM order in use

Output: an over-approximation R for the reachable set from X0 in time [0,∆]
1: R ← ∅;
2: Xl ← X0;
3: for all i = 1, . . . , N do
4: Compute the preconditioning parameters ~cl and Al;
5: Derive an order k Taylor polynomial pl according to the parameters;
6: Come up with a remainder interval estimate Il;
7: while Il is not a safe remainder interval for pl in the time step [0, δi] do
8: if W(Il) exceeds a specified threshold then
9: Terminate and return FAIL;

10: else
11: Enlarge Il by multiplying a suitable scale factor;
12: end if
13: end while
14: repeat
15: (pl, Il)← Pf ((pl, Il)); # by order k TM arithmetic
16: until No big improvement on the last refinement of Il
17: R ← R∪ {((pl, Il), Xl)};
18: Xl ← (pl(Xl, δi), Il); # by order k TM arithmetic
19: end for
20: return R;

Efficient TM substitutions. A TM substitution task is to replace the variables x1,
. . . , xn in a given TM (p, I) by a group of given TMs (q1, I1), . . . , (qn, In) respectively. In
order to reduce the number of multiplications as well as avoid the dependency problem
as much as possible, we first transform the polynomial p into a Horner form and then
iteratively replace the variables by the corresponding TMs. The transformation procedure
is presented in Algorithm 7 wherein the partial order of variables may be provided by a

3.3. COMPUTING TAYLOR MODEL FLOWPIPES 73

heuristic such as the one given in [CK04]. Note that the TMs (q1, I1), . . . , (qn, In) might
be multiplied for several times, but it is only necessary to compute interval enclosures for
the polynomials q1, . . . , qn in the first time. Therefore, before computing the substitution,
we first scan the Horner form h, and then for 1 ≤ i ≤ n, we compute an interval enclosure
Ji for qi such that xi is multiplied by a clause for more than one time in h. Those
computed intervals can be reused.

Algorithm 7 Function Horner of transforming a monomial form polynomial p into a
Horner form
Input: a polynomial p in monomial form, a partial order ≺ on the variables
Output: a Horner form h of p

1: Set X as the set of variables in p;
2: Find x ∈ X such that x ≺ y for all y ∈ X\{x};
3: Transform p into the form q0 +q1 ·x+ · · ·+qk ·xk such that q0, . . . , qk are polynomials

not containing x;
4: h← Horner(q0,≺) + x · (Horner(q1,≺) + · · ·+ x · (Horner(qk−1,≺) + x·Horner(qk,≺)) · · ·);
5: return h;

3.3.3 Fast remainder refinement

An iteration of the remainder refinement requires to compute a TM Picard operation
of some order k. Such an operation involves TM substitution and is therefore time-
consuming in general. However, as we mentioned before, the order k TM Picard operator
on the solution over-approximation (pl, Il) results in a TM (p′l, I

′
l) such that pl = p′l and

I ′l ⊆ Il. Then in all refinement iterations, we are dealing with the same polynomial input.
It gives us the motivation to find a method that only deals with the remainder intervals.

Since the TM Picard operations Pf ((p, I)) and Pf ((p, J)) share the same interim
interval results which are only related to p, we may keep those interim intervals by a
queue in the first refinement iteration, and reuse them in the remaining ones. To do so,
we give our method for each operator as follows.

• Addition. Since the remainder of the resulting TM is computed only from the
remainders of the operands, there is no need to keep any interval.

• Multiplication. The multiplication of two TMs (p1, I1) and (p2, I2) is computed by

(p1, I1) · (p2, I2) = (p1 · p2 − pe , Int(p1) · I2 + I1 · Int(p2) + I1 · I2 + Int(pe))

wherein pe consists of the terms of degrees > k in p1·p2. The interim intervals related
to p1, p2 are Int(p1), Int(p2) and Int(pe), and they can be reused in computing
the product of other two TMs (p1, J1), (p2, J2). Then we keep them in the queue.

• Non-polynomial terms. For a non-polynomial term φ(x) such that the variable
x ranges in a TM (p, I), we first compute the Taylor expansion q(x) of φ at
x = Mid((p, I)), and then evaluate a safe remainder interval J for it based on
the Lagrange form. We keep all interim intervals that are related to p and used for
computing J in the queue, and then, they can be reused to compute φ over another
TM (p, I ′).

74 CHAPTER 3. TAYLOR MODEL FLOWPIPES FOR CONTINUOUS SYSTEMS

To better understand the method, we give Example 3.3.10.

Example 3.3.10. We consider the non-polynomial ODE ẋ = f(x) = sin(x). The order
3 TM

(x0 + x0t+ 0.5x0t
2, [−0.1, 0.1])

is an over-approximation of the solution x(t) over the time [0, 0.02] w.r.t. the initial
condition x(0) = x0 wherein x0 ∈ [−1, 1]. The order 3 approximation of f(x) is pf (x) =
x − 1

6x
3 whose Horner form is given by x(1 − 1

6x
2). We present the computation of the

first refinement iteration along with the working queue content in Table 3.3. Then, based
on the produced queue, we only need to deal with the remainder intervals in the remaining
iterations, as the second one given by Table 3.4. Since the operations are handled in the
same order, we only need to pick the elements from the queue according to that order.
Note that we conservatively round every number to at most 5 decimal places.

In order to see the improvement of our fast remainder refinement method, we present
Table 3.5 to give a comparison with the standard method from Berz and Makino. The
system in the experiments is the jet engine model. We use a fixed step-size 0.02 in all time
steps and compute 100 flowpipes from the initial set x(0) ∈ [0.9, 1.1] and y(0) ∈ [0.9, 1.1].
All of the Taylor expansions are computed by Approach II. Except the experiments in
Table 3.5, the fast remainder refinement method is used in all of the experiments in the
thesis.

3.3.4 Case studies

In this section, we give two examples of continuous systems and present comparisons
between the methods of interval-based integration and TM integration.

Example 3.3.11 (Lotka-Volterra system). The 2-dimensional Lotka-Volterra system de-
picts the populations change of a class of predators (wolves) and a class of preys (rabbits).
The growth rate of preys’ population over time is given by ẋ = x(α−βy) wherein α, β are
constant parameters and y is the population of predators. It means that the number of
preys grows exponentially without predation. The population growth of predators is gov-
erned by the differential equation ẏ = −y(γ − δx) wherein γ, δ are constant parameters.
We choose the parameters α = 1.5, β = 1, γ = 3 and δ = 1, then the ODE becomes{

ẋ = 1.5x− xy
ẏ = −3y + xy

We choose the initial sets of different sizes around the point at x = 5, y = 2, and perform
TM integration as well as the interval-based integration in VNODE-LP respectively on
them with similar settings for the time horizon [0, 4]. The results are given in Table 3.6
and 3.7. We compare the two integration methods only based on the solution enclosures
at the end of the time horizon since the overestimation is eventually accumulated along
with time steps. To intuitively compare the accuracies, we additionally over-approximate
the TMs by intervals.

Since the classical interval-based integration only deals with ITSs, its performance is
much better than that of the TM integration when the initial set is small. It is also

3.3. COMPUTING TAYLOR MODEL FLOWPIPES 75

Step TM computation Queue content

1:

compute the order 2
TM over-approximation for

(x0 + x0t+ 0.5x0t2,
[−0.1, 0.1])

(x0 + x0t, [−0.1, 0.1] + Int(0.5x0t
2))

=(x0 + x0t, [−0.1002, 0.1002])

front
[−0.0002, 0.0002]

tail

2:
replace x by

(x0 + x0t, [−0.1002, 0.1002])
in x(1− 1

6
x2)

− same as above

2.1:
compute x2

by order 2
TM arithmetic

(x0 + x0t, [−0.1002, 0.1002])2

=(x20,

Int(x0 + x0t) · [−0.1002, 0.1002]

+ [−0.1002, 0.1002] · Int(x0 + x0t)

+ ([−0.1002, 0.1002])2

+ Int(2x2
0t + x2

0t
2))

=(x20,

[−1.02, 1.02] · [−0.1002, 0.1002]

+ [−0.1002, 0.1002] · [−1.02, 1.02]

+ [0, 0.01005]

+ [0, 0.0404])

=(x20, [−0.20441, 0.25486])

front
[−0.0002, 0.0002]
[−1.02, 1.02]
[−1.02, 1.02]
[0, 0.0404]

tail

2.2:
compute (1− 1

6
x2)

by order 2
TM arithmetic

(1− 1
6
x20, [−0.04248, 0.03407]) same as above

2.3:
compute x(1− 1

6
x2)

by order 2
TM arithmetic

(x0 + x0t, [−0.1002, 0.1002])

· (1−
1

6
x20, [−0.04248, 0.03407])

=(x0 + x0t,

[−1.02, 1.02] · [−0.04248, 0.03407]

+ [−0.1002, 0.1002] · Int(1 −
1

6
x2
0)

+ [−0.1002, 0.1002] · [−0.04248, 0.03407]

+ Int(−
1

6
x3
0 −

1

6
x3
0t)

=(x0 + x0t,

[−1.02, 1.02] · [−0.04248, 0.03407]

+ [−0.1002, 0.1002] · [0.83333, 1.16667]

+ [−0.1002, 0.1002] · [−0.04248, 0.03407]

+ [−0.17, 0.17]

=(x0 + x0t, [−0.33449, 0.33449])

front
[−0.0002, 0.0002]

[−1.02, 1.02]
[−1.02, 1.02]
[0, 0.0404]

[−1.02, 1.02]
[0.83333, 1.1667]

[−0.17, 0.17]
tail

3:

Evaluate a remainder
interval J for x(1− 1

6
x) over

x ∈ (x0 + x0t,
[−0.1002, 0.1002])

1

24
sin([−1.1202, 1.1202])([−1.1202, 1.1202])4

=
1

24
· [−0.90019, 0.90019] · [0, 1.57465]

=[−0.05907, 0.05907]

same as above

4:
Integrate x(1− 1

6
x) + J

by order 3
TM arithmetic

∫ t

0
(x0 + x0s, [−0.39356, 0.39356])ds

=(x0t+ 0.5x0t
2, [−0.00788, 0.00788])

same as above

5:
Add x0 to derive the
first iteration result

(x0 + x0t+ 0.5x0t2, [−0.00788, 0.00788]) same as above

Table 3.3: First refinement iteration of Example 3.3.10

76 CHAPTER 3. TAYLOR MODEL FLOWPIPES FOR CONTINUOUS SYSTEMS

Step Interval computation Queue content

1:

compute the remainder
interval for the order 2

TM over-approximation for
(x0 + x0t+ 0.5x0t2,
[−0.00788, 0.00788])

(−, [−0.00788, 0.00788] + [-0.0002, 0.0002])

=(−, [−0.00808, 0.00808])

front
[-0.0002, 0.0002]

[−1.02, 1.02]
[−1.02, 1.02]
[0, 0.0404]

[−1.02, 1.02]
[0.83333, 1.1667]

[−0.17, 0.17]
tail

2:

replace x by
(x0 + x0t,

[−0.00808, 0.00808])
in x(1− 1

6
x2)

− −

2.1:
compute a remainder

interval for x2

(−, [−0.00808, 0.00808])2

=(−,
[-1.02, 1.02] · [−0.00808, 0.00808]

+ [−0.00808, 0.00808] · [-1.02, 1.02]

+ [0, 0.00007]

+ [0,0.0404])

=(−, [−0.01649, 0.05696])

front
[−0.0002, 0.0002]

[-1.02, 1.02]
[-1.02, 1.02]
[0,0.0404]

[−1.02, 1.02]
[0.83333, 1.1667]

[−0.17, 0.17]
tail

2.2:
compute a remainder
interval for (1− 1

6
x2)

(−, [−0.00950, 0.00275]) −

2.3:
compute a remainder

interval for x(1− 1
6
x2)

(−, [−0.00808, 0.00808])

· (−, [−0.00950, 0.00275])

=(−,
[-1.02,1.02] · [−0.00950, 0.00275]

+ [−0.00808, 0.00808] · [0.83333,1.16667]

+ [−0.00808, 0.00808] · [−0.00950, 0.00275]

+ [-0.17,0.17]

=(−, [−0.1892, 0.1892])

front
[−0.0002, 0.0002]

[−1.02, 1.02]
[−1.02, 1.02]
[0, 0.0404]

[-1.02,1.02]
[0.83333,1.1667]

[-0.17,0.17]
tail

3:

Evaluate a remainder
interval J for
x(1− 1

6
x) over

x ∈ (−,
[−0.00808, 0.00808])

1

24
sin([−1.02808, 1.02808])

· ([−1.02808, 1.02808])4

=
1

24
· [−0.85631, 0.85631] · [0, 1.11715]

=[−0.03986, 0.03986]

−

4:
Integrate the

remainder interval

∫ t

0
(−, [−0.22906, 0.22906])ds

=(−, [−0.00459, 0.00459])

−

Table 3.4: Second refinement iteration of Example 3.3.10

TM order Standard method Our method

5 9.2 2.3

8 65.7 19.4

11 312.6 47.3

Table 3.5: Comparison of remainder refinement methods based on the jet engine model

3.3. COMPUTING TAYLOR MODEL FLOWPIPES 77

Initial set Step-size ITS order Time (s) Enclosure
x(0) ∈ [5, 5]
y(0) ∈ [2, 2]

auto 5 < 1
x(4) ∈ 1.64995003485[28990,97552]
y(4) ∈ 2.0899878588[196711,331982]

x(0) ∈ [4.95, 5.05]
y(0) ∈ [1.95, 2.05]

auto 5 < 1
x(4) ∈ [1.5467170558689369, 1.7531830138436475]
y(4) ∈ [1.9672607341964982, 2.2127149834564204]

x(0) ∈ [4.9, 5.1]
y(0) ∈ [1.9, 2.1]

auto MAX ORDER Fail −

Table 3.6: Interval-based integration in VNODE-LP on the Lotka-Volterra system

Initial set Step-size TM order Time (s) Enclosure
x(0) ∈ [5, 5]
y(0) ∈ [2, 2]

0.01 5 3.2
x(4) ∈ 1.64995000[3203, 67277]
y(4) ∈ 2.089987[783478, 934250]

x(0) ∈ [4.95, 5.05]
y(0) ∈ [1.95, 2.05]

0.01 5 8.9
x(4) ∈ [1.611473542017 , 1.688426503140]
y(4) ∈ [2.043880403362 , 2.136095251238]

x(0) ∈ [4.9, 5.1]
y(0) ∈ [1.9, 2.1]

0.01 5 8.9
x(4) ∈ [1.571477158543 , 1.728422831796]
y(4) ∈ [1.994823280383 , 2.185152183021]

Table 3.7: TM integration on the Lotka-Volterra system

no surprise to see that TM integration has a better accuracy when the initial set is not
singleton, and such an advantage becomes more apparent when the size of the initial set is
growing. For the singleton initial set x(0) = 5, y(0) = 2, the TM integration method even
returns a worse over-approximation than the interval-based one. The reason could be that
we symbolically represent the initial state by (x0, y0) in the TMs which is unnecessary and
might cause additional running time and overestimation.

Example 3.3.12 (Spring-pendulum). The planar spring-pendulum described in [Mei07]
is illustrated by Figure 3.10. It consists of a solid ball of mass m and a spring of natural
length L and spring constant k. We study the evolutions of the length r of the spring and
the angle θ between the spring and the vertical. They are modeled by the following ODE{

m · r̈ = m · r · θ̇2 +m · g · cos(θ)− k · (r − L)

r2 · θ̈ = −2 · r · ṙ · θ̇ − g · r · sin(θ)

which can be equivalently reformulated as the following 4-dimensional first-order ODE
ṙ = vr
θ̇ = vθ
v̇r = r · v2

θ + g · cos(θ)− k · (r − L)

v̇θ = − (2·vr·vθ+g·sin(θ))
r

We set the constant parameters k = 2, L = 1, g = 9.8 and do the comparisons on the
initial sets of different sizes around the point

r(0) = 1.2, θ(0) = 0.5, vr(0) = 0, vθ(0) = 0

The results are listed in Table 3.8 and 3.9.

Accuracy improvement. The hardness of an integration task is very sensitive to the
size of the initial set. That is, the lager the initial set, the harder the integration task.
As shown by the above experiments, interval-based integration is more likely than TM
integration to suffer from this problem. The reason is that interval arithmetic is more
sensitive to the dependency problem than TM arithmetic. Although one may simply raise
the approximation orders or reduce the time step-sizes to improve the overall accuracy,

78 CHAPTER 3. TAYLOR MODEL FLOWPIPES FOR CONTINUOUS SYSTEMS

Figure 3.9: Interval enclosures of the TM flowpipes for the Lotka-Volterra system. They
are computed from the initial set x(0) ∈ [4.9, 5.1], y(0) ∈ [1.9, 2.1] for the time horizon
[0, 4].

Initial set Step-size ITS order Time (s) Enclosure
r(0) ∈ [1.2, 1.2]
θ(0) ∈ [0.5, 0.5]
vr(0) ∈ [0, 0]
vθ(0) ∈ [0, 0]

auto 6 < 1

r(10) ∈ 5.8090433374[042804,192374]
θ(10) ∈ 0.08409991010[42140,84239]
vr(10) ∈ 6.8272350580[110554,286352]
vθ(10) ∈ -0.02939916355[29386,83425]

r(0) ∈ [1.19, 1.21]
θ(0) ∈ [0.49, 0.51]
vr(0) ∈ [−0.01, 0.01]
vθ(0) ∈ [−0.01, 0.01]

auto 6 < 1

r(5) ∈ [2.4489430438636, 2.5787902600760]
θ(5) ∈ 0.2[228203691481, 862895828842]
vr(5) ∈ [4.6091859312751, 4.7582065882747]
vθ(5) ∈ [−0.3703928208511,−0.2471714144274]

r(0) ∈ [1.0, 1.6]
θ(0) ∈ [0.4, 1]
vr(0) ∈ [−0.3, 0.3]
vθ(0) ∈ [−0.3, 0.3]

auto MAX ORDER Fail −

Table 3.8: Interval-based integration in VNODE-LP on the spring pendulum model

such improvements are always very limited due to round-off errors and the approximation
methods in use. As we show in Table 3.6 and 3.8, interval-based method fails on the
large initial sets even with the maximum order allowed in VNODE-LP. Then, as we
pointed out in Chapter 2, a better accuracy can be obtained by perform a subdivision on
the initial set, since most of the interval extensions in an integration task can be made
inclusion isotonic and Lipschitz. However, the number of subdivisions grows exponentially
with respect to the number of variables. Fortunately, by using TMs with proper selected
orders, we can often avoid splitting an initial set but still obtain a good accuracy. As an
example, we compute a 10-uniform subdivision of the following initial set for the spring
pendulum model

r(0) ∈ [1, 1.6], θ(0) = [0.4, 1], vr(0) = [−0.3, 0.3], vθ(0) = [−0.3, 0.3]

and perform the interval-based integration implemented in VNODE-LP with ITS order
6. By collecting the computed intervals, we have the following interval enclosure for the

3.4. ADAPTIVE TECHNIQUES 79

m · g

r

θ

Figure 3.10: Spring-pendulum of Example 3.3.12

Initial set Step-size TM order Time (s) Enclosure
r(0) ∈ [1.2, 1.2]
θ(0) ∈ [0.5, 0.5]
vr(0) ∈ [0, 0]
vθ(0) ∈ [0, 0]

0.01 6 145.9

r(10) ∈ [5.798127042349, 5.819959632464]
θ(10) ∈ [0.077567535268, 0.090632284946]
vr(10) ∈ [6.807928278833, 6.846541837222]
vθ(10) ∈ [−0.034224004444,−0.024574322666]

r(0) ∈ [1.19, 1.21]
θ(0) ∈ [0.49, 0.51]
vr(0) ∈ [−0.01, 0.01]
vθ(0) ∈ [−0.01, 0.01]

0.01 6 389.8

r(5) ∈ [2.496405883474 , 2.531266738845]
θ(5) ∈ [0.245863589457 , 0.263219159794]
vr(5) ∈ [4.662911374025 , 4.704508620747]
vθ(5) ∈ [-0.324274826121 , -0.293190662999]

r(0) ∈ [1.0, 1.6]
θ(0) ∈ [0.4, 1]
vr(0) ∈ [−0.3, 0.3]
vθ(0) ∈ [−0.3, 0.3]

0.01 6 531.8

r(1) ∈ [3.680305643636 , 6.429661766060]
θ(1) ∈ [-0.324284379975 , 0.527654547935]
vr(1) ∈ [2.549728783442 , 10.762474258784]
vθ(1) ∈ [-1.458244212326 , 0.890649195439]

Table 3.9: TM integration on the spring pendulum model

solution at time 1

r(1) ∈ [2.5481678021852265, 5.5600537403117008]

θ(1) ∈ [−0.3107606461333349, 0.6708186109998349]

vr(1) ∈ [3.3939038756048236, 10.7952720145605970]

vθ(1) ∈ [−3.0506834955544365, 2.6157139253117295]

which is comparable to the result of TM integration shown in Table 3.9, but the time cost
is as high as 1218 seconds.

3.4 Adaptive techniques

In this section, we seek to improve the time cost of TM integration by allowing minor
loss in accuracy. To do so, we consider to adaptively change the step-sizes or the TM
orders in a TM integration task while the specified accuracy is still fulfilled. For interval-
based integration, such ideas have been proposed and implemented in the tool VNODE
as well as its successor VNODE-LP (see [Ned99, Ned11]). For TM integration, the tool
COSY [MB06] from Berz et al. also supports varying step-sizes to improve the integration
performance. Here, we present the methods which are different from the others.

Obviously, the running time of an integration task can be shortened by using larger
step-sizes or lower TM orders, however those parameters can not be changed at will,
since it may easily lead to an explosion of overestimation. Since the accuracy of a TM
integration task is mainly reflected by the sizes of the flowpipe remainder intervals, we

80 CHAPTER 3. TAYLOR MODEL FLOWPIPES FOR CONTINUOUS SYSTEMS

Figure 3.11: Interval enclosures of the TM flowpipes for the spring pendulum example.
They are computed from the initial set r(0) = 1.2, θ(0) = 0.5, vr(0) = 0, vθ(0) = 0 for the
time horizon [0, 20].

may specify a maximum interval threshold Imax and slightly enlarge the step-size or lower
the TM order while there is still a safe remainder interval contained in Imax. When the
system is multi-dimensional, the components of Imax are also allowed to have different
sizes.

Our adaptive step-sizing scheme is presented by Algorithm 8. The step-size changes in
a user-specified range [α, β] such that it is enlarged in every step by multiplying a scalar
λ↑ onto it if the interval threshold Imax is not breached, otherwise, it is reduced by being
multiplied by λ↓. If a step-size smaller than α is computed, then the integration task
terminates and returns FAIL. In our implementation, the scalars are simply selected as
λ↑ = 1.1 and λ↓ = 0.5.

The TM integration using adaptive orders can be done similarly. It is given by Al-
gorithm 9. In every integration step, the TM order is increased by 1 if the remainder
interval Imax is not breached, otherwise we lower it also by 1 to verify Imax again. If no
proper TM order in the given range is found, then the integration job fails.

For a multi-dimensional system, a component of the TM (pl, Il) in the above algorithms
represents an over-approximation of the solution in a dimension. However, for a complex
system, different state variables often grow at varying rates and some of them might
even be not correlated. Therefore it is clumsy to change the orders of the components
uniformly. For instance, state variables that represent timers can be specified to have
order 1 TMs whereas fast varying variables can be represented by higher-order TMs at
the same time. Our independent adaptive order scheme is given as follows. We first
concentrate on the dimensions in which the corresponding interval threshold in Imax is
breached. The orders of those components are increased by 1. If the technique fails to

3.4. ADAPTIVE TECHNIQUES 81

Algorithm 8 TM integration by using adaptive step-sizes

Input: an ODE ~̇x = f(~x, t), a TM initial set X0, a time horizon [0,∆], the range [α, β]
for a step-size, a positive integer k for the TM order, an interval threshold Imax

Output: an over-approximation R for the reachable set from X0 in time [0,∆]
1: R ← ∅;
2: t← 0;
3: Xl ← X0;
4: δ ← β;
5: while t ≤ ∆ do
6: Compute the preconditioning parameters ~cl and Al;
7: Derive an order k Taylor polynomial pl according to the parameters;
8: if δ < β then
9: δ ← min{λ↑ · δ, β}; # slightly enlarge the step-size

10: end if
11: while Imax is not a safe remainder interval for pl over the time [0, δ] do
12: δ ← λ↓ · δ; # slightly reduce the step-size
13: if δ < α then
14: Terminate and return FAIL; # step-size is out of the range
15: end if
16: end while
17: Il ← Imax;
18: repeat
19: (pl, Il)← Pf ((pl, Il)); # by order k TM arithmetic
20: until No big improvement on the last refinement of Il
21: R ← R∪ {((pl, Il), Xl)};
22: Xl ← (pl(Xl, δ), Il);
23: t← t+ δ; # by order k TM arithmetic
24: end while
25: return R;

82 CHAPTER 3. TAYLOR MODEL FLOWPIPES FOR CONTINUOUS SYSTEMS

Algorithm 9 TM integration by using adaptive TM orders

Input: an ODE ~̇x = f(~x, t), a TM initial set X0, a time horizon [0,∆], a step-size δ, a
range a ∼ b for the TM orders, an interval threshold Imax

Output: an over-approximation R for the reachable set from X0 in time [0,∆]
1: R ← ∅;
2: N ← d∆

δ e;
3: Xl ← X0;
4: k ← a; # specify the lowest order
5: for all i = 1, . . . , N do
6: Compute the preconditioning parameters ~cl and Al;
7: if k > a then
8: k ← k − 1; # decrease the order by 1
9: end if

10: Derive an order k Taylor polynomial pl according to the parameters;
11: while Imax is not a safe remainder interval for pl do
12: k ← k + 1; # increase the order by 1
13: if k > b then
14: Terminate and return FAIL; # order is out of the range
15: else
16: Increase the order of pl to k using Picard operator;
17: end if
18: end while
19: Il ← Imax;
20: repeat
21: (pl, Il)← Pf ((pl, Il)); # by order k TM arithmetic
22: until No big improvement on the last refinement of Il
23: R ← R∪ {((pl, Il), Xl)};
24: Xl ← (pl(Xl, δ), Il); # by order k TM arithmetic
25: end for
26: return R;

3.4. ADAPTIVE TECHNIQUES 83

Test Step-size TM order Time (s) Solution enclosure

1 0.03 5 15.9
X(15) ∈ [0.987576012185, 0.997127811231]
Y (15) ∈ [1.479230489975, 1.492068486468]

2 [0.01, 0.2] 5 4.7
X(15) ∈ [0.986712147280, 0.997991279644]
Y (15) ∈ [1.478023448254, 1.493275594069]

3 0.03 3 ∼ 5 5.4
X(15) ∈ [0.984264065516, 1.000441898085]
Y (15) ∈ [1.474811213375, 1.496490371398]

4 0.03
X : 3 ∼ 5
Y : 3 ∼ 5

5.1
X(15) ∈ [0.983703965994, 1.001004863951]
Y (15) ∈ [1.474059852987, 1.497241858220]

Table 3.10: Flowpipe construction for Brusselator using different settings

verify the safety of Imax, the orders of all remaining components are increased by 1 as
well, since those state variables might be correlated. This process continues until the
upper order limit is breached. We present the whole scheme by Algorithm 10. In our
implementation, the independent order increment is only performed by one time but it
does not have to be.

In the rest of the section, we give several examples to show the advantages of the
adaptive techniques.

Example 3.4.1 (Brusselator). A type of autocatalytic reaction can be modeled by Brus-
selator which is characterized by the reactions

A → X
2X + Y → 3X
B +X → Y +D
X → E

When A, B are considered as constants, we have the following rate equations for X and
Y . {

Ẋ = A+X2 · Y −B ·X −X
Ẏ = B ·X −X2 · Y

We set A = 1 and B = 1.5. Given the initial set X(0) ∈ [0.8, 1], Y (0) ∈ [0, 0.2]. We
present the results of computing the flowpipes for the time horizon [0, 15] by different
schemes in Table 3.10. We use the interval threshold Imax = [−10−5, 10−5]2 in all of the
tests. In order to intuitively compare the accuracies, we give the interval enclosures of the
TMs. In Test 1, we use a fixed step-size and a fixed uniform TM order. Not surprisingly,
it consumes the greatest amount of time among all tests whereas the accuracy is the best.
We use the adaptive step-size ranging in [0.01, 0.2] in Test 2, the accuracy is comparable
to that of Test 1 but the time cost is much less. We illustrate the step-size change during
the computation in Figure 3.12. The results of using adaptive orders are given by Test 3
and 4. In the first one, we apply the scheme to uniformly change the TM orders in all
dimensions. The order change is presented in Figure 3.13. Then in the second test, we
allow the TM orders to change independently in different dimensions. The changes of the
TM orders in the dimension X and Y are given in Figure 3.14. The loss of accuracy in
either of the tests is also not big.

For this example, the adaptive step-sizing technique has an advantage in efficiency
over the other schemes, nevertheless, one may later see that it is not always the case.

84 CHAPTER 3. TAYLOR MODEL FLOWPIPES FOR CONTINUOUS SYSTEMS

Algorithm 10 TM integration by using independent adaptive TM orders

Input: an n-dimensional ODE ~̇x = f(~x, t), a TM initial set X0, a time horizon [0,∆], a
step-size δ, the ranges a1 ∼ b1, . . . , an ∼ bn for the TM orders, an interval threshold
Imax

Output: an over-approximation R for the reachable set from X0 in time [0,∆]
1: R ← ∅;
2: N ← d∆

δ e;
3: Xl ← X0;
4: for all j = 1, . . . , n do
5: kj ← aj ; # specify the lowest orders
6: end for
7: for all i = 1, . . . , N do
8: Compute the preconditioning parameters ~cl and Al;
9: for all j = 1, . . . , n do

10: if kj > aj then
11: kj ← kj − 1;
12: end if
13: end for
14: Derive a Taylor polynomial pl according to the parameters such that for 1 ≤ j ≤ n

the j-th component of pl is of order kj ;
15: while Imax is not a safe remainder interval for pl do
16: for all j = 1, . . . , n do
17: if kj < bj then
18: Increase kj by 1 if Imax[j] is breached;
19: Increase the order of pl[j] to kj using Picard operator;
20: end if
21: end for
22: if Imax is not safe for pl then
23: for all kj which is not increased in the previous step do
24: Increase the order kj by 1 if kj < bj ;
25: Increase the order of pl[j] to kj using Picard operator;
26: end for
27: end if
28: if no kj is increased in the current iteration then
29: Terminate and return FAIL;
30: end if
31: end while
32: Il ← Imax;
33: repeat
34: (pl, Il)← Pf ((pl, Il)); # by TM arithmetic
35: until No big improvement on the last refinement of Il
36: R ← R∪ {((pl, Il), Xl)};
37: Xl ← (pl(Xl, δ), Il); # by TM arithmetic
38: end for
39: return R;

3.4. ADAPTIVE TECHNIQUES 85

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 2 4 6 8 10 12 14

s
te

p
-s

iz
e

t

Figure 3.12: Change of the step-size in Test
2 on Brusselator

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14

T
M

 o
rd

e
r

t

Figure 3.13: Change of the TM order in
Test 3 on Brusselator

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14

T
M

 o
rd

e
r

o
f
X

t

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14

T
M

 o
rd

e
r

o
f
Y

t

Figure 3.14: Change of the TM orders in Test 4 on Brusselator. Change of the order in
the dimension X (left). Change of the order in the dimension Y (right).

86 CHAPTER 3. TAYLOR MODEL FLOWPIPES FOR CONTINUOUS SYSTEMS

Test Step-size TM order Time (s) Solution enclosure

1 0.003 8 767.5
x(6.5) ∈ [0.484331866475, 1.379244709695]
y(6.5) ∈ [1.453031916529, 2.990964064560]
z(6.5) ∈ [18.124980017504, 21.162839708734]

2 [0.001, 0.05] 8 522.5
x(6.5) ∈ [0.219195452850, 1.618505334065]
y(6.5) ∈ [1.099867538815, 3.333154577724]
z(6.5) ∈ [17.762079569332, 21.626545865783]

3 0.003 6 ∼ 10 436.6
x(6.5) ∈ [0.370398820486, 1.493166319960]
y(6.5) ∈ [1.296802176240, 3.147179628973]
z(6.5) ∈ [17.939699525684, 21.348120274208]

4 0.003
x : 6 ∼ 10
y : 6 ∼ 10
z : 6 ∼ 10

403.5
x(6.5) ∈ [0.369340118569, 1.494225836838]
y(6.5) ∈ [1.295299703693, 3.148682034957]
z(6.5) ∈ [17.937821286088, 21.349993993524]

Table 3.11: Flowpipe construction for Lorentz system using different settings

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 1 2 3 4 5 6

s
te

p
-s

iz
e

t

Figure 3.15: Change of the step-size in Test
2 on Lorentz system

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6

T
M

 o
rd

e
r

t

Figure 3.16: Change of the TM order in
Test 3 on Lorentz system

Example 3.4.2 (Lorentz system). The Lorentz system is a simplified model which is
developed by Edward Lorenz for atmospheric convection (see [Lor63]). It is described by
a 3-dimensional ODE 

ẋ = σ · (y − x)
ẏ = x · (ρ− z)− y
ż = x · y − β · z

with the typical parameter values σ = 10, ρ = 8
3 and β = 28. Since it is a chaotic system,

we study the short-term behaviors from the following small set of initial states

x(0) ∈ [14.999, 15.001], y(0) ∈ [14.999, 15.001], z(0) ∈ [35.999, 36.001]

This time, we set the interval threshold as Imax = [−10−8, 10−8]3. The computation results
are given in Table 3.11. Similar to the previous example, we also illustrate the change of
step-sizes and TM orders by Figure 3.15 to 3.17. Here, the independent adaptive order
technique has the best performance. To visualize the TM flowpipes clearly, we plot a grid
paving of them in Figure 3.18.

3.4. ADAPTIVE TECHNIQUES 87

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6

T
M

 o
rd

e
r

o
f

x

t

(a) Change of the order in the dimension x

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6

T
M

 o
rd

e
r

o
f

y

t

(b) Change of the order in the dimension y

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6

T
M

 o
rd

e
r

o
f
z

t

(c) Change of the order in the dimension z

Figure 3.17: Change of the TM orders during the computation of Test 4 on Lorentz
system

Figure 3.18: Grid pavings of the TM flowpipes computed in Test 1 on Lorentz system.
Projection on the x-y plane (left). Projection on the y-z plane (right).

88 CHAPTER 3. TAYLOR MODEL FLOWPIPES FOR CONTINUOUS SYSTEMS

Test Step-size TM order Time (s) Solution enclosure

1 0.03 7 176.7
x(6) ∈ [0.337524243821, 1.738995973771]
y(6) ∈ [−9.7180806640901,−7.360507441673]
z(6) ∈ [0.030072992385, 0.037971136986]

2 [0.005, 0.1] 7 143.9
x(6) ∈ [0.299242459359, 1.777276310591]
y(6) ∈ [−9.753524037789,−7.325072767832]
z(6) ∈ [0.029702744349, 0.038339574043]

3 0.03 5 ∼ 8 49.8
x(6) ∈ [0.250145939269, 1.826296801216]
y(6) ∈ [−9.801939601429,−7.276761701073]
z(6) ∈ [0.029447163640, 0.038595468495]

4 0.03
x : 5 ∼ 8
y : 5 ∼ 8
z : 5 ∼ 8

44.5
x(6) ∈ [0.234284317579, 1.842173097432]
y(6) ∈ [−9.817200175287,−7.261488616246]
z(6) ∈ [0.029335086590, 0.038707599492]

Table 3.12: Flowpipe construction for Rössler attractor using different settings

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 1 2 3 4 5 6

s
te

p
-s

iz
e

t

Figure 3.19: Change of the step-size in Test
2 on Rössler attractor

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6

T
M

 o
rd

e
r

t

Figure 3.20: Change of the TM order in
Test 3 on Rössler attractor

Example 3.4.3 (Rössler attractor). We consider the chaotic attractor studied by Otto
Rössler in [Rös76, Rös79]. It is characterized by the following ODE

ẋ = −y − z
ẏ = x+ a · y
ż = b+ z · (x− c)

with the parameter values a = 0.2, b = 0.2 and c = 5.7. We perform the TM integration
with different computational schemes from the initial set

x(0) ∈ [−0.2, 0.2], y(0) ∈ [−8.6,−8.2], z(0) ∈ [−0.2, 0.2]

The interval threshold is set by Imax = [−10−4, 10−4]3. Again, we do four tests according
to different integration schemes, the results are given by Table 3.12. In Figure 3.19 to 3.21,
we also present the changes of the step-sizes and orders in those tests.

From the above experiments one may find that a great improvement in performance
can be obtained by properly setting the adaptive parameters. We should also point out
that the independent adaptive order method may perform worse than the uniform one
when the state variables are highly correlated, since in that case it is often necessary to
increase the order in different dimensions together to ensure the safety of Imax.

3.5. TIME-VARYING UNCERTAINTIES 89

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6

T
M

 o
rd

e
r

o
f

x

t

(a) Change of the order in the dimension x

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6

T
M

 o
rd

e
r

o
f

y

t

(b) Change of the order in the dimension y

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6

T
M

 o
rd

e
r

o
f
z

t

(c) Change of the order in the dimension z

Figure 3.21: Change of the TM orders in Test 4 on Rössler attractor

3.5 Time-varying uncertainties

Up to now, all continuous systems considered by us have only deterministic bahavior,
since the modeling ODEs are assumed to have unique solutions. In this section, we allow
an ODE to have some parameters which change continuously along the time in interval
ranges but with unknown rates. Those parameters are also called time-varying uncertain-
ties. Such ODEs are very useful in modeling the systems with uncertain disturbances or
inputs whose time derivatives often can not be given explicitly. In this section, we present
a method to compute TM flowpipes for the ODEs with time-varying uncertainties.

An ODE with m time-varying uncertainties ~u(t) can be given in the form of

~̇x = f(~x, t, ~u(t)) (3.5)

such that ~u(t) ∈ C0([−∞,+∞]) and for all t ≥ 0, ~u(t) ∈ U for some U ∈ IRm.
Then the IVP on an ODE with time-varying uncertainties becomes{

~̇x = f(~x, t, ~u(t))
~x(0) = ~x0

To give an enclosure of the exact solutions, we need to consider all possibilities of ~u in
the integration task.

90 CHAPTER 3. TAYLOR MODEL FLOWPIPES FOR CONTINUOUS SYSTEMS

The integration of the ODEs with uncertainties has been studied elsewhere [SB06,
LS07] whereas either the solutions are not validated, i.e., they are not over-approximations,
or the uncertainties are assumed to be time-invariant. In [LS07], Lin and Stadtherr de-
scribe a method to replace those uncertain parameters by their interval enclosures in an
integration job. The results are guaranteed to be over-approximations nevertheless the
parameters should be time-invariant. We extend their method to take uncertainties in
TM integration framework, we prove that the result generated by our method is always
an over-approximation of the solutions of the given ODE with time-varying uncertainties.

Given ~̇x = f(~x, t, ~u(t)) with ~u ∈ U for some U ∈ IRm, we assume that f(~x, t, ~u(t))
is locally Lipschitz continuous w.r.t. ~x and continuous w.r.t. t. To compute the TM
flowpipes over a bounded time horizon, we use the same integration step as that presented
in Section 3.3 except that

(a) we allow polynomials to have interval coefficients, and

(b) the parameters ~u in every operation is replaced by their interval enclosures U . That
is, we consider f(~x, t,U) instead of f(~x, t, ~u(t)) in TM integration.

Theorem 3.5.1. Given an ODE ~̇x = f(~x, t, ~u(t)) such that ~u(t) are time-varying uncer-
tainties bounded by some interval U . If f(~x, t, ~u(t)) is locally Lipschitz continuous w.r.t.
~x and continuous w.r.t. t, then a TM flowpipe computed by our method in a time step is
an over-approximation of the solutions there.

Proof. We only need to prove the conservativeness of the remainder evaluation. Assume
that we have an estimation Il such that the TM (pl(~xl, t), Il) is an estimation of the
solution set from ~xl ∈ Xl in the time interval [0, δ]. We prove that if the following Picard
operator

Pf (g)(~xl, t) = ~xl +

∫ t

0
f(g(~xl, s), s, ~u(s))ds

contracts on (pl, Il) for all ~u ∈ U then the TM is an over-approximation of all solutions.
Since f(~x, t, ~u(t)) is locally Lipschitz continuous w.r.t. ~x and continuous w.r.t. t, for any
~u(t), if a solution ~x(~xl, t) of ~̇x = f(~x, t, ~u(t)) exists then it is unique and is a fixed point
of the Picard operator, i.e.,

~x(~xl, t) = ~xl +

∫ t

0
f(~x(~xl, s), s, u(s))ds .

Since the Picard operator defines a continuous mapping, by Schauder fixed point theorem,
if it maps (pl, Il) to a subset of it for some ~u(t), then the unique solution w.r.t. ~u(t) is
included by the TM. Thereby, if it maps (pl, Il) to a subset of it for all ~u(t) ∈ U then all
solutions are included by (pl, Il).

To verify the contractiveness of the Picard operator on (pl, Il), we use TM arithmetic
to evaluate

Pf ((pl, Il))(~xl, t) = ~xl +

∫ t

0
f((pl(~xl, s), Il), s,U)ds

If Pf ((pl, Il)) generates a subset of (pl, Il) then all solutions from Xl in the time interval
[0, δ] are contained in (pl, Il).

3.5. TIME-VARYING UNCERTAINTIES 91

Figure 3.22: Flowpipe over-approximations with disturbances (in red) and without dis-
turbances (in blue)

However, it is not easy to measure or control the overestimation in a TM when its
polynomial part has non-degenerate interval coefficients. Therefore, we further over-
approximate such a TM by another one whose polynomial part has only degenerate coef-
ficients. For example, given a TM

(I0 + I1 · ψ1(~x) + · · ·+ Ik · ψk(~x) , I)

wherein ψ1(~x), . . . , ψk(~x) are the monomials and I0, . . . , Ik are the interval coefficients.
We over-approximate it by the following TM(

Mid(I0) + Mid(I1) · ψ1(~x) + · · ·+ Mid(Ik) · ψk(~x) ,
I + Int(I0 − {Mid(I0)}+ (I1 − {Mid(I1)}) · ψ1(~x) + · · ·+ (Ik − {Mid(Ik)}) · ψk(~x))

)
To achieve better approximation quality, it is also possible to treat the uncertainties

by a new set of variables in part of the computation. However, we have to deal with the
multivariate polynomials with more variables.

Example 3.5.2. We introduce time-varying disturbances to the jet engine model, the
ODE becomes {

ẋ = −y − 1.5x2 − 0.5x3 − 0.5 + u1

ẏ = 3x− y + u2

wherein u1, u2 are the parameters for the disturbances, and we assume that u1, u2 ∈
[−0.005, 0.005]. We illustrate the TM flowpipes with as well as without the disturbances
in Figure 3.22.

92 CHAPTER 3. TAYLOR MODEL FLOWPIPES FOR CONTINUOUS SYSTEMS

system+

Kp · (a − x(t))

Ki ·
∫ t
0 (a−x(s))ds

u(t)

x(t)

P

I

Figure 3.23: Block diagram of a PI controller with disturbance

Example 3.5.3 (PI controller with disturbance). Figure 3.23 shows the basic structure of
a PI controller with a disturbance u(t). The controller attempts to minimize the difference
between the system output x(t) and a desired constant value a. The proportion term P
generates an output value that is proportional to the current difference, and the integral
term I produces an output value which is the accumulation of the past differences since
the system starting time. In practice, a PI controller is often disturbed by the working
environment, we then introduce such a disturbance u(t). Hence the system input y(t) is
governed by

y(t) = Kp · (a− x(t)) +Ki ·
∫ t

0
(a− x(s))ds+ u(t)

As an example, we consider a cruise control system of a car which is similar to the one
described in [ÅM11]. The velocity v of the car is governed by the differential equation

v̇ = −0.101 · (v − ve) + 1.3203 · (x− xe)− 0.01v2

wherein x is the control input from the engine, ve is the desired velocity, xe is the desired
input value and the term 0.01 · v2 represents the friction. The cruise controller performs
the PI control

x(t) = Kp · (ve − v(t)) +Ki ·
∫ t

0
(ve − v(s))ds+ u(t)

wherein we set ve = 20, xe = 0.1616, Kp = 1, Ki = 3 and assume that u̇ is continuous
over t ∈ [0,+∞). Hence the controlled system can be modeled by the following ODE{

v̇ = −0.101 · (v − 20) + 1.3203 · (x− 0.1616)− 0.01v2

ẋ = −(−0.101 · (v − 20) + 1.3203 · (x− 0.1616)− 0.01v2) + 3 · (20− v) + u̇

We consider the initial velocities in [5, 10] and compute the TM flowpipes for the time
horizon [0, 10]. In Figure 3.24, we illustrate the flowpipe over-approximations computed
under different bounds on the disturbance rate u̇.

3.6 Fast Taylor model flowpipe generation for linear ODEs

Although TM integration may also handle the systems defined by linear ODEs, its
performance is not as good as that of the approaches which are specialized for those

3.6. FAST TAYLOR MODEL FLOWPIPE GENERATION FOR LINEAR ODES 93

(a) No disturbance (b) u̇ ∈ [−0.05, 0.05]

(c) u̇ ∈ [−0.1, 0.1] (d) u̇ ∈ [−0.5, 0.5]

Figure 3.24: Flowpipe over-approximations under different bounds on the disturbance
rate u̇

systems. In this section, we present a method to efficiently compute TM flowpipes for
linear ODEs, the main idea is to combine the use of TMs and support functions.

An uncertain linear system can be defined by an ODE of the following form

~̇x = A · ~x+ ~u (3.6)

such that A is a constant square matrix and the uncertainties ~u are bounded by an interval
set U . Since such an ODE has the following closed-form solution

ϕ(~x0, t) = exp(A · t) · ~x0 +

∫ t

0
exp(A · (t− s)) · ~u(s) ds (3.7)

for the initial condition ~x(0) = ~x0, there is no need to compute a preconditioned Taylor
expansion, or apply remainder refinement iterations in computing a TM flowpipe. Instead,
we may use a variant of Scheme II in Section 3.2.1. That is, we fixed a time step-size δ,
over-approximate the solution in the first time step by a TM F1, then the TM flowpipes
over the time horizon [δ,N · δ] can be recursively computed by

Fi = Φ · Fi−1 ⊕ B (3.8)

for i = 2, 3, . . . , N , such that Φ = exp(A·δ), and B = {
∫ δ

0 exp(A·(δ−s))·~u(s) ds | ~u(s) ∈ U}.
Since Φ and B can hardly be computed exactly in general, over-approximations of them are
often used in the iterations. Such a scheme is extensively used by many convex flowpipe

94 CHAPTER 3. TAYLOR MODEL FLOWPIPES FOR CONTINUOUS SYSTEMS

over-approximations such as zonotopes [Gir05] and support functions [LG09]. Here, we
present a method to compute F1, . . . ,FN as TMs which often have better accuracy than
convex over-approximations.

Compute F1. The purpose is to compute a TM (p1(~x0, t), I1) such that ϕ(~x0, t) ∈
p1(~x0, t) + I1 for all t ∈ [0, δ]. To do so, we first compute an order k TM matrix over-
approximation (pΦ(t), IΦ) for exp(A · t),

pΦ(t) = Id +At+
1

2
A2t2 + · · ·+ 1

k!
Aktk

wherein Id is an identity matrix. The remainder interval matrix IΦ can be evaluated base
on the Lagrange remainder Ak+1·tk+1

(k+1)! exp(A · ξ) with some ξ ∈ [0, δ]. That is, we first

compute the value of ρ = exp(‖A‖∞ ·δ) wherein ‖ ·‖∞ denotes the maximum norm. Then
the matrix exp(A · ξ) is contained in the interval matrix Mρ whose entries are all defined

by [−ρ, ρ]. Hence, IΦ = Ak+1·tk+1

(k+1)! Mρ contains the remainder for pΦ for all t ∈ [0, δ]. By
choosing k sufficiently large, we are able to obtain arbitrarily good accuracy.

A TM for exp(A ·(t−s)) can be computed similarly, and then by using TM arithmetic,
we are able to obtain a TM (pB(t), IB) for

∫ t
0 exp(A·(t−s))·U ds with t ∈ [0, δ]. Therefore,

the first flowpipe over-approximation F1 is computed by

(pΦ(t), IΦ) · ~x0 + (pB(t), IB) .

Lemma 3.6.1. For all t ∈ [0, δ], we have that ϕ(~x0, t) ∈ (pΦ(t), IΦ) · ~x0 + (pB(t), IB).

Compute the remaining flowpipe over-approximations. By expanding the recur-
rence relation (3.8), the i-th TM flowpipe can be directly computed based on the first
one.

Fi = Φi−1 · F1 ⊕
i−2⊕
j=0

Φj · B

In our computation, we replace Φ and B by their over-approximations (pΦ(δ), IΦ) and
(pB(δ), IB) respectively. Hence, we have that

Fi(t) = (pΦ(δ), IΦ)i−1 · (pΦ(t), IΦ) · ~x0 + (pΦ(δ), IΦ)i−1 · (pB(t), IB)

+
i−2∑
j=0

(
(pΦ(δ), IΦ)j · (pB(δ), IB)

) (3.9)

wherein t ∈ [0, δ]. Since IΦ can be made arbitrarily small when the order k is large enough,
the main source of the overestimation in Fi is IB. To make Fi as tight as possible, we
may represent IB by its support function during the computation, since we only need to
compute linear mappings and Minkowski sums.

Theorem 3.6.2. For all 1 ≤ i ≤ N , we have that ϕ(~x0, (i− 1)δ+ t) ∈ Fi(t) for t ∈ [0, δ].

We compare our method with the support function methods implemented in SpaceEx
based on the helicopter example [FLD+11]. It is a continuous system defined by a linear
ODE with 29 variables: x1, x2, . . . , x28 and t. The initial condition is defined by

x1, . . . , x8 ∈ [0, 0.1], x9, . . . , x28 = 0, t = 0

3.6. FAST TAYLOR MODEL FLOWPIPE GENERATION FOR LINEAR ODES 95

(a) Projection in t-x1 plane (b) Projection in t-x4 plane

(c) Projection in t-x6 plane (d) Projection in t-x8 plane

Figure 3.25: Flowpipe over-approximations of the helicopter example

and the time horizon under our consideration is [0, 30].

We first apply the LGG algorithm [LG09] in SpaceEx with the step-size 0.1 and the
tolerance 0.001. It costs around 35 seconds to compute box flowpipes, but more than
2000 seconds for the octagon ones. When we use the STC algorithm [FKL13] with the
tolerance 0.05, only 12 seconds is needed for generating the box flowpipes, and the octagon
ones cost 340 seconds.

When our method is used, the TM flowpipes with step-size 0.2 and order 70 are
computed in 198 seconds. It is verified that the TM over-approximation at t = 30 is
contained in the octagon over-approximation produced by SpaceEx at the same time. We
illustrate the projections of our results in Figure 3.25. Moreover, we also tried the TM
integration method on the example, but was not able to obtain any result in 2 hours.

We should mention that it is often not necessary for SpaceEx to compute octagon
flowpipes in a safety verification task. Since the critical directions given by the unsafe set
are usually not too many. However, octagon flowpipes are sometimes still needed for the
reuse purpose. On the other hand, a TM flowpipe is already overall accurate when the
order is high enough, and it can be directly reused with different unsafe specifications.

Unbounded initial sets. We investigate the possibility to deal with an unbounded
initial set for a certain linear continuous system, that is, ~u is a constant vector. We

96 CHAPTER 3. TAYLOR MODEL FLOWPIPES FOR CONTINUOUS SYSTEMS

assume that the initial set is defined by a polyhedra

X0 = {~x ∈ Rn |
∧

1≤j≤m
(~aTj · ~x ≤ bj)}

which could be unbounded. Bases on the solution form (3.7), we can infer that the
reachable set ϕ(X0, t) for all t ∈ [0,+∞) is defined by

ϕ(X0, t) = {~x ∈ Rn |
∧

1≤j≤m
(~aTj · ϕ(~x,−t) ≤ bj)}

since ~x ∈ ϕ(X0, t) if and only if ϕ(~x,−t) ∈ X0 for all ~x ∈ Rn. The backward flowmap
ϕ(~x,−t) may be over-approximated by a TM (pb(~x,−t), Ib) such that pb may have interval
coefficients. It can be done in a similar way that F1 is computed. Therefore, for all
1 ≤ j ≤ m, we can compute a TM (with interval coefficients) (pj(~x,−t), [αj , βj]) =
~aTj · (pb(~x,−t), Ib) such that

pj(~x,−t) + αj ≤ ~aTj · ϕ(~x,−t) ≤ pj(~x,−t) + βj

for all ~x ∈ Rn. Hence, an over-approximation of ϕ(X0, t) can be computed by

So = {~x ∈ Rn |
∧

1≤j≤m
(pj(~x,−t) + αj ≤ bj)}

and an under-approximation of it can be obtained as

Su = {~x ∈ Rn |
∧

1≤j≤m
(pj(~x,−t) + βj ≤ bj)}

If the TM (pb(~x,−t), Ib) can not be computed by one shot, we may also use flowpipe
construction. Note that there is no need to truncation a polynomial term containing ~x in
all computations. Further investigation on the applicability of the method will be done
in the future.

Chapter 4

Taylor Model Flowpipes for Hybrid
Systems

Hybrid systems are dynamical systems which are equipped with both continuous and dis-
crete dynamics. The mathematical models for hybrid systems under our consideration are
hybrid automata. To verify a safety property on a hybrid system, we compute the reach-
able set of its hybrid automaton and check whether an unsafe state is contained. However,
such a task is can not be done explicitly in general since the reachability problem on hy-
brid automata is not decidable [ACH+95, HKPV95] even in the case that all continuous
dynamics are defined by linear ODEs. Therefore, similar to the reachability analysis on
continuous systems, we seek to compute an over-approximation for the reachable set, and
we show that it can also be done by computing flowpipe over-approximations.

Extending the use of Taylor Model (TM) arithmetic to generate reachable set over-
approximations for hybrid automata is non-trivial. Besides the continuous dynamics
defined by ODEs, we also need to handle mode invariants as well as the guards and reset
mappings of discrete jumps. Given a computed TM flowpipe F under the continuous
dynamics of a mode, we should exclude the states in F which stay outside of the mode
invariant. To do so, we intersect F with the invariant. The situation is similar when
handling a discrete jump. We intersect the TM flowpipes with the jump guard to obtain
the set of states from which the jump can be executed. Therefore, it requires a method to
compute flowpipe/invariant and flowpipe/guard intersections, and such a job is often not
easy. In this chapter, we present two novel approaches to compute over-approximations for
those intersections. They are domain contraction and range over-approximation. Since
they are high-level techniques, we may apply them with various heuristics and other
techniques in different situations.

In order to relieve the burden in the subsequent reachability computation, it is often
necessary to aggregate several flowpipe over-approximations as one set. Since TMs are
not closed under union, we need to compute a TM over-approximation for the result. In
order not to introduce too much overestimation, we present several heuristics to compute
a proper template for a parallelotopic aggregation. We show that the parallelotope can
be efficiently translated to an order 1 TM. The possibilities of computing other classes of
aggregations are also discussed.

97

98 CHAPTER 4. TAYLOR MODEL FLOWPIPES FOR HYBRID SYSTEMS

4.1 Hybrid automata

We use hybrid automata as the formal models of hybrid systems. A hybrid automaton
can be viewed as an extension of a finite automaton such that a finite set of real-valued
variables are introduced. The variable values change continuously in a discrete state
according to an ODE. They may also be updated by a discrete jump according to the
reset mapping associated to it. We give the definition of a hybrid automaton as follows.

Definition 4.1.1 (Hybrid automaton). A hybrid automaton is denoted by a tuple

A = (Loc,Var, Inv,Flow,Lab,Trans,Guard,Reset, Init)

wherein

• Loc is finite set of discrete states which are also called locations or modes.

• Var consists n real-valued variables ~x for some integer n > 0.

• Inv : Loc → 2R
n

associates a mode ` ∈ Loc an invariant I` ⊆ Rn such that the
variables can only take the values in I` when A is in the mode `.

• Flow is a function that associates a mode ` ∈ Loc a continuous dynamics ~̇x = f`(~x, t)
which governs the variable value change in the mode `. We assume that f` is locally
Lipschitz continuous w.r.t. ~x in the invariant of ` and continuous w.r.t. t in R.

• Lab is the set of labels for the discrete transitions.

• Trans ⊆ Loc× Lab× Loc is the set of discrete transitions or jumps associated with
their labels among the modes.

• Guard : Trans → 2R
n

assigns a jump α ∈ Trans a guard Gα ⊆ Rn such that the
jump α can be executed if and only if the state variables are of the values in G. Here,
we only consider the jumps which are not urgent, that is, the execution of a jump
is not mandatory when the guard is satisfied.

• Reset : Trans → (Rn → Rn) associates a jump α ∈ Trans a reset mapping πα :
Rn → Rn that updates the values of the variables after the execution of α.

• Init ⊂ Loc × Rn is the initial state set of A. Every state in Init also satisfies the
mode invariants.

A state of A is a pair 〈`, ~v〉 wherein ` denotes the current mode and ~v ∈ Rn are the values
of the variables. Additionally, we call ` the discrete state and ~v the continuous state.

Intuitively, the state space of a hybrid automaton with n variables and l modes consists
of l independent n-dimensional spaces defined by the mode invariants. The system state
changes in one space according to a continuous dynamics and jump from one space to
another by making a discrete transition.

Example 4.1.2. We revisit the bouncing ball model presented in Example 1.1.1. We
enhance the model by introducing an air friction which is represented by a quadratic
expression in the velocity. We present the hybrid automaton of the example in Figure 4.1,
the components are defined as follows.

4.1. HYBRID AUTOMATA 99

down

ẋ = v
v̇ = −g + 0.1v2

x ≥ 0 ∧ v ≤ 0

up

ẋ = v
v̇ = −g − 0.1v2

x ≥ 0 ∧ v ≥ 0

β : v = 0

α : x = 0→ v′ := −0.8v

x ∈ [4.9, 5.1]

v ∈ [−0.2, 0]

Figure 4.1: Hybrid automaton of the bouncing ball with air friction

• Loc = {down, up} in which the two modes correspond to the two directions of the
velocity.

• Var = {x, v} wherein x denotes the vertical distance from the ball to the ground,
and v is the velocity of the ball.

• Inv(down) = {(x, v) ∈ R2 |x ≥ 0 ∧ v ≤ 0}, Inv(up) = {(x, v) ∈ R2 |x ≥ 0 ∧ v ≥ 0}.

• Flow(down) =

{
ẋ = v
v̇ = −g + 0.1v2 , Flow(up) =

{
ẋ = v
v̇ = −g − 0.1v2 .

• Lab = {α, β}.

• Trans = {〈down, α, up〉, 〈up, β, down〉}.

• Guard(〈down, α, up〉) = {(x, v) ∈ R2 |x = 0},
Guard(〈up, β, down〉) = {(x, v) ∈ R2 | v = 0}.

• Reset(〈down, α, up〉) =

{
x 7→ x
v 7→ −0.8v

, Reset(〈up, β, down〉) =

{
x 7→ x
v 7→ v

.

• Init = {〈down, (x, v)〉 |x ∈ [4.9, 5.1] ∧ v ∈ [−0.2, 0]}.

In Figure 4.1, the identity reset mapping is neglected. The state space is composed of two
vector fields.

An execution (run) of a hybrid automaton A is a sequence of states

〈`0, ~v0〉, 〈`1, ~v1〉, 〈`2, ~v2〉, . . .

which can be infinite such that 〈`0, ~v0〉 ∈ Init and for two successive states 〈`, ~v〉, 〈`′, ~v′〉
either of the following two evolutions holds.

• Continuous evolution (time delay) - We have that (i) ` = `′, (ii) ~v′ = ϕf (~v, t)

for some t ≥ 0 such that ~̇x = f(~x, t) is the continuous dynamics of `, and (iii)

ϕf (~v, t′) ∈ Inv(`) for all t′ ∈ [0, t]. We denote it by 〈`, ~v〉 t
 〈`′, ~v′〉.

• Discrete evolution (jump) - There exists a jump 〈`, α, `′〉 ∈ Trans such that ~v ∈
Guard(〈`, α, `′〉), ~v′ ∈ Inv(`′), and ~v′ = π(~v) wherein Reset(〈`, α, `′〉) = π. We
denote it by 〈`, ~v〉 α→ 〈`′, ~v′〉.

100 CHAPTER 4. TAYLOR MODEL FLOWPIPES FOR HYBRID SYSTEMS

Inv(`)

Inv(`′)

Guard(e)

Reset(e)

~v0

~v1

~v2

~v3

Figure 4.2: Example of an execution of a hybrid automaton

We illustrate an execution

〈`, ~v0〉, 〈`, ~v1〉, 〈`′, ~v2〉, 〈`′, ~v3〉

in Figure 4.2 wherein e denotes a jump from ` to `′. In the following content, we sometimes
omit the labels in a hybrid automaton if there is at most one jump from ` to `′ for any
two modes `, `′.

An execution is zeno if it has infinitely many jumps but the total amount of time
delay is bounded. For instance, every execution which contains infinitely many jumps of
the hybrid automaton in Example 4.1.2 is zeno. Zeno executions are not realistic, since
no physical processor can do infinitely many actions in a finite amount of time. We call
a hybrid automaton non-zeno if it has no zeno execution. A simple way to exclude zeno
executions from a hybrid automaton is to force the system to stay in a mode for at least
a specified amount of time before a jump is enabled.

We call an execution blocking if it can reach a state 〈`, ~v〉 and there is no state 〈`′, ~v′〉
such that 〈`, ~v〉 t

 〈`′, ~v′〉 for some t > 0, or 〈`, ~v〉 α→ 〈`′, ~v′〉 for a jump α. A hybrid
automaton is non-blocking if it has no blocking execution. Since blocking executions
represent behaviors in which time does not progress, they could be introduced by incon-
sistency in modeling. We may eliminate blocking executions from a hybrid automaton by
adding new modes and jumps. In our analysis work, we do not require a hybrid automaton
non-zeno or non-blocking.

Given a hybrid automaton A, we say that a state 〈`, ~v〉 is reachable if there exists a
finite sequence which is an execution of A with the last state 〈`, ~v〉. The set of reachable
states are called reachable set. We also say that 〈`, ~v〉 is reachable in a time interval T
if the total amount of the time delay in an execution leading to 〈`, ~v〉 is in T . Similarly,
the state 〈`, ~v〉 is reachable below j jumps if an execution leading to it involves at most j
jumps.

Definition 4.1.3 (Hybrid reachability problem). Given a hybrid automaton A, the reach-
ability problem on A is to verify whether a given state is reachable. A bounded version
of the problem is to determine whether the state is reachable in a bounded time interval
and below a specified number of jumps.

4.2. FRAMEWORK OF THE FLOWPIPE CONSTRUCTION 101

Subclass Continuous Guard/ Reset Bounded Unbounded
dynamics invariant mapping reachability reachability

TA ~̇x = 1 x ∼ c x 7→ 0 decidable decidable

RHA ~̇x ∈ B ~x ∈ B x 7→ B decidable undecidable

LHA I ~̇x = ~c pL(~x) ≤ 0 ~x 7→ pL(~x) decidable undecidable

LHA II ~̇x = pL(~x) pL(~x) ≤ 0 ~x 7→ pL(~x) undecidable undecidable

Table 4.1: Decidability of the reachability problem on some subclasses of hybrid au-
tomata. Legends: TA: Timed Automata, RHA: Rectangular Hybrid Automata, LHA:
Linear Hybrid Automata.

Decidability of the reachability problem. In Table 4.1, we give the decidability of
the reachability problem on several subclasses of hybrid automata. The proofs are given
elsewhere [AD94, ACH+95, HKPV95]. The mode invariants and jumps guards under
our consideration are defined by conjunctions of inequalities (constraints). In the table,
we use pL(~x) to denote a linear polynomial over ~x, ∼∈ {≤,≥, <,>}, and B denotes an
interval. More precise complexities of the decidable problems can be found in the related
work [AD94, ACH+95, HKPV95]. For the decidable bounded reachability problems, it is
not difficult to come up with a nondeterministic-polynomial algorithm for each of them.

In the thesis, we consider the hybrid automata with variables ~x such that (i) the
continuous dynamics are defined by non-linear ODEs, (ii) the guards and invariants are
defined by the inequalities of the form g(~x) ≤ 0 wherein g is an analytic function, and
(iii) the reset mappings are given by the form ~x 7→ r(~x) wherein r is also analytic.

We present a general procedure to compute the reachable set of a hybrid automaton
by Algorithm 11. It is a fixed point computation whose termination is not guaranteed.
Although the algorithm needs to handle infinitely (even uncountably) many hybrid states,
we may collectively represent a set of states {〈`, ~v〉 |~v ∈ V } by 〈`, V 〉 during the compu-
tation and the number of them can be reduced to be finite if the time horizon as well as
the maximum number of jumps are bounded. Unfortunately, even the bounded reachable
set can not be computed exactly in general, since those operations are not easy to handle.
For example, to compute the exact reachable set under a continuous dynamics within an
invariant can hardly be done in most cases.

We consider to use TM flowpipes to over-approximate the reachable set segments for
a hybrid automaton. We may extend the flowpipe construction method for continuous
systems to the hybrid case. In the following section, a general scheme is introduced.

4.2 Framework of the flowpipe construction

Given a hybrid automaton, we seek to over-approximate the set of the states which is
reachable in a bounded time horizon [0,∆] and with at most J jumps, such that ∆ and
J are user-specified. A general scheme to do it is described by Algorithm 12 wherein we
assume that the initial set is collectively represented by the union of 〈`1, V1〉, . . . , 〈`m, Vm〉
for some integer m > 0. The termination of the algorithm is ensured since we bound the
time horizon as well as the jump depth.

The flowpipe representations should be proper with respect to the operations in Al-

102 CHAPTER 4. TAYLOR MODEL FLOWPIPES FOR HYBRID SYSTEMS

Algorithm 11 Reachable set computation for hybrid automata

Input: a hybrid automaton A
Output: the reachable set R of A

1: R ← ∅;
2: Queue← ∅; # the queue to keep unvisited states
3: for all 〈`, ~v〉 ∈ Init do
4: Queue.enqueue(〈`, ~v〉);
5: end for
6: while Queue is not empty do
7: 〈`, ~v〉 ← Queue.dequeue();
8: R` ← Reach`(〈`, ~v〉); # compute the reachable set in `
9: R ← R∪R`;

10: for all 〈`, α, `′〉 ∈ Trans do
11: for all 〈`, ~v〉 ∈ R` do
12: if ~v ∈ Guard(〈`, α, `′〉) then
13: ~v′ ← Reset(〈`, α, `′〉)(~v); # compute the reset mapping
14: if 〈`′, ~v′〉 /∈ R then
15: Queue.enqueue(〈`′, ~v′〉); # 〈`′, ~v′〉 has not been visited
16: end if
17: end if
18: end for
19: end for
20: end while
21: return R;

4.2. FRAMEWORK OF THE FLOWPIPE CONSTRUCTION 103

Algorithm 12 Flowpipe construction for hybrid automata

Input: a hybrid automaton A, a bounded time horizon ∆, maximum jump depth J
Output: over-approximation of the reachable set of A within time [0,∆] and J jumps

1: R ← ∅;
2: Queue← ∅;
3: for all i = 1, . . . ,m do
4: Queue.enqueue(〈〈`i, Vi〉, 0,J 〉); # enqueue the initial sets
5: end for
6: while Queue is not empty do
7: 〈〈`, V 〉, t, j〉 ← Queue.dequeue();
8: F←ComputeFlowpipes`(V,∆−t); # flowpipes in ` in time ∆−t
9: R ← R∪ {〈`,F〉 |F ∈ F};

10: for all 〈`, α, `′〉 ∈ Trans do
11: for all F ∈ F do
12: if j > 0 then
13: FG ← F ∩Guard(〈`, α, `′〉); # flowpipe/guard intersection
14: if FG 6= ∅ then
15: FR ← Reset(〈`, α, `′〉)(FG); # compute the reset mapping
16: if 〈`′,FR〉 * R then
17: Compute the global starting time tR of FR;
18: Queue.enqueue(〈〈`′,FR〉, tR, j − 1〉);
19: end if
20: end if
21: end if
22: end for
23: end for
24: end while
25: return R;

104 CHAPTER 4. TAYLOR MODEL FLOWPIPES FOR HYBRID SYSTEMS

Inv(`)

Inv(`′)

Guard(e)

Reset(e)

Figure 4.3: Flowpipe construction for a hybrid automaton

gorithm 12. As we said, the jump guards and mode invariants under our consideration
are defined by inequalities. Hence an ideal class of representations should be closed under
intersection with those sets. However, the goal can hardly be achieved. We consider to
use TMs as the over-approximate representations for flowpipes. TMs are not closed under
the intersection with a guard or an invariant, but are closed under polynomial mappings.
The TM flowpipes in a mode can be computed by the TM integration technique except
that in every integration step the computed TM flowpipe is intersected by the invari-
ant. An example is illustrated in Figure 4.3, wherein the TM flowpipes are given by
boxes. Besides, we also shade the initial flowpipe over-approximation in a mode and the
flowpipe/guard intersection.

4.3 Flowpipe/guard intersections

We present two techniques to generate a TM for a flowpipe/guard intersection. A
flowpipe/invariant intersection can be handled in a similar way. Since a TM flowpipe
can always be equivalently or over-approximately transformed to a TM over an interval
domain, we assume that the domains are intervals.

Given a jump guard G = {~x ∈ Rn | ∧m
i=1 gi(~x) ≤ 0} wherein g1, . . . , gm are analytic

functions. The intersection of G and a TM flowpipe F = (p(~x0, t), I) with ~x0 ∈ X0,
t ∈ [0, δ] for some X0 ∈ IRd is defined by

F ∩ G = {~x | ~x = p(~x0, t) + ~y ∧ ~x0 ∈ X0 ∧ t ∈ [0, δ] ∧ ~y ∈ I ∧
m∧
i=1

gi(~x) ≤ 0} (4.1)

which is often not a TM and can not be easily computed. However, we show that a TM
over-approximation of it can be computed in the following two ways. (1) We contract
the domain X0 and [0, δ] to X ′0 ⊆ X0 and [th, tl] ⊆ [0, δ] respectively, and then the TM
(p(~x0, t), I) over the reduced domain is an over-approximation of the intersection. (2) We
over-approximate F by a set F whose intersection with G is easy to compute, and then
we over-approximate the intersection F ∩ G by a TM. We call the first method domain
contraction and the second one range over-approximation.

4.3. FLOWPIPE/GUARD INTERSECTIONS 105

t

X0

0 δ

(a) Flowpipe/guard intersection

t

X0

0 δ

th tl

X ′0

(b) After domain contraction

Figure 4.4: Example of domain contraction

4.3.1 Domain contraction

The purpose is to derive a valid contraction X ′0 ⊆ X0 and [th, tl] ⊆ [0, δ] for the TM
domain in (4.1). More precisely, the range of (p(x0, t), I) with ~x0 ∈ X ′0, t ∈ [th, tl] contains
the intersection F ∩ G.

Definition 4.3.1 (Valid contraction). Given a TM F over a domain D and a guard set
G. We call D′ ⊆ D a valid contraction of D if and only if the set F ∩ G is contained in
F over a domain D′.

Example 4.3.2. Given a TM flowpipe x = 1+x0 · t with x0 ∈ [−1, 1] and t ∈ [0, 0.4]. We
denote the domain set by [−1, 1]× [0, 0.1]. If the guard is defined by the set {x ∈ R |x ≥
1.2 ∧ x ≤ 1.4}, then [0.5, 1] × [0.2, 0.4] is a valid contraction of the domain. Note that a
valid contraction is not necessarily the smallest one.

The class of the contraction set X ′0 is key to the overall performance. Here, we require
that the representation of it is no more complex than that of X0. Hence, we consider X ′0 as
an interval. The smallest valid interval contraction X∗0 can be obtained via optimization.
The lower bounds of it in every dimension as well as the value th can be derived by solving
the optimization problems

inf{z} subject to ~x = p(~x0, t) + ~y ∧ ~x0 ∈ X0 ∧ t ∈ [0, δ] ∧ ~y ∈ I ∧
m∧
i=1

gi(~x) ≤ 0

for z = ~x0[1], . . . , ~x0[d] and z = t. For the upper bounds and the value tl, we may solve
the same problems except that inf is replaced by sup. We give an example in Figure 4.4.
Unfortunately, such optimization problems are non-linear when either the order of the
TM is more than 1, or at least one of the functions g1, . . . , gm is not a linear polynomial.
Therefore, the computation of X∗0 is intractable in general. In the following content, we
introduce some techniques to conservatively solve the optimization problems and yield
thereby a superset of X∗0 .

Convex optimization. A convex optimization problem may be solved by an interior-
point method [BV04] in polynomial-time complexity. Although the optimization problems
on a flowpipe/guard intersection is usually not convex, we may perform a convex relaxation

106 CHAPTER 4. TAYLOR MODEL FLOWPIPES FOR HYBRID SYSTEMS

on it. That is, we compute a new polynomial p′ from p and new functions g′1, . . . , g
′
m from

g1, . . . , gm respectively such that the set of ~x subject to

~x = p′(~x0, t) + ~y ∧ ~x0 ∈ X0 ∧ t ∈ [0, δ] ∧ ~y ∈ I ∧
m∧
i=1

g′i(~x) ≤ 0

is convex and contains the intersection. Techniques such as SemiDefinite Programming
(SDP) relaxation [VB96, Pab03] and Sum-Of-Square (SOS) relaxation [Par00] could be
applied. However, such methods still suffer from bad efficiency when d is large. Besides,
it is also not easy to limit the overestimation introduced by a relaxation.

Interval Constraint Propagation (ICP). The technique of ICP is a combination
of interval arithmetic and constraint propagation to conservatively solve a Constraint
Satisfiability Problem (CSP). That is to compute a superset of the exact solution set. It
often costs much less time than finding the exact set, and returns a fairly tight enclosure.

Definition 4.3.3 (Constraint satisfiability problem). A Constraint Satisfiability Problem
(CSP) is denoted by a triple 〈X,D,Cons〉 wherein X consists of finitely many variables
which range in the set D, and Cons is a finite set of constraints over the variables in X.
A solution to the CSP 〈X,D,Cons〉 is a valuation ν : X → R of the variables such that
all constraints are satisfied. In addition, we call the set of all solutions the solution set.

Then the domain contraction task becomes computing an interval enclosure of the
solution set of the CSP 〈X,D,Cons〉 wherein

X = {~x0[1], . . . , ~x0[d], t},
D = X0 × [0, δ],

Cons = {~x = p(~x0, t) + ~y, ~y ∈ I, g1(~x) ≤ 0, . . . , gm(~x) ≤ 0}
(4.2)

To derive an over-approximation of the solution set, we may use the branch-and-prune
procedure presented in Algorithm 13. In each iteration, we check the inclusion of a
solution in a subdivision B by interval arithmetic. If B possibly contains a solution, we
then split it equally into two intervals in a dimension and put them back into the queue.
Otherwise, B is discarded. The algorithm terminates and returns a set of intervals of
widths < ε, and the union of them defines an over-approximation of the exact solution
set. If all functions are evaluated based on their Lipschitz and inclusion isotonic interval
extensions, the resulting accuracy can always be improved by choosing smaller ε.

An interval valid contraction of X0× [0, δ] can be obtained by branch-and-prune. We
then compute an interval aggregation of the resulting set S. However, such an approach
could also be computational expensive, since the number of intervals in S could be as many
as O((dW(D)

ε e)d+1). For the sake that we only compute interval contractions, it is more
efficient to directly contract the original domain in every dimension without computing
any subdivision of it. An efficient trade-off is described as follows.

An efficient approach. Our purpose is to compute a contraction for each component
of X0 × [0, δ] without performing a subdivision on it. We follow a way to successively
contract the original domain, as shown by Algorithm 14 wherein the input CSP encodes
the domain contraction task. In each iteration of the main loop, we contract the current

4.3. FLOWPIPE/GUARD INTERSECTIONS 107

Algorithm 13 Branch-and-prune algorithm

Input: a CSP 〈X,D,Cons〉, a threshold ε > 0
Output: an over-approximation of the solution set

1: S ← ∅;
2: Queue.enqueue(D); # queue for the solution set
3: while Queue is not empty do
4: B ← Queue.dequeue();
5: if B possibly contains a solution then
6: if the width of B in the i-th dimension for some i is no smaller than ε then
7: Split B equally in the i-th dimension into B1, B2;
8: Queue.enqueue(B1);
9: Queue.enqueue(B2);

10: else
11: S ← S ∪ {B}; # W(B) < ε
12: end if
13: end if
14: end while
15: return S;

Algorithm 14 Main procedure of the efficient approach

Input: a CSP 〈{~x0[1], . . . , ~x0[d], t}, D,Cons〉
Output: an interval enclosure of the solution set

1: Dc ← D;
2: repeat
3: for all z = ~x0[1], . . . , ~x0[d], t do
4: Compute a value lo such that lo ≤ ν(z) for any solution ν w.r.t. Dc.
5: Compute a value up such that up ≥ ν(z) for any solution ν w.r.t. Dc.
6: if lo ≤ up then
7: Update the interval of Dc in the dimension of z to [lo, up];
8: else
9: Set Dc empty and break; # the constraints are unsatisfiable

10: end if
11: end for # refine the domain Dc

12: until no great refinement on Dc

13: return Dc;

108 CHAPTER 4. TAYLOR MODEL FLOWPIPES FOR HYBRID SYSTEMS

domain Dc one dimension after another, and the result is used in turn to improve the
future contraction work.

The contraction in each dimension is done by searching approximations for the exact
lower and upper bounds, and they are guaranteed to be conservative. To do so, we may
still use the branch-and-prune framework however at most one subdivision is selected
in each branching. The method to compute a lower bound approximation is given by
Algorithm 15, wherein in each iteration we narrow down the interval [α, β] by the following
steps.

1. Split [α, β] at its midpoint γ = α+β
2 .

2. Update the solution domain to D′ which is same as D except that the interval in
the dimension of z is [α, γ].

3. Check whether there is a solution in D′. The job can be conservatively done by
interval arithmetic, that is, we use interval arithmetic to prove the nonexistence of
a solution. If no solution is there, then we discard the branch [α, γ] and update the
interval [α, β] to [γ, β] in D′. Otherwise, [α, β] is updated to [α, γ].

Since we only discard the interval containing no solution, the exact lower bound of the
solution set must lie in [α, β] in each iteration. Then the resulting value α is a conservative
approximation. Unlike the general branch-and-prune algorithm, we only need to handle
at most O(log(dW(D)

ε e)) many branches.

Algorithm 15 Lower bound approximation search

Input: a CSP 〈{~x0[1], . . . , ~x0[d], t}, D,Cons〉, a threshold ε > 0, a variable z ∈
{~x0[1], . . . , ~x0[d], t}

Output: a conservative approximation for the lower bound of the solution set in the
dimension of z

1: Set α as the lower bound of D in the dimension of z;
2: Set β as the upper bound of D in the dimension of z;
3: D′ ← D;
4: while β − α ≥ ε do
5: γ ← α+β

2 ;
6: Update the interval of D′ in the dimension of z to [α, γ];
7: if D′ possibly contains a solution then
8: β ← γ;
9: else

10: α← γ;
11: end if
12: end while
13: return α;

Lemma 4.3.4. Algorithm 15 returns a conservative approximation of the lower bound of
the solution set in the dimension of z.

A conservative approximation for the upper bound in a dimension can be computed in
a similar way except that we only consider the upper half in every iteration. We present

4.3. FLOWPIPE/GUARD INTERSECTIONS 109

the method by Algorithm 16. Hence, the total number of branches handled in our efficient
approach is only O(2 · η · (d + 1) · log(dW(D)

ε e)) wherein η is the iteration number of the
main loop in Algorithm 14.

Algorithm 16 Upper bound approximation search

Input: a CSP 〈{~x0[1], . . . , ~x0[d], t}, D,Cons〉, a threshold ε > 0, a variable z ∈
{~x0[1], . . . , ~x0[d], t}

Output: a conservative approximation for the lower bound of the solution set in the
dimension of z

1: Set α as the lower bound of D in the dimension of z;
2: Set β as the upper bound of D in the dimension of z;
3: D′ ← D;
4: while β − α ≥ ε do
5: γ ← α+β

2 ;
6: Update the interval of D′ in the dimension of z to [γ, β];
7: if D′ possibly contains a solution then
8: α← γ;
9: else

10: β ← γ;
11: end if
12: end while
13: return β;

Lemma 4.3.5. Algorithm 16 returns a conservative approximation of the upper bound of
the solution set in the dimension of z.

Theorem 4.3.6. Algorithm 14 computes a valid contraction of D.

Example 4.3.7. We revisit the Rössler attractor given in Example 3.4.3. This time we
consider the intersection of the TM flowpipes in the time horizon [0, 6] with two guard
sets. The first one is given by

G1 = {(x, y, z) ∈ R3 | z ≥ 8}

In Figure 4.5, we illustrate the flowpipe over-approximations as well as their contractions
according to G1. The other guard set is

G2 = {(x, y, z) ∈ R3 | − x+ y − z ≥ 6}

We present the result in Figure 4.6. We also give an example of using domain contraction
to deal with invariants. We associate the Rössler attractor example with the following
invariant set

I = {(x, y, z) ∈ R3 | x ∈ [−7, 9.5] ∧ y ∈ [−9, 6] ∧ z ∈ [0, 8]}

In Figure 4.7, we present the invariant constrained flowpipe over-approximations as well
as the unconstrained ones.

110 CHAPTER 4. TAYLOR MODEL FLOWPIPES FOR HYBRID SYSTEMS

(a) Projections in the x-y plane (b) Projections in the y-z plane

Figure 4.5: Intersections computed by domain contraction with the guard G1

(a) Projections in the x-y plane (b) Projections in the y-z plane

Figure 4.6: Intersections computed by domain contraction with the guard G2

Remainder contraction. The algorithms for domain contraction may also be applied
to reducing the TM remainder I, when the width of it is not small. Remainder contraction
can be carried out together with domain contraction, we only need to introduce new
variables to the CSP to include the remainder interval.

4.3.2 Range over-approximation

Other than reducing the domain of a TM flowpipe, an over-approximation of the
flowpipe/guard intersection may also be derived by first computing an enclosure of the
TM flowpipe range and then intersecting it with the guard, as illustrated by Figure 4.8.
We call such a method range over-approximation. To do so, we need to over-approximate
the range of a TM flowpipe (p(~x0, t), I) with ~x0 ∈ X0 and t ∈ [0, δ], i.e., the set

Rng((p, I)) = {~x | ~x = p(~x0, t) + ~y ∧ ~x0 ∈ X0 ∧ t ∈ [0, δ] ∧ ~y ∈ I}

4.3. FLOWPIPE/GUARD INTERSECTIONS 111

(a) Projections in the x-y plane (b) Projections in the y-z plane

Figure 4.7: Invariant constrained and unconstrained flowpipe over-approximations.

t

X0

0 δ

(a) Over-approximate the flowpipe by a box

t

X0

0 δ

(b) Compute the intersection of the box and the
guard

Figure 4.8: Example of range over-approximation

As we pointed out in Section 2.4, such an over-approximation can be computed as
a polytope, a zonotope or an ellipsoid. We give some methods as below to compute an
over-approximation for an n-dimensional TM flowpipe F = (p(~x0, t), I) with ~x0 ∈ X0 and
t ∈ [0, δ].

Polytopic over-approximation. The range of F can be over-approximated by a H-
polytope P (a polytope in itsH-representation) via computing the support function values
w.r.t. a template ~l1, . . . ,~lr ∈ Rn. That is, we solve the optimization problem

bi = sup{~l Ti · ~x} subject to ~x = p(~x0, t) + ~y ∧ ~x0 ∈ X0 ∧ t ∈ [0, δ] ∧ ~y ∈ I

for 1 ≤ i ≤ r, and the polytope P is computed as

P : (~l T1 , . . . ,~l Tr) · ~x ≤ (b1, . . . , br)

Although those optimization problems might not be able to be solved efficiently, we may
use the techniques of SDP relaxation, linear relaxation to compute a value that is larger
than bi for each 1 ≤ i ≤ r, and the resulting polytope is still an over-approximation of
the TM flowpipe.

112 CHAPTER 4. TAYLOR MODEL FLOWPIPES FOR HYBRID SYSTEMS

Zonotopic over-approximation. The flowpipe F can be enclosed by a G-zonotope
Z, i.e., Z is in a G-representation. A simple but effective way to do so is to perform a
conservative linearization on the TM,

(p′, I ′) = (p− pN , I + Int(pN)) wherein pN denotes the non-linear part of p

and equivalently translating the TM (p′, I ′) into a G-zonotope.
Besides, a zonotopic over-approximation may also be obtained based on a template

〈~c, {~l1, . . . ,~lr}〉. The task can be done by finding r positive real values a1, . . . , ar such
that the set

Z = {~c+
r∑
i=1

λi · ai ·~li | λ1, . . . , λr ∈ [0, 1]}

contains the TM flowpipe. The exact containment is hard to verify when the TM is of
order > 1, but we may use interval arithmetic to efficiently find a more conservative over-
approximation. As a feasible approach, we may initially choose a1, . . . , ar very close to
zero and successively raise their values by small amounts until the zonotope contains the
TM.

Definition 4.3.8 (Template of a zonotopic over-approximation). A template of a zono-
tope Z is a tuple 〈~c, L〉 wherein ~c is the center of Z and L is a set of nonzero vectors
which determine the directions of the generators. If Z is n-dimensional, there should be
at least n vectors in L linearly independent.

Ellipsoidal over-approximation. An over-approximation may also be an ellipsoid
E : (~c,Q) whose position and orientation can be given by a template. More precisely, the
center ~c as well as the eigenvectors of Q can be defined by a template. Then the problem
becomes to find proper eigenvalues for Q such that the set

E = {~x ∈ Rn | (~x− ~c)T ·Q · (~x− ~c) ≤ 1}

is a superset of the TM flowpipe. Since the eigenvalues of Q are the reciprocals of the
squares of the semi-axes, we may initially choose large positive numbers, and then suc-
cessively reduce them by small amounts until the ellipsoid defines an over-approximation.

Definition 4.3.9 (Template of an ellipsoidal over-approximation). A template of an n-
dimensional ellipsoid E is a tuple 〈~c, L〉 wherein ~c is the center of E and L is a set of n
linearly independent vectors which define the directions of the principal axes of E.

Support function over-approximation. Support functions, as a more general convex
representation class, may also be used as range over-approximations. The TM flowpipe
can be over-approximated by its convex hull whose support function ρConv(F) : Rn → R
can be represented by the following optimization problem

sup{~l T · ~x} subject to ~x = p(~x0, t) + ~y ∧ ~x0 ∈ X0 ∧ t ∈ [0, δ] ∧ ~y ∈ I

Then the support function value ρConv(F)(~l) for some ~l ∈ Rn can be obtained by solving
the above problem. As we mentioned before, the solution is often hard to compute,
however we may use interval arithmetic to derive a value which is larger than the exact
one.

4.4. INTERSECTION AGGREGATION 113

t

X0

0 δ

th tl

X ′0

(a) Domain contraction along with range over-
approximation

t

X0

0 δ

th tl

X ′0

(b) Intersection of the range over-approximation
and the guard

Figure 4.9: Combination of domain contraction and range over-approximation

We consider the following classes of the guard set. (i) When the guard is defined by
only linear polynomial inequalities, then it is a polyhedron. We may apply the existing
algorithms to derive a superset of the range over-approximation/guard intersection [BT00,
GL08, Le 09, ASB10]. (ii) If the guard set is defined by non-linear inequalities, we may
use ICP to contract the range over-approximation according to the guard. Since a range
over-approximation has a simpler representation than the TM flowpipe, the task is easier
than computing a domain contraction in general.

At last, we need to represent the intersection by a TM. To do so, we may first over-
approximate the intersection by a zonotope and then translate it into an order 1 TM. An
algorithm will be given in the next section.

The advantage of range over-approximation over domain contraction is that the final
intersection over-approximation could be made entirely lie in the guard set based on a
properly selected template.

Combine the use of domain contraction and range over-approximation. The
techniques of domain contraction and range over-approximation can be used in a combina-
tion. We may first perform a domain contraction and then compute an over-approximation
for the TM range over the contracted domain. If the domain is considerably contracted
in the first step, we could cut off the overestimation that lies in the guard set but can
not be excluded by only using the range over-approximation method. The main idea is
illustrated in Figure 4.9.

4.4 Intersection aggregation

When a flowpipe/guard intersection is computed, we compute its image under the
reset mapping of the jump, and the result is the initial set in the next mode. When there
are several flowpipe over-approximations intersects the guard, then we have to compute
an initial set in the next mode for each of them. If we do so, the number of the initial sets
after several jumps may become prohibitively great, and it causes a huge computational
burden. To avoid it, we consider to cluster those intersection pieces by one set and then
transform it into a TM. Then, in the next mode, we only have one initial set. Hence, we
use the following steps to over-approximate the reachable set under a jump.

114 CHAPTER 4. TAYLOR MODEL FLOWPIPES FOR HYBRID SYSTEMS

(1) Use domain contraction as well as range over-approximation to compute TMs for
flowpipe/guard intersections.

(2) Compute a TM over-approximation T for the union of those TMs.

(3) Compute the image of T under the reset mapping by TM arithmetic. The result is
the initial set of the next mode.

Since TMs are not closed under union, it is hard to find the best TM for the union set.
In the following content, we present several methods which try to obtain an accurate
TM over-approximation. The main idea of them is to first derive a parallelotopic over-
approximation and then equivalently translate it into a TM.

4.4.1 Aggregation by an oriented rectangular hull

The over-approximation is computed as a hyper-rectangle whose orientation is deter-
mined by means of Principal Component Analysis (PCA) [Jol02], and then translate the
hyper-rectangle into a TM.

The technique of PCA is used to find uncorrelated variables which are called principal
components to represent a set of data which are originally described by a larger number
of variables. Here, we try to obtain an orientation which consists of n orthogonal vectors
~l1, . . . ,~ln ∈ Rn for a finite set of samples (points, vectors) ~s1, . . . , ~sm in the space Rn, such
that an over-approximate hyper-rectangle Ω of the sample set can be computed as the
following H-polytope

Ω : (~l T1 , . . . ,~l Tn ,−~l T1 , . . . ,−~l Tn) · ~x ≤ (a1, . . . , an, b1, . . . , bn)

wherein
ai = sup{~l Ti · ~x} subject to ~x ∈ {~s1, . . . , ~sm}
bi = sup{−~l Ti · ~x} subject to ~x ∈ {~s1, . . . , ~sm}

for 1 ≤ i ≤ n. By using PCA, the hyper-rectangle Ω is usually with a good accuracy. We
introduce the basic steps to compute the orientation.

Step 1: Compute the sampling matrix. The samples ~s1, . . . , ~sm are organized as
an n×m matrix

MS =


~s1[1] ~s2[1] · · · ~sm[1]
~s1[2] ~s2[2] · · · ~sm[2]

...
...

...
...

~s1[n] ~s2[n] · · · ~sm[n]


Then the sampling matrix MS is computed by subtracting ~s which is the arithmetic mean
of ~s1, . . . , ~sm from every column of MS . That is, we shift those samples such that the
arithmetic mean of them becomes zero.

Step 2: Compute the covariance matrix. The covariance matrix MCov of MS is
computed as

MCov =
1

m− 1
·MS ·MT

S

4.4. INTERSECTION AGGREGATION 115

which is a symmetric matrix. The entry in the i-th row and j-th column of MCov is the
covariance of the i-th and j-th variables. Intuitively, it tells how well the change in the
two dimensions are correlated.

Step 3: Singular Value Decomposition of the covariance matrix. By computing
the Singular Value Decomposition (SVD) of MCov, i.e.,

MCov = U · Σ · V T

we obtain a matrix U whose columns provide an orientation.

Example 4.4.1. We give an example of using PCA to compute a rectangular over-
approximation for the sample set

S = {(1, 3), (2.5, 2.5), (1.6, 2), (−1,−1.3), (−3.5,−4), (0, 0.5), (−1.2,−0.3), (1,−0.3)}
The sampling matrix as well as the covariance matrix are computed as

MS =

(
0.95 2.45 1.55 −1.05 −3.55 −0.05 −1.25 0.95

2.7375 2.2375 1.7375 −1.5625 −4.2625 0.2375 −0.5625 −0.5625

)
and

MCov =

(
3.640000000000000 3.957857142857143
3.957857142857143 5.259821428571429

)
By computing the SVD of MCov, we obtain the orientation

~l1 = (−0.632266098585395, −0.774751302405877)

~l2 = (−0.774751302405877, 0.632266098585395)

The resulting rectangular over-approximation is shown in Figure 4.10. Obviously, it is
much more accurate than an interval over-approximation, i.e., a box which is axis-aligned.

We give our method for intersection aggregation using PCA.

1. Compute a set of samples from the intersection over-approximations. The number of
those samples is not necessarily exponential in the dimension number n but should
be sufficient to reflect the distribution of the intersections.

2. Use PCA to find a proper orientation ~l1, . . . ,~ln ∈ Rn.

3. Compute a H-polytope according to the template ~l1, . . . ,~ln,−~l1, . . . ,−~ln such that
it contains all of the intersection over-approximations.

A key task here is the sample selection. Different from the relate work [SK03, Alt10,
CÁ11], we consider to compute a smaller number of sample points in the following situa-
tions.

Intersection over-approximations are given by TMs. Given that an intersection
over-approximation is of the form (p(~x0, t), I) wherein ~x0 ∈ X ′0, t ∈ [th, tl] such that X ′0
is an interval. We may simply compute the point ~s = p(~c, η) + ~y wherein ~c = Mid(X ′0),
η = th+tl

2 and ~y = Mid(I) as the sample of the TM. Then we only need N samples for N
intersections. Such a method may work fine if the over-approximation sets are of similar
sizes. Otherwise we may select more samples near the surface of the TM. For example,
we may first collect the facet centers of the box X ′0× [th, tl] and then compute the samples
as their images under the polynomial mapping p.

116 CHAPTER 4. TAYLOR MODEL FLOWPIPES FOR HYBRID SYSTEMS

Figure 4.10: Over-approximating a sample set by a rectangular hull

Intersection over-approximations are given by convex geometric objects. For
those geometric representations such as zonotopes, ellipsoids and polytopes, the samples
can be generated in the following way. For an intersection over-approximation Ω, we
select a set of samples ~s1, . . . , ~sm on the surface of Ω based on a given set of vectors
~v1, . . . , ~vm ∈ Rn which are called sampling directions. That is, for each 1 ≤ i ≤ m, we
find a point ~si by linear programming such that

~vTi · ~si = sup{~vTi · ~x | ~x ∈ Ω}

As a simpler way, we may also compute only one sample for each intersection, the point
can be an approximation of its geometric center.

Example 4.4.2. We consider a simple hybrid automaton which consists of three variables,
two modes and one jump. The continuous dynamics in the first mode `1 is given by

ẋ = −9 · (x− 2)− 7 · (y + 2) + (z − 1) + 0.2 · (x− 2) · (y + 2)
+0.1 · (y + 2) · (z − 1) + 0.1 · (x− 2) · (z − 1) + 0.5 · (z − 1)2

ẏ = 6 · (x− 2) + 4 · (y + 2) + (z − 1)
ż = 3 · (x− 2) + 2 · (y + 2)− 2.5 · (z − 1)

and the one in the second mode `2 is
ẋ = 2.2x+ 3.6y + 3.9z
ẏ = 3x+ 2.4y + 3.4z − 0.01x2

ż = −5x− 5.4y − 6.7z

The only jump leads the system to transit from `1 to `2. The jump guard is defined by the
box

G = {(x, y, z) | x ∈ [1.7, 2.3] ∧ y ∈ [−2.3,−1.7] ∧ z ∈ [0.7, 1.3]}

4.4. INTERSECTION AGGREGATION 117

(a) Projection in the x-y plane (b) Projection in the y-z plane

Figure 4.11: Rectangular aggregation for the flowpipe/guard intersections

and the reset mapping is identity. We consider the initial set 〈`1, X0〉 wherein

X0 = {(x, y, z) | x ∈ [3, 3.2] ∧ y ∈ [−3,−2.8] ∧ z ∈ [1.3, 1.5]}

and the time horizon [0, 1]. We over-approximate the flowpipe/guard intersections by
boxes, and by selecting the points according to the sampling directions

(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0, 0), (0,−1, 0), (0, 0,−1)

we obtain the following orientation.

~l1 = (−0.688973, 0.712329,−0.133803)
~l2 = (−0.259278,−0.414624,−0.872274)
~l3 = (0.676824, 0.566281,−0.470356)

The total time cost is nearly 7 seconds. Figure 4.11 shows the rectangular aggregation.

Unfortunately, the time cost of the PCA method can hardly be reduced. Firstly,
the number of the samples should be enough to reflect the distribution of the points
in the intersections. Secondly, we need to compute the SVD of an n × n matrix. On
the other hand, an ill-oriented rectangular aggregation could also be generated by PCA
when the intersections do not show a clear orientation. For example, the flowpipe/guard
intersections in the above example have an apparent orientation in the subspace of x-y
but not in the subspaces of y-z and x-z, then the aggregation is too conservative in some
directions.

Translate a H-represented hyper-rectangle into a TM. When a rectangular ag-
gregation is computed, we show that its equivalent translation to an order 1 TM is not
hard. Given a hyper-rectangle in Rn,

Ω : (~l T1 , . . . ,~l Tn ,−~l T1 , . . . ,−~l Tn) · ~x ≤ (a1, . . . , an, b1, . . . , bn)

wherein ~l1, . . . ,~ln are orthogonal to each other. We want to compute a TM (p(~σ), [0, 0]n)
wherein ~σ ∈ [−1, 1]n and its range is Ω. The reason to use such a TM form is that every

118 CHAPTER 4. TAYLOR MODEL FLOWPIPES FOR HYBRID SYSTEMS

TM over an interval domain can be equivalently transformed to it by a change of basis.
Firstly, we assume that Ω is full-dimensional. The translation is no more than computing
a G-representation for Ω, i.e., finding the point ~c as well as n orthogonal vectors ~g1, . . . , ~gn
such that

Ω = {~c+
n∑
i=1

σi · ~gi | ~σ ∈ [−1, 1]n}

The above representation may be reformulated as

Ω = {~c+Mg · ~σ | ~σ ∈ [−1, 1]n}

wherein Mg = (~g T
1 , . . . , ~g T

n)T .
The point ~c is the geometric center of Ω and it can be obtained by solving the following

system of linear equations 
~l T1 · ~x = a1−b1

2
~l T2 · ~x = a2−b2

2
· · ·

~l Tn · ~x = an−bn
2

Then a H-representation of the recentered hyper-rectangle Ω′ = {Mg · ~σ | ~σ ∈ [−1, 1]n}
can be computed as

(~l T1 , . . . ,~l Tn ,−~l T1 , . . . ,−~l Tn) · ~x ≤ (λ1, . . . , λn, λ1, . . . , λn) (4.3)

wherein

(λ1, . . . , λn, λ1, . . . , λn) = (a1, . . . , an, b1, . . . , bn)− (~l T1 , . . . ,~l Tn ,−~l T1 , . . . ,−~l Tn) · ~c

If we reformulate the H-representation (4.3) by

(λ−1
1 ·~l T1 , . . . , λ−1

n ·~l Tn ,−λ−1
1 ·~l T1 , . . . ,−λ−1

n ·~l Tn) · ~x ≤ (1, . . . , 1)

the matrix (λ−1
1 ·~l T1 , . . . , λ−1

n ·~l Tn) defines a linear mapping from Ω′ to [−1, 1]n, i.e.,

(λ−1
1 ·~l T1 , . . . , λ−1

n ·~l Tn) · Ω′ = [−1, 1]n

Henceforth, the matrix Mg can be derived as the inverse of (λ−1
1 ·~l T1 , . . . , λ−1

n ·~l Tn).
When Ω is not full-dimensional, there will be k different indices 1 ≤ i1, . . . , ik ≤ n

such that λi1 = · · · = λik = 0. Then we only need n − k generators to represent Ω and
they are given by the columns of Mg with the indices not in {i1, . . . , ik}. We may still
use the above method to compute the center ~c as well as the matrix Mg except that the
values of λ−1

i1
, . . . , λ−1

ik
are set by 1 during the computation.

The translation method can be extended to deal with parallelotopes. In that case, the
vectors ~l1, . . . ,~ln are not necessarily orthogonal but should be linearly independent.

Example 4.4.3. Given a parallelotope

P :



1 2 0
0 1 1
2 1 1
−1 −2 0
0 −1 −1
−2 −1 −1

 ·
 x

y
z

 ≤



5
8
6
−3
−7
−2



4.4. INTERSECTION AGGREGATION 119

The center can be computed as ~c = (−1.75, 2.875, 4.625). Then we obtain the values
λ1 = 1, λ2 = 0.5,λ3 = 2, and the matrix Mg is

Mg =

 0 −0.25 1
0.5 0.125 −0.5
−0.5 0.375 0.5


Therefore, the TM representation for P is obtained as −0.25σ2 + σ3

0.5σ1 + 0.125σ2 − 0.5σ3

−0.5σ1 + 0.375σ2 + 0.5σ3

 ,

 [0, 0]
[0, 0]
[0, 0]

 wherein σ1, σ2, σ3 ∈ [−1, 1]

On the other hand, for a parallelotope which is not full-dimensional,

Q :



1 2 0
0 1 1
2 1 1
−1 −2 0
0 −1 −1
−2 −1 −1

 ·
 x

y
z

 ≤



5
8
6
−5
−7
−2


we may just take λ−1

1 = 1 and obtain the same matrix Mg as the above one, nevertheless
the first column of it will not be taken into account. Therefore the resulting TM is −0.25σ2 + σ3

0.125σ2 − 0.5σ3

0.375σ2 + 0.5σ3

 ,

 [0, 0]
[0, 0]
[0, 0]

 wherein σ2, σ3 ∈ [−1, 1]

In other words, the variable σ1 is a dummy variable.

4.4.2 Aggregation by a parallelotope

As we pointed out previously, PCA might not work well when the intersections do not
show a clear orientation. In that case, we consider to compute a general parallelotopic
aggregation by determining the template based on a set of critical directions. The reason
to take parallelotopes is twofold. Firstly, their translations to order 1 TMs are relatively
easy. Secondly, we only need to solve 2n optimization problems to compute the H-
representation of a parallelotope.

In most safety verification tasks, we want the overestimation limited along some
nonzero vectors. That is, we do not want the overestimation to grow towards the un-
safe set. We call those vectors critical directions. For example, the boxes in Figure 4.12
are the set of intersection over-approximations to aggregate, and we want to limit the
resulting overestimation in the direction given by the vector ~l. An effective way to do
so is taking ~l as well as −~l in the template of the aggregation parallelotope. Since the
lengths of critical directions are not concerned, we just assume that all critical directions
are given by normalized vectors.

120 CHAPTER 4. TAYLOR MODEL FLOWPIPES FOR HYBRID SYSTEMS

~l

Figure 4.12: A critical direction for an intersection aggregation

How to choose the critical directions? The critical directions could be obtained
from several sources. For example, in order to make the aggregation set stay as much

as possible in the guard and the mode invariant, we may pick
~l

|~l|
as a critical direction

for each linear constraint ~l T · ~x ≤ b in the definition of them. The critical directions
related to an unsafe set can be selected in a similar way. Besides, we may also compute
some directions according to the invariant set of the next mode. Some ideas of over-
approximation refinement by using redundant constraints [ADMT10] could be adapted
to finding critical directions.

Template determination. We present our algorithm to determine a parallelotopic
template in the space Rn. We seek to select n linearly independent vectors from a provided
set L of critical directions. Assume that the intersection over-approximations form the
set S ⊆ Rn, the vectors are chosen based on the following criteria.

(a) The selected vectors should be as orthogonal as possible. More precisely, we want
to minimize the absolute value of the cosine of the angle between any two selected

vectors ~l,~l′, that is | cos(θ)| = | ~l T ·~l′
‖~l‖·‖~l′‖

|. The purpose of it is to prevent the resulting

parallelotope from having too sharp corners which often lead to large overestimation.
We illustrate two examples in Figure 4.13. We use θ1 and θ2 to denote the angles
between the selected vectors for P1 and P2 respectively, and have that | cos(θ1)| = 0

and | cos(θ2)| =
√

2
2 .

(b) For a selected vector ~l, we want to make the value |ρS(~l)+ρS(−~l)| as small as possible.
More intuitively, the value gives the width of S measured along the direction ~l or −~l.
The purpose of it is to wrap the set S in its thinnest orientation. As an example,

consider the set S shown in Figure 4.13, we will choose the vector (
√

2
2 ,
√

2
2) when the

candidates are given by (
√

2
2 ,
√

2
2),(

√
2

2 ,−
√

2
2),(1, 0) and (0, 1). Although such a width

can not be computed exactly in some situations, we may compute an approximation
of it.

Unfortunately, the conditions (a) and (b) can not be fulfilled at the same time in
general, our algorithm iteratively choose n vectors from the critical direction set. In the
i-th iteration, for 1 ≤ i ≤ n, assume that ~l1, . . . ,~li−1 are the already selected vectors, and
the remaining critical directions are given by the set L, we do the following steps.

4.4. INTERSECTION AGGREGATION 121

P1

(a) Selected vectors: (
√
2

2
,
√
2

2
), (
√

2
2
,−
√
2

2
)

P2

(b) Selected vectors: (1, 0), (
√
2

2
,
√
2

2
)

Figure 4.13: Parallelotopic aggregations computed based on different sets of vectors

1. For each vector ~v ∈ L, we compute the value

µ(~v) = (1− |~l T1 · ~v|) · (1− |~l T2 · ~v|) · · · · · (1− |~l Ti−1 · ~v|)
and then obtain the maximum value µmax = {µ(~v) |~v ∈ L}. We collect the vectors
~v ∈ L such that µ(~v) = µmax by the set Lc. Note that the value of µ(~v) reflects the
orthogonality of the vectors ~l1, . . . ,~li−1 and ~v. If all of them are orthogonal to each
other, then we have that µ(~v) = 1. When any two vectors of them as well as their
inverses form a sharp angle, then the value of µ(~v) will not be high.

2. The i-th vector ~li is selected as the one ~v ∈ Lc such that |ρS(~v)+ρS(−~v)| is minimum
among all vectors in Lc.

The above iterations can be carried out very efficiently. We may compute all of the
dot products of two critical directions in advance, and keep them in a hash table. We may
also associate priorities with the critical directions. For example, assume that the linear
constraints ~l T1 ·~x ≤ b1, . . . , ~l Tm ·~x ≤ bm are defining the guard or the mode invariant. For

two critical directions ~li,~lj ∈ {~l1, . . . ,~lm}, we consider the priority of ~li higher than that

of ~lj if the boundary ~l Ti · ~x = bi intersects the TM flowpipes but ~l Tj · ~x = bj does not.
Such priorities may also be specified by users.

Example 4.4.4. We consider the set of flowpipe/guard intersections in Example 4.4.2.
This time we try to compute a parallelotopic aggregation based on the following critical
direction set.

{ (1, 0, 0), (0, 1, 0), (0, 0, 1), (

√
2

2
,

√
2

2
, 0), (

√
2

2
,−
√

2

2
, 0),

(0,

√
2

2
,

√
2

2
), (0,

√
2

2
,−
√

2

2
), (

√
2

2
, 0,

√
2

2
), (

√
2

2
, 0,−

√
2

2
) }

The selected vectors are (in the order of their selection) (
√

2
2 ,
√

2
2 , 0), (0, 0, 1) and (

√
2

2 ,−
√

2
2 , 0).

A visualization of the aggregation set as well as the intersection over-approximations is
given by Figure 4.14. The total time cost is less than 1 second.

122 CHAPTER 4. TAYLOR MODEL FLOWPIPES FOR HYBRID SYSTEMS

(a) Projection in the x-y plane (b) Projection in the y-z plane

Figure 4.14: Parallelotopic aggregation computed by selecting critical directions

Hence, a simple way to improve the overall accuracy could be providing sufficiently
many critical directions. Besides the definition of guards, invariants and unsafe sets, those
vectors may also be derived from the study of the flow direction in the current mode.

4.4.3 More representations for aggregation

Since an n-dimensional parallelotope only has 2n facets, it can only tightly enclose
the over-approximated set in at most 2n directions. A better choice could be general
zonotopes, since we are able to specify more generators. We may use the method described
in Section 4.3.2.

Another feasible way to improve the accuracy could be using polytopes. Although
we are not able to exactly represent a polytope by a TM over an interval domain, it can
be viewed as an intersection of finitely many parallelotopes. Then we may keep the TM
translations of those parallelotopes as a tuple, and apply flowpipe construction to each
component individually. Such a flowpipe over-approximation intersects a set when every
component has a non-empty intersection with the set. Although the method requires
to keep a list of TMs for a flowpipe, the number of them is bounded by the number of
halfspaces defining the polytope.

Besides, it is also possible to consider more general aggregation sets, for example,
TMs. In order to achieve an acceptable efficiency, we need to provide a template for
the TM aggregation. For example, we may bound the order of the TM by some integer
k > 0, specify the remainder as [0, 0]n and the domain as the unit box [−1, 1]d for some
n, d > 0. Then there could be n ·

(
d+k
k

)
coefficients which may be expressed in terms of a

set of unknown parameters λ1, . . . , λq such that q could be much smaller than the number
of the coefficients. Hence, we may formulate the TM aggregation problem as finding
λ1 ∈ I1, . . . , λq ∈ Iq with user-specified sets I1, . . . , Iq ⊆ R, such that the intersection
over-approximations are contained in the range of the TM (p(~x0, λ1, . . . , λq), [0, 0]n) with
~x0 ∈ [−1, 1]d.

4.5. APPLICATIONS 123

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0 1 2 3 4 5

v

x

Figure 4.15: Flowpipe over-approximations of the bouncing ball with air friction

4.5 Applications

In this section, we apply our techniques for computing TM flowpipes to several hybrid
system case studies. We start with some simple examples.

4.5.1 Simple examples

Bouncing ball with air friction. We revisit the model of a bouncing ball with air
friction which is shown in Example 4.1.2. We compute the TM flowpipes for the model
within the maximum jump depth 10, and the octagon enclosures of the TM flowpipes are
given in Figure 4.15.

2-dimensional stable system. We consider an artificial system which is described by
the hybrid automaton shown in Figure 4.16. The continuous dynamics in the location `1 is
unstable, but whole system is stable. We want to study the behavior of the system in the
time horizon [0, 20] from the initial set 〈`1, X0〉 wherein X0 = {(x, y) |x ∈ [0.9, 1.1] ∧ y ∈
[−1.1,−0.9]}. After performing the flowpipe construction, we obtain the TM flowpipes
shown in Figure 4.17.

3-dimensional stable system. We revisit the hybrid automaton given in Example 4.4.2.
This time we perform the TM flowpipe construction from a larger initial set 〈`1, X ′0〉
wherein

X ′0 = {(x, y, z) | x ∈ [3, 3.5] ∧ y ∈ [−3,−2.5] ∧ z ∈ [1, 1.5]}

for the time horizon [0, 10]. The resulting TM flowpipes are presented in Figure 4.18.

124 CHAPTER 4. TAYLOR MODEL FLOWPIPES FOR HYBRID SYSTEMS

`1

ẋ = −y
ẏ = x2

x − y ≥ −3

`2

ẋ = −y
ẏ = x3

−2 ≤ y ≤ 3

y = −2

x− y = −3

x ∈ [0.9, 1.1]

y ∈ [−1.1,−0.9]

Figure 4.16: Hybrid automaton of the 2-dimensional stable system

Figure 4.17: Flowpipe over-approximations of the 2-dimensional stable system

Non-holonomic integrator. We consider a simplified version of the hybrid control
for Brockett’s non-holonomic integrator [HM99, Lib03, GHT+04]. It is a 3-dimensional
system whose dynamics is given by

ẋ = u
ẏ = v
ż = x · v − y · u

wherein u, v are the control inputs

u =

{
1, x2 + y2 ≤ |z|
−x+ 2·y·z

x2+y2
, x2 + y2 > |z| v =

{
1, x2 + y2 ≤ |z|
−y + 2·x·z

x2+y2
, x2 + y2 > |z|

which are designed to asymptotically stabilize the system. We start with the initial
condition x = 0, y = 0 and z ∈ [14.9, 15.1], and perform the flowpipe construction for the
time horizon [0, 7.5]. The TM flowpipes are illustrated in Figure 4.19, where we can see
that they are converging to the origin.

4.5. APPLICATIONS 125

(a) Projection in the x-y plane (b) Projection in the y-z plane

Figure 4.18: Flowpipe over-approximations of the 3-dimensional stable system

(a) Projection in the x-y plane (b) Projection in the x-z plane

Figure 4.19: Flowpipe over-approximations of the non-holonomic integrator

4.5.2 Spiking neurons

We apply our reachability analysis techniques to two models of spiking neurons which
are adapted from the ones presented in [Izh10].

The general dynamics of spiking neurons is defined by{
C · v̇ = k · (v − vr) · (v − vt)− u+ I

u̇ = a · (b · (v − vr)− u)
(4.4)

wherein the constant parameters are given by C = 100, vr = −60, vt = −40, I = 70,
a = 0.03 and b = −2 for the first model. The value of k is 0.7 when v ≤ vt, otherwise
it is 7. Whenever the value of v reaches 35, its value is reset to −50 and meanwhile u is
updated to u + 100. Such a model can be formalized by a hybrid automaton consists of
2 modes and 2 variables.

We consider the initial condition v(0) ∈ [−61,−59], u(0) ∈ [−1, 1], and apply the TM
flowpipe construction for the time horizon [0, 1000]. The result is presented in Figure 4.20.

As another model, we take the constants C = 100, k = 1, vr = −56, vt = −42, I = 300,
a = 0.03 and b = 8. The values of v, u are reset to −53 + 0.04 · u and u+ 20 respectively
when v ≥ 40 − 0.1 · u. This time we take the initial condition v(0) ∈ [−50.5,−49.5],

126 CHAPTER 4. TAYLOR MODEL FLOWPIPES FOR HYBRID SYSTEMS

(a) Projection in the v-u plane (b) Projection in the t-v plane

Figure 4.20: Flowpipe over-approximations of the first spiking neuron model

(a) Projection in the v-u plane (b) Projection in the t-v plane

Figure 4.21: Flowpipe over-approximations of the second spiking neuron model

u(0) ∈ [−0.5, 0.5], and perform the TM flowpipe construction for the time horizon [0, 200].
The result is given in Figure 4.21.

4.5.3 Inverted pendulum

Stabilizing an inverted pendulum on a cart is a popular case study in controller syn-
thesis [ÅF00]. Here we try to over-approximate the behavior of the model under one
control strategy. As it is shown in Figure 4.22, the control input F is designed to regulate
the pendulum to the upright position, i.e., θ = 0 as well as θ̇ = 0. The motion of the
model can be described by

J · θ̈ = m · l · g · sin(θ) − m · l · cos(θ) · F

wherein J is the moment of inertia with respect to the pivot point, m is the mass of the
pendulum, l is the length of the rod, and g is the gravitational acceleration. For simplicity,

4.5. APPLICATIONS 127

θ

F

Figure 4.22: Inverted pendulum on a cart

(a) Projection in the θ-t plane (b) Projection in the θ-ω plane

Figure 4.23: Flowpipe over-approximations of the inverted pendulum model

we set J = 1, m = 1
g , l = 1, and denote F

g by u. Then the following ODE is obtained

{
θ̇ = ω
ω̇ = sin(θ)− cos(θ) · u

To stabilize the pendulum in the upright position, we apply the following switching strat-
egy to u,

u =


2·ω+θ+sin(θ)

cos(θ) , E ∈ [−1, 1], |ω|+ |θ| ≤ 1.85

0, E ∈ [−1, 1], |ω|+ |θ| > 1.85
ω

1+|ω| · cos(θ), E < −1
−ω

1+|ω| · cos(θ), E > 1

which is designed to stabilize the pendulum energy E = 1
2 ·ω+ (cos(θ)− 1) at zero. Then

the motion of the controlled pendulum can then be described by a hybrid automaton.
We set the initial condition as θ ∈ [1.98, 2.02], ω ∈ [0.48, 0.52] and perform the TM
flowpipe construction for the time horizon [0, 15]. The computed TM flowpipes are given
in Figure 4.23.

128 CHAPTER 4. TAYLOR MODEL FLOWPIPES FOR HYBRID SYSTEMS

α1 α2

`1 `2

D

`3

Figure 4.24: Hybrid automaton of the collision avoidance maneuver

4.5.4 Aircraft collision avoidance maneuver

We consider a collision avoidance maneuver of two aircraft at a fixed altitude, which
is given in [MT00]. In the beginning, both of the aircraft are in straight flight with a
relative heading. When they come too close, i.e., the distance of them is blow a specified
value, the controller will make an instantaneous heading change of 90◦ on both of them,
and then the two aircraft will complete a π-time semicircular arc flying. Afterwards, both
aircraft make another 90◦ instantaneous heading change and resume their headings in
the very beginning. Such a system can be modeled by a hybrid automaton consists of 3
modes, as it is given in Figure 4.24. The continuous variables are listed as below.

x1, y1 : the coordinates of the first aircraft
α1 : the heading angle of the first aircraft
x2, y2 : the coordinates of the second aircraft
α2 : the heading angle of the second aircraft
z : timer for the semicircular arc flying

The continuous dynamics of the hybrid automaton is defined by

ẋ1 = v1 · cos(α1), ẏ1 = v1 · sin(α1), ẋ2 = v2 · cos(α2), ẏ2 = v2 · sin(α2),

α̇1 =

{
1, in `2
0, otherwise

, α̇2 =

{
1, in `2
0, otherwise

, ż =

{
1, in `2
0, otherwise

The angles α1, α2 as well as the timer z only change in `2. The jump from `1 to `2 is
executed when the distance between the aircraft is below D2. It gives that the invariant
of `1 is defined by the constraint (x1 − x2)2 + (y1 − y2)2 ≥ D2, and the jump guard is
defined by (x1 − x2)2 + (y1 − y2)2 = D2. When the semicircular arc flying is complete,
i.e., z = π, the jump from `2 to `3 is executed and the heading angles are updated by

α′1 := α1 −
π

2
, α′2 := α2 −

π

2

We set the constant parameters as v1 = 1, v2 = 1, D = 2, and consider the initial
condition

x1 ∈ [−0.1, 0.1], y1 ∈ [−0.1, 0.1], x2 ∈ [9.9, 10.1], y2 ∈ [−0.1, 0.1],
α1 = 1

4π, α2 = 3
4π, z = 0

4.5. APPLICATIONS 129

(a) Projection in the x1-y1 plane (b) Projection in the x2-y2 plane

Figure 4.25: Flowpipe over-approximations of the collision avoidance maneuver

The flowpipe construction result over the time interval [0, 15] is presented in Figure 4.25.

4.5.5 Glycemic Control in Diabetic Patients

We study the “minimal model” defined in [BIBC79, BPC81, BFA85] for the dynamics
of glucose and insulin interaction in the blood system. It is described by the following
ODE. 

Ġ = −p1 ·G−X · (G+GB) + P

Ẋ = −p2 ·X + p3 · I
İ = −n · (I + IB) + u

VI

wherein p1, p2, p3 are constant parameters whose typical values are p1 = 0 min−1, p2 =
0.025 min−1 and p3 = 0.013 min−2 U−1 L. The values of GB and IB are the basal
values of plasma glucose concentration and free plasma insulin concentration respectively,
and they are given by GB = 4.5 mmol L−1, IB = 0.015 U L−1. The constant VI is
the insulin distribution volume, and the value of n denotes the fractional disappearance
rate of insulin. We take their values as VI = 12 L and n = 5

54 min−1. The remaining
parameters are variables, their meanings are given as below.

G : the difference of plasma glucose concentration
I : the free plasma insulin concentration
X : the insulin concentration in an interstitial chamber
P : the rate of infusion of exogeneous glucose
u : the rate of infusion of exogeneous insulin

We use the definition P = 0.5 · exp(−0.05 · t) given in [Fis91] for the rate of insulin
infusion, and consider three different strategies for the insulin delivery rate u.

Strategy I is the glucose control described in [CKBC84]. The rate u is 0.5 U h−1 when
G < 4 mmol L−1, and it is 2.5 U h−1 when G > 8 mmol L−1. If G is between 4 and 8
mmol L−1, we use u = (0.5 ·G− 1.5) U h−1.

Strategy II is taken from [FKSC85], it is similar to the first strategy but considers the
glucose rates 2 and 12 mmol L−1. That is, we set u = 0.5 U h−1 when G < 2 mmol L−1,

130 CHAPTER 4. TAYLOR MODEL FLOWPIPES FOR HYBRID SYSTEMS

(a) Strategy I (b) Strategy II

(c) Strategy III

Figure 4.26: Flowpipe over-approximations of the glycemic control model

and u = 2.5 U h−1 when G > 12 mmol L−1. For that G is between 2 and 12 mmol L−1,
u is defined by (0.2 ·G+ 0.1) U h−1.

In order to better stabilize the glucose level, a better designed control strategy is
presented in [FKSC85]. We call it Strategy III. The controller reads the value of G in the
beginning of every 3 hours and do the following job. If G ≥ 6 mmol L−1, then we use the
input rate u = G · (0.41− 0.0094 ·G) U min−1. Otherwise u is set to be the linear form
0.007533 · (1 + 0.22 ·G) U min−1.

The initial condition under our consideration is given by

G(0) ∈ [13, 14], X(0) = 0, I(0) = 0.5

Figure 4.26 illustrate the TM flowpipes computed in the time horizon [0, 720] for the
model with the three control strategies respectively.

4.5.6 Non-linear transmission line circuits

We study a non-linear resistor circuit which is presented in Figure 4.27. It is origi-
nally considered by Chen et al. [CW00], and then adapted to be interesting hybrid case
studies [RW03, Gu11]. The circuit is composed of (n + 1) non-linear resistors and the
same number of capacitors. Each non-linear resistor consists of a diode and a unit resistor
(r = 1). For simplicity, we assume that all capacitors have unit capacitance C = 1. For

4.6. SUMMARY 131

i(t)

r r r

+ −
v1

+ −
v2

+ −
vn

r C C C C

· · ·

· · ·

Figure 4.27: Transmission line circuit

each diode, the I-V characteristic is given by I = exp(α · V)− 1. The current source i(t)
in the figure is the input, and v1 is the single output of the circuit. Therefore, the whole
circuit system can be described by the following ODE.

v̇1 = −2 · v1 + v2 + 2− exp(α · v1)− exp(α · (v1 − v2)) + i(t)
v̇2 = −2 · v2 + v1 + v3 + exp(α · (v1 − v2))− exp(α · (v2 − v3))

· · ·
v̇n−1 = −2 · vn−1 + vn−2 + vn + exp(α · (vn−2 − vn−1))− exp(α · (vn−1 − vn))
v̇n = −vn + vn−1 − 1 + exp(α · (vn−1 − vn))

In order to reduce the stiffness of the dynamics, we reduce the value of α from 40
to 5. Scalable continuous and hybrid benchmarks can be built based on various types
of inputs. Here, we consider a discontinuous input i(t) which is adapted from the one
presented in [RW03].

i(t) =


2, t ≤ 1
3− t, 1 < t ≤ 2
1, t > 2

Then the whole system can be modeled by a hybrid automaton consists of 3 modes and
n variables. We consider the initial value of vi ranging in [0, 0.02] for all 1 ≤ i ≤ n.
Figure 4.28 shows the flowpipe over-approximations computed by our techniques over the
time horizon [0, 3] for n = 6.

4.6 Summary

We introduce the use of TM flowpipes to over-approximate the reachable set for a non-
linear hybrid automaton. Similar work can be found in [RN11] which uses Interval Taylor
Series (ITS). By using TMs, we are able to avoid splitting any set in reachability analysis,
and therefore can deal with some case studies with more than 5 variables. Although
it requires to compute multivariate polynomials, under the help of proper simplification
methods, our method can still efficiently produce an accurate result in most cases.

The applicability of a representation class could be investigated based on a large
number of examples which should cover most well-known difficulties in hybrid system

132 CHAPTER 4. TAYLOR MODEL FLOWPIPES FOR HYBRID SYSTEMS

Figure 4.28: Flowpipe over-approximations of the line circuit model with n = 6

reachability analysis. For example, large initial sets, high nondeterminism on jumps and
so on. Since hybrid systems do not have standard benchmarks, it is also significant to
propose new case studies which are adapted from industrial applications. In this chapter,
we present a considerable number of examples which are taken from biology, medicine,
mechanics and electricity. It can be seen that our TM flowpipe construction method has
good performance over all of them. Further investigations on the applicability of TM
flowpipes will be given in the next chapter.

Chapter 5

The Tool Flow*

It is important to make the Taylor model (TM) techniques presented in the thesis ac-
cessible to other people. To do so, we implement most of the introduced techniques and
heuristics in a tool named Flow*. As we found few tools which can effectively deal with
non-linear hybrid systems from different areas, it is also urgent for us to release the tool.

This chapter devotes a detailed description of the tool Flow* which is a reacha-
bility analyzer for non-linear hybrid systems. It is implemented in C++ based on some
open source libraries such as the GNU MPFR Library and the GNU Scientific Library
(GSL). Besides the techniques introduced previously, we also implement some algorithms
to improve the efficiency of TM computation. The performance of Flow* is shown
via comparisons with VNODE-LP, dReach and SpaceEx. Moreover, we also provide a
scalability evaluation based on the non-linear transmission line circuit benchmark.

5.1 Overview

Figure 5.1 provides a bird’s view of the modules in Flow* which consists of two main
parts:

• TM related modules - the basic computational libraries of Flow*. It includes a
library of interval arithmetic, a library of TM arithmetic, and a library for computing
intersections of TMs with other sets which are defined by systems of polynomial
constraints.

• Reachability related modules - the high-level algorithms for computing flowpipe over-
approximations under continuous dynamics. It also includes a parser for continuous
and hybrid reachability problems as well as a parser for TM flowpipes.

The main functionality of the tool is to solve a hybrid reachability problem. However,
it may also be used as a validated ODE solver, or to conservatively check the safety of
given TMs. As a reachability problem solver, the tool accepts a file in which the following
content should be specified.

• A hybrid automaton which is described by the language introduced in Section 5.3.

• An initial set which can be an interval or a TM in a mode of the hybrid automaton.

133

134 CHAPTER 5. THE TOOL FLOW*

Model file

Model parser

TM integrator

Poly ODE 1 Poly ODE 2

Poly ODE 3 Nonpoly ODE

Basic libraries

TM arithmetic

Interval

arithmetic

Image Computation

Domain

contraction

Range over-

approximationTM analyzer

Plot file TM fileResult

TM file

TM parser

Figure 5.1: Structure of Flow* v1.2.1

• An unsafe set which is defined by a system of polynomial constraints. If no unsafe
set is given, the tool will not do a safety checking after the computation of TM
flowpipes.

• A reachability setting which includes the time step-sizes, TM orders, remainder
estimation, cutoff threshold, floating-point precision and etc.. They will be applied
to the consequent reachability computation. The details will be addressed in the
following sections.

After parsing the model file, the tool calls Algorithm 12, in the main loop of which the
flowpipes in a location is generated by a TM integrator. As we stated in Section 3.3,
a preconditioned Taylor expansion for a polynomial ODE can be generated by different
schemes which are suitable to different situations. Here, Flow* provides three options,
i.e., Poly ODE 1-3 which are implemented according to Approach I-III respectively pre-
sented in Section 3.3. Non-polynomial ODEs are treated separately. In each time step, we
first compute a TM for the vector field, and then compute a preconditioned Taylor expan-
sion by Approach III. After the reachability computation is accomplished, the following
results will be returned by Flow*.

• A TM file. All computed TM flowpipes along with the state space specification as
well as the plot setting will be stored in an output file. Such a file could be used
by other tools for further analyzing the TMs. Flow* can also be used to work on
those TMs again while the unsafe set or plot setting is changed.

• Result of safety checking. If an unsafe set is specified in the model file, the tool will
conservatively check the safety of the computed TM flowpipes. If no TM “intersects”
the unsafe set, the tool returns SAFE, otherwise the result is UNKNOWN.

5.2. BASIC COMPUTATIONAL LIBRARIES 135

• A plot file. Flow* supports computing an interval or octagon enclosure for a 2-
dimensional projection of a TM flowpipe. The plot setting can be specified in the
model file such. The tool will produce a Gnuplot or Matlab file for generating
the figure.

To let Flow* work on a model file problem.model, one may simply execute
$./flowstar < problem.model

After the tool terminates, a plot file as well as a TM file are generated and placed in
the subdirectory named outputs. If the plot file is for Gnuplot, then it ends with .plt,
otherwise it is an m-file and is for Matlab. If the tool is not able to complete the
computation, it will still output the TMs which has already been computed. Such a
failure is often caused by that the tool can not find a safe remainder in an integration
task.

5.2 Basic computational libraries

In Flow*, the library of interval arithmetic is implemented based on the GNU MPFR
Library. The upper and lower bound of an interval is in type mpfr t, and the precision
can be specified by users. To take all round-off errors into account, we sometimes have
to do one real operation for two times with different rounding modes. For example, in
handling the interval multiplication

[a, b] · [c, d] = [min{a · c, a · d, b · c, b · d} , max{a · c, a · d, b · c, b · d}]

we should round the results of all real multiplications for the low bound towards −∞, and
round those for the upper bound towards +∞. In order to ensure the conservativeness
of the results, we always treat real numbers as intervals. Then a polynomial in Flow* is
always with interval coefficients.

A TM then is represented by a polynomial along with an interval. The TM arithmetic
is no more than a combination of polynomial and interval arithmetic. As we introduced
previously, the representation of a TM can be simplified by moving the “small” terms in
the polynomial part into the remainder interval. Flow* accepts a user-specified value
ε ≥ 0 which is called a cutoff threshold such that for each TM multiplication result, a
polynomial term contained in [−ε, ε] is removed and an interval enclosure of it is added
to the remainder. Besides, to measure and control the overestimation, we also regularly
narrow the coefficients in a TM to degenerate intervals.

We consider two methods to compute an interval enclosure for a polynomial p over an
interval domain D. In the first method, we compute a Horner form h of p by Algorithm 7
with the variables’ declaration order, and then evaluate h by interval arithmetic. However,
we should not do such operation too often, since the Horner form transformation usually
takes quite a while when the variables are not few. As the second method, we may
equivalently transform the polynomial p into q whose domain is a unit box [−1, 1]n for
some positive integer n. Then the range of a monomial in q is [−1, 1] if a variable in it has
an odd degree, or [0, 1] when any variable in it has an even degree. Then, to compute an
interval for q, we may just scan the degrees of the variables, compute interval enclosures
for the terms, and then sum up the results. Table 5.1 shows that the second method has

136 CHAPTER 5. THE TOOL FLOW*

Benchmark Var Initial set T δ k ε t1 (s) W1 t2 (s) W2

jet engine 2
x ∈ [0.9, 1.1]
y ∈ [0.9, 1.1]

10 0.02 4 10−12 11.5 0.0364 7.1 0.0340

Brusselator 2
x ∈ [0.8, 1]
y ∈ [0, 0.2]

10 0.02 4 10−12 13.1 0.0249 8.9 0.0247

Van der Pol 2
x ∈ [1.25, 1.55]
y ∈ [2.25, 2.35]

7 0.02 5 10−12 14.1 0.6308 8.7 0.6120

Lorentz 3
x ∈ [14.99, 15.01]
y ∈ [14.99, 15.01]
z ∈ [35.99, 36.01]

2 0.01 5 10−12 29.5 0.3822 19.8 0.3751

Rössler 3
x ∈ [−0.2, 0.2]
y ∈ [−8.6,−8.2]
z ∈ [−0.2, 0.2]

6 0.02 5 10−12 19.5 1.8781 12.4 1.8713

coupled
Van der Pol

4

x1 ∈ [0.9, 1.1]
y1 ∈ [0.9, 1.1]
x2 ∈ [0.9, 1.1]
y2 ∈ [0.9, 1.1]

5 0.02 5 10−10 266 0.6135 178 0.5776

Lotka-Volterra 5
xi ∈ [0.9, 1],

1 ≤ i ≤ 5
5 0.02 4 10−10 349 0.07506 246 0.07502

biological
model I

7
xi ∈ [0.99, 1.01],

1 ≤ i ≤ 7
2 0.01 4 10−9 110 0.1077 72 0.1070

biological
model II

9
xi ∈ [0.99, 1.01],

1 ≤ i ≤ 9
2 0.01 4 10−9 305 2.0188 223 1.9416

Table 5.1: Comparison of the two interval evaluation methods. Legends: Var: number
of variables, T : [0, T] is the time horizon, δ: time step-size, k: TM order, ε: cutoff
threshold, t1: time cost of using the first method, W1: width of the interval enclosure
computed using the first method for the solution at T , t2: time cost of using the second
method, W2: width of the interval enclosure computed using the second method for the
solution at T .

a better performance than the first one in TM integration. The benchmarks which are
not introduced before are given as follows.

Example 5.2.1 (Van der Pol oscillator). A model of the Van der Pol oscillator is given
by the following ODE. {

ẋ = y
ẏ = y − x− x2y

The same model is also studied elsewhere [ASB08, Alt10].

Example 5.2.2 (Coupled Van der Pol oscillator). Two Van der Pol oscillators of the
type introduced above can be coupled directly [RH80]. The composed model is described by
the following 4-dimensional ODE.

ẋ1 = y1

ẏ1 = (1− x2
1) · y1 − x1 + (x2 − x1)

ẋ2 = y2

ẏ2 = (1− x2
2) · y2 − x2 + (x1 − x2)

Example 5.2.3 (Lotka-Volterra model of 5 variables). The 5-dimensional Lotka-Volterra
model is an adaptation of the system presented in [WVS06].

ẋ1 = x1 · (1− (x1 + 0.85x2 + 0.5x5))
ẋ2 = x2 · (1− (x2 + 0.85x3 + 0.5x1))
ẋ3 = x3 · (1− (x3 + 0.85x4 + 0.5x2))
ẋ4 = x4 · (1− (x4 + 0.85x5 + 0.5x3))
ẋ5 = x5 · (1− (x5 + 0.85x1 + 0.5x4))

5.3. INPUT LANGUAGE 137

Example 5.2.4 (Biological models). Many systems in biology can be characterized by
ODEs. We propose two high-dimensional models which are adapted from the biological
systems presented in [KHK+05]. The first one is of 7 variables and is denoted by biological
model I in Table 5.1. Its modeling ODE is given as below.



ẋ1 = −0.4x1 + 5x3x4

ẋ2 = 0.4x1 − x2

ẋ3 = x2− 5x3x4

ẋ4 = 5x5x6 − 5x3x4

ẋ5 = −5x5x6 + 5x3x4

ẋ6 = 0.5x7 − 5x5x6

ẋ7 = −0.5x7 + 5x5x6

The second one is even more complex. It consists of 9 variables. We denote it biological
model II, the ODE is given as follows.

ẋ1 = 3x3 − x1x6

ẋ2 = x4 − x2x6

ẋ3 = x1x6 − 3x3

ẋ4 = x2x6 − x4

ẋ5 = 3x3 + 5x1 − x5

ẋ6 = 5x5 + 3x3 + x4 − x6 · (x1 + x2 + 2x8 + 1)
ẋ7 = 5x4 + x2 − 0.5x7

ẋ8 = 5x7 − 2x6x8 + x9 − 0.2x8

ẋ9 = 2x6x8 − x9

It is not difficult to find the reason. In a TM integration task, if the initial set is
represented by a TM over a unit box domain, then all variables except the time variable
t in the computed TM flowpipes are ranging in [−1, 1]. Therefore, when we treat t as an
coefficient, there is no need to do the transformation in the second method.

5.3 Input language

To explicitly describe a reachability problem, the following content should be given.

5.3.1 Definition of the system

If the system is pure continuous, it is just defined by an ODE. In Flow*, an ODE
should be specified in the following form.

<integration_scheme >

{

<ODE >

}

138 CHAPTER 5. THE TOOL FLOW*

such that an n-dimensional ODE is given by n equations of the form x’ = ϕ wherein x

is a state variable, and ϕ is an expression defined by the following syntax

ϕ ::= ϕ + ϕ | ϕ - ϕ | ϕ * ϕ | -ϕ | (ϕ) | ϕ^n | x | r

| sin(ϕ) | cos(ϕ) | exp(ϕ) | ϕ / ϕ | sqrt(ϕ)

wherein n is a non-negative integer and r is a rational number. The integration scheme can
be any of the approaches for computing preconditioned Taylor expansions described before
as well as the one for non-polynomial ODEs. As an example, the following specification
tells the tool to integrate the ODE ẋ = 1 + x2 using the scheme Poly ODE 2.

poly ode 2

{

x’ = 1 + x^2

}

Besides, it is also possible to associate interval time-varying uncertainties with the vector
field. For example, x’ = 1 + x^2 + [0.001,0.1].

When the system is a hybrid automaton, the definition is of the following form,

modes

{

<mode(s)>

}

jumps

{

<jump(s)>

}

such that a mode is defined in the form of

<mode_name >

{

<integration_scheme >

{

<ODE > # continuous dynamics in the mode

}

inv # definition of the mode invariant

{

<polynomial_inequalities >

}

}

wherein a polynomial inequality should be over the state variables. The definition of a
jump should be given in the following form,

<start_mode_name > -> <end_mode_name >

guard # definition of the jump guard

{

<polynomial_inequalities >

}

reset # definition of the reset mapping

{

<expressions >

}

<aggregation_scheme >

5.3. INPUT LANGUAGE 139

wherein the reset mapping is polynomial but allowed to be associated with an interval
uncertainty. For example, x’ := 1 - x + [-0.05,0.002] defines that the value of x is
updated to the value of 1 - x + [-0.05,0.002] after the jump. If a variable is not reset
by the jump, we may just neglect it.

Flow* provides two options to aggregate a set of intersection over-approximations.
The option

interval aggregation

tells the tool to use an interval aggregation for the jump. It simply computes an interval
enclosure for all intersections. The second option is implemented based on the idea
described in Section 4.4.2, it is specified by the form

parallelotope aggregation { <critical_directions > }

wherein the the critical directions can be specified by users, and the tool will also consider
the vectors from the following set

Ldef =

{
(a1, . . . , an)

∣∣∣∣∣ ∃i.((1 ≤ i ≤ n) ∧ (ai = 1) ∧ ∀j.((j 6= i)→ (aj = 0)))∨
∃i.∃j.[(1 ≤ i < j ≤ n) ∧ (ai = 1) ∧ ((aj = 1) ∨ (aj = −1))
∧∀k.(((1 ≤ k ≤ n) ∧ (k 6= i) ∧ (k 6= j))→ (ak = 0)))]

}
wherein n is the number of the state variables.

5.3.2 Initial and unsafe set

An initial set can be given by an interval or a TM. If the system is hybrid, we also
need to specify an initial mode. For an interval initial set, we only need to specify the
interval range for each state variable. On the other hand, for a TM one, we should first
declare the variables in the polynomial part and they should be distinguished from the
state variables. Then we give the TM expression. An example is given as below,

tm var x0 ,x1,x2

x = 1 + x1^2 - x2 + [-0.02 ,0.01]

y = x0^3 - x1 + [0 ,0.1]

x0 in [-0.2 ,0.2]

x1 in [-0.2 ,0.2]

x2 in [-0.1 ,0.1]

wherein x, y are the state variables.
The unsafe set for a reachability problem is optional in Flow*. It can be defined by

a system of polynomial inequalities. If the system is hybrid, we may define such a set for
each mode.

5.3.3 Reachability setting

Figure 5.2 shows a typical reachability setting in Flow*. The detailed explanations
are given as below.

Time step-size. The time step-size is fixed at 0.02. For any positive numbers a, b with
a ≤ b, users may specify

140 CHAPTER 5. THE TOOL FLOW*

setting

{

fixed steps 0.02

time 10 # the time horizon is [0 ,10]

remainder estimation 1e-3

identity precondition

gnuplot octagon x,y # produce a gnuplot file

fixed orders 8

cutoff 1e-15 # the cutoff threshold

precision 53 # the precision used by MPFR library

output result # name of the output files

max jumps 10 # the bound on the jump depth

print on # print out the computation steps

}

Figure 5.2: Example of reachability setting

adaptive steps { min a , max b }

to use an adaptive step-size in [a, b].

Remainder estimation. The remainder estimation in each integration step and in each
dimension is [−0.001, 0.001]. Since a remainder estimation is not necessarily symmetric or
has the same single interval in each dimension, we may also provide an arbitrary interval,
for example,

remainder estimation { x:[0.1 ,0.101] , y:[-0.01 ,0.06] }

It tells the tool to use [0.1, 0.101] as the estimation in the dimension of x, and [−0.01, 0.06]
as the estimation in the dimension of y.

Preconditioning setting. We implemented two preconditioning techniques introduced
in [MB05]. They are QR preconditioning and identity preconditioning. In the example,
identity preconditioning will be used in the TM integration. To apply QR preconditioning,
one may use

QR precondition

Plot setting. To visualize a computed TM flowpipe, Flow* can generate interval
or octagon over-approximations for its 2-dimensional projections. In the example, the
projection is in the x-y plane, and the TM flowpipes will be wrapped by octagons. One
may replace gnuplot by matlab to obtain a Matlab file. To obtain a better visualization
of the TMs, Flow* may also produce a grid paving on them, for example,

gnuplot grid 10 x,y

tells the tool to produce a 10× 10 grid paving for each TM flowpipe projection.

TM order. The order of all TM flowpipes is 8 in the example. To perform an adaptive
order, for example, ranges from 5 to 10, one may specify

5.3. INPUT LANGUAGE 141

adaptive orders { min 5 , max 10 }

We may also let the tool adapt the orders in different dimensions independently, for
example,

adaptive orders { min { x:5 , y:5 } , max { x:10 , y:10 } }

5.3.4 Examples

We present example files for both continuous and hybrid reachability problems. Firstly,
we consider the lac operon model given in [KHK+05]. The behavior of the system is char-
acterized by the following ODE. İi = −2 · k3 · I2

i · k8·Ri·G
2+τ

k3·I2i +µ
+ 2 · k−3 · F1 +

(k5·Ie−(k9+k−5)·Ii)·k−2·χ·k4·η·(k3·I2i +µ)

k7·(k2·(k8·Ri·G2+τ)+k−2·(k3·I2i +µ))

Ġ = −2 · k8 ·Ri ·G2 + 2·k−8·(k8·Ri·G2+τ)
k3·I2i +µ

+
k9·Ii·k−2·χ·k4·η·(k3·I2i +µ)

k7·(k2·(k8·Ri·G2+τ)+k−2·(k3·I2i +µ))

wherein Ii is the internal inducer and G is the glucose concentration. The constants are
given as below.

k2 = 4 · 105, k−2 = 0.03, k3 = 0.2, k−3 = 60, k4 = 1,
k5 = 0.6, k−5 = 0.006, k6 = 3 · 10−6, k7 = 3 · 10−6, k8 = 0.03,
k−8 = 1 · 10−5, k9 = 5000, Ri = 0.01, χ = 0.002002, η = 0.005,
F1 = 0.0001, IE = 91100, τ = 0.008.

The reachability problem on the lac operon model w.r.t. the initial set Ii(0) ∈ [1, 2],
G(0) ∈ [25, 26] and the time horizon [0, 150] can be described by the input file below.
Since the ODE contains non-polynomial expressions, we apply the integration scheme
nonpoly ode. We allow the TM orders in different dimensions change independently.
Figure 5.3 shows the plot results of three different settings. They are computed based on
the same set of TM flowpipes.

continuous reachability

{

state var Ii , G

setting

{

fixed steps 0.2

time 150

remainder estimation 1e-4

QR precondition

gnuplot octagon Ii ,G

adaptive orders { min {Ii:4, G:4} , max {Ii:6, G:6} }

cutoff 1e-20

precision 53

output LacOperon

print on

}

nonpoly ode

{

142 CHAPTER 5. THE TOOL FLOW*

(a) interval (b) octagon

(c) grid 10

Figure 5.3: Flowpipe over-approximations of the lac operon model

Ii ’ = - 0.4 * Ii^2 * ((0.0003*G^2 + 0.008) /(0.2* Ii^2 + 2.00001))

+ 0.012 + (0.0000003*(54660 - 5000.006* Ii)

* (0.2*Ii^2 + 2.00001))/(0.00036*G^2 + 0.00960018

+ 0.000000018* Ii^2)

G’ = - 0.0006*G^2 + (0.000000006*G^2 + 0.00000016) /(0.2* Ii^2

+ 2.00001) + (0.0015015* Ii *(0.2* Ii^2 + 2.00001))

/ (0.00036*G^2 + 0.00960018 + 0.000000018* Ii^2)

}

init

{

Ii in [1,2]

G in [25 ,26]

}

}

Now we turn to the hybrid example defined in [Gu11]. Its dynamics is defined as
follows,


ẋ = −10 · x+ y + z + u
ẏ = x− y
ż = x− z − x2

5.3. INPUT LANGUAGE 143

wherein u is the input given as below.

u =


1, t < 5
5, 5 ≤ t < 10
2, 10 ≤ t < 15
4, 15 ≤ t ≤ 20

The initial condition under our consideration is

x(0) ∈ [−0.2, 0], y(0) ∈ [−0.2, 0], z(0) ∈ [−0.2, 0], t = 0

We show the modeling file of the reachability problem for the time horizon [0, 20] as below.
Figure 5.4 illustrates the octagon over-approximations of the computed TM flowpipes.

hybrid reachability

{

state var x, y, z, t

setting

{

fixed steps 0.05

time 20

remainder estimation 1e-2

identity precondition

gnuplot octagon x,y

fixed orders 4

cutoff 1e-12

precision 53

output nonlinear

max jumps 3

print on

}

modes

{

l1

{

poly ode 2

{

x’ = -10*x + y + z + 1 y’ = x - y

z’ = x - z - x^2 t’ = 1

}

inv

{

t <= 5

}

}

l2

{

poly ode 2

{

x’ = -10*x + y + z + 5 y’ = x - y

z’ = x - z - x^2 t’ = 1

}

inv

{

t >= 5 t <= 10

144 CHAPTER 5. THE TOOL FLOW*

}

}

l3

{

poly ode 2

{

x’ = -10*x + y + z + 2 y’ = x - y

z’ = x - z - x^2 t’ = 1

}

inv

{

t >= 10 t <= 15

}

}

l4

{

poly ode 2

{

x’ = -10*x + y + z + 4 y’ = x - y

z’ = x - z - x^2 t’ = 1

}

inv

{

t >= 15 t <= 20

}

}

}

jumps

{

l1 -> l2

guard { t = 5 }

reset { }

parallelotope aggregation { }

l2 -> l3

guard { t = 10 }

reset { }

parallelotope aggregation { }

l3 -> l4

guard { t = 15 }

reset { }

parallelotope aggregation { }

}

init

{

l1

{

x in [-0.2,0] y in [-0.2,0] z in [-0.2,0] t in [0,0]

}

}

}

5.4. FORMAT OF TAYLOR MODEL FILES 145

(a) Projection in the x-y plane (b) Projection in the y-z plane

Figure 5.4: Flowpipe over-approximations of the non-linear hybrid system

<state_variable_declaration >

<location_invariants > # only for hybrid systems

<computation_paths > # only for hybrid systems

<plot_setting >

<output_name >

<unsafe_set > # optional

<flowpipe_expressions >

Figure 5.5: Format of the TM files

5.4 Format of Taylor model files

Flow* stores all computed TM flowpipes along with the state space specification in
a file whose format is given by Figure 5.5. The reason to generate such a file is twofold.
Firstly, one may change any of the invariant definition, plot setting, output name and
the unsafe set, and let the tool verify the new safety property, or produce a new plot file.
Secondly, the computed TM flowpipes can be input to other tools for further analysis.

Assume that x1, . . . , xn are the state variables, a TM flowpipe is kept in the following
form,

{

x1 = p1 + [a1,b1]

...

xn = pn + [an,bn]

y1 in [c1,d1]

...

ym in [cm,dm]

}

such that p1, . . . , pn are polynomials over the TM variables y1, . . . , ym.
For hybrid automata, a TM flowpipe should be associated with a mode. To do so, we

keep those computed flowpipes by blocks each of which is associated with a mode.

{

<mode_name >

{

146 CHAPTER 5. THE TOOL FLOW*

<tm_flowpipes >

}

...

<mode_name >

{

<tm_flowpipes >

}

}

The modes are arranged in the order they are visited in the reachability computation.
Besides, the tool also outputs the computation paths (mode sequences) along with the
intervals containing the time points when jumps are made. Such information could be
useful to find counterexamples.

5.5 Performance evaluation

We evaluate the performance of Flow* v1.2.1 in the following aspects. For con-
tinuous reachability problems, we make a comparison with the validated ODE solver
VNODE-LP [Ned11] based on a group of continuous systems whose dimensions range
from 2 to 9. For hybrid systems, the comparison is done with a SMT-based tool named
dReach [Gao12] based on the benchmarks presented in Section 4.5. Both of the tools
have good performance on some challenging benchmarks. We also implemented a pro-
totype of the fast integration method described in Section 3.6, a comparison of it with
SpaceEx based on the filtered oscillator benchmarks is given. Besides, we also present a
scalability evaluation of Flow* based on the non-linear line circuit benchmarks. Unlike
the experiments in related work, we always consider relatively large initial sets, since they
are challenging and very often in applications.

Our experimental platform is a computer equipped with a processor of Intel Core
i7-860 (8M Cache, 2.80 GHz) and 4096 MB RAM. The operating system is Ubuntu 12.04
LTS.

5.5.1 Comparison with VNODE-LP

It is hard to exactly compare the accuracy between Flow* and VNODE-LP, since
Flow* uses TM over-approximations for solutions whereas VNODE-LP uses intervals.
To give a reasonable and clear comparison, we use the following method. Given a bench-
mark which consists of an ODE, an interval initial set and a bounded time horizon [0, T],
we evaluate an interval enclosure IT of the TM flowpipe produced by Flow* at time T ,
and then compare W(IT) with the width of the interval over-approximation computed by
VNODE-LP. If W (IT) is smaller, then Flow* has a better accuracy than VNODE-LP
on the benchmark. The reason to choose the end time point T is that the overestimation
is eventually accumulated in both of the TM and interval integration method.

We present the comparison of the tools based on 9 benchmarks by Table 5.2. The
initial sets and time horizons are same as those in Table 5.1. For each benchmark, we
perform an N -subdivision on the initial set, since it is too large for VNODE-LP to
integrate. We also tried to make N as small as possible.

5.5. PERFORMANCE EVALUATION 147

Flow* VNODE-LP
Benchmark Var δ k Ie ε t (s) W N t (s) W
jet engine 2 0.04 4 ∼ 8 [−10−5, 10−5]2 10−12 4.7 0.0281 8 1.0 0.0207

Brusselator 2 0.04 3 ∼ 6 [−10−5, 10−5]2 10−12 4.9 0.0264 10 1.9 0.0335
Van der Pol 2 0.03 5 ∼ 8 [−10−5, 10−5]2 10−12 7.6 0.5792 10 0.8 0.5153

Lorentz 3 0.01 4 ∼ 7 [−10−5, 10−5]3 10−12 18 0.2939 10 14 0.2631
Rössler 3 0.02 4 ∼ 6 [−10−4, 10−4]3 10−12 6.6 1.9704 20 54 1.9799
coupled

Van der Pol
4 0.02 5 ∼ 8 [−10−5, 10−5]4 10−10 226 0.5465 12 325 6.2236

Lotka-Volterra 5 0.02 4 ∼ 6 [−10−3, 10−3]5 10−10 176 0.0752 8 333 0.0772
biological
model I

7 0.01 3 ∼ 5 [−10−5, 10−5]7 10−9 72 0.1070 4 487 0.1198

biological
model II

9 0.01 4 [−10−3, 10−3]9 10−9 298 1.5143 4 39924 2.7952

Table 5.2: Comparison between Flow* and VNODE-LP. Legends: Var: number of
variables, δ: time step-size, k: TM order, Ie: remainder estimation, ε: cutoff threshold,
t: time cost, W : width of the interval enclosure computed for the solution at T , N :
number for subdivision on the initial set.

From the experimental results, it can be seen that the scalability of Flow* is better
than that of VNODE-LP. The reason is that we are able to accurately handle a large
initial set as one piece.

5.5.2 Comparison with dReach

We consider the 11 hybrid system benchmarks described in Section 4.5 for the com-
parison with dReach. Note that they are not artificial, since each benchmark is a concrete
application. The reason to choose dReach is that (a) the tool integrates a set of advanced
techniques and shows a good ability to handle some non-trivial case studies, (b) it has
a user-friendly interface and a hybrid reachability problem can be easily encoded by its
language, and (c) compare with the other tools mentioned in Section 1.1.2, it works on
the most number of the benchmarks with acceptable running times.

Our experimental scenarios are set as follows. Since dReach is not a tool to compute
flowpipe over-approximations, our goal here is to prove safety properties. In the following
content, we give a detailed description for all experimental results given in Table 5.3.

Non-holonomic integrator. The unsafe condition is given by x ≥ 3 in both of the
locations. Flow* spends 201 seconds to compute the TM flowpipes in the time horizon
[0, 7.5], and proves the safety. However, for any 1 ≤ N ≤ 10, by applying an N -subdivision
on the initial set, dReach does not terminate in 1 hour for any path with 1 jump.

Spiking neurons. The unsafe condition for the first neuron model is u ≤ −25, and
that of the second one is u ≥ 250. Flow* proves the safety for both of the models with
the time costs listed in Table 5.3. On the other hand, dReach only spends 0.3 second to
prove the safety for the paths with less than 2 jumps of the first model, but not able to
handle more jumps even the initial set is 1000-subdivided. For the second neuron model,
dReach is not able to prove the safety in 1 hour for any path with the subdivision number
1 to 10.

148 CHAPTER 5. THE TOOL FLOW*

Flow* dReach
Benchmark Var δ k Ie ε t (s) N k p t (s)

non-holonomic
integrator

3 0.01 5 ∼ 8 [−10−5, 10−5] 10−12 201 1 ∼ 10 ≤ 1 0.001 T.O.

neuron I 2 0.02 4 ∼ 6 [−10−2, 10−2] 10−12 367 ≥ 100 ≤ 15 0.0001 fail
neuron II 2 0.02 4 ∼ 6 [−10−2, 10−2] 10−12 70 1 ∼ 10 ≤ 15 0.001 T.O.
inverted

pendulum
3 0.01 5 ∼ 7 [−10−3, 10−3] 10−12 52 1 ∼ 10 ≤ 5 0.001 fail

aircraft 7 0.02 2 ∼ 5 [−10−6, 10−6] 10−12 6.9 10 ≤ 2 0.01 278
glycemic
control I

3 0.05 2 ∼ 5 [−10−1, 10−1] 10−12 64 5 ≤ 2 0.01 1.1

glycemic
control II

3 0.05 2 ∼ 5 [−10−1, 10−1] 10−12 95 1 ∼ 5 ≤ 2 0.01 T.O.

glycemic
control III

3 0.05 2 ∼ 5 [−10−2, 10−2] 10−12 46 1 ∼ 5 ≤ 1 0.01 T.O.

line circuit
n = 2

2 0.01 3 ∼ 6 [−10−3, 10−3] 10−12 2.3 1 ≤ 2 0.01 0.2

line circuit
n = 4

4 0.01 3 ∼ 6 [−10−4, 10−4] 10−10 48 4 ≤ 2 0.01 9.6

line circuit
n = 6

6
0.0002
∼ 0.02

4 [−10−6, 10−6] 10−9 243 4 ≤ 2 0.01 T.O.

Table 5.3: Comparison between Flow* and dReach. Legends: Var: number of variables,
δ: time step-size, k in Flow* : TM order, Ie: remainder estimation, ε: cutoff threshold,
t: time cost, N : number for subdivision on the initial set, k in dReach : unrolling
depth of bounded model checking, p: value of numerical perturbation, T.O.: time out,
i.e., > 3600.

Inverted pendulum. We consider the unsafe condition θ ≥ 5. The tool dReach only
costs 3 seconds to prove the safety for all paths with less than 2 jumps, but fail to deal with
more jumps even the initial set is 10-subdivided. However, Flow* spends 52 seconds to
compute all TM flowpipes and even can prove the safety w.r.t. the less restrictive unsafe
condition θ ≥ 4.8.

Aircraft collision avoidance. We want to ensure that the two aircraft can never be
located in a box with radius 0.1. We have to perform a 10-subdivision on the initial set
to make dReach prove the safety in a reasonably short time, whereas Flow* completes
the flowpipe construction as well as the safety verification in 7 seconds.

Glycemic control. We use the same unsafe condition G ≤ −2 for all of the three
glycemic control models. dReach outperforms Flow* on the first control model when
the initial set is 5-subdivided. However, it is not able to prove the safety in 1 hour for
any of the rest two models.

Line circuit. The unsafe condition is set to be v1 ≥ 0.21 for the line circuit model of
any scale. dReach has a much better performance than Flow* when n = 2 and n = 4.
However, for the larger scale n = 6, because of the hardness of the continuous dynamics,
dReach fails to work on the 3-subdivision of the initial set, and can not give a result in 1
hour for the 4-subdivision case.

By our observation, dReach and Flow* have advantages over different case studies.
The former one works more efficient on the systems with moderate dynamics or tiny initial
sets. On the other hand, by using TMs, Flow* is able to handle quite difficult continuous

5.5. PERFORMANCE EVALUATION 149

Flow* SpaceEx (LGG) SpaceEx (STC)
Benchmark Var T δ k P time δ box octagon box octagon

filtered
oscillator 6

6 [0, 4] 0.05 8 128 2.1 0.05 0.3 3.4 0.2 1.9

filtered
oscillator 10

10 [0, 4] 0.05 8 128 5.9 0.05 0.4 31 0.5 21

filtered
oscillator 18

18 [0, 4] 0.05 8 128 20 0.05 0.6 617 1.2 425

filtered
oscillator 34

34 [0, 4] 0.05 8 128 98 0.05 12 T.O. 5.1 T.O.

Table 5.4: Comparison between Flow* and SpaceEx. Legends: Var: number of vari-
ables, T : time horizon, δ: time step-size, k: TM order, P: precision, box: box over-
approximation, octagon: octagon over-approximation, T.O.: time out, i.e., > 1800.

dynamics and relatively large initial sets. A large number of jumps may degenerate the
performance of both tools.

5.5.3 Comparison with SpaceEx

We embedded the fast integration method presented in Section 3.6 into the framework
of computing TM flowpipes for hybrid automata, and make a comparison with SpaceEx
on the filtered oscillator benchmarks [FLD+11]. The experimental results are given in
Table 5.4. For each benchmark, the TM flowpipe at time t = 4 is ensured to be included
in the box flowpipe at t = 4 computed by SpaceEx.

As we discussed in Section 3.6, although it is often not necessary for SpaceEx to
compute octagon flowpipes, we may need them for the reuse purpose. On the other hand,
TM flowpipes can always be directly reused with different unsafe specifications. It can be
seen that our method is very competitive to the support function methods.

5.5.4 Scalability evaluation

It is also significant to investigate the performance of Flow* on the examples of
different scales. Here, we present a scalability evaluation of the tool based on the non-
linear line circuit benchmarks. The number of variables under our consideration are the
even numbers from 2 to 12. For each benchmarks, the reachability setting is chosen to
achieve a good performance.

As we said, the line circuit benchmarks can be either continuous or hybrid based
on the definition of the input i(t). Thus, we use the input defined in Section 4.5.6 for
the hybrid case, and use i(t) = sin(5 · t) for the continuous case. Since the continuous
dynamics are not easy to handle, we have to use small time step-sizes. Due to the limit
of the memory size, we set the time horizon for all continuous benchmarks by [0, 2], and
for all hybrid benchmarks by [0, 2.5].

We present the experimental results in Table 5.5. It can be seen that Flow* is able
to deal with the benchmarks with even 12 variables.

150 CHAPTER 5. THE TOOL FLOW*

continuous hybrid
n δ k Ie ε t (s) δ k Ie ε t (s)
2 0.03 3 ∼ 6 [−10−3, 10−3] 10−12 1.4 0.01 3 ∼ 6 [−10−3, 10−3] 10−12 2.3
4 0.01 3 ∼ 6 [−10−5, 10−5] 10−10 56 0.01 3 ∼ 6 [−10−4, 10−4] 10−10 48

6
0.0002
∼ 0.02

4 [−10−5, 10−5] 10−8 73
0.0002
∼ 0.02

4 [−10−5, 10−5] 10−8 243

8
0.0002
∼ 0.01

4 [−10−5, 10−5] 10−8 176
0.0002
∼ 0.01

4 [−10−5, 10−5] 10−8 851

10
0.0002
∼ 0.005

4 [−10−5, 10−5] 10−7 205
0.0002
∼ 0.005

4 [−10−5, 10−5] 10−7 904

12
0.0002
∼ 0.005

4 [−10−5, 10−5] 10−7 402
0.0002
∼ 0.005

4 [−10−5, 10−5] 10−7 1933

Table 5.5: Scalability evaluation of Flow* on the non-linear line circuit benchmarks.
Legends: Var: number of variables, δ: time step-size, k: TM order, Ie: remainder
estimation, ε: cutoff threshold, t: time cost.

5.6 Future work

Although we are able to deal with relatively large initial sets and some high dimen-
sional systems using TMs, it is still time-costly to compute TM flowpipes in general when
the system has a large number of variables. Therefore, we plan to improve the tool Flow*
in the following aspects.

• Composition of hybrid automata. Currently, Flow* only accepts one hybrid au-
tomaton in a reachability problem. Then, we have to compose a hybrid automaton
manually, when it is given by its components. In the future, Flow* will have a
function to compute a composition of finitely many hybrid automata.

• Combination of adaptive step-sizes and orders. Flow* does not support using
both adaptive step-sizes and orders in an integration task currently. However, we
are planing to design a strategy to combine the two adaptive techniques.

• More sophisticated approach for TM simplification and aggregation. As we men-
tioned, manipulating high-order TMs is expensive when the number of variables is
not small. Currently, Flow* simply moves the “small” terms of the polynomial
part of a TM into the remainder interval. Such a method, however, could be too
conservative in some case. It could be more effective to do the simplification with
regard to some specified variables. For intersection aggregation, the current ver-
sion of Flow* only supports intervals or parallelotopes. We seek to include more
aggregation schemes, such as using zonotopes or higher-order TMs.

• More accurate intersection over-approximation. Flow* uses the standard interval
arithmetic to evaluate the value of a function or check the satisfiability of a con-
straint. Therefore, the intersection over-approximations could be too coarse in some
situations. In the future, we plan to use one or several SMT solvers to handle the
satisfiability checking in domain contraction.

• Better memory management. Currently, Flow* keeps all computed TM flowpipes
in memory and it often consumes all usable memory in a system when the flowpipe
number is large. In the next version, the tool will periodically dump the computed
TM flowpipes into a file and releases the memory they use.

Chapter 6

Conclusion

In the thesis, we introduce the use of Taylor Models (TMs) in the reachability analysis of
non-linear hybrid systems. The method provides a new perspective of using high-order
over-approximations for the bounded reachable sets of non-linear hybrid systems. It shows
by the experiments that our techniques may handle hybrid systems with even more than
10 variables. The main contribution of the thesis is briefly reviewed as below.

• TM integration with adaptive techniques and efficient TM computation. It is an
extension of the work from Berz and Makino. The new techniques improve the
performance of computing TM flowpipes with acceptable loss of accuracy. Such a
result is further extended to deal with ODEs with time-varying parameters. Besides,
we also present an efficient method to handle linear ODEs.

• Efficient flowpipe/guard intersection methods. We present two techniques: domain
contraction and range over-approximation for enclosing the intersection of a TM
flowpipe and a jump guard. Unlike the interval-based methods in the related work,
our approaches never require to split a given set and hence show a low computa-
tional complexity. Moreover, in order to further improve the performance during
the reachability computation, we also present different heuristics for aggregating
intersection over-approximations.

• The tool Flow* for the reachability analysis of non-linear hybrid systems. We
implemented most of our techniques in the tool Flow*. It deals with two classes
of tasks: (a) TM flowpipe computation for continuous and hybrid systems, and
(b) safety analysis on TMs. As it is shown by the experiments, Flow* is very
competitive to the other tools, and its advantage is apparent on medium- and large-
scale systems.

The work in the thesis can be extended in several directions.

(1) Better flowpipe over-approximations. There are several possibilities to compute a
flowpipe over-approximation which is more accurate than a TM. One of them could
be combining the use of TM arithmetic and the interval Hermite-Obreschkoff method
[Ned99]. The latter one has been successfully applied to integrating stiff or chaotic
ODEs for long time horizons. As another possibility, one may use better approxi-
mation forms than Taylor expansions for ODE solutions. The candidates could be
Bernstein polynomials and Chebyshev polynomials. However, neither of the forms

151

152 CHAPTER 6. CONCLUSION

could be calculated based on the monomial basis, and therefore to efficient manipu-
late their multivariate versions is challenging.

(2) Use of TMs in statistical model checking. In [ZSS+13], we investigate the use of TMs
to enclose a set of simulation trajectories of analog circuits. The experiments show
that our methods can greatly improve the performance on producing results with high
confidence values. An extension of the work is described in [ZSS14].

(3) Use of TMs to generate flowpipe under-approximations. Unlike over-approximations,
very little work has been focused on computing reachable set under-approximations.
Since TMs can provide high-order over-approximations for the forward flowmaps of
continuous systems, it is also possible to use a TM to over-approximate a backward
flowmap. Based on it, we are able to track the evolution of the constraints defining
the initial set. In [CSÁ14], an approach to compute flowpipe under-approximations
is presented. Although it requires to check the connectedness of an approximation
set when the system is non-linear, the method is still able to handle a non-trivial
system with 7 variables. It is promising to make an improvement on it such that
the connectedness verification is not needed any more. We also plan to extend this
approach to produce guaranteed counterexamples for non-linear hybrid systems.

Besides the above ones, it is also significant to extend the TM techniques to do Signal
Temporal Logic (STL) or Metric Temporal Logic (MTL) model checking.

Bibliography

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analy-
sis of hybrid systems. Theor. Comput. Sci., 138(1):3–34, 1995.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

[ADE+01] R. Alur, T. Dang, J. M. Esposito, R. B. Fierro, Y. Hur, F. Ivancic, V. Ku-
mar, I. Lee, P. Mishra, G. J. Pappas, and O. Sokolsky. Hierarchical hybrid
modeling of embedded systems. In Proceedings of the 1st International Work-
shop on Embedded Software (EMSOFT’01), volume 2211 of Lecture Notes in
Computer Science, pages 14–31. Springer, 2001.

[ADG07] E. Asarin, T. Dang, and A. Girard. Hybridization methods for the analysis
of nonlinear systems. Acta Inf., 43(7):451–476, 2007.

[ADI03] R. Alur, T. Dang, and F. Ivancic. Progress on reachability analysis of hybrid
systems using predicate abstraction. In Proceedings of the 6th International
Workshop on Hybrid Systems: Computation and Control (HSCC’03), volume
2623 of Lecture Notes in Computer Science, pages 4–19. Springer, 2003.

[ADM02] E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification of hybrid
systems. In Proceedings of the 14th International Conference on Computer
Aided Verification (CAV’02), volume 2404 of Lecture Notes in Computer
Science, pages 365–370. Springer, 2002.

[ADMT10] E. Asarin, T. Dang, O. Maler, and R. Testylier. Using redundant constraints
for refinement. In Proceedings of the 8th International Symposium on Auto-
mated Technology for Verification and Analysis (ATVA’10), volume 6252 of
Lecture Notes in Computer Science, pages 37–51. Springer, 2010.

[AF92] D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and ver-
tex enumeration of arrangements and polyhedra. Discrete & Computational
Geometry, 8(1):295–313, 1992.

[ÅF00] K. J. Åström and K. Furuta. Swinging up a pendulum by energy control.
Automatica, 36(2):287–295, 2000.

[AGH+00] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular specification of
hybrid systems in charon. In Proceedings of the 3rd workshop on Hybrid Sys-
tems: Computation and Control (HSCC’00), volume 1790 of Lecture Notes
in Computer Science, pages 6–19. Springer, 2000.

153

154 BIBLIOGRAPHY

[AHS09] K. Atkinson, W. Han, and D. E. Stewart. Numerical Solution of Ordinary
Differential Equations. John Wiley & Sons, 2009.

[Alt10] M. Althoff. Reachability Analysis and its Application to the Safety Assess-
ment of Autonomous Cars. PhD thesis, Technischen Universität München,
2010.

[ÅM11] K. J. Åström and R. M. Murray. Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, 2011.

[Apo67] T. M. Apostol. Calculus, Vol. 1, One-Variable Calculus with an Introduction
to Linear Algebra. Wiley, 1967.

[Apo69] T. M. Apostol. Calculus, Vol. 2, Multi-Variable Calculus and Linear Algebra
with Applications. Wiley, 1969.

[APS08] E. M. Aylward, P. A. Parrilo, and J.-J. E. Slotine. Stability and robustness
analysis of nonlinear systems via contraction metrics and SOS programming.
Automatica, 44(8):2163–2170, 2008.

[ASB08] M. Althoff, O. Stursberg, and M. Buss. Reachability analysis of nonlinear
systems with uncertain parameters using conservative linearization. In Pro-
ceedings of the 47th IEEE Conference on Decision and Control (CDC’08),
pages 4042–4048. IEEE, 2008.

[ASB10] M. Althoff, O. Stursberg, and M. Buss. Computing reachable sets of hybrid
systems using a combination of zonotopes and polytopes. Nonlinear Analysis:
Hybrid Systems, 4(2):233–249, 2010.

[BBC+08] L. Benvenuti, D. Bresolin, A. Casagrande, P. Collins, A. Ferrari, E. Mazzi,
A. Sangiovanni-Vincentelli, and R. Villa. Reachability computation for hy-
brid systems with Ariadne. In Proceedings of the 17th IFAC World Congress.
IFAC Papers-OnLine, 2008.

[Bem04] A. Bemporad. Efficient conversion of mixed logical dynamical systems into an
equivalent piecewise affine form. IEEE Transactions on Automatic Control,
49(5):832–838, 2004.

[Ber99] M. Berz. Modern Map Methods in Particle Beam Physics, volume 108 of
Advances in Imaging and Electron Physics. Academic Press, 1999.

[BFA85] R. N. Bergman, D. T. Finegood, and M. Ader. Assessment of insulin sensi-
tivity in vivo. Endocrine Reviews, 6:45–86, 1985.

[BG06] F. Benhamou and L. Granvilliers. Continuous and interval constraints. In
F. Rossi et al., editor, Handbook of Constraint Programming, pages 571–590.
Elsevier, 2006.

[BIBC79] R. N. Bergman, Y. Z. Ider, C. R. Bowden, and C. Cobelli. Quantitative esti-
mation of insulin sensitivity. The American Journal of Physiology, 236:E667–
677, 1979.

BIBLIOGRAPHY 155

[BJ10] N. Brisebarre and M. Joldeş. Chebyshev interpolation polynomial-based
tools for rigorous computing. In Proceedings of the 2010 International Sym-
posium on Symbolic and Algebraic Computation (ISSAC’10), pages 147–154.
ACM, 2010.

[BJMD+12] N. Brisebarre, M. Joldes, É. Martin-Dorel, M. Mayero, J.-M. Muller, I. Pasca,
L. Rideau, and L. Théry. Rigorous polynomial approximation using taylor
models in coq. In Proceedings of the 4th International Symposium on NASA
Formal Methods (NFM’12), volume 7226 of Lecture Notes in Computer Sci-
ence, pages 85–99. Springer, 2012.

[BM98] M. Berz and K. Makino. Verified integration of ODEs and flows using differ-
ential algebraic methods on high-order Taylor models. Reliable Computing,
4:361–369, 1998.

[BM09] M. Berz and K. Makino. Rigorous global search using taylor models.
In Proceedings of the 2009 Conference on Symbolic Numeric Computation
(SNC’09), pages 11–20. ACM, 2009.

[BMP99] O. Bournez, O. Maler, and A. Pnueli. Orthogonal polyhedra: Representation
and computation. In Proceedings of the 2nd workshop on Hybrid Systems:
Computation and Control (HSCC’99), volume 1569 of Lecture Notes in Com-
puter Science, pages 46–60. Springer, 1999.

[BPC81] R. N. Bergman, L. S. Phillips, and C. Cobelli. Physiologic evaluation of fac-
tors controlling glucose tolerance in man: measurement of insulin sensitivity
and β-cell glucose sensitivity from the response to intravenous glucose. The
Journal of Clinical Investigation, 68:1456–1467, 1981.

[BT00] O. Botchkarev and S. Tripakis. Verification of hybrid systems with linear
differential inclusions using ellipsoidal approximations. In Proceedings of
the 3rd workshop on Hybrid Systems: Computation and Control (HSCC’00),
volume 1790 of Lecture Notes in Computer Science, pages 73–88. Springer,
2000.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[CÁ11] X. Chen and E. Ábrahám. Choice of directions for the approximation of
reachable sets for hybrid systems. In Proceedings of the 13th International
Conference on Computer Aided Systems Theory (EUROCAST’11), volume
6927 of Lecture Notes in Computer Science, pages 535–542. Springer, 2011.

[CÁF11] X. Chen, E. Ábrahám, and G. Frehse. Efficient bounded reachability com-
putation for rectangular automata. In Proceedings of the 5th International
Workshop on Reachability Problems (RP’11), volume 6945 of Lecture Notes
in Computer Science, pages 139–152. Springer, 2011.

[CÁS12] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Taylor model flowpipe
construction for non-linear hybrid systems. In Proceedings of the 33rd IEEE
Real-Time Systems Symposium (RTSS’12), pages 183–192. IEEE Computer
Society, 2012.

156 BIBLIOGRAPHY

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints.
In Proceedings of the 4th ACM Symposium on Principles of Programming
Languages (POPL’77), pages 238–252. ACM, 1977.

[CG02] M. Ceberio and L. Granvilliers. Horner’s rule for interval evaluation revisited.
Computing, 69(1):51–81, 2002.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
1999.

[CK98] A. Chutinan and B. H. Krogh. Computing polyhedral approximations to
flow pipes for dynamic systems. In Proceedings of the 37th IEEE Conference
on Decision and Control (CDC’98), volume 2, pages 2089–2094, 1998.

[CK04] M. Ceberio and V. Kreinovich. Greedy algorithms for optimizing multivariate
horner schemes. SIGSAM Bull., 38(1):8–15, 2004.

[CKBC84] D. J. Chisholm, E. W. Kraegen, D. J. Bell, and D. R. Chipps. A semi-
closed loop computer-assisted insulin infusion system. The Medical journal
of Australia, 141:784–789, 1984.

[CSÁ14] X. Chen, S. Sankaranarayanan, and E. Ábrahám. Under-approximate flow-
pipes for non-linear continuous systems. In Proceedings of the 14th Con-
ference on Formal Methods in Computer-Aided Design (FMCAD’14), pages
59–66. IEEE, 2014.

[CSS03] M. Colón, S. Sankaranarayanan, and H. Sipma. Linear invariant generation
using non-linear constraint solving. In Proceedings of 15th International Con-
ference on Computer Aided Verification (CAV’03), volume 2725 of Lecture
Notes in Computer Science, pages 420–432. Springer, 2003.

[CW00] Y. Chen and J. White. A quadratic method for nonlinear model order re-
duction. In Proceedings of the 2000 International Conference on Modeling
and Simulation of Microsystems, pages 477–480, 2000.

[Dan00] T. Dang. Verification and Synthesis of Hybrid Systems. PhD thesis, Institut
National Polytechnique de Grenoble, 2000.

[DLM09] T. Dang, C. Le Guernic, and O. Maler. Computing reachable states for non-
linear biological models. In Proceedings of the 7th International Conference
on Computational Methods in Systems Biology (CMSB’09), volume 5688 of
Lecture Notes in Computer Science, pages 126–141. Springer, 2009.

[DM07] A. Donzé and O. Maler. Systematic simulation using sensitivity analysis. In
Proceedings of the 10th International Workshop on Hybrid Systems: Compu-
tation and Control (HSCC’07), volume 4416 of Lecture Notes in Computer
Science, pages 174–189. Springer, 2007.

[DMT10] T. Dang, O. Maler, and R. Testylier. Accurate hybridization of nonlinear
systems. In Proceedings of the 13th ACM International Conference on Hybrid
Systems: Computation and Control (HSCC’10), pages 11–20. ACM, 2010.

BIBLIOGRAPHY 157

[Don07] A. Donzé. Trajectory-based verification and controller Synthesis for contin-
uous and hybrid systems. PhD thesis, University Joseph Fourier, 2007.

[Edg08] G. Edgar. Measure, Topology, and Fractal Geometry (2nd edition). Springer,
2008.

[ERNF11] A. Eggers, N. Ramdani, N. Nedialkov, and M. Fränzle. Improving sat modulo
ode for hybrid systems analysis by combining different enclosure methods.
In Proceedings of the 9th International Conference on Software Engineering
and Formal Methods (SEFM’11), volume 7041 of Lecture Notes in Computer
Science, pages 172–187. Springer, 2011.

[FH07] M. Fränzle and C. Herde. Hysat: An efficient proof engine for bounded model
checking of hybrid systems. Formal Methods in System Design, 30(3):179–
198, 2007.

[FHT+07] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert. Efficient solv-
ing of large non-linear arithmetic constraint systems with complex boolean
structure. Journal on Satisfiability, Boolean Modeling and Computation, 1(3-
4):209–236, 2007.

[Fis91] M. E. Fisher. A semiclosed-loop algorithm for the control of blood glucose
levels in diabetics. IEEE transactions on biomedical engineering, 38(1):57–
61, 1991.

[FKL13] G. Frehse, R. Kateja, and C. Le Guernic. Flowpipe approximation and
clustering in space-time. In Proceedings of the 16th international conference
on Hybrid systems: Computation and Control (HSCC’13), pages 203–212.
ACM, 2013.

[FKSC85] S. M. Furler, E. W. Kraegen, R. H. Smallwood, and D. J. Chisholm. Blood
glucose control by intermittent loop closure in the basal mode: computer
simulation studies with a diabetic model. Diabetes Care, 8:553–561, 1985.

[FLD+11] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ri-
pado, A. Girard, T. Dang, and O. Maler. Spaceex: Scalable verification
of hybrid systems. In Proceedings of the 23rd International Conference on
Computer Aided Verification (CAV’11), volume 6806 of Lecture Notes in
Computer Science, pages 379–395. Springer, 2011.

[Fre05a] G. Frehse. Compositional Verification of Hybrid Systems using Simulation
Relations. PhD thesis, Radboud Universiteit Nijmegen, 2005.

[Fre05b] G. Frehse. Phaver: Algorithmic verification of hybrid systems past hytech.
In Proceedings of the 8th International Workshop on Hybrid Systems: Com-
putation and Control (HSCC’05), volume 3414 of Lecture Notes in Computer
Science, pages 258–273. Springer, 2005.

[Gao12] S. Gao. Computable Analysis, Decision Procedures, and Hybrid Automata:
A New Framework for the Formal Verification of Cyber-Physical Systems.
PhD thesis, Carnegie Mellon University, 2012.

158 BIBLIOGRAPHY

[GHT+04] R. Goebel, J. Hespanha, A. R. Teel, C. Cai, and R. Sanfelice. Hybrid systems:
Generalized solutions and robust stability. In IFAC Symposium on Nonlinear
Control Systems (NOLCOS’04), pages 1–12, 2004.

[Gir05] A. Girard. Reachability of uncertain linear systems using zonotopes. In Pro-
ceedings of the 8th International Workshop on Hybrid Systems: Computation
and Control (HSCC’05), volume 3414 of Lecture Notes in Computer Science,
pages 291–305. Springer, 2005.

[GKC13] S. Gao, S. Kong, and E. M. Clarke. Satisfiability modulo odes. In Proceedings
of the 13th International Conference on Formal Methods in Computer-Aided
Design (FMCAD’13), pages 105–112. IEEE, 2013.

[GL08] A. Girard and C. Le Guernic. Zonotope/hyperplane intersection for hybrid
systems reachability analysis. In Proceedings of the 11th International Work-
shop on Hybrid Systems: Computation and Control, volume 4981 of Lecture
Notes in Computer Science, pages 215–228. Springer, 2008.

[GP05] A. Girard and G. J. Pappas. Approximate bisimulations for constrained
linear systems. In Proceedings of the 44th IEEE Conference on Decision and
Control and European Control Conference (CDC-ECC’05), pages 4700–4705,
2005.

[GP06] A. Girard and G. J. Pappas. Verification using simulation. In Proceedings
of the 9th International Workshop on Hybrid Systems: Computation and
Control (HSCC’06), volume 3927 of Lecture Notes in Computer Science,
pages 272–286. Springer, 2006.

[GT08] S. Gulwani and A. Tiwari. Constraint-based approach for analysis of hybrid
systems. In Proceedings of the 20th International Conference on Computer
Aided Verification (CAV’08), volume 5123 of Lecture Notes in Computer
Science, pages 190–203. Springer, 2008.

[Gu11] C. Gu. Model Order Reduction of Nonlinear Dynamical Systems. PhD thesis,
University of California, Berkeley, 2011.

[HHWT95] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: the next generation.
In Proceedings of the 16th IEEE Real-Time Systems Symposium (RTSS’95),
pages 56–65. IEEE Computer Society, 1995.

[HHWT97] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker
for hybrid systems. In Proceedings of the 9th International Conference on
Computer Aided Verification (CAV’97), volume 1254 of Lecture Notes in
Computer Science, pages 460–463. Springer, 1997.

[HKPV95] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable
about hybrid automata? In Proceedings of the 27th Annual ACM Symposium
on Theory of Computing (STOC’95), pages 373–382. ACM, 1995.

[HM99] J. P. Hespanha and A. S. Morse. Stabilization of nonholonomic integrators
via logic-based switching. Automatica, 35(3):385–393, 1999.

BIBLIOGRAPHY 159

[HRGZ97] M. Henk, J. Richter-Gebert, and G. M. Ziegler. Basic properties of con-
vex polytopes. In J. E. Goodman et al., editor, Handbook of Discrete and
Computational Geometry, pages 243–270. CRC Press, Inc., 1997.

[HTP05] E. Haghverdi, P. Tabuada, and G. J. Pappas. Bisimulation relations for
dynamical, control, and hybrid systems. Theor. Comput. Sci., 342(2-3):229–
261, 2005.

[IF79] K. Ichida and Y. Fujii. An interval arithmetic method for global optimization.
Computing, 23(1):85–97, 1979.

[Izh10] E. M. Izhikevich. Dynamical Systems in Neuroscience: The Geometry of
Excitability and Bursting. The MIT Press, 2010.

[JKDW01] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis.
Springer, 2001.

[Jol02] I. T. Jolliffe. Principal Component Analysis, 2nd edition. Springer, 2002.

[KC91] D. R. Kincaid and E. W. Cheney. Numerical Analysis: Mathematics of
Scientific Computing. Brooks Cole, 1991.

[KHK+05] E. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. Lehrach. Systems
Biology in Practice: Concepts, Implementation and Application. Wiley-
Blackwell, 2005.

[KV00] A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability
analysis. In Proceedings of the 3rd workshop on Hybrid Systems: Compu-
tation and Control (HSCC’00), volume 1790 of Lecture Notes in Computer
Science, pages 202–214. Springer, 2000.

[KV06] A. A. Kurzhanskiy and P. Varaiya. Ellipsoidal toolbox. Technical Report
UCB/EECS-2006-46, EECS Department, University of California, Berkeley,
May 2006.

[Kva08] M. Kvasnica. Efficient software tools for control and analysis of hybrid sys-
tems. PhD thesis, ETH Zürich, 2008.

[Le 09] C. Le Guernic. Reachability Analysis of Hybrid Systems with Linear Contin-
uous Dynamics. PhD thesis, Université Joseph Fourier, 2009.

[LG09] C. Le Guernic and A. Girard. Reachability analysis of hybrid systems using
support functions. In Proceedings of the 21st International Conference on
Computer Aided Verification (CAV’09), volume 5643 of Lecture Notes in
Computer Science, pages 540–554. Springer, 2009.

[Lib03] D. Liberzon. Switching in Systems and Control. Springer, 2003.

[Loh92] R. J. Lohner. Computation of guaranteed enclosures for the solutions of ordi-
nary initial and boundary value problems. In J. R. Cash et al., editor, Com-
putational ordinary differential equations, pages 425–435. Clarendon Press,
1992.

160 BIBLIOGRAPHY

[Lor63] E. N. Lorentz. Deterministic nonperiodic flow. Journal of Atmospheric
Sciences, 20:130–141, 1963.

[LS07] Y. Lin and M. A. Stadtherr. Validated solutions of initial value problems for
parametric odes. Appl. Numer. Math., 57(10):1145–1162, 2007.

[Mak98] K. Makino. Rigorous analysis of nonlinear motion in particle accelerators.
PhD thesis, Michigan State University, 1998.

[MB96] K. Makino and M. Berz. Remainder differential algebras and their applica-
tions. In M. Berz et al., editor, Computational Differentiation: Techniques,
Applications, and Tools, pages 63–75. SIAM, 1996.

[MB03] K. Makino and M. Berz. Taylor models and other validated functional in-
clusion methods. J. Pure and Applied Mathematics, 4(4):379–456, 2003.

[MB05] K. Makino and M. Berz. Suppression of the wrapping effect by taylor model-
based verified integrators: Long-term stabilization by preconditioning. Inter-
national Journal of Differential Equations and Applications, 10(4):353–384,
2005.

[MB06] K. Makino and M. Berz. COSY INFINITY version 9. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 558(1):346–350, 2006.

[MB09] K. Makino and M. Berz. Rigorous integration of flows and ODEs using
Taylor models. In Proceedings of the 2009 conference on Symbolic numeric
computation (SNC’09), pages 79–84. ACM, 2009.

[Mei07] J. D. Meiss. Differential Dynamical Systems. SIAM publishers, 2007.

[MH02] J. C. Mason and D. C. Handscomb. Chebyshev Polynomials. Chapman and
Hall/CRC, 2002.

[MKC09] R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to Interval
Analysis. SIAM, 2009.

[MT00] I. Mitchell and C. Tomlin. Level set methods for computation in hybrid
systems. In Proceedings of the 3rd International Workshop on Hybrid Sys-
tems: Computation and Control (HSCC’00), volume 1790 of Lecture Notes
in Computer Science, pages 310–323. Springer, 2000.

[MT05] I. Mitchell and J. A. Templeton. A toolbox of hamilton-jacobi solvers for
analysis of nondeterministic continuous and hybrid systems. In Proceedings
of the 8th International Workshop on Hybrid Systems: Computation and
Control (HSCC’05), volume 3414 of Lecture Notes in Computer Science,
pages 480–494. Springer, 2005.

[MV03] C. Moler and C. Van Loan. Nineteen dubious ways to compute the expo-
nential of a matrix, twenty-five years later. SIAM Review, 45(1):3–49, 2003.

BIBLIOGRAPHY 161

[Ned99] N. S. Nedialkov. Computing Rigorous Bounds on the Solution of an Initial
Value Problem for an Ordinary Differential Equation. PhD thesis, University
of Toronto, 1999.

[Ned11] N. S. Nedialkov. Implementing a rigorous ode solver through literate pro-
gramming. In A. Rauh and E. Auer, editors, Modeling, Design, and Simula-
tion of Systems with Uncertainties, volume 3 of Mathematical Engineering,
chapter Mathematical Engineering, pages 3–19. Springer Berlin Heidelberg,
2011.

[NJC99] N. S. Nedialkov, K. R. Jackson, and G. F. Corliss. Validated solutions of ini-
tial value problems for ordinary differential equations. Applied Mathematics
and Computation, 105(1):21–68, 1999.

[NJN06] M. Neher, K. R. Jackson, and N. S. Nedialkov. On Taylor model based
integration of ODEs. SIAM Journal on Numerical Analysis, 45:236–262,
2006.

[Pab03] P. A. Pablo. Semidefinite programming relaxations for semialgebraic prob-
lems. Mathematical Programming, 96(2):293–320, 2003.

[Par00] P. A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry
Methods in Robustness and Optimization. PhD thesis, California Institute
of Technology, 2000.

[Pen00] J. M. Pena. On the multivariate horner scheme. SIAM Journal on Numerical
Analysis, 37(4):1186–1197, 2000.

[Phi03] G. M. Phillips. Interpolation and Approximation by Polynomials. Springer,
2003.

[Pla10] A. Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for Com-
plex Dynamics. Springer, 2010.

[PQ08] A. Platzer and J.-D. Quesel. Keymaera: A hybrid theorem prover for hybrid
systems (system description). In Proceedings of the 4th International Joint
Conference on Automated Reasoning (IJCAR’08), volume 5195 of Lecture
Notes in Computer Science, pages 171–178. Springer, 2008.

[RH80] R. H. Rand and P.J. Holmes. Bifurcation of periodic motions in two weakly
coupled Van der Pol oscillators. International Journal of Non-Linear Me-
chanics, 15(4-5):387–399, 1980.

[RN11] N. Ramdani and N. S. Nedialkov. Computing reachable sets for uncertain
nonlinear hybrid systems using interval constraint-propagation techniques.
Nonlinear Analysis: Hybrid Systems, 5(2):149–162, 2011.

[Rös76] O. E. Rössler. An equation for continuous chaos. Physics Letters A,
57(5):397–398, 1976.

[Rös79] O. E. Rössler. An equation for hyperchaos. Physics Letters A, 71(2-3):155–
157, 1979.

162 BIBLIOGRAPHY

[RS05] S. Ratschan and Z. She. Safety verification of hybrid systems by constraint
propagation based abstraction refinement. In Proceedings of the 8th Interna-
tional Workshop on Hybrid Systems: Computation and Control (HSCC’05),
volume 3414 of Lecture Notes in Computer Science, pages 573–589. Springer,
2005.

[RST02] L. Ros, A. Sabater, and F. Thomas. An ellipsoidal calculus based on prop-
agation and fusion. IEEE Transactions on Systems, Man, and Cybernetics,
Part B, 32(4):430–442, 2002.

[RW03] M. Rewienski and J. White. A trajectory piecewise-linear approach to model
order reduction and fast simulation of nonlinear circuits and micromachined
devices. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 22(2):155–170, 2003.

[SB06] A. B. Singer and P. I. Barton. Bounding the solutions of parameter depen-
dent nonlinear ordinary differential equations. SIAM Journal on Scientific
Computing, 27:2167–2182, 2006.

[SDI08] S. Sankaranarayanan, T. Dang, and F. Ivancic. Symbolic model checking of
hybrid systems using template polyhedra. In Proceedings of the 14th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’08), volume 4963 of Lecture Notes in Computer Science,
pages 188–202. Springer, 2008.

[SK03] O. Stursberg and B. H. Krogh. Efficient representation and computation
of reachable sets for hybrid systems. In Proceedings of the 6th International
Workshop on Hybrid Systems: Computation and Control (HSCC’03), volume
2623 of Lecture Notes in Computer Science, pages 482–497. Springer, 2003.

[SRKC00] B. Silva, K. Richeson, B. Krogh, and A. Chutinan. Modeling and verification
of hybrid dynamical system using checkmate. In ADPM 2000. Shaker, 2000.

[SSM04] S. Sankaranarayanan, H. Sipma, and Z. Manna. Constructing invariants for
hybrid systems. In Proceedings of the 7th International Workshop on Hy-
brid Systems: Computation and Control (HSCC’04), volume 2993 of Lecture
Notes in Computer Science, pages 539–554. Springer, 2004.

[TD13] R. Testylier and T. Dang. Nltoolbox: A library for reachability computa-
tion of nonlinear dynamical systems. In Proceedings of the 11th Interna-
tional Symposium on Automated Technology for Verification and Analysis
(ATVA’13), volume 8172 of Lecture Notes in Computer Science, pages 469–
473. Springer, 2013.

[Tiw08] H. R. Tiwary. Complexity of Some Polyhedral Enumeration Problems. PhD
thesis, Saarland University, 2008.

[Tre13] N. Trefethen. Approximation Theory and Approximation Practice. Society
for Industrial and Applied Mathematics, 2013.

[VB96] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review,
38(1):49–95, 1996.

BIBLIOGRAPHY 163

[WVS06] J. C. Wildenberg, J. A. Vano, and J. C. Sprott. Complex spatiotemporal
dynamics in Lotka-Volterra ring systems. Ecological Complexity, 3(2):140–
147, 2006.

[Zha92] F. Zhao. Automatic Analysis and Synthesis of Controllers for Dynamical
Systems Based on Phase-Space Knowledge. PhD thesis, Massachusetts In-
stitute of Technology, 1992.

[Zie95] G. M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Math-
ematics. Springer, 1995.

[ZSS+13] Y. Zhang, S. Sankaranarayanan, F. Somenzi, X. Chen, and E. Ábrahám.
From statistical model checking to statistical model inference: characteriz-
ing the effect of process variations in analog circuits. In Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
2013,, pages 662–669. IEEE/ACM, 2013.

[ZSS14] Y. Zhang, S. Sankaranarayanan, and F. Somenzi. Sparse statistical model
inference for analog circuits under process variations. In Proceedings of the
19th Asia and South Pacific Design Automation Conference (ASP-DAC’14),
pages 449–454. IEEE, 2014.

164 BIBLIOGRAPHY

BIBLIOGRAPHY 165

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years. A

complete list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2012-01 Fachgruppe Informatik: Annual Report 2012

2012-02 Thomas Heer: Controlling Development Processes

2012-03 Arne Haber, Jan Oliver Ringert, Bernhard Rumpe: MontiArc - Architec-

tural Modeling of Interactive Distributed and Cyber-Physical Systems

2012-04 Marcus Gelderie: Strategy Machines and their Complexity

2012-05 Thomas Ströder, Fabian Emmes, Jürgen Giesl, Peter Schneider-Kamp,

and Carsten Fuhs: Automated Complexity Analysis for Prolog by Term

Rewriting

2012-06 Marc Brockschmidt, Richard Musiol, Carsten Otto, Jürgen Giesl: Au-

tomated Termination Proofs for Java Programs with Cyclic Data

2012-07 André Egners, Björn Marschollek, and Ulrike Meyer: Hackers in Your

Pocket: A Survey of Smartphone Security Across Platforms

2012-08 Hongfei Fu: Computing Game Metrics on Markov Decision Processes

2012-09 Dennis Guck, Tingting Han, Joost-Pieter Katoen, and Martin R.

Neuhäußer: Quantitative Timed Analysis of Interactive Markov Chains

2012-10 Uwe Naumann and Johannes Lotz: Algorithmic Differentiation of Nu-

merical Methods: Tangent-Linear and Adjoint Direct Solvers for Systems

of Linear Equations

2012-12 Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp, Fabian Emmes,

and Carsten Fuhs: Symbolic Evaluation Graphs and Term Rewriting —

A General Methodology for Analyzing Logic Programs

2012-15 Uwe Naumann, Johannes Lotz, Klaus Leppkes, and Markus Towara:

Algorithmic Differentiation of Numerical Methods: Tangent-Linear and

Adjoint Solvers for Systems of Nonlinear Equations

2012-16 Georg Neugebauer and Ulrike Meyer: SMC-MuSe: A Framework for

Secure Multi-Party Computation on MultiSets

2012-17 Viet Yen Nguyen: Trustworthy Spacecraft Design Using Formal Methods

2013-01 ∗ Fachgruppe Informatik: Annual Report 2013

2013-02 Michael Reke: Modellbasierte Entwicklung automobiler Steuerungssys-

teme in Klein- und mittelständischen Unternehmen

2013-03 Markus Towara and Uwe Naumann: A Discrete Adjoint Model for Open-

FOAM

2013-04 Max Sagebaum, Nicolas R. Gauger, Uwe Naumann, Johannes Lotz, and

Klaus Leppkes: Algorithmic Differentiation of a Complex C++ Code

with Underlying Libraries

http://aib.informatik.rwth-aachen.de/

166 BIBLIOGRAPHY

2013-05 Andreas Rausch and Marc Sihling: Software & Systems Engineering

Essentials 2013

2013-06 Marc Brockschmidt, Byron Cook, and Carsten Fuhs: Better termination

proving through cooperation

2013-07 André Stollenwerk: Ein modellbasiertes Sicherheitskonzept für die ex-

trakorporale Lungenunterstützung

2013-08 Sebastian Junges, Ulrich Loup, Florian Corzilius and Erika brahám: On

Gröbner Bases in the Context of Satisfiability-Modulo-Theories Solving

over the Real Numbers

2013-10 Joost-Pieter Katoen, Thomas Noll, Thomas Santen, Dirk Seifert, and

Hao Wu: Performance Analysis of Computing Servers using Stochastic

Petri Nets and Markov Automata

2013-12 Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and

Jürgen Giesl: Alternating Runtime and Size Complexity Analysis of

Integer Programs

2013-13 Michael Eggert, Roger Häußling, Martin Henze, Lars Hermerschmidt,

René Hummen, Daniel Kerpen, Antonio Navarro Pérez, Bernhard

Rumpe, Dirk Thißen, and Klaus Wehrle: SensorCloud: Towards the

Interdisciplinary Development of a Trustworthy Platform for Globally

Interconnected Sensors and Actuators

2013-14 Jörg Brauer: Automatic Abstraction for Bit-Vectors using Decision Pro-

cedures

2013-16 Carsten Otto: Java Program Analysis by Symbolic Execution

2013-19 Florian Schmidt, David Orlea, and Klaus Wehrle: Support for error

tolerance in the Real-Time Transport Protocol

2013-20 Jacob Palczynski: Time-Continuous Behaviour Comparison Based on

Abstract Models

2014-01 ∗ Fachgruppe Informatik: Annual Report 2014

2014-02 Daniel Merschen: Integration und Analyse von Artefakten in der mod-

ellbasierten Entwicklung eingebetteter Software

2014-03 Uwe Naumann, Klaus Leppkes, and Johannes Lotz: dco/c++ User

Guide

2014-04 Namit Chaturvedi: Languages of Infinite Traces and Deterministic Asyn-

chronous Automata

2014-05 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,

Carsten Fuhs, Jera Hensel, and Peter Schneider-Kamp: Automated Ter-

mination Analysis for Programs with Pointer Arithmetic

2014-06 Esther Horbert, Germán Mart́ın Garćıa, Simone Frintrop, and Bastian

Leibe: Sequence Level Salient Object Proposals for Generic Object De-

tection in Video

2014-07 Niloofar Safiran, Johannes Lotz, and Uwe Naumann: Algorithmic Dif-

ferentiation of Numerical Methods: Second-Order Tangent and Adjoint

Solvers for Systems of Parametrized Nonlinear Equations

2014-08 Christina Jansen, Florian Göbe, and Thomas Noll: Generating Inductive

Predicates for Symbolic Execution of Pointer-Manipulating Programs

BIBLIOGRAPHY 167

2014-09 Thomas Ströder and Terrance Swift (Editors): Proceedings of the In-

ternational Joint Workshop on Implementation of Constraint and Logic

Programming Systems and Logic-based Methods in Programming Envi-

ronments 2014

2014-14 Florian Schmidt, Matteo Ceriotti, Niklas Hauser, and Klaus Wehrle:

HotBox: Testing Temperature Effects in Sensor Networks

2014-15 Dominique Gückel: Synthesis of State Space Generators for Model

Checking Microcontroller Code

2014-16 Hongfei Fu: Verifying Probabilistic Systems: New Algorithms and Com-

plexity Results

2015-01 ∗ Fachgruppe Informatik: Annual Report 2015

2015-05 Florian Frohn, Jürgen Giesl, Jera Hensel, Cornelius Aschermann, and

Thomas Ströder: Inferring Lower Bounds for Runtime Complexity

2015-06 Thomas Ströder and Wolfgang Thomas (Editors): Proceedings of the

Young Researchers’ Conference “Frontiers of Formal Methods”

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

	List of Figures
	List of Tables
	Introduction
	Topic
	State of the art
	Related tools
	Models of hybrid systems

	Contributions
	Outline
	Personal publications
	Publications included in the thesis
	Other publications

	Preliminaries
	Notations
	Interval arithmetic
	Basic definitions and theorems
	Interval evaluation for polynomial functions
	Applications

	Taylor models
	Taylor approximations
	Basic theorems of Taylor models
	Taylor model arithmetic
	Applications

	Representations for reachable sets
	Convex polyhedra and polytopes
	Zonotopes
	Ellipsoids
	Support functions

	Taylor Model Flowpipes for Continuous Systems
	Continuous systems
	High-level flowpipe construction schemes
	Schemes for linear continuous systems
	General scheme for non-linear continuous systems

	Computing Taylor model flowpipes
	Standard Taylor model integration method
	Preconditioned Taylor expansions
	Fast remainder refinement
	Case studies

	Adaptive techniques
	Time-varying uncertainties
	Fast Taylor model flowpipe generation for linear ODEs

	Taylor Model Flowpipes for Hybrid Systems
	Hybrid automata
	Framework of the flowpipe construction
	Flowpipe/guard intersections
	Domain contraction
	Range over-approximation

	Intersection aggregation
	Aggregation by an oriented rectangular hull
	Aggregation by a parallelotope
	More representations for aggregation

	Applications
	Simple examples
	Spiking neurons
	Inverted pendulum
	Aircraft collision avoidance maneuver
	Glycemic Control in Diabetic Patients
	Non-linear transmission line circuits

	Summary

	The Tool Flow*
	Overview
	Basic computational libraries
	Input language
	Definition of the system
	Initial and unsafe set
	Reachability setting
	Examples

	Format of Taylor model files
	Performance evaluation
	Comparison with VNODE-LP
	Comparison with dReach
	Comparison with SpaceEx
	Scalability evaluation

	Future work

	Conclusion
	Bibliography

