RWNTH Aachen

Department of Computer Science
Technical Report

Algorithmic Differentiation of Numerical
Methods: Tangent-Linear and Adjoint Solvers
for Systems of Nonlinear Equations

Uwe Naumann, Johannes Lotz, Klaus Leppkes, and Markus Towara

ISSN 0935-3232 . Aachener Informatik-Berichte . AlIB-2012-15

RWTH Aachen : Department of Computer Science . Jan. 2013 (revised version)

The publications of the Department of Computer Science of RWTH Aachen University are in
general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Algorithmic Differentiation of Numerical Methods:
Tangent-Linear and Adjoint Solvers for Systems of Nonlinear
Equations

Uwe Naumann, Johannes Lotz, Klaus Leppkes, and Markus Towara

Lehr- und Forschungsgebiet Informatik 12:
Software and Tools for Computational Engineering
RWTH Aachen University, Aachen, Germany
Email: {naumann ,lotz,leppkes, towara}@stce .rwth-aachen.de

Abstract. We discuss software tool support for the Algorithmic Differentiation (also known as
Automatic Differentiation; AD) of numerical simulation programs that contain calls to solvers
for parameterized systems of n nonlinear equations. The local computational overhead as well
as the additional memory requirement for the computation of directional derivatives or adjoints
of the solution of the nonlinear system with respect to the parameters can quickly become
prohibitive for large values of n. Both are reduced drastically by analytical (in the following also:
continuous) approaches to differentiation of the underlying numerical methods. Following the
discussion of the proposed terminology we develop the algorithmic formalism building on prior
work by other colleagues and we present an implementation based on the AD software dco/c++.
A representative case study supports the theoretically obtained computational complexity results
with practical run time measurements.

1 Introduction, Terminology, and Summary of Results

We consider the computation of first-order directional derivatives x(1) € IR" (also: tangents)
and adjoints A1) € IR™ for solvers of parameterized systems of nonlinear equations described
by the residual

r=F(x,A): R"x R" — IR". (1)

For A € IR™, a vector x = x(A) € IR" is sought such that F(x,A) = 0. In order to provide a
context for the differentiation of nonlinear solvers and without loss of generality, the nonlinear
solver is assumed to be embedded (see also Section 2) into the unconstrained convex nonlinear
programming problem (NLP)
min f(z)

for a given objective function f : IR? — IR. In the context of first-order derivative-based
methods (e.g., Steepest Descent or Quasi-Newton methods such as BFGS [3, 25] if the number
of parameters g exceeds the number of state variables n considerably) for the solution of the
NLP the gradient of y = f(z) € IR with respect to z € IR? needs to be computed, which
involves the differentiation of the nonlinear solver itself.

Algorithmic Differentiation (AD) [15,23] is a semantic program transformation technique
that yields robust and efficient derivative code. Its reverse or adjoint mode is of particular
interest in large-scale nonlinear optimization due to the independence of its computational
cost on the number of free parameters. AD tools for compile- (source code transformation)
and run-time (operator and function overloading) solutions have been developed, many of
which are listed on the AD community’s web portal www.autodiff.org. Numerous successful

applications of AD are described in the proceedings of so far six international conferences on
the subject; see, for example, [4, 2, 8].

Traditionally, AD tools take a fully discrete approach to differentiation by transforming
the given source code at the level of arithmetic operators and built-in! functions. Potentially
complex numerical kernels, for example, matrix products or the solvers for systems of linear
and nonlinear equations to be discussed in this paper, are typically not considered as intrinsic
functions, often resulting in suboptimal computational performance. Ideally, one would like
to re-use intermediate results of the evaluation of the original (also: primal) kernel for the
evaluation of directional derivatives and/or of adjoints, thus, potentially reducing the compu-
tational overhead induced by differentiation. For direct solvers for dense systems of n linear
equations mathematical insight yields a reduction of the overhead from O(n?) to O(n?) [6, 11].
These results are built upon in this paper in the context of continuous differentiation meth-
ods applied to different levels of (Newton-type) numerical solution algorithms for systems of
nonlinear equations.

set of sensitivity equations dE

l

set of continuous equations E

]

differentiation

continuous approach

wn wn
w— T 4 T
| o & o &
continuous g % g % continuous
world £ H £ H world
Sz S =
discrete 2, .S 3, .S discrete
world &, g =, & world
4} |2 discrete approach = @
. . \ differentiation . \ .
solution a]gorlthm for E solution algorlthm for dE

Fig. 1. Illustration of continuous and discrete approaches to differentiation

Fig. 1 illustrates our use of the term continuous. In general, the primal problem is assumed
to be given as a set E of (potentially nonlinear [[partial] differential]) continuous equations.
As a very simple example we consider the parameterized nonlinear equation z? — A = 0 with
free parameter \ € IR and state variable x € IR; the scenario is illustrated by Fig. 2. Analytic
derivation of the corresponding continuous (tangent-linear or adjoint) sensitivity equations
yields a new set dE of continuous equations (upper right corner of Fig. 1). Their numerical
solution delivers (approximations of) tangent-linear or adjoint sensitivities (lower right corner
of Fig. 1). For example, the continuous differentiation of 22 — X\ = 0 with respect to X yields

3(2?2 — A) (1) 33:
bl S/ —(9.0.22 _1).2\0 =
I A T B\ A 0

1 ... into the given programming language

oz
L) " Bp
=2 _p= ox ox

v

x = SOLVE(z?, p)

(1) = SOLVE(l)(xO,x<1),p) Py = SOLVE(I,Z‘(U)

Y

1) _ %o

ox _)~ ~
L) ap = 2 — 2w C PO TP

Fig. 2. Example

for some A1) € IR (see Section 2.1 for details on the notation) in tangent-linear mode and

o(x? =\ ox

for some x(;) € IR in adjoint mode. Note that the primal solution x enters the definitions of
both the tangent-linear and adjoint sensitivity equations. Numerical solutions of the latter
yield approximations of the tangent-linear and adjoint sensitivities, that is,

1
ox)y _ AW
o\ 2.\

and
Oz _ 2

YOI T o N
respectively. The solution of the sensitivity equations turns out to be trivial for scalar nonlinear
equations. In general, it will involve potentially sophisticated numerical methods, for example,
the solution of a linear system when considering systems of nonlinear equations.

In discrete differentiation mode the solution method for the primal problem is differen-
tiated (transition from lower left to lower right corner in Fig. 1). For example, the v New-
ton iterations performed for the computation of z ~ v/A by solving the primal equation
f(xz,\) = 22 — X = 0 numerically are transformed according to the principles of AD. In
tangent-linear mode the primal Newton iterations

flwi, A) xf — A
2.

Tipl =T — 5y = Ti — o —

Ja(xiy A) x;

are transformed into

Ti+1 2331'—]{
x

M _ 0 <f)\ +foron (fop t+ fou-2) - f) A

+1 T fw fo

X

_ f)\)\(1) fa: T)\(1)+sz f)\(1 +fa::n T f /\(1)

= f2 fz
_ (fr)\ f fA G fa:m [e
2'%’ 2. a:ZQ Z
fori=0,...,v—1 and for given xg, A, x(()l), A e R. The following notation is used:
Oz _of af _62f 0% f
Ty = o\’ fz = 8x(xzaA)a = 8)\(1'27) fxm = (l'za) fx>\ o a)\(mu/\)

Initialization of A1) with 1 and of :L'(()l) with 0 yields the partial derivative of the primal

solution z,, with respect to A in).
Adjoint mode AD applied to the primal Newton iterations yields the forward section

i1 =T — —x, 1=0,...,v—-1
T ey T

followed by the reverse section

Jx fa:,w - f fm,z - f Tit1(1) A
i = (17/»;6+ I) > B B G

It fo-xy (far+ foo-22) - f
A1) = Ay + Tig1q1) <xx — I + 12

-\ (1 f:c:v f>_x _(f)_fx,)\'f)
1) - fac i+1(1) fx fﬁz

% — X Tit1(1)
=An-(1
W (* 222 >+ 2.z

fori =v— ;0 and for given zo, A, A1), Z,(1) € IR. Initialization of Ay with 0 and of z,y)
with 1 ylelds the partial derivative of the primal solution z,, with respect to A in Ay).

Consistency of the continuous and discrete approaches to the differentiation of nonlinear
solvers is shown in [16] and discussed further in [15]; see Section 3.2. Refer also to [5] for a
related discussion in the context of attractive fixed point solvers.

In this paper we aim for further algorithmic formalization of the treatment of nonlin-
ear solvers from the perspective of AD tool development. For our example, the directional
derivative

1
ox), A
o\ 2.\
or the adjoint
ox L))

x(l).ﬁNZ'ﬁ

are computed. In finite precision arithmetic an approximate solution of the primal equations E
yields approximate sensitivities in discrete differentiation mode. The primal solution enters the
continuous sensitivity equations dE. The numerical solution of dE will produce approximate
sensitivities that will generally not match those obtained in discrete mode exactly. This effect

€

discrete adjoint

continuous adjoint

1
PRVAN

1071
1072
1073
1074
107°
10~
1077
108

0.35291073699211

0.35347538461395

0.35355324021214

0.35355324021214

0.35355339059327_
0.35355339059327_
0.35355339059327_
0.35355339059327_
0.353553390593274

0.35355338198598
0.35355338198598
0.353553390593274
0.353553390593274
0.353553390593274
0.353553390593274
0.353553390593274

0.353553390593274
0.353553390593274
0.353553390593274
0.353553390593274
0.353553390593274
0.353553390593274
0.353553390593274
0.353553390593274

Table 1. Consistency of differentiation of the numerical solution x of the equation 2 — A = 0 with respect
to A: We list 15 significant digits (using double precision IEEE 754 floating-point arithmetic) of the results
obtained in discrete and continuous modes for increasing accuracy of the primal Newton iteration according
to the termination criterion |z — \| < e and we compare them with the exact derivative % 2'15\ for A = 2.
Discrepancies are underlined.

is illustrated in Table 1. Potential discrepancies are due to approximate primal solutions as
well as possibly different solution methods for primal and sensitivity equations (including
different discretization schemes for nonlinear [[partial] differential] equations).

The choice between continuous and discrete differentiation methods can be made at various
levels of a given numerical method. For example, in the present context of a multidimensional
Newton method the nonlinear system itself as well as the linear system to be solved in each
Newton step can be treated in either way. Table 2 summarizes the computational complexities
of the various approaches to differentiation of Newton’s algorithm for the solution of systems
of n nonlinear equations assuming a dense Jacobian of the residual. The performance of
the different approaches depends on the number of Newton-iterations v and on the problem
size n. Discrete differentiation of the nonlinear solver corresponds to a straight application
of AD without taking any mathematical or structural properties of the numerical method
into account. It turns out to be the worst approach in terms of computational efficiency.
Its main advantage is that correct derivatives of the actually performed Newton-iterations
are computed independent of whether convergence has been achieved or not. Continuous
differentiation delivers approximations of the derivatives the accuracy of which also depends
on the quality of the primal solution. Continuous differentiation of the embedded linear solver
yields an improvement over both the discrete and continuous approaches to the differentiation
of the nonlinear solver. The only downside is that the associated additional persistent memory
requirement (only applicable in adjoint mode; see Section 4) exceeds that of the continuous
method by a factor of v.

2 Foundations

For further illustration, f is decomposed as

y = f(z) = p(S(x", X)) = p(S(x", P(2))), (2)

where P : IR? — IR™ denotes the part of the computation that precedes the nonlinear solver
S : IR" x IR™ — IR™ and where p : IR — IR maps the result X onto the scalar objective
y. Conceptually, many real-world problems fit into this category, for example, parameter
estimation problems for mathematical models that involve the solution of nonlinear partial
differential equations. Refer to Section 6 for a case study.

discrete NLS|continuous NLS|continuous LS

tangent-linear mode (run time) v-0(n®) O(n®) v-0(n?)

(memory) | v-O(n®) O(n?) v-0(n?)
(run time) | v - O(n®) O(n?) v-0(n?)

adjoint mode

Table 2. Computational complexities of discrete and continuous tangent-linear and adjoint modes of differ-
entiation for v Newton-iterations applied to systems of n nonlinear equations: Continuous differentiation can
be applied at the level of the nonlinear (continuous NLS mode) and (here dense) linear systems. Fully dis-
crete treatment of the nonlinear solver (discrete NLS mode) implies the discrete differentiation of the linear
solver. Alternatively, a continuously differentiated linear solver can be embedded into a discrete nonlinear
solver (continuous LS mode).

The discussion in this paper will be based on the following algorithmic description of
Equation (2):
A= Pz); x:=5(x%A); y:=p(X). (3)

The parameters A € IR™ are computed as a function of z € IR? by the given implementation
of P. They enter the nonlinear solver S as arguments alongside with the given initial estimate
x" € IR™ of the solution x € IR™. Finally, the computed approximation X of the solution x is
reduced to a scalar objective value y by the given implementation of p.

2.1 Algorithmic Differentiation

We recall some crucial elements of AD described in further detail in [15,23]. Without loss of
generality, the following discussion will be based on the residual function in Equation (1). Let

therefore
=(*)er
u= A

and h = n + m. AD yields semantical transformations of the given implementation of F :
IR" — IR™ as a computer program into first and potentially also higher (k-th order) derivative
code. For this purpose F' is assumed to be k times continuously differentiable for k = 1,2,.. ..
In the following we use the notation from [23].

The given implementation of F' is assumed to decompose into a single assignment code
(SAC)

forj=h,....h+qg+n—1

v = <Pj(%)z‘<ja

where i < j denotes a direct dependence of v; on v;. The result of each intrinsic function?
@; is assigned to a unique auxiliary variable v;. The h independent inputs u; = v;, for i =

2 Intrinsic functions can range from fundamental arithmetic operations (+,*,...) and built-in (into the used
programming language) functions (sin, exp, . ..) to potentially highly complex numerical algorithms such as
routines for interpolation, numerical integration, or the solution of systems of linear or nonlinear equations.
In its basic form, AD is defined for the arithmetic operators and built-in functions. A formal extension of
this concept to higher-level intrinsics turns out to be reasonably straight forward. Support of higher-level
intrinsics by AD tools is very desirable. For a complex algorithm to become an intrinsic function all we
require is the existence of and knowledge about the partial derivatives of its results with respect to its
arguments.

0,...,h — 1, are mapped onto n dependent outputs r; = Vpiq+j, for j = 0,...,n — 1. The
values of q intermediate variables vy are computed for k = h,...,h+q — 1.

The SAC induces a directed acyclic graph (DAG) G = (V, E) with integer vertices V =
{0,...,h+q+n—1} and edges E = {(i,7)|i < j}. The vertices are sorted topologically with
respect to variable dependence inducing a partial order according to Vi,j € V : (i,j) € E =
1< J.

The intrinsic functions ¢; are assumed to posses jointly continuous partial derivatives with
respect to their arguments. Association of the local partial derivatives with their corresponding
edges in the DAG yields a linearized DAG. The linearized DAG of our reference objective is
shown in Fig. 3 (a) with (high-level) intrinsic functions P, S, and p.

(82] lyw)]

]) [52]

O Oz oA
5 (2] %

(a) (b) (c)

Fig. 3. Reference Problem: (a) Linearized DAG; (b) Tangent-Linear Extension; (c) Adjoint Extension

%
Bl

By the chain rule of differential calculus, the entries of the Jacobian A = (a;;) = VF(u)

can be computed as
aij= Yy IT (4)
weli—h+q+j] (kl)en

where
K= a2l (vg)
Ik = By, Ve q=<l

and where [i — h + ¢ + j]| denotes the set of all paths that connect the independent vertex 4
with the dependent vertex h + g + j [1]. For example, according to Fig. 3 (a)

o1 _oy _op 05 op 5
0z 0z 0Ox ON 0z’

First Derivative Models The Jacobian VF = VF(u) of the residual r = F(u) induces a
linear mapping VF : IR" — IR" defined by the directional derivative

uM) < VF, u > .

The function
FO . Rh x R" - R,

defined as
rl) = FO(u,uM) =< VF,uM) >= VF.ul,

is referred to as the tangent-linear model of F. It can be generated by forward (also tangent-
linear) mode AD. The directional derivative rM) can be regarded as the partial derivative of
r with respect to an auxiliary scalar variable s, where

ou
1 = “=
u = s .

Interpretation of the chain rule on the corresponding linearized DAG (the tangent-linear
extension of the original linearized DAG) yields

Oor Or Ou
=== _ = = _ 1)
r'/ = . . < VF,u'"/ >.

For example, the tangent-linear extension of the linearized DAG of our reference objec-
tive is shown in Fig. 3 (b). Equation (4) applied to Fig. 3 (b) yields with Equation (5)
y) = % 2 =< %72(1) > . Note that % € R,
The adjoint of a linear operator is its transpose [7]. Consequently, the transposed Jacobian
VFT = VF(u)T induces a linear mapping IR" — IR" defined by
ra) —< I‘(l),VF > .

The function
F(l) : Rh x IR" —]Rh

defined as
uy) = Fy(u,rg)) =<r@), VE >=VF" . r(

is referred to as the adjoint model of F. It can be generated by reverse (also adjoint) mode AD.
Adjoints can be regarded as partial derivatives of an auxiliary scalar variable ¢ with respect

to r and u where
~ot\T at\"
I‘(l) = a and U(l) 8711 .
By the chain rule, we get

ot\T _ (or\T [ot\"
o= () =) (5) v

For example, the adjoint extension of the linearized DAG of our reference objective is shown

in Fig. 3 (c). Equation (4) applied to Fig. 3 (c) yields with Equation (5) z(;) = %T Yy =<
Ya), % > -

The reverse order of evaluation of the chain rule in adjoint mode yields an additional
persistent memory requirement. Values of variables that are required (used/read) by the
adjoint code need to be made available by evaluation of an appropriately augmented primal
code (executed within the forward section of the adjoint code). Required values need to be

10

stored if they are overwritten during the primal computation and they need to be restored
for the propagation of adjoints within the reverse section of the adjoint code. Alternatively,
required values can be recomputed from known values; see, for example, [10] for details. The
minimization of the additional persistent memory requirement is one of the great challenges
of discrete adjoint code generation [17]. The associated DAG REVERSAL and CALL TREE
REVERSAL problems are known to be NP-complete [21, 22].

Second Derivative Models Newton’s algorithm uses the Jacobian of Equation (1) at the
current iterate x’ to determine the next Newton step. Consequently, tangent-linear and adjoint
versions of Newton’s algorithm will require second-order tangent-linear and adjoint versions
of the given implementation of F', respectively. Again, we use the notation from [23] for the
resulting projections of the Hessian tensor.

The Hessian V2F = V2F(u) of the vector function F = [F];, i = 0,...,n — 1, induces a
bi-linear mapping V2F : IR" x IR — IR" defined by the second directional derivative

(u®, u?) »< V2F,u® u® > |

where the i-th entry of the result < V2F,uV), u® >ec IR" is given as

h—1h-—1
< V2F, u(U, u® > = Z Z [sz] ke [u(l)]j) [U(Q)]k
j=0 k=0
fori=0,...,n—1 and
O[F);

Vi = g, omy

We denote individual entries of an I-tensor 1" by [T;,. ;, for [=1,2,.... The function
FU2 . R x R" x RM — R™,

defined as
r1? = FU2) (g u® u®) =< V2F, u® u® > (6)

is referred to as the second-order tangent-linear model of F. The Hessian tensor is projected
along its two domain dimensions (of size h) in directions u(!) and u(®. For scalar multivariate
functions r = F'(u) Equation (6) becomes

r1?2 =< V2F u® u® >= u®’ . 2F . u®,

With tangent-linear and adjoint as the two basic modes of AD there are three combi-
nations remaining, each of them involving at least one application of adjoint mode. In [23]
the mathematical equivalence of the various incarnations of second-order adjoint mode (that
is, forward-over-reverse, reverse-over-forward, and reverse-over-reverse modes) due to sym-
metry within the Hessian of twice continuously differentiable multivariate vector functions is
shown. All three variants compute projections of the Hessian tensor in the image dimension
(of size n) and one of the two equivalent domain dimensions (of size h). For example, in
reverse-over-forward mode a bi-linear mapping V2F : IR" x IR" — IR" is evaluated defined
by

(u(l),rgg) < rgg, V2F,u) > .

11

The function

Fy) : R" x R" x R" — R",

defined as)) :
ug) = F((Q))(u, u(l),rB) =< I'EQ;, VZE,u) > | (7)
where the j-th entry of the result < rgg, V2F,uY) >e R" is given as
n—1h—1
1 1
(<1l V2R >]; = 3N [VRF])l (8)
i=0 k=0
for j =0,...,h — 1, is referred to as a second-order adjoint model of F. The Hessian tensor

is projected in its leading image dimension in the adjoint direction rgg € IR"™ and in one of

the two equivalent trailing domain dimensions in direction u(Y) € IR". For scalar multivariate
functions r = F(u) Equation (7) becomes

gy =< rg)), V2Eul) = ng V2F - u®.

2.2 Linear Solvers

During the solution of the nonlinear system by Newton’s method a linear system A-s = b is
solved for the Newton step s with Jacobian matrix
A OF .
A=F(x"A) = —(" A
() = S0

and right-hand side b = —F(x?,\). According to [6,11] the tangent-linear projection s of
the solution s = L(A, b) in directions A1) and b() is implicitly given as the solution of the
linear system

A5 —p® _ 40 g

The adjoint projections Ay and by for given adjoints s(;) can be computed as

T
AT by =sq)

A given factorization of A, for example, as A = L - U, computed by the primal solver can
be reused for the solution of the linear tangent-linear and adjoint sensitivity equations. The
computational cost of a directional derivative can be reduced significantly, e.g. from O(n?) to
O(n?) for a dense system. A similar statement applies to the adjoint computation; compare
with Table 2, where this observation is stated in the context of v Newton iterations.

2.3 Nonlinear Solvers

As before, we consider three modes of differentiation of the nonlinear solver. The first ap-
proach, continuous NLS mode, does not rely on a specific method for the solution of F'(x, A) =
0. In the second approach, discrete NLS mode, AD is applied to the individual algorithmic
steps performed by the nonlinear solver. Finally, the linear solver is differentiated continu-
ously as part of an overall discrete approach to the differentiation of the enclosing nonlinear

12

solver in the third approach, continuous LS mode. For the latter we consider a basic version
of Newton’s algorithm without local line search defined by

fori=0,...,v—1

, oF .
Pp— / 1 = —_—— 1
A._F(x,)\)_ax(x,)\) (11)
b:= —F(x,\)
s:=L(A,b) (= A-s=Db)
xti=x"+s, (12)

where the linear system is assumed to be solved directly. The investigation of iterative methods
in the context of inexact Newton methods is beyond the scope of this paper. Algorithmically,
their treatment turns out to be similar to the direct case. Ongoing work is focused on the
formalization of the impact of the error in the primal Newton step on the directional and
adjoint derivatives of the enclosing Newton solver.

Fig. 4. DAG of Single Newton Step: (a) Tangent-Linear Extension; (b) Adjoint Extension

Fig. 4 shows the tangent-linear and adjoint extensions of the linearized DAG of a single
Newton step. They provide a useful perspective on the differentiation of Newton’s algorithm.
A corresponding graphical illustration of several consecutive Newton steps follows trivially.

The Jacobian .
) In
8(X,A)(X7)\)’ <0> >

(GR(n+m) X n)

oF ,
A=< &(x JA), L, >=<

13

is assumed to be evaluated as its product with the identity I, € IR™*™ padded with m zero
rows by a maximum of n calls of the tangent-linear function

rM =< VF(xi,)\),x(l)i >

and with x(1? ranging over the Cartesian basis vectors in IR". The columns of A are returned
in rW. Potential sparsity of the Jacobian of F' can and should be exploited yielding a pos-
sible decrease in the number of directional derivatives required for its accumulation. See, for
example, [9].

3 Tangent-Linear Solver

We distinguish between three alternative approaches to the generation of tangent-linear
solvers for systems of nonlinear equations.

In discrete NLS mode AD is applied to the individual statements of the given implemen-
tation yielding roughly a duplication of the memory requirement as well as the operations
count; see also Table 2. Directional derivatives of the approximation of the solution that is
actually computed by the algorithm are obtained.

In continuous NLS mode directional derivatives of the solution are computed by a tangent-
linear version of the solver under the assumption that the exact primal solution x* has been
reached. F(x,A) = 0 can be differentiated symbolically in this case. Consequently, the com-
putation of the directional derivative amounts to the solution of a linear system based on the
Jacobian of F' with respect to x, which results in a significant reduction of the computational
overhead; see also Table 2.

Potential discrepancies in the results computed by the discrete and the continuous tangent-
linear nonlinear solvers depend on the given problem as well as on the accuracy of the ap-
proximation X of the primal solution. A more accurate primal solution is required in order
to achieve the desired accuracy in the continuous tangent-linear (or adjoint; see Section 4)
solution.

A combination of the discrete and continuous modes yields continuous LS mode, where a
continuous approach is taken for the differentiation of the solver of the linear Newton system
as part of an otherwise discrete approach to the differentiation of the nonlinear solver. Use of
a direct linear solver makes this approach numerically equivalent to the discrete NLS method
as both the Newton system and its tangent-linear versions are solved with machine accuracy.
The computational complexity of the evaluation of local directional derivatives of the Newton
step with respect to a dense the system matrix (the Jacobian of the residual with respect
to the current iterate) and the right-hand side (the negative residual at the current iterate)
can be reduced from cubic to quadratic through the reuse of the factorization of the system
matrix as described in Section 2.2; see also Table 2. Numerical consistency of the discrete
NLS and the continuous LS modes is not guaranteed if iterative linear solvers are employed
[15, p. 367]. In the following, only a direct solution of the linear system is considered. Again,
the primal Newton step must be computed with sufficiently high accuracy in order to obtain
comparable accuracy in the tangent-linear (or adjoint) solution. Consistency of the continuous
tangent-linear and adjoint solutions is shown in [16] and revisited here. For the continuous
LS approach consistency is guaranteed naturally.

14

3.1 Discrete NLS Mode

The following discrete tangent-linear version of the given objective with Newton’s algorithm
used for the solution of the embedded parameterized systems of nonlinear equations results
from the straight application of tangent-linear mode AD to Equations (11)—(12):

fori=0,...,v—-1

D OF
A::F'(X,}\)Eafx(;) (13)
oF x'()
1) .— g
A : <8(X’A)(X7>\)7(A(2)>>
b = _F(Xza A)
W) OF i (X2
b = - m(x ,)\),)\(2) > (14)
s:= L(A,b)
oL AWM
W .___9&b
sV =< 8(A,b) (A7b>a <b(1)> >
= x4 (15)
K@) i) L (1) (16)

The computation of first directional derivatives of A, b, and s involves the evaluation of

second derivatives of F' with respect to x and AX. Hence, we use corresponding superscripts in
the notation (A(l), b, s, xi2) and)\(2)). From

oF , B 0 ; I,
A=< a—x(x JA), I >=< 8(X,}\)(X J), <0> >

follows
AV =« ——— __(x',), I,
< Ox0 (X,)\) (X))7) A(Q) >
RE (LN (x®
~S oG (0) | (A@)) -

if a Newton solver as in Equations (11)—(12) is considered. Hence, n evaluations of the second-
order tangent-linear function are required to evaluate Equations (13)—(14).

The linear solver is augmented at the statement-level with local tangent-linear models,
thus roughly duplicating the required memory (M EM) as well as the number of operations
(OPS) performed (MEM (L) ~ MEM(L) ~ O(n?), OPS(LM) ~ OPS(L) ~ O(n?) if a

direct solver is used).
The tangent-linear Newton step in Equation (16) follows trivially from Equation (15).

3.2 Continuous NLS Mode
Differentiation of F(x,A) = 0 at the solution x = x* with respect to A yields

dF oF oF ox

a(xa)‘) = a(xﬂ >‘) + aix(x7 A) ' ai =0

15

and hence

ox oF

_ e — -1 - —
oA~ ax N g e
The computation of the directional derivative
ox ox oF oF
xD — T (D) s T () - T -1 (1)
=< x JAY >= X A aX(x,)\) a)\(X A) A
amounts to the solution of the linear system
OF oF
il M= 2 1)
I (x,A) - x N (%,) - A (17)

the right-hand side of which can be obtained by a single evaluation of the tangent-linear
routine. The direct solution of Equation (17) requires the n x n Jacobian g—F(x A), which is
preferably accumulated using tangent-linear mode AD while exploiting potential sparsity.

Consistency with the exact tangent-linear projection x*(1) of the exact solution x* is
defined by [16] as

Hx(l) _xra >H <r (HF(x N+ HF x, , x(1 H) (18)

For Equation (18) to hold, we inherit the following assumptions from Newton’s method:

H 8Fx)\)>1

in some neighborhood. I" = I'(v,) is a function of the bound of the inverse Jacobian of F
and the Lipschitz constant v and

oF OF
< B and H o (x,A) — % — (v, >\)H <lx -yl

oF

oA

FO e, A\, xW A0y = Z_(x, A) - AW 4 &(x, A)-x

3.3 Continuous LS Mode

The quality of a continuous tangent-linear nonlinear solver depends on the accuracy of the
primal solution. Moreover, in the Newton case, the computational effort is dominated by the
solution of the linear system in each iteration. Continuous differentiation of the linear solver
aims for a reduction of the computational cost of the tangent-linear solver while eliminating
the dependence of its accuracy on the error in the primal solution. An accurate solution of
the linear Newton system is required instead.

Building on Section 2.2 we get

fori=0,...,v—1

— iy = OF
A:=F'(x'\) = 8X(x A) (19)
oF" x4(2)
AW =< FEBY (x5, N), <>\<2>> > (20)

16

b:= —F(x' \) (21)

OF , xi(2)
1) . T
A-s=b (=353) (23)
A = bW — A0 g (= 0 (24)

xThi=x"+5
KL @) (),

Refer to Section 2.2 for a derivation of the continuous tangent-linear linear solver. If a direct
linear solver is used, then a factorization of A needs to be computed once in Equation (23)
followed by simple (for example, forward and backward if LU decomposition is used) substitu-
tions in Equation (24). The computational complexity of evaluating the directional derivative
s() can thus be reduced from O(n?) to O(n?) in each Newton iteration if A is dense.

Equations (21) and (22) can be evaluated simultaneously by calling the first-order tangent-
linear routine. A maximum of n calls of the second-order tangent-linear routine is required
to evaluate Equations (19) and (20). The vector x(1) needs to range over the Cartesian basis
vectors in IR™ as it does during the computation of A as the Jacobian of F' using the first-order
tangent-linear function (). Potential sparsity of A can and should be exploited.

Consistency with the discrete approach is given naturally, as we compute the discrete
tangent-linear projection with machine accuracy.

4 Adjoint Solver

As in Section 3 we distinguish between discrete NLS, continuous LS, and continuous NLS
modes when deriving adjoint solvers for systems of nonlinear equations. Similar remarks as in
Section 3 apply regarding numerical consistency between the primal and the adjoint solutions.

4.1 Discrete NLS Mode

In adjoint mode the data flow induced by the loop over the individual Newton steps needs to
be reversed. Depending on the AD approach (overloading, source transformation, or combi-
nations thereof; see [15] or [23] for details) certain data needs to be stored persistently in a
separate data structure (often referred to as the tape) during an augmented forward evaluation
of the solver (the augmented forward section of the adjoint code) in order to be recovered for
use by the propagation of adjoints in the reverse section. For practically relevant problems the
size of the tape may easily exceed the available memory resources. Checkpointing techniques
have been proposed to overcome this problem by trading memory for additional operations
due to re-evaluations of intermediate steps from stored intermediate states [12].

In the following we consider discrete adjoint versions of Newton’s algorithm without (Sec-
tion 4.1) and with (Section 4.1) checkpointing. The potential need for discrete adjoints of
nonlinear solvers follows immediately from the numerical results in Table 1. For solutions
computed at very low accuracy we may be interested in the exact sensitivities of the (for
example, norm of the) given solution with respect to the potentially very large number of free
parameters. The discrete NLS approach can be beneficial, if the Jacobian at the computed
solution turns out to be rank deficient or ill-conditioned.

17

Discrete Adjoint without Checkpointing Straight application of (incremental; see [15]
and/or [23] for details) adjoint mode AD to Equations (11)—(12) yields

for:=0,...,v—1

(A7) = Pl 2) = P) (25)
(b,7) := —F(x",\)
(s,7) := L(A,Db) (26)
xti=x"+s (27)
fori=v—-1,...,0
X(q) 1= 8(1) 1= xé'ﬁl (28)

N
oo

==

~_

(

= Ly(s),7)

X! b’y
<)\<1>> = (A@)) + Fy (A,) = Fray(bay, 7). (29)
1 1

Data required within the reverse section (Equations (28)—(29)) is recorded on the tape 7 in
the augmented forward section (Equations (25)-(27)). The input value of A(;) depends on the
context in which the nonlinear solver is called. In the specific scenario given by Equation (3) it
is initially equal to zero as adjoints of intermediate (neither input nor output) variables should
be; see, for example, [15]. The memory requirement becomes proportional to the number of
operations performed by the primal nonlinear solver.

Both the Jacobian accumulation in Equation (25) and the linear solver in Equation (26) are
treated in a straight forward fashion through application of AD software. Their mathematical
properties will be exploited in continuous LS mode described in Section 4.3 resulting in a
more targeted use of AD.

Discrete Adjoint with Checkpointing Assuming that the amount of memory required to
store the tape of a single Newton iteration exceeds by far the size in memory of x* we apply
a basic equidistant checkpointing scheme using a matrix C' € IR¥*™ the rows C; of which
represent the individual checkpoints at the beginning of each Newton iteration. A single
execution of the solver is performed in Equations (30)—(31) to populate C' followed by the
adjoint Newton iterations in Equations (32)—(36). Each iteration recovers the corresponding
checkpointed state x' in Equation (32), builds the local tape 7 of a single Newton iteration
in Equations (33)—(34) and evaluates its adjoint in Equations (35)—(36).

fori=0,...,v—-1

Ci =% (30)
A OF .
Pyp— / 7 = — 1
A:=F(x"\\) = 8X(X s)
b:= —F(x',\)
s:= L(A,Db)
xl=x" 15 (31)

18

fori=v—-1,...,0

x' = C} (32)
(4,7) = F'(x', A) (33)
(b,7) := —F(x*,\)

(s,7) := L(A,b)
xthi=x"+s (34)
X(1) = 8) = X1y (%)
A
(1)) = (S T)
. 1 1)
(b o m(sa)
x! x!
<A8) ~ </\8> + Ey (A, 7) = Fay (b, 7) (36)

The maximum size of the tape is equal to that of a single Newton iteration. The additional
overall memory requirement is reduced to the size in memory of C.

Checkpointing yields a potentially optimal tradeoff between operations count and memory
requirement [14] for an a priori known number of Newton iterations. Concurrent checkpointing
schemes allow for discrete adjoint code to be ported to parallel high-performance computer
architectures [19].

4.2 Continuous NLS Mode
Differentiation of F(x,A) = 0 at the solution x = x* with respect to X yields

dF oF oF ox
and hence 5 OF OF
ox _or -1, 97
A o N RN

the transposal of which results in

ox\T oF s OF 7
<6)\> ——a(xa)\) 'a*X(XaA)

and hence
_ ox ox\ T
)\(1) L=)\(1)+ < X(1)s (97)\ >= A(l) + 87)\ " X(1)
oF r OF
TN e
Consequently, the continuous adjoint solver needs to solve the linear system

OF
a—x(x,)\)T 7= —X()) (37)

followed by a single call of the adjoint model of F' to obtain

= A(l) (x, A)iT “X(1)-

oF
A1) =Aq) + ﬁ(x, Mz, (38)

19

The direct solution of Equation (37) requires the transpose of the nxn Jacobian aF —(x, A) that
is preferably accumulated using tangent-linear mode AD while exploiting spar51ty Matrlx—free
iterative solvers require a single call of the adjoint routine (Equation (38)) per iteration.

Consistency with the exact adjoint projection is also shown in [16] similar to the tangent-
linear case in Section 3.2.

4.3 Continuous LS Mode

Comments similar to those made in Section 3.3 apply. The quality of the result of a continuous
adjoint nonlinear solver depends on the accuracy of the primal solution. Moreover, in the
Newton case, the computational effort is dominated by the solution of the linear system in each
iteration. Continuous differentiation of the linear solver as part of a discrete differentiation
approach to the enclosing nonlinear solver aims for a reduction of the computational cost
of the adjoint while eliminating the dependence of its accuracy on the error in the primal
solution. An accurate solution of the linear system is required instead.
Building on Section 2.2 we get for Newton’s method

for:=0,...,v—1

Al = I 7
b’ := —F(x", A)
Al.s'=b' (=) (39)
<t .= x4 gl
fore=v—-1,...,0

7 7 i+1

X1 =8w = XJ)

iT i

0*F :
Al LA 41
+<)aa(xA)(X)>’ ()
where
i 0*F i T 0*F i
=< —S8 7b(1)’ m(x ,A) > (43)
2
=<b! or (x',A), —s' > . (44)

M7 d(x, X)ox

The step from Equation (42) to Equation (43) is shown in Lemma 1. The expression <
AE 1) m(xi, A) > in Equation (41) denotes a projection of the serialized image dimen-
sion of length n?(< n x n) of the first derivative of the Jacobian ‘g—i(xi,)\) with respect

20

to x and A (the Hessian %(Xi, A)) in the direction obtained by a corresponding seri-

alization of A’('l); see also Equation (8). Equation (43) suggests an evaluation of the third
term in Equation (41) in reverse-over-reverse mode of AD. Symmetry of the Hessian tensor
in its two domain dimensions yields the equivalence of this approach with the computation-
ally less expensive and hence preferred reverse-over-forward or forward-over-reverse modes in

Equation (44).
Lemma 1. With the previously introduced notation we get

O*F

o 0°F (
T Ox0(x,)

,m(xA) > . (45)

< —=b() s x',A) >=< —s', by

Proof. We consider the k-th entry of Equation (45) (0 <k <n+m —1):

OF (x',\) n—1n—1 9 [BF(XZA)]
i O~ ox .
< —b 'Sz’i> — —b "SfL 3,
M d(x,A) . = lzg [bayls - [s']: e Nr
n—1 n—1
O?[F];(x%, \)
= —|s b J)
i 0*F ;
= [< —s', < b, Ox0(x, N) (x',) >>}k
o*rr
= [< s',b(), Ix0(x, N) (x',) >]k-

If the linear system in Equation (39) is solved by a direct method, then the computed factor-
ization of a dense A can be reused to solve Equation (40) at the computational cost of O(n?)
as discussed previously.

5 Implementation (Mind The Gap)

While the continuous differentiation of solvers for systems of linear and nonlinear equations
has been discussed in the literature before, the seamless integration of the theoretical results
into existing AD software tools is typically not straight-forward. Users of such tools deserve
an intuitive generic API,? which facilitates the exploitation of mathematical and structural
knowledge inside of often highly complex tangent-linear and adjoint numerical simulations.

As a representative case study for the implementation of higher-level (user-defined) in-
trinsics in the context of overloading AD tools we consider the solver S(n,x,lbd) for systems of
n nonlinear equations with inputs x=2" and lbd=X and output x=xz*. More generically, the
proposed approach allows users of AD tools to treat arbitrary parts of the primal code as
external functions. The latter yield gaps in the tape due to their passive evaluation within the
forward section of the adjoint code. These gaps need to be filled by corresponding user-defined
adjoint functions to be called by the tape interpreter within the reverse section of the adjoint
code. This concept is part of the overloading AD tool dco [24]. It supports both C/C+-+
and Fortran and has been applied successfully to a growing number of practically relevant
problems in Computational Science, Engineering, and Finance [26-29].

3 Application Programming Interface

21

In the following we focus on the external function interface of dco/c++ in the context of
first-order adjoint mode. While similar remarks apply to tangent-linear mode the preferred
method of implementation of tangent-linear external functions is through replacement of the
overloaded primal function with a user-defined version. One should not expect to be pre-
sented with the method for filling gaps in the data flow of tangent-linear or adjoint numerical
simulations. There are always several alternatives that implement mathematically equivalent
functions. The particular choice made for dco/c++ is meant to be both intuitive and easy to
maintain. The overloading AD tool ADOL-C [13] features a similar, but less generic external
function concept.

(a) (b)

Fig. 5. Mind the gap in the tape — Implementation of continuous NLS mode: Solid lines represent the generation
(in the forward section of the adjoint code shown in (a)) and interpretation (in the reverse section of the adjoint
code shown in (b)) of the tape. Dotted lines denote gaps in the tape to be filled by a corresponding user-defined
adjoint function. In the given example, A(1) is computed in continuous NLS mode as < x(1), % >= %T “X(1)

without generation of a tape for the nonlinear solver S.

5.1 Discrete Approach (No Gap)

The primal function

1 ‘void S(int n, double *x, double x1);

1
2

is made generic with respect to the floating-point data type FT yielding

template <class FT>
void S(int n, FT xx, FT xlbd);

Thus it can be instantiated with the dco/c++ data type dco::als::type, which implements first-
order scalar adjoint mode. A tape of the entire computation is generated and interpreted as
discussed in Section 4.1.

In C++ one would replace dynamic array parameters acting as both inputs and outputs
such as FT xx by, for example, std:: vector<FT> &x in order to avoid memory leaks due to po-
tentially missing deallocation. We decided to use the C-style declaration for better readability
by a larger audience.

22

© 0 N O Ok W N

L T T T T T o
AW N = O © W0 N0 A W N = O

25
26
27
28
29
30
31
32
33
34
35

© 00 9 3 O W N =

[
(=}

5.2 Continuous Approach (Gap)

A specialization of the generic primal solver S for dco’s scalar first-order adjoint type dco::
als::type marks the gap in the tape, records data that is required for filling the gap during
interpretation, and runs the primal solver passively (without taping); see Listing 1.1.

/*

x forward declaration of als_S;

* closes the gap in the tape during interpretation
*/

void als_S(external_function_data xdata);

/%

x passive evaluation of primal solver augmented

* with recording of data required by als_S

*/

template<>

void S<dco::als::type>(int n, dco::als::type xx,

dco::als::type x1bd) {

external_function_data xdata = new external_function_-data();

// active outputs of P = active inputs of S
double *plbd=new double[n];
data—>register_input (Ibd, plbd ,n);

// passive wvalues of inputs

double *px=new double[n];

for (int i=0;i<n;i++) dco::als::get(x[i],px[i]);
// als_S requires values of n and plbd
data—>write_to_checkpoint (n);
data—>write_to_checkpoint (plbd ,n);

// passive monlinear solver

S(n,px,plbd);

// als_S requires primal solution
data—>write_to_checkpoint (px,n);

// active outputs of S = active inputs of p
data—>register_output (x,px,n);

// tape interpreter to call als_S in order to fill gap
tape—>register_external_function (data, &als_S);
// clear heap

delete [] plbd, delete [] px;

Listing 1.1. External function for S(n,x,1).

The tape interpreter fills the gap between the tapes of P and p by calling the function als_S
which implements the adjoint mapping < x(j), g—i >; see Listing 1.2. Refer to Fig. 5 for
graphical illustration.

Ve
x als.S fills the gap in the tape during interpretation ;
x evaluates adjoint of = with respect to lbd
*/
void als_S(external_function_-data xdata) {
// recover m; required for correct memory allocation
int n; data—>read_from_checkpoint(n);
double x1bd=new double[n], *x=new double[n];
double xxb=new double[n], *z=new double[n];
dco::als::type xal=mew dco::als::type[n];

23

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

dco::als::type xresidual=mew dco::als::type[n];
// rTecover parameters
data—>read_from_checkpoint (1bd ,n);
// recover primal solution
data—>read_from_checkpoint (x,n);
// compute Jacobian of F with respect to
double xxJ=new doublex[n];
for (int i=0;i<n;i++) J[i]=new double[n];
compute_jacobian (n,lbd ,x,J);
// extract adjoints from tape of p
data—>get_output_adjoint (xb,n);
// solve Equation (20)
solve_transposed_system (J,xb,z,n);
// store end of tape of P
dco::als::tape::iterator pos=tape—>get_position ();
// generate tape of F
tape—>register_variable (al ,lbd ,n); F(al,x,residual ,n);
// interpret tape of F (evaluate FEquation 21)
for (int i=0;i<n;i++)

dco::als::set(residual [i],z[i],—1);
tape—>interpret_and_reset_adjoint_to (pos);

// transfer adjoints into tape of P
for (int i=0;i<n;i++) {
double a; dco::als::get(al[i],a,—1);
data—>increment_input_-adjoint (a);

}
// clear heap

Listing 1.2. Adjoint function als_S.

The benefit of this approach is two-fold. First, taping of the nonlinear solver is avoided yielding
a substantial reduction in memory requirement of the overloading-based adjoint. Second, the
actual adjoint mapping can be implemented in als_S more efficiently than by interpretation
of a corresponding tape.

As a general approach the external function feature can/should be applied whenever a sim-
ilar reduction in memory requirement / computational cost can be expected. Users of dco/c++
are encouraged to extend the run time library with user-defined intrinsics for (domain-specific)
numerical kernels such as, for example, turbulence models in computational fluid dynamics
or pay off functions in mathematical finance.

The external function interface of dco/c++ facilitates a hybrid overloading / source trans-
formation approach to AD. Currently, none of the available source transformation tools covers
the entire latest C++4 or Fortran standards. Moreover, these tools can be expected to struggle
keeping up with the evolution of the programming languages for the foreseeable future. Ma-
ture source transformation AD tools such as Tapenade [18] can handle (considerable subsets
of) C and/or Fortran 95. They can (and should) be applied to suitable selected parts of the
given C++4XX or Fortran 20XX code. Integration into an enclosing overloading AD solution
via the external function interface is typically rather straight forward. The hybrid approach
to AD promises further improvements in terms of robustness and computational efficiency.

24

6 Case Study

As a case study we consider the one dimensional nonlinear differential equation
Viz-u")+u*-V(z-u)=0 on 2=(0,1)
w*=10 and z=1 for x =0
w* =20 and z2=1 for z=1

with parameters z(x). For given measurements u"*(z) we aim to solve the following parameter
fitting problem for z

= in J 53
2" = argmin J(2) (53)
with J(2) = ||u(z, 2) — u™(x)|3. Measurements u™(x) are generated by a given set of pa-

rameters (the “real” parameter distribution z*(z)). Building on an equidistant central finite
difference discretization we get for a given u (as in the previous sections, discretized and,
hence, vector-valued variables are written as bold letters) the residual function

1
[t]i = 75 - (21 - [0]io1 = 2 [2]i - [u]i + [2]i41 - [u]isa)
1
Huli - 5 (2 - []is1 — [2]io1 - [ui-1)
with h = 1/n and n the number of discretization points, that is, i = 1,...,n—2. Discretization
yields a system of n nonlinear equations
r(u,z) =0, ueR", ze R", (56)
which is solved by Newton’s method yielding in the j-th Newton iteration the linear system
or . 4
8—:;(u]) s =—r(u!).
The vector v’ is updated with the Newton step w/t! =u/ +sfor j=1,..., .

In order to solve the parameter fitting problem, we apply a simple steepest descent algo-
rithm to the discrete objective .J(z) as follows z**! = z¥ — V.J(z*), where the computation of
the gradient of J at the current iterate zF implies the differentiation of the solution process
for u*, i.e., differentiation of the solver for Equation (56). Extension of the given example
to the use of Quasi-Newton methods (for example, BFGS) is straight forward. Second-order
methods rely on the efficient evaluation of second derivative information, which turns out to
be a logical extension of the framework described in this paper. A corresponding report is
under development.

The discrete part of the derivative computation is done by dco/c++. The implementation
of continuous tangent-linear and adjoint methods is supported by the previously described
external function interface.

The preprocessor A = P(z) is the identity, while the postprocessor p(u) computes the cost
functional J(z). Fig. 6 shows the measured solution u™, the fitted solution u*(z*) as well as
the starting parameter set z°, the “real” (wanted) parameter z* and the fitted parameter z*
after convergence.

In the following we compare run time and memory consumption of the various differenti-
ated versions of the nonlinear solver. The titles of the following sections refer to the outermost
derivative computation (computation of the gradient of the objective of the parameter fitting
problem). The accumulation of the dense Jacobian inside of Newton’s method is performed
in tangent-linear mode.

25

1.25 4 P mem=N

19— measured solution u™ —o— “real” parameter z*
—— fitted solution u*(z"*) —<— fitted parameters 2"
129 starting value 2°
18
E 17 = 1.15
s w
16 1.1
15 1.05 | / \
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
x x
(a) Measured and fitted solutions (b) “Real” and fitted parameters

Fig. 6. Visualization of the parameter fitting problem in Equation (53)

6.1 Tangent-Linear Mode

We first compare the computation of a single tangent-linear projection of the objective func-
tion y = J(z) into a direction z(V, i.e., y) = V.J(z) - 21, for the discrete and the continuous
approaches.

The implementation of discrete tangent-linear mode is based on the dco/c++ tangent-
linear datatype dco: :tls: :type. Overloading yields second-order projections during the Ja-
cobian accumulation inside of Newton’s method. Theoretically, the overhead in computational
cost of discrete tangent-linear mode over a passive function evaluation is expected to be of
the same order as the passive computation itself. The use of nested C++ templates inside of
dco/c++ yields lower overheads in reality (typically, factors between 1.3 and 1.5).

The implementation of the continuous NLS and LS modes combines the use of the data
type dco: :tls: :type with manual implementation effort based on explicit template special-
ization techniques. In the specialized function body value and tangent-linear components of
incoming data are separated. Results and their directional derivatives are computed explicitly
and are stored in the corresponding components of the output data. The continuous version of
the solver consists of a first-order tangent-linear evaluation of the nonlinear function F(x, A),
ie.,

OF (x,A)
b= —— 7 D)
oA ’
followed by the direct solution of the linear system
F
IF(x, A) xM =b |

ox

where the occurring derivatives are again implemented using dco: :t1s: :type. The overhead
becomes O(n?) due to the direct solution of an additional linear n x n system; see also Table 2.

Continuous differentiation of the linear system in continuous LS mode yields a call to the
second-order tangent-linear version of the nonlinear function F'(x, \), i.e.,

OF" x(2)
AL =« __(x X
< a(X, }\) (X))7 }‘(2) >,
which can be evaluated by overloading based on nested first-order dco/c++ types. Addition-
ally, a linear n x n system needs to be solved with the same system matrix, which is already

26

used for the computation of the Newton step (see Equations (23)—(24)). The previously com-
puted factorization of the system matrix can be reused yielding an expected overhead that is
proportional to v - O(n?), where v denotes the number of Newton iterations; see also Table 2.

In Fig. 7 we observe the expected behavior for the computational overhead induced by
the different approaches. The overhead in discrete NLS mode is roughly the same as the
passive run time. Both continuous NLS and continuous LS modes yield far less overhead. Also
as expected, for large problem dimensions n the overhead of continuous LS mode becomes
v - O(n?). It outperforms continuous NLS mode the overhead of which amounts to O(n?).

6.2 Adjoint Mode

We consider the computation of the gradient of the

objective function y = J(z) by setting y(;) = 1 in

4

—e— passive

——discrete NLS overhead

Z(l) = y(l) . VJ(Z) .

10° —— continuous LS overhead
Both discrete and continuous modes are investi- “ —e— continuous NLS overhead
gated. é 107!
The implementation of discrete adjoint mode =

uses the dco/c++ adjoint datatype dco: :als: :type. E 1072

Overloading yields second-order adjoint projections

during the Jacobian accumulation inside of New- 1073

ton’s method. Automatic C++ template nesting

yields the so called reverse-over-forward mode; see, 0% 102 10%2 1024 1026 10%8
for example, [23]. The overhead of the discrete ver- problem dimension n
sion is expected to range between factors of 4-8 (see
[20]) relative to a passive evaluation and depending
on the given primal code.

The implementation of the continuous NLS and
LS modes requires changes in the forward and re-
verse sections of the adjoint code. In the forward
section overloading or template specialization tech-
niques can be used to save the required data (e.g. the solution x” in continuous mode).
Moreover, the external function interface of dco/c++ is used to embed the adjoint function
into the reverse section (tape interpretation) in order to fill the gap left in the tape by the
passive solution of the nonlinear (in continuous NLS mode) or linear (in continuous LS mode)
systems; see Section 5.

In continuous NLS mode the last Newton iterate x” is checkpointed at the end of the
forward section. A linear n x n system with the transposed Jacobian of the nonlinear function
is solved in the reverse section, i.e.,

Fig.7. Passive run time to run
time overhead comparison for dis-
crete and continuous tangent-linear
modes; double logarithmic scale.

OF(x, AT
ox T
followed by a single evaluation of the adjoint
OF(x”, AT
An=TTax

27

A direct approach to the solution of the linear system results in a computational overhead of
O(n?) while limiting the overhead in memory requirement to O(n?); see also Table 2.

In continuous LS mode the factorization of the Jacobian as well as the current iterate for
each Newton step need to be stored in the forward section. A single linear n x n system with
the transposed Jacobian as the system matrix (already decomposed — see Equation (40)) is
solved in the reverse section. This step is followed by a second-order adjoint model evaluation
using nested first-order dco/c++ types (see Equation (44)). The checkpoint memory (denoted
by CP in Fig. 8) as well as the run time overhead is hence expected to be of order v - O(n?);
see also Table 2.

10! —

10° _—

run time in s
=
|
1
memory in MB
=
1S
E)
\
[0
[o]
\

1072

—e— passive 10~ L — —— memory NLS
—=— discrete NLS overhead —+— memory LS
10-3 —+— continuous LS overhead 1072 —e— CP continuous LS)
—e— continuous NLS overhead —e— CP continuous NLS
101.8 102 102.2 102.4 102.6 101.8 102 102.2 102.4 102.6
problem dimension n problem dimension n
(a) Run Time Overhead (b) Memory Overhead

Fig. 8. Passive run time to run time overhead comparison and additional memory consumption for discrete
and continuous adjoint modes; double logarithmic scale.

Fig. 8(a) illustrates the cubic run time complexities of passive, discrete, and continuous
modes scaled with different constant factors. Quadratic growth in run time can be observed
in continuous LS mode. The memory consumption in discrete NLS mode is dominated by the
direct linear solver. The amount of memory needed for checkpoints in continuous LS mode is
O(n?). In continuous NLS mode it is reduced to O(n) as supported by Fig. 8(b).

7 Summary, Conclusion, and Outlook

The exploitation of mathematical and algorithmic insight into solvers for systems of nonlinear
equations yields considerable reductions in the computational complexity of the correspond-
ing differentiated solvers. Symbolic differentiation of the nonlinear system yields derivative
code the accuracy of which depends on the error in the primal solution. In the Newton case,
this dependence can be eliminated by differentiating the embedded linear system symboli-
cally as part of a tangent-linear or adjoint nonlinear solver. The various approaches can be
implemented elegantly by software tools for AD as illustrated by dco/c++. User-friendly ap-
plicability to practically relevant large-scale numerical simulation and optimization problems
can thus be facilitated.

Ongoing work targets the scalability of the proposed methods in the context of high-
performance scientific computing on modern parallel architectures. Highly optimized parallel
linear solvers (potentially running on modern accelerators, such as GPUs) need to be combined
with scalable differentiated versions of the primal residual. We aim for a seamless inclusion
of these components into future AD software.

28

Acknowledgments

Lotz and Leppkes were supported by DFG grant NA 487/4-1 (“A hybrid approach to the
generation of adjoint C++ code”).

The authors would like to thank the anonymous referees for a number of very helpful

comments on the manuscript.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

F. Bauer. Computational graphs and rounding error. SIAM Journal on Numerical Analysis, 11:87-96,
1974.

C. Bischof, M. Biicker, P. Hovland, U. Naumann, and J. Utke, editors. Advances in Automatic Differen-
tiation, volume 64 of Lecture Notes in Computational Science and Engineering. Springer, Berlin, 2008.
C. Broyden. The convergence of a class of double-rank minimization algorithms. Journal of the Institute
of Mathematics and Its Applications, (6):76-90, 1970.

M. Biicker, G. Corliss, P. Hovland, U. Naumann, and B. Norris, editors. Automatic Differentiation:
Applications, Theory, and Tools, number 50 in Lecture Notes in Computational Science and Engineering,
Berlin, 2006. Springer.

Bruce Christianson. Reverse accumulation and attractive fixed points. Optimization Methods and Software,
3(4):311-326, 1994.

A. J. Davies, D. B. Christianson, L. C. W. Dixon, R. Roy, and P. van der Zee. Reverse differentiation and
the inverse diffusion problem. Adv. Eng. Softw., 28(4):217-221, June 1997.

N. Dunford and J. Schwartz. Linear Operators, Part 1, General Theory. Wiley, 1988.

S. Forth, P. Hovland, E. Phipps, J. Utke, and A. Walther, editors. Recent Advances in Algorithmic
Differentiation, volume 87 of Lecture Notes in Computational Science and Engineering. Springer, Berlin,
2012.

A. Gebremedhin, F. Manne, and A. Pothen. What color is your Jacobian? Graph coloring for computing
derivatives. SIAM Review, 47(4):629-705, 2005.

R. Giering and T. Kaminski. Recipes for adjoint code construction. ACM Transactions on Mathematical
Software, 24:437-474, 1998.

M. Giles. Collected matrix derivative results for forward and reverse mode algorithmic differentiation. In
Bischof et al. [2], pages 35—44.

A. Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse automatic
differentiation. Optimization Methods and Software, 1:35-54, 1992.

A. Griewank, D. Juedes, and J. Utke. ADOL-C, a package for the Automatic Differentiation of algorithms
written in C/C++. ACM Transactions on Mathematical Software, 22:131-167, 1996.

A. Griewank and A. Walther. Algorithm 799: revolve: an implementation of checkpointing for the reverse or
adjoint mode of computational differentiation. ACM Transactions on Mathematical Software, 26(1):19-45,
2000.

A. Griewank and A. Walther. FEwvaluating Derivatives: Principles and Techniques of Algorithmic Differ-
entiation. Number 105 in Other Titles in Applied Mathematics. SIAM, Philadelphia, PA, 2nd edition,
2008.

Andreas Griewank and Christéle Faure. Reduced functions, gradients and hessians from fixed-point iter-
ations for state equations. Numerical Algorithms, 30(2):113-139, 2002.

L. Hascoét, U. Naumann, and V. Pascual. To-be-recorded analysis in reverse mode automatic differentia-
tion. Future Generation Computer Systems, 21:1401-1417, 2005.

L. Hascoet and V. Pascual. The Tapenade automatic differentiation tool: principles, model, and specifi-
cation. ACM Transactions on Mathematical Software, 39(3):20, 2013.

U. Lehmann and A. Walther. The implementation and testing of time-minimal and resource-optimal par-
allel reversal schedules. In P. M. A. Sloot, C. J. K. Tan, J. J. Dongarra, and A. G. Hoekstra, editors,
Computational Science — ICCS 2002, Proceedings of the International Conference on Computational Sci-
ence, Amsterdam, The Netherlands, April 21-24, 2002. Part II, volume 2330 of Lecture Notes in Computer
Science, pages 1049-1058, Berlin, 2002. Springer.

K. Leppkes, J. Lotz, and U. Naumann. dco/c++ — derivative code by overloading in C++4. Technical
Report AIB-2011-05, RWTH Aachen, 2011.

U. Naumann. Call Tree Reversal is NP-complete. In /2], pages 13—22. Springer, 2008.

29

22.
23.

24.

25.

26.

27.

28.

29.

U. Naumann. DAG Reversal is NP-complete. Journal of Discrete Algorithms, 7:402-410, 2009.

U. Naumann. The Art of Differentiating Computer Programs. An Introduction to Algorithmic Differenti-
ation. Number 24 in Software, Environments, and Tools. STAM, Philadelphia, PA, 2012.

U. Naumann, K. Leppkes, and J. Lotz. dco/c++ user guide. Technical Report AIB-2014-03, RWTH Aachen
University, January 2014.

J. Nocedal and S. J. Wright. Numerical Optimization, 2nd Editition. Springer Series in Operations
Research. Springer-Verlag, New York, NY, 2006.

F. Rauser, J. Riehme, K. Leppkes, P. Korn, and U. Naumann. On the use of discrete adjoints in goal error
estimation for shallow water equations. Procedia Computer Science, 1(1):107 — 115, 2010.

M. Sagebaum, N. Gauger, J. Lotz, and U. Naumann. Algorithmic differentiation of a large simulation
code including libraries. Procedia Computer Science (ICCS 2013), 18:208-217, 2013.

M. Towara and U. Naumann. Toward discrete adjoint OpenFOAM. Procedia Computer Science (ICCS
2013), 18:429-438, 2013.

J. Ungermann, J. Blank, J. Lotz, K. Leppkes, Lars Hoffmann, T. Guggenmoser, M. Kaufmann, P. Preusse,
U. Naumann, and M. Riese. A 3-d tomographic retrieval approach with advection compensation for the
air-borne limb-imager GLORIA. Atmospheric Measurement Techniques, 4(11):2509-2529, 2011.

30

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years. A complete

list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2010-01 * Fachgruppe Informatik: Jahresbericht 2010

2010-02

2010-03

2010-04

2010-05

2010-06

2010-07

2010-08

2010-09

2010-10

2010-11

2010-12

2010-13
2010-14

2010-15

2010-16

2010-17

2010-18

2010-19

Daniel Neider, Christof Loding: Learning Visibly One-Counter Au-
tomata in Polynomial Time

Holger Krahn: MontiCore: Agile Entwicklung von doménenspezifischen
Sprachen im Software-Engineering

René Worzberger: Management dynamischer Geschéftsprozesse auf Ba-
sis statischer Prozessmanagementsysteme

Daniel Retkowitz: Softwareunterstiitzung fiir adaptive eHome-Systeme

Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:
Computing maximum reachability probabilities in Markovian timed au-
tomata

George B. Mertzios: A New Intersection Model for Multitolerance
Graphs, Hierarchy, and Efficient Algorithms

Carsten Otto, Marc Brockschmidt, Christian von Essen, Jirgen Giesl:
Automated Termination Analysis of Java Bytecode by Term Rewriting
George B. Mertzios, Shmuel Zaks: The Structure of the Intersection of
Tolerance and Cocomparability Graphs

Peter Schneider-Kamp, Jiirgen Giesl, Thomas Stroder, Alexander Sere-
brenik, René Thiemann: Automated Termination Analysis for Logic Pro-
grams with Cut

Martin Zimmermann: Parametric LTL Games

Thomas Stroder, Peter Schneider-Kamp, Jiirgen Giesl: Dependency
Triples for Improving Termination Analysis of Logic Programs with Cut
Ashraf Armoush: Design Patterns for Safety-Critical Embedded Systems
Michael Codish, Carsten Fuhs, Jirgen Giesl, Peter Schneider-Kamp:
Lazy Abstraction for Size-Change Termination

Marc Brockschmidt, Carsten Otto, Christian von Essen, Jiirgen Giesl:
Termination Graphs for Java Bytecode

Christian Berger: Automating Acceptance Tests for Sensor- and
Actuator-based Systems on the Example of Autonomous Vehicles

Hans Gronniger: Systemmodell-basierte Definition objektbasierter Mod-
ellierungssprachen mit semantischen Variationspunkten

Ibrahim Armag: Personalisierte eHomes: Mobilitdt, Privatsphéare und
Sicherheit

Felix Reidl: Experimental Evaluation of an Independent Set Algorithm

31

2010-20

2011-01 *
2011-02

2011-03

2011-04

2011-06

2011-07

2011-08

2011-09

2011-10

2011-11

2011-12

2011-13
2011-14

2011-16
2011-17

2011-18

2011-19

2011-24

2011-25

2011-26

2012-01
2012-02
2012-03

Wladimir Fridman, Christof Loding, Martin Zimmermann: Degrees of
Lookahead in Context-free Infinite Games

Fachgruppe Informatik: Jahresbericht 2011

Marc Brockschmidt, Carsten Otto, Jirgen Giesl: Modular Termination
Proofs of Recursive Java Bytecode Programs by Term Rewriting

Lars Noschinski, Fabian Emmes, Jiirgen Giesl: A Dependency Pair
Framework for Innermost Complexity Analysis of Term Rewrite Systems
Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, Thomas Noll:
A Local Greibach Normal Form for Hyperedge Replacement Grammars
Johannes Lotz, Klaus Leppkes, and Uwe Naumann: dco/c++ - Deriva-
tive Code by Overloading in C++

Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe: An Operational
Semantics for Activity Diagrams using SMV

Thomas Stroder, Fabian Emmes, Peter Schneider-Kamp, Jiirgen Giesl,
Carsten Fuhs: A Linear Operational Semantics for Termination and
Complexity Analysis of ISO Prolog

Markus Beckers, Johannes Lotz, Viktor Mosenkis, Uwe Naumann (Edi-
tors): Fifth STAM Workshop on Combinatorial Scientific Computing
Markus Beckers, Viktor Mosenkis, Michael Maier, Uwe Naumann: Ad-
joint Subgradient Calculation for McCormick Relaxations

Nils Jansen, Erika Abrahém, Jens Katelaan, Ralf Wimmer, Joost-Pieter
Katoen, Bernd Becker: Hierarchical Counterexamples for Discrete-Time
Markov Chains

Ingo Felscher, Wolfgang Thomas: On Compositional Failure Detection
in Structured Transition Systems

Michael Forster, Uwe Naumann, Jean Utke: Toward Adjoint OpenMP
Daniel Neider, Roman Rabinovich, Martin Zimmermann: Solving Muller
Games via Safety Games

Niloofar Safiran, Uwe Naumann: Toward Adjoint OpenFOAM

Carsten Fuhs: SAT Encodings: From Constraint-Based Termination
Analysis to Circuit Synthesis

Kamal Barakat: Introducing Timers to pi-Calculus

Marc Brockschmidt, Thomas Stroder, Carsten Otto, Jirgen Giesl: Au-
tomated Detection of Non-Termination and NullPointerExceptions for
Java Bytecode

Callum Corbett, Uwe Naumann, Alexander Mitsos: Demonstration of a
Branch-and-Bound Algorithm for Global Optimization using McCormick
Relaxations

Callum Corbett, Michael Maier, Markus Beckers, Uwe Naumann, Amin
Ghobeity, Alexander Mitsos: Compiler-Generated Subgradient Code for
McCormick Relaxations

Hongfei Fu: The Complexity of Deciding a Behavioural Pseudometric on
Probabilistic Automata

Fachgruppe Informatik: Annual Report 2012

Thomas Heer: Controlling Development Processes

Arne Haber, Jan Oliver Ringert, Bernhard Rumpe: MontiArc - Architec-
tural Modeling of Interactive Distributed and Cyber-Physical Systems

32

2012-04

2012-05

2012-06

2012-07

2012-08
2012-09

2012-10

2012-12

2012-15

2012-16
2012-17
2013-01
2013-02
2013-03

2013-04

2013-05

2013-06

2013-07

2013-08

2013-10

2013-12

*

Marcus Gelderie: Strategy Machines and their Complexity

Thomas Stréder, Fabian Emmes, Jirgen Giesl, Peter Schneider-Kamp,
and Carsten Fuhs: Automated Complexity Analysis for Prolog by Term
Rewriting

Marc Brockschmidt, Richard Musiol, Carsten Otto, Jiirgen Giesl: Auto-
mated Termination Proofs for Java Programs with Cyclic Data

André Egners, Bjorn Marschollek, and Ulrike Meyer: Hackers in Your
Pocket: A Survey of Smartphone Security Across Platforms

Hongfei Fu: Computing Game Metrics on Markov Decision Processes
Dennis Guck, Tingting Han, Joost-Pieter Katoen, and Martin R.
Neuh&ufler: Quantitative Timed Analysis of Interactive Markov Chains
Uwe Naumann and Johannes Lotz: Algorithmic Differentiation of Nu-
merical Methods: Tangent-Linear and Adjoint Direct Solvers for Systems
of Linear Equations

Jurgen Giesl, Thomas Stroder, Peter Schneider-Kamp, Fabian Emmes,
and Carsten Fuhs: Symbolic Evaluation Graphs and Term Rewriting —
A General Methodology for Analyzing Logic Programs

Uwe Naumann, Johannes Lotz, Klaus Leppkes, and Markus Towara:
Algorithmic Differentiation of Numerical Methods: Tangent-Linear and
Adjoint Solvers for Systems of Nonlinear Equations

Georg Neugebauer and Ulrike Meyer: SMC-MuSe: A Framework for Se-
cure Multi-Party Computation on MultiSets

Viet Yen Nguyen: Trustworthy Spacecraft Design Using Formal Methods
Fachgruppe Informatik: Annual Report 2013

Michael Reke: Modellbasierte Entwicklung automobiler Steuerungssys-
teme in Klein- und mittelstdndischen Unternehmen

Markus Towara and Uwe Naumann: A Discrete Adjoint Model for Open-
FOAM

Max Sagebaum, Nicolas R. Gauger, Uwe Naumann, Johannes Lotz, and
Klaus Leppkes: Algorithmic Differentiation of a Complex C++ Code
with Underlying Libraries

Andreas Rausch and Marc Sihling: Software & Systems Engineering Es-
sentials 2013

Marc Brockschmidt, Byron Cook, and Carsten Fuhs: Better termination
proving through cooperation

André Stollenwerk: Ein modellbasiertes Sicherheitskonzept fiir die ex-
trakorporale Lungenunterstiitzung

Sebastian Junges, Ulrich Loup, Florian Corzilius and Erika Abrahdm: On
Grobner Bases in the Context of Satisfiability-Modulo-Theories Solving
over the Real Numbers

Joost-Pieter Katoen, Thomas Noll, Thomas Santen, Dirk Seifert, and
Hao Wu: Performance Analysis of Computing Servers using Stochastic
Petri Nets and Markov Automata

Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and
Jiirgen Giesl: Alternating Runtime and Size Complexity Analysis of In-
teger Programs

33

2013-13 Michael Eggert, Roger Hauflling, Martin Henze, Lars Hermerschmidt,
René Hummen, Daniel Kerpen, Antonio Navarro Pérez, Bernhard
Rumpe, Dirk Thiflen, and Klaus Wehrle: SensorCloud: Towards the In-
terdisciplinary Development of a Trustworthy Platform for Globally In-
terconnected Sensors and Actuators

2013-19 Florian Schmidt, David Orlea, and Klaus Wehrle: Support for error tol-
erance in the Real-Time Transport Protocol

* These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

34

