
Aachen
Department of Computer Science

Technical Report

Demonstration of a Branch-and-Bound

Algorithm for Global Optimization

using McCormick Relaxations

Callum Corbett, Uwe Naumann, and Alexander Mitsos

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2011-24

RWTH Aachen · Department of Computer Science · November 2011



The publications of the Department of Computer Science of RWTH Aachen

University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/



Demonstration of a Branch-and-Bound Algorithm for

Global Optimization using McCormick Relaxations

Callum Corbett, Uwe Naumann, and Alexander Mitsos
naumann@stce.rwth-aachen.de

LuFG Informatik 12: Software and Tools for Computational Engineering

Abstract. This report is meant to demonstrate the actions performed by a
branch-and-bound algorithm for global optimization on a simple minimization
problem. McCormick relaxations are used to construct piecewise affine underes-
timators of the objective function.

1 The branch-and-bound algorithm

The branch-and-bound algorithm is used in global optimization to find the global
minimum of an objective function f(x), x ∈ R

n, by bounding its value between
an upper and a lower bound. After calculating the bounds, the optimization
variables’ set is partitioned (branching) and the procedure is repeated on all
subsets. In two cases a subset is not partitioned any further: either if its bounds
have converged or if it can be fathomed. When the values of the lower and
upper bound are within an absolute or relative tolerance defined by the user,
they are considered to have converged. If the lower bound of a subset attains a
higher value than the upper bound this subset is fathomed. If ubi is the upper
bound of the subset Si, then ∃xi ∈ Si : f(xi) ≤ ubi. A lower bound lbj of
a subset Sj with a higher value than this upper bound, lbj > ubi, results in
∃xi ∈ Si : f(xj) ≥ lbj > ubi ≥ f(xi) ∀xj ∈ Sj. Hence, the global minimum
cannot be within the subset Sj as all values within the subset are definitely
higher than a value previously found in the subset Si. Typically, only one upper
bound is stored, the lowest one found so far, while the lower bounds are different
for each subset. The reason for this is that the upper bound is a value that is
actually taken by the function at a specific point, while the lower bounds are
underestimators. This means that an interval with a smaller lower bound than
another does not necessarily lead to a lower value, as the bound may be lower
due to a weaker relaxation.

To illustrate the workflow of the branch-and-bound algorithm, a simple exam-
ple with only one optimization variable is considered here: Minimize the objective
function

f(x) =
√

|x|+ 0.01 · x3

with x ∈ [−7, 5]. As can be seen in Figure 1, this function attains its minimum
f∗ ≈ −0.784 at x = −7. Additionally, a suboptimal local minimum exists at
x = 0 with an objective value of 0. The relative tolerance is set to zero and the
absolute tolerance to 0.5. This means that the solver will consider a subset to
have converged (i.e., not consider any further subdivisions on this subset) if the
difference between the upper and lower bound is less than or equal to 0.5. Note
that the value 0.5 is only used for illustrative purposes, i.e., to keep the number
of iterations small.
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Fig. 1. The function to be minimized

In this example, the lower bound is calculated by means of McCormick relax-
ations and natural interval extensions, see [1]. The McCormick relaxations are
convex underestimators that are propagated throughout the calculation of the
objective function. In addition, the subgradient of the convex underestimator at
a given point is propagated and its linearization is used as an affine relaxation.
The values of the affine relaxation are always less than or equal to the values of
the convex relaxation at any given point. As the values of the convex relaxation
are always less than or equal to the corresponding objective function values, the
minimum of the affine relaxation can be used as a lower bound. Additionally, the
value of the natural interval extension is compared to the minimal value of an
affine relaxation of the convex underestimator. By choosing the maximum of the
values, the tighter of both underestimators is chosen. An alternative is to run a
local solver on the convex relaxation to find its minimum. This generally leads
to a tighter lower bound with the tradeoff of running a more costly local solver
in each iteration.

The upper bound is computed by a cheap point evaluation at the arithmetic
mean of the part of the optimization variable’s set currently considered. Typi-
cally, a more costly local solver is used for the upper bound as it usually results
in a better upper bound. For demonstration purposes the point evaluation shall
suffice.

In the following, the 9 iterations needed by the branch-and-bound solver are
illustrated and explained. Each iteration selects a subset according to the best-
bound selection heuristic. The best-bound heuristic selects the subset with the
lowest lower bound (new subsets are assumed to have the lower bound of their
parent set) and if more than one exists uses a breadth-first approach. The solver
then calculates a lower bound on the current subset. If the lower bound lies
above the global upper bound (the lowest upper bound found so far), the subset
is fathomed and the next iteration started. In the other case, the upper bound is
computed. Finally, if the subset has not converged, it is branched upon, creating
two new subsets. The solver then repeats the procedure until all subsets have
either converged or been fathomed.



In the first iteration, the entire set x ∈ [−7, 5] is considered. The results are
plotted in Figure 2. The tighter lower bound in this case is the natural interval
extension with approximately -3.43 as opposed to -3.64 for the minimum of the
affine relaxation of the convex underestimator. It should be noted that the convex
underestimator is not differentiable in the point x = 0. This is the reason for the
use of subgradients and not gradients. For the upper bound, the point evaluation
at x = −7+5

2
= −1, f(−1) = 0.99, is used.
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Fig. 2. Functions used in the first iteration

Now the branching on the optimization variable’s set can be performed. There
are various heuristics on where to branch, e.g., if local solvers were used either
for the upper bound or on the convex relaxation for a lower bound, either of
their solution points could serve as branching point. Here, the arithmetic mean
is used as branching point resulting in the subsets [−7,−1] and [−1, 5].



From the two subsets available, see Figure 3, the second iteration calculates
the lower and upper bound of the subset [−7,−1]. The result of these iterations
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Fig. 3. Subsets before the second iteration

can be seen in Figure 4. As the upper bounds of the interval is greater than the
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Fig. 4. Functions used in the second iteration

upper bound found previously, it is disregarded. It is also worth noting, that the
affine relaxation is equal to the convex underestimator, which is the secant of
the concave original function. This underestimator is the tightest possible convex
relaxation and illustrates the strength of the McCormick relaxations. Finally, the
subset is bisected into [−7,−4] and [−4,−1]



The subset [−1, 5] is selected for the third iteration, see Figure 5. On the sub-
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Fig. 5. Subsets before the second iteration

set [-1,5], the convex underestimator is not differentiable in two points, although
only one non-differentiable point exists for the original function, see Figure 6.
This again shows the necessity of subgradients as opposed to gradients, as also
differentiable (parts of) functions can lead to non-differentiable relaxations. The
upper bound does not improve on this subset as it is higher than the one found
in the first iteration.
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Fig. 6. Functions used in the third iteration



For the fourth iteration the solver has four possible subsets: [−7,−4], [−4,−1],
[−1, 2] and [2, 5], see Figure 7. The interval [−7,−4] is chosen. Again, the convex
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Fig. 7. Subsets before the fourth iteration

relaxation and the affine relaxation are the tightest possible convex relaxations,
the secant of the concave original function. The upper bound calculated on this
interval lies below the global upper bound. This means the global upper bound is
updated with this new, lower value. Figure 8 shows the results of the calculations
before the global upper bound is updated.
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Fig. 8. Functions used in the fourth iteration



After updating the global upper bound to the new, lower value, the fifth
iteration is performed on the subset [−4,−1], Figure 9. Figure 10 illustrates the
results of the computation. The lower bound of the subset [−4,−1] (the value
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Fig. 9. Subsets before the fifth iteration
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Fig. 10. Functions used by the fifth iteration

of the affine relaxation at x = −1) lies above the global upper bound. Due to
this, the entire interval is fathomed as the global minimum cannot be within it.



The sixth iteration calculates the bounds on the subset [−7,−5.5], which
lowers the upper bound to ≈ 0.05. The lower bound of the subset [−5.5,−4]
calculated in the seventh iteration lies above the new upper bound, so it is
fathomed. Figure 11 shows the state of the subsets after the seventh iteration,
Figure 12 the results of the computation.

[-7,5]

[-7,-1] [-1,5]

[-7,-4] [-4,-1] [-1,2] [2,5]

[-7,-5.5] [-5.5,-4]

[-7,-6.25] [-6.25,-5.5]

Fig. 11. Branching after the seventh iteration
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Fig. 12. Functions used in the sixth and seventh iteration



Calculating the bounds on the subset [−7,−6.25] in the eighth iteration re-
sults in an upper bound that fathoms all other subsets except for [−6.25,−5.5].
The ninth iteration considers the interval [−6.25,−5.5] though, witch leads to
a lower bound above the upper bound calculated in the previous iteration, see
Figures 13 and 14. The optimization variables value is now narrowed down to
x ∈ [−7,−6.25]. All other intervals have been fathomed due to the low upper
bound (≈ −0.334) found in the eighth iteration.
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Fig. 13. Branching after the nineth iteration
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Fig. 14. Functions used in the eighth and ninth iteration



The subset [−7,−6.25] has converged, as the difference between the upper
bound ≈ −0.334 and the lower bound ≈ −0.784 is about 0.45, which is less than
the absolute tolerance of 0.5. As all other subsets have been fathomed, the solver
is finished and the example ends here.
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2010-06 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Computing maximum reachability probabilities in Markovian timed au-

tomata

2010-07 George B. Mertzios: A New Intersection Model for Multitolerance

Graphs, Hierarchy, and Efficient Algorithms

2010-08 Carsten Otto, Marc Brockschmidt, Christian von Essen, Jürgen Giesl:

Automated Termination Analysis of Java Bytecode by Term Rewriting

2010-09 George B. Mertzios, Shmuel Zaks: The Structure of the Intersection of

Tolerance and Cocomparability Graphs

2010-10 Peter Schneider-Kamp, Jürgen Giesl, Thomas Ströder, Alexander Sere-
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2010-12 Thomas Ströder, Peter Schneider-Kamp, Jürgen Giesl: Dependency

Triples for Improving Termination Analysis of Logic Programs with Cut

2010-13 Ashraf Armoush: Design Patterns for Safety-Critical Embedded Systems

2010-14 Michael Codish, Carsten Fuhs, Jürgen Giesl, Peter Schneider-Kamp:

Lazy Abstraction for Size-Change Termination

2010-15 Marc Brockschmidt, Carsten Otto, Christian von Essen, Jürgen Giesl:

Termination Graphs for Java Bytecode

2010-16 Christian Berger: Automating Acceptance Tests for Sensor- and

Actuator-based Systems on the Example of Autonomous Vehicles
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2010-18 Ibrahim Armaç: Personalisierte eHomes: Mobilität, Privatsphäre und
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2011-19 Marc Brockschmidt, Thomas Ströder, Carsten Otto, Jürgen Giesl: Au-

tomated Detection of Non-Termination and NullPointerExceptions for

Java Bytecode

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.


