
Aachen
Department of Computer Science

Technical Report

Strategy Machines and their

Complexity

Marcus Gelderie

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2012-04

RWTH Aachen · Department of Computer Science · March 2012

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Strategy Machines and their Complexity

Marcus Gelderie

RWTH Aachen, Lehrstuhl für Informatik 7,
Logic and Theory of Discrete Systems,

D-52056 Aachen
gelderie@automata.rwth-aachen.de

Abstract. We introduce a machine model for the execution of strategies in (reg-
ular) infinite games that refines the standard model of Mealy automata. This
model of controllers is formalized in the terminological framework of Turing ma-
chines. We show how polynomially sized controllers can be found for Muller and
Streett games. We are able to distinguish aspects of executing strategies (”size”,
”latency”, ”space consumption”) that are not visible in Mealy automata. We
show upper and lower bounds for these parameters for several classes of ω-regular
games.

1 Introduction

Strategies obtained from ω-regular games are used to obtain controllers for re-
active systems. The controllers obtained in this way are transition systems with
output, also called Mealy machines. The physical implementation of such ab-
stract transition systems raises interesting questions, starting with the observa-
tion that the naive implementation of a Mealy machine by a physical machine
(such as a circuit or a register machine) essentially amounts to encoding a large
case distinction based on the current input and state. This approach entails con-
siderable complexity challenges [BGJ+07], as it essentially preserves the size of
the underlying Mealy machine. These machines are known to be large in gen-
eral [DJW97]. The complexity of solving ω-regular games reflects this problem
[HD05,HD08,Hor08,EJ99]. Reducing the size of a given Mealy machine has been
investigated [HL07,GH11] but must ultimately obey the general bounds men-
tioned. These observations indicate that pursuing a direct approach, without the
detour via Mealy machines, in synthesizing controllers may be worthwhile. We
propose a new model for reasoning about such physical machines and their syn-
thesis. This model, called a strategy machine, is based on an appropriate format
of Turing machines. The concept of a Turing machine is widely used in theoretical
scenarios to model computational systems, such as [GHS09]. A strategy machine
is a multi-tape Turing machine which has two distinct tapes, one for input and
output and another for storing information from one computation to the next.
Referring to a given game graph, the code of an input vertex appears on the
IO-tape and an output is produced. The process is then repeated. This model in-
troduces new criteria for evaluating a strategy. For example, it now makes sense
to investigate the number of steps required to transform an input into the corre-
sponding output, called the latency. Likewise we may ask how much information
needs to be stored from the computation of one output to the computation of the
next output. Note that translating a Mealy machine into this model entails the
problems discussed above and yields a machine with size (the number of control
states) roughly equal to the size of the Mealy machine.

Introducing the model of a strategy machine, we present initial results for
two classes of ω-regular games, namely Muller and Streett games. Building on
Zielonka’s algorithm [Zie98], we show that in both cases we may construct strat-
egy machines implementing a winning strategy of an exponentially lower size
than any Mealy machine winning strategy: Both the size of the strategy machine
and the amount of information stored on the tape are bounded polynomially
in the size of the arena and of the winning condition (given by a propositional
formula φ or a set of Streett pairs). Moreover, for Streett games even the latency
is bounded polynomially in these parameters. For Muller games the latency is
linear in the size of the enumerative representation of the winning condition. We
also present lower bounds for the latency and space requirement by translating
some well known results from the theory of Mealy machine strategies to our
model. This yields lower bounds for Muller, Streett, and LTL games.

In related work Madhusudan [Mad11] considers the synthesis of reactive pro-
grams over Boolean variables. A machine executing such a program falls into
the model discussed above. The size of the program then loosely corresponds
to the number of control states. In the same way, the requirement of tape cells
loosely corresponds to the number of Boolean variables. The latency and space
requirement are not studied in [Mad11].

The paper is structured as follows. First, we give a formal introduction of
the Turing machine model mentioned above. We formally define the parameters
latency, space requirement, and size. Next we recall some elementary concepts of
the theory of infinite two player zero-sum games with ω-regular winning condi-
tions. We show lower bounds for the latency and space requirement of machines
implementing winning strategies in Muller, Streett and LTL games. Then we
develop an adaptive algorithm for Muller games. This algorithm is based on
Zielonka’s construction [Zie98] using some ideas from [DJW97]. The latency and
space consumption strongly depend on the way the winning condition is given.
We illustrate this fact by showing how the algorithm can be used to obtain an ef-
ficient controller – that is, one with latency, size and space requirement bounded
polynomially in the size of the arena and the winning condition. If the winning
condition is a Streett condition, this is particularly promising, because Streett
conditions are more succinct than explicit Muller conditions.

2 Strategy Machines – A Formal Model

The intuition of a strategy1 machine is that of a ”black box“ which receives an
input (a bit-string), does some internal computation and at some point produces
an output. It then receives the next input and so forth. We will refer to such
a sequence of steps – receive an input, compute, produce an output – as an
iteration. In general it is allowed for such a machine to retain some part of its
current internal configuration from one iteration to the next. However, it need not
do so. Also, the amount of information (how this is quantified will be discussed
shortly) is a priori not subject to any restriction. In particular, a strategy machine
may require an ever growing amount of memory, increasing from one iteration
to the next, to store this information.

1 Strategies are not formally defined until the next section. The reader may want to skip ahead
and read the basic terminology on games if a question arises.

Our model of a strategy machine is a deterministic (k + 2)-tape Turing ma-
chine M, k ∈ N = {1, 2, . . .}. The tapes have the following purpose. The first
is a designated IO-tape, responsible for input to and output from the machine.
A bit-string w ∈ B∗, B = {0, 1}, is the content of the IO-tape at the beginning
of an iteration. The machineM is also in a designated input-state at this point.
NextM performs some computation in order to produce an output. During this
computation the remaining k+1 tapes may be used. We first discuss the k com-
putation tapes. As the name suggests, these tapes are used – as in any Turing
machine – to store all the data needed for the computation of the output. The
content of the computation tapes is deleted immediately before a new iteration
begins. In particular, they cannot be used to store information from one itera-
tion to the next. Storing such information is the purpose of the memory tape. Its
content is still available during the next iteration. In order to produce an output
M will write this output, another bit-string, on the IO-tape. Then it will enter
a designated output-state. Let B̂ = B ⊎ {#}. We define:

Definition 1 (k-tape Strategy Machine). A strategy machine is a determin-
istic (k + 2)-tape Turing machine M = (Q,B, B̂, qI , qO, δ) with two designated
states qI and qO, called the input-state and the output-state of M respectively.
We require the partial function δ : Q × B̂k+2 99K Q × (B̂ × {←, ↓,→})k+2 to be
undefined for all pairs (qO, b1, b2, b3) ∈ Q× B̂3. Furthermore we require that no

transition leads into qI . The tapes ofM are denoted tIO, t
(i)
com, 1 ≤ i ≤ k, tmem,

and are called the input-output-tape (IO-tape), the computation-tapes and the
memory-tape respectively.

In the following paragraphs we assume k = 1 to simplify the notation. If k = 1

we simply write tcom for t
(1)
com.

Given a strategy machineM we denote its size by ‖M‖ = |Q|−2. The size is
the number of states not counting the input and output state. A configuration c
ofM comprises the current state q(c), the contents of the IO-, computation- and
memory-tapes, tIO(c), tcom(c) and tmem(c) as well as the current head positions
hIO(c), hcom(c) and hmem(c) on the respective tapes. It is defined as a tuple

(q(c), tIO(c), tcom(c), tmem(c), hIO(c), hcom(c), hmem(c)) ∈ Q× (B̂∗)3 × Z3

The successor relation on configurations is defined as usual and denoted ⊢, its
transitive closure is denoted by ⊢∗. An iteration of M is a sequence c1, . . . , cl
of configurations, such that for 1 ≤ i ≤ l − 1 we have ci ⊢ ci+1. It starts with
c1 = (qI , x, ε, wmem, 0, 0, 0) and ends with cl = (qO, y, w,w

′
mem, h, h

′, h′′) for some
elements x, y ∈ B∗, arbitrary words w,wmem, w

′
mem ∈ B̂∗ and integers h, h′, h′′ ∈Z. We denote iterations by pairs of configurations (c, c′) where the state in c

is qI and that in c′ is qO. Since M is deterministic there exists at most one
iteration leading from c to c′ (since qO has no outgoing transitions and qI has
no incoming transitions). If no such iteration exists, we say the pair (c, c′) is an
illegal iteration. Otherwise it is a legal iteration.

Given a word u = x1 · · · xn ∈ A∗, where A = B∗, a run of M on u is
a sequence of legal iterations (c1, c

′
1), . . . , (cn, c

′
n), such that tIO(ci) = xi and

tmem(c′i) = tmem(ci+1). By convention tmem(c1) = ε. Note that by the definition
of an iteration tcom(ci) = ε and hcom(ci) = hIO(ci) = hmem(ci) = 0. A strategy

machineM defines a function f : A→ A where f(u) = tIO(c
′
n). By extension it

defines a function fM : A∗A→ A, the function implemented by M.
The latency T (c, c′) of a legal iteration (c, c′) is the number of configurations

on the unique path from c to c′. If the latency of all iterations in any run is
bounded by a constant, we define the latency T (M) of M to be the maximal
latency over all such (legal) iterations. Finally we define the space requirement
S(c, c′) of a legal iteration (c, c′) to be the number of tape cells of tmem visited
during that iteration. Again the space consumption S(M) ofM is the maximum
over all space consumptions, if such a maximum exists. Note that both latency
and space consumption refer to quantities needed to execute a single iteration
between reading a ∈ A and outputting b ∈ A. In other words they capture the
resources required to execute one iteration.

Recall that a Mealy machine is a quintuple M = (M,Σ,m0, δ, τ) with states
M , input/output alphabet Σ, initial state m0, transition function δ : M×Σ →M
and output function τ : M×Σ → Σ. There is a straightforward way to transform
a Mealy machine M into an equivalent strategy machine (that is one, which
implements the same function). We take an arbitrary encoding e : M → B∗ which
allows us to write elements from M onto the tape of a Turing machine. Note
that we need ⌈log2(|M |)⌉ bits to do so. Likewise we use an encoding e′ : Σ → B∗.
Then our machine MM proceeds as follows. On the memory tape it maintains
e(m) where m is the current state of M. The program has a copy of the table
〈(m,x, δ(m,x), τ(m,x))〉(m,x)∈M×Σ in its state space. For efficient lookup the
table can be represented as a binary search tree indexed by e(m) · e′(x) ∈ B∗.
Thus traversing the tree requires time O(log2(|M |) + log2(|Σ|)). The tree itself
has size O(|M | · |Σ|). The memory update requires at most log2(|M |) steps. So
we get:

Proposition 1. For every Mealy machine M = (M,Σ,m0, δ, τ) there exists an
equivalent 1-tape strategy machine MM with size ‖MM‖ ∈ O(|M | · |Σ|), space
requirement S(MM) ∈ O(log2(|M |)) and latency T (MM) ∈ O(log2(|M |) +
log2(|Σ|)).

3 Basics on Games

In this section we briefly recall the most basic facts on ω-regular games. We
assume the reader is familiar with these concepts. An introduction to the theory
can be found in e.g. [GTW02,Löd11,PP04].

An arena is a directed graph A = (V,E) with the property that every vertex
has an outgoing edge. We assume that there is a partition V = V0 ⊎ V1 of the
vertex set. A subarena is an induced subgraph A↾V ′ obtained by taking a subset
V ′ ⊆ V and considering the induced subgraph (restricting E′ = E ∩ V ′ × V ′).
We tacitly require V ′ to be such that every vertex v ∈ V ′ has a neighbor in V ′.
An i-trap is a subset V ′ ⊆ V , such that for every v ∈ Vi one has vE ⊆ V ′ and
for all v ∈ V1−i one has vE ∩ V ′ 6= ∅. An i-trap induces a subarena.

A infinite two player game (in this paper simply called a game) is a tuple
G = (A, ϕ) with an arena A and a winning condition ϕ ⊆ V ω. There are
two players, called player 0 and player 1. Given an initial vertex v0 ∈ V they
proceed as follows. If v0 ∈ V0 player 0 chooses a vertex v1 in the neighborhood
vE of v. Otherwise v0 ∈ V1 and player 1 chooses a neighbor v1. The play then

proceeds in the same fashion from the new vertex v1. In this way the two players
create an infinite sequence π = π(0)π(1) · · · = v0v1 · · · ∈ V

ω of adjacent vertices
(π(i), π(i + 1)) ∈ E called a play. Player 0 wins the play π if π ∈ ϕ. Otherwise
player 1 wins. G is called ω-regular if ϕ is an ω-regular set. All games considered
in this paper are ω-regular.

A strategy for player i is a mapping σ : V ∗Vi → V assigning an element from
vE to each string w ∈ V + with last(w) = v (where last(·) denotes the last
element of a sequence). π is consistent with σ if for every n ∈ N with π(n) ∈ Vi
we have π(i + 1) = σ(π(0) · · · π(n)). σ is a winning strategy for player i is every
play consistent with π is won by player i.

The winning region of player i, written Wi, is the set of vertices v ∈ V , such
that player i has a winning strategy σv from v. It can be shown that in ω-regular
games V =W0 ⊎W1, i.e. from any given vertex either one player has a winning
strategy or the other one does. If v ∈ Wi we say player i wins from v.

One usually does not specify the winning condition ϕ directly. Instead there
are several types of winning conditions. In this paper we are concerned with only
three of them: Muller, Streett and LTL conditions. We describe each of them in
turn.

A Muller condition is given by a set propositional formulas φ with variables
V . A play π is won by player 0, if φ if the infinity set Inf(π) = {v ∈ V |
∀n∃m ≥ n : π(m) = v} is a model of φ, i.e. Inf(π) |= φ. In this situation we
also say π satisfies φ. Equivalently Muller conditions are often defined as a set
F ⊆ P(V) of subsets of V . Conditions given by such a set F are called explicit
Muller conditions. The two formalisms are equivalent. However, the first can be
exponentially more succinct than the second. A game G = (A,F) with a Muller
condition F is called a Muller game.

A Streett condition is given by a set Ω = {(R1, G1), . . . , (Rk, Gk)} of pairs of
sets Ri, Gi ⊆ V . A set X ⊆ V violates a Streett pair (R,G) ∈ Ω if R ∩X 6= ∅
but G ∩X = ∅. A play π violates (R,G) if Inf(π) violates (R,G). If π does not
violate any pair (R,G) ∈ Ω, then π satisfies Ω and is won by player 0. Otherwise
there exists a pair which is violated and player 1 wins. A game G = (A, Ω) with
a Streett condition Ω is called a Streett game.

Finally, an LTL condition is one where the set of winning plays for player 0,
ϕ, is given by an LTL-formula2. More precisely, if V is the set of vertices of the
arena and if φ is an LTL formula over the propositions V , we have ϕ = {π ∈
V ω | π |= φ}. A game with an LTL condition is called an LTL game.

The last concept we would like to briefly recall is that of an attractor. Let

A = (V,E) be an arena, i ∈ B and let S ⊆ V be a set. Let A
(i)
0 = S and define

A
(i)
k+1 = {v ∈ Vi | vE ∩A

(i)
k 6= ∅} ∪ {v ∈ V1−i | vE ⊆ A

(i)
k } ∪A

(i)
k

The set AttrAi (S) =
⋃

k A
(i)
k is called the i-attractor on S. It is the set of

vertices from which player i can enforce to visit S. A corresponding strategy is
called an attractor strategy (see [GTW02,Löd11]). In the following section we will
use the fact that an attractor can be computed in time O(|V | · |E| · log2(|V |)) by
a two-tape Turing machine. The details are explained in the appendix. Indeed:

2 To describe the syntax and semantics of linear temporal logic (LTL) is beyond the scope of
this paper. We refer the reader to [GTW02,Löd11] for more information on LTL and games
with LTL winning conditions.

Remark 1. All complexity considerations in this paper are subject to the precise
assumptions one makes about representing data structures in the Turing machine
domain. We make all of those assumptions precise in the appendix. There we also
explain how one can obtain the claimed complexity results.

4 Lower Bounds

We would like to address the question of lower bounds on the space requirement
and latency of any machine implementing a winning strategy for player 0 in
certain classes of games. The following proposition will be useful:

Proposition 2. LetM be a strategy machine with a space requirement of n ∈ N.
Then the strategy implemented by M can be implemented by a Mealy machine
with 2n states3.

Proof. It suffices to observe that the only information retained from one itera-
tion to the next is the content of the memory tape. If the bound on the space
requirement is n then there can be at most 2n different configurations of the mem-
ory tape. Any legal computation (c, c′) is completely determined by the content
tmem(c) of the memory tape and the input tIO(c). Hence a Mealy machine with
state space Bn and transitions δ(w, v) = w′, τ(w, v) = v′ for w = tmem(c),
w′ = tmem(c′) and v = tIO(c), v

′ = tIO(c
′) will simulate M, i.e. it will compute

the same function. ⊓⊔

Let f : N→ N. Let (Gn)n≥0 be a family of games with Gn = ((Vn, En), ϕn)
and |Vn| ∈ O(n), such that no Mealy machine with less than f(n) states imple-
ments a winning strategy for player 0 in Gn. Then we say the family (Gn)n≥0 is
f -hard. By extension we say that a class C of games is f -hard if there exists an
f -hard family in C. Such a family is called a witnessing family.

Note that the definition of hardness above does not bound the size of the
underlying winning condition. For important classes of games we can bound this
size linearly in n:

Proposition 3. The classes of Muller games, given by a propositional formula,
and the class of Streett games, given by a set of Streett pairs, are 2n-hard. The
conditions (propositional formulas, set of Streett pairs) of the witnessing families
are no larger than O(|V |).

Note that Muller games are even (n2)!-hard ([DJW97]). However, in this case the
size of the winning condition is not linear in the size of the graph.

Let C be a class of games. A (solution) scheme for C is a mapping S assigning
a strategy machine S(G) to every game G ∈ C, such that S(G) implements a
winning strategy for player 0 in G.

Lemma 1. Let f, g : R+ → R+, such that f is strictly monotone and differen-
tiable with f ′(x) 6= 0 for all x ∈ R+. Let C be a 2Ω(f(n))-hard class of games.
Assume for some q ∈ (0, 1) we have g(x) ∈ O(f(x)q). Then there can be no so-
lution scheme S for C, such that S(G) has space requirement in O

(

g(m)
)

where
m = |V |.

3 For simplicity we assume that on the memory tape only the symbols 0 and 1 are used and #
is reserved for the unvisited part of the tape. If # is also allowed, some minor modifications
to the proofs that follow are necessary. The underlying ideas, however, are the same.

Proof. We may choose a 2Ω(f(n))-hard family (Gn)n≥0 of games in C. Choose
n0 ∈ N large enough and α, β, γ ∈ R+ such that (Gn)n≥n0 is (α · 2f)-hard and
g(x) ≤ β · f(x)q for all x ≥ n0 and |Vn| ≤ γ · n for all n ≥ n0. Up to choosing
the family (Gn)n≥n0 we may assume n0 = 0. One easily verifies that it is also no
loss of generality to assume α = β = γ = 1.

We have 2g(n) < 2f(n) iff g(n) < f(n). Now we have

g(x)

f(x)
≤
f(x)q

f(x)
=:

h(x)

l(x)

Since f is strictly monotone, so is x 7→ f(x)1−q. Elementary calculus shows:

h′(x)

l′(x)
= q ·

1

f(x)1−q
−−−→
x→∞

0

Since f ′(x) 6= 0 for all x ∈ R+ we may apply l’Hospital’s rule. We obtain

limx→∞
g(x)
f(x) = 0. ⊓⊔

We call a function f : R+ → R+ sub-linear if f ∈ O(xq) for some q ∈ (0, 1).
It is a well known fact that all polylogarithmic functions are sub-linear. In fact,
for every k ∈ N and every q ∈ (0, 1) one has log(x)k ∈ O(xq). We obtain:

Theorem 1 (Lower Bound on Space Requirement). There is no solution
scheme S for the class of Muller games or Streett games which assigns a strategy
machine S(G) to G = ((V,E), ϕ) that has a space requirement sub-linear in |V |.
In particular, for no k ∈ N can there be such a scheme with space requirement
in log2(|V |)

k.

Proof. In the previous lemma set g(x) = xp, p ∈ (0, 1) and f(x) = x. ⊓⊔

For Turing machines it is well known that any time-bound is also a space-
bound. This also holds for strategy machines: LetM be a strategy machine with
T (M) ≤ N ∈ N. Note that the head position of all three heads is reset to zero
at the beginning of every iteration. ConsequentlyM will always only access the
first N bits of the memory tape. This implies:

Proposition 4. Let M be a strategy machine with latency T (M) bounded by
N ∈ N. Then the space requirement S(M) is also bounded by N .

We immediately obtain:

Corollary 1 (Lower Bound on Latency). There is no solution scheme S
for the class of Muller games or Streett games which assigns a strategy machine
S(G) to G = ((V,E), ϕ) that has a latency sub-linear in |V |. In particular, for
no k ∈ N can there be such a scheme with space requirement in log2(|V |)

k.

Finally. we would like to apply lemma 1 to LTL-games. We note (a proof is given
in the appendix):

Proposition 5. The class of LTL-games is 22
n

-hard. The winning conditions of
the witnessing family are of size O(n2).

A subexponential function is a mapping f : R+ → R+ for which f ∈ O((2x)q) =
O(2qx) for some q ∈ (0, 1). Again it is well known that all polynomial functions
are subexponential.

Theorem 2 (Lower Bounds for LTL-Games). There can be no solution
scheme for LTL-games, which assigns a strategy machine with latency or space
requirement subexponential in |V | to every LTL game G = ((V,E), ϕ). In partic-
ular, there can be no such scheme with a latency or space requirement polynomial
in |V |.

Proof. Letting g(x) = 2qx for some arbitrary q ∈ (0, 1) and f(x) = 2x we may
apply lemma 1. ⊓⊔

5 Muller Games

We consider Muller games G = (A,F) with an arena A = (V,E) and a winning
condition F ⊆P(V). We will briefly recall Zielonka’s construction [Zie98,DJW97]
in the next subsection and illustrate how to use it to construct a small strategy
machine implementing a winning strategy for player 0 in G.

5.1 Zielonka’s Algorithm

We need some notation. Given a finite set V of vertices, a winning condition
F over V and a set X ⊆ V we write F ↾X := F ∩P(X) for the condition F

restricted to the vertices X. Next we define

max(F) = {V ′ ⊆ V | V ′ /∈ F ∧ ∀V ′′) V ′ : V ′′ ∈ F}

for the set of all subsets of V , which are maximal (w.r.t. set inclusion) with the
property that they are not in F. We denote the complement of a set X ⊆P(V)
in P(V) by XC = P(V) \X.

Given a winning condition F ⊆ P(V), we define the Zielonka tree of F,
denoted by ZF, as follows:

– The root of ZF is labeled with V .
– If s is a node in ZF labeled with a set A ⊆ V , such that A ∈ F and k =
|max(F ↾ A)| then s has exactly k children, each labeled with a distinct
element from max(F↾A).

– If s is a node in ZF labeled with a set A ⊆ V , such that A /∈ F and k =
|max(FC ↾ A)| then s has exactly k children, each labeled with a distinct
element from max(FC ↾A).

Nodes which are labeled with an element from F are called 0-level nodes. The
remaining nodes are called 1-level nodes. A tree is a 0-tree (resp. 1-tree) if all of
its 0-level (resp. 1-level) nodes have at most one child.

For technical reasons we often refer to the Zielonka tree Z as a labeled tree
Z = (N,λ) with node set N ⊆ N∗ (assumed to be prefix closed) and labeling
function λ : N →P(V) as described above. Note that the root of Z is the empty
sequence ε. We sometimes make use of additional labeling functions which will
be defined in the sequel.

A path from the root to a leaf in a Zielonka tree Z = ZF is a sequence
p = x0, . . . , xk of nodes xi ∈ N . As indicated, we assume that the node xk is a
leaf in Z. In particular, unless stated otherwise, when we use the term “path”
we mean one that starts in the root and ends in a leaf. On the path p as given

above we write p(i) = xi ∈ N for the i-th node in p. Observe that p(0) is the
root of Z, which is part of every path.

Note that the sequence λ(p(0)), . . . , λ(p(k)) is a ⊇-decreasing sequence of
sets V = V1) V2) · · ·) Vk. Consequently k ≤ |V |. We usually include the
sets λ(p(i)) in the description of a path, writing p = (x0, λ(x0)), . . . , (xk, λ(xk)).
Again the i-th element of p is denoted by p(i) = (xi, λ(xi)). We write ‖p‖ = k
for the length of p. Denote the set of all such paths by PZ .

Zielonka’s algorithm can now be described as follows (this presentation follows
[DJW97]). Given an arena A = (V,E) and a winning condition F over V , we
consider the Zielonka tree Z = ZF = (N,λ).

We may assume that the winning regionW0 of player 0 is all of V . Otherwise
we restrict A toW0 (note that this is still an arena). We define a labeling κ : N →
P(V), which assigns subarenas to each node. For ease of notation we represent
subarenas by their vertex set. In other words, if we use the labeling function λ,
we talk about infinity sets good for either player 0 or player 1. If we use κ, we
talk about arenas.

We set κ(ε) = V . If the labeling for x ∈ N has been defined and if x0, . . . , xk−1

are the children of x in Z, we proceed as follows:

1. If x is 0-level we compute Ai = Attr
κ(x)
0 (λ(x) \λ(xi)) for i = 0, . . . , k− 1. We

then set κ(xi) = κ(x) \Ai.
2. If x is 1-level the computation is much more involved. We define several

sequences of sets, (Ui)i≥0, (Ai)i≥1, (Ei)i≥1, (Xi)i≥1, (Yi)i≥1 and (Zi)i≥1. Let
U0 = ∅ and X0 = κ(x). Think of Ui as the set of vertices from which player
0 knows how to win. For i ≥ 1 we compute

– Ai = Attr
κ(x)
0 (Ui−1)

– Xi = κ(x) \ Ai

– Ei = AttrXi

1 (λ(x) \ λ(xi mod k))
– Yi = Xi \ Ei (note that Yi ⊆ λ(xi mod k))
– Let Zi be the winning region of player 0 in the subgame (A ↾ Yi,F ↾

λ(xi mod k))
– Ui = Ai ∪ Zi.
– Finally we set κ(xi) =

⋃

j≡i mod k

Zj .

Proposition 6. The sequence (Ui)i≥0 is monotonically increasing. It becomes
stationary when the last k elements are identical, where k is the number of chil-
dren of x. Therefore the length of this sequence is bounded by k · |V |.

Remark 2. For a given 1-level node x ∈ N we will sometimes need to refer to
the sets (Ui)i≥0 as computed above. To this end we will write Ux

i for the i-th set
of this sequence as computed for x.

We are now left with a tree (N,λ, κ), which we will also denote by Z. Recall
that we assumed W0 = V = κ(ε). For a proof of the following two lemmas the
reader is referred to [DJW97,Zie98]:

Lemma 2. For every x ∈ N player 0 wins from every vertex in the subgame
(κ(x),F↾λ(x)).

Note that this implies that player 0 does not have to leave κ(x) to win.

Lemma 3. If x is 1-level, then then κ(x) =
⋃

i U
x
i where the Ux

i are computed
as above. In particular, for every v ∈ κ(x) there exists i with v ∈ Ux

i .

The algorithm presented in [DJW97] works as follows. As memory it uses
the set of paths PZ leading from the root to a leaf. Given a vertex v ∈ V ,
we consider the current memory state, p = x0, . . . , xm. We pick the maximal
index i, such that v ∈ κ(xi). Following the terminology from [DJW97] xi is
called the anchor node of v with respect to p. If xi is a 0-level node, this implies

v ∈ Attr
κ(xi)
0 (λ(xi)\λ(xi+1)). Then we play the corresponding attractor strategy.

As soon as a vertex from λ(xi)\λ(xi+1) is reached we update the memory. To this
end let c0, . . . , ck−1 be the children of xi in Z. Let xi+1 = cj . Then the update
is performed by replacing p by a path to a leaf in the subtree below cj+1 mod k.

If xi is a 1-level node, we consider the sets (Uxi

j)j≥0 as described above.
Note that, since we assumed W0 = V , player 0 wins from every vertex in
κ(xi). Note also that, by construction, player 0 cannot force the token outside
of λ(xi) ∈ F1. Hence player 0 must be able to keep the token in one of the sets
λ(c0), . . . , λ(ck−1), where c0, . . . , ck−1 are the children of xi in Z. Let t be mini-
mal with the property that v ∈ Ut (note that t exists by lemma 3). Then either

v ∈ Zt or v ∈ Attr
κ(xi)
0 (Ut−1). In the first case we pick ct mod k and update the

memory to some path that goes through this node (note that ct mod k = xi+1

would contradict the maximality of i; hence a memory update is necessary). We
move to an arbitrary node in Zt. Otherwise we leave the memory state unchanged
and play according to the attractor strategy for Ut−1. We will skip the proof that
this constitutes a winning strategy (for details, see [DJW97,Zie98]).

5.2 An Adaptive Algorithm

Let F be a Muller condition over V and let A = (V,E) be such that W0 = V in
G = (A,F). In this section we will give a strategy machine M implementing a
winning strategy for player 0 in G. The strategy machine will use the memory
tape to store the state of certain subcomputations. This will enable us to “spread
out” costly computational tasks over the duration of the play. Thus the algorithm
adapts to the current play.

We will need two auxiliary Turing machines. The latency, size and space
consumption ofM as given below will depend on these machines. In order to be
able to talk about complexity, we will use the following assumptions. The details
can be found in the appendix. We assume that A is given as a 2-tape Turing
machine of size |V |2 as described in appendix A.1. The strategy machine for
G will be assumed to access this Turing machine as a subroutine. All auxiliary
machines which need access to A will also use this representation. Secondly, we
assume F is given in the form of a propositional formula φ = φF. This formula
is, in turn, given as a 2-tape Turing machine (see A.3). This requires space
O(‖φ‖ · log2(|V |)). Again, M has a copy of this machine in its state space and
all auxiliary machines can access it.

The first auxiliary machine, Mλ, computes the labeling function λ. More
precisely,Mλ is a two tape Turing machine working as follows: Let (X,X ′) with
X ′ ⊆ X ⊆ V . We assume that if X ∈ F, then X ′ ∈ max(F ↾ X) and X ′ ∈
max(FC ↾X) otherwise. The inputs toMλ will be such that these assumptions
are always satisfied. Given such an input,Mλ will then compute (using only the

second tape) the next4 label X ′′ from max(F↾X) (resp. max(FC ↾X)) and write
it on the second tape. The reason we use a two tape machine here is to separate
reading the input from computing the set.

For the sake of computing the label of a node where we do not have the
label of a sibling available, we also require that Mλ accepts inputs (X,n) with
n ∈ N. Then we require that Mλ terminates with the label of the n-th child of
the node labeled with X. If n exceeds the number of children of X the behavior
is undefined.

Before describing the second auxiliary machine, we have to address a com-
plexity issue: Let x be 1-level with children c0, . . . , ck−1. The number k can be
quite large in general (exponential in |V |). The number m of sets in the sequence
(Ux

i)i≥0 is bounded by m ≤ k · |V | (see proposition 6). However, there can be at
most |V | positions i with Ux

i (Ux
i+1 since (Ux

i)i≥0 is monotonically increasing.
This implies that in the sequence (Dx

i)i≥1, where D
x
i = Ux

i \ U
x
i−1, there are at

most |V | elements 6= ∅. Consequently, we can store the sequence (Dx
i)i≥1 on tape

as a set of at most |V | pairs Dx = {(bin(i),Dx
i) | D

x
i 6= ∅} where bin(i) denotes

the binary representation of i. Since i ≤ |V | · k ≤ |V | · 2|V | we see that bin(i)
requires at most |V |+ log2(|V |) bits. Furthermore

∑

i |D
x
i | ≤ |V | whence storing

all pairs (bin(i),Dx
i) with Di 6= ∅ requires ≤

∑

i log2(|V |)+|V |+|D
x
i |·log2(|V |) ≤

|V | · (log2(|V |) + |V |) + |V | · log2(|V |) ∈ O(|V |2) bits to store all pairs. We can
compute the label κ(cj) for any child cj of x in Z using the data structure above:

Proposition 7. Let x be a 1-level node and let with kx children c0, . . . , ckx−1.
The set κ(cj) for any fixed j ∈ {0, . . . , kx − 1} can be computed from Dx =
{(bin(i),Dx

i) | D
x
i 6= ∅} and the number kx of children of x by a 2-tape Turing

machine in time O(|V |3 · |E|).

Proof. We only need to scan the sequence for entries with index i = j mod k and

remove the attractor Attr
κ(x)
0 (Uj−1) from this set, obtaining Zj . The union of all

these remaining sets is then κ(cj).
To compute κ(cj) a Turing machine proceeds as follows. It computes the

union of all sets Dx
i seen so far. This requires time O(log2(i) + |D

x
i | · log2(|V |))

for every Dx
i encountered. If the set Dx

i additionally satisfies i = j mod kx (which
requires time O(|V |2) to check) we compute an attractor on the union so far.
This requires O(|V | · |E| · log2(|V |)) ⊆ O(|V |2 · |E|) steps. The difference of Dx

i

and this attractor is Zx
i . The dominating factor in the computation for each i is

thus |V |2 · |E| and there are at most |V | indices i. ⊓⊔

For the second auxiliary machine, let Mκ be a Turing machine which com-
putes the set Dx as well as the number kx of children of x. More specifically,Mκ

takes a set V ′ /∈ F and a subarena B = (V ′′, E|V ′′) of A with V ′′ ⊆ V ′ as input.
Let F′ = FC ↾V ′. Then Mκ terminates with output D and k = |max(F′)| with
respect to B and to the root in ZF′ .

We now construct a strategy machineM of a winning strategy for the Muller
game G as follows. Initially the memory tape contains the leftmost path (given
some fixed order on the elements of P(V)) of the Zielonka tree Z = ZF. We
compute a labeling function κ(x) plus some additional data (the set Dx and the
number kx of children if x is 1-level) for a given node x as the play evolves. If the

4 We assume that a fixed order of the labels is given.

memory state is updated to a path p which does not visit x, then the computation
for x is lost. The justification for this is the following. In every infinite play π
there exists a unique lowest node xπ which is the anchor node of π(n) for infinitely
many n ∈ N. xπ is the root of the smallest subtree of Z, such that the play is
entirely confined within κ(xπ) from some point onward. Consequently, the label
κ(xπ) will, from some point onward, no longer be deleted.

To formally defineM we need some notation. First of all we slightly redefine
the labeling κ from the previous subsection to a labeling κ′. The label κ′(x) =
κ(x) for a 0-level node x is unchanged. The label for a 1-level node x is changed
to κ′(x) = (κ(x),Dx, kx) to also include the set Dx as defined above as the set of
all Dx

i = Ux
i \U

x
i−1 which are non-empty. Furthermore κ′(x) contains the number

kx of children of x in Z.5 Let x be 1-level and let Dx and kx be as described
above. Note that, by proposition 7, κ(c) can be computed from κ(x), Dx and kx
in time O(|V |3 · |E|) for any child c of x.

As mentioned before, our memory states will essentially be paths in Z with
some additional information attached to the nodes. In order to be able to formally
define a strategy machineM we have to specify how these states are stored on
tape. To this end we note that we need the following information for every node
p(i) on a path p:

– the number ni indicating that p(i) is the ni-th child of p(i− 1)
– the set λ(p(i))
– the set κ′(p(i)) where this information has already been computed or the the

state of the computation if the information has not been computed yet

Thus our memory states will have the following form:

p = (n0, λ(p, i), θ(p, i)), . . . , (nr, λ(p, r), θ(p, r)) (1)

Here ni means that p(i) is the ni-th child of p(i − 1).6 We write λ(p, i) for the
set λ(p(i)) and likewise κ(p, i) for κ(p(i)). The values θ(p, i) satisfy the following
properties: For every i ∈ {0, . . . , r} we have

– θ(p, i) = κ′(p(i))
– or θ(p, i) = ∅
– or p(i) is 1-level and θ(p, i) = (κ(p, i), c), where c is a configuration ofMκ

We require that θ(p, i) = κ′(p(i)) implies θ(p, j) = κ′(p(j)) for all j < i and
that θ(p, i) = ∅ implies θ(p, k) = ∅ for all k > i. Additionally we require that
if θ(p, i) contains a configuration of Mκ then θ(p, j) = κ′(p(j)) for all j < i
and θ(p, k) = ∅ for all k > i. We say θ(p, i) (or the node p(i)) is untouched if
θ(p, i) = ∅. If θ(p, i) is not untouched and does not contain a configuration of
Mκ we say θ(p, i) (or p(i)) is finished. Otherwise θ(p, i) contains a configuration
ofMκ and we say θ(p, i) (or p(i)) is active.

Proposition 8. The labeling function θ requires space O(|V | + SMκ), where
SMκ is the space consumption of Mκ. Hence the space required to store p is in
O(|V | · (3|V |+ SMκ)) = O(|V | · (|V |+ SMκ)).

5 Note that although this additional information is actually associated with the children of
x we still attach it to x itself. The reason is that in the strategy presented in the previous
subsection, we only used the sets (Ux

i)≥0 if the anchor node of a vertex v was x.
6 By convention we set n0 = ⊥. This value is not used in any computation but to treat the root

in a different way than the rest of the nodes would unnecessarily complicate the notation.

Proof. Note that the number ni ≤ kx (where kx denotes the number of children
of x) requires at most |V | bits (the number of children of a node is bounded by
2|V |). Secondly, note that since λ(p, i)) λ(p, i+ 1) we necessarily have r ≤ |V |.

⊓⊔

The Strategy Machine Formally M proceeds as follows. We first define the
initial memory state pI . To this end we set n0 = ⊥ and n1 = n2 = · · ·nr = 0
to denote the leftmost path in Z = (N,λ, κ). In particular, we require r to
be maximal (i.e. the node n1 · · ·nr ∈ N is a leaf). Let i be minimal with the
property that n1 · · ·ni is 1-level (i.e. either i = 0 or i = 1). If i = 0 then we
set pI(0) = (n0, λ(pI , 0), (V, cI)), where cI is the initial configuration of Mκ.
Otherwise pI(0) = (n0, λ(pI , 0), V) and pI(1) = (n1, λ(pI , 1), (κ(pI , 1), cI)). The
properties of θ described above then imply p(j) = (nj, λ(pI , j), ∅) for all j > i.
The memory update below will ensure that, for any memory state p, the highest
node p(i), such that κ(p, i) is not yet available (i.e. θ(p, i) = ∅), is 0-level. Note
that the initial memory state pI satisfies this invariant. Additionally we assume
that at any given moment either all sets κ(p, i) are computed or there exists a
node which is active. The memory update will also preserve this second invariant.

Suppose the input to M is v ∈ V and suppose the current state is p as in
(1). We assume that the highest node in p for which κ has not been computed
is 0-level. Let i be the maximal index with p(i) = (ni, λ(p, i), θ(p, i)), θ(p, i) 6= ∅
and v ∈ κ(p, i). This just means that we pick i maximal such that κ(p, i) has
been computed and contains v. This requires time O(|V |3). We assume that
i < ‖p‖ (the case i = ‖p‖ requires only minor modifications). Note that under
this assumption we either have v /∈ κ(p, i+1) or κ(p, i+1) has not been computed
yet (i.e. θ(p, i+ 1) = ∅). We distinguish these two cases:

(a) κ(p, i + 1) has not been computed yet. Then p(i) is 1-level by assumption.
Furthermore p(i) must be active. Let θ(p, i) = (κ(p, i), c) where c is a config-
uration ofMκ. Assume first that c is not a terminal configuration, i.e. Mκ

requires more computation steps. Then M simulates another computation
step of Mκ and replaces c by its unique successor configuration c′. M out-
puts an arbitrary vertex neighboring v in κ(p, i). This requires no more than
O(log2(|V |)) steps.
If c is a terminal configuration we replace c by the set Dp(i) and the integer
kp(i) which have been computed (requiring O(|V |2) steps since as many tape
cells are required to store the sequence). We then compute κ(p, i + 1) from
Dp(i) (requiring O(|V |3 · |E|) by proposition 7). If i + 1 < ‖p‖ then we
also compute κ(p(i + 2)). This is a simple attractor on the set λ(p, i+ 1) \
λ(p, i+ 2) as p(i+1) is 0-level (requiringO(|V |·|E|·log2(|V |)) steps). Finally,
if even i+ 2 < ‖p‖ then we set p(i+ 2) active, i.e. we replace θ(p, i+ 2) = ∅
by (ni+2, λ(p, i + 2), (κ(p, i + 2), cI)).

For the next move we have two cases:

(i) v /∈ κ(p, i + 1): Then p(i) is the anchor node of v with respect to p.
We proceed as the classical Zielonka strategy indicates and compute

the minimal index t with v ∈ U
p(i)
t (note that this can be done while

computing Dp(i) above). Then v is either in the 0-attractor to U
p(i)
t−1 or

v ∈ Z
p(i)
t . In the first case we play the corresponding attractor strategy.

In the second case we update our memory state to a path through the
corresponding child of p(i). This requires O(|V | · TMλ

) steps, where
TMλ

is the runtime ofMλ.

(ii) v ∈ κ(p, i+ 1): We move to an arbitrary neighbor of v in κ(p, i + 1).

(b) If κ(p, i + 1) has been computed, then again p(i) is the anchor node of v
with respect to p. We proceed as the usual Zielonka strategy indicates: If
p(i) is 0-level, we play an attractor strategy on the set λ(p, i) \ λ(p, i+ 1)
(O(|V | · |E| · log2(|V |)) steps). Otherwise p(i) is 1-level. Then we compute the

minimal t with v ∈ U
p(i)
t and play an attractor strategy on U

p(i)
t or update

the memory to the leftmost path through the unique child c of p(i) with
Zt ⊆ κ(c) (requiring O(|V |3 · |E|+ |V | ·TMλ

) steps) and output an arbitrary
neighbor of v in κ(c).

The complete algorithm is given in algorithm 1.

To prove that this indeed implements a winning strategy we have make a
few preparations. Let MM denote the set of possible memory paths of M, i.e.
the set of paths p of the form (1). Recall from section 2 that fM denotes the
function implemented by M. Given an infinite play π consistent with fM let
ρπ : N → MM be the function which assigns the memory path after the n-th
iteration to any given natural number n ∈ N. So ρπ(1) is the memory path after
the first memory update and so forth. Let Z = ZF = (N,λ, κ) be the fully labeled
Zielonka tree. We claim:

Lemma 4. Let π be a play in G = (A,F) consistent with fM. Then there exists
a unique lowest node xπ in Z and a natural number m0 ∈ N, such that all of the
following assertions hold:

(i) xπ occurs in ρπ(m) for all m ≥ m0.

(ii) xπ is finished in ρπ(m0) (and therefore in ρπ(m) for all m ≥ m0).

(iii) xπ is 0-level.

Proof. For simplicity we refer to ρπ simply as ρ. We first observe that the root
x0 ∈ N occurs finished in every memory path from some point onwards – if the
root is 0-level, it will occur finished from the beginning; if it is 1-level, it will
occur finished from the point onwards, at which the computation of Mκ ends.
Hence the set of nodes which occur finished from some point onwards is non-
empty and so has a unique lowest element xπ (if there are two such that neither
is a descendant of the other then evidently one of them must be deleted time
and again).

It remains to show that xπ is 0-level. Indeed, suppose xπ were 1-level. Let
κ′(xπ) = (κ(xπ),D

xπ , kxπ). We first observe that there are infinitely manym ∈ N,
such that π(m) ∈ κ(xπ)\κ(x

′), where x′ is the successor of xπ in ρ(m−1) (recall
that κ(x′) is always available for any successor x′ of a finished node). However,
this implies that we attract the token to a set Uxπ

t with a lower index t every
time. Since this can be done only finitely many times, the play must from some
point onwards either remain in the label κ(x′) of one of the children x′ of xπ or
it must leave the arena κ(xπ). Both options contradict the choice of xπ and so
xπ must be 0-level. ⊓⊔

We are now ready to prove the following lemma:

v = read();1

p = load(); // Load current memory state p2

p′ = p;3

(ni, λ(p, i), θ(p, i)) = findAnchorNode(p, v);4

if θ(p, i + 1) = ∅ then // Case (a) above5

if c is not terminal configuration then6

c′ = simulateNextComputationStep(c);7

p′(i) = (ni, λ(p, i), κ(p, i), c′);8

v′ = some neighbor of v in κ(p, i);9

else10

p′(i) = (ni, λ(p, i), κ(p, i), outputTM(c)); // (ni, λ(p, i), κ(p, i),Dp(i), kp(i))11

B = computeKappa(ni+1 , κ(p, i),Dp(i), kp(i)); // κ for 0-level node12

C = computeKappa(B, λ(p, i), λ(p, i + 1)); // κ for 1-level node13

p′(i + 1) = (ni+1, λ(p, i + 1),B);14

p′(i + 2) = (ni+2, λ(p, i + 2), C, cI);15

if v /∈ κ(p′, i + 1) then goto(32);16

else v′ = some neighbor of v in κ(p′, i + 1);17

end18

else // Case (b) above19

if p(i) is 0-level then20

if v′ /∈ λ(p, i) \ λ(p, i + 1) then21

v′ = nextAttractorMove(κ(p, i), λ(p, i) \ λ(p, i + 1));22

else23

n′, V ′ = computeLambda(φ,λ(p, i),λ(p, i + 1)); // new label24

B = computeKappa(κ(p, i),λ(p, i),V ′); // compute κ(n1 · · ·nin
′)25

p′(i + 1) = (n′, V ′,B);26

p′ = finishPath(p′,i + 1);27

v′ = nextAttractorMove(κ(p′ , i), λ(p′, i) \ λ(p′, i + 1));28

end29

else30

t = minimalSetContainingVertex(v, Dp(i)); // Minimal t with v ∈ Ut31

if v ∈ Attr
κ(p,i)
0 (U

p(i)
t−1) then32

v′ = nextAttractorMove(κ(p, i),U
p(i)
t−1);33

else34

n′ = t mod kp(i);35

B = computeKappa(n′ , κ(p, i),Dp(i), kp(i));36

V ′ = computeLambda(φ,λ(p, i),n′);37

p′(i + 1) = (n′, V ′,B);38

p′ = finishPath(p′,i + 1);39

v′ = some neighbor of v in B;40

end41

end42

end43

store(p′);44

write(v′);45

Algorithm 1: The Adaptive Muller Algorithm.

Input: unfinished path p′ and index t
while p′(t) has child do // compute complete path1

Vt = computeLambda(φ,λ(p′ , t),0);2

p′(t + 1) = (0, V ′, ∅);3

t = t + 1;4

end5

return p′;6

Algorithm 2: The finishPath subroutine.

Lemma 5. M implements a winning strategy for player 0.

Proof. Let π be consistent with fM and let xπ be the unique 0-level node chosen
according to lemma 4. Then, by choice of xπ as the lowest node which is seen
infinitely often in ρπ we must have infinitely many vertices π(m) ∈ κ(xπ) \κ(x

′),
where x′ is the successor of xπ in p(m − 1). This implies that π(m) is in the

attractor Attr
κ(xπ)
0 (λ(xπ) \ λ(x

′)). Since we update the memory path to a path
through the next sibling of x′ (in some fixed order) in some later iteration, we
conclude that we see a vertex from λ(xπ) \ λ(x

′) for every child x′ of xπ. Since
xπ is 0-level this implies that π is won by player 0. ⊓⊔

Altogether we have shown the following lemma:

Lemma 6. Let G = (A,F) be a Muller game, where A = (V,E) and F is
given by a propositional formula φ. Then there exists a strategy machine M
of size ‖M‖ ∈ O(|V |2 + ‖φ‖ · log2(|V |) + ‖Mλ‖ + ‖Mκ‖), space consumption
S(M) ∈ O(|V | · (|V |+ SMκ)) and latency T (M) ∈ O(|V |3 · |E|+ |V | · TMλ

).

Note that the latency and space complexity are parametrized by the runtime
and space complexity of Mλ and Mκ respectively. Since solving Muller games
is Pspace complete [HD05,HD08] it follows that we can assume SMκ to be
polynomial in |V | + ‖φ‖. In fact, as is outlined in appendix C, a 2-tape Turing
machine can decide in space O(|V | · (|V |+ ‖φ‖) · log2(|V |)) if a vertex v belongs
to the winning set of player 0 or not. Using this complexity bound, one can show
that SMκ is also in O(|V | · (|V |+‖φ‖) · log2(|V |)). Note also that we may assume
‖Mκ‖ to be constant in A and φ, since by assumption all references to A and
φ use the internal representation ofM. SoMκ. The bottleneck is TMλ

. We can
bound Tλ by |V | · log2(|V |) ·max{|F|, |FC |}. Note that if φ allows us to obtain a
faster algorithm for finding a maximal model we can decrease this bound. In the
following subsection we will show how to obtain an efficient machineMλ if the
winning condition φ is given by a Streett condition.

For the general case we now have:

Theorem 3. Let G = (A,F) be a Muller game, where A = (V,E) and F is given
by a propositional formula φ. There exists a strategy machineM of size and space
requirement polynomial in |V | and ‖φ‖. The latency is linear in max{|F|, |FC |}.
More precisely we have size ‖M‖ ∈O(|V |2+‖φ‖ · log2(|V |)), space consumption
S(M) ∈ O(|V |2 · (|V |+‖φ‖) · log2(|V |)) and latency T (M) ∈ O(|V |2 · (|V | · |E|+
log2(|V |) ·max{|F|, |FC |})).

Muller games are usually solved via latest appearance records [GH82,McN93],
yielding a Mealy machine of size |V | · |V |!. The strategy machine obtained by
applying proposition 1 is of size |V |2 · |V |!. The size we obtain in the above
theorem is exponentially lower at the price of an exponentially longer latency.

Remark 3. Note that, unlike the situation of computing κ′, we do not spread out
the computation ofMλ across the infinite play. The reason for this is that we do
not have a compact representation of the sets λ(x0), . . . , λ(xk) for the children
x0, . . . , xk of x. This is in contrast to the labels κ(x0), . . . , κ(xk), where the set
Dx provided such a compact representation.

6 Streett Games

Note that every Streett condition Ω can be written as an equivalent Muller con-
dition FΩ = {X ⊆ V | X violates no pair from Ω}. There is a characterization
of those Muller conditions, which are equivalent to a Streett condition.

Proposition 9 (see [Zie98]). Let F be a Muller condition. The following are
equivalent:

(a) There exists a Streett condition Ω with FΩ = F.
(b) The Zielonka tree ZF is a 1-tree7.

Let Ω = {(R1, G1), . . . , (Rk, Gk)} be a Streett condition over V . We may
assume that Ri ∩ Gi = ∅ for all i = 1, . . . , k. Given Ω the computation of the
sets max(F) becomes much easier, as the following considerations show:

Proposition 10. Let X ⊆ V , such that X ∈ FΩ. If Y ⊆ X is maximal with
Y /∈ FΩ then there exists i ∈ {1, . . . , k} with Y = X \Gi and Ri ∩X 6= ∅.

Proof. Let Y be such a set. Then clearly Y violates at least one Streett pair
(Ri, Gi). Note that this implies X ∩Ri 6= ∅. Let Y

′ = X \Gi. Then Y ⊆ Y
′. Also

we have Y ′ /∈ FΩ. The maximality of Y implies Y = Y ′. ⊓⊔

This implies that there are at most k elements in max(F′) for every sub-condition
F′. We now show that under certain conditions the converse is also true. To this
end let X ∈ FΩ be fixed. We define a partial order on Ω. We let (R,G) ≤X

(R′, G′) if R∩X 6= ∅ 6= R′∩X and G′∩X ⊆ G∩X. Note that if (R,G) ≤X (R′, G′)
then X \G ⊆ X \G′. We define

Ωmax
X = {(R,G) ∈ Ω | ∀(R′, G′) ∈ Ω : (R′, G′) 6>X (R,G)}

We can now show:

Proposition 11. Let X ∈ FΩ. Then Y ⊆ X is maximal with Y /∈ FΩ iff
there exists (R,G) ∈ Ωmax

X with Y = X \ G. Moreover, for all such pairs
(R,G), (R′, G′) ∈ Ωmax

X we have (R,G) ≡X (R′, G′).

Proof. From left to right we proceed as before. Let Y /∈ FΩ. By the previous
proposition there exists i with Y = X \ Gi and Ri ∩ X 6= ∅. We claim that
also (Ri, Gi) is ≤X-maximal, i.e. (Ri, Gi) ∈ Ωmax

X . Indeed, if there is j with
Rj ∩X 6= ∅ and X ∩Gj (X ∩Gi, then X \Gj) X \Gi = Y , in contradiction
to the maximality of Y . The claim (R,G) ≡X (R′, G′) for all pairs which yield
Y is trivial.

For the converse let (R,G) ∈ Ωmax
X be a Streett with Y = X \ G. If Y ′ is

such that Y (Y ′ ⊆ X with Y ′ /∈ FΩ then by the previous direction there exists
(R′, G′) ∈ Ωmax

X with Y ′ = X \G′. This immediately implies (R′, G′) >X (R,G).
A contradiction. ⊓⊔

Using the preceding propositions we can construct a Turing machineMλ as
used in algorithm 1 from the previous section. Recall that we requiredMλ to be
a Turing machine which takes tuples of the following form as input.Mλ either

7 cf. sec. 5.1

receives a tuple (X,X ′) with two sets X,X ′ ⊆ V or a tuple (X,n) with X ⊆ V
and n ∈ N as input. In the first case we assume X ′ ⊆ X ⊆ V , such that either
X ∈ F and X ′ ∈ max(F↾X) or X /∈ F and X ′ ∈ max(FC ↾X). In the second case
me may assume n ≤ |max(F↾X)| if X ∈ F or n ≤ max(FC ↾X)| if X /∈ F.

Upon any input (X, ∗), with ∗ being either a set or a number, Mλ first
computes Ωmax

X and for every ≡X-equivalence class it retains at most one repre-
sentative. This takes time O((k · |V | · log2(|V |))

2). We denote the resulting set
by Ω′. It is an ≤X-antichain. In the following we assume Ω′ has been computed.
Write Ω′ = {(Ri1 , Gi1), . . . , (Ris , Gis)}.

Suppose now we are given an input (X,X ′) with X ∈ F. Then there exists
ij with X ′ = X \ Gij . Moreover, since Ω′ is an ≤X-antichain, this index ij is
unique. We compute Z = X \G(i+1 mod s)+1. If Z 6= X ′, we output Z. Otherwise
i = (i+1 mod s)+ 1 by the uniqueness of i. Then we simply output X ′ again. If
we are given a natural number n instead of X ′ we compute the n-th set in this
fashion meaning we choose the n-th index in.

IfX /∈ F then the node with labelX can have at most one child. Consequently
we output X ′ if we are given an input of the form (X,X ′) or we must compute
the unique maximal set X ′ ⊆ X with X ′ ∈ F if it exists. To this end we use the
(unmodified) Streett condition Ω and for every pair (R,G) ∈ Ω with G∩X = ∅
we remove all elements in X∩R from X. This requires time O(|V | ·k · log2(|V |)).
We have shown:

Proposition 12. Let Ω be a Streett condition. Then there exists a machineMλ

computing λ with runtime TMλ
∈ O((|V | · k · log2(|V |))

2).

As a consequence of the previous considerations and lemma 6 we obtain:

Theorem 4. Let G = (A, Ω) be a Streett game. Then there exists a strategy
machine of size, space requirement and latency polynomial in |V | and |Ω|. More
precisely M is of size ‖M‖ ∈ O(|V |2 + |V | · |Ω| · log2(|V |)), space consumption
S(M) ∈ O(|V |2(|V |+ |Ω|) · log2(|V |)) and latency T (M) ∈ O(|V |2 · (|V | · |E|+
|Ω|2 · log2(|Ω|)

2)).

Recall that Streett games are usually solved using index appearance records
[Saf92,GTW02]. This memory structures yields Mealy machine with roughly
|Ω|2 · |Ω|! states. Recalling the construction from proposition 1 a straightfor-
ward conversion of such a machine to a strategy machine would yield one of size
O(|Ω|2 · |Ω|! · |V |) and of latency O(|Ω|). We significantly reduce the size of the
strategy machine while the latency remains polynomial in |Ω|.

7 Conclusion and Future Work

We introduced the formal model of a strategy machine based on Turing machines.
We showed how different new criteria of a strategy – latency, space requirement
and size – fit into this model, providing general lower bounds for the classes of
Muller, Streett and LTL games. Using this model one can obtain polynomial
sized machines for Muller games which have polynomial space requirement. The
runtime is linear in the size of the winning condition. This machine adapts the
strategy as the play proceeds and critically relies on the fact that costly compu-
tations may be spread out over the course of several iterations. We were able to

show that in the special case of a Streett game the very same algorithm can be
made to work with a polynomial latency in the size of the arena and of the num-
ber of Streett pairs. The space requirement and size of all our strategy machines
are polynomial in the size of the winning condition (given by a propositional
formula) and of the arena. Altogether, this is an exponential improvement over
the straightforward way of transforming a Mealy machine into a strategy ma-
chine via a case distinction over all inputs. This approach results in a machine
of exponential size in general.

We plan to extend these results to different kinds of ω-regular games. We have
partial results on Request-Response games. Another, more ambitious task, is to
derive a theory of transforming arbitrary Mealy machines into strategy machines
in such a way that the space consumption, latency and size obey certain bounds.
Likewise one would like to find relations between the parameters indicating the
nature of a trade-off. Infinite-state strategies fit neatly into our model and lend
themselves to a closer study in this context.

References

[BGJ+07] Roderick Bloem, Stefan Galler, Barbara Jobstmann, Nir Piterman, Amir Pnueli,
and Martin Weiglhofer. Specify, compile, run: Hardware from psl. ENTCS, 190:3–16,
November 2007.

[DJW97] S. Dziembowski, M. Jurdzinski, and I. Walukiewicz. How much memory is needed to
win infinite games? In Proc. of the 12th Ann. IEEE Symp. on Logic in Comp. Sci.,
LICS ’97, pages 99–, Washington, DC, USA, 1997. IEEE Computer Society.

[EJ99] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and logics
of programs. SIAM J. Comput., 29:132–158, September 1999.

[GH82] Yuri Gurevich and Leo Harrington. Trees, automata, and games. Proceedings of the
fourteenth annual ACM symposium on Theory of computing, pages 60–65, 1982.

[GH11] Marcus Gelderie and Michael Holtmann. Memory reduction via delayed simulation.
In iWIGP, pages 46–60, 2011.

[GHS09] Martin Grohe, André Hernich, and Nicole Schweikardt. Lower bounds for processing
data with few random accesses to external memory. J. ACM, 56:12:1–12:58, May
2009.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata logics, and
infinite games: a guide to current research. Springer-Verlag, New York, NY, USA,
2002.

[HD05] Paul Hunter and Anuj Dawar. Complexity bounds for regular games (extended ab-
stract). In Symposium on Mathematical Foundations of Computer Science (MFCS),
2005.

[HD08] Paul Hunter and Anuj Dawar. Complexity bounds for muller games. Theoretical
Computer Science (TCS), 2008. Submitted.

[HL07] Michael Holtmann and Christof Löding. Memory reduction for strategies in infinite
games. In CIAA, pages 253–264, 2007.

[Hor08] Florian Horn. Explicit muller games are ptime. In FSTTCS, pages 235–243, 2008.
[Löd11] Christof Löding. Infinite games and automata theory. In Krzysztof R. Apt and Erich

Grädel, editors, Lectures in Game Theory for Computer Scientists. Cambridge UP,
2011.

[Mad11] Parthasarathy Madhusudan. Synthesizing reactive programs. In Comp. Sci. Log.,
CSL 2011, Proceedings, pages 428–442. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, 2011.

[McN93] Robert McNaughton. Infinite games played on finite graphs. Annals of Pure and
Applied Logic, 65(2):149 – 184, 1993.

[PP04] D. Perrin and J.É. Pin. Infinite words: automata, semigroups, logic and games. Pure
and applied mathematics. Elsevier, 2004.

[Saf92] Shmuel Safra. Exponential determinization for ω-automata with strong-fairness ac-
ceptance condition (extended abstract). STOC ’92, pages 275–282, 1992.

[Zie98] Wies law Zielonka. Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theor. Comput. Sci., 200:135–183, June 1998.

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years.

A complete list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2009-01 ∗ Fachgruppe Informatik: Jahresbericht 2009

2009-02 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Quantitative Model Checking of Continuous-Time Markov Chains

Against Timed Automata Specifications

2009-03 Alexander Nyßen: Model-Based Construction of Embedded

Real-Time Software - A Methodology for Small Devices

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-

erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-

dependent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm

Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the

Correctness of the Upper Bound of a Maximum Independent Set Algo-

rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The

Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in

Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset Games

2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)

2009-15 Joost-Pieter Katoen, Daniel Klink, Martin Neuhäußer: Compositional

Abstraction for Stochastic Systems

2009-16 George B. Mertzios, Derek G. Corneil: Vertex Splitting and the Recog-

nition of Trapezoid Graphs

2009-17 Carsten Kern: Learning Communicating and Nondeterministic Au-

tomata

2009-18 Paul Hänsch, Michaela Slaats, Wolfgang Thomas: Parametrized Regular

Infinite Games and Higher-Order Pushdown Strategies

2010-01 ∗ Fachgruppe Informatik: Jahresbericht 2010

2010-02 Daniel Neider, Christof Löding: Learning Visibly One-Counter Au-

tomata in Polynomial Time

2010-03 Holger Krahn: MontiCore: Agile Entwicklung von domänenspezifischen

Sprachen im Software-Engineering

2010-04 René Wörzberger: Management dynamischer Geschäftsprozesse auf Ba-

sis statischer Prozessmanagementsysteme

2010-05 Daniel Retkowitz: Softwareunterstützung für adaptive eHome-Systeme

2010-06 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Computing maximum reachability probabilities in Markovian timed au-

tomata

2010-07 George B. Mertzios: A New Intersection Model for Multitolerance

Graphs, Hierarchy, and Efficient Algorithms

2010-08 Carsten Otto, Marc Brockschmidt, Christian von Essen, Jürgen Giesl:

Automated Termination Analysis of Java Bytecode by Term Rewriting

2010-09 George B. Mertzios, Shmuel Zaks: The Structure of the Intersection of

Tolerance and Cocomparability Graphs

2010-10 Peter Schneider-Kamp, Jürgen Giesl, Thomas Ströder, Alexander Sere-

brenik, René Thiemann: Automated Termination Analysis for Logic Pro-

grams with Cut

2010-11 Martin Zimmermann: Parametric LTL Games

2010-12 Thomas Ströder, Peter Schneider-Kamp, Jürgen Giesl: Dependency

Triples for Improving Termination Analysis of Logic Programs with Cut

2010-13 Ashraf Armoush: Design Patterns for Safety-Critical Embedded Systems

2010-14 Michael Codish, Carsten Fuhs, Jürgen Giesl, Peter Schneider-Kamp:

Lazy Abstraction for Size-Change Termination

2010-15 Marc Brockschmidt, Carsten Otto, Christian von Essen, Jürgen Giesl:

Termination Graphs for Java Bytecode

2010-16 Christian Berger: Automating Acceptance Tests for Sensor- and

Actuator-based Systems on the Example of Autonomous Vehicles

2010-17 Hans Grönniger: Systemmodell-basierte Definition objektbasierter Mod-

ellierungssprachen mit semantischen Variationspunkten

2010-18 Ibrahim Armaç: Personalisierte eHomes: Mobilität, Privatsphäre und

Sicherheit

2010-19 Felix Reidl: Experimental Evaluation of an Independent Set Algorithm

2010-20 Wladimir Fridman, Christof Löding, Martin Zimmermann: Degrees of

Lookahead in Context-free Infinite Games

2011-01 ∗ Fachgruppe Informatik: Jahresbericht 2011

2011-02 Marc Brockschmidt, Carsten Otto, Jürgen Giesl: Modular Termination

Proofs of Recursive Java Bytecode Programs by Term Rewriting

2011-03 Lars Noschinski, Fabian Emmes, Jürgen Giesl: A Dependency Pair

Framework for Innermost Complexity Analysis of Term Rewrite Systems

2011-04 Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, Thomas Noll:

A Local Greibach Normal Form for Hyperedge Replacement Grammars

2011-07 Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe: An Operational

Semantics for Activity Diagrams using SMV

2011-08 Thomas Ströder, Fabian Emmes, Peter Schneider-Kamp, Jürgen Giesl,

Carsten Fuhs: A Linear Operational Semantics for Termination and

Complexity Analysis of ISO Prolog

2011-09 Markus Beckers, Johannes Lotz, Viktor Mosenkis, Uwe Naumann (Edi-

tors): Fifth SIAM Workshop on Combinatorial Scientific Computing

2011-10 Markus Beckers, Viktor Mosenkis, Michael Maier, Uwe Naumann: Ad-

joint Subgradient Calculation for McCormick Relaxations

2011-11 Nils Jansen, Erika Ábrahám, Jens Katelaan, Ralf Wimmer, Joost-Pieter

Katoen, Bernd Becker: Hierarchical Counterexamples for Discrete-Time

Markov Chains

2011-12 Ingo Felscher, Wolfgang Thomas: On Compositional Failure Detection

in Structured Transition Systems

2011-13 Michael Förster, Uwe Naumann, Jean Utke: Toward Adjoint OpenMP

2011-14 Daniel Neider, Roman Rabinovich, Martin Zimmermann: Solving Muller

Games via Safety Games

2011-16 Niloofar Safiran, Uwe Naumann: Toward Adjoint OpenFOAM

2011-18 Kamal Barakat: Introducing Timers to pi-Calculus

2011-19 Marc Brockschmidt, Thomas Ströder, Carsten Otto, Jürgen Giesl: Au-

tomated Detection of Non-Termination and NullPointerExceptions for

Java Bytecode

2011-24 Callum Corbett, Uwe Naumann, Alexander Mitsos: Demonstration of a

Branch-and-Bound Algorithm for Global Optimization using McCormick

Relaxations

2011-25 Callum Corbett, Michael Maier, Markus Beckers, Uwe Naumann, Amin

Ghobeity, Alexander Mitsos: Compiler-Generated Subgradient Code for

McCormick Relaxations

2011-26 Hongfei Fu: The Complexity of Deciding a Behavioural Pseudometric on

Probabilistic Automata

2012-01 ∗ Fachgruppe Informatik: Annual Report 2012

2012-02 Thomas Heer: Controlling Development Processes

2012-03 Arne Haber, Jan Oliver Ringert, Bernhard Rumpe: MontiArc - Architec-

tural Modeling of Interactive Distributed and Cyber-Physical Systems

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

A Turing Machine Complexity Proofs

Throughout this section, let A = (V,E) be an arena with V ⊆ B∗. We make this as-

sumption so as to not have to deal with encoding vertices as binary strings. This encoding

does not influence the results mentioned below except where explicitly mentioned.

A.1 Representing the Arena

We first describe a two-tape Turing machineMA which represents the arena A. The
idea is to callMA as a subroutine, which is why we allow it to have several initial states.

A call to the machine is then implemented as moving the calling machine writing its

state onto the tape and moving to one of the input states ofMA. The representation

will resemble an adjacency list.

FormallyMA = (Q,B, B̂, qnext, qE , qtE , δ, qreturn, qfail, qEOF). We first describe

the meaning of the respective input state. Then we turn to describe the semantics in

detail.

First, qnext will write the next vertex (in some fixed order) from V on the second

tape if a vertex is given initially. Otherwise it will output the first vertex. The state qE
is intended for edge lookup. Roughly speaking it will give the first vertex (in some fixed

order) which is adjacent to the input vertex. If there are two (adjacent) vertices given,

it will produce the next neighbor or signal that there is no next neighbor. In a similar

fashion qtE (the t is for transpose) is intended to give the next adjacent vertex in the

transpose arena AT = (V,ET), where ET = {(y, x) | (x, y) ∈ E}.

More formally, let v = v0 · · · vk ∈ Bk be the input. We assume this input to be on

the first tape of the machine. From state qnext the machine will read v. For this we have
states qnb0···bt for t ≤ k, bi ∈ B, such that (qnext, v)⊢

∗(v, qnv). If v /∈ V it will terminate

with state qfail. Otherwise it will output the next vertex v′ in some fixed internal order

of V . If there is no next vertex the machine will terminate in state qEOF . Otherwise it

will terminate in state qreturn. If no input is given then the first vertex in this order is

written onto the second tape. The machine terminates in state qreturn.

From state qE the machine will inspect an adjacency-list representation it has in

memory. Suppose the input is v. If the second tape also contains a vertex v′ the machine

will verify that both v and v′ are in V and that (v, v′) ∈ E. If one of these assertions

is not met, the machine will terminate in state qfail. Otherwise the machine will output

the next vertex v′′ neighboring v if it exists. In this case it will terminate in qreturn.
Otherwise it will terminate in qEOF . If no vertex v′ is given on the second tape (i.e.

the second tape is empty), the machine will simply output the first neighbor of v. The
meaning of qtE is analogous except that we consider AT instead of A.

One easily verifies thatMA requires O(|V |2) states. If L is the maximal length of

a string v ∈ V , the runtime is bounded by O(L).

A.2 Attractor Computation

Now we turn to attractor computation. Let A = (V,E) be an arena, given as a sub-

programMA as described above. We assume that last(v) = 1 iff v ∈ V1. Note that we

can ensure this by encoding the vertices with one bit overhead. We denote the length of

the longest word v ∈ V by L.

Proposition 13. There exists a two tape Turing machine with O(|V |2) states
using MA as a subroutine, which computes the attractor of a given set S ⊆ V
in time O(|V | · |E| · L).

Proof. Let S be given on the first tape as a sequence of vertices s1#s2# · · ·#sk.
Then our machine first moves this description on the second tape. This requires
|S| · L steps. Next it writes a pair (vi, ni) for every player 1 node vi ∈ V1 onto
the first tape. Here ni is the number of edges going out of vi. This requires time
O(|V | · |E|). To see this consider the machine MA from the previous section.
We iteratively call MA with initial state qnext, discarding all V0 vertices. For
every V1 vertex encountered we switch into state qE to produce a neighbor until
the machine terminates with qEOF . For every neighbor we increment the counter
associated by one.

We can now turn to the attractor computation. Assume level A = A
(0)
k has

already been computed and is available on the second tape. For every vertex v
from A we perform the following computation. We copy v to the first tape. Then
we move the head of the second tape to the first position after A (indicating
the boundary by ##, say). Now we invoke MA with qtE , i.e. we look at the
predecessors v′ of v (O(L) for each predecessor). We now scan the content to
the left (on the second tape) for an occurrence of v′ (O(|V |)). If we find one,
we have two options. Either v′ ∈ V0, in which case we advance the head to its
right proceeding with the next predecessor, or it is in V1. Then we decrement the
corresponding counter on the first tape (O(|V |1 · L)). If it reaches 0 we leave v′

and proceed with the next predecessor. Otherwise we overwrite v′ with the next
predecessor. In total these operation require O(|V | · L). Note that we consider
each edge at most one, which means that in effect we need

∑

e∈E |V | · L =
|E| · |V | · L. ⊓⊔

A.3 Representing Winning Conditions

In this section we describe a Turing machine representing the winning condition in the

two classes of ω-regular games studied in this paper – Muller and Streett games. We will

use this Turing machine as a subroutine in more complex machine, as was done with the

machine representing the arena or the machine computing the attractor.

Muller Conditions We now turn to Muller games. Let F be given as a propositional

formula φ in negation normal form (NNF) over the set V of variables. We are going

to describe a two-tape Turing machine which decides whether {v1, . . . , vk} |= φ for a

given input {v1, . . . , vk} ⊆ V .

For rigor’s sake, define ‖φ‖ by induction on the construction of NNF formulas φ. If
φ = v or φ = ¬v for v ∈ V then ‖φ‖ = 1. Then define ‖φ∨ψ‖ = ‖φ‖+‖ψ‖ = ‖φ∧ψ‖.
The machineM will have O(‖φ‖ · log2(|V |)) states. It will have two tapes. Suppose

the input on the first tape is v1#v2# · · ·#vk encoding {v1, . . . , vk} ∈ V (notice that

here vi ∈ V ⊆ B∗ is a sequence of bits). Then the machine will write a copy of φ onto

the second tape. To do this it requires O(‖φ‖ · log2(|V |)) states. It will then iterate

over the input sequence v1, . . . , vk and replace their occurrence with 1 or 0 depending

on whether they appear positively or not. If the machine encounters a formula of the

form ψ ∨ 1 it replaces it by 1 and likewise it replaces ψ ∧ 0 by 0. In this way it will

terminate with the result 1 or 0 of the query depending on whether the set {v1, . . . , vk}
is a model of φ or not. For this it requires O(k · ‖φ‖ · log2(|V |)) steps.

Streett Conditions Considering Streett games, we take an approach that amounts

to writing the Streett pairs on tape. The machineM does not take any input and simply

writes all Streett pairs on tape. This requires O(|Ω| · |V | · log2(|V |)) memory states

and the same amount of computation steps.

B Hardness Claims

Streett and Muller Games Consider the arena An as depicted for n = 6 in figure

1. Define a propositional formula φn =
∧

i yi = 1 ↔ xi = 1 and a Streett condition

Ωn = {({yi = 1}, {xi = 1}), ({yi = 0}, {xi = 0}) | i = 1, . . . , n}. Evidently both

conditions have linear size in n. It is now straightforward to verify proposition 3.

x1 = 1

x1 = 0

y6 = 1

y6 = 0

x2 = 1

x2 = 0

y5 = 1

y5 = 0

x3 = 1

x3 = 0

y4 = 1

y4 = 0

x4 = 1

x4 = 0

y3 = 1

y3 = 0

x5 = 1

x5 = 0

y2 = 1

y2 = 0

x6 = 1

x6 = 0

y1 = 1

y1 = 0

Fig. 1. Arena A6 for Muller and Streett games.

LTL Games We show the following claim:8

Proposition 14. The class of LTL games is 22
n

-hard. The winning conditions
of the witnessing family are of size O(n2).

Consider the arena Bn for n ∈ N as depicted in figure 2 for n = 6. Player 1 moves

from shaded, square vertices. Player 0 moves from all remaining vertices. The idea is that

player 1 will play the loop back to a from d a finite number of times. If he plays this

loop infinitely many times player 0 wins. Every such sequence between a and d (without

any occurrence of a or d in between) is called a round. Every round corresponds to an

assignment of x1, . . . , xn. Finally player 1 moves to b and picks another assignment of

x1, . . . , xn. Then player 0 must make a decision: If player 1 played an assignment after

b which did not occur in any of the rounds before, player 0 must move to ’no’. Otherwise

he must move to ’yes’.

We give an LTL formula, which describes this winning condition. Consider the fol-

lowing LTL formulas:

ψn = F
(

a ∧
n
∧

i=1

Xixi = 1↔ F(b ∧Xixi = 1)
)

8 For a definition of the terminology see section 4.

The formula ϕn = G¬b ∨ ((Fyes)↔ ψn) defines the winning condition just outlined.

a

x1 = 1

x1 = 0

x6 = 1

x6 = 0

x2 = 1

x2 = 0

x5 = 1

x5 = 0

x3 = 1

x3 = 0

x4 = 1

x4 = 0

x4 = 1

x4 = 0

x3 = 1

x3 = 0

x5 = 1

x5 = 0

x2 = 1

x2 = 0

x6 = 1

x6 = 0

x1 = 1

x1 = 0

d

b

yes

no

Fig. 2. Arena B6 for LTL games.

It is left to the reader to verify that any Mealy machine strategy for player 0 in the

game Gn = (Bn, ϕn) must have at least 22
n

states. Since An has 6n + 4 ∈ O(n)
vertices, the family (Gn)n≥1 is 22

n

-hard. Note also that ‖ϕn‖ ∈ O(n2).

C The Space Complexity of Solving Muller Games

It is well known that solving Muller games is Pspace complete [HD05,HD08]. However,

for our purposes we want a specific space bound. Below we will give a coarse estimate

using Zielonka’s algorithm [Zie98].

Proposition 15. There exists a 2-tape Turing machineM which on input A =
(V,E) (given as an adjacency matrix), propositional formula φ and a vertex
v ∈ V decides in space O(|V | · (|V |+‖φ‖) · log(|V |)) whether v ∈ W0 in the game
G = (A, φ).

Proof. The machine M first tests whether V |= φ. This requires space ‖φ‖ ·
log(|V |). If V |= φ we continue to work with ¬φ. Hence, we assume that V 6|= φ.

On the second tape,M now constructs the sequence (Ui)i≥0 of subsets of V
described in section 5.1, starting with U0 = ∅. In [Zie98] it is shown that v is in
the winning region of player 0 iff v ∈ Ui for some i ∈ N. Hence it is sufficient
to retain the unions

⋃

j≤iUi over all sets Uj computed so far. This requires
space O(|V | · log2(|V |)). We need the labels for the children c0, . . . , ck−1 of the
root in the Zielonka tree for φ. To compute the next such label requires space
|V |+ ‖φ‖ · log2(|V |). We start with the label of c0. Finally we need a counter r,

counting the number of times since we last added a vertex to
⋃

j≤iUj . Note that
r is bounded by k and so log2(r) ≤ |V |.

After i steps (during which the set U =
⋃

j≤i Uj has been computed), we

compute the attractor X = AttrA0 (U) (requiring additional space of O(|V | ·
log2(|V |))). Then we consider the 0-trap B = A\X. We compute Y = AttrB1 (V \
λ(ci mod k)), again using space O(|V | · log2(|V |)). Finally we solve the subgame
(B \ Y, φ(ci mod k)). Here φ(ci mod k) denotes the formula obtained from φ by
replacing all variables not in λ(ci mod k) by 0.

Observe that the space requirement without the recursive call is in O((|V |+
‖φ‖) · log2(|V |)). Observe that if the Zielonka tree for φ(ci mod k) has height 0, the
space requirement for this step is ‖φ‖ · log2(|V |), since we only have to check if
the (only) node in this tree is labeled with a model of φ(ci mod k) or not. Observe
furthermore that the tree has height ≤ |V |. Our claim thus follows by induction
on the height of the Zielonka tree. ⊓⊔

