
Aachen
Department of Computer Science

Technical Report

Quantitative Timed Analysis of

Interactive Markov Chains

Dennis Guck, Tingting Han,

Joost-Pieter Katoen and Martin R. Neuhäußer

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2012-09

RWTH Aachen · Department of Computer Science · May 2012

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Quantitative Timed Analysis of

Interactive Markov Chains

Dennis Guck1, Tingting Han2,
Joost-Pieter Katoen1, and Martin R. Neuhäußer3

1 RWTH Aachen University, Germany
2 University of Oxford, UK

3 Saarland University, Germany

Abstract. This paper presents new algorithms and accompanying tool support
for analyzing interactive Markov chains (IMCs), a stochastic timed 1 1

2
-player

game in which delays are exponentially distributed. IMCs are compositional and
act as semantic model for engineering formalisms such as AADL and dynamic
fault trees. We provide algorithms for determining the extremal expected time of
reaching a set of states, and the long-run average of time spent in a set of states.
The prototypical tool Imca supports these algorithms as well as the synthesis
of ε-optimal piecewise constant timed policies for timed reachability objectives.
Two case studies show the feasibility and scalability of the algorithms.

1 Introduction

Continuous-time Markov chains (CTMCs) are perhaps the most well-studied
stochastic model in performance evaluation and naturally reflect the random
real-time behavior of stoichiometric equations in systems biology. LTSs (labeled
transition systems) are one of the main operational models for concurrency and
are equipped with a plethora of behavioral equivalences like bisimulation and
trace equivalences. A natural mixture of CTMCs and LTSs yields so-called in-
teractive Markov chains (IMCs), originally proposed as a semantic model of
stochastic process algebras [19,20]. As a state may have several outgoing action-
transitions, IMCs are in fact stochastic real-time 11

2 -player games, also called
continuous-time probabilistic automata by Knast in the 1960’s [22].

IMC usage. The simplicity of IMCs and their compositional nature —they are
closed under CSP-like parallel composition and restriction— make them attrac-
tive to act as a semantic backbone of several formalisms. IMCs were developed for
stochastic process algebras [19]. Dynamic fault trees are used in reliability engi-
neering for safety analysis purposes and specify the causal relationship between
failure occurrences. If failures occur according to an exponential distribution,
which is quite a common assumption in reliability analysis, dynamic fault trees
are in fact IMCs [4]. The same holds for the standardized Architectural Analysis
and Design Language (AADL) in which nominal system behavior is extended
with probabilistic error models. IMCs turn out to be a natural semantic model
for AADL [5]; the use of this connection in the aerospace domain has recently
been shown in [29]. In addition, IMCs are used for stochastic extensions of State-
mate [3], and for modeling and analysing industrial GALS hardware designs [12].

IMC analysis. The main usage of IMCs so far has been the compositional gen-
eration and minimization of models. Its analysis has mainly been restricted to
“fully probabilistic” IMCs which induce CTMCs and are therefore amenable to

standard Markov chain analysis or, alternatively, model checking [1]. CTMCs
can sometimes be obtained from IMCs by applying weak bisimulation minimiza-
tion; however, if this does not suffice, semantic restrictions on the IMC level
are imposed to ensure full probabilism. The CADP toolbox [11] supports the
compositional generation, minimization, and standard CTMC analysis of IMCs.
In this paper, we focus on the quantitative timed analysis of arbitrary IMCs, in
particular of those, that are non-deterministic and can be seen as stochastic real-
time 11

2 -player games. We provide algorithms for the expected time analysis and
long-run average fraction of time analysis of IMCs and show how both cases can
be reduced to stochastic shortest path (SSP) problems [2,15]. This complements
recent work on the approximate time-bounded reachability analysis of IMCs [30].
Our algorithms are presented in detail and proven correct. Prototypical tool sup-
port for these analyses is presented that includes an implementation of [30]. The
feasibility and scalability of our algorithms are illustrated on two examples: A
dependable workstation cluster [18] and a Google file system [10]. Our Imca

tool is a useful backend for the CADP toolbox, as well as for analysis tools for
dynamic fault trees and AADL error models.

Related work. Untimed quantitative reachability analysis of IMCs has been han-
dled in [11]; timed reachability in [30]. Other related work is on continuous-time
Markov decision processes (CTMDPs). A numerical algorithm for time-bounded
expected accumulated rewards in CTMDPs is given in [8] and used as build-
ing brick for a CSL model checker in [7]. Algorithms for timed reachability in
CTMDPs can be found in, e.g. [6,26]. Long-run averages in stochastic decision
processes using observer automata (“experiments”) have been treated in [14],
whereas the usage of SSP problems for verification originates from [15]. Finally,
[27] considers discrete-time Markov decision processes (MDPs) with ratio cost
functions; we exploit such objectives for long-run average analysis.

Organization of the paper. Section 2 introduces IMCs. Section 3 and 4 are devoted
to the reduction of computing the optimal expected time reachability and long-
run average objectives to stochastic shortest path problems. Our tool Imca and
the results of two case studies are presented in Section 5. Section 6 concludes
the paper. This version is an update of [17] including additional proofs in the
appendix.

2 Interactive Markov chains

Interactive Markov chains. IMCs are finite transition systems with action-labeled
transitions and Markovian transitions which are labeled with a positive real
number (ranged over by λ) identifying the rate of an exponential distribution.

Definition 1 (Interactive Markov chain). An interactive Markov chain is
a tuple I = (S,Act, −→ ,=⇒, s0) where S is a nonempty, finite set of states with
initial state s0 ∈ S, Act is a finite set of actions, and

– −→ ⊆ S ×Act× S is a set of action transitions and

– =⇒ ⊆ S × R>0 × S is a set of Markovian transitions.

4

We abbreviate (s, α, s′) ∈ −→ by s α−−→ s′ and (s, λ, s′) ∈ =⇒ by s
λ

=⇒ s′. IMCs
are closed under parallel composition [19] by synchronizing on action transitions
in a TCSP-like manner. As our main interest is in the analysis of IMCs, we
focus on so-called closed IMCs [21], i.e. IMCs that are not subject to any fur-
ther synchronization. W.l.o.g. we assume that in closed IMCs all outgoing action
transition of state s are uniquely labeled, thereby naming the state’s nondeter-
ministic choices. In the rest of this paper, we only consider closed IMCs. For
simplicity, we assume that IMCs do not contain deadlock states, i.e. in any state
either an action or a Markovian transition emanates.

Definition 2 (Maximal progress). In any closed IMC, action transitions take
precedence over Markovian transitions.

The rationale behind the maximal progress assumption is that in closed IMCs,
action transitions are not subject to interaction and thus can happen immedi-
ately, whereas the probability for a Markovian transition to happen immediately
is zero. Accordingly, we assume that each state s has either only outgoing action
transitions or only outgoing Markovian transitions. Such states are called inter-
active and Markovian, respectively; we use IS ⊆ S andMS ⊆ S to denote the sets
of interactive and Markovian states. Let Act(s) = {α ∈ Act | ∃s′ ∈ S. s α−−→ s′ }
be the set of enabled actions in s, if s ∈ IS and Act(s) = {⊥} if s ∈ MS.
In Markovian states, we use the special symbol ⊥ to denote purely stochastic
behavior without any nondeterministic choices.

s0

s1

s2

s3

s8

s9

s10

s5 s4

s7s6
α2

α1

2 4

β1

β2

γ1

γ3

5

5
20 γ2

3

κ1

κ3

4 6
κ2

4

Fig. 1. An example IMC.

Example 1. Fig. 1 depicts an IMC I, where solid and dashed lines represent
action and Markovian transitions, respectively. The set of Markovian states is
MS = {s1, s3, s5, s7, s8}; IS contains all other states. Nondeterminism between
action transitions appears in states s0, s2, s4, and s9.

A sub-IMC of an IMC I = (S,Act, −→ ,=⇒, s0), is a pair (S′,K) where S′ ⊆ S

and K is a function that assigns each s ∈ S′ a set ∅ 6= K(s) ⊆ Act(s) of actions

such that for all α ∈ K(s), s α−−→ s′ or s
λ

=⇒ s′ imply s′ ∈ S′. An end component
is a sub-IMC whose underlying graph is strongly connected; it is maximal w.r.t.
K if it is not contained in any other end component (S′′,K).

Example 2. In Fig. 1, the sub-IMC (S′,K) with state space S′ = {s4, s5, s6, s7}
and K(s) = Act(s) for all s ∈ S′ is a maximal end component.

IMC semantics. An IMC without action transitions is a CTMC; if =⇒ is empty,
then it is an LTS. We briefly explain the semantics of Markovian transitions.

Roughly speaking, the meaning of s
λ

=⇒ s′ is that the IMC can switch from
state s to s′ within d time units with probability 1 − e−λd. The positive real
value λ thus uniquely identifies a negative exponential distribution. For s ∈ MS,

5

let R(s, s′) =
∑

{λ | s
λ

=⇒ s′} be the rate to move from state s to state s′. If
R(s, s′) > 0 for more than one state s′, a competition between the transitions of
s exists, known as the race condition. The probability to move from such state s

to a particular state s′ within d time units, i.e. s =⇒ s′ wins the race, is

R(s, s′)

E(s)
·
(

1− e−E(s)d
)

, (1)

where E(s) =
∑

s′∈S R(s, s′) is the exit rate of state s. Intuitively, (1) states
that after a delay of at most d time units (second term), the IMC moves prob-
abilistically to a direct successor state s′ with discrete branching probability

P(s, s′) = R(s,s′)
E(s) .

Paths and schedulers. An infinite path π in an IMC is an infinite sequence:

π = s0
σ0,t0−−−−→ s1

σ1,t1−−−−→ s2
σ2,t2−−−−→ . . .

with si ∈ S, σi ∈ Act or σi = ⊥, and ti ∈ R≥0. The occurrence of action α in

state si in π is denoted si
α,0−−−→ si+1; the occurrence of a Markovian transition

after t time units delay in si is denoted si
⊥,t−−−→ si+1. For t ∈ R≥0, let π@t denote

the set of states that π occupies at time t. Note that π@t is in general not a single
state, but rather a set of states, as an IMC may exhibit immediate transitions
and thus may occupy various states at the same time instant. Let Paths and
Paths⋆ denote the sets of infinite and finite paths, respectively.

Nondeterminism appears when there is more than one action transition en-
abled in a state. The corresponding choice is resolved using schedulers. A sched-
uler (ranged over by D) is a measurable function which yields for each finite
path ending in some state s a probability distribution over the set of enabled
actions in s. For details, see [30]. A stationary deterministic scheduler is a map-
ping D : IS → Act. The usual cylinder set construction yields a σ-algebra FPaths

of subsets of Paths ; given a scheduler D and an initial state s, FPaths can be
equipped with a probability measure [30], denoted Prs,D.

Zenoness. The time elapsed along an infinite path π = s0
σ0,t0−−−−→ s1

σ1,t1−−−−→ . . . up
to state n is

∑n−1
i=0 ti. Path π is non-Zeno whenever

∑∞
i=0 ti diverges to infinity;

accordingly, an IMC I with initial state s0 is non-Zeno if for all schedulers D,
Prs0,D

{

π ∈ Paths |
∑∞

i=0 ti = ∞
}

= 1. As the probability of a Zeno path in a
finite CTMC —thus only containing Markovian transitions— is zero [1], IMC I
is non-Zeno if and only if no strongly connected component with states T ⊆ IS

is reachable from s0. In the rest of this paper, we assume IMCs to be non-Zeno.

Stochastic shortest path problems. The (non-negative) SSP problem considers
the minimum expected cost for reaching a set of goal states in a discrete-time
Markov decision process (MDP).

Definition 3 (MDP). M = (S,Act,P, s0) is a Markov decision process, where
S, Act and s0 are as before and P : S×Act×S → [0, 1] is a transition probability
function such that for all s ∈ S and α ∈ Act,

∑

s′∈S P(s, α, s′) ∈ {0, 1}.

6

Definition 4 (SSP problem). A non-negative stochastic shortest path prob-
lem (SSP problem) is a tuple P = (S,Act,P, s0, G, c, g), where (S,Act,P, s0) is
an MDP, G ⊆ S is a set of goal states, c : S \G×Act → R≥0 is a cost function
and g : G → R≥0 is a terminal cost function.

The infinite sequence π = s0
α0−−→ s1

α1−−→ s2
α2−−→ . . . is a path in the MDP if

si ∈ S and P(si, αi, si+1) > 0 for all i > 0. Let k be the smallest index such
that sk ∈ G. The accumulated cost along π of reaching G, denoted CG(π), is
∑k−1

j=0 c(sj , αj) + g(sk). The minimum expected cost reachability of G starting

from s in the SSP P, denoted cRmin(s,♦G), is defined as

cRmin(s,♦G) = inf
D

Es,D(CG) = inf
D

∑

π∈Pathsabs

CG(π) · Pr
abs
s,D(π),

where Pathsabs denotes the set of (time-abstract) infinite paths in the MDP
and Prabss,D the probability measure on sets of MDP paths that is induced by

schedulerD and initial state s. The quantity cRmin(s,♦G) can be obtained [2,13]
by solving the following linear programming problem with variables {xs}s∈S\G:
maximize

∑

s∈S\G xs subject to the following constraints for each s ∈ S \G and
α ∈ Act:

xs 6 c(s, α) +
∑

s′∈S\G

P(s, α, s′) · xs′ +
∑

s′∈G

P(s, α, s′) · g(s′).

3 Expected time analysis

Expected time objectives. Let I be an IMC with state space S and G ⊆ S a
set of goal states. Define the (extended) random variable VG : Paths → R

∞
≥0

as the elapsed time before first visiting some state in G, i.e. for infinite path

π = s0
σ0,t0
−−−→ s1

σ1,t1
−−−→ · · · , let VG(π) = min {t ∈ R≥0 | G ∩ π@t 6= ∅} where

min(∅) = +∞. The minimal expected time to reach G from s ∈ S is given by

eTmin(s,♦G) = inf
D

Es,D(VG) = inf
D

∫

Paths

VG(π) Pr
s,D

(dπ).

Note that by definition of VG, only the amount of time before entering the first
G-state is relevant. Hence, we may turn all G-states into absorbing Markovian
states without affecting the expected time reachability. Accordingly, we assume

for the remainder of this section that for all s ∈ G and some λ > 0, s
λ

=⇒ s is
the only outgoing transition of state s.

Theorem 1. The function eTmin is a fixpoint of the Bellman operator

[L(v)] (s) =























1

E(s)
+

∑

s′∈S

P(s, s′) · v(s′) if s ∈ MS \G

min
s

α−−→ s′
v(s′) if s ∈ IS \G

0 if s ∈ G.

Intuitively, Thm. 1 justifies to add the expected sojourn times in all Markovian
states before visiting a G-state. Any non-determinism in interactive states (which
are, by definition, left instantaneously) is resolved by minimizing the expected
reachability time from the reachable one-step successor states.

7

Computing expected time probabilities. The characterization of eTmin(s,♦G) in
Thm. 1 allows us to reduce the problem of computing the minimum expected
time reachability in an IMC to a non-negative SSP problem [2,15].

Definition 5 (SSP for minimum expected time reachability). The SSP
of IMC I = (S,Act, −→ ,=⇒, s0) for the expected time reachability of G ⊆ S is
P
eT

min(I) = (S,Act ∪ {⊥} ,P, s0, G, c, g) where g(s) = 0 for all s ∈ G and

P(s, σ, s′) =











R(s,s′)
E(s)

if s ∈ MS ∧ σ = ⊥

1 if s ∈ IS ∧ s σ−−→ s′

0 otherwise, and

c(s, σ) =

{

1
E(s)

if s ∈ MS \G ∧ σ = ⊥

0 otherwise.

Intuitively, action transitions are assigned a Dirac distribution, whereas the prob-
abilistic behavior of a Markovian state is as explained before. The reward of a
Markovian state is its mean residence time. Terminal costs are set to zero.

Theorem 2 (Correctness of the reduction). For IMC I and its induced
SSP P

eT
min(I) it holds:

eTmin(s,♦G) = cRmin(s,♦G)

where cRmin(s,♦G) denotes the minimal cost reachability of G in SSP P
eT

min(I).

Proof. According to [2,15], cRmin(s,♦G) is the unique fixpoint of the Bellman
operator L′ defined as:

[

L′(v)
]

(s) = min
α∈Act(s)

c(s, α) +
∑

s′∈S\G

P(s, α, s′) · v(s′) +
∑

s′∈G

P(s, α, s′) · g(s′).

We prove that the Bellman operator L from Thm. 1 equals L′ for SSP P
eT

min(I).
By definition, it holds that g(s) = 0 for all s ∈ S. Thus

[

L′(v)
]

(s) = min
α∈Act(s)

c(s, α) +
∑

s′∈S\G

P(s, α, s′) · v(s′).

For s ∈ MS, Act(s) = {⊥}; if s ∈ G, then c(s,⊥) = 0 and P(s,⊥, s) = 1 imply
L′(v)(s) = 0. For s ∈ IS and α ∈ Act(s), there exists a unique s′ ∈ S such that
P(s, α, s′) = 1. Thus we can rewrite L′ as follows:

[

L
′(v)

]

(s) =























c(s,⊥) +
∑

s′∈S\G

P(s,⊥, s
′) · v(s′) if s ∈ MS \G

min
s

α
−→s′

c(s, α) + v(s′) if s ∈ IS \G

0 if s ∈ G.

(2)

By observing that c(s,⊥) = 1
E(s) if s ∈ MS \ G and c(s, σ) = 0, otherwise, we

can rewrite L′ in (2) to yield the Bellman operator L as defined in Thm. 1. ⊓⊔

Observe from the fixpoint characterization of eTmin(s,♦G) in Thm. 1 that
in interactive states—and only those may exhibit nondeterminism—it suffices
to choose the successor state that minimizes v(s′). In addition, by Thm. 2, the
Bellman operator L from Thm. 1 yields the minimal cost reachability in SSP
P
eT

min(I). These two observations and the fact that stationary deterministic
policies suffice to attain the minimum expected cost of an SSP [2,15] yields:

8

Corollary 1. There is a stationary deterministic scheduler yielding eTmin(s,♦G).

The uniqueness of the minimum expected cost of an SSP [2,15] now yields:

Corollary 2. eTmin(s,♦G) is the unique fixpoint of L (see Thm. 1).

The uniqueness result enables the usage of standard solution techniques such as
value iteration and linear programming to compute eTmin(s,♦G).

4 Long-run average analysis

Long-run average objectives. Let I be an IMC with state space S and G ⊆ S

a set of goal states. We use IG as an indicator with IG(s) = 1 if s ∈ G and 0,
otherwise. Following the ideas of [14,23], the fraction of time spent in G on an
infinite path π in I up to time bound t ∈ R≥0 is given by the random variable
(r. v.) AG,t(π) = 1

t

∫ t

0 IG(π@u) du. Taking the limit t → ∞, we obtain the r. v.

AG(π) = lim
t→∞

AG,t(π) = lim
t→∞

1

t

∫ t

0
IG(π@u) du.

The expectation of AG for schedulerD and initial state s yields the corresponding
long-run average time spent in G:

Lra
D(s,G) = Es,D(AG) =

∫

Paths

AG(π) Prs,D(dπ).

The minimum long-run average time spent in G starting from state s is then:

Lra
min(s,G) = inf

D
Lra

D(s,G) = inf
D

Es,D(AG).

For the long-run average analysis, we may assume w.l.o.g. that G ⊆ MS, as the
long-run average time spent in any interactive state is always 0. This claim follows
directly from the fact that interactive states are instantaneous, i.e. their sojourn
time is 0 by definition. Note that in contrast to the expected time analysis,
G-states cannot be made absorbing in the long-run average analysis.

Theorem 3. There is a stationary deterministic scheduler yielding Lramin(s,G).

In the remainder of this section, we discuss in detail how to compute the
minimum long-run average fraction of time to be in G in an IMC I with initial
state s0. The general idea is the following three-step procedure:

1. Determine the maximal end components {I1, . . . ,Ik} of IMC I.

2. Determine Lra
min(G) in maximal end component Ij for all j ∈ {1, . . . , k}.

3. Reduce the computation of Lramin(s0, G) in IMC I to an SSP problem.

The first phase can be performed by a graph-based algorithm [13] which has
recently been improved in [9], whereas the last two phases boil down to solving
linear programming problems. In the next subsection, we show that determin-
ing the LRA in an end component of an IMC can be reduced to a long-run
ratio objective in an MDP equipped with two cost functions. Then, we show the
reduction of our original problem to an SSP problem.

9

4.1 Long-run averages in unichain IMCs

In this subsection, we consider computing long-run averages in unichain IMCs,
i.e. IMCs that under any stationary deterministic scheduler yield a strongly con-
nected graph structure.

Long-run ratio objectives in MDPs. Let M = (S,Act,P, s0) be an MDP. Assume
w.l.o.g. that for each state s there exists α ∈ Act such that P(s, α, s′) > 0. Let
c1, c2 : S × (Act ∪ {⊥}) → R>0 be cost functions. The operational interpretation
is that a cost c1(s, α) is incurred when selecting action α in state s, and similar
for c2. Our interest is the ratio between c1 and c2 along a path. The long-run
ratio R between the accumulated costs c1 and c2 along the infinite path π =
s0

α0−−→ s1
α1−−→ . . . in the MDP M is defined by4:

R(π) = lim
n→∞

∑n−1
i=0 c1(si, αi)

∑n−1
j=0 c2(sj , αj)

.

The minimum long-run ratio objective for state s of MDP M is defined by:

Rmin(s) = inf
D

Es,D(R) = inf
D

∑

π∈Pathsabs

R(π) · Prabss,D(π).

From [13], it follows that Rmin(s) can be obtained by solving the following lin-
ear programming problem with real variables k and xs for each s ∈ S: Maximize
k subject to the following constraints for each s ∈ S and α ∈ Act:

xs 6 c1(s, α)− k · c2(s, α) +
∑

s′∈S

P(s, α, s′) · xs′ .

Reducing LRA objectives in unichain IMCs to long-run ratio objectives in MDPs.
We consider the transformation of an IMC into an MDP with 2 cost functions.

Definition 6. Let I = (S,Act, −→ ,=⇒, s0) be an IMC and G ⊆ S a set of goal
states. The induced MDP is M(I) = (S,Act ∪ {⊥},P, s0) with cost functions c1
and c2, where

P(s, σ, s′) =











R(s,s′)
E(s)

if s ∈ MS ∧ σ = ⊥

1 if s ∈ IS ∧ s σ−−→ s′

0 otherwise,

c1(s, σ) =

{

1
E(s)

if s ∈ MS ∩G ∧ σ = ⊥

0 otherwise,
c2(s, σ) =

{

1
E(s)

if s ∈ MS ∧ σ = ⊥

0 otherwise.

Observe that cost function c2 keeps track of the average residence time in state s
whereas c1 only does so for states in G. The following result shows that the long-
run average fraction of time spent in G-states in the IMC I and the long-run
ratio objective Rmin in the induced MDP M(I) coincide.

Theorem 4. For unichain IMC I, LRAmin(s,G) equals Rmin(s) in MDP M(I).

4 In our setting, R(π) is well-defined as the cost functions c1 and c2 are obtained from non-
Zeno IMCs, as explained below. This entails that for any infinite path π, c2(sj , αj) > 0 for
some index j.

10

Proof. Let I be a unichain IMC with state space S and G ⊆ S. Consider a
stationary deterministic scheduler D on I. As I is unichain,D induces an ergodic

CTMC (S,R, s0), where R(s, s′) =
∑

{λ | s
λ

=⇒ s′}, and R(s, s′) = ∞ if s ∈ IS

and s
D(s)

−−−−→ s′.5 The proof now proceeds in three steps.

〈1〉 According to the ergodic theorem for CTMCs [24], almost surely:

Esi

(

lim
t→∞

1

t

∫ t

0

I{si}(Xu) du
)

=
1

zi ·E(si)
.

Here, random variable Xt denotes the state of the CTMC at time t and
zi = Ei(Ti) is the expected return time to state si where random variable Ti

is the return time to si when starting from si. We assume 1
∞ = 0. Thus, in

the long run almost all paths will stay in si for
1

zi·E(si)
fraction of time.

〈2〉 Let µi be the probability to stay in si in the long run in the embedded
discrete-time Markov chain (S,P′, s0) of CTMC (S,R, s0). Thus µ ·P′ = µ

where µ is the vector containing µi for all states si ∈ S. Given the probability
µi of staying in state si, the expected return time to si is

zi =

∑

sj∈S
µj · E(sj)

−1

µi

.

〈3〉 Gathering the above results now yields:

Lra
D(s,G) = Es,D

(

lim
t→∞

1

t

∫ t

0

IG(Xu) du
)

= Es,D

(

lim
t→∞

1

t

∫ t

0

∑

si∈G

I{si}(Xu) du
)

=
∑

si∈G

Es,D

(

lim
t→∞

1

t

∫ t

0

I{si}(Xu) du
)

〈1〉
=

∑

si∈G

1

zi · E(si)

〈2〉
=

∑

si∈G

µi
∑

sj∈S
µjE(sj)−1

·
1

E(si)
=

∑

si∈G
µiE(si)

−1

∑

sj∈S
µjE(sj)−1

=

∑

si∈S IG(si) · µiE(si)
−1

∑

sj∈S
µjE(sj)−1

=

∑

si∈S µi · (IG(si) · E(si)
−1)

∑

sj∈S
µj · E(sj)−1

(⋆)
=

∑

si∈S
µi · c1(si, D(si))

∑

sj∈S
µj · c2(sj , D(sj))

(⋆⋆)
= Es,D(R)

Step (⋆) is due to the definition of c1, c2. Step (⋆⋆) has been proven in [13].

By definition, there is a one-to-one correspondence between the schedulers of I
and its MDP M(I). Together with the above results, this yields that Lramin =
infD Lra

D(s) in IMC I equals Rmin(s) = infD Es,D(R) in MDP M(I). ⊓⊔

To summarize, computing the minimum long-run average fraction of time that
is spent in some goal state in G ⊆ S in unichain IMC I equals the minimum
long-run ratio objective in an MDP with two cost functions. The latter can
be obtained by solving an LP problem. Observe that for any two states s, s′

in a unichain IMC, Lramin(s,G) and Lra
min(s′, G) coincide. In the sequel, we

therefore omit the state and simply write Lra
min(G) when considering unichain

IMCs. In the next subsection, we consider IMCs that are not unichains.

5 Strictly speaking, ∞ is not characterizing a negative exponential distribution and is used
here to model an instantaneous transition. The results applied to CTMCs in this proof are
not affected by this slight extension of rates.

11

4.2 Reduction to a stochastic shortest path problem

Let I be an IMC with initial state s0 and maximal end components {I1, . . . ,Ik}
for k > 0 where IMC Ij has state space Sj . Note that being a maximal end
component implies that each Ij is also a unichain IMC. Using this decomposition
of I into maximal end components, we obtain the following result:

Lemma 1. Let I = (S,Act, −→ ,=⇒, s0) be an IMC, G ⊆ S a set of goal
states and {I1, . . . ,Ik} the set of maximal end components in I with state spaces
S1, . . . , Sk ⊆ S. Then

Lra
min(s0, G) = inf

D

k
∑

j=1

Lra
min
j (G) · PrD(s0 |= ♦Sj),

where PrD(s0 |= ♦Sj) is the probability to eventually reach some state in Sj

from s0 under scheduler D and Lra
min
j (G) is the long-run average fraction of

time spent in G ∩ Sj in unichain IMC Ij.

We finally show that the problem of computing minimal LRA is reducible to a
non-negative SSP problem [2,15]. This is done as follows. In IMC I, each maximal
end component Ij is replaced by a new state uj. Formally, let U = {u1, . . . , uk}
be a set of fresh states such that U ∩ S = ∅.

Definition 7 (SSP for long run average). Let I, S, G ⊆ S, Ij and Sj be as
before. The SSP induced by I for the long-run average fraction of time spent in

G is the tuple P
LRA

min(I) =
(

S \
⋃k

i=1 Si ∪ U,Act ∪ {⊥} ,P′, s0, U, c, g
)

, where

P
′(s, σ, s′) =























P(s, σ, s′), if s, s′ ∈ S \
⋃k

i=1 Si
∑

s′∈Sj
P(s, σ, s′) if s ∈ S \

⋃k

i=1 Si ∧ s′ = uj , uj ∈ U

1 if s = s′ = ui ∈ U ∧ σ = ⊥

0 otherwise.

Here, P is defined as in Def. 6. Furthermore, g(ui) = Lra
min
i (G) for ui ∈ U and

c(s, σ) = 0 for all s and σ ∈ Act ∪ {⊥}.

The state space of the SSP consists of all states in the IMC I where each maximal
end component Ij is replaced by a single state uj which is equipped with a ⊥-
labeled self-loop. The terminal costs of the new states ui are set to Lra

min
i (G).

The transition probabilities are defined as in the transformation of an IMC into
an MDP, see Def. 6, except that for transitions to uj the cumulative probability
to move to one of the states in Sj is taken. Note that as interactive transitions
are uniquely labeled (as we consider closed IMCs), P′ is indeed a probability
function. The following theorem states the correctness of the reduction.

Theorem 5 (Correctness of the reduction). For IMC I and its induced
SSP P

LRA
min(I) it holds:

Lra
min(s,G) = cRmin(s,♦U)

where cRmin(s,♦U) is the minimal cost reachability of U in SSP P
LRA

min(I).

12

Example 3. Consider the IMC I in Fig. 1 and its maximal end components I1
and I2 with state spaces S1 = {s4, s5, s6, s7} and S2 = {s3, s8, s9, s10}, respec-
tively. Let G = {s7, s8} be the set of goal states. For the underlying MDP
M(I), we have P(s4, γ1, s5) = 1, c1(s4, γ1) = c2(s4, γ1) = 0, P(s7,⊥, s4) =
1
2 , c1(s7,⊥) = c2(s7,⊥) = 1

10 , and P(s5,⊥, s7) = 1 with c1(s5,⊥) = 0 and
c2(s5,⊥) = 1

20 . Solving the linear programming problems for each of the maxi-
mal end components I1 and I2, we obtain Lra

min
1 (G) = 2

3 , Lra
max
1 (G) = 4

5 , and
Lra

max
2 (G) = Lra

min
2 (G) = 9

13 . The SSP P
LRA

min(I) for the complete IMC I is
obtained by replacing I1 and I2 with fresh states u1 and u2 where g(u1) =

2
3 and

g(u2) =
9
13 . We have P′(s1,⊥, u1) =

1
3 , P

′(s2, β2, u2) = 1, etc. Finally, by solving
the linear programming problem for P

LRA
min(I), we obtain Lra

min(s0, G) = 80
117

by choosing α1 in state s0 and γ1 in state s4. Dually, Lramax(s0, G) = 142
195 is

obtained by choosing α1 in state s0 and γ2 in state s4.

5 Case studies

5.1 Tool support

What is Imca? Imca (Interactive Markov Chain Analyzer) is a tool for the
quantitative analysis of IMCs. In particular, it supports the verification of IMCs
against (a) timed reachability objectives, (b) reachability objectives, (c) expected
time objectives, (d) expected step objectives, and (e) long-run average objectives.
In addition, it supports the minimization of IMCs with respect to strong bisim-
ulation. Imca synthesizes ε-optimal piecewise constant timed policies for (a)
timed reachability objectives using the approach of [30], and optimal positional
policies for the objectives (b)–(e). Measures (c) and (e) are determined using
the approach explained in this paper. Imca supports the plotting of piecewise
constant policies (on a per state basis) and incorporates a plot functionality for
timed reachability which allows to plot the timed reachability probabilities for a
state over a given time interval.

Input format. Imca has a simple input format that facilitates its usage as a
back-end tool for other tools that generate IMCs from high-level model specifi-
cations such as AADL, DFTs, Prism reactive modules, and so on. It supports
the bcg-format, such that it accepts state spaces generated (and possibly mini-
mized) using the CADP toolbox [11]; CADP supports a LOTOS-variant for the
compositional modeling of IMCs and compositional minimization of IMCs.

Implementation Details. A schematic overview of the Imca tool is given in
Fig. 2. The tool is written in C++, consists of about 6,000 lines of code, and

Fig. 2. Tool functionality of Imca.

13

eTmax(s,✸G) Prmax(s,✸G) Lra
max(s,G)

N # states # transitions |G| time (s) time (s) time (s)

1 111 320 74 0.0009 0.0061 0.0046
4 819 2996 347 0.0547 0.0305 0.1137
8 2771 10708 1019 0.6803 0.3911 1.3341
16 10131 40340 3419 10.1439 5.3423 20.0278
32 38675 156436 12443 292.7389 94.0289 455.4387
52 100275 408116 31643 3187.1171 1807.7994 OOM

Table 1. Computation times for the workstation cluster.

exploits the GNU Multiple Precision Arithmetic Library6 and the Multiple Pre-
cision Floating-Point Reliable Library7 so as to deal with the small probabilities
that occur during discretization for (a). Other included libraries are QT 4.6 and
SoPlex 1.6.0 [28].The latter supports several efficient algorithms to solve LP
problems; by default it uses simplex on an LP problem and its dual.

5.2 Case studies

We study the practical feasibility of Imca’s algorithms for expected time reach-
ability and long-run averages on two case studies: A dependable workstation
cluster [18] and a Google file system [10]. The experiments were conducted on a
single core of a 2.8 GHz Intel Core i7 processor with 4GB RAM running Linux.

Workstation cluster. In this benchmark, two clusters of workstations are con-
nected via a backbone network. In each cluster, the workstations are connected
via a switch. All components can fail. Our model for the workstation cluster
benchmark is basically as used in all of its studies so far, except that the inspec-
tion transitions in the GSPN (Generalized Stochastic Petri Net) model of [18] are
immediate rather than —as in all current studies so far— stochastic transitions
with a very high rate. Accordingly, whenever the repair unit is available and
different components have failed, the choice which component to repair next is
nondeterministic (rather than probabilistic). This yields an IMC with the same
size as the Markov chain of [18]. Table 1 shows the computation times for the
maximum expected reachability times where the set G of goal states depends on
the number N of operational workstations. More precisely, G is the set of states
in which none of the operational left (or right) workstations connected via an
operational switch and backbone is available. For the sake of comparison, the
next column indicates the computation times for unbounded reachability proba-
bilities for the same goal set. The last column of Table 1 lists the results for the
long-run average analysis; the model consists of a single end component.

Google file system. The model of [10] focuses on a replicated file system as used
as part of the Google search engine. In the Google file system model, files are
divided into chunks of equal size. Several copies of each chunk reside at several
chunk servers. The location of the chunk copies is administered by a single master
server. If a user of the file system wants to access a certain chunk of a file, it
asks the master for the location. Data transfer then takes place directly between
a chunk server and the user. The model features three parameters: The number

6 http://gmplib.org/.
7 http://www.mpfr.org/.

14

eTmin(s,✸G) Prmin(s,✸G) Lra
min(s,G)

M # states # transitions |G| time (s) time (s) time (s)

10 1796 6544 408 1.6568 0.1584 0.1411
20 7176 27586 1713 2.6724 2.5669 14.9804
30 16156 63356 3918 11.3836 14.2459 35.0654
40 28736 113928 7023 31.1416 48.8603 236.5308
60 64696 202106 15933 142.2179 315.8246 OOM

Table 2. Computation times for Google file system (S = 5000 and N = 100000).

M of chunk servers, the number S of chunks a chunk server may store, and the
total number N of chunks. In our setting, S = 5000 and N = 100000, whereas M
varies. The set G of goal states characterizes the set of states that offer at least
service level one. We consider a variant of the GSPN model in [10] in which the
probability of a hardware or a software failure in the chunk server is unknown.
This aspect was not addressed in [10]. Table 2 summarizes the computation times
for the analysis of the nondeterministic Google file system model.

6 Conclusions

We presented novel algorithms, prototypical tool support in Imca, and two case
studies for the analysis of expected time and long run average objectives of IMCs.
We have shown that both objectives can be reduced to stochastic shortest path
problems. As IMCs are the semantic backbone of engineering formalisms such as
AADL error models [5], dynamic fault trees [4] and GALS hardware designs [12],
our contribution enlarges the analysis capabilities for dependability and reliabil-
ity. The support of the compressed bcg-format allows for the direct usage of our
tool and algorithms as back-end to tools like CADP [11] and CORAL [4]. The tool
and case studies are publicly available at http://moves.rwth-aachen.de/imca.
Future work will focus on the generalization of the presented algorithms to
Markov automata [16], and experimentation with symbolic data structures such
as multi-terminal BDDs by, e.g. exploiting Prism for the MDP analysis.

Acknowledgment. This research was supported by the EU FP7 MoVeS and MEALS projects,

the ERC advanced grant VERIWARE, the DFG research center AVACS (SFB/TR 14) and the

DFG/NWO ROCKS programme. We thank Silvio de Carolis for the bcg-interface and Ernst

Moritz Hahn for his help on the Google file system.

References

1. Baier, C., Haverkort, B. R., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for
continuous-time Markov chains. IEEE TSE 29 (2003) 524–541

2. Bertsekas, D. P., Tsitsiklis, J. N.: An analysis of stochastic shortest path problems. Math-
ematics of Operations Research 16 (1991) 580–595

3. Böde, E., Herbstritt, M., Hermanns, H., Johr, S., Peikenkamp, T., Pulungan, R., Rakow,
J., Wimmer, R., Becker, B.: Compositional dependability evaluation for STATEMATE.
IEEE TSE 35 (2009) 274–292

4. Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and extensible frame-
work for dynamic fault tree analysis. IEEE TSDC 7 (2009) 128–143

5. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V., Noll, T., Roveri, M.: Safety, depend-
ability and performance analysis of extended AADL models. The Computer Journal 54

(2011) 754–775

15

6. Brázdil, T., Forejt, V., Krcál, J., Kret́ınský, J., Kucera, A.: Continuous-time stochastic
games with time-bounded reachability. In: FSTTCS. LIPIcs, Vol. 4. Schloss Dagstuhl
(2009) 61–72

7. Buchholz, P., Hahn, E. M., Hermanns, H., Zhang, L.: Model checking algorithms for CT-
MDPs. In: CAV. LNCS, Vol. 6806. Springer (2011) 225–242

8. Buchholz, P., Schulz, I.: Numerical analysis of continuous time Markov decision processes
over finite horizons. Computers & OR 38 (2011) 651–659

9. Chatterjee, K., Henzinger, M.: Faster and dynamic algorithms for maximal end-component
decomposition and related graph problems in probabilistic verification. In: Symp. on Dis-
crete Algorithms (SODA). SIAM (2011) 1318–1336

10. Cloth, L., Haverkort, B. R.: Model checking for survivability. In: QEST. IEEE Computer
Society (2005) 145–154

11. Coste, N., Garavel, H., Hermanns, H., Lang, F., Mateescu, R., Serwe, W.: Ten years of
performance evaluation for concurrent systems using CADP. In: ISoLA. LNCS, Vol. 6416.
Springer (2010) 128–142

12. Coste, N., Hermanns, H., Lantreibecq, E., Serwe, W.: Towards performance prediction of
compositional models in industrial GALS designs. In: CAV. LNCS, Vol. 5643. Springer
(2009) 204–218

13. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford University
(1997)

14. de Alfaro, L.: How to specify and verify the long-run average behavior of probabilistic
systems. In: LICS. IEEE CS Press (1998) 454–465

15. de Alfaro, L.: Computing minimum and maximum reachability times in probabilistic sys-
tems. In: CONCUR. LNCS, Vol. 1664. Springer (1999) 66–81

16. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time.
In: LICS. IEEE Computer Society (2010) 342–351

17. Guck, D., Han, T., Katoen, J.-P., Neuhäußer, M. R.: Quantitative timed analysis of inter-
active Markov chains. In: NASA Formal Methods. LNCS 7226. Springer (2012) 8–23

18. Haverkort, B. R., Hermanns, H., Katoen, J.-P.: On the use of model checking techniques
for dependability evaluation. In: SRDS. IEEE CS (2000) 228–237

19. Hermanns, H.: Interactive Markov Chains and the Quest for Quantified Quality. LNCS,
Vol. 2428. Springer (2002)

20. Hermanns, H., Katoen, J.-P.: The how and why of interactive Markov chains. In: FMCO.
LNCS, Vol. 6286. Springer (2009) 311–337

21. Johr, S.: Model Checking Compositional Markov Systems. PhD thesis, Saarland University
(2007)

22. Knast, R.: Continuous-time probabilistic automata. Information and Control 15 (1969)
335–352

23. López, G., Hermanns, H., Katoen, J.-P.: Beyond memoryless distributions: Model checking
semi-Markov chains. In: PAPM-PROBMIV. LNCS 2165. Springer (2001) 57–70

24. Norris, J.: Markov Chains. Cambridge University Press (1997)
25. Puterman, M. L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.

John Wiley & Sons (1994)
26. Rabe, M. N., Schewe, S.: Finite optimal control for time-bounded reachability in CTMDPs

and continuous-time Markov games. Acta Inf. 48 (2011) 291–315
27. von Essen, C., Jobstmann, B.: Synthesizing systems with optimal average-case behavior

for ratio objectives. In: iWIGP. EPTCS, Vol. 50. (2011) 17–32
28. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis, Tech-

nische Universität Berlin (1996) http://www.zib.de/Publications/abstracts/TR-96-09/.
29. Yushtein, Y., Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V. Y., Noll, T., Olive,

X., Roveri, M.: System-software co-engineering: Dependability and safety perspective. In:
SMC-IT. IEEE Computer Society (2011) 18–25

30. Zhang, L., Neuhäußer, M. R.: Model checking interactive Markov chains. In: TACAS.
LNCS, Vol. 6015. Springer (2010) 53–68

16

A Proof of Theorem 1

Theorem 1. The function eTmin is a fixpoint of the Bellman operator

[L(v)] (s) =























1

E(s)
+

∑

s′∈S

P(s, s′) · v(s′) if s ∈ MS \G

min
s

α−−→ s′
v(s′) if s ∈ IS \G

0 if s ∈ G.

Proof. We show L
(

eTmin(s,♦G)
)

= eTmin(s,♦G) for all s ∈ S. Distinguish
three cases: s ∈ MS \G, s ∈ IS \G and s ∈ G. If s ∈ MS \G, we derive

eTmin(s,♦G) = inf
D

Es,D(VG) = inf
D

∫

Paths

VG(π) Pr
s,D

(dπ)

= inf
D

∫ ∞

0
t ·E(s)e−E(s)t +

∑

s′∈S

P(s, s′) · E
s′,D

(

s
t,⊥
−−→·

)(VG) dt

=

∫ ∞

0
t ·E(s)e−E(s)t +

∑

s′∈S

P(s, s′) · inf
D

E
s′,D

(

s
t,⊥
−−→·

)(VG) dt

=

∫ ∞

0
t ·E(s)e−E(s)t +

∑

s′∈S

P(s, s′) · inf
D

Es′,D(VG) dt

=

∫ ∞

0
t ·E(s)e−E(s)t dt+

∑

s′∈S

P(s, s′) · eTmin(s′,♦G)

=
1

E(s)
+

∑

s′∈S

P(s, s′) · eTmin(s′,♦G) = L
(

eTmin(s,♦G)
)

.

If s ∈ IS \G, we derive

eTmin(s,♦G) = inf
D

Es,D(VG) = inf
D

∫

Paths

VG(π) Pr
s,D

(dπ)

= inf
D

∑

s
α
−→s′

D(s)(α) · E
s′,D

(

s
α,0
−−→·

)(VG).

As IMC I is closed, each transition can be assumed to be uniquely labeled, i.e.
each action α uniquely determines a successor state s′ with s α−−→ s′. Let

α = argmin
s

α−−→ s′
inf
D

Es′,D(VG).

Then all optimal schedulers must choose α with probability 1, i.e. D(s)(α) = 1
and D(s)(σ) = 0 for all σ 6= α. Hence, we obtain

eTmin(s,♦G) = inf
D

min
s

α
−→s′

E
s′,D

(

s
α,0
−−→·

)(VG) = min
s

α
−→s′

inf
D

E
s′,D

(

s
α,0
−−→·

)(VG)

= min
s

α
−→s′

inf
D

Es′,D(VG) = min
s

α
−→s′

eTmin(s′,♦G) = L
(

eTmin(s,♦G)
)

.

Finally, assume s ∈ G. Then

eTmin(s,♦G) = inf
D

∫

Paths

VG(π) Pr
s,D

(dπ) = 0 = L
(

eTmin(s,♦G)
)

. ⊓⊔

17

B Proof of Theorem 3

Theorem 3. There is a stationary deterministic scheduler yielding Lramin(s,G).

Proof (Sketch). Transform IMC I into a continuous-time MDP (CTMDP) CI as
in [21]. There is a one-to-one correspondence between schedulers on IMC I and
schedulers of CTMDP CI such that the probability measure of corresponding sets
of infinite paths in I and CI coincide [21]. Thus, under a given scheduler, the LRA
in IMC I equals the LRA in CTMDP CI . It follows that Lra

min(s,G) in I equals
Lra

min(s,G) in CI . The theorem now follows from the fact that Lramin(s,G) in
CTMDPs are attained under stationary deterministic schedulers, cf. [25]. ⊓⊔

C Proof of Lemma 1

Lemma 1. Lramin(s0, G) = inf
D

k
∑

j=1

Lra
min
j (G) · PrD(s0 |= ♦Sj) where

PrD(s0 |= ♦Sj) is the probability to eventually reach some state in Sj from s0
under scheduler D and Lra

min
j (G) is the long-run average fraction of time spent

in G in unichain IMC Ij.

Proof (Sketch). Under all deterministic stationary schedulers, each infinite path
π in (finite) IMC I can be partitioned into two fragments: πs0s = s0s1 . . . s and
πω
s = s . . . s . . ., where each state on πs0s (except s) do not belong to any Ij and

all states on πω
s belong to Ii, say. The minimal LRA will be obtained when the

LRA in each IMC Ij is minimal and the reachability probability to each IMC
Ij is minimal. A scheduler that attains Lra

min(s0, G) thus acts according to a
scheduler that minimizes the probability to reach Ij and then acts as a scheduler
that minimizes the LRA within Ij. ⊓⊔

D Proof of Theorem 5

Theorem 5 (Correctness of the reduction). For IMC I and its induced SSP
P
LRA

min(I) it holds:
Lra

min(s,G) = cRmin(s,♦U)

where cRmin(s,♦U) denotes the minimal cost reachability of U in SSP P
LRA

min(I).

Proof. This follows straightforwardly from:

cRmin(s,♦U) = inf
D

Es,D

{

g(XTU
)
}

= inf
D

k
∑

i=1

g(XTui
) · PrD(s |= ♦ui)

= inf
D

k
∑

i=1

Lra
min
i (G) · PrD(s |= ♦ui) = Lra

min(s,G). ⊓⊔

18

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years.

A complete list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2009-01 ∗ Fachgruppe Informatik: Jahresbericht 2009

2009-02 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Quantitative Model Checking of Continuous-Time Markov Chains

Against Timed Automata Specifications

2009-03 Alexander Nyßen: Model-Based Construction of Embedded

Real-Time Software - A Methodology for Small Devices

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-

erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-

dependent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm

Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the

Correctness of the Upper Bound of a Maximum Independent Set Algo-

rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The

Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in

Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset Games

2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)

2009-15 Joost-Pieter Katoen, Daniel Klink, Martin Neuhäußer: Compositional

Abstraction for Stochastic Systems

2009-16 George B. Mertzios, Derek G. Corneil: Vertex Splitting and the Recog-

nition of Trapezoid Graphs

2009-17 Carsten Kern: Learning Communicating and Nondeterministic Au-

tomata

2009-18 Paul Hänsch, Michaela Slaats, Wolfgang Thomas: Parametrized Regular

Infinite Games and Higher-Order Pushdown Strategies

2010-01 ∗ Fachgruppe Informatik: Jahresbericht 2010

2010-02 Daniel Neider, Christof Löding: Learning Visibly One-Counter Au-

tomata in Polynomial Time

19

2010-03 Holger Krahn: MontiCore: Agile Entwicklung von domänenspezifischen

Sprachen im Software-Engineering

2010-04 René Wörzberger: Management dynamischer Geschäftsprozesse auf Ba-

sis statischer Prozessmanagementsysteme

2010-05 Daniel Retkowitz: Softwareunterstützung für adaptive eHome-Systeme

2010-06 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Computing maximum reachability probabilities in Markovian timed au-

tomata

2010-07 George B. Mertzios: A New Intersection Model for Multitolerance

Graphs, Hierarchy, and Efficient Algorithms

2010-08 Carsten Otto, Marc Brockschmidt, Christian von Essen, Jürgen Giesl:

Automated Termination Analysis of Java Bytecode by Term Rewriting

2010-09 George B. Mertzios, Shmuel Zaks: The Structure of the Intersection of

Tolerance and Cocomparability Graphs

2010-10 Peter Schneider-Kamp, Jürgen Giesl, Thomas Ströder, Alexander Sere-

brenik, René Thiemann: Automated Termination Analysis for Logic Pro-

grams with Cut

2010-11 Martin Zimmermann: Parametric LTL Games

2010-12 Thomas Ströder, Peter Schneider-Kamp, Jürgen Giesl: Dependency

Triples for Improving Termination Analysis of Logic Programs with Cut

2010-13 Ashraf Armoush: Design Patterns for Safety-Critical Embedded Systems

2010-14 Michael Codish, Carsten Fuhs, Jürgen Giesl, Peter Schneider-Kamp:

Lazy Abstraction for Size-Change Termination

2010-15 Marc Brockschmidt, Carsten Otto, Christian von Essen, Jürgen Giesl:

Termination Graphs for Java Bytecode

2010-16 Christian Berger: Automating Acceptance Tests for Sensor- and

Actuator-based Systems on the Example of Autonomous Vehicles

2010-17 Hans Grönniger: Systemmodell-basierte Definition objektbasierter Mod-

ellierungssprachen mit semantischen Variationspunkten

2010-18 Ibrahim Armaç: Personalisierte eHomes: Mobilität, Privatsphäre und

Sicherheit

2010-19 Felix Reidl: Experimental Evaluation of an Independent Set Algorithm

2010-20 Wladimir Fridman, Christof Löding, Martin Zimmermann: Degrees of

Lookahead in Context-free Infinite Games

2011-01 ∗ Fachgruppe Informatik: Jahresbericht 2011

2011-02 Marc Brockschmidt, Carsten Otto, Jürgen Giesl: Modular Termination

Proofs of Recursive Java Bytecode Programs by Term Rewriting

2011-03 Lars Noschinski, Fabian Emmes, Jürgen Giesl: A Dependency Pair

Framework for Innermost Complexity Analysis of Term Rewrite Systems

2011-04 Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, Thomas Noll:

A Local Greibach Normal Form for Hyperedge Replacement Grammars

2011-06 Johannes Lotz, Klaus Leppkes, and Uwe Naumann: dco/c Derivative

Code by Overloading in C++

2011-07 Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe: An Operational

Semantics for Activity Diagrams using SMV

2011-08 Thomas Ströder, Fabian Emmes, Peter Schneider-Kamp, Jürgen Giesl,

Carsten Fuhs: A Linear Operational Semantics for Termination and

Complexity Analysis of ISO Prolog

20

2011-09 Markus Beckers, Johannes Lotz, Viktor Mosenkis, Uwe Naumann (Edi-

tors): Fifth SIAM Workshop on Combinatorial Scientific Computing

2011-10 Markus Beckers, Viktor Mosenkis, Michael Maier, Uwe Naumann: Ad-

joint Subgradient Calculation for McCormick Relaxations

2011-11 Nils Jansen, Erika Ábrahám, Jens Katelaan, Ralf Wimmer, Joost-Pieter

Katoen, Bernd Becker: Hierarchical Counterexamples for Discrete-Time

Markov Chains

2011-12 Ingo Felscher, Wolfgang Thomas: On Compositional Failure Detection

in Structured Transition Systems

2011-13 Michael Förster, Uwe Naumann, Jean Utke: Toward Adjoint OpenMP

2011-14 Daniel Neider, Roman Rabinovich, Martin Zimmermann: Solving Muller

Games via Safety Games

2011-16 Niloofar Safiran, Uwe Naumann: Toward Adjoint OpenFOAM

2011-18 Kamal Barakat: Introducing Timers to pi-Calculus

2011-19 Marc Brockschmidt, Thomas Ströder, Carsten Otto, Jürgen Giesl: Au-

tomated Detection of Non-Termination and NullPointerExceptions for

Java Bytecode

2011-24 Callum Corbett, Uwe Naumann, Alexander Mitsos: Demonstration of a

Branch-and-Bound Algorithm for Global Optimization using McCormick

Relaxations

2011-25 Callum Corbett, Michael Maier, Markus Beckers, Uwe Naumann, Amin

Ghobeity, Alexander Mitsos: Compiler-Generated Subgradient Code for

McCormick Relaxations

2011-26 Hongfei Fu: The Complexity of Deciding a Behavioural Pseudometric on

Probabilistic Automata

2012-01 ∗ Fachgruppe Informatik: Annual Report 2012

2012-02 Thomas Heer: Controlling Development Processes

2012-03 Arne Haber, Jan Oliver Ringert, Bernhard Rumpe: MontiArc - Architec-

tural Modeling of Interactive Distributed and Cyber-Physical Systems

2012-04 Marcus Gelderie: Strategy Machines and their Complexity

2012-05 Thomas Ströder, Fabian Emmes, Jürgen Giesl, Peter Schneider-Kamp,

and Carsten Fuhs: Automated Complexity Analysis for Prolog by Term

Rewriting

2012-06 Marc Brockschmidt, Richard Musiol, Carsten Otto, Jürgen Giesl: Auto-

mated Termination Proofs for Java Programs with Cyclic Data

2012-08 Hongfei Fu: Computing Game Metrics on Markov Decision Processes

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

21

