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Introducing Timers to π-Calculus

Kamal Barakat∗

Lehrstuhl für Informatik 11
RWTH Aachen, Germany

Email: barakat@embedded.rwth-aachen.de

Abstract. We introduce a new concept of modeling timed behavior in pi-calculus
by representing timed actions (or timers) as interactions between application
processes and clock processes. This approach extends the original calculus in a
manner such that bisimulation arrangements in pi-calculus remain untouched.

1 Introduction to classic π-calculus

π-Calculus is a communicating model that treats mobility in a native way. One
could use this model for representing communication protocols, algorithms, pro-
gramming languages and data structures. The syntax of π-calculus can be pre-
sented using the following expression

P ::=
∑

i∈I
πi · Pi | P1|P2 | newaP | !P

where
π ::= x(y) receive y along x

x〈y〉 send y along x
τ unobservable action

The summation construct represents nondeterminism in the model where a
process has several action prefixes and hence several execution paths to choose
from. The dot in any summation term is called the sequential composition oper-
ator which specifies the order of execution of action prefixes. The parallel compo-
sition operator “—” is used to compose a process from several subprocesses that
are simultaneously executing in parallel. the restriction operator “new” limits
the scope of its parameters to the current sequential expression. In the above ex-
ample, the action prefix “a” is restricted (or bound) to the scope of “P”. Names
that appear in input actions are also bound. Finally the replication operator
“!” causes the process in its scope to appear in endless copies in parallel. These
expression constructs allow a structural comparison between two processes to
detect structural congruence.

Definition ([10, Def 9.7]). Structural Congruence Two process expressions
P and Q in the π-calculus are structurally congruent, written P ≡ Q, if we can
transform one into the other by using the following equations (in either direction):

(1) Change of bound names (alpha-conversion)
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(2) reordering of terms in a summation
(3) P | 0 ≡ P , P | Q ≡ Q | P , P | (Q | R) ≡ (P | Q) | R
(4) newx(P | Q) ≡ P | newxQ if x /∈ fn(P ), newx0 ≡ 0, newxyP ≡ newyxP
(5) !P ≡ P | !P

Parrow [11] defines two additional structural congruence rules to cope with
restrictions, that is:

– (newx)(ifu = v)P ≡ (ifu = v)(newx)P if x �= u and x �= v.
– (newx)(ifu �= v)P ≡ (ifu �= v)(newx)P if x �= u and x �= v.

We will be using these structural congruence rules later in our work for re-
ducing sequences of timed actions (Lemma 38). In this work we consider that
both [10] and [11] depict what we call classic π-calculus.

Input actions are also called positive action prefixes, while output actions are
negative. Each pair of positive and negative actions makes a redex if they have
the same name. A redex allows these action prefix pairs to synchronize their
execution (or to react). If these action prefixes appeared with parameters then
their reaction means a transfer operation from the sender to the receiver. In this
sense, the name of the action prefix represents the name of a communication
channel between the processes that contain the redex parts. The action prefix
τ in the classic π-calculus represents the occurrence of an redex internally. It
obviously is unidirectional (neither positive nor negative) and has no parameters.
All action prefixes of classic π-calculus can happen any time once they are enabled
or unguarded. Figure 1 lists the reaction rules in π-calculus.

TAU : τ.P +M → P

REACT : (x(y).P +M) | (x〈z〉.Q+ n) → {
z/y

}
P | Q

PAR :
P → P ′

P | Q → P ′ | Q

RES :
P → P ′

newxP → newxP ′

STRUCT :
P → P ′

Q → Q′ if P≡Q and P ′≡Q′

Fig. 1. Reaction Rules

The execution of action prefixes can be seen as a transition if we look at
π-calculus as a labeled transition system. To simplify the concept we consider
these transitions without parameters. This allows us to look at the transition rules
of CCS1. Figure 2 lists all transition rules from which inference trees are built
for conclusions about system properties. This is generally done using induction
on the depth on inference.

By integrating the notion of alpha-conversion due to message transfer between
processes, the transition rules evolve in commitment rules. A commitment is
simply a transition with parameters. However, car must be taken to the residues

1 Calculus of Communicating Systems, the forefather of π-calculus.
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SUMt : M + α.P +N
α→ P REACTt :

P
λ→ P ′ Q

λ→ Q′

P | Q τ→ P ′ | Q′

L-PARt :
P

α→ P ′

P | Q α→ P ′ | Q
R-PARt :

Q
α→ Q′

P | Q α→ P | Q′

RESt :
P

α→ P ′

newxP
α→ newxP ′ ifα/∈{x,x} IDENTt :

{
b/a

}
PA

α→ P ′

A〈b〉 α→ P ′ ifA(a)
def
= PA

Fig. 2. Transition Rules

of transitions in π-calculus. In the case of output actions, the residue after the
execution is concretion agent, while in the case of input actions it is an abstraction
agent. Milner handled the issue of input actions that leave abstraction behind
with special care, because the receiving a name over a channel causes the name in
the input action prefix, say x, to be alpha-converted to received new name. The
abstraction that results from this alpha conversion can have different behavior
depending on the received name and the surrounding processes that could react
to the resulting agent. However, if the agent is x-forgetful [10, Definition 10.7]
it is immune to this behavioral evolution which makes it invariant to reaction
because x does not appear later in this process. All commitment rules2 are listed
in Figure 3.

SUMc : M + α.P +N
α→ P L-REACTc :

P
x→ F Q

x→ C

P | Q τ→ F@C

R-REACTc :
P

x→ F Q
x→ C

P | Q τ→ F@C
L-PARc :

P
α→ A

P | Q α→ A | Q

R-PARc :
Q

α→ A

P | Q α→ A | P
RESc :

P
α→ A

newxP
α→ newxA

ifα/∈{x,x}

REC(c) :
P |!P α→ A

!P
α→ A

Fig. 3. Commitment Rules

Behavioral equivalence has two classes in π-calculus; strong & weak. Weak
simulation behaviorally compares two differently implemented processes ignoring
all occurrences of τ . All transitions (or commitments) that involve τ are called
experiments and are referred to by “⇒”. On the other hand, strong simulation
does not have this relaxed property and requires exact match of the behavior of
both studied processes. If both processes simulate each other then we call the
relation a bisimulation. Structural congruence itself is considered a bisimulation.

2 A,B, ... stand for agents, C,D, ... stand for concretion, F,G, ... stand for abstractions and @
is the application. See [10, Definition 12.1 and 12.2]
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2 Related work

We based our requirement analysis on the work of Baeten and Middelburg [1]
where timed process algebras were nicely declared and sorted in classes, and the
characteristics of each class were formally represented by axioms. We recognized
four variations of these algebras from which we concluded the contribution that
we need to provide to π-calculus in order to make it time-enabled. These varia-
tions are the absolute and relative timing schemes (ACPsat and ACPsrt) in their
real and discrete formats (ACPdat and ACPdrt, respectively). In ACPsat three
basic time operators were introduced; the absolute delay operator σabs, the ab-
solute time-out operator νabs and the absolute initialization operator ν̄abs. In [1,
pp. 632], Baeten and Middelburg showed that νabs and ν̄abs can be reduced to σabs
alone using sequential and parallel composition. We base our timed π-calculus ex-
tension on this result, which is especially convenient because π-calculus natively
supports sequential and parallel composition.

Hennessy and Regan [6] developed a CCS based process algebra that is ex-
tended with a special action to represent the passage of one clock-tick of time.
They specify operational semantics on the clock-tick level, and present their
Temporal Process Logic (TPL) with a rigorous set of convergence and alterna-
tive characterization rules. However, this algebra does not address the case of
uninterrupted sequences of the clock-tick operator, and hence does not specify
particular points of time in the future at which specified actions can take place.

A recent contribution to timed π-calculus is the work of Jin et al. [7]. In
the extended syntax there are new timed operators for expressing the passage
of time and for modeling choice upon threshold crossing. Due to modeling time
passing on the clock-tick level, all transition rules of π-calculus were revisited to
provide delayed versions of each rule to represent how processes behave when
time passes. This multiplies the total operational semantics of the calculus. We
perceive a superfluity in introducing the threshold operator in the presence of
the original choice operator “+” in π-calculus.

The approach in [12] provides a type system for specifying locations which re-
strict services that agents can use during communication. TDπ-calculus combines
the execution of actions with the passage of time in dedicated time operators.
Message exchange occurs at defined locations over channels at these locations if
the timer was not exceeded, then the process proceeds as declared in the opera-
tor. If the time-out value is exceeded, the process takes an alternative execution
path. Our calculus can provide the same timed behavior using the timer and
choice operators. The timed semantics of both approaches are equivalent. How-
ever, our calculus retains the advantage of separating the passage of time from
the execution of actions, and thus provides more flexibility in specifying system
behavior, especially when no timing is required. In addition, our calculus allows
state transitions based on pure time events.

Timed spi-calculus [5] approaches timing-out in a manner similar to [12]. The
timed operational semantic is defined as a reduction relation on states with global
time variable and a binder on all free names in these states. The operator allows
the definition of a set of correspondences that can be terminated in the particular
run, and also defines the process that remains to be executed. This reduction rule
allows only process replication and output actions to survive a period (or epoch)
to the next one. All other syntactic forms expire with a clock-tick and degenerate
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to the null-process. Timed spi-calculus combines the notion of time passing and
action execution and conveniently tailors the behavior of particular syntactic
components of the calculus for modeling security and cryptographic issues, e.g.
the asymmetrical timed behavior of input and output actions. This makes the
calculus, however, inflexible in treating issues outside that domain.

Berger and Yoshida [2] define types on channels which range in one dimen-
sion over being linear or affine and whether they are replicated or not. The other
dimension depends on whether these names are input or output. From this type
classification, they define constraints on names. The type system is then used to
define message-loss and timers on process and network level. To model message-
loss correctly, they solve the nondeterminism problem by using probabilistic au-
tomata. They proceed then by defining the impact of this nondeterminism on
bisimulation by introducing timed approximate bisimulation. Nonetheless the
analogy between [2] and [7] with respect to timed behavior becomes clear by
considering their timeout and timestepper arrangements.

In the work of Lee and Žic [8] the time-out operator P �t Q forces a process
P to proceed as Q at time t if no enabled action of P was fired before t. Similar
to previously mentioned approaches, a delay operator is defined. This operator
takes place in the transition system of processes. Lee and Žic differentiate internal
or invisible actions from those visible to the external observer by calling them
uncontrollable and controllable respectively. In this work time is not allowed
to pass during action execution and nondeterministic choices are only made by
ordinary action prefixes. This means that the passage of time does not obscure
the execution of an enabled action in a process. As in [7] the operational semantics
explode due to different time passing properties of i/o actions and τ and their
effect on combinatorial operators such as summation and parallel composition.

The concept of timed hybrid automata as proposed by Lynch et al. [9] defines
trajectories as the evolution of a collection of variables over an interval of time,
and they are the set of functions that map a closed interval to the set of valuation
functions. Hybrid automata (HA) are comparable if they have the same external
interface (i.e., external variables and actions). They consider a simulation relation
between different HAs if one implements the other in the sense of inclusion of
sets of execution traces. Then they declare the composition and hiding operations
on HAs, which in turn, respect simulation. The distinction between input and
output variables enables the definition of hybrid I/O automata (HIOA). The
receptiveness property defined on HIOAs allows the time to always pass for any
sequence of input actions. The presented structures in this work are interesting
because they correspond to native capabilities in π-calculus. However, hybrid
automata do not posses the hierarchical structuring capabilities and the dynamic
channel setup of π-calculus.

In all the approaches we have presented, the designers tend to enrich π-calculus
with time features. Although most approaches tend to use the same set of tools
to model time properties, we see a tendency in each one of them to initiate special
rules of time passage and their effects on processes in order to suite particular ap-
plications. In our approach we try to introduce the notion of time into π-calculus
in the most native way possible for two reasons. We first would like to avoid
making the calculus too complex so that it stays appealing for people of other
domains who would like to use a formal model for representing timed commu-
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nicating processes. The second reason is that by keeping our timed approach as
generic as possible, we create a calculus that targets the widest possible domain
of applications.

3 Real-Time in πτ -Calculus

Although we use a universal notion of time in our model, we recognize the need to
two types of clocks in modeling timed processes; a global clock which is visible
to all processes and private clocks for those processes which need to execute
internal timed actions that do not relate to actions in other processes. Processes
that use the global clock to synchronize their actions make their timed behavior
visible to the outside world. Taking the concept of universality of time into
account, we can say that the formal presence of the global clock is not always
explicitly needed. We need, however, the concept of visible timed actions to be
able to check for behavioral equivalence. We refer to our extended version of
the calculus by πτ -calculus. We will start by defining the clock process, which is
universal regardless of being a global of private clock, and then we will discuss
the various properties of this definition. In the following all time clocks, variables
and values range over R≥0.

3.1 Modeling clocks in πτ -Calculus

We assume that each process P that is capable of performing internal (unob-
servable) timed actions contains a subprocess C(c) that represents its local (or
private) clock. To achieve absolute and relative timing and to be able to save the
current time, C(c) needs to provide three operations:

C(c) ::= (if ṫ = α+ β) c(α, β) · C〈c〉+
(if ṫ = α) c(α) · C〈c〉+
c〈ṫ〉 · C〈c〉 (1)

The clock subprocess C(c) will react through its action prefixes c(α, β) and c〈ṫ〉
with any other subprocess of P , say Pr, when it tries to execute c〈q, p〉 (if the
current absolute time ṫ is q + p) and c(s) respectively. If the current time is
less than q + p, c〈q, p〉 will block until the time reaches q + p. If ṫ, however, is
greater than q + p, c〈q, p〉 will deadlock forever which means that the reaction
will not complete. Time values act here as names and the matching between the
parameters of action c and the current time occurs in a similar fashion to the
classic name matching by Parrow. However, names that act as time variables or
values need to be valuated to their respective values in R≥0 so that comparisons
against ṫ and other values and variables can be conducted. We define this function
formally as follows:

Definition 31. The “valuation” function v : A → R≥0 delivers the time values
of names in πτ -calculus that act as time variables or values.

The second operation C(c) offers, is analog to the first one; c(α) accepts
synchronization requests with one absolute parameter instead of two parameters
of which the second is interpreted relative to the first. The same semantics apply
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here; if the current time ṫ is equal to the passed value α the synchronization
proceeds, otherwise the complementary action c〈p〉 will block or deadlock as
explained above. This absolute time operator can of course be represented using
the relative operator by passing zero in one of the parameters of c〈q, p〉. We
provide it here for convention.

Finally, the clock process sends its current time by enabling the action c〈ṫ〉
to react with any subprocess Pr that tries to know the current time by executing
c(s). This action obviously does not deadlock because no conditional matching
takes place.

In the case of a process P that possesses a private clock, the process defi-
nition looks like the following: P ::= new c(Pr | C(c)). Obviously, without the
restriction of c Pr and C(c) could proceed using the L-PARc or R-PARc commit-
ment rules, rather than L-REACTc or R-REACTc. This also prevents external
processes from REACT ing with the private clock C(c). On the other hand, we
should not restrict the action prefix d of the global clock process C(d), so that
it is publicly available to all other processes.

A design principle of our calculus becomes clear at this stage. Similar to
the approach in [1] each clock increases its value internally and reacts to timed
requests of other processes accordingly. By abstracting the passage of time as an
internal activity of clock process, we save the users of our calculus the formalities
that arise from explicitly defining it (e.g. �t in [2]). This abstraction results in a
considerable reduction in the overhead of time specification and helps us achieve
our design objectives.

3.2 Internal (or unobservable) timers

The inference trees for reactions between a clock process and another process
are listed in Figure 4. We assume a process that consists of a subprocess Pr

and an internal clock subprocess C(c). We also assume that Pr has the form
Pr ::= Q + c〈q, p〉 · P ′

r + R. We use the notational convention to mark these
tau actions by their time parameters to distinguish them from the original silent
action τ . Unlike the proposed handling in [1] we do not distinguish absolute
and relative timing in two separate calculi. We only consider these two concepts
superficially by taking zero as the time reference and omitting it notationally in
the former case (e.g. τp) and by taking a non-zero value or identifier in the latter.
The implementation of τ q,ps is a sequential composition of τ q,p and τs. The same
applies for τps . This concept works because we assume that timed actions do not
consume execution time, and because we assume higher execution priority for
them over non-timed action prefixes. This notion becomes clear in Section 3.7.

The timed τ action prefix can thus be said to execute at specified points
of time consuming itself no execution time, but allowing other actions in the
sequential process expression to align themselves to it and hence acquire time
properties. The timed τ remains invisible (or silent) but will be decorated with
time information (relative or absolute and with or without bound names) to
specify its occurrence point of time and to specify its impact on other timed
actions ans variables. This is useful when we discuss timed bisimulation (see
Example 311). Figure 5 shows the relation between the superscript and subscript
of timed τ .
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τ q,p

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

M + c(α, β) · C(c) +N
c(α,β)→ C(c)

SUMc

Q+ c〈q, p〉 · P ′
r +R

c〈q,p〉→ P ′
r

SUMc

C(c)
c(α,β)→ C(c)

IDENTt

Pr
c〈q,p〉→ P ′

r

IDENTt

C(c) | Pr
τq,p→ C(c) | P ′

r

L-REACTc

new c (C(c) | Pr)
τq,p→ new c (C(c) | P ′

r)
RESc

τp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

M + c(α) · C(c) +N
c(α)→ C(c)

SUMc

Q+ c〈p〉 · P ′
r +R

c〈p〉→ P ′
r

SUMc

C(c)
c(α)→ C(c)

IDENTt

Pr
c〈p〉→ P ′

r

IDENTt

C(c) | Pr
τp→ C(c) | P ′

r

L-REACTc

new c (C(c) | Pr)
τp→ new c (C(c) | P ′

r)
RESc

τs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

M + c〈ṫ〉 · C(c) +N
c〈ṫ〉→ C(c)

SUMc

Q+ c(p) · P ′
r +R

c(s)→ P ′
r

SUMc

C(c)
c〈ṫ〉→ C(c)

IDENTt

Pr
c(s)→ P ′

r

IDENTt

C(c) | Pr
τs→ C(c) | P ′

r

R-REACTc

new c (C(c) | Pr)
τs→ new c (C(c) | P ′

r)
RESc

Fig. 4. Inference Trees for Timed Tau

τ q,ps

base offset

saved ref.

��

�
q + p = now

�

Fig. 5. Timed τ
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The optional subscript specifies an identifier that holds the value of the point
in time at which the execution of τ has occurred. If the superscript was omit-
ted, we call this operator passive and the names in the subscript will be alpha-
converted to the value of the current time and τ will be directly executed when
it becomes enabled (or unguarded). If more than one name were present in the
subscript, e.g. τa,b, this will be equivalent to a series of passive timed tau action
prefixes for each name. The expression τaτb causes both a and b to be alpha-
converted to the same time value because (as explained above) we assume that
timed action prefixes do not consume execution time on their own, and because
all timed action prefixes have higher priority over the rest of action prefixes in
πτ -calculus.

The superscript of τ specifies the execution point of time and its reference. In
this case we call the time operator active. The reference can be a time value or
an identifier that holds a value of that sort. The component p of the constraint
specifies the point in time at which timed τ is executed in reference to q. Again,
p can be any time value. In addition, q and p can be arithmetic expressions
that specify single or multiple points in time at which τ can be executed. The
actual execution point of time is calculated by adding the values of p and q. An
active time operator with two parameters is called relative, while operators that
reference the starting point of time of the system and thus have one parameter
are called absolute. Examples are found in Figure 6. We have to keep in mind,
that time identifiers that are not explicitly initialized in a process parameter or
in the subscript of τ are automatically initialized to zero.

Absolute Timing

τ 3 · a Action a executes once after 3 time units relative to 0.

τ p+3.1
p · a Action a repeats executes at 3.1 time units relative to 0 and

saves the current time value in p. If this expressions appears in
a recursive expression, it is capable of executing repeatedly each
3.1 time units.

Relative Timing

τ 3.3,1.2 · a Action a executes once at time 4.5.

τs · τ s,1.2 · a Action a is invoked once after 1.2 time units relative to s where
s is initialized in a previous τ .

τ s,2s · a Action a executes after two time units from the current value of s
and saves the current execution time in s. If s is not previously
initialized, it is valuated to zero. If this expression is invoked
recursively, it repeats each two time units.

Fig. 6. Examples for timed τ
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3.3 External (or observable) timers

As we previously indicated, if a process P synchronizes its timed actions with the
global clock process C(d) then these actions must be visible to the outside world.
This means that the external observer does not see timed τ actions here but the
time action prefixes d〈q, p〉, d〈p〉 and d(s) on the part of the client processes in
addition to d(q, p), d(p) and d〈ṫ〉 of the global clock. As with timed τ , we use
the notational convention dq,ps to stand for these actions on the part of the client
processes. The bidirectional case is easy to identify by means of the superscript
and subscript both appearing next to the timer’s name. In this case, the same
operator obviously stands simultaneously for input and output actions (active
and passive).

Since the passive timed action prefix as any other input action is bind-
ing over its parameters, it is important to notice that bn(dq,ps ) = {s} whereas
fn(dq,ps ) = {d, q, p}.

3.4 Time constructs

As suggested in [1], we need particular time operators and constants to be able to
describe time properties of concurrent processes. In πτ -calculus we obtain these
time properties by injecting cq,ps or dq,ps in sequential process expressions. In the
following sections we use the internal timed action cq,ps to present the operators
of πτ -calculus. This, however, applies analogously to the observable timed action
dq,ps . The semantic properties, however, in regard to bisimulation differ largely.
We discuss these properties later in this report.

Constants In the classic π-calculus, the null process “0” represents terminated
processes. In addition, it is used to represent deadlocked processes [10, Exer-
cise 5.26]. We use this concept as is without further modification.

Delay The delay operator σp
abs(a) in BPAsat as proposed by [1] can be repre-

sented in πτ -calculus as follows:
c0,p · a

c0,p (or cp) consumes itself no execution time, and terminates at time p. when
c0,p terminates, “a” becomes unguarded, which makes it available for execution
starting from time p.

Absolute Time-out The operator for absolute time-out in BPAsat is denoted
as νpabs(a). In πτ -calculus we substitute this operator by writing:

c0,p · 0 + a

Since “a” is unguarded, it can start to execute anytime up till (but not including)
p. If “a” does not execute c0,p will fire at time p and the process will take the
alternative path. In this example we have attached the empty sum 0 (or process
null) to c suggesting to terminate the process and force possible complementing
action prefixes (or redexes) of “a” to deadlock. However, this must not be the
case. The system designer can choose to point the system to another state instead
of deadlocking, which could - in this case - be an advantage over BPAsat where
deadlocking is a must if “a” fails to start before p.
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Absolute initialization The operator νpabs(a) indicates that “a” can start to
execute from point p and beyond. The equivalent expression in πτ -calculus is
identical to the absolute delay above:

c0,p · a

The similarity between the absolute initialization and the delay technique (sec-
tion 3.4) in our calculus might be easier to understand if we consider that using
the axioms of BPAsat one could express all νabs and νabs processes by means of
the absolute delay, alternative composition and sequential composition. We use
this result to keep our design minimal and limit our time operators to only cq,ps

(or dq,ps according to the scope of the clock).

Time constraints A common way of managing constraints in flavored π-calculus
[4,3] is the definition of a store in which statements entail particular agents or
not. These stores can be manipulated with tell and ask operations to add state-
ments to the store and to probe whether the store contains an entailing statement
respectively. Agents that are prefixed with entailing statements are enabled.

We have simple time constraints in πτ -calculus. If the current local time
ṫ = q + p then the threshold is satisfied and the timer will fire. In addition, we
can extend the classic conditional prefixing of sequential process expressions as
suggested by Parrow [11]. The standard Match and Mismatch constructs use
only the equality or inequality notions because the original application was on
names only. However, in our extended calculus we have time variables and values
in addition to names. Therefore, we can safely extend these constructs to be able
to do simple arithmetic comparisons on these values.

Definition 32. Time constraints let a, b, . . . ∈ Aτ where Aτ is the set of
all variable names in πτ -calculus, x ∈ R≥0, and let �	 ∈ {<,>,≤,≥,=, �=}.
Consider that δ = a− b | a− x | x− a | a. A time constraint is an expression C
such as C = C1C2 . . . Cn where Ci = (if3 δ �	 0). C holds in a valuation v (see
Definition 31) if all Ci hold (or evaluate to true) w.r.t. v.

If a timed action (c or d) is prefixed with a constraint, then the execution
of this timed action will be restricted so that it only becomes enabled if the
constraint holds. You can see in Figure 7 how a more complex timed behavior
than those depicted in Figure 6 can be specified for some process P using this
constraint system:

P ::= (if s < 2) cs,0.5s · a · P + (if s ≥ 2) cs,1s · b · P

� t

a a a a b b · · ·

0 0.5 1 1.5 2 3 4

Fig. 7. Time constraints using conditional prefixing of time variables

3 We often drop “if” for simplicity
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We define time constraints in the context of modifying the behavior of timed
action prefixes. Each timed action prefix defines one or more points in time
where it can fire. Constraints restrict this set to a subset of possible execution
opportunities. Therefore, we prefix only active timed actions with constraints,
while passive ones execute unrestricted. We will address this point formally in
Section 3.6 when we formalize structural congruence of timed actions.

In the following, we will be presenting examples about how to use timers to
model sensor networks and the NTP protocol.

Example 33. Sensor networks Let’s consider the system Sys that consists of
two processes. The sensor node generates a reading each 3 time units and sends
it to the receiver over channel ch, while the receiver replies immediately over the
same channel with an acknowledgment or sends a reset message if the sensor fails
to produce a reading after 4 time units. Upon reception of a reset message, the
sensor resets its timer and starts over. A possible solution using absolute timing
is proposed in the following:

Sys ::= Sen〈3〉 | Rec〈4〉 | C〈d〉

Sen(p) ::= ch(reset) · dt · Sen〈p〉+ dt+p
t · ch〈data〉 · Sen′〈p〉

Sen′(p) ::= ch(reset) · dt · Sen〈p〉+ ch(ack) · Sen〈p〉

Rec(q) ::= ds+q
s · ch〈reset〉 · Rec〈q〉+ ch(data) · ds · Rec′〈q〉

Rec′(q) ::= ds+q
s · ch〈reset〉 · Rec〈q〉+ ch〈ack〉 ·Rec〈q〉

Another solution using relative timing is proposed in the following:

Sys ::= Sen〈0, 3〉 | Rec〈0, 4〉 | C〈d〉

Sen(t, p) ::= ch(reset) · dt · Sen〈t, p〉+ dt,p · ch〈data〉 · Sen′〈t+ p, p〉
Sen′(t, p) ::= ch(reset) · dt · Sen〈t, p〉+ ch(ack) · Sen〈t, p〉

Rec(s, q) ::= ds,q · ch〈reset〉 · Rec〈s+ q, q〉+ ch(data) · ds · Rec′〈s, q〉
Rec′(s, q) ::= ds,q · ch〈reset〉 · Rec〈s+ q, q〉+ ch〈ack〉 ·Rec〈s, q〉

In any of the above solutions, if message loss occurs on ch, the protocol will
continue to execute and will never deadlock. We assumed that both processes
synchronize with a global clock C(d). �

Example 34. Network Time Protocol (NTP) The NTP protocol is used to
synchronize the clock of a client with a time server. We consider a simple system
of two processes; a server and a client. The client makes one synchronization each
24 hours. Upon reception of the client’s request, the server registers the time
stamp of its arrival, then it computes the response for the client and registers
the time at that point. These two time stamps are then sent to the client. The
client receives the server’s response and registers its time stamp. The client then
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calculates the round trip delay δ = (t3 − t0) − (t2 − t1) and the offset θ =
(t1−t0)−(t2−t3)

2 in and goes back to normal operation.

Sys ::= Srv | Cln

Srv ::= newc′(c(req) · c′t1 · τ · c′t2 · ch〈rsp, t1, t2〉 · Srv | C〈c′〉)

Cln ::= newc′′(c′′s,24hs · Clns | C〈c′′〉)
Clns ::= newc′′(ch〈req〉 · c′′t0 · ch(rsp, t1, t2) · c′′t3 · τ · Cln | C〈c′′〉)

We assumed that the server synchronizes with its private clock over channel
c′, and that the client synchronizes with its private clock over channel c′′. �

3.5 Signature of Real-Time πτ -Calculus

We are now ready to conclude the signature of real-time πτ -calculus. We consider
here only our contribution to π-calculus without repeating the classic constructs
of it. In real-time πτ -Calculus, we use the following symbology: ṫ is the current
time of the reference clock and it ranges over R≥0. dq,p, dp, ds, d

q,p
s , dps, τ q,p, τp,

τs, τ
q,p
s and τps are the absolute, relative and passive visible and invisible time

action prefixes (or timers) whose parameters q, p and s range over R≥0. We use
πτ to reference the set of all timed action prefixes which is a subset of π. If
available, superscript parameters define when the timer should fire according to
the reference clock, and subscript parameters are alpha-converted on execution
time to hold the current value of ṫ. The same applies to cq,ps , cps, cs, c

q,p
s and

cps that reference internal real-time clocks of their processes. Cτ is the set of all
constraints in which �	 ∈ {<,>,≤,≥,=, �=} is the comparison operator4.

3.6 Structural congruence of timed actions

Our timer system imposes little change to the signature of π-calculus and makes
the consequent proofs simple. In addition to the list of structural congruence
rules of π-calculus we define two rules to incorporate the new time operators τ q,ps

and dq,ps , but before we can do that, we must setup some basic definitions.

Definition 35. Mapping function Ω Let C ∈ Cτ where Cτ is the set of
all constraints as shown in Definition 32 and let η ∈ πτ where πτ is the set
of all timed action prefixes (a subset of π). We define the mapping function
Ω : (Ṫ, Cτ , πτ ) → {R≥0} to be the set of execution times (or opportunities) that η
can encounter after being restricted with C, where ṫ can only range over Ṫ ⊆ R≥0.

Of course, if C is empty (represented with ε) then Ω(R≥0, ε, η) is the set of
all execution time points of η assuming that ṫ cannot be negative. There can
be cases where Ω(Ṫ, C, η) = φ. In this case the constraint completely blocks
the execution of its action prefix. Example 36 shows some expressions that are
evaluated with Ω.

4 instead of only = and �= in classic π-calculus
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Example 36. Mapping Function Ω In this example, A(s, t) is a sequential
composition of A1(s) and A2(t). Figure 8 shows the evaluation using the Ω
function on each of those timed processes.

A1(t) := (if t > 2)ct. (2)

A2(s) := (if s < 5)cs,0.5s . (3)

A(s, t) := (if t > 2)ct.(if s < 5)cs,0.5s . (4)

Evaluating Ω on A1(t) (for arbitrary t) produces ]2,∞[, while evaluating Ω on
A2(s) yields [0.5, 5.5[. The composition of both processes evaluates to ]2.5, 5.5[.

� t
0 1 2 3 4 5 6

� t
0 1 2 3 4 5 6

� t
0 1 2 3 4 5 6

(4)

(3)

(2)

�� �� �� �� �� �� ���� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� � �
�� �� �� �� �� �� ���� �� �� �� �

�������������������������������� �

Fig. 8. Evaluating the Ω function (Example 36)

If a timed action is not prefixed with another timed action, the Ω function
takes R≥0 as the first parameter, which implies that the starting execution win-
dow is unrestricted before evaluating. In a sequence, on the other hand, the
evaluation of Ω on a timed action is taken as the first parameter of Ω on the
next timed action, which reduces the available execution window for that ac-
tion before applying Ω on it. The following set of Ω applications explains the
sequential effect of its evaluation on sequences:

ΩA1 = Ω(R≥0, t > 2, 0t) = ]2,∞[
ΩA2 = Ω(R≥0, s < 5, s0.5s) = [0.5, 5.5[
ΩA = Ω(ΩA1 , s < 5, s0.5s) = ]2.5, 5.5[

The concatenation of timed actions reduces the resulting execution time of
them in total. �

Definition 37. Non-blocking sequence Let η be either τ or d, Ci ∈ Cτ ,
and let

∏
i∈I Ci ·ηqi,pii be a sequence of timed actions and their constraints, where

I = {1, 2, · · · , n}. We consider this sequence to be non-blocking if ∀i ∈ I\{n}; qi+
pi ≤ qi+1 + pi+1 and ∀i ∈ I;Ω(Ṫi, Ci, ηi) �= φ where Ṫi = Ω(Ṫi−1, Ci−1, ηi−1)
and Ṫ1 = R≥0.

This is an intuitive but important property which allows us to construct
useful sequences of timed actions. It says that a concatenation of timed actions
and their constraints should guarantee the continued execution of all its actions.
This can be achieved if no action prefix finishes after the start of the next one
and if no constraint completely blocks the execution of its timed action prefix. It
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is also important to keep in mind that the evaluation of Ω function for one Ciεi
pair proceeds dependently on the previous evaluation of the preceding pair. We
proceed now to the definition of timed structural congruence.

Lemma 38. Reduction of non-blocking sequences Let η be either τ or
d. Any non-blocking sequence

∏
i∈I Ciηi, where I = {1, 2, · · · , n} and η is an

arbitrary timed action prefix (active, passive or both), can be reduced to some
Cη.

Proof. The proof proceeds by showing that a non-blocking sequence of two or
more timed action prefixes and their constraints is reducible according to the
classic structural congruence rules and according to the dynamics of timers.
This proof operates on two items at a time, starting with the two leftmost items
and iterating on the sequence from left to right. In this algorithm we depict the
case of relative active timed action prefixes, which can be easily generalized to
cases with absolute active timers by ignoring respective instances of q in the
superscript.

We assume a sequence P ::= Ciηi · Ci+1ηi+1 · · · . The reduction algorithm is
as follows:

1. Create a new sequence P ′ by concatenating an unconstrained passive timer
instance ηi = τt̃ where t̃ /∈ n(P ) at the front of the sequence P and advancing
the index of the rest of timed action prefixes by one so that P ′ ::= ηi·Ci+1ηi+1·
Ci+2ηi+2 · · · . Formally we write P ′ ::= ηi · {i+1/i}P . With this arrangement t̃
is supposed to hold the value of time at which the sequence starts to execute,
and hence t̃ becomes a reference point. It is easier to compare different reduced
sequences when they use the same symbolic reference to their start time. This
step does not alter the timed behavior of the original sequence P because
of the assumption that timed actions consume no execution time and that
passive timers execute instantly when they are unguarded, then P ≡ P ′.

2. In P ′ assume N = bn(ηi) ∩ n(Ci+1) is the set of names that appear in the
subscript of ηi and anywhere in Ci+1. If N �= φ there are two possibilities:
– if t̃ ∈ bn(ηi) we define P ′′ ::= CiC

′
i+1 · ηiηi+1 · · · where ∀αj ∈ N : C ′

i+1 ={
t̃/αj

}
Ci+1,

– otherwise, we define P ′′ ::= CiC
′
i+1 · ηiηi+1 · · · where ∀αj ∈ N : C ′

i+1 ={
qi+pi/αj

}
Ci+1

we can then write P ≡ P ′. This step holds according to the structural con-
gruence rules of Parrow that consider constraints. If ηi was passive or bidi-
rectional, then the passive part of it is binding over the names that appear
in its subscript. If the set bn(ηi) of bound variables of ηi contains free names
that appear in Ci+1 then we have to perform alpha-conversions on all names
in the intersection of those two sets before we can shift the restriction C ′

i+1

one position to the left.
3. In P ′ if N = bn(ηi) ∩ n(Ci+1) = φ then P ′′ ::= CiCi+1 · ηiηi+1 · · · . Contrary

to the previous step but based on the same structural congruence rules, if
there is no intersection between bn(ηi) and n(Ci+1) we can safely shift Ci+1

one position to the left and P ′ ≡ P ′′ holds.
4. In P ′′ if {qi+1, pi+1} = φ, then ηiηi+1 ≡ η′i where bn(η′i) = bn(ηi) ∪ bn(ηi+1)

and qη′i = qηi and pη′i = pηi . If ηi+1 is only passive, then we can reduce ηiηi+1

to a modified ηi, where the set of bound names of ηi includes the set of bound
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names of ηi+1 as well. The super script of ηi remains the same. We enjoy this
property because of our basic assumptions that timed action prefixes do not
consume time on their own, and that passive timed actions execute right away
when they are unguarded with higher priority than other untimed actions.
This is the reason why ηi and ηi+1 eventually execute at the same time and
their bound variables then hold the same value.

5. In P ′′ if M = bn(ηi) ∩ {qi+1, pi+1} �= φ, where {qi+1, pi+1} is the set of all
names that appear in the superscript of ηi+1, then we have two possibilities:

– if t̃ ∈ bn(ηi) then ηiηi+1 ≡
{
t̃/αj

}
fn(ηi+1), ∀αj ∈ M.

– otherwise, ηiηi+1 ≡
{
qi+pi/αj

}
fn(ηi+1), ∀αj ∈ M.

We assumed that P is non-blocking which guarantees that qi+pi ≤ qi+1+pi+1,
which means that all execution opportunities qi + pi are scheduled before
qi+1 + pi+1 or coincide with them. A non-blocking list affects the execution
time of whatever action prefix or process that is serially composed with it. The
effect of these serially composed timed action prefixes is then only dependent
on when ηi+1 executes. However, ifM �= φ then there are names in ηi+1 whose
values are dependent on the actual execution time of ηi. To safely remove ηi
without loosing information, we perform as many alpha-conversions as needed
to copy all necessary time information from ηi to ηi+1.

6. In P ′′ if M = bn(ηi) ∩ {qi+1, pi+1} = φ then ηiηi+1 ≡ ηi+1. In this case, the
calculation of execution times of ηi+1 does not depend on the valuation of
names (and hence the execution time) of ηi. Since this is a non-blocking list,
we can safely remove ηi.

7. Replace P ′ with the result of reduction P ′′. If the number of remaining items
in the sequence is greater than one, perform the above algorithm recursively
from Step 2 by taking the new two leftmost elements, and proceed each time
by replacing the sequence you started with at Step 2 with the result of the
reduction which decreases the number of items by one after each iteration.
Repeat the execution until there is no more reduction possible (one item is
left).

Note that Step 2 and Step 3 are mutually exclusive. The same applies to
Steps 4, 5 and 6. The resulting reduced list consists of a constraint that is
the conjunction of all previous constraints (with or without alpha-conversion
as described above) prefixing the rightmost η (again, with or without alpha-
conversions as deemed necessary by the algorithm).

Example 39. Some reductions

1. Lets take:

P ::= (p > 2)τps · (s < 5)τ s,0.5s .

By inserting τt̃ at the beginning of P we get:

P ′ ::= τt̃(p > 2)τps · (s < 5)τ s,0.5s .

Shifting (p > 2) one position to the left requires no alpha-conversion since
there is no free name in (p > 2) that is bound in τt. Hence:

P ′ ≡ (p > 2)τt̃τ
p
s · (s < 5)τ s,0.5s .
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We merge τt̃τ
p
s together according to Step 6 of the reduction algorithm be-

cause there are no common names between the set of free names in τps (p in
this case) and the set of bound names of τt̃ (t̃ here). At this stage we get:

P ′ ≡ (p > 2)τps · (s < 5)τ s,0.5s .

We find s in the subscript of τps as well as in th constraint (s < 5), then
Step 2 of the reduction algorithm applies here. Then:

P ′ ≡ (p > 2)(p < 5) · τps τ s,0.5s .

We also find that s is in the superscript of τ s,0.5s , which makes Step 5 of the
algorithm applicable ⇒

P ′ ≡ (p > 2)(p < 5) · τp,0.5s .

We have reduced P into a list of a single action prefix η = τp,0.5s and a
composed constraint C = (p > 2)(p < 5).

2. Lets take a slightly modified example:

P ::= (p > 2)τp · (s < 5)τ s,0.5s .

We insert τt̃ according to Step 1 we get:

P ′ ::= τt̃(p > 2)τp · (s < 5)τ s,0.5s .

We then apply Step 3 because t̃ does not appear in the set of free names of
(p > 2). Hence we get:

P ′ ≡ (p > 2)τt̃τ
p · (s < 5)τ s,0.5s .

We next must apply Step 6, we get:

P ′ ≡ (p > 2)τp · (s < 5)τ s,0.5s .

With Step 3 we find:

P ′ ≡ (p > 2)(s < 5) · τpτ s,0.5s .

With Step 6 we get:
P ′ ≡ (p > 2)(s < 5) · τ s,0.5s .

This is possible because of the original assumption that the sequence P is
non-blocking, which implicitly means that p ≤ s+ 0.5.

3. Assume: P ::= τs · (s < 5)τ s,2, by applying Step 1:

P ′ ::= τt̃τs · (s < 5)τ s,2.

We next apply Step 4:
P ′ ≡ τt̃,s · (s < 5)τ s,2.

According to Step 2 we get:

P ′ ≡ (t̃ < 5)τt̃,s · τ s,2.
We then need to apply step 5 to get the reduced sequence:

P ′ = (t̃ < 5)τ t̃,2.
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4. We start with P ::= τs(s < 10)τ s,2s τs(s < 12)τ s,4:

P ::= τs(s < 10)τ s,2s τs(s < 12)τ s,4
Step1⇒

P ′ ::= τt̃τs(s < 10)τ s,2s τs(s < 12)τ s,4
Step4⇒

P ′ ≡ τt̃,s(s < 10)τ s,2s τs(s < 12)τ s,4
Step2⇒

P ′ ≡ (t̃ < 10)τt̃,sτ
s,2
s τs(s < 12)τ s,4

Step5⇒

P ′ ≡ (t̃ < 10)τ t̃,2s τs(s < 12)τ s,4
Step4⇒

P ′ ≡ (t̃ < 10)τ t̃,2s · (s < 12)τ s,4
Step2⇒

P ′ ≡ (t̃ < 10)(t̃ + 2 < 12)τ t̃,2s τ s,4
Step2⇒

P ′ ≡ (t̃ < 10)(t̃ + 2 < 12)τ t̃+2,4

�

We have now enough tools for defining timed structural congruence.

Definition 310. Rules for timed structural congruence Let η be either c
or d, Ci, Cj ∈ Cτ and P be any process,

1. let
∏

i∈I Ciη
qi,pi
i and

∏
j∈J Cjη

qj ,pj
j be non-blocking sequences of which CIηI

and CJηJ are the reductions concluded according to Lemma 38. We consider∏
i∈I Ciη

qi,pi
i

τ≡ ∏
j∈J Cjη

qj ,pj
j if qnI

+ pnI
= qnJ

+ pnJ
, where nI = |I| and

nJ = |J | and if Ω(R≥0, CI , ηI) = Ω(R≥0, CJ , ηJ). The same applies to abso-
lute time operators by implicitly taking all qi and qj to be zero.

2. ηq,p
τ≡ 0 if q + p �= ṫ, where ṫ is the current time of the reference clock. As

above, the same applies to absolute time operators by taking q to be zero.

For better readability and to avoid ambiguity we decorate the structural
equivalence symbol ≡ with a τ in order to distinguish time related operations
from the classic ones. This is only a notational convention without any modifica-
tion to the concept of ≡. For example, in (5) we mark the equivalence step with
τ≡, while in the next step we use the original symbol ≡. However, we consider

τ≡
to be a subset of ≡ and when we generally talk about equivalence we will use ≡
to reference timed and untimed equivalences together.

Rule 1 in the above list deals with the timed congruence between two pro-
cesses which might have different timing schemes. It stresses that different time
schemes (relative or absolute) can still be equivalent in terms of actual execution
time. E.g. c5, c2,3 and c1,4 are all equivalent because they execute at the same
time. Another example for equivalence would be τ0,s+5

s and τ s,5s . This rule makes
successive timed taus equivalent if the supremum of the consequent actions co-
incide and none of them is blocking, e.g. c2s · cs,1 and c0,3. We imply here, that
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qn and pn incorporate all alpha-conversions that took place due to passive cs or
ds or due to process parameterization or input actions. The importance of this
rule comes from the result that we do not need different calculi for relative and
absolute time, and that we can replace processes with different - but equivalent
- timing schemes without breaking the system.

The convenience of rule 2 arises from the fact that it defines the condition
for deadlocks in timed π-calculus and stresses the continuity and universality
properties of time in our calculus. We consider time as a flowing external value
that increases continuously, and each process preserves its own account of time -
in other words its own clock. If the current time exceeds the threshold a timer, this
action becomes permanently inaccessible and can be garbage collected by utilizing
the congruence with process null. The including context will also deadlock if no
other execution paths were available. For example:

cq,p · a+ b
τ≡ 0 + b if q + p �= ṫ (5)

≡ b

where ṫ is the current local time of this process. Deadlocks occur if a timer was
guarded by an action - or a set of actions - that execute beyond its threshold
q+ p. In case of a summation, as in the example above, if the process executes b
at a point of time t < q+p then the alternative path of this process in which this
instance of cq,p occurs will not be available and cq,p will not fire when ṫ = q + p
because choosing “b” excludes other choices.

3.7 Commitment rules

Rule 2 of timed structural congruence raises the problem of race. By considering
the example in (5), if ṫ = q + p and “b̄” was simultaneously enabled in another
parallel process so that “b” can also execute, then according to the current com-
mitment rules of π-calculus the depicted process in (5) might go either way. This
is not optimal if we consider real world scenarios. Timers and interrupts have
higher priority than normal execution flow in programming languages, therefore
we need to incorporate this notion in our calculus so that system transitions are
performed correctly. To make this concept precise we introduce in Figure 9 new
commitment rules that define this behavior for active and passive timed actions.

PRIO-AC :
Q

α→ Q′ C(c)
c(q,p)→ C(c)

C(c) | Q | (c〈q, p〉 · P + α · R)
τq,p→ C(c) | Q | 〈q, p〉P

if ṫ = q + p

PRIO-PC :
Q

α→ Q′ C(c)
c〈ṫ〉→ C(c)

C(c) | Q | (c(s) · P + α ·R)
τs→ C(c) | Q | (s)P

Fig. 9. Priority commitment rules for timed actions

Obviously, REACTion with the external clock C(d) through the timed ac-
tion d follows the same arrangement and the rules in Figure 9 apply to these
REACTions by replacing c with d and C(c) with C(d). This results in timed
actions having higher priority than untimed ones which solves the race problem.
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3.8 Observation equivalence & process congruence

Observation or behavioral equivalence deals with the the problem of determining
whether two differently implemented processes appear behaviorally similar to an
external observer. Our design concept for bisimulation is to use weak bisimulation
for relaxed timed constraints and to use strong bisimulation for time properties
we want to match. Here comes the visible timed action into consideration, because
it is a simple way of exposing timed properties of processes using the global clock.
We can imagine scenarios where a composition of hidden and visible timed actions
are available in one process. Here, again, the use of weak bisimulation is a must,
but we know that we only hide time properties which are relaxed and ignorable
while the observable timed actions retain their visibility. In the following we
explain our approach to using bisimulation in timed processes.

Weak Bisimulation Our timed τ is an internal action, whose agents do not
appear to the external observer. In this case, the classic weak bisimulation of
π-calculus will be enough to prove equivalence. We use the standard definition
of weak bisimulation as proposed in [11]:

Definition ([11, Def. 9]). Weak bisimulation5 A weak (late) bisimulation is
a symmetric binary relation R on agents satisfying the following: PRQ and
P

α→ P ′ where the bound name bn(α) is fresh implies that:

1. If α = a(x) then ∃Q′′ : Q ⇒a(x)→ Q′′ ∧ ∀u∃Q′ : Q′′ {u/x} ⇒ Q′ ∧ P ′ {u/x}RQ′.
2. If α is not an input then ∃Q′ : Q α̂⇒ Q′ ∧ P ′RQ′

P and Q are weakly (late) bisimilar, written P ≈̇Q, if they are related by a weak
bisimulation.

We demonstrate using examples how the classic weak bisimulation of π-calculus
can be used to decide behavioral equivalence of timed processes.

Example 311. Timed weak bisimulation Let us consider a system that gen-
erates the depicted timed sequence in Figure 10.

� t

a ab b b · · ·

0 40 80 100 140

Fig. 10. Example of a timed system

We assume a global clock C(d). The process P generates the required se-
quence:

P ::= new c(P1 | C〈c〉)
P1 ::= a(x) · cs,r · P ′

1

P ′
1 ::= ds,100s,r · a(x) · P ′

1 + cr,40r · b〈y〉 · P ′
1

5 α̂⇒ means an experiment
α⇒ if α �= τ and ⇒ if α = τ .
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We can introduce another process, Q, which faithfully produces the same
sequence:

Q ::= new c(Q1 | C〈c〉)
Q1 ::= a(x) · ct,40t · b〈y〉 · ct,40t · b〈y〉 · dt,20t ·Q1

For an external observer, the two processes behave as follows:
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Fig. 11. Weakly timed bisimulation

To prove bisimulation, we need to build the binary relation S that represents
all related states of P and Q:

S = {(P1, Q1), (P2, Q2), (P
′
3, Q3), (P

′
1, Q4), (P

′
3, Q5), (P

′
1, Q6), (P

′
2, Q1), (P

′
1, Q2)}

since all processes are x forgetful, we can consider that the condition ∀u∃Q′ :
Q′′ {u/x} ⇒ Q′ ∧ P ′ {u/x}RQ′ for input actions is always fulfilled. We consider
each pair of S:
– (P1, Q1) there is a transition P1

a(x)→ P2 for which a simulating experiment

Q1
a(x)⇒ Q2 exists and ∀u, (P2 {u/x} , Q2) ∈ S.

– (P2, Q2) there is a transition P2
τs,r→ P ′

1 for which a zero length simulating
experiment from Q2 exists and (P ′

1, Q2) ∈ S. After this step s = r = 0.
– (P ′

1, Q2) there are two timer transitions simultaneously available from P ′
1. In

this example however, one timer transition will always fire from P ′
1 before

the other one according to the value of time. With regard to the sequence

of events till now, the timer transition P ′
1

τr,40r→ P ′
3 will fire first. For this

transition, there exists a simulating experiment Q2
τs,40s⇒ Q3 and (P ′

3, Q3) ∈ S.
After this step r = 40 and t = 40.

– (P ′
3, Q3) there is a transition P ′

3

b〈y〉→ P ′
1 for which a simulating experiment

Q3
b〈y〉⇒ Q4 exists and (P ′

1, Q4) ∈ S.
– (P ′

1, Q4) with similar argumentation to step (P ′
1, Q2), the timer transition

P ′
1

τr,40r→ P ′
3 will fire first. There is a simulating experiment Q4

τs,40s⇒ Q5 and
(P ′

3, Q5) ∈ S. After this step r = 80 and t = 80.
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– (P ′
3, Q5) there is a transition P ′

3

b〈y〉→ P ′
1 for which a simulating experiment

Q5
b〈y〉⇒ Q6 exists and (P ′

1, Q6) ∈ S.
– (P ′

1, Q6) at this point in time, the timer transition P ′
1

ds,100s,r→ P ′
2 will fire first,

for which a simulating experiment Q6
dt,20t⇒ Q1 exists and (P ′

2, Q1) ∈ S. These
two times are visible actions, whose execution point in time coincide at time
100, because in P : s + 100 = 100, and in Q: t + 20 = 100. Hence these two
timers are timely congruent according to the chronological sequence of events
and the valuation of previous time variables. After this step r = s = 100 and
t = 100.

– (P ′
2, Q1) there is a transition P ′

2

a(x)→ P ′
1 for which a simulating experiment

Q1
a(x)⇒ Q2 exists and ∀u, (P ′

1 {u/x} , Q2) ∈ S.
We can say that Q weakly simulates P . Let us consider the inverse relation:

S−1 = {(Q1, P1), (Q2, P2), (Q3, P
′
3), (Q4, P

′
1), (Q5, P

′
3), (Q6, P

′
1), (Q1, P

′
2), (Q2, P

′
1)}

The same argumentation about these two processes fulfilling the alpha-conversion
condition on input action because of x forgetfulness applies. We consider each
pair of S−1:

– (Q1, P1) we have a transition Q1
a(x)→ Q2 for which a simulating experiment

P1
a(x)⇒ P2 exists and ∀u, (Q2 {u/x} , P2) ∈ S.

– (Q2, P2) we have a transition Q2
τ t,40t→ Q3 for which a simulating experiment

P2
τr,40r⇒ P ′

3 exists and (Q3, P
′
3) ∈ S. After this step r = 40 and t = 40 (s is

zero by default).

– (Q3, P
′
3) we have a transition Q3

b〈y〉→ Q4 for which a simulating experiment

P ′
3

b〈y〉⇒ P ′
1 exists and (Q4, P

′
1) ∈ S.

– (Q4, P
′
1) we have a transition Q4

τ t,40t→ Q5 for which a simulating experiment

P ′
1
τr,40r⇒ P ′

3 exists and (Q5, P
′
3) ∈ S. After this step r = 80 and t = 80.

– (Q5, P
′
3) we have a transition Q5

b〈y〉→ Q6 for which a simulating experiment

P ′
3

b〈y〉⇒ P ′
1 exists and (Q6, P

′
1) ∈ S.

– (Q6, P
′
1) we have a transition Q6

τ t,20t→ Q1 for which a simulating experiment

P ′
1

τs,100s,r⇒ P ′
2 exists and (Q1, P

′
2) ∈ S. After this step s = r = 100 and t = 100.

– (Q1, P
′
2) we have a transition Q1

a(x)→ Q2 for which a simulating experiment

P ′
2

a(x)⇒ P ′
1 exists and ∀u, (Q2 {u/x} , P ′

1) ∈ S.
– (Q2, P

′
1) we have a transition Q2

τ t,40t→ Q3 for which a simulating experiment

P ′
1
τr,40r⇒ P ′

3 exists and (Q3, P
′
3) ∈ S. After this step r = 140 and t = 140.

The proof concludes inductively since these processes are endless loops and
the values of r, s and t increase continuously. We conclude then that P weakly
simulates Q as well, and hence, S is a weak bisimulation. �
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For weak bisimulation, the invisible timers don’t have to coincide. The above
example however, shows that even the timed τ instances do coincide. This is just
because we specified a timed behavior in Figure10 which two different implemen-
tations must fulfill, not because invisible timers have to be timely congruent. A
modified process Q′ as follows:

Q′
1 ::= a(x) · dt · b〈y〉 · b〈y〉 · dt,100t ·Q′

1

will also prove to be weakly bisimilar to P . As a matter of fact, weak bisimulation
does not convey all the information about the timing properties of bisimilar pro-
cesses because it ignores tau actions (timed or non-timed) and does not consider
the values of time parameters. However, book-keeping of current values of time
variables must continue in order to be able to evaluate congruence of subsequent
visible timers. Weak bisimulation is suitable for relaxed timed behavior that can
be ignored.

Example 312. Timed vs. untimed processes A scenario where weak bisim-
ulation might be undesirable or insufficient is when a process like

R ::= a(x) · b〈y〉 · b〈y〉 ·R

also proves to be bisimilar to either of P or Q of the example above. It is easy
to see from Figure 12 that R≈̇Q, however, we do not spare the proof. We start
by generating the binary relation

S ′ = {(Q1, R1), (Q2, R2), (Q3, R2), (Q4, R3), (Q5, R3), (Q6, R1)}
and consider each pair in it:

– (Q1, R1) for the transition Q1
a(x)→ Q2 there exists a simulating experiment

R1
a(x)⇒ R2 and since both processes are x forgetful ∀u, (Q2 {u/x} , R2) ∈ S ′.

– (Q2, R2) for the transition Q2
τs,40s→ Q3 there exists a zero-length experiment

from R2 and (Q3, R2) ∈ S ′.

– (Q3, R2) for the transition Q3
b〈y〉→ Q4 there exists a simulating experiment

R2
b〈y〉⇒ R3 and (Q4, R3) ∈ S ′.

– (Q4, R3) for the transition Q4
τs,40s→ Q5 there exists a zero-length experiment

from R3 and (Q5, R3) ∈ S ′.

– (Q5, R3) for the transition Q5
b〈y〉→ Q6 there exists a simulating experiment

R3
b〈y〉⇒ R1 and (Q6, R1) ∈ S ′.

– (Q6, R1) for the transition Q6
τs,20s→ Q1 there exists a zero-length experiment

from R1 and (Q1, R1) ∈ S ′.

We conclude that R1 weakly simulates Q1.

We consider now the inverse binary relation

S ′−1
= {(R1, Q1), (R2, Q2), (R2, Q3), (R3, Q4), (R3, Q5), (R1, Q6)}

and discuss each pair in it:
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Fig. 12. Weak bisimulation between timed and untimed processes

– (R1, Q1) for the transition R1
a(x)→ R2 there exists a simulating experiment

Q1
a(x)⇒ Q2 and since both processes are x forgetful ∀u, (R2 {u/x} , Q2) ∈ S ′.

– (R2, Q2) for the transition R2
b〈y〉→ R3 there exists a simulating experiment

Q2
b〈y〉⇒ Q4 and (R3, Q4) ∈ S ′.

– (R2, Q3) for the transition R2
b〈y〉→ R3 there exists a simulating experiment

Q3
b〈y〉⇒ Q4 and (R3, Q4) ∈ S ′.

– (R3, Q4) for the transition R3
b〈y〉→ R1 there exists a simulating experiment

Q4
b〈y〉⇒ Q6 and (R1, Q6) ∈ S ′.

– (R3, Q5) for the transition R3
b〈y〉→ R1 there exists a simulating experiment

Q5
b〈y〉⇒ Q6 and (R1, Q6) ∈ S ′.

– (R1, Q6) for the transition R1
a(x)→ R2 there exists a simulating experiment

Q6
a(x)⇒ Q2 and ∀u, (R2 {u/x} , Q2) ∈ S ′.

Then Q1 weakly simulates R1, and hence R1≈̇Q1. Since bisimulation is transitive
then R1≈̇P1 too. This example represents the extreme case of untimed process
simulating another one with completely hidden timing. �

Strong bisimulation In contrast to weak bisimulation, strong bisimulation
assumes that that all actions are visible and requires that each visible action
from one side to be matched exactly by the same action on the other side. We
need to use a modified version of strong equivalence to study bisimilarity between
processes with visible timed actions d. This is because we have to consider the
actual execution time (in other words the parameters) of these actions rather
than just the semantics (relative vs. absolute) of them. We study the properties
of timed structural congruence and strong simulation to integrate our structural
congruence rules into the classical π-calculus congruence rules. As a basis, we take
the classic theorem and prove the correctness under the rules of Definition 310.
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Theorem 313 (extending [10, 12.8]). If P
α→ A and P

τ≡ Q, then there exists

B such that Q
α→ B and A

τ≡ B. Hence
τ≡ is a strong bisimulation.

Proof. For each possible last step of inference of commitment P
α→ A, all possible

congruences P
τ≡ Q that result from a single application of a timed structural

congruence rule must be proved (we do not reprove classic rules but build on them
instead). The general case of congruences that result from multiple applications
of structural congruence rules can be followed by iterating the special case. we
assume in all proof parts that the clock process C(d) exists and reacts with
the processes in question. Since the absolute timer dp can be generalized to the
relative one d0,p, there is no need to make separate proofs for each of them. In
addition, ds is an input action and follows classic π-calculus congruence rules by
default, therefore it needs no special proof here.

SUMC

M + αA+N
α→ A

We assume that M + αA+N is P . Regarding timed structural congruence,
there are several ways in which Q will be structurally congruent with P :

– α is d
q,p

and Q = M + d
q′,p′

A+N where d
q,p τ≡ d

q′,p′
. In this case, Q will

take the transition Q
d
q′,p′

→ A at the same time as P would take P
d
q,p

→ A
and since no alpha-conversion takes place here we can directly say that
the two resulting agents are structurally congruent as well.

– assume that ṫ �= q + p. We take P to be d
q,p

B + αA + N , and we take
Q to be 0 + αA+N . As long as ṫ is not equal to q + p and according to

Rule 2 of timed structural congruence we get Q
τ≡ P , and both processes

will take the same commitment
α→ to the same agent A.

L-PARC

P
α→ A

P | Q α→ A | Q
– assume R = P |Q. For some process S to be structurally congruent with R

we assume that S = P ′|Q where P ′ τ≡ P using one of the timed structural
congruence rules:

• using Rule 1 of timed structural congruence: we assume α = d
q,p

, and

P ′ d
q′,p′

→ A′ where d
q′,p′ τ≡ d

q,p
. The inference tree becomes:

P ′ d
q′,p′

→ A′

P ′ | Q d
q′,p′
→ A′ | Q

L-PARc

We take R′ to be A|Q and S′ to be A′|Q. By induction we conclude
A′ ≡ A and hence S′ ≡ R′.

• using Rule 2 of timed structural congruence: P
α→ A as long as ṫ �= q+p

and P ′ τ≡ P under this condition, then P ′ α→ A′ and using L-PARC

we get S
α→ A′|Q. By induction we get A′ ≡ A and then S′ ≡ R′.
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R-PARC

Q
α→ A

P | Q α→ P | A
The proof proceeds similar to L-PARC for all three timed operators d

q,p
, d

p

and ds.
RESC

P
α→ A

new x P
α→ new x A

if α /∈ {x, x}

In principle, all names in timed action prefixes in their public form d
q,p

, d
p

and ds are not restricted to the process scope in order to keep them visible
to the external observer. Therefore we consider that the condition α /∈ {x, x}
is always fulfilled for these actions.

– if α = d
q,p

and P
d
q,p

→ A we take R to be new x P . For some process S to
be structurally congruent with R using timed structural congruence rules
we have the following possibilities:

• by taking S = new x P ′ where P ′ and P are timely congruent accord-
ing to Rule 1 of timed structural congruence. Then by RESC P ′ offers

the commitment P ′ d
q′,p′

→ A′ where d
q′,p′ τ≡ d

q,p
and n(d

q′,p′
) /∈ {x, x}.

By induction we get that A′ ≡ A, and by taking R′ to be new x A
and S′ to be new x A′ then R′ ≡ S′ too.

• using Rule 2 of timed structural congruence: P
α→ A as long as ṫ �= q+p

and P ′ τ≡ P under this condition, then P ′ α→ A′. By induction, A′ τ≡ A.
Assume S to be new x P ′, then S

α→ A′ using the RESC commitment
rule. Same as above, we conclude that A′ ≡ A, and R′ ≡ S′.

REPC

P |!P α→ A

!P
α→ A

We have defined clocks to be replicated timed processes. However, depending
on the application we want to model, client processes can be replicated too.

– assume α = d
q,p

and R = P |!P . Then there is P ′ τ≡ P such that P ′ d
q′,p′

→ A′

and d
q′,p′ τ≡ d

q,p
according to Rule 1 of timed structural congruence. By

induction we get A ≡ A′. Take Q = P ′|!P ′ then according to aboveQ
τ≡ R.

Since P ′ d
q′,p′

→ A′ we conclude Q
d
q′,p′

→ A′, and therefore !P ′ d
q′,p′

→ A′. We
take Q′ to be !P ′ and R′ to be !P , then Q′ ≡ R′ as required.

– we assume there is P ′ τ≡ P according to Rule 2 of timed structural con-
gruence. As long as ṫ is not equal to the time threshold of d in P , then
P ′ and P are equally committed to α. Under this very condition, we take

R = P |!P and Q = P ′|!P ′ and hence Q
τ≡ R. Analogously we get Q′ ≡ R′

by taking Q′ =!P ′ and R′ =!P . By induction on P
α→ A and P ′ α→ A′ we

get A′ ≡ A.

PRIO-AC

Q
α→ Q′ C(d)

d(q,p)→ C(d)

C(d) | Q | (d〈q, p〉P + αR)
τq,p→ C(d) | Q | 〈q, p〉P

if ṫ = q + p
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We assume S is C(d)|Q|(d〈q, p〉P +αR) and S′ is C(d)|Q|〈q, p〉P . For T to be
structurally congruent with S using a single application of timed structural
congruence rules we have the following cases:

– using Rule 1 of timed structural congruence T can only beC(d)|Q|(d〈q′, p′〉P+

αR) where d〈q+p〉 τ≡ d〈q′, p′〉. The commitment d〈q′, p′〉P d〈q′,p′〉→ 〈q′, p′〉P
indicates the induction 〈q, p〉P ≡ 〈q′, p′〉P . We finally take T ′ to be
C(d)|Q|〈q′, p′〉P and we get S′ ≡ T ′.

– using Rule 2 of timed structural congruence T can be C(d)|Q|(0 + αR).

T
τ≡ S as long as ṫ �= q+p. This congruence rule is irrelevant for PRIO-AC

because time predicates are opposites.

PRIO-PC

Q
α→ Q′ C(d)

d〈ṫ〉→ C(d)

!C(d) | Q | (d(s)P + αR)
τs→ C(d) | Q | (s)P

The congruence of sub process d(s)P and hence the congruence of C(d)|Q|(d(s)P+
αR) with some other processes is not different from the classic cases of input
action prefixes that leave abstractions behind. These cases are dealt with in
the classic commitment theory of π-calculus.

Having covered all possibilities for timed congruence we conclude that timed
congruence respects commitment rules.

In conjunction with Theorem 5.13 in [10] we conclude that timed structural
congruence is strong bisimulation.

The integration of timed operators in π-calculus continues smoothly without
impact on Lemma 12.9, Lemma 12.10 and Theorem 12.11 of [10] so that we can
define timed strong bisimulation as a strong equivalence. This property comes
from Definition 12.13 of [10]:

Definition ([10, 12.13]). Strong simulation A binary relation S over Pπ is a
strong simulation if, whenever PSQ,
if P

α→ A then there exists B such that Q
α→ B and ASB.

If both S and its converse are strong simulations then S is a strong bisimulation.
Two agents A and B are strongly equivalent, written A ∼ B, if the pair (A,B)
is in some strong bisimulation.

Since our contribution does not alter the concept of agents in π-calculus,
the above definition is also valid for πτ -calculus. The elaborate case here is the
passive time operators τs and ds for which the equivalence rule for abstractions
should hold in our extended calculus as well. This rule says that if F = (s).P
and G = (s).Q are abstractions then they are bisimilar if F ∼ G and {s/x}P ∼
{s/x}Q. In Examples 311 and 312 we were lucky to have x forgetful processes,
which only made the proof simpler. However, care should be taken when proving
simulations that involve the passive time operator, which is no difference from
classic simulation in π-calculus. The case of concretions (relevant for absolute
and relative timing operators) is harmless since no alpha-conversion takes place
in the local process.
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Example 314. Let’s consider the sensor process in Example 33. We rewrite6

this process in its absolute and relative formats using the visible time operator
d instead of τ .

S′(p) ::= dt+p
t · c〈d〉 · c(a) · S′〈p〉+ c(r) · dt · S′〈p〉

S′′(t, p) ::= dt,p · c〈d〉 · c(a) · S′′〈t+ p, p〉+ c(r) · dt · S′′〈t, p〉

After detaching the sequential compositions of S(p) and S(t, p) we can easily cre-
ate S:

S′(p) ::= dt+p
t · S′

1 + c(r) · S′
3

S′
1 ::= c〈d〉 · S′

2

S′
2 ::= c(a) · S′〈p〉

S′
3 ::= dt · S′〈p〉

S′′(t, p) ::= dt,p · S′′
1 + c(r) · S′′

3

S′′
1 ::= c〈d〉 · S′′

2

S′′
2 ::= c(a) · S′′〈t+ p, p〉

S′′
3 ::= dt · S′′〈t, p〉
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Fig. 13. Strong bisimulation between timed processes

S = {(S′, S′′), (S′
1, S

′′
1 ), (S

′
2, S

′′
2 ), (S

′
3, S

′′
3 )}

By looking at Figure 13 it is obvious that for most state pairs the commitments
are simulated in both directions (the inverse relation S−1 too). Because of the
different time schemes however, we would like to verify that (S′, S′′) correctly
simulate each other through the two timed action prefixes dt,pt and dt+p. From
state S′ the execution time of d is t+ p after which t presumes that value. The
next execution round takes place when the process finishes the loop and goes
back to S′ where the timed action dt+p

t will be enabled with the execution time
set to t+p+p because of alpha conversion of t. From state S′′ the execution time
of dt,p is p relative to t which is t+ p, which is same as above. Alpha conversion
of t takes place later when the process is recursively invoked with S′′〈t + p, p〉,
which sets the next execution time of d to t+ p+ p.

We also would like to verify that (S′
3, S

′′
3 ) and its counterpart in S−1 also

perform their timed actions in a correctly simulated fashion. From S′
3, t will

be alpha converted to the current time and the next execution time of d after
invoking S′〈p〉 becomes t+p. From S′′

3 using the same mechanism, t assumes the
value of the current time and the next execution time of d after invoking S′′〈t, p〉
becomes t+ p as well. We can safely say, that S′ and S′′ strongly simulate each
other because they imitate the behavior (timed and untimed) faithfully. �
6 We simplified the processes and also did some renaming to preserve space.
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Example 315. Let’s consider the timed behavior in Figure 10. We want to
show how this behavior can be achieved with global clocks only, which means
that there are no silent timers. We assume a global clock C(d), and re-declare P
and Q from Example 311 without internal (or private) clocks as follows:

P1 ::= a(x) · ds,r · P ′
1

P ′
1 ::= ds,100s,r · a(x) · P ′

1 + dr,40r · b〈y〉 · P ′
1

Q1 ::= a(x) · dt,40t · b〈y〉 · dt,40t · b〈y〉 · dt,20t ·Q1

For an external observer, the two processes behave as follows:
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Fig. 14. Strong timed bisimulation

We build the binary relation S that represents all related states of P and Q:

S = {(P1, Q1), (P2, Q2), (P
′
3, Q3), (P

′
1, Q4), (P

′
3, Q5), (P

′
1, Q6), (P

′
2, Q1), (P

′
1, Q2)}

since all processes are x forgetful, we can consider that the condition ∀u∃Q′ :
Q′′ {u/x} ⇒ Q′ ∧ P ′ {u/x}RQ′ for input actions is always fulfilled. We consider
each pair of S:

– (P1, Q1) there is a transition P1
a(x)→ P2 for which a simulating transition

Q1
a(x)→ Q2 exists and ∀u, (P2 {u/x} , Q2) ∈ S.

– (P2, Q2) after reducing the sequence ds,r·dr,40r to dt̃,40r as discussed in Lemma 38,

the transition P2
dt̃,40r→ P ′

3 has a simulating transition Q2
dt,40t→ Q3 and (P ′

3, Q3) ∈
S. After this step s = 0, r = 40 and t = 40.

– (P ′
3, Q3) there is a transition P ′

3

b〈y〉→ P ′
1 for which a simulating transition

Q3
b〈y〉→ Q4 exists and (P ′

1, Q4) ∈ S.
– (P ′

1, Q4) there is a transition P ′
1

dr,40r→ P ′
3 for which a simulating transition

Q4
ds,40s→ Q5 and (P ′

3, Q5) ∈ S. After this step r = 80 and t = 80.
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– (P ′
3, Q5) there is a transition P ′

3

b〈y〉→ P ′
1 for which a simulating transition

Q5
b〈y〉→ Q6 exists and (P ′

1, Q6) ∈ S.
– (P ′

1, Q6) there is a transition P ′
1

ds,100s,r→ P ′
2 for which a simulating transition

Q6
ds,20s→ Q1 exists and (P ′

2, Q1) ∈ S. These two times are visible actions, whose
execution point in time coincide at time 100, because in P : s+100 = 100, and
in Q: s + 20 = 100. Hence these two timers are timely congruent, according
to the chronological sequence of events and the valuation of previous time
variables. After this step r = s = 100 and t = 100.

– (P ′
2, Q1) there is a transition P ′

2

a(x)→ P ′
1 for which a simulating transition

Q1
a(x)→ Q2 exists and ∀u, (P ′

1 {u/x} , Q2) ∈ S.
– (P ′

1, Q2) there are two timer transitions simultaneously available from P ′
1.

Again, the timer with the shorter time-out value will win. With regard to

the sequence of events till now, the timer transition P ′
1

dr,40r→ P ′
3 will fire first.

For this transition, there exists a simulating transition Q2
ds,40s→ Q3 exists and

(P ′
3, Q3) ∈ S. After this step r = 140 and t = 140.

We can say that Q strongly simulates P . Let us consider the inverse relation:

S−1 = {(Q1, P1), (Q2, P2), (Q3, P
′
3), (Q4, P

′
1), (Q5, P

′
3), (Q6, P

′
1), (Q1, P

′
2), (Q2, P

′
1)}

The same argumentation about these two processes fulfilling the alpha-conversion
condition on input action because of x forgetfulness applies. We consider each
pair of S−1:

– (Q1, P1) we have a transition Q1
a(x)→ Q2 for which a simulating transition

P1
a(x)→ P2 exists and ∀u, (Q2 {u/x} , P2) ∈ S.

– (Q2, P2) we have a transition Q2
dt,40t→ Q3 for which a simulating transition

P2
dt̃,40r→ P ′

3 exists (the result of reducing ds,r · dr,40r ) and (Q3, P
′
3) ∈ S. After

this step s = 0, r = 40 and t = 40.

– (Q3, P
′
3) we have a transition Q3

b〈y〉→ Q4 for which a simulating transition

P ′
3

b〈y〉→ P ′
1 exists and (Q4, P

′
1) ∈ S.

– (Q4, P
′
1) we have a transition Q4

dt,40t→ Q5 for which a simulating transition

P ′
1
dr,40r→ P ′

3 exists and (Q5, P
′
3) ∈ S. After this step r = 80 and t = 80.

– (Q5, P
′
3) we have a transition Q5

b〈y〉→ Q6 for which a simulating transition

P ′
3

b〈y〉→ P ′
1 exists and (Q6, P

′
1) ∈ S.

– (Q6, P
′
1) we have a transition Q6

dt,20t→ Q1 for which a simulating transition

P ′
1

ds,100s,r→ P ′
2 exists and (Q1, P

′
2) ∈ S. After this step s = r = 100 and t = 100.

– (Q1, P
′
2) we have a transition Q1

a(x)→ Q2 for which a simulating transition

P ′
2

a(x)→ P ′
1 exists and ∀u, (Q2 {u/x} , P ′

1) ∈ S.
– (Q2, P

′
1) we have a transition Q2

dt,40t→ Q3 for which a simulating transition

P ′
1
dr,40r→ P ′

3 exists and (Q3, P
′
3) ∈ S. After this step r = 140 and t = 140.
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The above proof concludes inductively on the endless loop of these two pro-
cesses. We conclude then that P strongly simulates Q as well, and hence, S is a
strong bisimulation. �

4 Discrete πτ -Calculus

Up till now, all time variables and values were in the real number domain R≥0.
However, it is desirable to model time in the discrete domain N0. We understand
discrete time in the context of simulation; it is a time abstraction technique to
facilitate building tools that simulate timed systems on computing machines. We
adopt the notion of time slices as declared by [1, p. 661], that is:

“in time slice n+1” means “at some time point p such that n ≤ p < n+1”.

Because of the minimal design of πτ -calculus, the impact of discrete time on it is
minimal too. In the following we present the contribution of that to the signature
and structural congruence rules.

4.1 Signature of Discrete πτ -Calculus

In discrete πτ -Calculus, we use the following symbology: ṫ is the current time
slice of the reference clock and it ranges over N0. dq,p, dp, ds, d

q,p
s , τ q,p, τp and

τ s, are the absolute, relative and passive visible and invisible time action prefixes
(or timers) whose parameters q, p and s range over N0. We use πτ to reference
the set of all timed action prefixes which is a subset of π. If available, superscript
parameters define when the timer should fire according to the reference clock, and
subscript parameters are alpha-converted on execution time to hold the current
value of ṫ. The same applies to cq,ps , cps and cs that reference internal discrete clocks
of their processes. Cτ is the set of all constraints in which �	 ∈ {<,>,≤,≥,=, �=}
is the comparison operator.

4.2 Structural Congruence in Discrete πτ -Calculus

Aside from using natural numbers to represent time, there is principally no dif-
ference to the real-time structural congruence rules.

Definition 41. Rules for discrete timed structural congruence Let η be
either τ or d,

1. let
∏

i∈I Ciη
qi,pi
i

and
∏

j∈J Cjη
qj ,pj
j be non-blocking sequences of which CIηI

and CJηJ are the reductions concluded according to Lemma 38. We consider
∏

i∈I Ciη
qi,pi
i

τ≡ ∏
j∈J Cjη

qj ,pj
j if qnI

+ pnI
= qnJ

+ pnJ
, where nI = |I| and

nJ = |J | and if Ω(N0, CI , ηI) = Ω(N0, CJ , ηJ). The same applies to absolute
time operators by implicitly taking all qi and qj to be zero.

2. ηq,p
τ≡ 0 if q + p �= ṫ, where ṫ is the current time of the reference clock. As

above, the same applies to absolute time operators by taking q to be zero.

We see similarity between the axiomatization of BPAsat and BPAdat - the
algebra for real-time and discrete process algebra in [1] respectively - which is
no surprise to us.
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4.3 Observation equivalence & process congruence

By atomic replacement of real-time structural congruence by the discrete struc-
tural congruence, we build the same weak and strong bisimulation for discrete
πτ -calculus as before.
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recent network simulators: A performance evaluation study

2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving

2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems

2008-19 Dirk Wilking: Empirical Studies for the Application of Agile Methods to

Embedded Systems

2009-02 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Quantitative Model Checking of Continuous-Time Markov Chains

Against Timed Automata Specifications

35

http://aib.informatik.rwth-aachen.de/


2009-03 Alexander Nyßen: Model-Based Construction of Embedded

Real-Time Software - A Methodology for Small Devices

2009-04 Daniel Klünder: Entwurf eingebetteter Software mit abstrakten Zus-

tandsmaschinen und Business Object Notation

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-

erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-

dependent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm

Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the

Correctness of the Upper Bound of a Maximum Independent Set Algo-

rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The

Longest Path Problem is Polynomial on Interval Graphs
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brenik, René Thiemann: Automated Termination Analysis for Logic Pro-

grams with Cut

2010-11 Martin Zimmermann: Parametric LTL Games
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