RWTH Aachen

Department of Computer Science
Technical Report

Generating Inductive Predicates for
Symbolic Execution of
Pointer-Manipulating Programs

Christina Jansen and Florian Gobe and Thomas Noll

ISSN 0935-3232 . Aachener Informatik-Berichte . AlB-2014-08

RWTH Aachen . Department of Computer Science . May 2014

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Generating Inductive Predicates for Symbolic
Execution of Pointer-Manipulating Programs

Christina Jansen

RWTH Aachen University, Germany
http://moves.rwth-aachen.de/

Abstract—Separation Logic (SL) is an extension of Hoare
Logic that supports reasoning about pointer-manipulating pro-
grams. It employs inductively-defined predicates for specifying
the (dynamic) data structures maintained at runtime, such as
lists or trees. To support symbolic execution, SL introduces
abstraction rules that yield symbolic representations of concrete
heap states. Whenever concrete program instructions are to be
applied, so-called unrolling rules are used to locally concretise
the symbolic heap. To enable automatic generation of a complete
set of unrolling rules, however, predicate definitions have to
meet certain requirements, which are currently only implicitly
specified and manually established.

To tackle this problem, we exploit the relationship between SL
and hyperedge replacement grammars (HRGs). The latter repre-
sent (abstracted) heaps by hypergraphs containing placeholders
whose interpretation is specified by grammar rules. Earlier work
has shown that the correctness of heap abstraction using HRGs
requires certain structural properties, such as increasingness,
which can automatically be established. We show that it is
exactly the Separation Logic counterparts of those properties
that enable a direct generation of abstraction and unrolling rules
from predicate definitions for symbolic execution.

Technically, this result is achieved by first providing formal-
isations of the structural properties in SL. We then extend an
existing translation between SL and HRGs such that it covers
all HRGs describing data structures, and show that it preserves
these structural properties.

Index Terms—Heap Abstraction, Separation Logic, Hyperedge
Replacement Grammars, Predicate Generation

I. INTRODUCTION

As software often heavily relies on pointers, understanding
this concept is indispensable to understanding software. Promi-
nent examples of pointer usage are dynamic data structures
such as doubly-linked lists, nested lists, trees, and so forth.
While pointers are one of the most common sources of bugs in
software [1], those errors are often difficult to trace. Thus au-
tomated analysis techniques are of great assistance. However,
the problem is highly non-trivial as the presence of dynamic
data structures generally gives rise to an unbounded state space
of the program to be analysed. A common approach is to apply
abstraction techniques to obtain a finite representation.

In this paper we investigate the relationship between two
such techniques. The first, introduced in Sect. III, is based
on Separation Logic (SL) [2], an extension of Hoare Logic
that supports local reasoning in disjoint parts of the heap.
It employs inductively defined predicates for specifying the

Florian Gobe

Software Modeling and Verification Group ~Embedded Software Laboratory

RWTH Aachen University, Germany
http://embedded.rwth-aachen.de/

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University, Germany
http://moves.rwth-aachen.de/

(dynamic) data structures maintained at runtime, such as lists
or trees. To support symbolic execution, SL introduces ab-
straction rules that yield symbolic representations of concrete
heap states. Whenever concrete program instructions are to be
applied, so-called unrolling rules expose fields of abstracted
heap parts on demand to enable the application of the respec-
tive operational rule. This yields a (local) concretisation of the
symbolic heap [3]. More details are provided in Sect. IV.

Both abstraction and unrolling rules are dependent on the
predicates. This, however, raises the question of the appro-
priateness of predicate definitions to support the (automated)
construction of such rules. Current literature largely ignores
this problem; it addresses specific settings such as lists or
trees but does not provide general conditions under which a
complete set of abstraction and unrolling rules can be gener-
ated systematically. Rather, such rules have to be developed
manually.

As it turns out, similar conditions are well-studied for the
second approach, which employs a graph-based representation
of heaps supporting both concrete and abstract parts. The latter
is realised by deploying hyperedges, i.e., edges that connect
an arbitrary number of nodes, and that are labelled with
nonterminal symbols. They are interpreted as placeholders for
data structures that are specified by hyperedge replacement
grammars (HRGs), i.e., sets of context-free production rules.
As will be shown in Sect. V, abstraction and concretisation
are implemented by applying production rules in backward
and forward direction, respectively. To ensure the correctness
and practicability of this procedure, the grammars are auto-
matically transformed such that they exhibit certain structural
properties, which are defined in Sect. VL.

The motivation of our work is to exploit these results on
structural properties and the corresponding HRG transforma-
tions to support automated predicate generation for symbolic
execution using the SL framework. These predicates should
exhibit all properties necessary to soundly specify abstraction
and unrolling as reverse operations. To this aim, we first
provide logical formalisations of the structural properties and
argue why they enable the direct applicability of predicate
definitions for symbolic execution. More concretely, we show
that they allow to automatically compile proper abstraction
and concretisation rules (such as list collapsing and unrolling
operations) from the predicate definitions. We then relate the

SL properties to those introduced for HRGs in Sect. V. In
Sect. VII, we then extend a semantics-preserving translation
between (a fragment of) SL and HRGs as established earlier
in [4] such that it covers all HRGs describing data structures,
and show that it preserves the structural properties.

Altogether, these achievements provide the formal basis of
an integrated framework for heap abstraction that combines
the best of both worlds:

1) data structures are specified using the intuitive formalism

of HRGs;

2) the structural properties to ensure correctness of abstrac-

tion are automatically established;

3) SL predicate definitions are generated by the property-

preserving mapping; and

4) symbolic execution is performed using abstraction and

unrolling rules derived from the predicate definitions.
The last step can be assisted by a number of tools that support
SL reasoning, such as Heap-Hop [5], jStar [6], Predator [7],
Smallfoot [8], Spacelnvader [9], Thor [10], and Xisa [11]. The
paper concludes with some final remarks in Sect. VIIIL.

Related Work: Without giving further details we mention
important alternative approaches to heap verification: shape
analysis using three-valued logic [12], regular tree automata
[13], and pattern-based graph abstraction [14].

The research that is closest to ours is described in [4],
[15]. It establishes the correspondence between a restricted
subset of HRGs and a fragment of SL, and shows that SL
is actually more expressive than HRGs. Our work extends
this approach by considering heap nodes with more than two
selector fields. Moreover, it strengthens the correspondence
result by providing characterisations of the structural proper-
ties mentioned before for both formalisms, and by showing
that they are preserved by the translations in both directions.
The work of Dodds and Plump is inspired by [16], which
gives a semantics to graph grammars my mapping them to
SL formulae. However, these grammars only allow to define
tree data structures, and the translation is only one-way, which
does not allow to derive any correspondence results.

In a more general setting, Monadic Second-Order Logic was
used to characterise the graph transductions defined by such
grammars [17], [18] (although less with the goal of program
verification). In particular, [19] states that for an HRG and
a monadic second-order formula it is decidable whether the
language generated by the grammar contains graphs described
by the formula.

II. PRELIMINARIES

The following notations will be used throughout the paper.
Given a set S, S* is the set of all finite sequences (strings)
over S, including the empty sequence ¢. For s € S*, the
length of s is denoted by |s|, the set of all its elements by
1sS., and by s(4) (i € [1,]s]]) we refer to the i-th element of s.
Given a tuple ¢t = (A, B,C,...), we write A;, B; etc. for the
components if their names are understood from the context.
We represent a function f : A — B by its set of mappings
{e—y|JveAyeB: f(x) =y} and write fp to denote

the empty function, i.e. fy = (). Function f : A — B is lifted
to sets f : 24 — 2B and to sequences f : A* — B* by point-
wise application. The i operator denotes the disjoint union of
two functions.

III. SEPARATION LOGIC

SL is designed to reason about heaps. It supports the
specification of inductively-defined predicates that allow to
describe heap shapes. Thus it is particularly interesting for
symbolic execution of pointer-manipulating programs, which
is studied in e.g. [3]. In this paper our main focus lies on the
translation from HRGs to SL predicates and the associated
structural properties. Therefore we keep the presentation of
SL short and refer to [2] for a detailed introduction.

In SL a heap is understood as a set of locations connected
via references. We assume the set of heap locations Loc :=
N. To express that a location contains a null reference, we
introduce the set Elem := Loc U {null}. A heap is a (partial)
mapping h : Loc — Elem. The set of all heaps is denoted by
He.

SL features logical variables, denoted by Var, that range
over heap locations. Thus an SL formula is interpreted over a
(heap, interpretation)-pair.

Definition 3.1 (Interpretation): An interpretation is a (par-
tial) mapping ¢ : Var — Elem. We denote the set of all
interpretations by Int.

We consider the heap to contain objects. Each object has
a number of references to other objects, represented by a
finite set 3 of selectors. In the heap representation we assume
these references to reside in successive locations respecting
a canonical order and thus reserve |X| successive locations
for each object. We use the notation cn(s),s € ¥ to denote
the ordinal of selector s, where 0 < cn(s) < ||, i.e., under
interpretation ¢ the location of selector s of an object z is
i(z) +cn(s). To simplify notation, we assume w.l.0.g. that for
a heap containing n objects, locations 1,...,n - |3| are used,
i.e. we do not distinguish between heaps that differ only in
their location numbering. An interpretation ¢ € Int is safe if
img(7) C {1,|2]4+1,2|Z|+1,...} U{null}. In the following
we assume all interpretations to be safe.

We consider a restricted set of SL formulae where negation
-, true and conjunction A in subformulae speaking about the
heap is disallowed. This restriction is necessary and due to the
fact that HRGs are less expressive than SL [15].

Definition 3.2 (Syntax of SL): Let Pred be a set of predicate
names. The syntax of SL is given by:

E:=z|null
Pu:=x=y|PAP
F:=emp|zs—E|FxF|
Az :F|o(E,..,FE)
Su=F|SVS|PAS

pure formulae

heap formulae

SL formulae

where z,y € Var, s € ¥ and o € Pred. A heap formula of
the form xz.s — F is called a pointer assertion. SLF denotes
the set of all SL formulae.

To simplify notation, we introduce the following abbrevi-
ations. Given ¢ € SLF, the set Var(¢) (FV(¢)) collects
all (free) variables of ¢. If F'V(¢) = 0, then ¢ is called
closed. Atomic(¢) denotes the set of all aromic subformulae
of ¢, that is, those of the form z = y, emp, x.s — E and
o(E, ..., E). The predicate calls in ¢ are given by pred(¢) :=
{o(z1,...,2,) € Atomic(¢) | ¢ € Pred,xy,...,z, €
Var U {null}}. If pred(¢) = (), then ¢ is called primitive.

Predicate definitions are collected in environments.

Definition 3.3 (Environment): A predicate definition for o €
Pred is of the form o(x1,...,2,) := 01 V...V 0, Where
m,n €N, zy,...,x, € Var are pairwise distinct, o1, ...,0.,
are heap formulae, null does not occur in o1 V ...V o,
and FV(o;) = {z1,...,2,} for each j € [1,m]. We call
o1V...Von, the body of 0. A set of definitions with distinct
predicates is called an environment. The set of all environments
is denoted by Env.

Example 3.4: A predicate named dll for specifying doubly-
linked lists can be defined as follows: dll(xy,x2) := o1 V 09
with two disjuncts o1 := x1.n > X9 * T2.p — 1 and oy =
Ir .z — rkrp — 21 % dll(r,x2). The corresponding
environment is the singleton set {dll(x1,22) := 01 V 02}.

The (weak) restriction that null is not allowed to appear in
the predicate body can again be traced back to HRGs, where
a similar restriction will be introduced for the sake of simpli-
fication. Note that while null is disallowed in environments,
its usage in SL formulae is admitted. The requirement that
each disjunct has to refer to all parameter variables ensures
that the HRG resulting from the translation (cf. Sect. VII) is
ranked. This assumption does not impose a semantic restriction
as each SL formula can be translated into an equivalent one
by introducing new predicates fulfilling this property. The
construction is similar to establishing an equivalent, ranked
HRG as shown in [20].

For I' € Env, Predr is the set of all ¢ € Pred with a
definition in T". Note that we assume predicate definitions to
be in disjunctive normal form. As every SL formula can be
translated into this normal form, this is no true restriction [21].

Next we define the predicate interpretation nr based on an
environment I' € Env. Intuitively, for a predicate ¢ defined
in T, nr(o) contains all pairs of locations representing the
arguments to o, and heaps that fulfil o(z1,...,2,).

Definition 3.5 (Predicate Interpretation): The predicate
interpretation nr of an environment I' € Env is the least
fixpoint of the function fr : (Pred — 2Lo¢"xHe) _ (Pred —
oloc™xHey w rt C where fr(n)(o) is given by

{(,h) | hy{z1 = 1(1),...;2pn = l(n)},nEOLV...Von}

for o(x1,...,%n) =01 V... Vo, €.
Here, the satisfaction relation |= is determined as follows.

Definition 3.6 (Semantics of SL): Given I' € Env, the

relation = is inductively defined by

<= dom(h) =0

< dom(h) = {i(z) + cn(s)},
h(i(x) + cn(s)) = null

<= dom(h) = {i(z) + cn(s)},
h(i(z) 4 en(s)) = i(y)

<= ex. hi,hg: hiiHhy = h,
hi,i,nr E @1, ha,i,nr | ¢2

h7 i7 nr |: emp
h,i,nr E 2.s — null

hvivnf‘ 'Z'Z‘SHy

haiﬂ)l“ |=¢1*¢)2

hyi,np =3z : ¢ <= ex. v € Loc:

h,Z[.Z’ — U]»’h‘ ’: ¢
hoi,nr Eo(@,...,m,) < ((i(z1),...,i(z0)), h) € nr(o)
hyi,nr = ¢V < h,i,nr E ¢ or hyi,nr =

hiiynr Ex=yAN¢ < i(x)=1i(y) and h,i,nr E .

We call two SL formulae equivalent (=) if for any fixed
predicate interpretation they are fulfilled by the same set of
heap/interpretation pairs.

IV. PREDICATE PROPERTIES FOR SYMBOLIC EXECUTION

As seen in the previous section, SL provides a formalism
for analysing pointer-manipulated programs. Due to dynamic
allocation and deallocation, the state space of such programs is
potentially infinite and so is the necessary number of formulae
describing those states. An approach to resolve this issue is
abstraction.

A. Abstraction and Unrolling

Abstraction operations in SL are typically specified by ab-
straction rules, which define transformations on SL formulae.

Example 4.1: For example, consider the environment from
Ex. 3.4 defining a doubly-linked list structure. The abstraction
rule absy = @ * T1.N > To % To.p — T —> ¢ x dll(z1, z2)
defines the transformation of ¢*xq.n — xo%x2.p — 21, Where
¢ is some arbitrary SL formula, such that the subformula
describing a list of length 1 is abstracted to a list of arbitrary
length.

For the purpose of automated symbolic execution of pro-
grams, usually abstraction rules are either pre-defined or can
be given by the user, as e.g. tools like jStar allow [6]. To ensure
soundness, these rules must result from valid implications.

Example 4.2: Consider again the environment and abstrac-
tion rule given in Ex. 3.4. Rule abs; is sound as clearly
¢ * x1.n — X9 * To.p — x1 implies ¢ x dll(x1,z2) whereas
¢ x dll(xy,x2) 228 ¢ * T1.n > Tg * To.p — X1 IS NO Over-
approximation and thus not a sound abstraction rule.

The application of abstraction rules yields heap represen-
tations that are partially concrete and partially abstract. For
example, the heap containing a doubly-linked list of length
two represented by the SL formula Jxq,22,23 : 21.n —
T % To.M > T3 % To.p — X1 % T3.p — To can be abstracted to
A1, 22,23 : 1.0 > T * T2.p — X1 * dll(x2, x3) using the
abstraction rule from above.

To generate the abstract state space of a pointer-
manipulating program, symbolic execution is performed. The

key idea behind symbolic execution using SL is that whenever
fields hidden in an abstracted parts are to be accessed during
execution, they are exposed first. This can e.g. be achieved
by performing frame inference using a theorem prover. Thus
whenever in a state ¢, field s of object x is accessed, the prover
is requested to provide all formulae of the form ¢’ *x x.s — y
which entail ¢. This step is referred to as unrolling. Note that
for correctness it is crucial that a complete set of such formulae
is considered. Execution is then resumed and performed on
this set, resulting in an over-approximated state space.

Instead of specifying abstraction rules manually and relying
on the theorem prover’s frame inference procedure during the
unrolling step, abstraction and unrolling rules can directly
be generated from the predicate definitions. The basic idea
is to construct an abstraction rule for each disjunct of the
predicate body stating that this disjunct can be abstracted to
a call of the predicate. Unrolling is performed by replacing a
predicate call by each disjunct of its predicate definition. For
instance, concretisation of the formula 3ry, 79 : dll(ry,r2) at
r1 yields the following set of formulae (which is a safe over-
approximation of the original formula): {Ir1,72 : r1.n —
To * To.p > r1, 3Ty, e, T i T = TR p > ok dll(r o)},
where the two formulae result from unrolling of dll(r1, r2) by
the first and second disjunct of its predicate body, respectively.
To ensure the generated rules are sound, predicate definitions
have to exhibit certain structural properties, which we will
define in the following section. In further sections we will
show that these properties impose no real restrictions and
how they can be established. The main advantage of deriving
abstraction and unrolling rules from such predicate definitions
is that proving soundness of those rules and relying on frame
inference is not necessary any more. Besides this, we will
introduce further properties improving the automated symbolic
execution approach that are easily ensured by automated rule
generation.

B. Structural Properties

In the following we introduce four structural properties
on SL predicates that guarantee soundness and practicability
of heap abstractions by formulating syntactical requirements
on the predicate definitions contained in an environment.
These properties do not entail any restriction on the data
structures defined by the predicates since, as we will see
later, predicate definitions can automatically be transformed
into ones satisfying these requirements. This transformation
procedure employs the relation between SL and HRGs, which
will be investigated in Sect. VII. Moreover we introduce a fifth
property, called confluence under abstraction, that is useful
because it provides unique abstraction normal forms (but is
not necessary for ensuring soundness of heap abstraction). The
property differs from the others in that it cannot be formulated
as a structural property. Moreover while there exists a decision
procedure, we are not aware of any algorithm that generally
establishes confluence.

In Sect. VI, we give an equivalent definition for each of
these five properties on the graph grammar side and show that

the translation described in Sect. VII preserves them.

We start by considering the two structural properties, pro-
ductivity and typedness, that are not immediately necessary
for the approach to work correctly but will pave the way for
the more intriguing and mandatory properties, increasingness
and local concretisability, that will be discussed later on.

1) Productivity: A predicate is productive if it can itera-
tively be unrolled into a formula without predicate calls, i.e.
one describing a fully concrete heap. Consider an environment
with non-productive predicates. Then there exist SL formulae
describing abstract heaps, although no concrete heap can sat-
isfy these. This follows directly from the fixpoint semantics of
predicate calls. Thus they represent program states a concrete
program execution cannot end up in. Instead of detecting and
discarding such heap configurations when they appear, we
restrict environments to productive predicates in advance.

Cast as a syntactic property, a predicate is productive if one
of its disjuncts contains no predicate calls (i.e., describes a
concrete heap) or if each called predicate is already known to
be productive.

Definition 4.3 (Productivity): The set of productive predi-
cates is the least subset of Pred such that for each element
there exists a disjunct o; in its predicate body such that either
o; is primitive or all predicates occurring in pred(o;) are
productive. An environment is productive if each of its defined
predicates is productive.

2) Typedness: Applying abstraction and unrolling rules in
an alternating fashion may yield formulae that do not represent
valid heaps. To illustrate this, consider the environment for
doubly-linked lists from Ex. 3.4. Now assume we want to
modify this grammar such that it generates partly singly-
and partly doubly-linked lists. Thus we modify the environ-
ment containing the dll-predicate as follows: {list(z1,z2) :=
dll(xz1,2) V1.0 — o V Ir : 1. — 7 * list(r,za) }.

Given an SL formula 3rq, 79,73 : r1.0 — 1o % ro.p —> 71 *
list(ra,r3), one could abstract the subformula r;.n +— ro by
means of the second disjunct of list, which yields 3ry, 79,73 :
list(ri,m2) * r2.p +— 11 * list(ra,r3). To ensure that ex-
posing the pointers around r; in a subsequent concretisation
step is sound, we have to unroll with all possible disjuncts
of predicate list. One possible unrolling is the following:
Jri,ro, 73 list(ri,72) * r9.p +— 71 * list(rg,rs3) gt
Iry, 7o, 13 1 PN > Tk To.p > T K ro.p > 11k List(re, 13).
This formula is unsatisfiable, as the subformula ro.p — 7
appearing twice is separated by means of the *x-operator. While
in this case it is easy to see that no heap could satisfy the
formula, it could also happen that this fact is hidden through
variable equality or similar.

Typedness ensures that such unsatisfiable formulae cannot
arise due to abstraction and unrolling. Intuitively we fix the
type, i.e., the set of pointers, for each (predicate, parameter)-
pair (pred, x;) requiring that for each disjunction in the defi-
nition of this predicate exactly this set of pointers is derivable
at variable x;. E.g. the predicate list of the beforementioned
example is not typed, as type(za) = 0 and type(z2) = {p}
of the disjuncts contradicts each other.

Note that for any reasonable definition of typedness of SL
formulae it is necessary to assume that the interpretation of
parameters zy, ..., T, is pairwise distinct. This enables us to
isolate the selectors derived at z; (j € [1,n]).

Definition 4.4 (Typedness): Let I' € Env. A predicate
definition o (z1,...,2pn) := 01 V...V o, € ' is fyped if
for each z; (j € [1,n]) there exists a set type(o,j) C =
such that, for all » € He and ¢ € Int with i(z;) # i(xy)
G # k) and hyi,ne = o1, 20), type(o,5) = {s € 3 |
i(z;) +cn(s) € dom(h)}. An environment is typed if each of
its definitions is.

3) Increasingness: When applying abstraction rules, e.g.
those automatically generated from predicate definitions, one
has to make sure that abstraction actually terminates, that is,
no infinite abstraction sequences are possible. The latter can
e.g. occur for an environment of the form {o(x1,...,2,) =
o(x1,...,2,)}. When repeatedly abstracting with ¢’s only
disjunct, abstraction (and thus symbolic execution) does not
terminate. Again this behaviour is ruled out beforehand by a
syntactic restriction on environments, called increasingness. It
requires the disjuncts of each predicate definition to either
contain a pointer assertion or to be “bigger” (in terms of
occurrences of variables and predicate calls) than the left-hand
side of the predicate definition.

Definition 4.5 (Increasingness): A predicate definition
o(T1,..., %) = 01 V ...V 0y is increasing if for all o
(j € [1,m]) it holds that o; contains a pointer assertion
or #pred(o;) + #Var(oj) > n + 1, where #pred(o;) is
the number of predicate calls and # Var(o;) the number of
variables occurring in ¢;. An environment is increasing if all
of its predicate definitions are increasing.

4) Local Concretisability: One of the key ideas behind
symbolic execution of pointer-manipulating programs is that
each program statement only affects a local portion rather
than the whole heap. Thus if a program statement operates on
an abstracted heap part, we can expose pointers locally such
that the statement can be executed as if the complete heap
was concrete. This necessitates that abstraction can always
and everywhere be reversed by unrolling using finitely many
rule applications. This is not ensured by every environment,
as illustrated by the following example.

Example 4.6: Consider again the environment providing a
predicate definition for doubly-linked lists from Ex. 3.4 and the
SL formula ¢ := 3r : head.n — r * r.p — head * dll(r, tail)
where head and tail are program variables. Assume a program
that traverses the list from its tail (the last element of the list).
Then the p-pointer of this element is abstracted or, put dif-
ferently, “hidden” in the predicate call dli(r,tail). Unrolling
yields the two formulae unroll(¢) := {3r : headn —
r*r.p+— head * rn — tail * tail.p — r, Ir1,ry @ head.n —
r1 % r1.p — head * T1.n > T % To.p > 11 % dll(re, tail)},
where the second formula is locally concrete at the head of the
list instead of the tail. Successive unrolling does not resolve
this. On the other hand, ignoring the second disjunct of the
definition of dIl guarantees termination of unrolling but is
unsound as it may under-approximate the state space of the

program.

Therefore we formulate a property which guarantees that
for each (predicate, parameter)-pair (pred, z;) there exists an
environment unrolling a pred-predicate call at variable z;
that is equivalent to the original one, i.e. whose predicate
interpretation is equivalent.

Definition 4.7 (Local Concretisability): Let I' € Env be
typed. A predicate definition o(x1,...,2,) ;== 01V...Vo, €
T is locally concretisable if, for all j € [1,n], there exists a
o'(x1,...,2n) =V ®; (2; C{0o1,...,0m}) such that

1) Vh € He,i € Int,nr € Pl: hyi,nr Eo(xq,...,2,) <=
hyi,nr |E o'(x1,...,2,) where I results from T' by
renaming o to o’.

2) V¢ € ®;,5 € type(o,j): xj.s — y € Atomic(¢) for
some y € Var U {null}.

An environment is locally concretisable if all of its predicate
definitions are.

For an environment satisfying this property we can directly
extract the rules for unrolling a predicate call in a way that
guarantees an over-approximation of the program’s state space.

Example 4.8: For instance, consider the environment I with
one predicate dll defined by three disjuncts oy := z1.n — To%
To.p > T1, 02 := Iry 1 1.0 TR TP > 21 % dI(r, T2),
and o3 := 3ry : dll(x1,71) *T1.0 — T9 % x2.p — 71. Here we
can unroll dll(x1,z2) at parameter z; by replacing with both
o1 and o4 as described earlier in this section, while unrolling
at xo employs the disjuncts o; and os.

5) Confluence Under Abstraction: When applying abstrac-
tion rules, it can happen that different application orders yield
different formulae.

Example 4.9: Consider again the locally concretisable en-
vironment from Ex. 4.8 and the SL formula 3r : head.n +—
r * r.p — head x dll(r,tail). Then abstraction by choosing
the first disjunct ;7 = z1.n — Tg * x2.p — 21 results in the
formula 3r : dil(head, r) *dll(r, tail). Another possibility for
abstraction is to select the second disjunct oo = 311 : 1.0 +—
r1 % 11.p — x1 * dll(r1,x2), resulting in dll(head,tail).
Obviously, the resulting formulae are inequivalent and cannot
be abstracted further.

If such deviations cannot appear, abstraction always yields
unique normal forms. These unique normal forms are highly
desired as they imply that — under the assumption that the
environment is increasing and describes the data structures
arising in the program under consideration (except for finitely
many local deviations) — the resulting abstract state space is
finite. Therefore we introduce confluence under abstraction,
which is guaranteed by an environment if the order in which
abstractions are applied does not matter, i.e., they all finally
yield the same abstract formula.

Definition 4.10 (Confluence under Abstraction): I' € Env
is confluent under abstraction if, for all closed ¢ € SLF and

abstractions ¢ =51 ¢y, ¢ =S ¢, there exist ¢y —=*p ¢}

abs

and ¢ =" ¢}, such that ¢} = ¢}.

V. HYPEREDGE REPLACEMENT GRAMMARS

In the heap abstraction approach based on graph grammars
[22], (abstract) heaps are represented as hypergraphs. Hyper-
graphs are graphs with edges as proper objects, i.e. they can
connect arbitrarily many nodes.

Definition 5.1 (Hypergraph): Let X be a finite alphabet with
ranking function 7k : ¥ — N. A (labelled) hypergraph (HG)
over ¥ is a tuple H = (V, E, att, lab, ext) where V is a set of
or nodes and F a set of hyperedges, att : E — V* maps each
hyperedge to a sequence of attached nodes, lab: E — Y is a
hyperedge-labelling function, and ezt € V* a (possibly empty)
sequence of pairwise distinct external nodes. For e € E, we
require |att(e)| = rk(lab(e)) and let rk(e) = rk(lab(e)). The
set of all hypergraphs over 3 is denoted by HGs.

Two HGs are isomorphic if they are identical modulo
renaming of nodes and hyperedges. We will not distinguish
between isomorphic HGs.

Using the alphabet of selectors introduced in Sect. III,
>, we model (concrete) heaps as HGs over ¥ without ex-
ternal nodes. (The latter will be required later for defining
the replacement of hyperedges.) Objects are represented by
nodes, and selectors by edges of rank two connecting the
corresponding object(s), where selector edges are understood
as pointers from the first attached object to the second one. We
introduce a node vnyp representing null, which is unique to
every hypergraph. To represent abstract parts of the heap we
use nonterminal edges, which carry labels from an additional
set of nonterminals (NTs) N (and we let Xy = X W N).

Example 5.2: A typical implementation of a doubly-linked
list consists of a sequence of list elements connected by next
(n) and previous (p) pointers. Fig. 1 depicts a hypergraph
representation of a such a list. The three circles are nodes
representing objects on the heap. A shaded circle indicates an
external node; its ordinal (i.e., position in ezt) is given by the
label. The L-labelled box represents an NT edge of rank two
indicating an abstracted doubly-linked list between the first
and second node attached to this edge. Later we will see how
these abstract structures are defined. The connections between
NT edges and nodes are labelled with their ordinal number.
For the sake of readability, selectors (n and p) are depicted as
directed edges.

Note that not every HG
over X represents a valid
heap: e.g., it is necessary
that, for every selector s €
3], every object has at most
one outgoing s-edge, and that external nodes are absent. HGs
that satisfy this requirement (cf. Def. A.1) are called heap
configurations (HC), and are collected in the set HCs;, . Thus
HCy; represents all concrete HCs, i.e., those without nonter-
minal edges. HCs with external nodes are called extended and
are represented by the sets HCEy;,, and HCEy, in the abstract
and concrete case, respectively.

An NT edge of an HC acts as a placeholder for a heap
part of a particular shape. We use hyperedge replacement
grammars to describe its possible structure.

O O-1+0

Fig. 1. (Extended) heap as hypergraph

Definition 5.3 (Hyperedge Replacement Grammar): A hy-
peredge replacement grammar (HRG) over an alphabet X is
a function G : N — 2HCE=y with |exty| = rk(X) for each
HeG(X),X € N. We call X — H a production rule. The
set of all HRGs over X is denoted by HRGy, .

Example 5.4: Fig. 2 specifies an HRG for doubly-linked
lists. It employs one NT L of rank two and two production
rules. The right one recursively adds one list element, whereas
the left one terminates a derivation.

O O~{1+@

Fig. 2. A grammar for doubly-linked lists

n

OO

P

HRG derivations are defined through hyperedge replace-
ment, i.e. the substitution of an NT edge by the right-hand side
of a corresponding production rule. A sample replacement is
illustrated in Fig. 3, where the second rule of the grammar in
Fig. 2 is applied to the NT edge L in the upper graph.

n

O-B-Cr0

OO+

Fig. 3. Replacement of L-edge

Fig. 4. Resulting hypergraph

To this aim, the external nodes of the rule’s right-hand side
are mapped to the nodes of the upper graph as indicated by the
dashed arrows, and the L-edge is replaced by the rule’s right-
hand side. The result of this replacement is given in Fig. 4.

Definition 5.5 (HRG Derivation): Let G € HRGy,,
H H € HGy,, K e GX),p=X — K, and e € Eg
with lab(e) = X. H derives H' by p if H' results from H by
replacing e with K. H =, H’ refers to this derivation. Let
H =¢ H if H=.), H for some e € Efg, K € G(X),
p = X — K, and let =, denote the reflexive-transitive
closure of this relation.

When establishing a connection between HRGs and SL,
external nodes correspond to the parameters of a predicate
definition. Thus after applying a predicate definition parame-
ters may or may not reference the same location on the heap.
E.g. consider a formula of the form o (1, 22), which can be
fulfilled by a heap with either interpretation i(x1) = i(x2) or
i'(x1) # i’ (x2). This is true for external nodes of a hypergraph
as well, as they indicate those nodes that might collapse
when replacing an edge with this hypergraph. The context
of a hypergraph H collects all those graphs that result from
collapsing arbitrary external nodes of H (akin to the different
interpretations ¢ and '), and is denoted by context(H). The
formalization of this concept can be found in Def. A.2.

The definition of HRGs does not include a particular starting
graph. Instead, it is introduced as a parameter of the generated
language. If this parameter contains external nodes, they are
eliminated by considering its context.

Definition 5.6 (Language of an HRG): Let G € HRGy,, and
H € HGy,,. Lg(H) = {K € HGy, | context(H) =* K} is
the language generated from H.

The language of an NT is defined as the language of
its handle, a hypergraph consisting of a single hyperedge e
attached to rk(e) many distinct nodes only.

Definition 5.7 (Handle): Given X € N with rk(X) = n,
an X-handle is the hypergraph

X®=({vr,...,on}5{e}, {e—=v1... 0.}, {e— X} e)
S HCEN'

Moreover we define the X -handle over external nodes,

X2 ={vr,...,vn}{e},{e—=vi...o.} {e— X},
U] ... ’Un) S HCEEN.

Thus L(X*®) is the language induced by NT X. For H €
HCs,,, L(H) denotes the set of derivable concrete HGs. Note
that it is not guaranteed that L(H) C HCy, i.e., L(H) can
contain invalid heaps. If this is excluded, G is called a data
structure grammar. This property is decidable [23].

Definition 5.8 (Data Structure Grammar): G € HRGy, is
called a data structure grammar (DSG) if for all X € N,
L(X*®) C HCx. We denote the set of all data structure
grammars over Xy by DSGyx,, .

VI. HEAP ABSTRACTION GRAMMAR PROPERTIES

In the heap abstraction approach based on DSGs, program
states are described by HCs, which may contain edges la-
belled with nonterminals. These nonterminal edges act as a
placeholder for an abstracted heap part. The structures the
placeholders represent are given by DSGs. The state space
of the program under consideration is obtained by executing
its statements on these configurations. Similarly to symbolic
execution using SL, whenever statements have to be executed
which are operating on fields that are hidden in abstracted
parts of the heap, these fields are exposed beforehand. This
operation is referred to as concretisation. In the following
we will see that both abstraction and concretisation rules are
directly given by the DSG.

A. Abstraction and Concretisation

For DSGs the forward application of a production rule
yields a more concrete HC as certain abstract parts (viz., the
NT that is replaced) are concretised. In case more than one
rule is applicable, concretisation yields several heaps. For an
example concretisation see Fig. 5, where the occurrence of L
is either replaced by an empty list (at the bottom, conforming
to the first rule), or a list that is extended by one element
(at the top, conforming to the second rule). Thus applying
concretisation to the heap depicted on the left yields two
successor heaps, one for each possible concretisation. The
resulting transition system representing the program behaviour

thus over-approximates the transition system in which all

heaps are concrete. . .
| Reseselinte
COE0

oo

Fig. 5. Concretisation at the shaded node using both L-rules

The reverse application, i.e., the replacement of an em-
bedding of a rule’s right-hand side by its left-hand side,
yields an abstraction (denoted by == and =>* for an
abstraction sequence, respectively) of a heap. As (forward)
rule application is monotonically decreasing with respect to
language inclusion, abstraction of a heap configuration yields
an over-approximation of the current set of concrete heap
configurations.

Note that employing abstraction and concretisation as re-
verse operations is similar to the idea of generating abstraction
and unrolling rules from predicate definitions as described in
Sect. IV.

B. Structural Properties

Once we use abstraction and concretisation on the state
space of a heap-manipulating program, we have to make
sure that arbitrary compositions of these operations yield an
(abstract) state space that is a safe over-approximation of the
original one. We guarantee this by formulating four additional
properties for DSGs. DSGs exhibiting these properties are suit-
able for heap abstraction, and are thus called heap abstraction
grammars (HAGs). Notice that the properties that characterise
HAGs correspond to the properties given in Sect. IV, which
were introduced for automated generation of abstraction and
unrolling rules from SL predicate definitions. It is known that
the HAG properties do not restrict the expressivity of the
formalism, as every DSG can automatically be transformed
into one satisfying these requirements [20]. Additionally we
define the notion of backward confluence in connection with
HRGs. Similarly to the SL definition it guarantees unique
normal forms under abstraction. Again, backward confluence
is beneficial, but not needed for the correctness of the heap
abstraction approach. While there exists a decision procedure,
we are not aware of any completion algorithm that establishes
backward-confluence for DSGs.

1) Productivity: An NT is productive if its induced lan-
guage is non-empty. In a DSG with non-productive NTs,
there exist abstract heap configurations that cannot be reached
by a concrete program run. We can therefore safely remove
non-productive NTs and corresponding production rules of a
DSG without changing the language [20]. The corresponding
procedure is based on the following definition.

Definition 6.1 (Productivity): The set of productive NTs
is the least set such that for each element X there exists a
production rule X — H such that either H € HCy or all
elements of {Z € N | 3e € Ey : lab(e) = Z} are productive.
G € DSGsy, is productive if all of its NTs are productive.

o0 | OO0

Fig. 6. Untyped DSG extension for singly-linked lists

2) Typedness: Alternating abstraction and concretisation
may yield graphs that do not depict a heap, i.e., are not
HCs. To illustrate this, consider again the DSG for doubly-
linked lists from Fig. 2. Assume again we want to modify
this grammar such that it generates partly singly- and partly
doubly-linked lists. Thus we extend the DSG with the two
rules given in Fig. 6.

Fig. 7 depicts an abstraction-concretisation sequence em-
ploying this grammar and leading to a graph which is not a
HC (as there exists a node with two p-successors). Typedness
ensures that such a case cannot occur. Intuitively we fix the
type, i.e., the set of pointers, for each pair (X,j) (X € N,
j € [1,7k(X)]) requiring that for each production rule
X — H exactly this set of pointers is derivable at external

node ext g (7).
. 12
D00

No-ennso

Fig. 7. Abstraction and concretisation yielding an invalid heap con: Xguratlon

Deﬁmnon 6.2 (Typedness): An NT X € N with rk
is typed if, for all j € [1, n], there exists a set type(X j)cx
such that, for every H € L(X*®) with Vxe = {v1,...,0,},
type(X,j) = {lab(e) | Je € Ey : att(e)(1) = v;}. A DSG
G 1is typed if each of its NTs is typed.

3) Increasingness: Consider a production rule of the form
X — X2... When repeatedly applying this rule in a backward
fashion, the abstraction (and thus the heap analysis) does not
terminate. Again this behaviour is ruled out beforehand by a
syntactic restriction on DSGs, called increasingness. It requires
the right-hand side of each production rule to either contain a
terminal edge or to be “bigger” (in terms of nodes and edges)
than the handle of the left-hand side NT.

Definition 6.3 (Increasingness): Given G € DSGy,, X €
N is increasing if for all H € G(X) it holds that either H
consists of at least one terminal edge, i.e., lab(Eg) NE # (),
or |[Vy|+ |Eg| > rk(X) + 1. A DSG is increasing if all
X € N are increasing.

Increasing DSGs guarantee termination of abstraction, as
applying rules in backward direction strictly reduces the size
of the heap representation. Increasingness is implied when
establishing local Greibach Normal Form [20], a normal form
guaranteeing the following HAG property.

4) Local Concretisability: To be able to concretise locally
before program statements access fields hidden in abstracted
heap parts, it must be guaranteed that abstraction can always
and everywhere be reversed by finitely many concretisation
steps. This is not ensured by DSGs, as illustrated by the

following example.

Consider the DSG G for doubly-linked lists given in Fig. 2
and the HC in Fig. 5 (left). Assume a program that traverses
the doubly-linked list from its tail (the rightmost node of
the list). Then the p-pointer of this element is abstracted or,
put differently, “hidden” in the NT edge L. As seen before,
concretisation yields two heap configurations, cf. Fig. 5 (right)
where the upper one is locally concrete at the beginning of
the list instead of the end. Similarly to the situation in SL
demonstrated in Ex. 4.6, successive concretisations do not
resolve this issue, while ignoring the second rule is unsound
due to under-approximation of the state space.

Therefore we formulate a property which guarantees that
for each pair (X,j) (X € N, j € [1,rk(X)]), there exists a
subgrammar of GG concretising an X -labelled edge at the j-th
attached node while preserving the language of G.

Definition 6.4 (Local Concretisability): A typed G €
DSGs,, 1is locally concretisable if for all X € N there
exist grammars G (x 1), , G(x,rx(x)) such that for all j €
[1,1"]C(X)], dO’my(G(X_’j)) = {X}, G(XJ-) - G(X), and

D) Lg .y ue\ex)(X*®) = La(X*®), and
2) Va € type(X,j), H € Gx ;(X) : Je € Ey : lab(e) =
a A attg(e)(l) = extm(j).

The DSG G from Fig. 2 is locally concretisable at (X, 1)
(pick G(x,1) = G) but not locally concretisable at (X,2).
Extending G by the rule given in Fig. 8 establishes local
concretisability.

Thus now we can
pick a subgrammar
for concretisation de-
pending on where to
concretise. That is,
we employ all rules in G(x ;) for concretisation at the j-th
attached node of an X-labelled edge. Local concretisability
can be established for every DSG by transforming it into
local Greibach Normal Form [20]. This normal form is akin
to Greibach Normal Form for string grammars, since it guar-
antees for every external node v the existence of an equivalent
set of production rules with (outgoing) terminal edges at v.

5) Backward Confluence: Being a context-free mechanism,
the hyperedge replacement relation is clearly confluent, i.e.,
the order in which NT edges of a HG are replaced does
not matter. However, confluence of heap abstraction is also
a desired property as it implies that — under the assumptions
that the DSG is increasing and describes the data structures
arising in the program under consideration (except for finitely
many local deviations) — the resulting abstract state space is
finite. Therefore we introduce backward confluence for DSGs.

Definition 6.5 (Backward Confluence): G € DSGyg, is
backward confluent if for each H € HCs;, and abstractions
H a=bS> Hy and H => H2 there exists K € HCy,, such that
H; 2% K and H 2 K.

To our knowledge there exists no algorithm that transforms
a DSG into an equivalent backward confluent DSG. However,
it is decidable whether an HRG is backward confluent ([24],

o @Of:@

Fig. 8. Ensuring local concretisability

as a consequence of [25]). Notice that we actually consider
local confluence. However, for increasing HRGs abstraction is
terminating, and thus Newman’s Lemma also implies global
confluence.

VII. TRANSLATING DATA STRUCTURE GRAMMARS TO
ENVIRONMENTS AND VICE VERSA

The motivation behind this work is to utilise the results
on HAG properties for automatic generation of inductively
defined predicates suitable for symbolic execution based on
SL. To this aim we extend an existing translation between
HRGs and SL [4] such that it covers all DSGs. We conclude
by showing that this translation preserves the properties deter-
mined to be necessary for heap abstraction.

For the applications of the translation procedure consid-
ered here, we are only interested in translating DSGs to
environments and back. Thus we disregard program variables
referencing heap objects, as they are not allowed to appear on
right-hand sides of production rules or predicate definitions.
The translation itself can easily be adapted to handle those
variables; for more information we refer to [15], [21].

A. The Translation Mappings

We assume the translation functions graph[.] : SLF —
HCEg,, hrg[.] : Env — HRGyg,, env[.] : DSGyg, — Env,
form[.] : HCEy,, — SLF. Details can be found in App. A
and [21]. In App. A-D we define a criterion for environments
which ensures that hrg[.] yields a DSG.

We have seen that the (internal) nodes of a hypergraph are
always preserved under hyperedge replacement, i.e., can never
be merged with another node, while external nodes of right-
hand sides “disappear” due to hyperedge replacement. Thus
the internal nodes of a hypergraph represent the heap locations
that correspond to existing objects on the heap, i.e., those in
its domain. By contrast, an SL variable can be interpreted
as a reference to a location “outside” of the domain of the
heap. For example, consider the SL formula ¢ := dz,y :
x.n +— gy, which is fulfilled if there exist v,,, v, € Loc such that
dom(h) = {vy+cn(n)} with h(v,+cn(s)) = vy. As this does
not impose any restriction on vy, y could reference a location
outside h. To bridge this gap we consider interpretations only,
that fulfil the following assumption.

Assumption 7.1: Let ¢ € SLF. For all interpretations ¢ € Int
satisfying ¢ and all r1,re € Var(¢)\ FV(¢) with r1 # 7o, it
holds that 7(rq) # i(r2) unless the equality is explicitly stated
by an equality assertion 1 = ry in ¢.

Note that this property can be checked for a given interpreta-
tion and is crucial for the validity of the correctness theorems
of the translation. Under this precondition we now give an
example application of envl[.].

Example 7.2: Consider again the DSG G for doubly-
linked lists given in Ex. 5.4. When translating a DSG to an
environment, first for each NT X € N of rank n, a predicate
ox with parameters =1, ..., z, is issued (we use ~ to indicate
the translation step):
env[G] N ={L} and rk(L) =2~ op(x1, 22)

In the next step, each right-hand side of a production rule of
NT X is converted into an SL formula, and the predicate body
of ox results from disjuncting these formulae.

enw[G] G(X) = {R1,R2} ~ disjuncts 01,09 and thus
or(x1,22) 1= 01 V 02

For the translation of the right-hand sides, first each node is
identified by a unique variable: external node j by x;, internal

nodes v, ...,Uy by 71,...,7y and vy by null. The pa-
rameters of the predicate z1,...,x, become free variables in
the disjuncts, whereas r1, ..., 7, will be existentially bound.
env[G] for Ri: no internal nodes ~~ no quantifiers in oy
env[G] for Ra: one internal node identified by 7, ~~ o9 :=
E|T‘1 D

Then each edge is translated one-by-one using the node

identifiers as variables in the corresponding heap formula.

Terminal edges become pointer assertions.

env[G] for Ry: n- and p-edge ~ x1.n — x2 and z3.p —

€1

env[G] for Ro: n- and p-edge ~> x1.1 — r1 and r1.p — a1

NT edges are translated into predicate calls.

env[G] for Ry: L-edge ~ or(r1,22)

The translation is finalised by glueing together the edge

translations using *.

env[G] for Ri: Ry ~> 01 := 1.0+ Tg * Ta.p —> Tq

env[G] for Ro: Ry ~» 0 := Try : x1.n > 11 % T1.p —

x1 xor(ry, x2)

Thus G is translated into env[G] = {oL (71, x2) := 01 Vo2}.
The translation of environments to HRGs, hrg[.], shares the

same correspondences and thus proceeds analogously, glueing

graphs instead of assertions. Table I provides an overview of

the correspondences between DSGs and SL.

DSG SL

HC H € HCyx, closed formula ¢ € SLF
extended HC H € HCEyx formula ¢ € SLF

nonterminal X € N predicate o € Pred

terminal edge e (lab(e) € X) pointer assertion z.s — y
nonterm. edge e (lab(e) € N) | pred. call o(z1,...,2n)
X-rules G(X) (X € N) pred. def. o(x1,...,xn) = ...
DSG G environment I’

TABLE I
OVERVIEW: DSG vs. SL

To relate the concept of heap configurations and SL heaps
for the correctness criterion, we introduce a heap mapping
o : He — HCs (cf. Def. A.14) that generates a graph
representation of a heap in a straightforward manner. The
following correctness theorem states that given an environ-
ment [, a heap fulfils the formula o(z1,...,z,) iff a graph
representing this heap is contained in the language of the HRG
that I" translates to. The starting graph for the derivation is
exactly the translation of the predicate call, i.e. the handle of
the associated nonterminal. A similar intuition applies to the
reverse direction.

Theorem 7.3 (Correctness of hrg[.] : Env — HRGy,):
Let I' € Env. Then for all o(z1,...,2,) = ¢ € I

(I,h) € nr(o) <= a(h) € Lpygpry(graphlo(zy,. .., x,)])

Theorem 7.4 (Correctness of env[.] : DSGx, — Env): Let
G € DSGs;,, . Then for all X € N:

HeL(XS,) < Jicit: (l,a ' (H)) € Nenv]G]

where | = L(:Ll) e ’i(lIJTk(X)).

The proofs of the theorems can be found in App. A-C.
Furthermore as a consequence of the theorems above it holds
that given I' € Env, G € DSGy,:

1) for all closed ¢ € SLF:
h.ig,nr = ¢ <= a(h) € Lurgry(graph[e]).
2) for all H € HCs; ,:
H' € Lo(H) <= o "(H') ig, Nenvjc] = form[H].

B. Property Preservation under Translation

In the preceding section we have motivated the need for
additional properties of DSGs, entailing the notion of HAGs.
For each of those we gave a (synonymic) characterisation for
environments in Sect. IV. A DSG or environment featuring
all of them is suitable for symbolic execution of pointer-
manipulating programs. Thus they should be preserved under
translation in both directions. The following theorem states
that this is indeed the case.

Theorem 7.5 (Preservation of Properties under Translation):

« For an productive, typed, increasing and locally con-
cretisable environment I' confluent under abstraction it
holds that the DSG G := hrg[I'] is productive, typed,
increasing, locally concretisable and backward-confluent.

« For a productive, typed, increasing, locally concretisable
and backward-confluent DSG G it holds that the envi-
ronment I' := env[G] is productive, typed, increasing,
locally concretisable and confluent under abstraction.

The proof of this theorem (divided into several lemmas)

is given in App. B. For DSGs there exist transformations
(productivity, typedness, increasingness, local concretisability)
or decision procedures (backward confluence) to handle those
properties. Thus DSGs have the potential to serve as the basis
for designing suitable environments for symbolic execution of
pointer-manipulating programs.

VIII. CONCLUSION

In this paper, we established a formal connection between
two different approaches for analysing heap-manipulating pro-
grams, namely DSGs and inductively defined predicates in SL.
The former provide an intuitive way to define abstraction on
heaps and allow to perform local concretisation automatically,
thus avoiding the necessity to define abstract versions of
pointer-manipulating operations by hand. To ensure the cor-
rectness and practicability of this approach, several structural
properties are established, viz., productivity, typedness, in-
creasingness, local concretisability, and backward confluence.

We extended a previous translation result [15] to the trans-
lation of DSGs into SL and back. Moreover we defined SL
counterparts of the aforementioned properties and proved that
they are preserved by the translation in both directions. This

enables the automated generation of SL predicates that by
themselves specify a sound set of abstraction and unrolling
rules for symbolic execution. These theoretical results pave
the way for an integrated approach to heap analysis where the
intuitive description of data structures using DSGs on the one
side and the expressivity and tool support of SL on the other
side are combined.

Current research concentrates on algorithms for automated
DSG learning on-the-fly. That is, abstraction rules are automat-
ically derived whenever the size of the heap representation
reaches a certain threshold [26], [27]. Transferring these
learning procedures to SL either directly or indirectly via DSG
translation would be worthwhile to investigate. Furthermore
we are planning to extend the DSG approach to concurrent
programs. In particular, we would like to study whether a
permission-based SL approach, such as one of those presented
in [28], [29], could provide the basis for this extension.

REFERENCES

[1] P. Fradet, R. Caugne, and D. L. Métayer, “Static detection of pointer
errors: An axiomatisation and a checking algorithm,” in European Symp.
on Programming, ser. LNCS, vol. 1058. Springer, 1996, pp. 125-140.

[2] J. C. Reynolds, “Separation logic: A logic for shared mutable data
structures,” in Proc. 17th IEEE Symp. on Logic in Computer Science.
IEEE, 2002, pp. 55-74.

[3] J. Berdine, C. Calcagno, and P. W. O’Hearn, “Symbolic execution with
separation logic,” in 3rd Asian Symp. on Programming Languages and
Systems, ser. LNCS, vol. 3780. Springer, 2005, pp. 52-68.

[4] M. Dodds and D. Plump, “From hyperedge replacement to separation
logic and back.” in Proc. Doctoral Symp. at ICGT, vol. 16, 2008.

[5] J. Villard, E. Lozes, and C. Calcagno, “Tracking heaps that hop with
heap-hop,” in Tools and Algorithms for the Construction and Analysis
of Systems, ser. LNCS, vol. 6015. Springer, 2010, pp. 275-279.

[6] D. Distefano and M. J. Parkinson J, “jStar: Towards practical verification
for Java,” ACM Sigplan Notices, vol. 43, no. 10, pp. 213-226, 2008.

[7]1 K. Dudka, P. Peringer, and T. Vojnar, “Predator: A practical tool
for checking manipulation of dynamic data structures using logic,” in
Computer Aided Verification, ser. LNCS, vol. 6806. Springer, 2011,
pp. 372-378.

[8] J. Berdine, C. Calcagno, and P. W. O’Hearn, “Smallfoot: Modular
automatic assertion checking with separation logic,” in Formal Methods
for Components and Objects, ser. LNCS, vol. 4111. Springer, 2006,
pp. 115-137.

[9]1 H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and

P. O’Hearn, “Scalable shape analysis for systems code,” in Computer

Aided Verification, ser. LNCS, vol. 5123. Springer, 2008, pp. 385-398.

S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay, “Thor: A tool for

reasoning about shape and arithmetic,” in Computer Aided Verification,

ser. LNCS, vol. 5123. Springer, 2008, pp. 428-432.

[11] B.-Y. E. Chang and X. Rival, “Relational inductive shape analysis,” in

Proc. 35th POPL. ACM, 2008, pp. 247-260.

S. Sagiv, T. W. Reps, and R. Wilhelm, “Parametric shape analysis via

3-valued logic,” ACM Trans. Program. Lang. Syst., vol. 24, no. 3, pp.

217-298, 2002.

[13] A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar, “Abstract
regular tree model checking of complex dynamic data structures,” in
Static Anal. Symp., ser. LNCS, vol. 4134. Springer, 2006, pp. 52-70.

[14] A. Rensink and E. Zambon, “Pattern-based graph abstraction,” in /CGT,
2012, pp. 66-80.

[15] M. Dodds, “Graph transformation and pointer structures,” Ph.D. disser-
tation, The University of York, Department of Computer Science, 2008.

[16] O. Lee, H. Yang, and K. Yi, “Automatic verification of pointer
programs using grammar-based shape analysis,” in ESOP 2005, ser.
LNCS, vol. 3444. Springer Berlin Heidelberg, 2005, pp. 124-140.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-31987-0_10

[10]

[12]

[17] B. Courcelle, “The expression of graph properties and graph transforma-
tions in monadic second-order logic,” in Handbook of Graph Grammars
and Computing by Graph Transformations, Vol. 1: Foundations. World
Scientific, 1997, pp. 313—400.

B. Courcelle and J. Engelfriet, “A logical characterization of the sets of
hypergraphs defined by hyperedge replacement grammars,” Math. Syst.
Th., vol. 28, no. 6, pp. 515-552, 1995.

B. Courcelle, “The monadic second-order logic of graphs I: Recogniz-
able sets of finite graphs,” Information and Computation, vol. 85, no. 1,
pp. 12-75, 1990.

C. Jansen, J. Heinen, J.-P. Katoen, and T. Noll, “A local Greibach
normal form for hyperedge replacement grammars,” in 5th Int. Conf.
on Language and Automata Theory and Applications, ser. LNCS, vol.
6638. Springer, 2011, pp. 323-335.

F. Gobe, “Transformation von Separation-Logic-Pradikaten durch Hy-
perkantenersetzungsgrammatiken,” Master’s thesis, RWTH Aachen Uni-
versity, 2012.

J. Heinen, T. Noll, and S. Rieger, “Juggrnaut: Graph grammar abstraction
for unbounded heap structures,” in Proc. 3rd Int. Workshop on Har-
nessing Theories for Tool Support in Software, ser. ENTCS, vol. 266.
Elsevier, 2010, pp. 93-107.

C. Jansen, J. Heinen, J.-P. Katoen, and T. Noll, “A local Greibach normal
form for hyperedge replacement grammars,” RWTH Aachen University,
Germany, Tech. Rep. AIB 2011-15, January 2011.

J. Nellen, “Konfluenzanalyse und Vervollstindigung von Grapherset-
zungssystemen,” Master’s thesis, RWTH Aachen University, 2010.

D. Plump, “Checking graph-transformation systems for confluence,”
ECEASST, vol. 26, 2010.

E. Jeltsch and H.-J. Kreowski, “Grammatical inference based on hy-
peredge replacement,” in Graph-Grammars and Their Application to
Computer Science, 1990, pp. 461-474.

M. Bals, C. Jansen, and T. Noll, “Incremental construction of Greibach
normal form for context-free grammars,” in Proc. 2013 Int. Symp. on
Theoretical Aspects of Software Engineering. 1EEE, 2013, pp. 165-168.
R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson, “Permission
accounting in separation logic,” in POPL '05. ACM, 2005, pp. 259-
270.

C. Haack and C. Hurlin, “Separation logic contracts for a Java-like
language with fork/join,” in Algebraic Methodology and Software Tech-
nology. Springer, 2008, pp. 199-215.

[18]
[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]
[27]
[28]

[29]

APPENDIX A
TRANSLATION

In the following section we define translation functions
hrg[.] and env[.] for respectively deriving an HRG from an
environment and an environment from a DSG. The correctness
of the translation is shown in Sect. A-C. To conclude the
section we introduce a criterion for environments guaranteeing
that the HRG resulting from the translation satisfies the DSG
property.

To give some intuition about the correspondence of en-
vironments and DSGs and to simplify the understanding of
the translation functions later on, Table II provides a refined
overview of the related concepts as given in Table L.

SL (S
(heap, empty int.) (k,ip)
(heap, int.) (h,?)
location in dom(h)

DSG (Syntax & ics) i
HC H € HCyx

extended HC H € HCEy
(internal) node v

(external) node ext(j)

SL (Syntax)
closed formula
formula with free variables
bound variable 7
free variable x;

nonterminal X' predicate o

terminal edge e (lab(e) €) pointer assertion z.s — y
nonterminal edge e (lab(e) € N) predicate call o(x1,...,on)
(nonterminal, ordinal) (X, j) parameter (of predicate call) x;
X-rules, X € N, G(X) predicate def. o(x1,...,%xn) =¥

DSG ¢ environment I'

TABLE II
OVERVIEW: DSG VS. ENVIRONMENT

We start by giving the definitions of (extended) heap con-
figurations and contexts, as informally introduced in Sect. V.
Definition A.1 (Heap Configuration): A heap configuration
(HC) is a hypergraph H = (V, E, att, lab, ext) € HGyx,, with

e XNy =XWN, rk(X) = {2} and ext =&,

o forevery v € Vand s € %, |{e € E | lable) =

s, att(e)(1) = v} <1,
o fle € E:lab(e) € S A att(e)(1) = vpun and
o forevery v € V there exist ¢ € E and i € [1,7k(e)] such
that att(e)(i) = v.
If lab(E) " N = 0, then H is concrete, otherwise abstract.
The set of all (concrete) HCs is denoted by HCx,, (HCy). If
an HC satisfies all conditions above except for ezt = ¢ and
if additionally vyun ¢ Va, it is an extended HC. Accordingly
the set of all (concrete) extended HCs is denoted by HCEy, ,
(HCEzy).

Definition A.2 (Context): Let H € HGsy,. We define
the context of H as context(H) = {H' | Vg =
Vi and for arbitrarily many v;, v, € eatnl .v; = v, Egr =
FEy,atty = atty,laby = laby, exty = E}.

A. SL to HRG

We begin with translating an SL formula to a hypergraph. In
an SL formula, each heap location is described by a dedicated
variable, while in heap configurations locations are represented
by nodes. Thus the translation process has to identify each
node by the variables referring to the location it represents.
We formalise this identification by tagging nodes with these
variables.

Definition A.3 (Tagged Heap Configuration): A tagging of
H € HCy is a mapping t : Vi — 2Vero{nulll The pair (H, t)
is called a tagged heap configuration. The set of all tagged
HCs over ¥ is denoted by HCL. If we expect a hypergraph
H instead of a tagged one (H,t), we omit the tagging t.

In the graphical representation, the tagging of a hypergraph
is depicted by a set of variables associated to a node.

A predicate call appearing in the SL formula will be
translated to a (nonterminal) edge, which is labelled with a
symbol indicating the predicate. We denote the nonterminal
for predicate o by X,,. Thus N :={X, | o € Pred}.

To simplify the translation functions later on, we introduce
two operators, unification and join. The first transforms a
tagged hypergraph such that nodes with non-disjoint taggings
are merged.

Definition A.4 (Unification Operator |}): Let H =
(Vi, By, atty,labg,e) € HCyx and t a tagging of H.
The unification (| H,t') of (H,t) is defined as | H :=
(V,Eg,att,labg,e) with V. = [f(Vy), att(e)())
flattr (e)(5)) and #'(vf) = Uye o evy|f(or)=o,y Hv) where
f: Vg — V such that Yoy, 09 € Vi : t(vy) Nt(ve) # 0 <—
f(v1) = f(v2).

The join operator takes two hypergraphs as inputs and joins
them into one.

Definition A.5 (Join Operator <): Let (Hy,t1), (Ha,t2) be
two tagged hypergraphs with exty, = exty, = . W.lo.g.

we assume that H;, H, have disjoint sets of nodes and edges.
The join is defined by

(Hy,t1) < (Hayto) == U ((Va, WV, By, W Eg,,
alt g, W attpy,, laby,Wlaby,, €),

tlli‘ltg)

The join of sets of tagged hypergraphs is defined in the usual
way.

The translation of an SL formula is defined in an inductive
way, i.e., for atomic formulae a graph pendant is given, and the
translation of a composite SL formula is realised by combining
the graphs resulting from the latter using the join-operator.
Finally, an expose-function marks the nodes corresponding to
the free variables in the SL formula as external.

Definition A.6 (tgraph[.]: SLF to HC): The translation

function tgraph[.] : SLF — 9y s defined by the
following base cases

o tgraphlemp] := {(Hempvi‘ﬂ)}
= {((0,0, atty, labg,<),tg)}

tgraphlz.s — y] = {{ (Hs,t)} where
{=} {y}

(Hy.t) = Q_.Q

e tgraph]z.s — null] := {J (Hyun,!)} where
; {null}

= =0

Jxn)] = {U (H,,t)} where
(H,,t) = o
{a1}

o tgraphlo(zy,...

{@,}

Xo

and composite cases

e tgraph[o V] = tgraphl¢] Utgraph[]

o tgraph[¢] = tgraph[d] < tgraph[v]

o tgraph[3z : ¢] = {(H,t) | (H,t') € tgraph[g], t =
{o=t'(v)\{z} v € dom(t)}}

o tgraphlz = yAg] = {I (H,t) | (H,t') € tgraph[¢]}
with Vv € Vi,

)= {

The translation of an SL formula, tgraph[.], yields a set of
tagged HCs. The tagging contains the information about the
mapping of the formulas free variables and determines vpun.

ifzet' (v)vVyet(v)
otherwise

t'(v) Uiz, y}
t'(v)

Example A.7: Consider the SL formula ¢ = x.s +— null *
(3z : o(x,2z)Vo(z,null)). The translation tgraph[¢] is given

by

tgraph[d] ={ OO } D
{x} {null}

(OO0

{=}

OHO)

0 {null}

where the tagging is attached to the respective node.

When we consider environments later on, the predicate
bodies are not allowed to contain any free variables except
for those appearing in the predicate call. As free variables
(predicate parameters) correspond to external nodes in the
HRG approach, we define a function expose that converts a
tagged HC into an HCE by marking tagged nodes as external.

Definition A.8 (expose Function): Given a tagged heap
configuration (H,t), we define expose((H,t),21...xy) =
((VH, Ey.atty,labg, vy ... vn), t) if t(Uj) = {LL‘]‘}, j €
(1,n] where x1, ..., 2, € Var.

We can now define the translation of SL formulae to
extended HCs used in the translation of environments to
HRGs, where free variables (predicate parameters) in the SL
formula are exposed, i.e. made external, in the resulting HCE.

Definition A.9 (graph[.]: SLF to HCE): The translation
function graph[.] : SLF — 9MCELy is defined by

graph[@] := {expose((H,t),x1...%y) |
(H,t) € tgraph[¢] A{z1,...,zn} = FV(9)}.

The HRG results from translating the body of predicate
o into a set of HCEs which then provide the rules for
nonterminal X .

Definition A.10 (hrg][.]: Environment to HRG): The trans-
lation function hrg[.] : Env — HRGy;, is defined by

hrg[l'] := U

(X1 yeees%n) =9 ED

{X,— H | (H,t) € graph[y]}.

Note that as all graphs resulting from graph[i] are unified
and for predicate definitions we assumed that the x; are pair-
wise distinct, there exists a unique v; with t(v;) = {x;}. Fur-
thermore according to the definition of predicate definitions, 1
contains no free variables except for x1,...,x,, thus the tags
of all non-exposed nodes are empty and therefore intuitively no
information about the variables is lost by omitting the tagging
in the resulting production rules.

B. DSG to SL

During the translation of formulae to heap configurations,
we used a graph tagging to associate graph nodes to the

formula’s variable identifiers. Now when generating a formula
from a heap configuration, we need to tag each node with an
identifier to be able to refer to it in the formula later on. To
this aim we define its default tagging.

Definition A.11 (Tagging): Let H € HCEy, . The tagging
t of H is a mapping ¢ : Vj s 2Vertinull}l with

{null}
{x;}
{r}

We denote the set of tagged HCEs/HCs by HCEL/HCY: and
HCE%N/HCgN, respectively.

The translation of HCs is defined in an inductive way, i.e.,
each edge in the graph is translated to a (sub) formula. These
formulae are then combined using separating conjunction .

Definition A.12 (HCE to SLF form[.]): The translation
function form[.] : HCEf + SLF translates an edge e
contained in HG H with default tagging ¢ by

if v = vpun
t(v) = ifv=-exty(j)

otherwise with r a “fresh” variable

2.8y if s:=lab(e) € X,
att(e) = vv',
~ x € t(v),y € t(V')
form[e,t] = ox Wty -y yn) if X :=lab(e) € N

att(e) = vy ...,
Y; € t(?)i)

and the hypergraph by

form[(H,t)] = Fr1...3ry: @ formle,t]

ecEy

where

{ri,...,rm} = Var(@ form[e, t]) \ {z1,...

ecEy

;mrk(H)}

is the set of variables tagging internal nodes of H and
occurring in the resulting formula, and ¢, form[e,t] is
defined as

if Eg =10

if By ={ey,...

emp
formlex,t] *...* form[en,t] ,€n}

The environment then contains a predicate definition for
each nonterminal in the DSG with the disjunction of the
translated right-hand sides as predicate bodies.

Definition A.13 (env[.]: DSG to Environment): Let G €
DSGs,, . The translation env[.] : DSGy; — Env is defined as

env]G] = U {ox(x1,. ., %xm(x)) =
xXedom(G) V gre(x) form[(H,)]}

where ¢ is the tagging of H.
An example of a DSG-to-environment translation can be
found in Ex. 7.2.

C. Correctness of the Translation

The heap mapping « establishes a connection between
heaps h € He and concrete hypergraphs representing heaps.

Definition A.14 (Heap Mapping «): The mapping « : He —
HCy; is defined by «(h) = (V, E, att, lab, ext) with

V = |dom(h)| U Nil

) {tpun} if 3 € dom(h) : h(l) = null
Nil = .
0 otherwise
E={e,s|veV, seX, h(v+ecn(s)) € dom(h)}
att(ey,s) = v| (v +cn(s))]
lab(ey,s) = s

ert = ¢

where |.] rounds down to a location contained in {1, |X| +
1,2-|X]+1,...}

Interpretations may contain mappings — 7 that do not in-
fluence the satisfiability of a formula ¢ whenever = ¢ Var(¢).
Thus from now on when speaking about interpretations, we
consider the “least” interpretations only, i.e. we restrict dom (1)
to the variables Var(¢) that occur in ¢. Considering those
interpretations only, « is bijective and therefore its inverse is
properly defined. We defined « in such a way that it estab-
lishes a connection between the functional and the graphical
representation of a heap based on h € He only. While this
is sufficient when considering the relation between satisfying
instances of a predicate call and heap configurations contained
in the language of a nonterminal handle, we need to establish
a connection between interpretations and hypergraphs in the
case where the relation between free variables and external
nodes is not implicitly given by resorting to the language (and
thus eliminating all external nodes). This connection is again
defined via a tagging of the graph nodes.

Definition A.15 (Extended Heap Mapping o): The mapping
oy : He X Int — HCE%N is defined by

ae(hyi) = (a(h),)

with
t(v) = {z € Var | i(z)i = v}.

To establish the correspondence between SL and HRGs, our
aim is to show that the set of heap-interpretation pairs satisfy-
ing a formula ¢ corresponds to the hypergraphs contained in
the language of the translation of ® into a HG and the other
way around. The inductive proof structure, however, requires
us at some places to prove a stronger statement, namely
additionally considering the external nodes of the hypergraphs
whose contexts are contained in the language. As in these con-
texts the information about the external nodes is disregarded,
we introduce an additional tagging that remembers for each
node in the context if and which external nodes had been
collapsed into it.

Definition A.16 (External Tagging t..:): Let H.. €
HCEsx,, H € L(H.yt). The tagging t.,+ of H is defined
as tegy : Vi > 28007k} where k = |ext | with teat(V) ==

{a; | 3j, Hys € context(Heqt) - Hypy —* H Nextn,,, (§) =
v}

a) Graph and Formula Correspondence: To prove The-
orems 7.3 and 7.4, we first show the correctness of the graph
and formula translation.

To simplify notation in the subsequent proofs, we introduce
the following notation for hyperedge replacement: We denote
the replacement H =., H’ for G € HRGyx,, H,H' €
HGsxy, p = X - K, K € G(X) and e € Eg with
lab(e) = X by Hle/K].

Proposition A.17 (graph[.]: SL Formula to HCE): Let ¢ €
SLF. We assume that for the predicate interpretation #p it holds
that V(I,h) € nr(o) <= a(h) € Lenopr)(Xoem:): i(xi)i :=
I(i), with I" an environment, ¢ € Predr and X, € Nepo[r)-
Then it holds for h € He,i € Int: hyi,nr E ¢ <—
ai(h,i) = (H,t),H € Lepyry(graph[¢]), and t(v) #
) = ve Z(iiL'thaph[[q)]]S.

Proof: The proof will proceed by structural induction and
in its process we make use of the following direct implication
of Prop. A.17 when considering composed formulae of the
form @1 * g2, P1 V ¢2,x = y A ¢, 3x : ¢. This is necessary
as the expose function, which generates the external nodes, is
applied only after the translation of the complete formula.

Direct implication of Prop. A.17: Let FV(¢) =
{z1,...,x,}. Assuming i(z;)i to be pairwise distinct (j €
[1,n]), it holds for h € He,i € Int that h,i,nr | ¢ —
at(h’vi) = (Hv t)vH € Len’u[[F]] (tgraphﬂ¢ﬂ) and t(v) #
0 = ve zemtexp()se(tgraph[[@]])S'

To simplify notation later on, we split the claim into

e () h € He,i € Int: hyi,nr E ¢ <= «a(h,i) =

(Hv t)v H e Lenv[[F]] (graphﬂ¢ﬂ)

o (%) t(’L‘) #) = ve zextgraph[[q)]]g

We prove the proposition by structural induction on the SL
formula ¢.

¢ = emp. emp is only fulfilled by the empty heap,
ie. dom(h) = 0, thus au(h,i) = (H,t) with H =
(0,0, atty,laby,e) and t = ty. Furthermore hrg[¢] =
{((0,0, atty,labg, <), ty)}. Thus the claim holds directly.

¢ = x.s — y. From the semantics of SL and the restriction
that variables refer to defined heap locations only, we know
that for every heap h satisfying ¢ it holds that dom(h) =
{i(2)i + en(s),i(y)i} and thus ¢ = igla — |y — U], 1,1’ €
Loc such that h(l 4 cn(s)) = I’. Thus the set of all a(h,i)
where h,i,nr = ® (isomorphic hypergraphs are considered
equal) is given by

P U

h€He,i€lnt with h,i,nrl=¢

{au(h, i)} = {(H1,t1), (Ha,t2)}

with
Hl = ({Z(SL’)Z,Z(y)Z}, {ei(:c)i.,-s}y
{ei(z)@s = 7(T)77(y)7}7 {ei(x)i,s = 5}75)7
Hy = ({Z(SL‘)’L}, {ei(‘z)i,s.}.: _
{€i(@)i,s = i(x)ii(x)i}, {€i(z)i,s — 5},€)
and tagging {1 = to = {l — =z,!' — y}. Furthermore we know
that tgraphfaz.s — y] = {} (Hs,t')} = {(Hs,t')} with

Hs = ({v1,v2}, {e1}, {e1 — viva}, {er — she}) and ¢/ =
{v1 = {z},v2 — {y}}. Thus graphfz.s — y] = H. with
H! = (Vu,,En_,atty,,labg,,v1v2) and thus (**). Then by
definition of the language of a HG it follows directly that
F = Leyyprp(H) and thus (*) holds.

¢ = x.s — null. Analogous to the case ¢ = z.s — y.

¢ = o(x1,...,z,). This follows directly from the
assumption in the proposition as the translation of ¢
results in tgraph[¢] = {U (H,,t)} with H, =
({v1,...,vnh {ei}, {1 = vi...vn}, {e1 = Xo},e). Thus
if the x; are pairwise distinct, then |} (H,,t') = X,* and
the claim directly holds. If some z; = %, j # m and
j,m € [1,n], then the corresponding nodes are merged during
unification. By definition of the translation we know that
t'(v) = {z;} and thus graph[¢] = X2,,. Then directly by
the assumption for the correspondence of I" and env[I'], (*)
holds. Moreover for all taggings ¢ resulting from «(h,i),4 :=
iplrtr — 1(1),...,zn = U(n)],({,h) € nr(o) we know that
t(v) = {z; | v = i(x;)i}. Thus (**) holds.

¢ = ¢1 * ¢o. This formula is only fulfilled if there exist
two disjunct heaps hi,hy and an interpretation 4, such that
hi,i,mr E ¢1 and ho,i,nr |E ¢2. By IH we already know
that for all h € He, i € Int the implication of the propostion is
fulfilled for tgraph[¢;],j = 1, 2. We furthermore know from
SL semantics that Vh,i,nr = @ it holds that h = hylH ho,
thus dom(h) = dom(hy) W dom(hs). By definition of a, all
taggings resulting from o (h,4) with h,i, 90 = ®; it holds
that t(v) = {o € Var(®;) | i(z)i = v}. Now according to
the translation procedure,

graphl¢r * ¢o] := expose(tgraphlp1] > tgraph[oa],
X1...%p)
= expose({ (Va, W Vm,, Ex, W Fp,,
attp, W attp,, labg, Wlabp,, <),
tiWta), X1 ... Tp)
= {(H",t),(H" t"),...}
=F

for every Hi € tgraphlo;],H> € tgraph[¢s] and
{z1,...,zn} = FV(¢). Thus first the two hypergraphs (and
their taggings) are merged into one. This yields a hypergraph
containing a subgraph H; and a subgraph Hs, where H;
and Hy are not connected (as node sets and edge sets are
disjunct). Furthermore we know that dom(h) = dom(hy) W
dom(hy) = Vg for (H',t') € F where during unification
for each j € [1,n] all nodes tagged with {x;}, i.e. nodes that
correspond to free variables in ®; or ®,, have been merged.
Thus as the merge of taggings ¢1 and to form i, and t' is
constructed from t;,,, by assigning every node the union of
the taggings of nodes merged into it, (**) holds. Now as edges
are not influenced by the unification operator and only nodes
tagged with free variables of ¢ are exposed in graph[¢], (*)
follows.

¢ = ¢1 V ¢a. According to the SL semantics, ¢
is fulfilled by heap h, interpretation ¢ and predicate in-
terpretation np, if either h,i,nr E ¢1 or hyi,nr E

¢2. By IH we get that the claim already holds for
graph[é;],5 = 1,2. The translation of ¢ is defined as
graphl[¢] = expose(tgraph[o:1] U tgraph[gps], x1 ... x,) =
graph[o1] U graph[ps] where {z1,...,z,} = FV(¢).
Then either ay(h,i) € Lenopry(graph[®1]) or ai(h,i) €
Lenypry(graph[®2]). Thus it follows directly that v (h, i) €
Lenopry(graph[®1] U graph[®2]) (*). And trivially (**).

¢ = x = y A ¢1. The SL semantics state that h,i,nr =
x =yA¢r iff hyi,np = ¢ and i(x)i = i(y)i and from
IH we know that tgraph[¢;] already fulfills the claim. The
translation of ¢ adapts the tagging of all (H,t) € tgraph[¢:]
such that nodes that were tagged with either =z or y, are
now additionally tagged with both = and y. Thus with
hoiyne | ¢1 <= aw(h,i) € Lenopry(graph[ei]) and
i(x)i = i(y)i we know that Le,,[rj(graph[¢]) yields all
graphs from L., [r](9raph[é1]) where nodes that correspond
to variable x or y are merged, thus z and y refer to the same
node. As oy (h, 1) creates a node for each location of h and ¢
is only fulfilled if i(z)i = i(y)i, the claim follows directly.

¢ = 3z : ¢1. From SL semantics we know that h,i,nr = ¢
iff there exists a location ! such that h,i[lz — I,;nr E
¢1. Again from IH we know that the claim holds for ¢;.
The translation now adapts the tagging from all (H,t) €
tgraph[$1] such that x is removed from all tag sets in ¢.
Then we know directly that (**) holds. Moreover we know
that V(H',t') € graph[¢:] I(H",t") € graph[¢] such that
H is isomorphic to H’' where all nodes v € Vg with
t'(v) = {«} and thus v € Jexty/ S, it holds that t"(v) = 0)
and thus v ¢ {exty~ . Then with the property of SL formulae
stated in Sect. VII saying that all bound variables implicitly
reference different heap location unless states otherwise, the
claim follows directly. |

Proposition A.18 (HC to SLF Formula Translation
form[.]): Let H € HCx,. We assume that for DSG G it
holds that for every X € N, H' € Lg(X?,,) < Ji€lnt:
(I, a(H')) € Nenv[ay Where I = i(21)i...3(2m(x))i. Then
for all H' € HCy; it holds that:

a Y (H"),ig,nc E form[H] <= H' € Lg(H).

Proof: We prove the proposition by induction over the
number n of edges in the hypergraph H,,.

First consider HC H, with an empty set of edges, i.e.
Ep, = 0. As every node in a HCs has to be attached to at
least one edge, Vg, = 0 (where Hy is the empty graph). Thus
we know that for arbitrary G, Lg(Hy) = {Hp}. Furthermore
a~Y(Hy) = h with dom(h) = (. The translation procedure
directly provides us with form[Ho,ty] = emp, which is
only fulfilled by the empty heap. Thus the claim holds.

Consider HC H; with Ey, = {e;} and let ¢ be the default
tagging of H;.

Case 1: [ab(eq) € X. Then either Vi, = {v1} or Vg, =
{v1, Unun} due to the HC properties. In both cases as H; is
concrete L(H;) = {H1}.

Assume Vi, = {v1}, thus att(e;) = vivy and o1 (H;) =
h with dom(h) = {1 + cn(lab(e1))}, h(1 + cn(lab(eq))) =
1 4 cn(lab(ey)) and domn(i) = (. From the translation we
get form[(Hy,t)] = I : ri.lab(e;) — r1, which is by

SL semantics fulfilled if there exists v € Loc s.t. h,ig[r1 —
v],np |= r1.lab(er) — 71 and holds for v = 1 (and therefore
r1.lab(e1) = 1+ cn(lab(ey))) only. Thus the claim holds.
Assume Vg, = {v1,vnun} and att(e;) = v1vpun. Then
a Y(Hy) = h with dom(h) = {1 + cn(lab(e1))}, h(1 +
cn(lab(e1))) = null. Again from the translation we get
form[(Hy,T)] = 3r1 : r1.lab(er) — null which is only
fulfilled for r1 = 1 (i.e. if A(1 + cn(lab(e1))) = null). Thus

the claim holds.

Case 2: lab(ey) € N. Then Vg, = {v1,....,v,}
with att(ey) = wi...v,. From the translation we get
form[(Hy,t)] = 3r1, ..., rn 2 Olap(e) (1, -,).

Now either H; = lab(e1)®, i.e., the v; are pairwise distinct.
Then the claim directly holds.

Or there exist vj,vy € Vg, st v; = v, and thus
t(v;) = t(vg). Then we know that L(H,) = {Hi[e1/K] |
K € L(lab(e1):,,)} and moreover directly by the defi-
nition of hyperedge replacement exty(j) = extx(k) =
v; after replacement of e;. Furthermore we know that for
form[(Hq,t)], i(x;)i = i(xy)i holds as x; = x. Thus
for all H' € L(H,) there exists an H € L(lab(e;)®) with
a Y H") = (W,i'"),np &= form[(Hy,t)] iff = (H) =
(h,i),mp = form[(lab(e1)®,t)] (and the other way around).

For Ey, = {e1.e2}: analogous.

Now assume HC H, ., with Eg, ., = {ei,...,e 11}
and Vg, ., = {v1,...,vn}. By construction of the default
tagging ¢t for H,y; we know that each node has a unique

tag. By translation then form[(Hpi1,t)] = 3r1,...,rm ¢
form[(e1,t)] *...x form[(ent1,t)]
Case 1: latt(e,y1) § N latt(er)§ = ... = latt(ensr)

N latt(e,)§ = 0. This means that e, together with its
attached nodes forms a separate connected component and
Var(form[(eny1,t)]) N Var(form[(e;. t)]) = 0, j € [1,n].
Together with the IH there trivially exist exactly two disjunct
heap parts that satisfy 3ri,...,7r, : form[(er,t)] * ... *
form[(e,,t)] and Jry,...,7y o form[(ens+1,t)], respec-
tively. Thus the claim holds.

Case 2: 35 € [1,n] : latt(eny1) § N L att(e;)] = {vaun},
and for all other j the sets of attached nodes are disjunct.
As vnpun 1S unique, there exists at most one node tagged
with {null}. The corresponding identifier for this node in the
resulting SL formula is null. According to the definition of a
heap h, null cannot be an element of dom(h), as it can only
be pointed to but never point to any location in the heap. Then
analogously to case 1, there exist exactly two disjunct heap
parts satisfying the two parts of the translated formula. Thus
the claim holds.

Case 3: 3j € [1,n] : latt(ent1)§ N Latt(e;)] = {v}.
We can partition H,y; into the subgraphs H' :=
(latt(ent1)f, {ens1}, attm, (eni1), labm, , (€nt1),€)
and " = (Vi \ (latt(enr) | \[o}), Bu,y \
{ens1}atty, |EH,,’laan+1 |EHN,5), where the claim
already holds for H’ and H”. Moreover o '(H') = I,
a Y(H") " with dom(h') N dom(h') = 0 (as
EmgNEgr=0)and o Y (H,, 1) = h with h = bW A", This
case can be generalised to cuts containing multiple nodes

accordingly. Then directly from the semantics of SL and the
associativity of HRG replacement the claim follows. []

To prove that the translation from HRG to environments
is correct, we need to consider the translation of hypergraphs
containing external nodes. On the logics side, external nodes
correspond to free variables occurring in a formula. Thus later
on the level of production rules/predicate definitions, external
nodes of the right-hand sides of production rules correspond
to the parameters of the predicate definition.

Proposition A.19 (form[.]: HCE to SLF): Let H €
HCEy; . We assume that for DSG G it holds that, for every
X € N, H € Lg(X2,,) < 3Jieclnt: (l,a(H)) €
Nenv[a) for I =i(x1)i. .. i(x.u(x))i. Then for all H' € HCx
it holds that

H' € Lg(H) <~
Jielnt: o H(H'), i, Nenvje E form[H].

Proof: If H has no external nodes, i.e., exty = ¢, then the
claim follows directly from Prop. A.18. Now we assume that
H has external nodes vy, ..., Uy, i.e., exty = v1 ...v,. From
the tagging used during the translation procedure we know
that each v;, j € [1, n] is tagged with {z;} and moreover after
translation we know that there exist free variables x1,...,z,
in form[H]. With Prop. A.18 the claim already holds for
H_..t := (Vu, Fy,atty,labg,e) and the empty interpreta-
tion 4. Again the translation procedure gives us that form[H]
and form[H_..] correspond except for the free variables
Z1,...,&, in form[H], which are existentially bound in
form[H_..:] (and renamed to some 7). Now assume that
the free variables z1,...,z, in form[H] correspond to
the existentially bound variables 71, ..., 7, in form[H_cq]-.
Then with the implication of SL that all bound variables refer
to distinct locations unless the opposite is explicitly states
by an equality assertion together with the fact that they can
only be referenced in the scope of form[H], we know that
xj # ry, j € [1,n] for all v from the set of bound variables
in form[H] (as by definition of the tagging it cannot happen
that form[H] contains subformula ; = 7). Then we know
that for each H' € Lg(H) there exists an interpretation i
(namely the one resulting from a; '(H' to) = (h,i) as
dom(tezt) = {v1,..., v} With teg(v;) = {2}, j € [1.n])
fulfilling the if-part of the claim. Moreover with the assump-
tion of SL that all free variables have to refer to a location in
the heap, there cannot exist further interpretations ¢ fulfilling
the claim, providing the only-if-part of the claim. Thus the
claim holds.]

b) HRG and Environment Correspondence: We will
prove the correspondence of HRGs and environments with an
inductive proof of correspondence between recursive functions
whose least fixpoints are the generated graph language and the
predicate interpretation, respectively.

We start by giving the recursive functions and argue why
they actually compute the correct predicate interpretation and
language.

In the case of SL the predicate interpretation provides the
semantics of predicate calls. It is defined as the least fixpoint

of the function as given in Def. 3.5.

Notice that this definition of the k-th predicate interpretation
implicitly considers each predicate call in ¢ V...V ¢,, under
the predicate interpretation of step k — 1. We recall that a
predicate call corresponds to a nonterminal edge. Thus we
define a derivation step |} that replaces each nonterminal edge
in a hypergraph by all eligible right-hand sides.

Definition A.20 (Complete Derivation Step ||): We define
a complete derivation step of a HG H via the function | p:
HGyx, — 2%%s~, where ||p (H) := {H' € HGy, | H' =
Hlen\Kq] ... [ex\ K] with {eq,...,ex} = Eg\{e | lab(e) €
X} for arbitrary K; with K; € P(lab(e;))} .

With this definition we can now specify the recursive func-
tion fe for HRG G, which collects all terminal hypergraphs
derivable from X?,,, X € N in k complete derivation steps.

Definition A.21 (HRG Language: Inductive): For an HRG
G we define the function fg : (N — 2H&=) 5 (N — 2HGx)
where fq(P,)(X):={H' € HGx | 3R € P(X): H' €|p,
(R)} := Pxy1,X € N and Py := Py.

First we introduce an auxiliary lemma that helps us with the
proof of the correspondence of both HRG language definitions,
proven subsequently.

Lemma A.22: Let H € HGy, and G € HRGyx,. Then
Lg(H) = Lg(context(H)) = context(L(H))

Proof: This directly follows from the associativity of
HRG replacement and the fact that context(context(H)) =
context(H). |

Lemma A.23: The least fixpoint of fg, [fp(fe), contains all
graphs H € HGYy that can be derived from X2, ,,VX € N,
ie. X2, =* H. Thus Lg(X?,,) = context(lfp(fa)(X)).

Proof: This lemma follows directly from Lemma A.22.

|

With these prerequisites we can now prove the two main
propositions, which build the basis of the proof of Theo-
rems 7.3 and 7.4.

Proposition A.24 (Correspondence of fr and fy,qrp): Let
I' € Env. Then for all ¢ € Predr the following holds:

(I,h) € fr(me)(o) <=

a(h) € L(frrgpry(Pr)(graphlo(z, ..., 2,)])).
Proof: (*) From graph[.] we know that
graphlo(x1,...,x,)] yields the HG X, . Moreover

from the translation hrg[.] we directly know that for each
predicate definition o (x1,...,z,) := &1 V...V, €T there
exists a nonterminal X, € Npq4qry of rank rk(X,) = n with
production rules P(X,) = {H | 3(H,t) € graph[®1V ...V
®,,]} ={H | 3(H,t) € graph[P1] U ... U graph[®,,]}.
We prove the proposition by induction of the number £ of
fixpoint iterations.
e k= 0. Then fr(no = m)(@) = {(L.h) | hiigler —
I,...,z, = ln)),n E®1Vv...v®,}, and thus

(I,h) € fr(m)(o) <=
hyiglzr = U(1),...,zp = IN)],mo EP1 V...V Dy

With Prop. A.17 we know that V®: h,i,nr E ¢ <—
a(h) € Lypgrry(graph[®]) if T and hrg[T] fulfil the

assumption of the proposition. Thus as 79 and Py trivially
fulfil the assumption of Prop. A.17:

(lh) € fr(mo)(o) =
a(h) € Lp,(graph[®1 V...V &,.])

Moreover Lp, (graph[®1V ...V ®,,]) = {H € HGy, |
H € context(graph[®1] U ... U graph[®,,])}. Ac-
cording to the definition of the translation, P(X,) =
graph[®1] U ... U graph[®,,]. Thus Lp,(graph[®, V
...V®,])=Lp,({R€HGx | 3R € P(X,)}). As this
set contains terminal graphs only and Fp is the empty
function,

(L,h) € fr(no)(o) =
a(h‘) € Lh'rg[[F]]({H € HGy, |
AR € P(X,): H €p (R)}),

which we can rephrase directly into

(l7 h) € fP(TIO)(U) — a(h‘) € Lh7‘y[[1"]] (f(PO)(Xo))
k — k + 1. We have to show that

(L,h) € fi (o) <=
a(h) € Lhrg[[l“]](ff]frt;l[[r]] (Po)(graph[o(zy,...

By applying the definition of fr we get
(1.h) € fE+(n0) <= (1.h) € fr(f(m))(o)

where fr(ff(10)) () {0 | iigley —
U(1),..,zn = U'(n)], fE(mo)) E @1V ...V ®,}. By
ind. hyp. we know that the assumption of Prop. A.17 is
fulfilled for ff(no) and fF, iy (Fo) and thus

»zn)]))

hyiglzy = 1(1), ..., 2 = I(n)], fE(n0) E @1V ...V &y
< a(h) € Lf;’frgur]] (graph[®1 V...V @,])

Then by definition of the translation of V we know
hyigles = 1(1), ..., 2 = I(n)], fE(0) E @1V ...V &,
— alh) € Lf;'frgm (graph[P1] U ... U graph[P,,])

As, for all X € dom(frgry)s f,’frg[[F]](X) by definition
contains only terminal graphs, we know that
Ly o (graph[@J V.. U graph[®n]) =
Lhrgiry({H | H €4ge (graph[®1])} UV
{H|Hely (graph[®n])}).
hrg[T']
As P(X,)={H | H € graph[®1]U...Ugraph[®,]}
we rephrase using the definition of fr and fj,.q[r] into
(Lh) € 5 (o) (o) =
a(h) € Lhrg[[l"]] (fh:rg[[p]] (Po)(g?‘(lphl[(f(f[?l, cee 77[771,]]))
Then directly with (*)
(Lh) €t (m)(o)
a(h) € Lh’l"glIF]](fh:;ﬂF]] (PU)(XO';xt))

Theorem A.25: LetT' € Env. Then for all o(z1,...,zy) :=
®;...,P,, €T the following holds:
hyi,nr Eo(zy,...,2,) <
a(h) € Liprgpry(grapho(xy, ..., x,)])-
Proof: From graph[.] we know that
graphlo(z1,...,x,)] yields the HG Xoort-

Moreover from the semantics of SL we know that
hyiyn = o(x1,...,2n) <= (:=i(x1)...i(xn)i,h) €.
As the least fixpoint of fr yields nr and additionally
Lprgpry (Xotar) = ‘ﬁ/()'n/t"’/r”t({UXeNhWﬂF Ipf(frrgirp) (X)}),
the claim follows directly from Lemma 1&.22 and Prop. A.17.
|
Proposition A.26 (Correspondence of fg and fenyjar):
Let G <€ DSGy, with nonterminals N. Then H ¢
La(P)X) = oy (Hiw) = (hi).l
L(‘Ll)L?’l(a’n)L and (lh) € fenv[[G]]({']kr)(UX)’ VX € N
with 7k(X) = n.

Proof: (*) From the translation function env[.] we
directly know that for HRG G for each P(X)
{R1,...,Rn},X € N with rk(X) n there exists a
predicate definition ox (z1,...,2n) = form[Ri]V ...V
form[R,,] in env[G].

Proof by induction over the steps k of the fixpoint iteration.
e k=0.Then fg(P)(X)={H € HGx | 3R € P(X):

H €lp, (R)} = {R € HGx | 3R € P(X)}

{R},...,R,}. Thus H € Lo(fa(Po)(X)) <= H €

Lg(Ry) U ... U Lg(R,). Wlo.g. assume that H ¢

LG(R;)7] € [Lp]

From Prop. A.18 we know that

He Lg(R;)

= a; (H, tewt),no = form[R)]

and thus
He La(R))U...ULg(R,)

— a7 "(H, teg),m0 = form[Ry] or ...

oy N(H, tewt),mo = form[R}].

From the semantics of SL we get

He Lg(Ry)U...ULg(R,)

= oy H(H, tewt), o0 = form[Ry]V ...V form[Ry].

Furthermore for each R € {1t},..., ;,} we know that

|extR;| n for rk(X) n and by construction of

tert We know then that dom(i) = {z1,...,2,}. Then
by definition of f,,,[q and (*) it follows that

He Lg(Rll) U...u Lg(R;)
— at_l(H7temt) = (h,Z), (l7h) S fenv[[G]](nO)(UX)-

for | :=i(x1)i,...,i(xy,)i.
o k=k+1.

We have to show that for all H € HCyx, X € N:
H e L(fE (Po)(X)
= ap (Hote) = (), (L1) € S50 (o) (0x)

or

for | = i(x1)i,...,i(2y)i. For f&(P) and ffnv[[G]] we
already know by ind. hyp. that the proposition holds. With
Prop. A.18 we know that for all H, H' € HCx::
H' € Lg(H)
— a_l(H/)v Nenv[G] ': form[[H]].
Thus for each R; € P(X),j € [1,m] it holds that
H'" € Lk py(Rj)
— at_l(Hl7 text)v f(fnv[[G]] (770) |: fOTmIIRj]]
and therefore
H, S Lf(k;(Pg)(Rl) U...uU Lfé(PO)(R”n)
g at_l(Hl7 text)v f(fnv[[G]] (770) |= fOTmIIRl]]
or or

at_l(Hl7 text)v f(fnv[[G]] (770) |: form[[Rm]]

As ll}k (R (Rj) is by definition the set of all terminal
graphsGthat are derivable from R; using the production
rules from G in k complete derivation steps and with SL
semantics of V we know that

H' € LUy, (1) U+ UL (U) (Bim))

A at_l(Hlv teat), fek;rw[[G]] (mo) = form[Ri] V...V
form[R,,].
We rephrase into

H' ¢ Lg({H" ¢ HGx | H" eu}g(m (R1)})

U...uU
Le({H" € HGx | H" eu}é(%) (Rm)})
= oy HH tog) = (hyi), 1= i(21)i, ... i(zn)i,

(I,h)y e {(U,0 | B iglar — U(1),...,2n — 1(n)],
fek;w[[cﬂ(no) E form[Ri] V...V form[Ry]}.

From the assumption (*) we know that {Ry,..., R} =
P(X), therefore

H € Lg({HI € HGy, |
JRe P(X): H El}}g(%) (R)})
= o HH' text) = (h,i), 1= i(x1)i,. .. i(x)i,
(I,h) e {(I',h" | B igler = 1(1), ..., 2, — 1(0)],
fhuter(mo) B form[Ra] V...V form[Ry]}.
Then directly by definition of fg and fe,.[q)
H' e La(f& (Po)(X))
= a7 (H tear) = (1), (1 B) € FE5L (0) (0x)
for I :=i(x1)s,...,i(zy)i.
|
Theorem A.27 (Correctness of env].]: HRG to Environ-
ment): Let G € DSGy,,. Then for all X € N the following
holds:
HeL(X?,) <
Ji: o Y (H) = (hyig) A hy i, Nenofa) E form[X S,

Proof: We know that form[X?,,
for rk(X) =

= ox(z1,...,2n)
n and thus by semantics of SL we know
that ox(z1,...,zy,) is fulfilled by (h,i,n) iff (I,h) €
n(ox) where | := i(xy)...i(x,). Furthermore from [15]
we know that 7 is defined as the least fixpoint of the
function f,,,[q]- Moreover Lg is defined as Lg(X?,,) =
context({Uxen 1/P(fc)(X)}). Then the claim follows di-
rectly from Lemma A.22 and Prop. A.26. |

D. DSG Criterion for Environments

While every DSG translates to an environment, the opposite
does not necessarily hold for the translation from environments
to HRGs. Consider for example the environment I" containing
predicate definitions o1 (z1,22) = 1.8 — Tg * To.5 — Y
and o2(x1) := o1(x1, x1). The resulting grammar satisfies all
requirements of an HRG, but does allow to derive a hypergraph
containing a node with two outgoing s-selectors. Thus it
depicts no heap configuration.

From the semantics point of view this is unproblematic,
as any SL formula containing a predicate call to o2(x1) is
unsatisfiable on the one hand and any hypergraph H derivable
from a hypergraph containing an X,,-labelled edge violates
the HC requirements. However, the data structure environment
property guarantees that translation always yields a DSG. It
utilises the notion of unrolling a predicate call.

Definition A.28 (Unroli): Let o(x1,...,x,) be a predicate
call. The k-th unrolling %", (o (21, ...,2,)) is defined as

unrqll

o =¢ (0(x1,...,x)) =0(z1,...,2p)
unrqll

o = (0(x1,...,zy,)) results by replacing each predi-
unrqll

cate call of ==';,_; (o) by the corresponding predicate
body (where parameters are mapped with the arguments).

Intuitively an environment is a data structure environment,
if for each of its predicate definitions o(xz1,...,2,) = ¢
arbitrarily many (say k) unrollings of a call to o cannot yield
a formula that defines more than one s-selector for each x €
Var("Z2"y (o (1, ..., 20))).

Definition A.29 (Data Structure Environment): We call a
predicate definition o(x1,...,%,) := 01 V...V 0, a data
structure predicate, if for all £k € N the following holds:
for any disjunct ¢ in the disjunctive normal form of "2,
(0(x1,....20)) P, y1,y2 € Var,s € ¥ @ x5 — y €
¢, x.s — Yo € ¢ and y; # yo. An environment is a data
structure environment, if every predicate it contains is a data
structure predicate.

It can be checked algorithmically whether an environment
is a data structure environment [21].

Theorem A.30:

1) Let I be a data structure environment. Then hrg[T] is a
DSG.

2) Let G be a DSG, then env[G] is a data structure
environment.
Proof: (Sketch)

1. Let I be a data structure environment. Assume hrg[L]

is not an DSGs. Thus one of the following HRG properties

or HC properties for a graph H € Lhmg[[p]](('X)) for some
X € N is violated.

« each nonterminal has a fixed rank: this follows directly
by Def. 3.3 (each disjunct in a predicate definition refers
to all parameters)

« all external nodes are pairwise distinct: again directly by
Def. 3.3 (all parameter names are pairwise distinct)

e X = X W N: directly by definition of graph[.]

e 7k(X) = {2}: again directly by definition of graph[.]
(terminal edges only arise from pointer assertions)

« n0 node with more than one s-selector, Vs € X: proof
by contradiction, assume there exists a disjunct in the
unrolling that defines the s-selector for variable z; twice,
show that this leads to a derivation in hrg[I'] where the
node tagged with z; holds two outgoing s-edges

e Ununl has no selectors: directly by Def. 3.3 (null not
allowed in predicate body)

« every node has at least one edge attached: directly by
definition of heap formula/predicate bodies and graph|.]

o ext = c: by the observation that hyperedge replacement
cannot generate new external nodes

2. Analogous.]
For details on this proof we refer to [21].

APPENDIX B
PROPERTY PRESERVATION UNDER TRANSLATION

A. Productivity
Lemma B.1:

1) For a productive environment I' it holds that the DSG
G := hrg[I] is productive.

2) For a productive DSG G it holds that the environment
I' := env[G] is productive.

Proof: (1) We prove the first statement by induction over
the number n of productive predicate definitions in T'.

n = 1. Assume T' := {®())oy V ... V o, }. As we
know that ® is productive, we know that there exists one
0,7 € [1,m] which is primitive, i.e. contains no predicate
calls. Thus graph[o,] does not contain any nonterminal edges.
Then directly by construction of hrg[I'] we know that X, is
productive.

Let T' contain n + 1 predicate definitions ¢1,..., ¢Pn41.
Consider an arbitrary ¢ € {¢1,...,dnt1}. Then from ¢ :=
o1V...Von, we pick ok, k € [1,m] with the least number of
predicate calls different from ¢. As ¢ is productive, we know
that o, has calls to at most n different productive predicates
all different from ¢. Let us assume these predicates to be
P15 .., 0n. We know that ¢1, ..., ¢, can only be productive
if one of the disjuncts in their predicate bodies contains at
most n — 1 calls to productive predicates different from ¢
(as the productivity of ¢ depends on the productivity of
each of these predicates). Then by induction we know that
each Xy ,j € [1,n] is productive. As graph[o.] constructs
hypergraphs where nonterminal edges labelled with Xy, 5 €
[1,n] only arise due to predicate calls ¢; occuring in oy,

again by construction of hrg[I'] we directly know that X
is productive.

As an environment is productive if each single predicate
definition is and the only nonterminals G = hrg[I'] contains
are {X, | ¢ € Predr} the claim follows directly.

(2) Analogous. [|

B. Increasingness
Lemma B.2:

1) For an increasing environment I" it holds that the DSG

G := hrg[I'] is increasing.

2) For an increasing DSG G it holds that the environment

T := env[G] is increasing.

Proof: (1) We first prove for a single increasing predicate
definition o(z1,...,2y) := 01 V...V 0., that the resulting
nonterminal X, is increasing.

For o to be increasing each o;,¢ € [1,m] contains either a
pointer assertion or the number of predicate calls and variables
appearing in o; is greater than the number of parameters
of o + 1. In the first case graph[o;] directly translates the
pointer assertion into a terminal edge. By definition of hrg[.]
we know, that each o; is translated into a production rule
X, — graph[o;]. Therefore in this case X, — graph[o;]
is increasing. In the second case graph[o;] generates a new
node tagged with x, for each variable « and a nonterminal edge
for each predicate call appearing in o;. Thus Vg qpnfs,]| +
|Egraphlo,]l > n+1. As by definition of hrg[.] we know that
rk(X,) = n, X, — graph[o;] is increasing for the second
case, t0o.

As an environment is increasing if each single definition
is and G contains exactly those nonterminals X, where
o € Predr, it follows directly that all nonterminals in G
are increasing an thus so is G.

(2) Analogous. |

C. Typedness
Lemma B.3:

1) For a typed environment I' it holds that the DSG G :=

hrg[T'] is typed.

2) For a typed DSG G it holds that the environment I' :=

env](] is typed.

Proof: (1) We first prove for a single typed predicate
definition o := o1 V ...V gy, that the resulting nonterminal
X, is typed.

Assume that X, is not typed. Then there exists an
v € Vx, o, HCs H,Hy, € L(X,®) and e € Ep, with
atty, (e)(1) = v, labg, (e) = s such that fe’ € Eg, with
attp,(€)(1) = v Alab(e') = s.

As Hy, Hy € L(X,*®) we know by the translation correct-
ness (Theorem 7.3) that there exist h,h’ € He and i,7 € Int
satisfying o(x1,...,%,) such that as(h,i) = (Hi,tlext)
and a(h/,i') = (Ha,t2..t). But as we know that i(z,) #
... # i(zy), then from the definition of ay it follows that
i(xj) +cn(s) € dom(h) and i(x;) + cn(s) ¢ dom(h'), which
is a contradiction to the typedness of o(x1,...,zy).

As an environment is typed if every single predicate defini-
tion is and the only nonterminals G contains correspond to a
predicate defined in T, it follows directly that all nonterminals
in G are typed an thus so is G.

(2) Analogous.

D. Local Concretisability

Lemma B.4:

1) For a typed and locally concretisable environment I" it

holds that the DSG G := hrg[I'] is locally concretisable.

2) For a typed and locally concretisable DSG G it holds that

the environment I" := env[G] is locally concretisable.

Proof: (1) We first prove for a single typed and locally
concretisable predicate definition o(z1,...,2,) (=01 V...V
Om, that the resulting nonterminal X, is locally concretisable.

For o(z1,...,%,) we know that for each 1 < j < n
there exists a ®; C {01, ...,0,,} fulfilling the two properties
given in Def. 4.7. Let I” be the resulting environment that
results from T' by exchanging all occurences of o into o’.
We know that during translation of the predicate definition
of o a nonterminal X, of rank n with m production rules
Xo — graphloi] | ... | graphlo,] will be generated.
We define the subgrammar G (x_ ;) such that it contains the
production rules X, — graph[¢], ¢ € ®;,i.e. G(x, ;)U(G\
G(X)) = hrg[I'] where G := hrg[I']. For this subgrammar
we show that it fulfills the two properties given in Def. 6.4.

1) AsT is locally concretisable we know that {(h,4) € Hex

Int | hyi,nr E o(x,...,2,)} = {(h,i) € He x Int |
hyi,nr =o' (21, ..., 20) }

With Theorem 7.3 we then know that for all those
(h,i)-pairs corresponding HCs «(h) are contained
in Lppgpry(graphfo(zy,...,2,)]). As by definition
of the translation graphf[o(z1,...,2n)] = Xoous
it follows that Lhrg[[F]] (XJ) = Lhr’g[[l'"]] (Xg-) =
Lo x, ;u(6\6(x0) (Xo)-

2) From the local concretisability of o we know that Vs € X
s € type(o,j) <= {z;.s — y} € Atomic(¢) for
¢ € ®; and y € Var U {null}. As graph[.] translates
pointer assertions into a HC with two nodes vy, vo tagged
x; and y, and an s-labelled edge from v; to vo and merges
all x;-tagged nodes, the production rule p := X, —
graph[¢], ¢ € ®; derives an outgoing s-labelled edge at
external node z;, i.e. (Je € By apna]-labgrapnia)(e) =
s A attgapniop(€)(1) = extyqpnja)(j). As the transla-
tion procedure generates edges labelle with selectors only
from pointer assertions, extg.q,n[e](j) defined exactly
those selectors in type(o, j), V¢ € ®;. Moreover by the
definition of hyperedge replacement we then know that
type(X,,7) = type(o, 7). Thus the claim holds.

As a typed environment is locally concretisable if every
single predicate definition is and the only nonterminals G
contains are corresponding to a ¢ in I' it follows that all
nonterminals in G are locally concretisable an thus so is G.

(2) Analogous.

|

E. Confluence
Lemma B.5:

1) For an environment I" confluent under abstraction it holds
that the DSG G := hrg[I'] is backward confluent.

2) For a backward confluent DSG G it holds that the
environment I' := env[G] is confluent under abstraction.

Proof: (1) Let the environment I' be confluent under
abstraction. Assume that hrg[I'] is not backward confluent.
Then there exist HCs H, H1, H> such that H a:“>hrg[[p]] H,
and H =5, ¢ Ho and BH{, H with Hy =5,

H{, Hy %*h,g[[r]] H} and H,, H» isomorphic. From the
definition of the translation we know that each predicate
definition o(x1,...,2,) := 01 V...V oy, in T' is translated
into a nonterminal X, of rank m with production rules
hrg[T)(X,) = {graph[oi],...,graph[o,]}. Now let us
assume that H a:bsh,y[[p]] H, abstracts subgraph H' of H
using production rule X, — graph[o;] for some j € [1,m].
From the formula-to-graph translation Prop. A.17 we know
that H corresponds to SL formula graph[¢] = H and by the
definition of the translation procedure we then know that there
exists a subformula ¢’ of ¢ wich corresponds to H' (namely
graph[¢'] = H). As every production rule X, — graph[o,]
in hrg[I'] results from a disjunct ¢; in an SL predicate defini-
tion in I', there exists an abstraction ¢ a:bs>1“ ¢1 using disjunct
¢; (and accordingly for H a=l7s>hrg[[p]] H; and ¢ %*p 02).
But then as T' is confluent under abstraction there exist SL
formulae ¢}, @5 such that ¢; 2 o1, P2 Lk ¢ and

Y\ and ¢, equal. Assume that the first abstraction step in
this sequence utilises disjunct U} of predicate o’. We know
that for each disjunct of o’ there exists a production rule
Xor — graph[oj] and Hy is the corresponding graph to ¢y
(i.e. contains the subgraph corresponding to the subformula
o} in ¢1) (and again accordingly for ¢ and H>). Then by
associativity of hyperedge replacement the same holds for
every further abstraction step in the sequence. Thus there exists
abstractions H; %*hmﬂpﬂ H{ and H, a:bs>*hm[[p]] H. As

! and ¢} are equal, i.e. are fulfilled by exactly the same
heap-interpretation-pairs for predicate interpretation 7 and
H{ = graph[¢}], Hy = graph[¢h], Hy and H) must be
isomorphic. This is a contradiction to the assumption that
hrg[I'] is not backward confluent.

(2). Analogous.

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years. A complete
list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/
To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,
Email: biblio@informatik.rwth-aachen.de

2011-01 * Fachgruppe Informatik: Jahresbericht 2011

2011-02 Marc Brockschmidt, Carsten Otto, Jiirgen Giesl: Modular Termination
Proofs of Recursive Java Bytecode Programs by Term Rewriting

2011-03 Lars Noschinski, Fabian Emmes, Jiirgen Giesl: A Dependency Pair
Framework for Innermost Complexity Analysis of Term Rewrite Systems

2011-04 Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, Thomas Noll:
A Local Greibach Normal Form for Hyperedge Replacement Grammars

2011-06 Johannes Lotz, Klaus Leppkes, and Uwe Naumann: dco/c++ - Deriva-
tive Code by Overloading in C+-+

2011-07 Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe: An Operational
Semantics for Activity Diagrams using SMV

2011-08 Thomas Stréder, Fabian Emmes, Peter Schneider-Kamp, Jiirgen Giesl,
Carsten Fuhs: A Linear Operational Semantics for Termination and
Complexity Analysis of ISO Prolog

2011-09 Markus Beckers, Johannes Lotz, Viktor Mosenkis, Uwe Naumann (Edi-
tors): Fifth STAM Workshop on Combinatorial Scientific Computing

2011-10 Markus Beckers, Viktor Mosenkis, Michael Maier, Uwe Naumann: Ad-
joint Subgradient Calculation for McCormick Relaxations

2011-11 Nils Jansen, Erika, Abrahém, Jens Katelaan, Ralf Wimmer, Joost-Pieter
Katoen, Bernd Becker: Hierarchical Counterexamples for Discrete-Time
Markov Chains

2011-12 Ingo Felscher, Wolfgang Thomas: On Compositional Failure Detection
in Structured Transition Systems

2011-13 Michael Forster, Uwe Naumann, Jean Utke: Toward Adjoint OpenMP

2011-14 Daniel Neider, Roman Rabinovich, Martin Zimmermann: Solving Muller
Games via Safety Games

2011-16 Niloofar Safiran, Uwe Naumann: Toward Adjoint OpenFOAM

2011-17 Carsten Fuhs: SAT Encodings: From Constraint-Based Termination
Analysis to Circuit Synthesis

2011-18 Kamal Barakat: Introducing Timers to pi-Calculus

2011-19 Marc Brockschmidt, Thomas Stréder, Carsten Otto, Jirgen Giesl: Au-
tomated Detection of Non-Termination and NullPointerExceptions for
Java Bytecode

2011-24 Callum Corbett, Uwe Naumann, Alexander Mitsos: Demonstration of a
Branch-and-Bound Algorithm for Global Optimization using McCormick
Relaxations

2011-25

2011-26

2012-01

2012-02

2012-03

2012-04

2012-05

2012-06

2012-07

2012-08
2012-09

2012-10

2012-12

2012-15

2012-16
2012-17
2013-01
2013-02
2013-03

2013-04

2013-05

2013-06

2013-07

*

Callum Corbett, Michael Maier, Markus Beckers, Uwe Naumann, Amin
Ghobeity, Alexander Mitsos: Compiler-Generated Subgradient Code for
McCormick Relaxations

Hongfei Fu: The Complexity of Deciding a Behavioural Pseudometric
on Probabilistic Automata

Fachgruppe Informatik: Annual Report 2012

Thomas Heer: Controlling Development Processes

Arne Haber, Jan Oliver Ringert, Bernhard Rumpe: MontiArc - Architec-
tural Modeling of Interactive Distributed and Cyber-Physical Systems
Marcus Gelderie: Strategy Machines and their Complexity

Thomas Stroder, Fabian Emmes, Jiirgen Giesl, Peter Schneider-Kamp,
and Carsten Fuhs: Automated Complexity Analysis for Prolog by Term
Rewriting

Marc Brockschmidt, Richard Musiol, Carsten Otto, Jiirgen Giesl: Au-
tomated Termination Proofs for Java Programs with Cyclic Data
André Egners, Bjorn Marschollek, and Ulrike Meyer: Hackers in Your
Pocket: A Survey of Smartphone Security Across Platforms

Hongfei Fu: Computing Game Metrics on Markov Decision Processes
Dennis Guck, Tingting Han, Joost-Pieter Katoen, and Martin R.
Neuh#ufler: Quantitative Timed Analysis of Interactive Markov Chains
Uwe Naumann and Johannes Lotz: Algorithmic Differentiation of Nu-
merical Methods: Tangent-Linear and Adjoint Direct Solvers for Systems
of Linear Equations

Jirgen Giesl, Thomas Stroder, Peter Schneider-Kamp, Fabian Emmes,
and Carsten Fuhs: Symbolic Evaluation Graphs and Term Rewriting —
A General Methodology for Analyzing Logic Programs

Uwe Naumann, Johannes Lotz, Klaus Leppkes, and Markus Towara:
Algorithmic Differentiation of Numerical Methods: Tangent-Linear and
Adjoint Solvers for Systems of Nonlinear Equations

Georg Neugebauer and Ulrike Meyer: SMC-MuSe: A Framework for
Secure Multi-Party Computation on MultiSets

Viet Yen Nguyen: Trustworthy Spacecraft Design Using Formal Methods
Fachgruppe Informatik: Annual Report 2013

Michael Reke: Modellbasierte Entwicklung automobiler Steuerungssys-
teme in Klein- und mittelstdndischen Unternehmen

Markus Towara and Uwe Naumann: A Discrete Adjoint Model for Open-
FOAM

Max Sagebaum, Nicolas R. Gauger, Uwe Naumann, Johannes Lotz, and
Klaus Leppkes: Algorithmic Differentiation of a Complex C++ Code
with Underlying Libraries

Andreas Rausch and Marc Sihling: Software & Systems Engineering
Essentials 2013

Marc Brockschmidt, Byron Cook, and Carsten Fuhs: Better termination
proving through cooperation

André Stollenwerk: Ein modellbasiertes Sicherheitskonzept fiir die ex-
trakorporale Lungenunterstiitzung

2013-08

2013-10

2013-12

2013-13

2013-14

2013-19

2013-20

2014-01 *
2014-02

2014-03

2014-04

2014-05

2014-06

2014-07

Sebastian Junges, Ulrich Loup, Florian Corzilius and Erika Abraham:
On Grobner Bases in the Context of Satisfiability-Modulo-Theories Solv-
ing over the Real Numbers

Joost-Pieter Katoen, Thomas Noll, Thomas Santen, Dirk Seifert, and
Hao Wu: Performance Analysis of Computing Servers using Stochastic
Petri Nets and Markov Automata

Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and
Jirgen Giesl: Alternating Runtime and Size Complexity Analysis of
Integer Programs

Michael Eggert, Roger HaufBlling, Martin Henze, Lars Hermerschmidt,
René Hummen, Daniel Kerpen, Antonio Navarro Pérez, Bernhard
Rumpe, Dirk Thiflen, and Klaus Wehrle: SensorCloud: Towards the
Interdisciplinary Development of a Trustworthy Platform for Globally
Interconnected Sensors and Actuators

Jorg Brauer: Automatic Abstraction for Bit-Vectors using Decision Pro-
cedures

Florian Schmidt, David Orlea, and Klaus Wehrle: Support for error
tolerance in the Real-Time Transport Protocol

Jacob Palczynski: Time-Continuous Behaviour Comparison Based on
Abstract Models

Fachgruppe Informatik: Annual Report 2014

Daniel Merschen: Integration und Analyse von Artefakten in der mod-
ellbasierten Entwicklung eingebetteter Software

Uwe Naumann, Klaus Leppkes, and Johannes Lotz: dco/c++ User
Guide

Namit Chaturvedi: Languages of Infinite Traces and Deterministic Asyn-
chronous Automata

Thomas Stréder, Jiirgen Giesl, Marc Brockschmidt, Florian Frohn,
Carsten Fuhs, Jera Hensel, and Peter Schneider-Kamp: Automated Ter-
mination Analysis for Programs with Pointer Arithmetic

Esther Horbert, German Martin Garcia, Simone Frintrop, and Bastian
Leibe: Sequence Level Salient Object Proposals for Generic Object De-
tection in Video

Niloofar Safiran, Johannes Lotz, and Uwe Naumann: Algorithmic Dif-
ferentiation of Numerical Methods: Second-Order Tangent and Adjoint
Solvers for Systems of Parametrized Nonlinear Equations

* These reports are only available as a printed version.
Please contact biblio@informatik.rwth-aachen.de to obtain copies.

