
Aachen
Department of Computer Science

Technical Report

Solving Muller Games

via Safety Games

Daniel Neider, Roman Rabinovich, and Martin Zimmermann

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2011-14

RWTH Aachen · Department of Computer Science · July 2011

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Solving Muller Games via Safety Games⋆

Daniel Neider1, Roman Rabinovich2, and Martin Zimmermann1

1 Lehrstuhl für Informatik 7, RWTH Aachen University, Germany
{neider,zimmermann}@automata.rwth-aachen.de

2 Mathematische Grundlagen der Informatik, RWTH Aachen University, Germany
rabinovich@logic.rwth-aachen.de

Abstract. We show how to transform a Muller game with n vertices into a safety
game with (n!)3 vertices whose solution allows to determine the winning regions
of the Muller game and a winning strategy for one player.

1 Introduction

Infinite two-player games are a powerful tool in the automated verification and
synthesis of non-terminating systems that have to interact with an antagonistic
environment. There are also deep connections between infinite games and logical
formalisms like fixed-point logics or automata on infinite objects. In such a game,
two players move a token through a finite graph, thereby constructing a play
which is an infinite path. The winner is determined by a winning condition,
which partitions the set of infinite paths in a graph into those that are winning
for Player 0 and those that are winning for Player 1. Typically, the winner of a
play is only determined after infinitely many steps.

Nevertheless, in some cases it is possible to give a criterion to define a finite-
duration variant of an infinite game. Such a criterion stops a play after a finite
number of steps and then declares a winner based on the finite play constructed
thus far. It is called sound if Player 0 has a winning strategy for the infinite-
duration game if and only if Player 0 has one for the finite-duration game.

It is easy to see that there is a sound criterion for positionally determined
games: the players move the token through the arena until a vertex is visited
for the second time. An infinite play can then be obtained by assuming that the
players continue to play the loop that they have constructed, and the winner of
the finite play is declared to be the winner of this infinite continuation.

For parity games (say, min-parity), Bernet, Janin, and Walukiewicz [1] gave
another sound criterion based on the following observation: let nc be the number
of vertices with priority c. If a play visits nc + 1 vertices with odd priority c
without visiting a smaller even priority in between, then the play has closed
a loop which is losing for Player 0, assuming it is traversed from now on ad
infinitum. However, no positional winning strategy can allow such a loop. Thus,
Player 0 can prove that she has a winning strategy by allowing a play to visit
an odd priority c at most nc times without seeing a smaller even priority in
between. This condition can be turned into a safety game whose solution allows
to determine the winning regions of the parity game and a winning strategy for
one of the players.

⋆ This work was supported by the projects Games for Analysis and Synthesis of Interactive
Computational Systems (GASICS) and Logic for Interaction (LINT) of the European Science
Foundation.

In games that are not positionally determined, the situation gets more in-
teresting since a player might have to pick different successors when a vertex is
visited several times. Therefore, the players have to play longer before the play
can be stopped and analyzed. Previous work considers Muller games which are of
the form (A,F0,F1), where A is a finite arena and (F0,F1) is a partition of the
set of loops in the arena. Player i wins a play if the set of vertices visited infinitely
often is in Fi. Muller winning conditions are able to express all ω-regular winning
conditions and subsume all other winning conditions that depend only on the
infinity set of a play (e.g., Büchi, co-Büchi, parity, Rabin, or Streett conditions).

To give a sound criterion for Muller games, McNaughton [7] defined for every
loop F ∈ F0∪F1 a scoring function ScF that keeps track of the number of times
the set F was visited entirely (not necessarily in the same order) since the last
visit of a vertex that is not in F . In an infinite play, the set of vertices seen
infinitely often is the unique set F such that ScF tends to infinity after being
reset to 0 only a finite number of times.

McNaughton proved the following criterion to be sound [7]: stop a play as
soon as for some set F a score of |F |! + 1 is reached, and declare the winner to
be the Player i such that F ∈ Fi. However, it can take a large number of steps
for a play to reach a score of |F |! + 1, as scores may increase slowly or be reset
to 0. It can be shown that a play can be stopped by this criterion after at most
∏|A|

j=1
(j!+1) steps and there are examples in which it takes at least 1

2

∏|A|
j=1

(j!+1)
steps before the criterion declares a winner.

Also, a game reduction from Muller games to parity games provides another
sound criterion. The reduction constructs a parity game of size |A| · |A|!, and
since parity games are positionally determined, a winner can be declared after the
players have constructed a loop in the parity game. This gives a sound criterion
that stops a play after at most |A| · |A|! + 1 steps.

Both results were improved by showing that stopping a play after a score of 3
is reached for the first time is sound [2]. This criterion stops a play after at most
3|A| steps, and there are examples where this number of steps is necessary. The
result is proven by constructing a winning strategy for Player i that bounds the
opponent’s scores by 2, provided the play starts in the winning region of Player i.
Such a strategy ensures that Player i is the first to achieve a score of 3, as not
all scores can be bounded. Thus, to determine the winner of a Muller game, it
suffices to solve a finite reachability game in a tree of height 3|A|.

However, this game only allows to determine the winner, but does not yield
winning strategies, as each play ends after a bounded number of steps. We over-
come this drawback by exploiting the existence of strategies that bound the
losing player’s scores. This implies that the winner of a Muller game can also
be determined by solving a safety game. In this game, the scores of Player 1 are
kept track of and Player 0 wins, if her opponent never reaches a score of 3. In this
work, we analyze this safety game and show that one can turn the winning re-
gion of the player that has to bound the scores of her opponent into a finite-state
winning strategy for her in the Muller game.

The size of the resulting safety game (and, thus, also the size of the finite-
state winning strategy) is at most (|A|!)3. This is only polynomially larger than
the parity game of size |A| · |A|! constructed in the game reduction mentioned

4

above. Although our safety game is polynomially larger than the parity game, it
is simpler and faster to solve than the latter.

The scores induce a partial order on the positions of the safety game. We also
prove that it suffices to consider the maximal elements of this order to define a
finite-state winning strategy for the player that tries to bound the scores of her
opponent. This antichain approach is subject to further research that should
estimate how much smaller this finite-state winning strategy can be.

We want to stress that our construction is not a proper game reduction,
which would provide winning strategies no matter which player wins. Here, we
only obtain a winning strategy for the player trying to avoid a score of 3. If the
opponent is able to reach a score of 3, then the play stops immediately. Thus, not
every play in the Muller game has a corresponding play in the safety game, as
it is required in a game reduction. In fact, a game reduction from Muller games
to safety or reachability games is impossible, as it would induce a continuous
function mapping the winning plays of the Muller game to the winning plays
of a safety or reachability game. Such a mapping cannot exist, since the set of
winning plays of a Muller game is on a higher level of the Borel hierarchy than
the set of winning plays of a safety or reachability game.

The remainder of this report is structured as follows: in Section 2 we introduce
our notation, and in Section 3 we define the scoring functions for Muller games.
Then, in Section 4 we show how to solve a Muller game (i.e., how to determine
the winning regions and compute a winning strategy) by solving a safety game. In
this context, we present an alternative way to compute a winning strategy based
on antichains in Section 4.1 and discuss how to reduce the number of memory
states needed to define a winning strategy in Section 4.2. Finally, Section 5
contains a brief conclusion.

2 Definitions

The power set of a set S is denoted by 2S and N denotes the non-negative
integers. The prefix relation on words is denoted by ⊑. Given a word w = xy,
define wy−1 = x. For a non-empty word w = w1 · · ·wn, we define Last(w) = wn.

An arena A = (V, V0, V1, E) consists of a finite, directed graph (V,E) without
terminal vertices and a partition {V0, V1} of V denoting the positions of Player 0
(drawn as circles or rectangles with rounded corners) and Player 1 (drawn as
squares or rectangles). We require every vertex to have an outgoing edge to avoid
the nuisance of dealing with finite plays. The size |A| of A is the cardinality of V .
A loop C ⊆ V in A is a strongly connected subset of V , i.e., for every v, v′ ∈ C
there is a path from v to v′ that only visits vertices in C.

A safety game G = (A, F) consists of an arena A and a set F ⊆ V . A Muller
game G = (A,F0,F1) consists of an arena A and a partition {F0,F1} of the set
of loops in A.

A play in A starting in v ∈ V is an infinite sequence ρ = ρ0ρ1ρ2 . . . such that
ρ0 = v and (ρn, ρn+1) ∈ E for all n ∈ N. The occurrence set Occ(ρ) and infinity
set Inf(ρ) of ρ are given by Occ(ρ) = {v ∈ V | ∃n ∈ N such that ρn = v} and
Inf(ρ) = {v ∈ V | ∃ωn ∈ N such that ρn = v}. We also use the occurrence set of
a finite play w, which is defined straightforwardly. The infinity set of a play is
always a loop in the arena.

5

A play ρ is winning for Player 0 in a safety game if Occ(ρ) ⊆ F , and it is
winning for Player 0 in a Muller game if Inf(ρ) ∈ F0. A play in any game is
winning for Player 1 if it is not winning for Player 0, i.e., ρ leaves F in case of a
safety game or Inf(ρ) ∈ F1 in case of a Muller game.

A strategy for Player i is a mapping σ : V ∗Vi → V such that (v, σ(wv)) ∈ E
for all wv ∈ V ∗Vi. We say that σ is positional if σ(wv) = σ(v) for every wv ∈
V ∗Vi. A play ρ0ρ1ρ2 . . . is consistent with σ if ρn+1 = σ(ρ0 · · · ρn) for every n
with ρn ∈ Vi. A strategy σ for Player i is a winning strategy from a set of
vertices W ⊆ V if every play that starts in v ∈ W and is consistent with σ is
won by Player i. The winning region Wi(G) of Player i in a game G contains all
vertices of the game’s arena from which Player i has a winning strategy. A game
is determined if {W0(G),W1(G)} forms a partition of V .

A memory structure M = (M, Init,Upd,Nxt) for Player i in (V, V0, V1, E)
consists of a finite set of memory states M , a memory initialization function
Init : V → M , a memory update function Upd: M × V → M , and a next-
move function Nxt: Vi × M → V , which has to satisfy (v,Nxt(v,m)) ∈ E for
every v and every m. Upd can be extended to finite plays by defining Upd∗(v) =
Init(v) and Upd∗(wv) = Upd(Upd∗(w), v). The memory structure induces a
strategy σM for Player i via σM(wv) = Nxt(v,Upd∗(wv)). The size of M (and,
slightly abusive, of σM) is |M |. We say that a strategy is finite-state if it can be
implemented using a memory structure.

An arena A and a memory structure M = (M, Init,Upd) without next-move
function induce the expanded arena A×M = (V ×M,V0×M,V1×M,E′) where
((s,m), (s′,m′)) ∈ E′ if and only if (s, s′) ∈ E and Upd(m, s′) = m′. For every
play ρ = ρ0ρ1ρ2 . . . inA define the extended play ρ′ = (ρ0,m0)(ρ1,m1)(ρ2,m2) . . .
in A×M by m0 = Init(ρ0) and mn+1 = Upd(mn, ρn+1).

A game G with arena A is reducible to a game G′ with arena A′ via M =
(M, Init,Upd), written G ≤M G′, if A′ = A×M and every play ρ in G is won by
the player who wins the extended play ρ′ in G′.

Lemma 1. Let M = (M, Init,Upd). If G ≤M G′ and Player i has a positional
winning strategy σ for G′, then she also has a finite-state winning strategy induced
by a memory structure (M, Init,Upd,Nxt) for G, where Nxt is a suitable next-
move function induced by σ.

The set winM ⊆ V ω of winning plays of a Muller game is in general on a higher
level of the Borel hierarchy than the set winS ⊆ V ′ω of winning plays of a safety
game. Hence, in general, there exists no continuous (in the Cantor topology)
function f : V ω → V ′ω such that ρ ∈ winM if and only if f(ρ) ∈ winS (e.g.,
see [5]). Since the mapping from a play in A to a play in A×M is continuous,
one obtains the following impossibility result.

Remark 1. In general, Muller games can not be reduced to safety games.

Let A = (V, V0, V1, E) be an arena. The attractor for Player i of a set F ⊆ V

in A is AttrAi (F) =
⋃|V |

n=0An where A0 = F and

An+1 = An ∪{v ∈ Vi | ∃v
′ ∈ An such that (v, v′) ∈ E}

∪ {v ∈ V1−i | ∀v
′ ∈ V with (v, v′) ∈ E : v′ ∈ An} .

6

A set X ⊆ V is a trap for Player i if all outgoing edges of the vertices in Vi ∩X
lead to X and at least one successor of every vertex in V1−i ∩ X is in X, i.e.,
Player 1− i has a positional strategy to keep a play in X once it has entered the
trap. The following statement summarizes well-known facts about safety games.

Lemma 2. Let A be an arena with vertex set V and F ⊆ V .

1. Player i has a positional strategy to bring the play from every v ∈ AttrAi (F)
into F .

2. The set V \ AttrAi (F) is a trap for Player i in A.

A strategy as in the first statement is called attractor strategy. The previous
lemma directly implies that W1(G) = AttrA1 (V \ F) and W0(G) = V \ W1(G)
are the winning regions in the safety game G = (A, F). Thus, safety games are
determined with positional strategies.

Theorem 1 ([4]). Muller games are determined with finite-state strategies of
size |A| · |A|!.

3 Scoring Functions for Muller Games

We begin with some definitions and facts about scoring functions for Muller
games. A more detailed treatment can be found in [2, 7].

Let V be a set of vertices. For every F ⊆ V we define ScF : V + → N by

ScF (w) = max{k ∈ N |∃x1, . . . , xk ∈ V + such that

Occ(xi) = F for all i and x1 · · · xk is a suffix of w} .

The score of F of a play w measures how often F has been visited completely
since the last visit of a vertex that is not in F or since the beginning of w. Note
that if w is a play with ScF (w) ≥ 2, then F is a loop of the arena.

Next, we define the accumulator of a set F , which measures the progress made
towards the next score increase. For every F ⊆ V , we define AccF : V + → 2F

by AccF (w) = Occ(x), where x is the longest suffix of w such that ScF (w) =
ScF (wy

−1) for every suffix y of x, and Occ(x) ⊆ F . Intuitively, AccF (w) contains
the vertices of F seen since the last increase or the last reset of the score of F ,
depending on which occurred later. Hence, the accumulator of a set F is always
a strict subset of F .

Let us remark that the scores and accumulators of a play can be defined (and
computed) inductively as well.

Remark 2 (cf. [7]). Let w ∈ V +, v ∈ V , and ∅ 6= F ⊆ V .

1. We have Sc{v}(v) = 1 and Acc{v}(v) = ∅, and for every F 6= {v}: ScF (v) = 0
and AccF (v) = F ∩ {v}.

2. Let v /∈ F . Then we have ScF (wv) = 0 and AccF (wv) = ∅.
3. Let v ∈ F . If AccF (w) = F \ {v}, then we have ScF (wv) = ScF (w) + 1 and

AccF (wv) = ∅.
4. Let v ∈ F . If AccF (w) 6= F \ {v}, then we have ScF (wv) = ScF (w) and

AccF (wv) = AccF (w) ∪ {v}.

7

Finally, for every F ⊆ 2V , we define MaxScF : V + ∪ V ω → N ∪ {∞} by

MaxScF (ρ) = max
F∈F

max
w⊑ρ

ScF (w) .

Example 1. Consider the Muller game G = (A,F0,F1) where A is depicted in
Figure 1, F0 = {{0}, {2}, {0, 1, 2}} and F1 = {{0, 1}, {1, 2}}. By alternatingly
moving from 1 to 0 and to 2, Player 0 wins from every vertex, i.e., we have
W0(G) = {0, 1, 2}.

10 2

Fig. 1. The arena A.

To illustrate the definitions, consider the play w = 12210122 and the set
F = {1, 2}. We have that ScF (w) = 1, because 122 is the longest suffix of w that
is contained in F , and the entire set {1, 2} is seen once during this suffix. We
have AccF (w) = {2}, because only vertex 2 has been seen since the score of F
increased to 1. On the other hand, we have MaxSc{F}(w) = 2 because the prefix
w′ = 1221 of w has ScF (w

′) = 2. By visiting the vertex 0 the score of F is reset
to 0, e.g., we have ScF (12210) = 0.

In an infinite play ρ, Inf(ρ) is the unique set F such that ScF tends to infinity
while being reset to 0 only finitely often. This implies that every play ρ of a Muller
game satisfying MaxScF1−i

(ρ) < ∞ is winning for Player i.
We continue by giving a score-based preorder and an induced score-based

equivalence relation on finite plays in a Muller game.

Definition 1. Let F ⊆ 2V and w,w′ ∈ V +.

1. w is F-smaller than w′, denoted by w ≤F w′, if Last(w) = Last(w′) and for
all F ∈ F we have
– ScF (w) < ScF (w

′), or
– ScF (w) = ScF (w

′) and AccF (w) ⊆ AccF (w
′).

2. w and w′ are F-equivalent, denoted by w =F w′, if w ≤F w′ and w′ ≤F w.

Note that the condition w =F w′ is equivalent to Last(w) = Last(w′) and for
every F ∈ F the equalities ScF (w) = ScF (w

′) and AccF (w) = AccF (w
′) hold.

Thus, =F is an equivalence relation.
We conclude this section by showing that ≤F (and therefore also =F) is

preserved under concatenation, i.e., =F is a congruence.

Lemma 3. If w ≤F w′, then wu ≤F w′u for all u ∈ V ∗.

Proof. It suffices to show w ≤F w′ implies wv ≤F w′v for all v ∈ V . So, let
F ∈ F : if v /∈ F , then we have ScF (wv) = ScF (w

′v) = 0 and AccF (wv) =
AccF (w

′v) = ∅.
Now, suppose we have v ∈ F . First, consider the case ScF (w) < ScF (w

′):
then, either the score of F does not increase in wv and we have

ScF (wv) = ScF (w) < ScF (w
′) ≤ ScF (w

′v)

8

or the score increases in wv and we have

ScF (wv) = ScF (w) + 1 ≤ ScF (w
′) ≤ ScF (w

′v)

and AccF (wv) = ∅, due to the score increase. This proves our claim.
Now, consider the case ScF (w) = ScF (w

′) and AccF (w) ⊆ AccF (w
′). If

AccF (w) = F \ {v}, then also AccF (w
′) = F \ {v}, as the accumulator for

F can never be F . In this situation, we have

ScF (wv) = ScF (w) + 1 = ScF (w
′) + 1 = ScF (w

′v)

and AccF (wv) = AccF (w
′v) = ∅. Otherwise, we have

ScF (wv) = ScF (w) = ScF (w
′) ≤ ScF (w

′v) .

If ScF (w
′) < ScF (w

′v), then we are done. So, consider the case ScF (w
′) =

ScF (w
′v): we have AccF (wv) = AccF (w) ∪ {v} ⊆ AccF (w

′) ∪ {v} = AccF (w
′v),

due to AccF (w) ⊆ AccF (w
′). ⊓⊔

Corollary 1. If w =F w′, then wu =F w′u for all u ∈ V ∗.

4 Solving Muller Games by Solving Safety Games

In this section, we show how to solve a Muller game by solving a safety game.
Our approach is based on the following theorem, which shows the existence of
winning strategies for Muller games that bound the opponent’s scores by 2.

Theorem 2 ([2]). In every Muller game G = (A,F0,F1), Player i has a win-
ning strategy σ from Wi(G) such that MaxScF1−i

(ρ) ≤ 2 for every play ρ that is
consistent with σ and begins in Wi(G).

Going back to the Muller game G of Example 1, it is clear that Player 0 has
no winning strategy from the vertex 1 ∈ W0(G) that bounds Player 1’s scores
by 1, since the prefix 1001 or the prefix 1221 is consistent with every strategy
for Player 0 from vertex 1. Hence, the bound 2 above is optimal.

A simple consequence of Theorem 2 is that a vertex v is in Player 0’s winning
region of the Muller game G if and only if she can prevent her opponent from ever
reaching a score of 3 for a set in F1. This is a safety condition which only talks
about small scores of one player. To determine the winner of G, we construct an
arena which keeps track of the scores of Player 1 up to threshold 3. The winning
condition F of the safety game requires Player 0 to prevent a score of 3 for her
opponent.

Theorem 3 (Main theorem). Let G be a Muller game with vertex set V . One
can effectively construct a safety game GS with vertex set V S and a mapping
f : V → V S with the following properties:

1. For every v ∈ V : v ∈ Wi(G) if and only if f(v) ∈ Wi(GS).
2. Player 0 has a finite-state winning strategy from W0(G) with memory states

W0(GS).
3. |V S| ≤ (|V |!)3.

9

Note that the first statement speaks about both players while the second one only
speaks about Player 0. This is due to the fact that the safety game keeps track
of Player 1’s scores only, which allows Player 0 to prove that she can prevent
him from reaching a score of 3. But as soon as a score of 3 is reached, the play
is stopped. To obtain a winning strategy for Player 1, one has to swap the roles
of the players and construct a safety game which keeps track of the scores of
Player 0. Alternatively, one could construct an arena which keeps track of the
scores of both players. But then, one has to define two safety games in this arena:
one in which Player 0 has to avoid a score of 3 for Player 1 and vice versa. This
arena is larger (but still smaller than (|V |!)3) than the ones in which only the
scores of one player are tracked. Due to Remark 1, it is impossible to reduce a
Muller game to a single safety game and thereby obtain a winning strategy for
both players.

We begin the proof of Theorem 3 by defining the safety game GS . Then, we
prove two lemmata that imply the three statements above. Let G = (A,F0,F1)
with A = (V, V0, V1, E). We define

Plays≤2 = {w | w finite play of G and MaxScF1
(w) ≤ 2}

to be the set of finite plays of the Muller game in which the scores of Player 1
are at most 2 and we define

Plays=3 = {w0 · · ·wnwn+1 | w0 · · ·wnwn+1 finite play of G,

MaxScF1
(w0 · · ·wn) ≤ 2, and MaxScF1

(w0 · · ·wnwn+1) = 3 }

to be the set of finite plays in which Player 1 just reached a score of 3. Further-
more, let Plays≤3 = Plays≤2 ∪Plays=3.

The arena of the safety game we are about to define is the unraveling of A
(modulo =F1

) up to the positions where Player 1 reaches a score of 3 for the first
time (if he does at all).

We define GS = ((V S , V S
0 , V S

1 , ES), F) where

– V S = Plays≤3 /=F1
,

– V S
0 = {[w]=F1

| [w] ∈ V S and Last(w) ∈ V0},

– V S
1 = {[w]=F1

| [w] ∈ V S and Last(w) ∈ V1},

– ([w]=F1
, [wv]=F1

) ∈ ES for all w ∈ Plays≤2 and all v with (Last(w), v) ∈ E 3,
– F = Plays≤2 /=F1

.

The definitions of V S
0 and V S

1 are independent of representatives, as w =F1
w′

implies Last(w) = Last(w′), and we have V S = V S
0 ∪ V S

1 due to V = V0 ∪ V1.
Furthermore, every equivalence class in Plays≤2 /=F1

is also an equivalence class
in Plays≤3 /=F1

, i.e., F is well-defined.

Remark 3. If ([w]=F1
, [w′]=F1

) ∈ ES , then (Last(w),Last(w′)) ∈ E.

Example 2. The safety game GS for the Muller game G of Example 1 is depicted
in Figure 2. One can verify easily that the vertices [v] for v ∈ V are in the winning
region of Player 0.

3 Hence, every vertex in Plays
=3

is terminal, contrary to our requirements on an arena. How-
ever, every play visiting these vertices is losing for Player 0 no matter how it is continued.
To simplify the following proofs, we refrain from defining outgoing edges for these vertices.

10

[1]

[0]

[2]

[01]

[10]

[12]

[21]

[101]

[100]

[122]

[121]

[1010]

[1001]

[1221]

[1212]

[10101]

[10010]

[12212]

[12121]

[101010]

[100101]

[122121]

[121212]

Fig. 2. The safety game GS for G of Example 1. Vertices in F are drawn with double lines.

We are now able to prove the first statement of Theorem 3. For the sake
of readability, we drop the subscripts and denote the F1-equivalence class of w
from now on by [w]. Also, all definitions and statements below are independent
of representatives, mostly since w =F1

w′ implies Last(w) = Last(w′). Hence, we
refrain from mentioning independence of representatives from now on.

Lemma 4. For every v0 ∈ V : v0 ∈ Wi(G) if and only if [v0] ∈ Wi(GS).

To show the direction from left to right, we turn a winning strategy that
bounds Player 1’s scores by 2 into a winning strategy for the safety game. For
the other direction, we use the winning region of Player 0 in the safety game
as a memory structure to implement a winning strategy in the Muller game.
This is possible, since the winning region is a trap for Player 1. Both directions
are straightforward, but slightly technical, as we have to deal with equivalence
classes of plays.

Proof. Due to determinacy of both games, it suffices to consider i = 0.
We begin with the direction from left to right. Theorem 2 guarantees the

existence of a strategy σ for Player 0 that bounds the scores of her opponent
by 2 in every consistent play that starts in W0(G). We turn this strategy into a
winning strategy for her in GS from {[v0] | v0 ∈ W0(G)}.

We track a play in GS and a play in G simultaneously and translate moves
of Player 1 in GS to the play in G and moves of Player 0 in G to moves in GS .
Formally, we construct a function g mapping finite plays in GS starting in a
vertex [v0] for some v0 ∈ V to finite plays in G starting in v0. Then, we use the
image of this function to turn σ into a strategy for GS. Let g([v0]) = v0 for every
v0 ∈ V and

g([w0] · · · [wn][wn+1]) = g([w0] · · · [wn]) · Last(wn+1) . (1)

We have Last(g([w0] · · · [wn])) = Last(wn) and applying Remark 3 repeatedly
shows that g([w0] · · · [wn]) is indeed a play in G. Also, the image of a play
[w0] · · · [wn] has the same scores and accumulators as wn:

11

Lemma 5. g([w0] · · · [wn]) ∈ [wn].

Proof. By induction over [w0] · · · [wn]. The induction start is immediate due to
g([v0]) = v0 ∈ [v0]. So, consider a play [w0] · · · [wn][wn+1]. Since there is an edge
from [wn] to [wn+1], we have wn ·Last(wn+1) ∈ [wn+1]. By induction hypothesis,
we have g([w0] · · · [wn]) =F1

wn and applying Corollary 1, we obtain

g([w0] · · · [wn][wn+1])

=g([w0] · · · [wn]) · Last(wn+1) =F1
wn · Last(wn+1) =F1

wn+1 ,

i.e., g([w0] · · · [wn][wn+1]) ∈ [wn+1]. ⊓⊔

Now, we define the strategy σS for Player 0 from {[v0] | v0 ∈ W0(G)} in GS by

σS([w0] · · · [wn]) = [wn · σ(g([w0] · · · [wn]))] ,

i.e., σS translates the play in GS into a play in G and then uses the successor v
prescribed by σ to determine the next equivalence class to move to by append-
ing v to the current class. We show next that this is always a legal move, provided
the play up to the current position is consistent with σS .

We show inductively that if [w0] · · · [wn] starting in some vertex [v0] for some
v0 ∈ V is consistent with σS , then g([w0] · · · [wn]) is consistent with σ and
σS([w0] · · · [wn]) describes a legal move in GS. This also implies that σS is a
winning strategy from {[v0] | v0 ∈ W0(G)}: assume a play [w0] · · · [wn] starting in
[v0] ∈ {[v0] | v0 ∈ W0(G)} consistent with σS leaves F by reaching Plays=3. This
implies MaxScF1

(g([w0] · · · [wn])) = 3 since we have g([w0] · · · [wn]) ∈ [wn]. Thus,
g([w0] · · · [wn]) starting in v0 ∈ W0(G), being consistent with σ, and reaching a
score of 3 contradicts the fact that σ prevents Player 1 from ever reaching a score
of 3. Hence, σS is a winning strategy for Player 0 in GS from {[v0] | v0 ∈ W0(G)}.

Since the first statement is clear for the induction start, we only discuss the
second one in detail: if [v0] ∈ V S

0 , then also v0 ∈ V0 and we have

σS([v0]) = [v0 · σ(g([v0]))] = [v0 · σ(v0)] .

Thus, (v0, σ(v0)) ∈ E and since [v0], [v0 · σ(v0)] ∈ Plays≤2, we conclude also
([v0], [v0 · σ(v0)]) ∈ ES , i.e., σS indeed prescribes a legal move.

For the induction step, consider a play [w0] · · · [wn−1][wn] that is consistent
with σS and remember that we have

Last(g([w0] · · · [wn−1])) = Last(wn−1) . (2)

By induction hypothesis, we can assume that g([w0] · · · [wn−1]) is consistent
with σ, hence, it only remains to consider the transition from Last(wn−1) to
Last(wn).

If [wn−1] ∈ V S
0 , then also Last(g([w0] · · · [wn−1])) ∈ V0 due to (2), and we

have
[wn] = σS([w0] · · · [wn−1]) = [wn−1 · σ(g([w0] · · · [wn−1]))] .

Thus, we have Last(wn) = σ(g([w0] · · · [wn−1])). Applying this, the induction
hypothesis, and (1) shows that

g([w0] · · · [wn−1][wn]) = g([w0] · · · [wn−1]) · Last(wn)

12

is indeed consistent with σ.

Now, consider the second statement. By definition, we have

σS([w0] · · · [wn]) = [wn · σ(g([w0] · · · [wn]))] ,

which implies that there is an edge between Last(wn) = Last(g([w0] · · · [wn]))
and σ(g([w0] · · · [wn])). Furthermore, g([w0] · · · [wn]) is consistent with σ by in-
duction hypothesis, and hence g([w0] · · · [wn]) ·σ(g([w0] · · · [wn])) as well. Since σ
bounds the scores of Player 1 by 2, both of these finite plays are in Plays≤2

and therefore we can conclude that there is an edge in GS between [wn] and
[wn · Last(g([w0] · · · [wn]))], which shows that σS indeed prescribes a legal move.

On the other hand, if [wn−1] ∈ V S
1 , then Last(g([w0] · · · [wn−1])) ∈ V1 due

to (2), and we have ([wn−1], [wn]) ∈ ES . Hence, (Last(wn−1),Last(wn)) ∈ E due
to Remark 3. Since Last(g([w0] · · · [wn−1])) = Last(wn−1) ∈ V1 and

g([w0] · · · [wn−1][wn]) = g([w0] · · · [wn−1]) · Last(wn) ,

g([w0] · · · [wn−1][wn]) is indeed consistent with σ.

For the other direction of Lemma 4, we show that W0(GS) can be turned
into a memory structure for Player 0 in the Muller game that induces a winning
strategy.

Example 3. Consider the winning region W0(G) in the safety game GS of Exam-
ple 2 as depicted in Figure 3 (for the sake of readability, we omit two vertices
that are not reachable from a vertex [v] for some v ∈ V). We obtain a finite-state
winning strategy by using the equivalence class [w] as memory state for a finite
play w. Since the safety game is the unraveling of the original arena and its
winning region is a trap for Player 1, Player 0 can always prolong a play in the
Muller game such that the finite play prefixes w satisfy [w] ∈ W0(GS) no matter
which successors Player 1 picks. This strategy also bounds the scores of Player 1
by two. Hence, it is winning for Player 0.

[1]

[0]

[2]

[01]

[10]

[12]

[21]

[101]

[100]

[122]

[121]

[1001]

[1221]

Fig. 3. The winning region W0(GS) of the safety game GS of Example 2.

13

To simplify the proof, we add one more memory state ⊥, denoting that a
score of 3 was reached. As long as Player 0 sticks to the induced strategy, this
memory state will not be reached. Hence, ⊥ can be eliminated and its incoming
transitions can be redefined arbitrarily.

Define M = (M, Init,Upd,Nxt) by M = W0(GS) ∪ {⊥},

Init(v) =

{

[v] if [v] ∈ W0(G),

⊥ otherwise,

and

Upd([w], v) =

{

[wv] if [wv] ∈ W0(GS),

⊥ otherwise.

Then, for every w ∈ V + with Upd∗(w) 6= ⊥ we have Upd∗(w) = [w]. Further-
more, since M is the winning region of a safety game, every [w] ∈ M ∩ V S

0 has
a successor [wv′] for some v′ ∈ V which is in W0(GS) as well. Remark 3 yields
(Last(w), v′) ∈ E. Using this, we define the next-move function by

Nxt(v, [w]) =

{

v′ if Last(w) = v and [wv′] as above,

v′′ otherwise, where v′′ is some vertex with (v, v′′) ∈ E,

and Nxt(v,⊥) = v′′ for some v′′ with (v, v′′) ∈ E. The second case in the definition
above is just to match the formal definition of a next-move function. It will never
be invoked due to Upd∗(w) = [w] or Upd∗(w) = ⊥.

Let W = {v | [v] ∈ W0(GS)}. It remains to show that σM is a winning
strategy for Player 0 from W . A simple induction shows that every play w that
starts in W and is consistent with σM satisfies Upd∗(w) 6= ⊥, since the next-
move function always prescribes a successor such that the memory is updated to
a state in W0(GS). Similarly, Player 1 can only pick successors in G such that the
memory is updated to a state in W0(GS), since the winning region of the safety
game (which is the unraveling of the original game modulo =F1

) is a trap for
him. Since we have Upd∗(w) = [w] ∈ Plays≤2 for every play that starts in W
and is consistent with σ, the scores of Player 1 are bounded by 2. Hence, σM is
indeed a winning strategy for Player 0 from W . ⊓⊔

The second direction of the proof above also proves the second statement of
Theorem 3.

Corollary 2. Player 0 has a finite-state winning strategy for W0(G) with mem-
ory states W0(GS).

To finish the proof of Theorem 3, we determine the size of GS to prove
the third statement. To this end, we use the concept of a latest appearance
record (LAR) [4, 6]. Note that we do not need a hit position for our purposes.

A word ℓ ∈ V + is an LAR if every vertex v ∈ V appears at most once in ℓ.
Next, we map each w ∈ V + to a unique LAR, denoted by LAR(w), as follows:
LAR(v) = v for every v ∈ V and

LAR(wv) =

{

LAR(w)v if v /∈ Occ(w),

p1p2v if LAR(w) = p1vp2.

14

A simple induction shows that LAR(w) is indeed an LAR, which also ensures
that the decomposition of w in the second case of the inductive definition is
unique. We continue by showing that the LAR of a play w determines all but
|Occ(w)| many of w’s scores and accumulators.

Lemma 6. Let w ∈ V + and LAR(w) = vkvk−1 · · · v1.

1. w can be decomposed into xkvkxk−1vk−1 · · · v2x1v1 for some xi ∈ V ∗ with
Occ(xi) ⊆ {v1, . . . , vi} for every i.

2. ScF (w) > 0 if and only if F = {v1, . . . , vi} for some i.

3. If ScF (w) = 0, then AccF (w) = {v1, . . . , vi} for the maximal i such that
{v1, . . . , vi} ⊆ F .

4. Let ScF (w) > 0 and F = {v1, · · · , vi}. Then, AccF (w) ∈ {∅} ∪ {{v1, . . . , vj} |
j < i}.

Proof. 1.) By induction over |w|. If |w| = 1, then the claim follows immediately
from w = LAR(w). Now, let |wv| > 1. If v /∈ Occ(w), then LAR(wv) = LAR(w)v
and the claim follows by induction hypothesis.

Now, suppose LAR(w) = p1vp2 with p1 = vk · · · vi+1 and p2 = vi−1 · · · v1,
and hence vi = v. By induction hypothesis, there exists a decomposition w =
xkvkxk−1vk−1 · · · v2x1v1 for some xi ∈ V ∗ such that Occ(xi) ⊆ {v1, . . . , vi} for
every i. Furthermore, we have LAR(wv) = p1p2v = v′k · · · v

′
1 where v′1 = vi,

v′j = vj−1 for every j in the range 1 < j ≤ i, and v′j = vi for every j in the range
i < j ≤ k. Now, define x′1 = ε, x′j = xj−1 for every j in the range 1 < j < i,
x′i = xivixi−1, and x′j = xj for every j in the range i < j ≤ k. It is easy to verify,
that the decomposition wv = x′kv

′
kx

′
k−1

v′k−1
· · · v′2x

′
1v

′
1 has the desired properties.

2.) We have ScF (w) > 0 if and only if there exists a suffix x of w with
Occ(x) = F . Due to the decomposition characterization, having a suffix x with
Occ(x) = F is equivalent to F = {v1, . . . , vi} for some i.

3.) By definition, we have AccF (w) = Occ(x) where x is the longest suffix of
w such that the score of F does not change throughout x and Occ(x) ⊆ F . Con-
sider the decomposition characterization of w as above. We have {v1, . . . , vi} ⊆
AccF (w), since xivi · · · v1v1 is a suffix of w satisfying Occ(x) ⊆ F . Furthermore,
since vi+1 /∈ F by the maximality of i, this is the longest such suffix and we have
indeed AccF (w) = {v1, . . . , vi}.

4.) The lastest increase of ScF (w) occurs after (or at) the last visit of vi,
since Occ(vixi−1 · · · x1v1) = F . Hence, AccF (w) is the occurrence set of a suffix
of xi−1 · · · x1v1 and the decomposition characterization yields the result. ⊓⊔

The previous characterization allows us to bound the size of GS .

Lemma 7. We have |V S | ≤
(
∑n

k=1

(

n
k

)

· k! · 2k · k!
)

+ 1 ≤ (n!)3, where n = |V |.

Proof. We can merge all vertices in V \ F to a single vertex while retaining the
equivalence v ∈ Wi(G) ⇔ [v] ∈ Wi(GS) (since f(v) ∈ F for every v ∈ V) and
without changing the winning region of Player 0 (since W0(GS) ⊆ F).

Hence, it remains to bound the number of equivalence classes in Plays≤2 /=F1
.

Lemma 6 shows that a finite play w ∈ V + has |LAR(w)| many sets with non-zero
score. Furthermore, the accumulator of the sets with score zero is determined by
LAR(w). Now, consider a play w ∈ Plays≤2 and a set F ∈ F1 with non-zero score.

15

We have ScF (w) ∈ {1, 2} and there are exactly |F | possible values for AccF (w)
due to Lemma 6.4, which bounds the number of occurrence sets of suffixes of w.
Finally, two finite plays having the same LAR also have the same last vertex.

Hence, the number of equivalence classes is bounded by the number of LARs,
which is at most

∑n
k=1

(

n
k

)

·k!, times the number of possible score and accumulator
combinations for an LAR of length k, which is at most 2k · k!. ⊓⊔

We conclude this section by mentioning that if one is not interested in computing
the complete winning regions of the Muller game, but only wants to determine
which player has a winning strategy from a given vertex v, then it suffices to
construct only the part of GS that is reachable from [v].

Also note that while a player in general can not prevent her opponent from
reaching a score of 2, there are arenas in which she can do so. By first con-
structing the safety game G′

S up to threshold 2, which is smaller than the one
for threshold 3, one can possibly determine a subset of Player 0’s winning re-
gion faster and obtain a (potentially) smaller finite-state winning strategy for
this subset: we have W0(G

′
S) ⊆ W0(GS). However, if Player 0 cannot prevent her

opponent from reaching a score of 2 when starting in v, then this does not imply
that Player 1 wins the Muller game from v as well. In this case, one has to solve
the safety game with threshold 3 to determine the winner of the Muller game
from this vertex.

4.1 Antichain-based Winning Strategies for Muller Games

Using an antichain construction one can construct a smaller finite-state winning
strategy for Player 0: instead of considering all equivalence classes in the winning
region of Player 0, we only consider the maximal ones with respect to ≤F1

which
are reachable via a fixed positional winning strategy for her in the safety game.
To this end, we lift ≤F1

to equivalence classes by defining [w] ≤F1
[w′] if and

only if w ≤F1
w′.

Let σ be a positional winning strategy for Player 0 in GS and let R be the
set of vertices in V S which are reachable from {[v] | [v] ∈ W0(GS)} by plays
consistent with σ. Every [w] ∈ R ∩ V S

0 has exactly one successor in R (which is
of the form [wv] for some v ∈ V) and dually, every successor of [w] ∈ R ∩ V S

1

(which are exactly the classes [wv] for v ∈ V) is in R.

Now, let Rmax be the ≤F1
-maximal elements of R. Applying the facts about

successors of vertices in R stated above, we obtain the following remark.

Remark 4. Let Rmax be defined as above.

1. For every [w] ∈ Rmax ∩ V S
0 , there is a v ∈ V with (Last(w), v) ∈ E and there

is a [w′] ∈ Rmax such that [wv] ≤ [w′].

2. For every [w] ∈ Rmax ∩ V S
1 and each of its successors [wv], there is a [w′] ∈

Rmax such that [wv] ≤F1
[w′].

Thus, instead of updating the memory from [w] to [wv] when processing a ver-
tex v, we can directly update it to a maximal element that is F1-larger than [wv].
Intuitively, instead of keeping track of the exact scores, we store a maximal ele-
ment that over-approximates the exact values.

16

We define M = (M, Init,Upd,Nxt) by M = Rmax ∪ {⊥} 4,

Init(v) =

{

[w] if [v] ∈ W0(GS) and [v] ≤F1
[w] ∈ Rmax

⊥ else,

and

Upd([w], v) =

{

[w′] if there is some [w′] ∈ Rmax such that [wv] ≤F1
[w′],

⊥ otherwise.

Then, for every w ∈ V + with Upd∗(w) 6= ⊥ we have [w] ≤F1
Upd∗(w), which

implies Last(w) = Last(w′), where [w′] = Upd∗(w).
Using Remark 4.1, we define the next-move function by

Nxt(v, [w]) =















v′ if Last(w) = v, (v, v′) ∈ E, and

[wv′] ≤F1
[w′] for some [w′] ∈ Rmax,

v′′ else, where v′′ is some vertex with (v, v′′) ∈ E,

and Nxt(v,⊥) = v′′ for some v′′ with (v, v′′) ∈ E. Again, the second case in the
definition above is just to match the formal definition of a next-move function.
It will never be invoked due to [w] ≤F1

Upd∗(w) or Upd∗(w) = ⊥.
Analogously to the construction in the previous section, it remains to show

that σM is a winning strategy for Player 0 from W = {v | [v] ∈ W0(GS)}. An
inductive application of Remark 4 shows that every play w that starts in W and
is consistent with σM satisfies Upd∗(w) 6= ⊥. This bounds the scores of Player 1
by 2, as we have [w] ≤F1

Upd∗(w) ∈ Rmax ⊆ Plays≤2 for every such play. Hence,
σM is indeed a winning strategy for Player 0 from W .

4.2 Reducing the Number of Memory States

In the proof of Theorem 3 we used the whole winning region W0(GS) of the safety
game as memory structure for a winning strategy of the Muller game. However,
when defining the next-move function, we may have to choose between several
vertices v′ with v′ ∈ W0(GS). Depending on this choice, parts of the memory
structure may never be reached (as long as Player 0 sticks to the strategy) and,
therefore, can be omitted. Hence, it is possible to reduce the number of memory
states necessary to realize a winning strategy by defining the next-move function
wisely. The same idea applies to antichain-based winning strategies where the
fixed strategy σ for the safety game GS determines the size of the set R of
reachable vertices and, hence, of the number of maximal elements.

Unfortunately, it is not clear how to efficiently find a small solution, i.e., a
Nxt function or strategy σ that induces a small (or even minimal) reachable part
of GS . One straightforward heuristic is to compute a “closed” initial part of the
safety game by starting in some initial vertex and considering all successors of
Player 1 vertices but only one successor of Player 0 vertices. The choice of the
successor in a Player 0 vertex can be made using some order on the successors,
or by simply picking an arbitrary one. Another way is to use the automata
learning-based approach described in [8].

4 Again, we use the memory state ⊥ to simplify our proof. It is not reachable via plays that
are consistent with the implemented strategy and can therefore be eliminated.

17

5 Conclusion

We have presented a new algorithm to determine the winning regions of a Muller
game and to determine a winning strategy for one of the players by solving
a safety game. The safety game is polynomially larger than the parity game
obtained in a reduction, but it is faster to solve than the latter.

The scores induce a hierarchy of all finite-state winning strategies, since each
one of them prevents the opponent from reaching a score that is larger than a
certain threshold. We suggest to use the highest score the opponent can achieve
against a given strategy as quality measure for the strategy. In ongoing research
we investigate whether one can minimize the size of a finite-state strategy and
the scores it allows simultaneously.

Furthermore, it is easy to see that the solution of the safety game actually
yields a non-deterministic strategy which only disallows those moves that would
allow the opponent to reach a score of 3 (e.g., see the vertices [1], [01], and [21]
in Figure 3). In this sense, our work extends the results of Bernet, Janin, and
Walukiewicz [1] on permissive strategies for parity games to Muller games. In
upcoming work, we show that for every fixed k there is a unique most general
non-deterministic winning strategy that subsumes all strategies preventing the
opponent from reaching a score of k.

Acknowledgments We want to thank Wladimir Fridman for many helpful
discussions.

References

1. Julien Bernet, David Janin, and Igor Walukiewicz. Permissive strategies: from parity games
to safety games. ITA, 36(3):261–275, 2002.

2. John Fearnley and Martin Zimmermann. Playing Muller games in a hurry. Int. J. Found.
Comput. Sci. To appear. Journal version of [3].

3. John Fearnley and Martin Zimmermann. Playing Muller games in a hurry. In Angelo Mon-
tanari, Margherita Napoli, and Mimmo Parente, editors, GANDALF, volume 25 of EPTCS,
pages 146–161, 2010. Conference version of [2].

4. Yuri Gurevich and Leo Harrington. Trees, automata, and games. In STOC, pages 60–65.
ACM, 1982.

5. Alexander Kechris. Classical Descriptive Set Theory, volume 156 of Graduate Texts in Math-
ematics. Springer, 1995.

6. Robert McNaughton. Infinite games played on finite graphs. Ann. Pure Appl. Logic,
65(2):149–184, 1993.

7. Robert McNaughton. Playing infinite games in finite time. In Arto Salomaa, Derick Wood,
and Sheng Yu, editors, A Half-Century of Automata Theory, pages 73–91. World Scientific,
2000.

8. Daniel Neider. Small strategies for safety games. In Proceedings of the Ninth International
Symposium on Automated Technology for Verification and Analysis (ATVA 2011), LNCS.
Springer, to appear.

18

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years.

A complete list of reports dating back to 1987 is available from

http://aib.informatik.rwth-aachen.de/. To obtain copies consult the above

URL or send your request to: Informatik-Bibliothek, RWTH Aachen, Ahorn-

str. 55, 52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007

2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, Harald Zankl: Maximal Termination

2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler

2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations

2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message

Passing Programs

2008-07 Alexander Nyßen, Horst Lichter: The MeDUSA Reference Manual, Sec-

ond Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on

Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-

endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-

Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable

Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-

straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl

Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-

proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers

2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves

2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study

2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving

2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems

2008-19 Dirk Wilking: Empirical Studies for the Application of Agile Methods to

Embedded Systems

2009-02 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Quantitative Model Checking of Continuous-Time Markov Chains

Against Timed Automata Specifications

19

2009-03 Alexander Nyßen: Model-Based Construction of Embedded

Real-Time Software - A Methodology for Small Devices

2009-04 Daniel Klünder: Entwurf eingebetteter Software mit abstrakten Zus-

tandsmaschinen und Business Object Notation

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-

erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-

dependent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm

Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the

Correctness of the Upper Bound of a Maximum Independent Set Algo-

rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The

Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in

Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset Games

2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)

2009-15 Joost-Pieter Katoen, Daniel Klink, Martin Neuhäußer: Compositional

Abstraction for Stochastic Systems

2009-16 George B. Mertzios, Derek G. Corneil: Vertex Splitting and the Recog-

nition of Trapezoid Graphs

2009-17 Carsten Kern: Learning Communicating and Nondeterministic Au-

tomata

2009-18 Paul Hänsch, Michaela Slaats, Wolfgang Thomas: Parametrized Regular

Infinite Games and Higher-Order Pushdown Strategies

2010-02 Daniel Neider, Christof Löding: Learning Visibly One-Counter Au-

tomata in Polynomial Time

2010-03 Holger Krahn: MontiCore: Agile Entwicklung von domänenspezifischen

Sprachen im Software-Engineering

2010-04 René Wörzberger: Management dynamischer Geschäftsprozesse auf Ba-

sis statischer Prozessmanagementsysteme

2010-05 Daniel Retkowitz: Softwareunterstützung für adaptive eHome-Systeme

2010-06 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Computing maximum reachability probabilities in Markovian timed au-

tomata

2010-07 George B. Mertzios: A New Intersection Model for Multitolerance

Graphs, Hierarchy, and Efficient Algorithms

2010-08 Carsten Otto, Marc Brockschmidt, Christian von Essen, Jürgen Giesl:

Automated Termination Analysis of Java Bytecode by Term Rewriting

2010-09 George B. Mertzios, Shmuel Zaks: The Structure of the Intersection of

Tolerance and Cocomparability Graphs

20

2010-10 Peter Schneider-Kamp, Jürgen Giesl, Thomas Ströder, Alexander Sere-

brenik, René Thiemann: Automated Termination Analysis for Logic Pro-

grams with Cut

2010-11 Martin Zimmermann: Parametric LTL Games

2010-12 Thomas Ströder, Peter Schneider-Kamp, Jürgen Giesl: Dependency

Triples for Improving Termination Analysis of Logic Programs with Cut

2010-13 Ashraf Armoush: Design Patterns for Safety-Critical Embedded Systems

2010-14 Michael Codish, Carsten Fuhs, Jürgen Giesl, Peter Schneider-Kamp:

Lazy Abstraction for Size-Change Termination

2010-15 Marc Brockschmidt, Carsten Otto, Christian von Essen, Jürgen Giesl:

Termination Graphs for Java Bytecode

2010-16 Christian Berger: Automating Acceptance Tests for Sensor- and

Actuator-based Systems on the Example of Autonomous Vehicles

2010-17 Hans Grönniger: Systemmodell-basierte Definition objektbasierter Mod-

ellierungssprachen mit semantischen Variationspunkten

2010-18 Ibrahim Armaç: Personalisierte eHomes: Mobilität, Privatsphäre und

Sicherheit

2010-19 Felix Reidl: Experimental Evaluation of an Independent Set Algorithm

2010-20 Wladimir Fridman, Christof Löding, Martin Zimmermann: Degrees of

Lookahead in Context-free Infinite Games

2011-02 Marc Brockschmidt, Carsten Otto, Jürgen Giesl: Modular Termination

Proofs of Recursive Java Bytecode Programs by Term Rewriting

2011-03 Lars Noschinski, Fabian Emmes, Jürgen Giesl: A Dependency Pair

Framework for Innermost Complexity Analysis of Term Rewrite Systems

2011-04 Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, Thomas Noll:

A Local Greibach Normal Form for Hyperedge Replacement Grammars

2011-11 Nils Jansen, Erika Ábrahám, Jens Katelaan, Ralf Wimmer, Joost-Pieter

Katoen, Bernd Becker: Hierarchical Counterexamples for Discrete-Time

Markov Chains

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

21

