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Abstract. In the theory of deterministic automata for languages of infinite
words, a fundamental fact relates the family of infinitary limits of regular lan-
guages and the family of w-languages recognized by deterministic Biichi automata.
With the known definitions of asynchronous automata, this observation does not
extend to the context of traces. A major difficulty is posed by processes that
stall after finitely many transitions. We introduce the family of deterministic,
synchronization-aware asynchronous automata which — using as parameter the
set of processes that stay live ad infinitum — allows us to settle an open ques-
tion, namely, whether there exists a deterministic Biichi automaton recognizing
precisely the infinitary limit of a regular trace language. Also, the corresponding
class of unparameterized Muller automata captures all w-regular trace languages.

1 Introduction

Traces were introduced as models of concurrent computations of distributed sys-
tems by Antoni Mazurkiewicz, who later also provided the first explicit defini-
tion of infinite traces [4]. Zielonka established the correspondence between regu-
lar languages of finite traces and regular languages of finite words that are the
“linearizations” of traces, and also characterized these as languages recognized
by asynchronous automata [7] (see [3] for a gentle introduction). Intuitively, an
asynchronous automaton comprises of a number of processes, and a mapping
that assigns to each letter of the alphabet a set of processes that are responsible
for jointly executing the transitions upon this letter. A transition relation defined
for each letter of the alphabet associates with a tuple of states a set of tuples of
states, where each tuple contains a state from every participating process. The
acceptance condition is given in terms of global final states.

With regards to infinite traces, Gastin-Petit [2] define the class of recogniz-
able languages of infinite traces in terms of monoid morphisms (we refer to this as
the class of w-regular trace languages). Then they show that this class coincides
with the class of languages recognized by the family of suitably defined non-
deterministic Biichi asynchronous cellular automata. Later, Diekert-Muscholl [1]
present the family of deterministic asynchronous cellular Muller automata rec-
ognizing precisely the class of w-regular trace languages. Muscholl also studies
the languages recognized by the deterministic variant of Gastin-Petit’s Biichi
asynchronous cellular automata and by some other modifications thereof [5].

It is known that a language of infinite words over the alphabet ' is de-
terministically Biichi recognizable if and only if it can be written in the form
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lim(K) = {a € X* | « has infinitely many prefixes in K} for some regular
language K C X*. Diekert-Muscholl generalize the definition of the operator
lim for the case of trace languages [1]. Muscholl also provides a definition of
the A-infinitary limit, an operator limy4, where the parameter A reveals infor-
mation about the set of letters that are allowed to appear infinitely often [5].
Every infinitary limit language can be expressed as a finite union of A-infinitary
limit languages, whereas the reverse in not necessarily true. The languages ac-
cepted by the class of deterministic, asynchronous Biichi automata introduced
by Muscholl can be expressed as finite unions of A-infinitary limit languages.
But some fundamental questions are still unanswered:

For languages of infinite traces, does there exist a model of Biichi
automata accepting precisely the class of finite unions of lim4 languages?
In particular, is every lim language accepted by such an automaton?

We suspect that these questions remain open owing to the current definitions
of models of asynchronous (cellular) automata. These models are oblivious to the
fact that every run of an asynchronous automaton over an infinite trace reveals
a maximal partitioning of the set of processes in a manner that each part is
minimal and, after a finite prefix, processes belonging to one part never interact
directly or indirectly with a process belonging to another part. The processes
ought to infer this partition by observing their infinitely recurring interactions.

One possible reason why current models lack this power is that, similar to
the case of word languages, they are straightforward adaptations of automata
models recognizing languages of finite traces, which are not required to perform
any infinitary inferencing. Additionally, different traces in a given language may
induce infinite runs where different sets of processes remain live for infinitely
many transitions. We observe that once we parameterize each acceptance tuple
with a set of live processes, reasonable results emerge; for example, the char-
acterization of linearizations of deterministic, real trace languages in terms of
I-diamond Biichi (word) automata with “extended” acceptance conditions [5].

We introduce a model of asynchronous automaton, which we refer to as the
synchronization-aware asynchronous automaton, that is capable of inferring the
maximal partitioning of the set of processes induced by any infinite trace.

Upon fixing precisely the set of processes that remain live w.r.t. each accep-
tance tuple, we obtain the family of synchronization-aware Biichi automata which
accepts precisely the family of finite unions of lim 4 languages (see Thm. 28). This
answers the above-mentioned open questions in the affirmative. At the same
time, the family of synchronization-aware Muller automata that we introduce
here recognize precisely the class of w-regular trace languages (see Thm. 31). As
is the norm, the tuples in the Muller acceptance condition in our model are not
parameterized by the set of processes that may and must remain live.

The next section presents the concepts, definitions and terminology that we
use in the paper. In Section 3 we describe our model of synchronization-aware
asynchronous transition systems. We present a mechanism to construct such
transition systems from arbitrary asynchronous transition systems. Then, upon
equipping these with suitable acceptance conditions to obtain Biichi and Muller
automata, we proceed establish our major results. Finally, we conclude with an
outlook on some fundamental results that we believe are well within our grasp.



2 Preliminaries

2.1 Finite and Infinite Traces

Over a finite alphabet X, let D C X2 be a binary, reflexive, and symmetric
dependence relation. Whenever convenient, we also refer to the corresponding
independence relation I = X2\ D. The independence alphabet is denoted by
the pair (X, I). Over such an independence alphabet, a finite trace is an iso-
morphism class of directed acyclic graphs ¢t = [V, <, A\] where V is a finite set
of events, \: V — X is a labeling function, and for two distinct events e, e’ €
V,A(e)DA(e') & e< e or € <eor e=¢. The concatenation of two finite traces
t1 = [Vl, <1, )\1] and t9 = [VQ, <2,)\2] is given by t; ® to = [Vi W Vs, </,)\1 ] )\2],
where </ = < W<aW{(e1,e3) € V1 x Vo | A1(e1)DAs(e2)}. Over an independence
alphabet, (X, I), we denote the set of all finite traces with M(X, I).

For convenience, we work with a “simplified” view of traces t = [V, <, A]
where we remove all edges that may be inferred from others, i.e. by < we mean
<\ <? as shown in Fig. 1a. We also refer to the partial order < obtained from
the transitive closure of the simplified edge relation. Relations <, >, >, and >
are also defined in the natural manner. We use the abbreviation e € t to imply
that t = [V, <,\] and e € V.

An infinite trace is a directed acyclic graph 6 = [V, <, A\] where V' is a count-
able set of events, and A\ and < are like above except < satisfies an additional
requirement, namely, for each e € 0, the set {¢/ € § | ¢/ < e} is finite. Denote
the set of all infinite traces with R(X, I'). For traces t € M(X,1),0 € R(X, ), we
refer to sets alph(t), alph(€) of letters occurring in them, and to the set alphinf(0)
of letters occurring infinitely often in 6. Define concatenation ¢ ® 8 as above.

We say tq1 is a prefiz of to, i.e. t1 C to 1= It 1 to = t1 O, and t1 C to iff
t1 C to and t; # to. We also refer to prefixes ¢ of some 6§ € R(X,I) in a similar
way. If E C tis a set of events, then ¢[E] = [V, <’, X| is a prefix of ¢ with the
set V' ={f et]| f <eforsomee e E} of events, and <’ and X are obtained
from restricting the corresponding entities in ¢ to V’. The least upper bound of
two traces tq,to, whenever it exists, denoted t; LI t5 is the smallest trace s such
that t1 C s A to C s. Similarly, if it exists, the greatest lower bound of ¢; and to,
denoted t; M9, is the largest trace s such that s C t; A s C ts.

2.2 Asynchronous Transition Systems

We refer to a deterministic asynchronous automaton as a pair 20 = (¥, F), where
T is a deterministic asynchronous transition system and F is an appropriate
acceptance condition. We discuss these components separately.

Over an alphabet (X, I), an asynchronous transition system consists of a set
P of processes, a mapping dom : ¥ — 2% assigning the domain of each letter
such that | J,cx,dom(a) = P and a I b < dom(a) N dom(b) = . Naturally, for
X' C X, we also refer to dom(X’) = (J,.5» dom(a). Moreover for an event e € t,
we refer to dom(e) instead of referring to dom(A(e)). Similarly, for E C ¢.

Processes p have sets X, of local p-states. Introducing a symbol § ¢ |J,cp Xp,
for a set P C P, the set Xp of P-states is a defined as Xp = {(xp)pep | xi €
Xy, if p; € P, otherwise z; = $}. We find it convenient to assume an order over
P and view a P-state as a tuple. So we refer to a state as a tuple m € Xp for



some P C P. A state is a global state if P = P. We always distinguish between
a {p}-state m and a local p-state x; and for a state 7, define the p-state in 7 as
mp = Tp € Xp U {$}, and similarly the P-state mp in . Also, dom(m) == {p €
P | mp # $}. Finally, we denote the set of all states Xor = Upcp Xp-

Over a fixed independence alphabet (X, I), a set P of processes, and a map-
ping dom, we now define a deterministic asynchronous transition system (an
ATS) as a tuple T = ((X})pep; (0a)acx, o), where X, are sets of local p-states;
transition functions d,: Xgom(a) = Xdom(a) define how processes jointly perform
state transitions letters a; and my € Xp is the global initial state of ¥.

Given a trace t = [V, <,A\] € M(X,]), or 6 = [V, <,\] € R(X, ), we define
the corresponding run p = [V, </, N, A] of T on the trace where V' :=V U{e, }
contains a fictional, minimum event e, . The relation <’ is identical to the edge
relation <, except that e is the unique minimum event.

During the run p of an ATS ¥ over a trace, each process p makes state
transitions on events e € dom~!(p). Each such event may be called a p-event as
well as a P-event where P = dom(e). All p-events in the run are totally ordered,
and this order <;, can be defined with the help of the order < of the trace. The
mazimum p-event in p according to the ordering <; is denoted as maxy(p) > e .
If it exists, the p-predecessor f of an event e is denoted by f < e. The labeling \’
is defined similarly except A (e)) = €; and A: V' — X,p is defined inductively:

— Introduce a fictional, minimum event e and define V' :=V U{e  };
— define <’ identically to the edge relation <, except that e; is the unique
minimum event; similarly )\, except for convenience \'(e ) = €;
— A: V' — Xyp is defined inductively as
(] A(@J_) = (7‘('0),
e for any e > e, if
o a= Ae), and
o for the p-predecessors e, <, e, if z, = A(ey),
p-states just before e,
then A(e) == 04((yp)pep), where y, = z,, if p € dom(e), y, = $ otherwise.

p are the most recent

Fig. 1 shows the labeled events of a trace and the corresponding run; but \
is omitted in p for readability. The processes are assumed to be lexicographically
ordered, hence the representation of states as tuples. Note that, in Fig. 1b, the
edges are shown as per the relations <;, p € P. Importantly, although e| <’ ey
and e <}, e, it is not the case that e <'es.
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(a) Trace prefix t = [V, <, A]. (b) Run p = [V U{er}, <", X, A].

Fig.1: For X = {a,b,c}, a I b, a finite trace (prefix) t € M(X, I) and the run p
of an ATS, with dom(a) = {q},dom(b) = {p}, and dom(c) = {p, ¢}.



Analogous to traces prefixes, we refer to run prefixes, and to prefixes ple], p[E]
for e € p and E C p respectively. For e € p, we also refer to the label A(e) as
the state of T at e. Similarly, if p is a finite run, then the state of T at p is given
by A(p) = (zp)pep where x, = A(maxy(p))), is the p-state of T at max,(p);
T = mo|p if max,(p) = e . Obviously, A(p) is always a global state.

Finally, an asynchronous automaton over finite traces is a pair A = (T, F),
where ¥ is an ATS and F' C Xp is a set of global states of T. A finite trace
t € M(X,I) is said to be accepted by 2 if A(t) € F. The set L(2) C M(X,I)
denotes the set of all finite traces accepted by the asynchronous automaton £I.

2.3 Deterministic Automata and w-Regular Languages

A language T' C M(X, I) is called recognizable or regular if there exists an asyn-
chronous automaton 2 such that 7' = L(2). The definition of regular languages
of infinite traces, or w-reqular trace languages was first provided by Gastin-Petit
[2] in terms of monoid morphisms. However, we use as definition, the characteri-
zation of the same family of languages in terms of deterministic (cellular) Muller
automata [1,5]. Although this definition was in terms of asynchronous cellular
transition systems, they are equivalent to the ATS’s that we have defined.

The notion of acceptance of an infinite trace § € R(X,I) by an ATS T is
defined by referring to the sets of local states that occur infinitely often during
the run p of T over . For each process p € P, the set Inf,(p) of local states
visited infinitely often is constructed as follows:

{a; € Xp|I®eep: Ale), = a;} if p € dom(alphinf(0)),

Inf,(p) = {x € Xp|3e € p: e = max,(p)

and A(e)

=T

} otherwise.
Ip

Let F = {F, F>,...} be a table with F; = (F?),cp being a tuple of subsets
of local states of the processes. A deterministic asynchronous Biichi automaton
(a DABA) is a pair 2 = (T, F). A DABA is said to accept a trace § € R(X, I) if,
on the run p of 2 on 0, there exists a tuple F; € F such that for each process p,
FP Cnfp(p) [2,1]. A deterministic asynchronous Muller automaton (a DAMA)
is a pair 2 = (%, F), and is said to accept a trace 0 if there exists a tuple F; € F
such that for each process p, F} = Inf,(p) [1].

Definition 1. A language © C R(X, ) is said to be an w-regular trace language
if it is recognized by a deterministic asynchronous Muller automaton.

Definition 2 ([1]). Let T C M(X,I) be a language of finite traces. The infini-
tary limit of T', denoted lim(T), is the language containing traces 6 € R(X,I) such
that there exists a sequence (t;)ien,t; € T satisfying t; C tiy1 and | |;cn i = 0.

Fig. 2 illustrates the definition of lim(7") with the help of a run of an asyn-
chronous automaton recognizing 7. Shaded prefixes end in global accepting
states. Fig. 2a illustrates an induced run if the trace 6 ¢ lim(T"), whereas Fig. 2b
illustrates the contrary.

In the theory of w-regular word languages, the family of deterministically
Biichi recognizable languages can be characterized in terms of infinitary limit
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(a) 0 ¢ lim(T) since | |, ti # 0. (b) 6 € lim(T) if each event is eventually cov-
ered by one of the accepting runs over the se-
quence of strict prefixes.

Fig. 2: Shaded regions constitute a sequence of accepting runs of an automaton
recognizing 7.

languages lim(K) for K C X* regular. With the current definitions, it is still
open whether there exists a DABA recognizing the language lim(7") for any given
regular trace language 7' C M(X, I). It is however known that if we impose the
classical Biichi acceptance condition on an ATS — namely, (T, F) accepts 0 if for
its run p over 0 there exists of F; € F with F NlInf,(p) # 0 for each p € P — then
there exist regular languages T' C M(X, I) such that lim(T") is not recognized by
any (T, F) (see e.g. [5]).

Muscholl also studies infinitary limits that are parameterized by a set of
letters. This set governs which letters from the alphabet must occur infinitely
often in the traces, and which letters may not.

Definition 3 ([5]). For T'C M(X,I) and some A C X, the A-infinitary limit
of T is defined as lima(T) .= {6 € lim(T") | D(alphinf(8)) = D(A)}.

Definition 4 ([5]). An w-reqular trace language is called a deterministic trace
language if it can be expressed as a finite union of restricted infinitary limits of
reqular trace languages.

Clearly, for T C M(X, ), the language lim(7T) is a deterministic trace lan-
guage since lim(T) = Jyc 5 lima(T). However, every finite union of restricted
infinitary limit languages may not be expressible in the form lim(7") for any 7.
Muscholl provides a natural extension to the definition of DABA wherein the
acceptance condition F consists of pairs (F, A). A trace § € R(X,I) is said to
be accepted by this variant of DABA if there exists such a pair (F, A) where
the run p of 0 satisfies the Biichi condition w.r.t. F', as mentioned above, and
A C alphinf(#). However, there exist deterministic trace languages that are not
accepted by any DABA [5].

2.4 Secondaries and Frontiers

During a run p of an ATS, the processes can be thought of as “possessing and
updating information” regarding other processes [3]. If p is finite and p,q € P,
the first-hand information that p has about ¢ at p, denoted by latest,_,4(p), is
the maximal g-event in the prefix p[max,(p)]. Trivially, latest,_,,(p) = max,(p).
Similarly, for p, q,r € P, the second-hand information that p has about r via ¢ at
p, denoted by latest,,;—(p), is the maximal r-event in the prefix platest,,(p)].
Trivially, latest,,p—q4(p) = latesty,_4(p).
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Partial frontiers for p: {es}, {eo}, {e5,e9}, {es,e9}, and {es,es,e9}.
At esq, pn = plei]; and at eg, pn = ples]. Note that es ¢ pleg].

Fig. 3: Partial frontiers (see Sec. 2.4); and illustration of Lemma 7 (see Ex. 8).

The primary information of p at p is defined as the ordered set Pri,(p) =
{latest,4(p) | ¢ € P}. The secondary information of p at p is given by the set
Secy(p) = {latest,,4—r(p) | g, € P}. It is easy to see that on the one hand
Pri,(p) C Sec,(p), and on the other hand the events of Sec,(p) may be ordered
as per the partial order < of p. This gives us a view of the secondary graph of
p at p, which we identify with secondary information itself. Clearly, max,(p) =
latest,,,p—,(p) is the unique maximal event in Sec,(p), and |Sec,(p)| < |P|2.

In this paper, we are mainly interested in secondary information of the form
Secy(ple]) for p € dom(e). Since, Secy(ple]) = Secy(ple]) for all p,q € dom(e), for
convenience we denote this information simply as Sec(e).

There exists a distributed algorithm, implemented by way of the so-called
gossip algorithm [3], that enables processes to update their secondary graphs at
the points of synchronization. When processes synchronize at an event e, the
gossip algorithm takes the secondary sets Sec(fp), fp <p € for each p € dom(e),
and outputs the updated secondary set Sec(e) reflecting the consistent, most
recent information available collectively among processes in dom(e).

While referring to finite runs p over finite traces, or over finite prefixes of
infinite traces, it is useful to refer to their maximum p-events as a set. Define
frontier of p as H, :={e € p | Ip € P,e = max,(p)}. Any upward closed subset
H C H, is called a partial frontier. E.g., the set {es, eg} in Fig. 3 is not a partial
frontier of p since it is not an upward closed subset of the frontier {es, eg, eg}.

Finally, for event e € p, define the top of e in p as Ty(e) = {f € p|e <
fA3p € P: f=maxy(p)}. Note that for any eq,...,e, € p, Ui, Tplei) is a
partial frontier of p.

Partial frontiers are significant because they consist of precisely the events
that help describe the partial state of the automaton. If A(p) is the global state
of an automaton after the run p, and if H is a (partial) frontier of p, then we
define A(H) = A(p)|dom(rr)- Roughly speaking, identifying a reasonable set of
partial frontiers is necessary and sufficient for computing the global state that
an automaton acquires at the end of a run.

3 A New Model of Asynchronous Automata

Any infinite run p of an ATS ¥ over a trace § € R(X, I) yields a partition ¥ =
(P1,...,P,) of set P of processes such that each part P; C P is minimal, and after
a finite prefix p; C p, the processes p € P; no longer interact directly or indirectly
with another process p’ € Pj,i # j. A process p may infer that it belongs to part
P; by observing that it infinitely often updates its first-hand information w.r.t



each ¢ € P;. Our primary aim is to obtain a family of deterministic asynchronous
transition system where such inferencing is possible.

3.1 Degrees of Synchronization

For an ATS ¥ and a run p of T over any trace, we associate with each event
e € p a measure of how much information is exchanged among the processes in
dom(e). We use sets P C P of processes as the gauge for this measure.

Definition 5. For a run p of an ATS and an event e € p, the secondary update
at e is the set U = {g € ple] | Ip,q,r € P,3fp <pe : g = latest, 4 (fp) #
latest,,q—sr(€)}.

Definition 6. In a run p of an ATS, the degree of synchronization at an event
e € p is defined as ds(e) ==, dom(T ,)(9)). By default, ds(e) = P.

The set ds(e) implies that there must exist prefixes p’ T ple] with partial
frontiers H, dom(H) = ds(e), such that for some process p € dom(e) with a
predecessor f, <, e, H ¢ p|[fp]. The following lemma illustrates this point, and
demonstrates the importance of the set .

Lemma 7. Fore € p, e>ey, let pn =[] . . plfp] be the greatest lower bound
of all its p-prefizes. For every prefiz p' T ple] with p' £ pn, there exist H C pf
and U C U, such that 1. H is a partial frontier in p’ with dom(H) = ds(e); and
2. Uger To(9) = H.

Before we prove this lemma, we consider an example that demonstrates the
claims of its statement. For this, we refer back to Fig. 3.

Ezample 8. Referring to Fig. 3, at e4, we have ex <4 e4 and e3 <, es. Then,
ds(es) = P because U, = {e,e1,e2,e3}. For instance e = latest,,,4(e2) #
latesty—,r—ss(e4). Since pn = ple1], we have four possibilities of p, viz. p} = pled],
ph = plea,es], ps = ples], and p) = ples]. For p), H = {e),e1,e2} and we can
choose U = e; C U,,. Symmetrically for p§. Also verify that, for ph, H = U =
{ea,e3}; and for p|, H = {ea,e3,e4} and U = {e_ }.

Considering eg next, we have eg <, eg, e <, €9, and Ue, = {e€2, €4, €6, €g}. For
instance, ex = latest,_,4—sp(€6) # latest,_q—p(e9) = es. Clearly, ds(eg) = {p,q,r}.
And since pn = pleg|, we have three possibilities of p' T pleg] s.t. p' [Z pn, the
most interesting one being p’ = ple7]. Now H = {ey, g, e7} is the partial frontier
of pler] with dom(H) = ds(eg), so we choose U = {ea} C Ue,. X

Proof (Lemma 7). We first prove a modified version of the lemma with a weaker
claim, which corresponds to proving, “if the first condition holds then the second
condition holds too.”
Claim: For every prefix p’ C ple] such that p' [Z pn, if there exists a partial
frontier H in p’ with dom(H) = ds(e) then there exists a subset U C U, such
that (J e dom(T v (g)) = H.
Proof: Let p’ be as in this claim, and let H be the partial frontier of p’ with
dom(H) = ds(e).

If |H| =1 then it must be the case that H = {e} — because otherwise either
¢’ T pn which is prohibited, or for some pair p,q € dom(e), H C p[f,] and



H N p[fq] = 0 which implies that dom(H) C ds(e) — and we can assign U = {f,}
for any p € dom(e).
Now, for the case where |H| > 2, the following condition must hold.

Vf e H, 3p € dom(e), dg,r € ds(e):
latestyq—r(fp) < f A latest, g5 (fp) # latesty,q—r(e) (1)

Condition (1) is simple a restatement of the claim above, because if it is true
then for each f € H we obtain gy = latest,_q—,(fp) such that g € U and
gf < f. Now let Uy Tpr(9r) = H'. Then it must be the case that H' = H, and
this can be demonstrated by the following argument.

— g5 < f=f € Tylgy), therefore H C H’', implying that dom(H) C dom(H’);

— Usenlgr}t C Ue, and therefore by definition ds(e) 2 ;e dom(T y¢(g5)) 2
Uyer dom(T v (g7));

— by assumption ds(e) = dom(H) and ;¢ dom(T (gf)) = dom(H'), imply-
ing that dom(H) D dom(H’), and hence dom(H) = dom(H');

— and finally, since H and H’ are partial frontiers of the same trace p’, and
since dom(H) = dom(H’), it must necessarily hold that H = H'.

This will give us the desired set U = [J;cy{gs}. Towards a contradiction,
assume that condition (1) is false. Then its negation must be true, which is:

3f € H, Vp € dom(e), Vq,r € ds(e):
latest,q—r(fp) < f = latest, 4 (fp) = latest,q—r(€) (2)

In particular, Vh € ple]: h < f = h ¢ U,. Since H ¢ pn, there must exist an
event g € H, g ¢ pn. Moreover since H is a partial frontier and f € H, there
exists 7 € P: f = max,(p'). And because f and g belong to the same partial
frontier, there must exist no r-event in the path from f to g (if such a path
exists). This implies that V¢’ € dom(g), latesty_,y—,(9) < f. Without loss of
generality, we treat it as an equality.

Note the following. 1. ds(e) = dom(H) = r € ds(e), and therefore there must
exist a smallest r-event f’ € ple|, f/ > f and hence f’ € pn, because otherwise for
some p € dom(e) the primary latest, ,,,(fp,) = h < f and then p will update
its primary information about r upon synchronizing at e resulting in h € U,;
2. from condition (2) above, Vp € dom(e), V¢ € dom(g): latest, ., (€) = f,
because otherwise for the same reason, h = latest, o, (fp) < latest,_,y_..(e) =
f implying h € U,; and consequently 3. ¢’ ¢ dom(e), because otherwise ¢’ will
witness f’ as a later r-event and update its primary from f to f’ resulting in
f € Ue. Recall that g ¢ pn, so it is possible to consider two events: one f, <, e
s.t. g ¢ plfp] and another f, <qes.t. g € p[f,]. Further, let e; = latest, ,, ¢/ (fp)
and f; = latest,_,p_q(fp). The situation is shown in Fig. 4.

Since g € p[f,], without loss of generality, let f, be the event where ¢’ and ¢
synchronize. Otherwise there must exist a sequence of synchronizations among
processes ¢',q", ... ¢ dom(e) before the last process in this sequence synchronizes
with ¢. However, upon this last synchronization, because latesty_,q—r(fy) > f
it must be the case that latesty . (f;) = latesty,y—(fy) > f'. Finally at e,
process p updates its information as f = latest,_, . (fp) # latest,_,q—,(€) > f
contradicting the assumption that f & Ue.



Fig.4: From the proof of Lemma 7 — the shaded region lies outside of p[fy];
e1, f1 € Pri(fp); no r-events along any (dotted or dashed) paths from f to g.

This concludes the proof of our modified claim. Now we prove that the first
condition of the lemma holds as well, which will conclude our proof.

Claim: If p' C ple] and p’ Z pn, then there exists a partial frontier H in p’ with
dom(H) = ds(e).

Proof: Now let us assume that there does not exist any such frontier. Then for
each partial frontier H C H,y with ds(e) C dom(H) it holds that ds(e) C dom(H).
Consider one such H.

For some ¢ ¢ ds(e), there must exist a g-event f = max,(p’) € H such that
for some r € ds(e) there is a r-event h = max,(p') € H with h < f; otherwise
we will find the frontier we are looking for. Without loss of generality, let h = f.

Since p' [Z pn, there exists at least one event g € p/, g ¢ pn. There-
fore, there exists p € dom(e) s.t. g ¢ p[fp], and it follows from the defini-
tions dom(g) C ds(e) and thus g € H. Since f = max,(p’) there cannot be
another r-event in any path from f to g (if any such path exists). Therefore
for each ¢’ € dom(g), latesty_,4—(g) < f. Once more, without loss of general-
ity, we assume latesty o —r(g) = f. Also, since r € ds(e) and ¢ ¢ ds(e) there
must exist a minimum r-event f’ € ple], f/ > f and hence f' € pn. Moreover,
Vp € dom(e), Vq' € dom(g): latest,_,q—4(fp) = f implying ¢’ ¢ dom(e).

So once more we arrive at the situation depicted in Fig. 4, and we pro-
ceed in a similar manner to arrive at the inference that f = latest, .,y (fp) #
latest,,,—,r(e) > f’, which in turn implies that f € U, and hence ¢ € dom(f) N
ds(e) which is a contradiction. [ |

Remark 9. Lemma 7 would not hold if U, were defined as the set of “primary

updates”, i.e. if U, = {g € ple] | Ip,q € P,3f <pe: g = latesty,4(fp) #
latest,—,p—q(€)} X

s’ ]
S
T —> ﬁ
J
L
€1 €2

el es €4 €5 €6 €7

Fig.5: Considering only primary updates is insufficient.
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Proof. Consider the run p := ple7| as shown in the Fig. 5, and note that for
event e7, es <, e7, and eg <4 e7. The set of primary updates U, = {e1,es5, €6}
since e; = latest,,, . (e5) # latesty,,r(e7) = es, €5 = latest,,, ,q(e5) #
latest,,p—q(€7) = €7, and eg = latest,_,,q(€s) # latesty—q—q(e7) = e7. Further,
as per Def. 6, ds(e7) = {p,q,7,5'}.

Now let E = {eg,e3,e4} and consider p' = p[E]. Clearly, p' C p and e3 ¢
ples] = p' L ples] = p' £ pn. However, there exists no partial frontier H of p'
with dom(H) = ds(e7) because dom(es) = {s, s’} ¢ ds(er). Therefore, Lemma 7
breaks if we consider only the set of primary updates. |

Corollary 10. If M. is the set of the minimal events of Ue, then it suffices to
always consider U = M, in Lemma 7.

Lemma 7 illustrates that degree of synchronization at event e corresponds
precisely to some of the frontiers that had been missing from the view of some
of the processes until they participated in e. Why we are interested in precisely
these frontiers will be clear from Lemma 11 and Corollary 12. Presently, with
respect to the partial frontiers H that are revealed by Lemma 7 at an event
e, we refer to the set Y, of states A(H) as the yield at e. Clearly, for each
71,2 € Ye: dom(my) = dom(me) = ds(e). We say that a yield Y. is bigger than
yield Yy if ds(f) € ds(e).

The subset relation over P provides a natural order for comparing various
degrees of synchronizations. The following lemma demonstrates that Def. 6 is
well behaved over infinite runs in the sense that it helps each process p in iden-
tifying the maximal set of processes P regarding which p repeatedly updates in
secondary, and hence primary, information.

Lemma 11. For an infinite run p and p € P, if p € dom(alphinf(p)) then there
exists a unique mazimal P C P such that 3%°e € p: p € dom(e) Ads(e) = P.

Proof. For the given process p, we claim that P is the maximally interacting set
of p and is defined as P := {g € P | Ve € p,3e’ € p:e < € Alatest,,p_4(e) #
latest,,p—q(€')}. That is, P \ P is precisely the set of processes with whom p
ceases to “interact” after a finite prefix.

Now let us assume that the statement of the lemma does not hold. This
implies that there must exist at least two minimal sets Py, P, C P such that:

1. for infinitely many events e € p: p € dom(e) Ads(e) = P,

2. for infinitely many events e € p: p € dom(e) A ds(e) = P, and

3. there exists ¢ € p such that Ve € p: ¢ < eAp € dom(e) = —(P1 C
ds(e) V P, C ds(e)), and consequently

4. there exists a process r € P, \ P} but no p-event e > ¢’ with Py U{r} C ds(e).

Consider a p-event e; > €’ with ds(e;) = Py, and let U, be the secondary
update per Def. 5. Since r ¢ ds(ey), it follows from Def. 6 that for each ¢ € P;
there exists g,, € plei] such that

5. for each p’ € dom(e;) and each f € ple1]: f <y e1 = gqr = latesty gy (f) =
latest,y_,q—r(€1).

11



Inference 5 formally states the fact that all the synchronizing processes p’ in
dom(ep) already agree on the second-hand information they have for process r
via all processes ¢ € P in general, and via all processes ¢ € P; in particular.
Moreover, since for all ¢ € Py the events g4, are all r-events, they are all totally
ordered in p. Let ¢; € P; be such that gy, » < g4, for each ¢ € P;. Therefore:

6. P C dom(Tp[el](gq1,7"))'

Now, if p updates information about r infinitely often and p updates infor-
mation about ¢; infinitely often and the set P of processes is finite, then r and
g1 must both update their information about each other infinitely often. From
our choice of P, it follows that there exists an event e, where g; will update its
primary w.r.t. r, i.e. gq, » < latesty, 4, (g ). It further follows that there must
exist a minimum p-event ez > e, where p will update its secondary for r via g1,
i.e. gq r # latest, 4 —r(e2). This implies that gq, , € Ue,. From inference 6 it
follows that P U {7} € dom(T pe,1(9q,+)) € dom(T piey)(9gr,r)) € ds(ez), which
contradicts inference 4. |

We call the set P from Lemma 11 the max-degree of p-synchronizations in
p, denoted by [ds,(p)]. For processes p ¢ dom(alphinf(p)) that eventually halt,
[ds,(p)] = {p}. The following corollary, that follows easily from Lemma 11,
demonstrates the “symmetric” nature of max-degree of synchronizations.

Corollary 12. For an infinite run p and p,q € P, either [dsy(p)] = [dsq(p)] or
[dsp(p)] M [dsy(p)] = 0.

In particular, for each part P, € ¥: ¢ € P; < [ds,(p)] = P;. This concretizes
our observation about a run p inducing a partition ¥ of the set of states, where
each part is minimal and after a finite prefix, a process belonging to one part
never interacts with a process belonging to another.

Definition 13. A synchronization-aware transition system (an SATS) is a pair
(T,D) where T = ((Xp)pep, (0a)acx,m0) is an ATS and D = (Dp)pep is a
collection of mappings Dp: X, — 27 such that 1. Dy(mop) = P, and 2. for
every run p of ¥ and every event e € p, if Ale) = m and p € dom(e) then
ds(e) =P& 'Dp(’ﬂ"p) = P.

The definition implies that, over any event, the processes of a synchronization-
aware system always make transitions to local states that directly correspond to
the degree of synchronization of the event in question. It is easy to see that
properties 2 therein is in fact decidable, whence the definition is “syntactic”.

3.2 Synchronization-aware Asynchronous Biichi Automata

A set X C X, of local p-states is called homosynchronous if for all local p-
states x,y € X: Dp(z) = D,y(y). For an infinite run p of an SATS, we define the
homosynchronous mazimal local infinity sets [Inf,(p)] as follows.

{:B € X,
[Infp(p)] =

{azeXp

Dy(z) = [dsy ()] and
I*ecp: Ale)

} if p € dom(alphinf(9)),
p =

Jde € p: e = maxy(p)
and A(e)

} otherwise.

lp =T
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Definition 14. A deterministic, synchronization-aware asynchronous Biichi au-
tomaton (a D-SABA) is a tuple A = (%, D, F), where (T,D) is an SATS, and
the acceptance table F = {(Q1, F1),...(Qk, Fx)} is such that each Q; C P and
F; = (FP)pep is a tuple of homosynchronous sets FY'. A D-SABA 2 accepts a
trace 0 € R(X, I) if, for the run p of A on 6, there exists a pair (Q;, F;) € F s.t.
dom(alphinf(#)) = Q; and for each process p € P: FF N [Inf,(p)] # 0.

The above definition essentially requires that processes p ignore all of their
infinitely occurring local p-states except those whose image under D, matches
the the maximal degree of p-synchronizations. A high level intuition behind this
— and a reason why acceptance of traces via asynchronous Biichi automata is not
as straightforward as acceptance of words via Blichi automata — is as follows.

Example 15. Consider an asynchronous automaton over finite traces, which has
two processes and whose global acceptance state set F' = {(z1, 1)} is a singleton.
Analogous to the word case, over the same ATS, one could define a Biichi au-
tomaton with acceptance condition F = {({z1},{y1})}. Suppose a trace induces

as shown in Fig. 6 below.
=
&
!
€6

Fig. 6: The run segment corresponding to ejesesey repeats ad infinitum. Local
states 21 and y; occur infinitely often, but the global state (x1,y1) never occurs.

Standard asynchronous automata suffer from the shortcoming that they can-
not deduce that the global state (x1,y;) never occurs in the above run. This is
in spite of the fact that the maximal degree of process synchronizations is P.
Ideally, at events e; € {eg, e4, 6} with ds(e;) = P, each process should have been
able to conclude in hindsight what the other process was up to; and only such
repeated global inferences should govern whether or not to accept a trace. KX

Lemma 16. If T C M(X,1) is a regular trace language, then there ezists a
D-SABA accepting © = lim(T).

We start with an asynchronous automaton 2 = (%, F) recognizing a language
L) = T C M(X,I) and show that it is possible to construct a D-SABA
A = (T, D, F) recognizing lim(T). Intuitively, we construct T in such a manner
that on one hand, it mimics the run of ¥ on every trace, and on the other hand
its local states collect enough information about ¥’s run such that at each event
e in its own run, T can compute the yield Y, for the corresponding event e in T’s
run. Now, fix the meanings of 2, T,2l and T, and let |P| = N.

Definition 17. Let my = (z1,22,...2Nx) and w2 = (Y1,Y2,...Yyn) be two ele-
ments of Xop. The projection of o on 7 is defined as m < wy = (21, 22,...2N)

vi  ifyi #9

where the local p;-states z; are defined as z; == )
x;  otherwise.
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By extension, define I1 < II' == {w <7’ | ® € II, ' € II'}, and similarly
m < II. We say that two states m = (z1,...,2y) and 3 = (y1,...,yN) are
compatible if for each process p;, x; = $ or y; = $ or x; = y;. If m; and w9 are
compatible, then 7 <l = my < m1; and sometimes this will have special utility.

Definition 18. If m and mo are two compatible states, then their join is defined
as T Q mo == w1 A my. The join of two incompatible states is not defined.

Again, we extend the join operation to sets as II1 ® IIo = {m ® ma | M1 €
II,, w9 € IIs,m and mo compatible}. Note that each partial state = that T ac-
quires during a run can be extracted by referring to the labels of the events
in partial frontiers, i.e. if H; and Hs are two partial frontiers of a trace then
A(Hy U H9) = A(H;) ® A(Hj). Additionally, according to Lemma 11 it suffices
that during an infinite run, processes p repeatedly compute only the partial fron-
tiers that correspond to maximal degrees of p-synchronizations.

Lemma 7 indicates that it is possible that at any event e € p, the processes
in dom(e) can compute the partial states for all partial frontiers H of prefixes
o C ple], p/ £ pn, dom(H) = ds(e). For that purpose, we define the projection
operation w.r.t partial frontiers and events in p.

Definition 19. Let p be a finite run of an ATS X, let H be a partial frontier
of p, and let e € p be an event such that H N T ,(e) # 0. If one exists, then let
ep = max,(p[H]) be the mazimal p-event with e < e,. Now, the projection of
H on e in p is defined as a state ple < H] = (xp)pep, where the local p-states

Alep)p,  if there erists e, = max,(p[H]), e < ep,
Tp =
P $ otherwise.

Note that if H = T,(e) then A(H) = A(e) < ple < H]. The following propo-
sition generalizes this observation and tightly couples Lemma 7 with Def. 19.

Proposition 20. Let H be a partial frontier of p, and let ey, ..., ey be pairwise
concurrent events such that, for 1 <i<n,HN Tp(ez-) # 0.

1. The states A(e;) < ple; < H], 1 < i < n, are all pairwise compatible; and
therefore,

2. if the frontier H = \J;_, T,(e;i), then the partial dom(H)-state in p can be
computed as A(H) = @, (A(e;) < ple; < HJ).

Prop. 20 follows immediately from the definitions, and it shows that events
e; € Sec(H) can be used to compute A(H) inductively. Fig. 7 illustrates this
idea, where e.g. T = ey @ ey, M2 = Te, @ (e, < 71), etc.

Although Prop. 20 demonstrates how the cumulative secondary information
Upep Secp(p) can help in computing A(H), all of these secondary events may not
be immediately available with any single process to perform this computation.
We therefore need a way to “remember” certain partial states long enough so as
to enable this computation at a later synchronization as per Lemma 7. Clearly,
we require secondary information capable of storing partial states.

Definition 21. Let p be a run of . At any event e € p, with reference to
Sec(e), the augmented secondary information is defined as Sec(e) :== {(f, II, ) |
f € Sec(e),II C Xyp,m = A(f)}. Moreover, for each event f € Sec(e) there
exists exactly one augmented event f = (f,II, ) € Sec(e).

14



H»
<7r2® Mes
D@ |
Tes)<ams Tes
ey H3
Fig. 7: Using states m,, = A(e;) to inductively reconstruct the partial states

A(H;) = 7, <m; of partial frontiers H;. Finally, A(Hy) = (7ey <m2) ® (Tey <A 73).

The motivation behind the above definition, and the invariant property that
we wish to maintain in the augmented secondary set Sec(e) at every event e € p,
is a certain modularity of the augmentations IT within each f € Sec(e). This
property is formalized as follows.

For each event f = (f,II, ) € Sec(e), there exists a partial state
7! € II iff there exists a prefix p’ T ple] and a partial frontier H in p
such that 1. H = T,(f); 2. 7’ = p/[f <H| or 7’ = ($,...8); and 3. if
g € Sec(e) is an event such that g > f then HN Ty (g) = 0. (%)

Example 22. Consider a run prefix shown in Fig. 8 below.

r =] — o el ~t
N Q Q & Q
q (=} — o 2]
> > > >
o —
Plg 8
€l el €2 es eq es

Fig.8: A run p where events are labeled with local states. Sec(es) = {e1, €2, €5}

As per property (%), we have &, = (e1, IT1, m1) € Sec(es) with 71 = ($, y1, 21)
and the set IT; contains ' = (8,8, z2), because for p’ = ples] and H = {e1,e3}
we have 7’ = p[e; < H]; and similarly for 7’ = ($, $, z3). For all the frontiers H,
the states A(H) = A(e1) < pler < H] can now be found in the set 73 < IT;. X

We show later how this invariant is maintained in successive synchronizations.
At present, assuming it holds, we show how we can exploit it to formalize the
intuition presented in Fig. 7. The following procedure takes as an event e as
input, and using the information Sec(f,), f, <, e for each p € dom(e), returns a
data structure that forms the basis for computing the partial states for all partial
frontiers H a la Lemma 7.

PARTIALSTATES(e)
1. Create replicas -Sec(f,) of each set Sec(f,); initialize -Sec(e) = 0.
2. To each set t-Sec(f,), append v-e = (e, {($,...$)}, A(e)) as the greatest event.
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3. Let {e} UU,edom(e) Sec(fp) = {€1, ..., en} be the topologically ordered set of
all secondary events, with e, = e,
for ¢ =n down to 1 do
(a) Initialize event t-e; :== (e;, I1;,7;), where II; = () and m; = A(e;)
(b) Consider Q; = {gi,1,¢i2,...} € dom(e), such that for each ¢; ; € Q; there
exists an e;-copy t-€; ; = (e;, I1; j, ;) in L—Q(fqi’j):
for j =1 up to |Q;] do
i. Locally in t-Sec(fy, ), let {1-g; ;1,1-G; j2 ...} be the set of all events
L'?i,j,k > 1-€; 4, with L‘?i,j,k: = (gi,j,k, Hi,j,kﬂ"'z’,j,k)- Let IT = .
begin iteration over k
Update I = I U (H X Hi,j,k)a assuming 0D® Hi,j,l = Hi,j,l
end iteration
Update t-€; ; by assigning I1; ; == I1; ; U (11; ; < II).
ii. Update ¢-II; := ¢-11; U II; j U (+-11; & II; ), assuming O @ II; 1 = 11, 3
done
(c) Insert i-€; == (e;,t-II;, ;) in 1-Sec(e) as per the partial order.
done.
4. return (-Sec(e)

The significance of (-Sec(e) is that it is a temporary data structure whose
augmentations «-IT w.r.t. -f contain the sum total of all the information of all
the secondary events greater than f. Further assuming that each Sec( fp) satisfies
(%), the following property holds for +-Sec(e).

For each event «-f = (f,-II, ) € 1-Sec(e), there exists a partial state
7' € +-II iff there exists a prefix p' C ple] and a partial frontier H in p’
such that 1. H = Ty (f); and 2. @' = p/[f <H] or 7’ = (§,...9). (1)

Proposition 23. For an event e € p, if for each process p € dom(e) the set
Sec(fp), fp <p € satisfies property (x) then 1-Sec(e) satisfies property (t).

Proof. We argue by induction over the set {eq,...,e,} of events as mentioned in
step 3 of PARTIALSTATES procedure. The induction proceeds in the same order
as the loop, i.e. from n down to 1. As the base case, it is trivial to see that
for index n, &, = -e = (e, {($,...9%)}, A(e)), and there exists only one choice
of prefix p' T ple], which is ple] itself. Then we have H = T,(e) = {e} and
ple<<Hl = ($,...8) (cf. Def. 19).

Now, assuming that all events up to index ¢ + 1 satisfy (1), we consider t-¢;
as obtained in step 3c. Let 7’ be a partial state in ¢-I1,. If 7’ € II, ; already for
some ey ; € Sec(fq, ), qr; € Q¢ then we have nothing to show since condition (%)
already holds, implying that condition () holds. Otherwise, because the successor
events gy chosen in Step 3(b)i are all pairwise concurrent, there must exist
some prefixes pi1,...,pm C ple] and partial frontiers Hy,..., H,, therein such
that 7’ = p1[e, <H1]®...® pmlee < Hyp,). Firstly, we can set p' .= ||, px T ple].
Secondly, if @ = dom(n’) then the set H' C | J;" | Hy consisting of the maximal
g-events from Hy’s, ¢ € @), is a partial frontier in p’. Hence it immediately follows
that 7’ = p'[e; < H'].

For the reverse direction, consider a prefix p' C p[e] with a partial frontier H’
such that H' = T (e;), and the set G = {g € p’ | g # e, = g is an immediate

successor of e¢ in {e} U U cdom(e) Sec(fp)}. Then there are two possibilities.
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If G = {ey} then either H' = {e;} in which case, by definition, p'[e, < H'] =
($,...9%) and is already a member of (-IT; by the initialization step 2. Otherwise,
it must be the case that p’ C |_|q“€Qe plfq,]- And then, H' may be expressed as
H' = Hyj UHgyj, U... where that Hy; = H' N p[fqu] is a partial frontier in
peik = P'[fej,)- And therefore, p'les <TH'] = pyj1lee<Hp j1]1®@pej2lee<<Hgjo] ...
is an element of (-II; as a consequence of condition (*) holding over Sec(fy, )
and the join operation in Step 3(b)ii.

If |G| > 1, then denote the elements of G as e; = go, g1, - - ., gm- For k > 1, let
Hy, = T (gx). Since these events gj, are are pairwise concurrent, by Prop. 20, the
states A(Hy) = A(gr) < p'lgr < Hy| are mutually compatible, and by induction
hypotheses p'[gr <@ Hi] € «-II). From the compatibility of states, the order in
which events gj, are joined in the local updates on (- ; in step 3(b)i is immaterial.
Finally, if (J, Hr = H’ then nothing more remains to be shown, since the local
updates already ensure that A(H') € +-II,. Otherwise, since () holds on all sets
Sec( fae,;), using an argument similar to the case of G' = {e;} we conclude that

there must exist states m;;, € Sec( fqe,jl) and so on, such that at the end of
step 3(b)i for event ey, we have p'le < H'| = (mpj, < mar) @ (7, < Tax) - -
thereby implying that (1) holds for index ¢ as well.

Remark 2. Property (1) and Corr. 10 imply that corresponding to the set M, C
U, of the minimal updated secondary events at e, if we take the set M, =

{1-€1,...,1-} C 1-Sec(e) of the minimal iota-events, then processes p € dom(e)
can compute the yield Y, == {r € ®f:1 (m; < -1I;) | dom(m) = ds(e)} which
contains the partial states for all the partial frontiers H as in Lemma 7. X

Finally, during the update of secondary information at e, some events from U,
may be deleted by the gossip algorithm. The processes must appropriately update
the augmentations to ensure that the property () is maintained. Referring to
the partially ordered sets Sec(f,), f, <pe for each p € dom(e), and the set 9. C U,
of events to be deleted, we describe this update using the following procedure.

SECONDARY UPDATE((e)
1. Initialize Sec(e) = 0; append e = (e, {($,...9$)}, A(e)) as its greatest event.
2. Let {e} UlUpedom(e) Sec(fp) = {€1, ..., en} be the topologically ordered set of
all secondary events, with e, = e,
for i =n down to 1 do
(a) Initialize event €; := (e;, IT;, m;), where II; = () and m; = A(e;)
(b) Consider Q; = {gi1,4i2,-..} € dom(e), such that for each ¢; ; € Q; there
exists an e;-copy @;; = (e;, I1; j,m;) in Sec(fy, ;)
for j =1 up to |Q;] do
i. Locally in t-Sec(fy, ), let {1-g; ;1,t-G; j2 ...} be the set of all events
-G j g > 1-€ij With -G, ;. € Oe, and let v-g; ; ). = (i j ks i j ks Tijik)-
Initialize a temporary variable IT = ().
begin iteration over k
Update IT := IT U (II @ II; 1), assuming @ IT; j1 = II; j1
end iteration
Update t-€; j by assigning II, ; := II; ; U (II; ; < II).
ii. Update II; == II; U II; j U (II; ® II, j), assuming ) @ I1; ; = ()
done
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(c) If e; ¢ O, then add €; := (e;, II;, ;) in Sec(e) as per the partial order.
done.
3. return Sec(e)

Proposition 25. For an event e € p, if for each process p € dom(e) the set
Sec(fp), fp <p €, satisfies condition (x) then, after the SECUPDATE procedure,
Sec(e) satisfies condition ().

Proof. As the basis, observe that Sec(e) ) = (e, {mo}, mo) satisfies (*). Hereafter,
applying the induction hypothesis, the proof of this proposition is very similar
to that of Prop. 23. The only difference between this procedure and PARTIAL-
STATES procedure is that, while in the latter the newly computed augmenta-
tions ¢-II; from step 3(b)i are always projected down to immediate predeces-
sors, in SECONDARYUPDATE procedure the newly computed augmentations II;
from step 2(b)i are projected down to immediate predecessors only if the events
e; ¢ Sec(e). Therefore, the modularity of the augmentations via the additional
condition (3) of (x) is preserved. [ |

For processes p € P, let SEC, be the family of all augmented secondary
sets whose unique maximal events are p-events. Starting from an ATS T =

((Xp)pépv (5a)a,€277r0)7 we construct an SATS T = (((Yp)pepa (ga)GGZaﬁ0)7D>
where:
- X, C UQg) X, x SEC, x X(, where sets @ are such that p € Q;
ol = (w0, {(eL, {mo},m0)}, {mo}) where zg = ), is the initial p-state of T;
— for letters a € X, dom(a)-states T = (xp,Secp, Yp)pedom(a) € Xdom(a)> and

q € dom(a), define the transition 04(7)|, = (yq, Sece, Ye), where
® Yy = 0a((Tp)pedom(a))|q 1S Obtained from T;
e Sec, is obtained from SECONDARYUPDATE(e), assuming e is the current
event in the run with A\(e) = a, and for f, <, e, Sec(f,) = Sec,; and
e Y, is the yield at e obtained from the PARTIALSTATES(e) procedure.
— For each local p-state T = (z,Sec,Y) € X, if for any 7 € Y, dom(7) = Q,
then assign D), (7) = Q.

To summarize, at any event e, the yield Y, consists of precisely the partial
states ™ € Xyg(e) of T that had been missing from the view of one or the other
process until they witnessed the event e. Over the infinite run p, the processes
q belonging to the part [ds,(p)] = P; € ¥ either will eventually halt at states
mi € X4y or will necessarily observe, at least in hindsight, all the partial states
m; € Xp, that appear infinitely often in the run. Therefore, a global state m € Xp
of ¥ appears infinitely often in the run if and only if it can be inferred as the
join @), m; of partial states corresponding to different parts in ¥.

We now concretize this idea in order to describe the Biichi acceptance condi-
tion for the SATS constructed above. Fix a global accepting state m; € F of 2,
a set ) C P of processes that make infinitely many transitions, and a partition
V; ={Pj1,... Pjn;} of P compatible with Q, i.e. Pj;, NQ # 0 = Pj; € Q and
PieNQ=0=|Pjxl =1

Firstly, for each p € @, the acceptance condition looks out for local p-states
Z = (z,Sec,Y) € X, where the yield Y contains the partial state T\ P o where
P; ;. € ¥; is the part containing p. This is necessary and sufficient because, we
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know from our discussion above that, if one process in the part P;; witnesses
the partial state m; p,,, at some frontier, then sooner or later every other process
in P;j, witnesses the same same partial frontier and hence the same state.

Secondly, let S = P\ @ € P be the set of processes that eventually stop.
Clearly, for a fixed partition ¥;, S ranges over possible unions of singletons in
it. For each such S, we consider a set S = (Sp)pes, Sp € P. S ranges over the
possible sets of degrees of synchronizations corresponding to the last transition
of processes p € S during a run, and necessarily p € S,. That is, for p € S,
the acceptance tuples looks out for local p-states T = (z,Sec, V) where z = Tilp
and Dp(Z) = dom(Y) = S,. We have the former requirement because process
p stops at the state T, and we have the latter requirement because each local
acceptance set F' can only contain states that have the same image under the
mapping Dp, which in this case is the same as dom(Y’). Note that S ranges over
the possibilities that correspond to the choice of (), and the range of Q) itself
depends upon ¥;. That is, P\ @ can be non-empty only if ¥; contains singletons.
And in particular, if Q = P then S becomes redundant.

Given m; € F', a non-empty set Q C P, a partition ¥; compatible with (), and
S as above, we construct a local acceptance set for each process p € P assuming

e _ {{(m,Sm:,Y)eXp\pePM/\mP_keY} if peQ
p € Pip Figjs = — — ” . ;
{(z,Sec,Y) € Xy |z =mp Adom(Y) = S,}  ifp g @Q

which results in an acceptance pair (Q,Fi@j@) with Fi0.j.s = (fiQ7j75)pep.

Proof (Lemma 16). Let A = (%, F') be a deterministic asynchronous automaton
recognizing a language 7' C M(X, I). We use the above construction to obtain
from T the corresponding SATS (T, D) with T = ((X,)pep, (8)a, 7o)

Defining the Biichi acceptance condition F = (J; UgU; Us{(@, Fiq,s)}:
we claim that 2 = (T,D,F) is a deterministic, synchronization-aware Biichi
automaton that recognizes the language © = lim(T).

Clearly, a trace # € R(X, ) is accepted by 2

iff there exists a pair (Q, (Fp)pgp) € F such that dom(alphinf(#)) = @ and in
the run 7 of A over 0, for each p € P, F* N [Inf,(p)] # 0; and this holds
iff for the partition ¥ = {Py,... P,} of P induced by p and all 1 < k < n, either
1. P, C @, and in this case processes p € P; participate in infinitely many
events in p, [ds,(p)] = P, and p witnesses some p-state (z,,Sec,,Y,) €
F” infinitely often; or
2. P, € Q, and in this case process q € Py participates in only finitely many
events, and there exists some state (z,,Sec,,Y,) € F? that is the last
g-state;
and this holds
iff in the run p of 2A over 6, there exists an infinite sequence of run prefixes
(pi)ieN, with p; C piy1 and | |, pi = p, where each p; ends in a global state
accepting state 7 € F for % such that mg € Q) ,cq Yp and mp\q = (24) 0
and this holds
iff there exists and infinite sequence of trace prefixes (¢;);en such that ¢; €
T,t; C tiy1 and | |,c t; = 0; and this holds
iff 0 €lim(T).
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Note that the big join operation above is valid because for some 1 < k < n if
p1,p2 € QN Py then mp, € Y}, NY),,; and since 7 p, is compatible with itself,
we have mp, € Yy, ®Y),. On the other hand, if p1 € Py, and pa € Py,, k1 # k2,
then Y}, is by construction compatible with Y, . ]

Lemma 26. If A = (%,D, F) is a D-SABA with |F| = 1, recognizing language
O CR(X, 1), then there exists a set A C X and a reqular language T C M(X, I)
such that © = lima(T).

Given 2 = (%, D, F) recognizing language © C R(X,I), let F = {(Q, F)}.
Then we need to present a (non-deterministic) asynchronous automaton B rec-
ognizing T C M(X,I) s.t. for some A C X, @ = limy(T'). Without loss of
generality, we assume that (@, F') is realizable. That is, for all p,q € Q: ¢ €
Dy,(FP) < Dy(FP) = Dy(F1?). Further, note that although the acceptance tuple
imposes that @ is precisely the set of processes that make infinitely many tran-
sitions, this does not imply that for some 6 € L(2): alphinf(§) = dom~1(Q). The
set of letters that may occur infinitely often in any 6 € L(2l) is precisely the set
we fix as parameter A, and is given by A == dom~1(Q) \ dom™*(P\ Q).

Next, we exploit non-determinism in asynchronous automata for languages
of finite traces as well as a simple memory structure that processes p use to
remember local g-states of other processes. The acceptance pair (Q, F') already
indicates that if p € @) then, then p needs to look out only for infinitely occurring
local g-states where ¢ € D,(FP). If p ¢ @ then p need not remember anything.

A local p-state of B is of the form (:c, (Xp_,q)qep,i) where i € {0,1} is
referred to as a context, x is a local p-state from 2 and the memory-set X, ,,
is a set of local ¢-states from 2A. Intuitively, the processes of 28 begin in initial
states where sets X,_,, are empty and the context ¢ = 0. At first B simply
mimics 2 — making transitions within context 0 and keeping sets X,_,, empty
— until it non-deterministically decides that processes p € P\ @ have all halted.
At this point, processes p € ) make a “cross-over” transition to states with
context ¢ = 1. It is now that these processes start populating their memory-sets;
and only those memory-sets that are relevant according to the Biichi acceptance
condition (@, F'). At appropriate times, processes “reset” their memories and
start accumulating again. The global final states of B are defined around these
points of reset.

Given a D-SABA 2 = (T,D,F) with T = ((Xp)pep, (6a)acx, m0) and F =
{(Q, F)}, we construct a nondeterministic asynchronous automaton B = (%, F')
by first constructing its underlying ATS T = ((X,)pep, (Aa)acx,; 7o), and then
describing F' as follows:

— if p € Q, then X, C X, x (2%7),cp x {0, 1},
— otherwise, if p ¢ @, then X, C X, x (2%#),ep x {0};
— Tolp = (0, (0,...0),0) where xg = m, is the initial p-state of ;
— for a € A the transition relation A, = 9,4 x U Uie{o,l} 0q,i, Where
e for dom(a)-states T = ((zp, (Xp—qg)gep:1)) ) define the mapping

0a,i(T)|p = (?Jpa (Yp—>q)q€7?ai) such that
* Yy = 5a(($q)qedom(a) Ip is obtained from 2; and

pedom(a

* Y, is computed! as follows:

! For the case when i = 0, this computation is redundant since all the memory-sets Y,_.q are
empty to begin with.
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1. First define Z,_,, as
() if g € Dy(F?) Adom(e), then Zpg = {g} U U, caom(e) Xrosa
(b) else if g € Dp(F?P) \ dom(e), then Z,,q == U, eqom(e) Xr—a-
2. Now, for each g € D,(FP) if Z, ,, N F? # () then define Y,_,; := ()
else define Y,_,, = Z),_,.
e for dom(a)-states T = ((xp, (Xp_m)qe'p,i))
Sa,x (T)|p = (yp, (Yp—q)geP, z) such that
* Yy = 0Oq (:cq)qedom(a))|p is obtained from 2; and
x for ¢ € dom(a), Yp—q = {yq}-
— for a € X'\ A the transition relation A, = 6,0 is defined similarly to the case
i = 0 above.

— F C Xp is a set containing all global states ((xp, (Xpﬁq)qep,ip))pep of T

where [for each p ¢ Q the z, € FP Nip = O] and [for each p € Q,1, = 1] and
[for each set FP p € @, there exists r € FP whose state (mr, (Yosq)geps 1) is
such that for each ¢ € P: Y, = (Z)].

pedom(a)’ define the mapping

The acceptance set F of B can be understood in the light of the transition
function d,,1 as it resets the memory-sets Y}, to empty, and the fact that the
partition ¥ induced by every 6 € L(2l) can be inferred from (Q, F'). The reset
takes place if, during synchronization on an event, the collective memory-sets
of the processes (along with the currently acquired local states) have non-empty
intersections with respective sets in the Biichi acceptance condition. For each part
P ew, P CQ,itis necessary and sufficient that at least one processes p € P
repeatedly arrives at a local-state where the memory-sets are all empty. Then
this local-state may constitute a global accepting state irrespective of local-state
of other processes ¢ in the same part P. On the other hand, processes p ¢ Q) must
come to a halt in one of their respective Biichi states, while making transitions
solely within context ¢ = 0.

Proof (Lemma 26). Let A = (T,D,F) be a D-SABA recognizing a language

© C R(X,I). We claim that, if F = {(Q, F)} and A = J,cq 2 is computed as

shown previously, then the NAA B = ((X,)pep, (Aa)acx, To, F) as constructed
above recognizes T' C M(X, I) such that © = limy(T).

To show that © C lim4(T), let # € © be an infinite trace accepted by 2, and
let ¥ be the corresponding maximal partition of processes from @ (i.e. we ignore
the processes that halt). We show that 6 can be broken down into a sequence of
strictly increasing prefixes, each of which produce an accepting run in ‘B.

First, we identify a prefix ¢y C 6 such that Vg € P\ Q: max,(0) € tg and
Ve € 0\ typ,3IP € U:ds(e) C P. The first condition says that all processes ¢
that make only finitely many transition in the run over 8 already process their
maximal events in tg. The second condition says that while processing events e
in any suffix of ¢y, the secondary information update of processes is restricted
exclusively to the maximally interacting parts to which the processes belong.

Next, we consider a sequence (t;)ien s.t. to == tg, t; T ti41, and | |;t; = 6.
In order to describe this sequence, we make use of intermediate variables t,_.,
where p, ¢ belong to the same part P € ¥. Initially, we set ¢, := to. Then, for
each i > 0, t;51 is a smallest trace satisfying:

1. there exists at least one part P € W: P Ndom(t;11 \ ;) # 0;
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2. for each part P € ¥ as in 1 above, there exists a maximal event ep of t;11
such that if f, <, ep,p € dom(ep) are immediate predecessors of ep then for
each ¢ € P,3p € dom(ep),Jey € {ep} Ut[fp] \ tpmq: Aleg)q € FY

3. for each P € ¥ as in 1 above, for each p € dom(ep) and each g € P, reassign
tp—>q = t[ep].

4. As a special case, for t1, the three conditions above must be fulfilled by each
part P € ¥.

Given an input t;,7 > 0, the NAA B first guesses ty = tg, and starting in
its initial state Ty, it processes all the events of ty using the transition functions
within context 0, i.e. transition functions of the form é,0,a € X. So for all the
processes p ¢ @ that halt, the final local p-states (zp, (0,...0),0) in the run of
B are such that x, € FP, because so far B had been blindly mimicking .

The remaining processes that are still active then move to local states with
context 1 by virtue of the cross-over transition function d, x, and start populating
their memory-sets corresponding to their maximally interacting sets from .

The acceptance of t; by B can be understood by looking at any one part
P € ¥ individually and then repeating the analysis for every other part. Firstly,
we argue why t; must exist. Since P is a maximally interacting set of 6, and
since the processes p € P all visit their Biichi sets FP infinitely often, it follows
from Lemma 11 that there must exist at least one event ep such that dlep] \ tg
contains events favorable events e, A(ep)), € F* for each p € P.

Next, since 1 is a minimal such prefix, ep € 0\ ¢y is a minimal such event.
Since B switches to the transition function d, 1 after ¢y, as described in step 1la
in the construction of d,; above, individual processes ¢ € dom(ep) maintain and
update the r-states in their memory-sets Y;_,, much like the primary information
update of the gossip algorithm. Only in this case, the retention of local states
is not dependent upon the longevity of the primary event in the primary graph.
Since there exist favorable events e, € Olep| \ tp for each r € P, construction
step la implies that /l(er)‘r € Zg—sr. By construction step 1b, we have it that
upon processing ep, all processes ¢ € dom(ep) arrive in local g-states with empty
memory-sets. Therefore, we have that A(t;) = @ pey A(t1)|p € F since for each
part P € ¥, and each ¢ € dom(ep), A(t1)|, is a reset state.

Now, assuming t; exists, the existence of ¢;11 can again be established using
the same arguments as for ;. However, it must be pointed out that if for some
part P € ¥, PNdom(t;4+1 \t;), then it does not imply that for all processes p € P
there exist states z;, € F'P in run over the factor ;11 \t;. It only implies that some
processes g € P witness these states z;, (although they may appear in t;,i" <7)
for the first time. And clearly, D(alphinf(f)) = D(A) because § must realize the
acceptance pair (@, F'). Hence, we have established that § can be decomposed in
a sequence (;);>1 of strictly increasing prefixes belonging to L(*8).

Now for the reverse direction, consider an infinite trace § € R(X,I) with
D(alphinf(#)) = D(A), which can be broken into a sequence (t;);en of strictly
increasing prefixes, where each t; induces an accepting run in 8. By construction
of the transition relation of B, it is evident that alph(¢;+1 \ ¢;) C A for all ¢ € N.
So we can claim that @ = dom(A) is precisely the set of processes that witness
infinitely many transitions, and we can choose as the first element in the sequence
a prefix t,, for large enough n such that the processes P \ @ have stopped. We
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can also infer that the final local states of processes p € P\ @ are of the form
(zp, (0,...0),0) for z, € FP.

Further, since D(alphinf(6)) = D(A) it must be the case that the run p of 2 on
f induces precisely the partition ¥ as one deduces from the Biichi acceptance pair
(Q, F). Therefore we obtain a sequence (t});en, With ; = t,4;, which satisfies
the four conditions mentioned above. And using a similar analysis as above, we
conclude that each process p € @ visits its Biichi set F? infinitely often during

the run of 6 over 2. Hence, 6 € L(2). [ |

Proposition 27. The family of D-SABA-recognizable languages is closed under
finite unions.

Proof (Sketch). Without loss of generality, we assume that the D-SABAs in ques-
tion have all the same set P of processes and the same mapping dom.

Given two D-SABAs 2l = (£,D,F) and B = (T,D',F') we construct a
synchronization-aware product automaton €, i.e. one where the sets Y, of local
p-states are constructed as Y, = {(z,2') € X}, x X, | Dp(x) = D, (') }. Over this
product, for each acceptance pair (Q, F') € F the new Biichi table F{, contains a
pair (Q, F,) where F .= {(z,2') € Y,, | € FP}. Similarly for each acceptance
pair (Q', F') € F' the new Biichi table F, contains a pair (Q', F!)) where F? :
{(z,2") €Y, | 2/ € F'P}. Now it is straightforward to show that L(€) = L(2)
L(*B).

HC |

From Lemmas 16 and 26, and Prop. 27, we obtain the following result.

Theorem 28. A language © C R(X, 1) is recognized by a D-SABA iff © is a
deterministic trace language, i.e. © can be expressed as a finite union of languages
of the form lim4(T) for regular languages T C M(X,I) and sets A C X.

Lastly, the following result has been established for the class of deterministic
trace languages in [5]. We can now state the same result in terms of the family
of D-SABA recognizable languages.

Proposition 29. The family of D-SABA-recognizable languages is closed under
finite intersections.

3.3 Synchronization-aware Asynchronous Muller Automata

Over synchronization-aware asynchronous transition systems, we define the vari-
ant of deterministic Muller automata for languages of infinite traces. Then we
show that this family of automata accept precisely the family of w-regular trace
languages by comparing them with DAMAs.

Definition 30. A deterministic synchronization-aware asynchronous Muller au-
tomaton (a D-SAMA) is a tuple A = (T, D, F), where (T,D) is an SATS and
the acceptance table F = {F,...Fy} is s.t. F; = (E¥)pep are tuples of homosyn-
chronous sets FY. A D-SAMA 2 accepts a trace 6 € R(X, I) if, for the run p of
2 on 0, there exists a tuple F; € F s.t. for each process p € P: [Infy(p)] = FY.

Theorem 31. Any language © C R(X,I) of infinite traces is recognized by a
D-SAMA if and only if © is recognized by a DAMA.
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Proof (Theorem 31(=)). Starting with a D-SAMA 2( = (%, D, F) construct a
DAMA 2 = (%, F’) over the same transition structure but a bigger accep-
tance condition defined as follows. For each F; = (E7),ep € F, construct Fz’ =
(Ff U X%)pep where the set X7 C X), is such that Vo € X7: Dy(x) C Dy(FY).
The index j refers to the different ways of choosing the suitable subsets of XP.
This construction additionally ensures that in the DAMA, a local infinity set
contains all of the original local p-states as well as those that correspond to
strictly lesser degrees of synchronization. The required equivalence of automata
is now straightforward. |

For the reverse direction, Given a DAMA 2 = (T, F), using the same aug-
mented secondary information data structure as we introduced in Sec. 3.2, we
first construct an SATS (%, D) corresponding to ¥. In order to proceed with the
proof, we need to handle the case where some processes may halt. Unlike the
case of D-SABA however, owing to the nature of Muller acceptance conditions,
we cannot explicitly mark an acceptance set with the set of processes that halt.
This situation must be handled implicitly within the acceptance condition.

We choose a symbol I to denote the index over a suitable range, which we
will use to define the Muller condition F = Uﬂ(ff)pep. Clearly, I must at least
be of the form (i, Q, j, S) where

— 4 ranges over the Muller sets F; € F of the input DAMA £2;

— ) C P is the set of processes consistent with F; that may make infinitely
many transitions, that is Vp € P: (p ¢Q=|F' = 1) A (]sz] >1=pc Q);

— j ranges over possible partitions ¥; which are consistent with the choice of @,
that is VPj?k eYv;: (Pj’k NQ #0= Py C Q) VAN (PjJC NR=0= ‘Pj’k’ = 1);

— For the set S =P \ @Q that, as a consequence of (), must participate in only
finitely many transitions, S = (Sp)pes,Sp € P is a collection of the possible
degrees of synchronization of the final states of processes p.

Now if a process p € S then, from our choice of () above, it must be the
case that |FP| = 1. Let F = {z}. Then indeed, the contribution F] of p to
the Muller set Fy must be a singleton, which can be chosen to contain any
7T = (x,Sec,Y) € X, for some Sec, and Y such that D(Z) = dom(Y) = S,. But,
for the fixed z € F?, there may be many such states = € X, for varying values
of Sec and Y'; and so on for all p € S. Therefore, given S,

— we must additionally have an index ¢ = ({,)pes that ranges over the possible
collections of singletons w.r.t. ¢, @, j, and S.

So I must at least be of the form (i,Q,j,S,f), where S = (Sp)p¢q and
= (Kp)ng. Now we move on to the processes p € () that never halt. It is clear
that if the run of processes p from a part P is confined to precisely the states
FP, then during the run of the corresponding SATS T, processes yields Y of
processes p € P must be confined to a suitable subset of ®pe Py FP which
covers each local g-state in F, ¢ € P; j,. Formally, given i, @, and j

— we consider a collection Y = (yp)peQ where each set ), C 2Pk of partial
P;j ;-states of 2 satisfies the conditions:
1. ForeachY € ), Y C ®qEij F!; and
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2. For each q € Pjj, and each x € F? there exists a set Y € ), such that
for some 7 € Y, 1, = .

This means that I must at least be of the form (i,Q,j,S,¢,Y) with Y =
(Vp)peq- Now for the processes p € @, the Muller set F? must be such that for
each local p-state (z,Sec,Y) € F] the set Y € ), and for each Y € ), there
exists a p-state (x,Sec,Y) € Fy. The idea here is that the set Yp as a possible
set of yields so that if any process p € Pj, of T were to visit every local state in
F]Ip as mentioned here, then this would imply that in the corresponding run of ¥
all processes g € P;, visit every state from the local state sets Fiq.

Now, similar to the case of halting processes above, upon fixing a choice tuple
(Vp)pep, there may be many possible ways in which choices of local Muller sets
can be combined together. For example, for a fixed )}, and the same yield Y, we
may have (z,Sec,Y) € Fy and (:U’,Q,,Y) € F1. So lastly, given i, Q, j and Y,

— we must have an index m = (mp)peq that ranges over the possible ways of
choosing local sets F7 such that
1. for each local p-state (z,Sec,Y) € F} it holds that Y € Y;
2. for each Y € Y, there exists a p-state (z,Sec,Y) € F?: and
3. for each m € Uy¢y, Y if m), = x, then for some Sec and Y’ € Y, there

exists a p-state (x,Sec,Y’) € FY.

The three conditions automatically imply that for each p € Q: there exists
x € F? if and only if there exists a state (z,Sec,Y) € Fj? for some Sec, Y. Specif-
ically, the last condition above ensures that if during an infinite run a process
p witnesses all the yields from ), infinitely often, then the p-states themselves
are consistent with these yields. Clearly, a local p-state y of 21 appears in the
yields infinitely iff 2 infinitely often witnesses p-state y iff 2 infinitely often visits
witnesses p-states of the form (y, Sec , Y”).

Therefore, we set the index I to be of the form (i, Q, 7,S,¢,), m), and define
F = Uy (F])pep. We believe that computation of exact size of the range of T is
superfluous to the present discussion.

Before we proceed to the proof, we make an observation. It is possible that
F1 = Fyp even if the corresponding sets Q and @’ are unequal. For example,
consider I = (4,Q,7,S,¢,Y,m) and I' = (:,Q", 5,8 ,¢',Y',m’). Let’s say there
exists a process p € @ but p ¢ Q’'. In particular, F]If = fff, = {Z}. The partition
¥; in both the cases is the same, and this implies that I assumes that p eventually
halts at T, and I assumes that p makes infinitely many transitions from Z to
itself and hence its maximally interacting set of processes is {p}. The automaton
cannot distinguish between these assumptions underlying Fj and Fy. In fact,
it treats these sets as one, and may likewise accept traces with different sets of
halting processes by referring to it.

There is however, an important property of the new Muller sets F that will
be useful in handling the case of accepted traces where some processes may halt.

Proposition 32. For any indez I = (i,Q,j,5,¢,Y,m) and any process p € P,
if F{ = {(x,Sec,Y)} then it must be the case that F? = {x}.

Proof. From our construction, Fﬁo may be assigned a singleton in two scenarios.
First is the assumption that p ¢ @ and therefore p is considered to be one of the
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processes that may halt. Referring to the discussion of indices ¢, Q, j, S above,
this can happen only if, p belongs to a singleton part in the partition ¥;, which
itself is chosen in consistence with ). And Q in turn could be chosen to exclude
p only if |[FP| = 1. And by construction, Fj = {(z,Sec,Y)} only if F¥ = {z}.
Second scenario is the case when p € ). In this case, the condltlons governing
the choice of F} are described in the discussion of index m. If F} = {(z, Sec,Y)}
then the three conditions together mandate that )}, = {Y'}; that P;j-states in
Y cover all the g-states occurring in F}!, ¢ € Pjj; and condition 3 especially
mandates that for any 7 € Y there exists a state (2, Sec,Y) € F with Tp = T.
And since F7 is a singleton, we can claim that Vr € Y Tp = z. And since Y is
the only set in ), it alone covers all sets Fiq7 q € Pj. In particular, Y covers
FP. Hence F! = {z}. [ |

Proof (Theorem 31(«)). We claim that, given a DAMA 2 = (T, F), the D-
SAMA 2 = (T, D, F) as constructed here recognizes precisely the language L(21).
A trace § € R(X,I) is accepted by 2

iff there exists a component (F"),ep € F such that in the run 7 of 2, for each
p € P, F’ = [Inf,(p)]; and this holds

iff there exists a Muller component (G?),ep € F of A such that
e for processes p that make infinitely many transitions in p, sets F” contain

states whose yields collectively cover the sets G4, ¢ € [ds,(p)]. And this
can only happen if in the run p of A over 0, Inf,(p) = GP.

e for processes p that make only finitely many transition in p, it must be the
case that F* = {(z,Sec,Y)}. And, as per Prop. 32, this can only happen
if the Muller component (Fq)qep is constructed from such a component

(G9)4ep of A where GP = {x}.
Therefore, by construction of the SATS T, we can claim that [Inf,(p)] =

F” < Inf,(p) = GP. And this holds
iff 0 is accepted by 2.

This demonstrates that the family of deterministic, synchronization-aware Muller
automata recognizes precisely the family of w-regular trace languages. ]

We can now provide a constructive proof to show that the family of D-SAMAs
enjoy the same closure properties under finite Boolean operations as the family
of Muller automata over infinite words.

Proposition 33. If 2l = (%,D,F) and A = (¥, D', F') are two D-SAMAs
recognizing languages ©,0" C R(X,I) respectively, then
1. the language R(X, 1)\ O is recognized by a D-SAMA; and
2. the language © U @' is recognized by a D-SAMA.
Proof (Sketch). For each possible partition &; of P, let QY = P, ; € ¥;, p € P, ;.
Now, for each process p € P, consider the set of local states X! = {z € X, |
Dy(x) = QF}. Define F- i= U, ((TT,ep 27 )\{F; € F | Vp € P: Dy(FF) = QF}).
Now it is routine to show that the D-SAMA B = (%, D, F-) recognizes exactly
the language R(X, 1) \ ©.

The other part of the proposition follows by referring to new acceptance com-
ponent F, constructed similarly in a synchronization-aware product automaton,

i.e. one where the sets Y}, of local p-states are constructed as Y, = {(z,2') €
X, x X)) | Dp(x) = Dy(a')}. [ |
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4 Discussion

We introduced synchronization-aware asynchronous transition systems (SATS),
that allow us to define for the first time asynchronous Biichi automata that rec-
ognize precisely the family of finite unions of A-infinitary limit languages, where
A C X governs the letters with infinite occurrences. We suggest that this set of
languages, which strictly includes the class of infinitary limits of regular trace
languages, should be referred to as the set of deterministically Buchi recogniz-
able trace languages. This is because not only can their definition be viewed as a
generalization of that for the word case but, more importantly, they are closed
under finite unions and intersections — analogous to the deterministically Biichi
recognizable languages of infinite words.

The procedure that we present to construct an SATS T from an arbitrary
ATS ¥ essentially refines the state space of ¥, and from that point of view it may
also find utility in exploring properties of languages of finite traces. Moreover,
we can modify the algorithm slightly and apply it to “I-diamond” finite state
automata to directly obtain an SATS without the intermediate ATS.

We also consider it important to explore a definition of synchronization-aware
asynchronous cellular automata, where, although a set of processes synchronize
on a letter, exactly one of them changes its state. With the existing definitions,
it is known that asynchronous cellular automata are equivalent to asynchronous
automata for the case of languages of finite traces.

Some basic questions still remain open, e.g. whether the w-regular trace lan-
guages are precisely those that can be obtained as finite Boolean combinations of
deterministically Blichi recognizable trace languages. It is also open whether an
w-regular trace language is deterministically Biichi recognizable precisely when
it is recognized by a deterministic Muller automaton whose acceptance table is
closed under supersets. The corresponding results for the case of w-regular word
languages were established by McNaughton and Landweber respectively (cf. [6]).
We believe that a well rounded theory of traces necessitates that these results
extend to w-regular traces languages as well, and we suspect that the definition
of synchronization-aware transition systems is a step in that direction.

Analogous to the study of families of word automata and the corresponding
families of w-regular languages, our interest lies in contributing to the theory
of asynchronous automata for w-regular trace languages. Therefore, beyond ad-
dressing the classical theorems, our results also suggest definitions of classes of
automata with weaker acceptance conditions, namely, Staiger-Wagner automata
and automata recognizing reachability and safety acceptance conditions.
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