
Aachen
Department of Computer Science

Technical Report

Demonstration of a Branch-and-Bound

Algorithm for Global Optimization

using McCormick Relaxations

Callum Corbett, Uwe Naumann, and Alexander Mitsos

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2011-24

RWTH Aachen · Department of Computer Science · November 2011

The publications of the Department of Computer Science of RWTH Aachen

University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Demonstration of a Branch-and-Bound Algorithm for

Global Optimization using McCormick Relaxations

Callum Corbett, Uwe Naumann, and Alexander Mitsos
naumann@stce.rwth-aachen.de

LuFG Informatik 12: Software and Tools for Computational Engineering

Abstract. This report is meant to demonstrate the actions performed by a
branch-and-bound algorithm for global optimization on a simple minimization
problem. McCormick relaxations are used to construct piecewise affine underes-
timators of the objective function.

1 The branch-and-bound algorithm

The branch-and-bound algorithm is used in global optimization to find the global
minimum of an objective function f(x), x ∈ R

n, by bounding its value between
an upper and a lower bound. After calculating the bounds, the optimization
variables’ set is partitioned (branching) and the procedure is repeated on all
subsets. In two cases a subset is not partitioned any further: either if its bounds
have converged or if it can be fathomed. When the values of the lower and
upper bound are within an absolute or relative tolerance defined by the user,
they are considered to have converged. If the lower bound of a subset attains a
higher value than the upper bound this subset is fathomed. If ubi is the upper
bound of the subset Si, then ∃xi ∈ Si : f(xi) ≤ ubi. A lower bound lbj of
a subset Sj with a higher value than this upper bound, lbj > ubi, results in
∃xi ∈ Si : f(xj) ≥ lbj > ubi ≥ f(xi) ∀xj ∈ Sj. Hence, the global minimum
cannot be within the subset Sj as all values within the subset are definitely
higher than a value previously found in the subset Si. Typically, only one upper
bound is stored, the lowest one found so far, while the lower bounds are different
for each subset. The reason for this is that the upper bound is a value that is
actually taken by the function at a specific point, while the lower bounds are
underestimators. This means that an interval with a smaller lower bound than
another does not necessarily lead to a lower value, as the bound may be lower
due to a weaker relaxation.

To illustrate the workflow of the branch-and-bound algorithm, a simple exam-
ple with only one optimization variable is considered here: Minimize the objective
function

f(x) =
√

|x|+ 0.01 · x3

with x ∈ [−7, 5]. As can be seen in Figure 1, this function attains its minimum
f∗ ≈ −0.784 at x = −7. Additionally, a suboptimal local minimum exists at
x = 0 with an objective value of 0. The relative tolerance is set to zero and the
absolute tolerance to 0.5. This means that the solver will consider a subset to
have converged (i.e., not consider any further subdivisions on this subset) if the
difference between the upper and lower bound is less than or equal to 0.5. Note
that the value 0.5 is only used for illustrative purposes, i.e., to keep the number
of iterations small.

-1

 0

 1

 2

 3

 4

-6 -4 -2 0 2 4

Original function

Fig. 1. The function to be minimized

In this example, the lower bound is calculated by means of McCormick relax-
ations and natural interval extensions, see [1]. The McCormick relaxations are
convex underestimators that are propagated throughout the calculation of the
objective function. In addition, the subgradient of the convex underestimator at
a given point is propagated and its linearization is used as an affine relaxation.
The values of the affine relaxation are always less than or equal to the values of
the convex relaxation at any given point. As the values of the convex relaxation
are always less than or equal to the corresponding objective function values, the
minimum of the affine relaxation can be used as a lower bound. Additionally, the
value of the natural interval extension is compared to the minimal value of an
affine relaxation of the convex underestimator. By choosing the maximum of the
values, the tighter of both underestimators is chosen. An alternative is to run a
local solver on the convex relaxation to find its minimum. This generally leads
to a tighter lower bound with the tradeoff of running a more costly local solver
in each iteration.

The upper bound is computed by a cheap point evaluation at the arithmetic
mean of the part of the optimization variable’s set currently considered. Typi-
cally, a more costly local solver is used for the upper bound as it usually results
in a better upper bound. For demonstration purposes the point evaluation shall
suffice.

In the following, the 9 iterations needed by the branch-and-bound solver are
illustrated and explained. Each iteration selects a subset according to the best-
bound selection heuristic. The best-bound heuristic selects the subset with the
lowest lower bound (new subsets are assumed to have the lower bound of their
parent set) and if more than one exists uses a breadth-first approach. The solver
then calculates a lower bound on the current subset. If the lower bound lies
above the global upper bound (the lowest upper bound found so far), the subset
is fathomed and the next iteration started. In the other case, the upper bound is
computed. Finally, if the subset has not converged, it is branched upon, creating
two new subsets. The solver then repeats the procedure until all subsets have
either converged or been fathomed.

In the first iteration, the entire set x ∈ [−7, 5] is considered. The results are
plotted in Figure 2. The tighter lower bound in this case is the natural interval
extension with approximately -3.43 as opposed to -3.64 for the minimum of the
affine relaxation of the convex underestimator. It should be noted that the convex
underestimator is not differentiable in the point x = 0. This is the reason for the
use of subgradients and not gradients. For the upper bound, the point evaluation
at x = −7+5

2
= −1, f(−1) = 0.99, is used.

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

-6 -4 -2 0 2 4

Original function
Nat. interval ext. underest.

Convex underestimator
Affine underestimator

Upper bound

Fig. 2. Functions used in the first iteration

Now the branching on the optimization variable’s set can be performed. There
are various heuristics on where to branch, e.g., if local solvers were used either
for the upper bound or on the convex relaxation for a lower bound, either of
their solution points could serve as branching point. Here, the arithmetic mean
is used as branching point resulting in the subsets [−7,−1] and [−1, 5].

From the two subsets available, see Figure 3, the second iteration calculates
the lower and upper bound of the subset [−7,−1]. The result of these iterations

[-7,5]

[-7,-1] [-1,5]

Fig. 3. Subsets before the second iteration

can be seen in Figure 4. As the upper bounds of the interval is greater than the

-3

-2

-1

 0

 1

 2

 3

 4

 5

-6 -4 -2 0 2 4

Original function
Nat. interval ext. underest.

Convex underestimator
Affine underestimator

Global upper bound
Local upper bound

Fig. 4. Functions used in the second iteration

upper bound found previously, it is disregarded. It is also worth noting, that the
affine relaxation is equal to the convex underestimator, which is the secant of
the concave original function. This underestimator is the tightest possible convex
relaxation and illustrates the strength of the McCormick relaxations. Finally, the
subset is bisected into [−7,−4] and [−4,−1]

The subset [−1, 5] is selected for the third iteration, see Figure 5. On the sub-

[-7,5]

[-7,-1] [-1,5]

[-7,-4] [-4,-1]

Fig. 5. Subsets before the second iteration

set [-1,5], the convex underestimator is not differentiable in two points, although
only one non-differentiable point exists for the original function, see Figure 6.
This again shows the necessity of subgradients as opposed to gradients, as also
differentiable (parts of) functions can lead to non-differentiable relaxations. The
upper bound does not improve on this subset as it is higher than the one found
in the first iteration.

-3

-2

-1

 0

 1

 2

 3

 4

 5

-6 -4 -2 0 2 4

Original function
Nat. interval ext. underest.

Convex underestimator
Affine underestimator

Global upper bound
Local upper bound

Fig. 6. Functions used in the third iteration

For the fourth iteration the solver has four possible subsets: [−7,−4], [−4,−1],
[−1, 2] and [2, 5], see Figure 7. The interval [−7,−4] is chosen. Again, the convex

[-7,5]

[-7,-1] [-1,5]

[-7,-4] [-4,-1] [-1,2] [2,5]

Fig. 7. Subsets before the fourth iteration

relaxation and the affine relaxation are the tightest possible convex relaxations,
the secant of the concave original function. The upper bound calculated on this
interval lies below the global upper bound. This means the global upper bound is
updated with this new, lower value. Figure 8 shows the results of the calculations
before the global upper bound is updated.

-3

-2

-1

 0

 1

 2

 3

 4

 5

-6 -4 -2 0 2 4

Original function
Nat. interval ext. underest.

Convex underestimator
Affine underestimator

Global upper bound
Local upper bound

Fig. 8. Functions used in the fourth iteration

After updating the global upper bound to the new, lower value, the fifth
iteration is performed on the subset [−4,−1], Figure 9. Figure 10 illustrates the
results of the computation. The lower bound of the subset [−4,−1] (the value

[-7,5]

[-7,-1] [-1,5]

[-7,-4] [-4,-1] [-1,2] [2,5]

[-7,-5.5] [-5.5,-4]

Fig. 9. Subsets before the fifth iteration

-2

-1

 0

 1

 2

 3

 4

 5

-6 -4 -2 0 2 4

Original function
Nat. interval ext. underest.

Convex underestimator
Affine underestimator

Global upper bound

Fig. 10. Functions used by the fifth iteration

of the affine relaxation at x = −1) lies above the global upper bound. Due to
this, the entire interval is fathomed as the global minimum cannot be within it.

The sixth iteration calculates the bounds on the subset [−7,−5.5], which
lowers the upper bound to ≈ 0.05. The lower bound of the subset [−5.5,−4]
calculated in the seventh iteration lies above the new upper bound, so it is
fathomed. Figure 11 shows the state of the subsets after the seventh iteration,
Figure 12 the results of the computation.

[-7,5]

[-7,-1] [-1,5]

[-7,-4] [-4,-1] [-1,2] [2,5]

[-7,-5.5] [-5.5,-4]

[-7,-6.25] [-6.25,-5.5]

Fig. 11. Branching after the seventh iteration

-1

 0

 1

 2

 3

 4

 5

-6 -4 -2 0 2 4

Original function
Nat. interval ext. underest.

Convex underestimator
Affine underestimator

Global upper bound

Fig. 12. Functions used in the sixth and seventh iteration

Calculating the bounds on the subset [−7,−6.25] in the eighth iteration re-
sults in an upper bound that fathoms all other subsets except for [−6.25,−5.5].
The ninth iteration considers the interval [−6.25,−5.5] though, witch leads to
a lower bound above the upper bound calculated in the previous iteration, see
Figures 13 and 14. The optimization variables value is now narrowed down to
x ∈ [−7,−6.25]. All other intervals have been fathomed due to the low upper
bound (≈ −0.334) found in the eighth iteration.

[-7,5]

[-7,-1] [-1,5]

[-7,-4] [-4,-1] [-1,2] [2,5]

[-7,-5.5] [-5.5,-4]

[-7,-6.25] [-6.25,-5.5]

[-7,-6.625] [-6.625,-6.25]

Fig. 13. Branching after the nineth iteration

-1

 0

 1

 2

 3

 4

 5

-6 -4 -2 0 2 4

Original function
Nat. interval ext. underest.

Convex underestimator
Affine underestimator

Global upper bound

Fig. 14. Functions used in the eighth and ninth iteration

The subset [−7,−6.25] has converged, as the difference between the upper
bound ≈ −0.334 and the lower bound ≈ −0.784 is about 0.45, which is less than
the absolute tolerance of 0.5. As all other subsets have been fathomed, the solver
is finished and the example ends here.

References

1. A. Mitsos, B. Chachuat, and P. I. Barton. McCormick-based relaxations of algorithms. In

press: SIAM Journal on Optimization, 20(2):573–601, 2009.

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years. A complete

list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007

2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, Harald Zankl: Maximal Termination

2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler

2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations

2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message

Passing Programs

2008-07 Alexander Nyßen, Horst Lichter: The MeDUSA Reference Manual, Sec-

ond Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on

Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-

endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-

Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable

Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-

straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl

Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-

proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers

2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves

2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study

2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving

2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems

http://aib.informatik.rwth-aachen.de/

2008-19 Dirk Wilking: Empirical Studies for the Application of Agile Methods

to Embedded Systems

2009-02 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Quantitative Model Checking of Continuous-Time Markov Chains

Against Timed Automata Specifications

2009-03 Alexander Nyßen: Model-Based Construction of Embedded

Real-Time Software - A Methodology for Small Devices

2009-04 Daniel Klünder: Entwurf eingebetteter Software mit abstrakten Zus-

tandsmaschinen und Business Object Notation

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-

erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving

Independent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm

Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the

Correctness of the Upper Bound of a Maximum Independent Set Algo-

rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The

Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in

Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset

Games

2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)

2009-15 Joost-Pieter Katoen, Daniel Klink, Martin Neuhäußer: Compositional

Abstraction for Stochastic Systems

2009-16 George B. Mertzios, Derek G. Corneil: Vertex Splitting and the Recog-

nition of Trapezoid Graphs

2009-17 Carsten Kern: Learning Communicating and Nondeterministic Au-

tomata

2009-18 Paul Hänsch, Michaela Slaats, Wolfgang Thomas: Parametrized Regular

Infinite Games and Higher-Order Pushdown Strategies

2010-02 Daniel Neider, Christof Löding: Learning Visibly One-Counter Au-

tomata in Polynomial Time

2010-03 Holger Krahn: MontiCore: Agile Entwicklung von domänenspezifischen

Sprachen im Software-Engineering

2010-04 René Wörzberger: Management dynamischer Geschäftsprozesse auf Ba-

sis statischer Prozessmanagementsysteme

2010-05 Daniel Retkowitz: Softwareunterstützung für adaptive eHome-Systeme

2010-06 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Computing maximum reachability probabilities in Markovian timed au-

tomata

2010-07 George B. Mertzios: A New Intersection Model for Multitolerance

Graphs, Hierarchy, and Efficient Algorithms

2010-08 Carsten Otto, Marc Brockschmidt, Christian von Essen, Jürgen Giesl:

Automated Termination Analysis of Java Bytecode by Term Rewriting

2010-09 George B. Mertzios, Shmuel Zaks: The Structure of the Intersection of

Tolerance and Cocomparability Graphs

2010-10 Peter Schneider-Kamp, Jürgen Giesl, Thomas Ströder, Alexander Sere-

brenik, René Thiemann: Automated Termination Analysis for Logic

Programs with Cut

2010-11 Martin Zimmermann: Parametric LTL Games

2010-12 Thomas Ströder, Peter Schneider-Kamp, Jürgen Giesl: Dependency

Triples for Improving Termination Analysis of Logic Programs with Cut

2010-13 Ashraf Armoush: Design Patterns for Safety-Critical Embedded Systems

2010-14 Michael Codish, Carsten Fuhs, Jürgen Giesl, Peter Schneider-Kamp:

Lazy Abstraction for Size-Change Termination

2010-15 Marc Brockschmidt, Carsten Otto, Christian von Essen, Jürgen Giesl:

Termination Graphs for Java Bytecode

2010-16 Christian Berger: Automating Acceptance Tests for Sensor- and

Actuator-based Systems on the Example of Autonomous Vehicles

2010-17 Hans Grönniger: Systemmodell-basierte Definition objektbasierter Mod-

ellierungssprachen mit semantischen Variationspunkten

2010-18 Ibrahim Armaç: Personalisierte eHomes: Mobilität, Privatsphäre und

Sicherheit

2010-19 Felix Reidl: Experimental Evaluation of an Independent Set Algorithm

2010-20 Wladimir Fridman, Christof Löding, Martin Zimmermann: Degrees of

Lookahead in Context-free Infinite Games

2011-02 Marc Brockschmidt, Carsten Otto, Jürgen Giesl: Modular Termination

Proofs of Recursive Java Bytecode Programs by Term Rewriting

2011-03 Lars Noschinski, Fabian Emmes, Jürgen Giesl: A Dependency Pair

Framework for Innermost Complexity Analysis of Term Rewrite Systems

2011-04 Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, Thomas Noll:

A Local Greibach Normal Form for Hyperedge Replacement Grammars

2011-07 Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe: An Operational

Semantics for Activity Diagrams using SMV

2011-08 Thomas Ströder, Fabian Emmes, Peter Schneider-Kamp, Jürgen Giesl,

Carsten Fuhs: A Linear Operational Semantics for Termination and

Complexity Analysis of ISO Prolog

2011-11 Nils Jansen, Erika Ábrahám, Jens Katelaan, Ralf Wimmer, Joost-Pieter

Katoen, Bernd Becker: Hierarchical Counterexamples for Discrete-Time

Markov Chains

2011-12 Ingo Felscher, Wolfgang Thomas: On Compositional Failure Detection

in Structured Transition Systems

2011-13 Michael Förster, Uwe Naumann, Jean Utke: Toward Adjoint OpenMP

2011-14 Daniel Neider, Roman Rabinovich, Martin Zimmermann: Solving Muller

Games via Safety Games

2011-16 Niloofar Safiran, Uwe Naumann: Toward Adjoint OpenFOAM

2011-18 Kamal Barakat: Introducing Timers to pi-Calculus

2011-19 Marc Brockschmidt, Thomas Ströder, Carsten Otto, Jürgen Giesl: Au-

tomated Detection of Non-Termination and NullPointerExceptions for

Java Bytecode

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

