
Aachen
Department of Computer Science

Technical Report

Hierarchical Counterexamples for

Discrete-Time Markov Chains

Nils Jansen, Erika Ábrahám, Jens Katelaan, Ralf Wimmer, Joost-

Pieter Katoen, and Bernd Becker

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2011-11

RWTH Aachen · Department of Computer Science · May 2011

The publications of the Department of Computer Science of RWTH Aachen Uni-
versity are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

http://aib.informatik.rwth-aachen.de/

Hierarchical Counterexamples for

Discrete-Time Markov Chains

Nils Jansen1, Erika Ábrahám1, Jens Katelaan1, Ralf Wimmer2,
Joost-Pieter Katoen1, and Bernd Becker2

1 RWTH Aachen University, Germany
2 Albert-Ludwigs-University Freiburg, Germany

Abstract. In this paper we introduce a novel counterexample generation ap-
proach for discrete-time Markov chains (DTMCs) with two main advantages: (1)
We generate abstract counterexamples, which can be refined in a hierarchical

manner. (2) We aim at minimizing the number of states involved in the coun-
terexamples, and compute a critical subsystem of the DTMC, whose paths form
a counterexample. Experiments show that with our approach we can reduce the
size of counterexamples and the number of computation steps by orders of mag-
nitude.

1 Introduction

A wide range of safety-critical systems exhibit probabilistic behavior. Discrete-
time Markov chains (DTMCs) are a well-known modeling formalism for proba-
bilistic systems. To describe properties of DTMCs we consider the unbounded
fragment of probabilistic computation tree logic (PCTL) [5], an adaptation of
CTL to probabilistic systems, suited to express bounds on the probability mass
of all paths satisfying some properties. Efficient algorithms and tools are available
to verify PCTL properties of DTMCs. Prominent model checkers like Prism [9]
and Mrmc [8] offer methods based on the solution of linear equation systems [5].

If verification reveals that a system does not fulfill a required property, the
ability to provide diagnostic information is crucial for bug fixing. A counterexam-
ple carries an explanation why the property is violated. E. g., for Kripke struc-
tures and linear temporal logic (LTL) formulae, a counterexample is a path
that violates the property, which can be generated by LTL model checking as
a by-product without overhead. State-of-the-art model checking algorithms for
probabilistic systems do not exhibit this feature. After model checking, current
techniques have to apply additional methods to generate probabilistic counterex-
amples.

Even for large state spaces, a counterexample consisting of a single path
gives an intuitive explanation why the property is violated. In the probabilistic
setting, instead of a single path we need a set of paths whose total probability
mass violates the bound specified by the PCTL formula [4]. It is much harder
to understand the behavior represented by such a probabilistic counterexample
as it may consist of a large or even infinite number of paths. To ease under-
standing, most approaches aim at finding counterexamples with a small number
of paths having high probabilities. To generate more compact counterexamples,
also the usage of regular expressions [4], the detection of loops [12], and the ab-
straction of strongly connected components (SCCs) [3] have been proposed, as
well as diagnostic subgraphs [2], which is most related to our counterexample
representation.

We suggested in [1] a model checking approach based on the hierarchical
abstraction of SCCs. We abstract each SCC by a small loop-free graph in a re-
cursive manner by the abstraction of sub-SCCs. The result is an abstract DTMC
consisting of a single initial state and absorbing states, and transitions carrying
the total probabilities of reaching target states.

In [1] we also gave an idea of how to use the SCC-based model checking result
for counterexample generation. In this paper we first generalize the formalisms
underlying our model checking algorithm. Then we use these formalisms to sug-
gest a novel counterexample generation method, which computes a critical sub-
system whose paths induce a counterexample. Compared to other approaches,
the induced counterexamples are essentially different: Whereas other methods
concentrate on minimizing the number of paths, our computation is structurally
oriented and aims at reducing the number of involved states and transitions.

Critical subsystems are computed hierarchically. We refine a critical subsys-
tem by concretizing abstract states and reducing the concretized parts, such that
the reduced subsystem still induces a counterexample. This hierarchical approach
increases the usability of counterexamples for large state spaces. Concretization
of only those parts of the abstract critical subsystem that are of interest for the
user allows more intuition for error correction.

The computation is based on finding most probable paths or path fragments
to be contained in the critical subsystem. We propose two different methods for
the search. The global method searches, similarly to other approaches, for paths
through the whole system. One of our main contributions is the local search
which aims at connecting most probable path fragments. In contrast to most
of the other approaches, our method is complete, and it terminates even if an
infinite number of paths is needed for a counterexample. In the local search we
strictly avoid to find paths that only differ in the number of unrollings of loops.

Experiments for two well-known case studies show that with our approach
we can reduce the size of counterexamples substantially and the number of com-
putation steps by several orders of magnitude.

The remaining part of the paper is structured as follows: Section 2 contains
some standard definitions and notations. We provide the theoretical background
for counterexample generation and recall our model checking algorithm in Sec-
tion 3. Section 4 describes our counterexample generation method, for which we
give some experimental results in Section 5. We conclude the paper in Section 6.

2 Preliminaries

In this section we introduce discrete-time Markov chains and probabilistic com-
putation tree logic, and define counterexamples in this probabilistic setting.

Definition 1. Assume a set AP of atomic propositions. A discrete-time Markov
chain (DTMC) is a tuple M = (S, I, P, L) with a non-empty finite state set S,
an initial discrete probability distribution I : S → [0, 1] with

∑

s∈S I(s) = 1, a
transition probability matrix P : S × S → [0, 1] with

∑

s′∈S P (s, s′) = 1 for all
s ∈ S, and a labeling function L : S → 2AP .

To reduce notation, in the rest of the paper we sometimes refer to the compo-
nents of a DTMC Mu

l by (Su
l , I

u
l , P

u
l , L

u
l) without explicitly defining them. For

example, we use S′, S1, . . . to denote the state sets of the DTMCs M ′, M1, . . .

Assume in the following a set AP of atomic propositions and a DTMC M =
(S, I, P, L). We also call a state s ∈ S with p ∈ L(s) a p-state.

We say that there is a transition from a state s ∈ S to a state s′ ∈ S iff
P (s, s′) > 0. A path of M is a finite or infinite sequence π = s0s1 . . . of states
si ∈ S such that P (si, si+1) > 0 for all i. We say that the transitions (si, si+1) are
contained in the path π, written (si, si+1) ∈ π. We write PathsMinf for the set of

all infinite paths of M , and PathsMinf (s) for those starting in s ∈ S. Analogously,

PathsMfin is the set of all finite paths of M , PathsMfin(s) of those starting in s, and

PathsMfin(s, t) of those starting in s and ending in t. A state t is called reachable

from another state s iff PathsMfin(s, t) 6= ∅.
A state set S′ ⊆ S is called absorbing in M iff there is a state in S′ from

which no state outside S′ is reachable in M . We call S′ bottom in M if this holds
for all states in S′. States s ∈ S with P (s, s) = 1 are also called absorbing states.

We call M loop-free, if all of its loops are self-loops on absorbing states. A
set S′ ⊆ S is strongly connected in M iff for all s, t ∈ S′ there is a path from s
to t visiting states from S′ only. A strongly connected component (SCC) of M is
a maximal strongly connected subset of S.

A finite path π ∈ PathsMfin has an associated cylinder set Cyl(π) =
{

π′ ∈
PathsMinf

∣

∣π is a prefix of π′
}

. The unique probability measure PrM of a DTMC
M is defined on the associated smallest σ-algebra which contains the cylinder
sets of finite paths. We set PrM

(

Cyl(s0 . . . sn)
)

=
∏n−1

i=0 P (si, si+1), and for

π ∈ PathsMfin let PrMfin(π) = PrM
(

Cyl(π)
)

. For a set R ⊆ PathsMfin we define

PrMfin(R) =
∑

π∈R′ PrMfin(π) with R′ = {π ∈ R | ∀π′ ∈ R. π′ is not a prefix of π}.
Note that PrMfin(π1sπ2) = PrMfin(π1s) · PrMfin(sπ2) for π1sπ2 ∈ PathsMfin . Similarly
for sets R1 andR2 of finite paths,R

′
i = {π ∈ Ri | ∀π′ ∈ Ri. π

′ is not a prefix of π},
i = 1, 2, if all paths in R′

1 end in the same state s and all paths in R′
2 start in s,

then PrMfin
(

{π1sπ2 | π1s ∈ R′
1 ∧ sπ2 ∈ R′

2}
)

= PrMfin(R1) · PrMfin(R2).

The probabilistic computation tree logic (PCTL) [5] is an adaptation of CTL
to probabilistic systems with the abstract syntax3

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | P∼λ(ϕ U ϕ)

for (state) formulae with p ∈ AP an atomic proposition, λ ∈ [0, 1] ⊆ R a proba-
bility threshold, and ∼ ∈ {<, ≤, ≥, >} a comparison operator. The probability
operator P allows to express probability thresholds on the probability mass of
all paths starting in a certain state and satisfying a (path) formula. The U
is the classical “until” operator. As usual, we define additional operators like
♦ϕ := true U ϕ and P≤λ(�ϕ) = P≥1−λ(♦¬ϕ) as syntactic sugar.

In case a property P≤λ (ϕ1 U ϕ2) is refuted by a DTMC M , a counterexample
is a set C ⊆ PathsMfin of finite paths starting in initial states such that all infinite

paths from their associated cylinder sets satisfy ϕ1 U ϕ2 and PrMfin(C) > λ. For
P<λ (ϕ1 U ϕ2) the probability mass has to be at least λ. In this paper we consider
only formulae with upper probability bounds; a method in [4] can be used to
reduce properties with lower bounds to the former case.

In order to check a property P∼λ(ϕ1 U ϕ2), usually (1) a labeling for the
subformulae ϕ1 and ϕ2 is generated, possibly by recursively invoking probabilistic

3 In this paper we only consider unbounded properties.

model checking for subformulae, (2) the DTMC is reduced by making all states
satisfying ϕ2 ∨ (¬ϕ1 ∧ ¬ϕ2) absorbing, and (3) the probability of reaching a ϕ2-
state from an initial state in the reduced DTMC is computed. The ϕ2-states are
also called target states. In this paper we concentrate on the last point (3), for
which we need to consider reduced DTMCs and the temporal operator ♦ only.

It is possible to transform a reduced DTMC with multiple initial or target
states to a DTMC with a single initial and a single target state, without changing
the probability of reaching a target state. Adding an auxiliary initial state allows
us to transform a DTMC into another one that has no loops containing the initial
state.

The above observations allow us to consider in the following w. l. o. g. only (1)
formulae of the form P∼λ (♦p) with ∼ ∈ {≤, <} and (2) DTMCs with a single
initial and a single absorbing target state having no loops on the initial state.

3 SCC-based Model Checking

Next we describe our model checking algorithm for DTMCs and PCTL properties
presented in [1]. Although the algorithm is basically the same as in [1], we need
to define a more general formalization in order to handle counterexamples in the
next section. The proof of correctness is given in [1].

Given a DTMC M , we are interested in the total probability of reaching its
target state from its initial state. If M has no non-bottom SCCs, the probability
is easy to compute. Otherwise, each non-bottom SCC S′ of M induces a DTMC
Mind as follows. Those states of the SCC through which paths may enter it are
the initial states of Mind ; we call them input states. Those states outside the
SCC to which paths may exit, the so-called output states, are absorbing states
in Mind . The remaining graph of Mind is defined by the SCC’s structure. We
use the notation InpM (S′) = {t ∈ S′ | I(t) > 0 ∨ ∃s ∈ S\S′. P (s, t) > 0} and
OutM (S′) = {t ∈ S\S′ | ∃s ∈ S′. P (s, t) > 0} for the set of input respectively
output states, and call states from S′ inner states.

Definition 2. Let M = (S, I, P, L) be a DTMC and S′ ⊆ S not absorbing in
M . Then the DTMC induced by S′ in M , written DTMC (S′,M), is Mind =
(Sind , Iind , Pind , Lind) with

1. Sind = S′ ∪OutM (S′),
2. ∀s ∈ Sind .

(

Iind (s) > 0 ↔ s ∈ InpM (S′)
)

,

3. Pind (s, t) =











P (s, t) for s ∈ S′ and t ∈ Sind ,

1 for s = t ∈ OutM (S′),

0 else.

4. ∀s ∈ Sind . Lind (s) = L(s).

In the above definition we do not require that S′ is an SCC, only that it
is not absorbing; this way we can use this definition also for the concretization
later. Note that the initial distribution of the induced DTMC is not uniquely
specified; in fact, we only need to specify the input states as initial states and
can choose any distribution satisfying this requirement. Note furthermore that
the output states are the only absorbing states of the induced system, since S′

is required to be not absorbing. Thus the initial states of Mind are the input

s

Concrete SCC

t1

t2

s

Intermediate computation

t1

t2

1−(ps,t1+ps,t2)

ps,t1

ps,t2

s

Abstraction

t1

t2

ps,t1
ps,t1+ps,t2

ps,t2
ps,t1+ps,t2

Fig. 1. Abstraction of an SCC

states of S′ in M , and the absorbing states of Mind are the output states of
S′ in M . We also use the notation Inp(Mind) = {s ∈ Sind | Iind (s) > 0} and
Out(Mind) = {s ∈ Sind | Pind (s, s) = 1}. Note that Iind is defined to be an
arbitrary initial distribution that specifies the input states as initial states.

The model checking procedure replaces inside M the subgraph Mind by a
smaller subgraph Mabs with the input and output states as state set and transi-
tions from each input state s to each output state t carrying the total probability
mass PrMind

(

PathsMind

fin (s, t)
)

(see Fig. 1). This total probability mass is deter-
mined in two steps: First, we compute for each input state s and output state t
the total probability mass ps,t of all finite paths from s to t that have no loop
containing s. Since S′ is not absorbing, the probability to eventually reach an
output state in Mind is 1. Therefore, the probability of a self-loop on an input
state s is 1−∑

t′∈Out(Mind)
ps,t′ . Thus the probability of the transition from s to

t in Mabs is determined by ps,t/(
∑

t′∈Out(Mind)
ps,t′).

Definition 3. Let M = (S, I, P, L) be a DTMC and S′ ⊆ S not absorbing.
Assume furthermore DTMC (S′,M) = Mind = (Sind , Iind , Pind , Lind) and

ps,t = PrMind

fin

(

{ss1 . . . snt ∈ PathsMind

fin | ∀1 ≤ i ≤ n. si 6= s ∧ si 6= t}
)

for all s ∈ Inp(Mind) and t ∈ Out(Mind). We define the abstraction of Mind ,
written Abs(Mind), to be the DTMC Mabs = (Sabs , Iabs , Pabs , Labs) with

1. Sabs = Inp(Mind) ∪Out(Mind),

2. Iabs(s) = Iind (s) for all s ∈ Sabs ,

3. Pabs(s, t) =











ps,t /
(

∑

t′∈Out(Mind)
ps,t′

)

for s ∈ Inp(Mind), t ∈ Out(Mind),

1 for s = t ∈ Out(Mind),
0 else.

4. Labs(s) = Lind (s) for all s ∈ Sabs .

Next we formalize the abstraction and the concretization of an SCC.

Definition 4. Let M = (S, I, P, L) be a DTMC, S′ ⊆ S a not absorbing state
set, DTMC (S′,M) = M1 = (S1, I1, P1, L1), and M2 = (S2, I2, P2, L2) a DTMC
satisfying S2 ∩ (S\S1) = ∅ such that either M2 = Abs(M1) or M1 = Abs(M2).
Then the result of the substitution of M1 by M2 in M , written M [M2/M1], is
the DTMC Msub = (Ssub, Isub, Psub, Lsub) with

1. Ssub = (S\S1) ∪ S2,

2. Isub(s) = I(s) for s ∈ Ssub and 0 otherwise,

3. Psub(s, t) = P2(s, t) for s ∈
(

S2\Out(M2)
)

and t ∈ S2, and P (s, t) otherwise,

4. Lsub(s) = L2(s) for s ∈ S2 and L(s) otherwise.

The replacement of an SCC by its abstraction and vice versa does not affect
the total probabilities of reaching a target state from an initial state in M :

Theorem 1. Let M = (S, I, P, L) be a DTMC, S′ ⊆ S a not absorbing state
set, DTMC (S′,M) = M1 = (S1, I1, P1, L1), and M2 = (S2, I2, P2, L2) a DTMC
satisfying S2 ∩ (S\S1) = ∅ such that either M2 = Abs(M1) or M1 = Abs(M2).
Then for M ′ = M [M2/M1] all initial states s resp. target states t of M are also
initial resp. target states of M ′, and it holds that

PrMfin
(

PathsMfin(s, t)
)

= PrM
′

fin

(

PathsM
′

fin (s, t)
)

.

To compute the abstraction Mabs of an induced DTMC Mind , we determine
the probabilities ps,t recursively as follows. We detect all non-bottom SCCs in
Mind that do not contain any input states of Mind , and replace them by their
abstractions recursively. The result is a DTMC M ′

ind which is loop-free in case
Mind has a single input state (multiple input states need a special treatment,
see [1]), such that the probabilities ps,t can easily be computed.

The model checking algorithm is shown in Algorithm 1. We use a global
variable Sub to store the pairs of abstracted DTMCs and their abstractions for
the concretization during counterexample generation.4

Example 1. The example in Fig. 2 illustrates the model checking procedure. On
the topmost level, SCCs named S1 and S2 are found in the input DTMC. By
ignoring their input states we only detect the SCC S2.1 inside S2 (Fig. 2(a)). At
this bottom level of the recursion, all cycles in S2.1 go through its single input
state 6. The total probabilities of reaching the output states 4, 5, resp. 8 from
the input state 6 without looping back to 6, are 0.5, 0.125, resp. 0.25. Looping on
6 is thus possible with probability 0.125 (Fig. 2(b)). We replace S2.1 by the state
6 with transitions to 4, 5, resp. 8 labeled with the probabilities 0.57, 0.14, resp.
0.29 (Fig. 2(c)), and continue at the next higher level, where for the abstraction
of S2 the previous computation is used. As the probabilities of reaching the
output states 4 and 8 are 0.57 and 0.29, the probability of looping on 5 is 0.14
(Fig. 2(d)). The abstraction yields transitions to 4 and 8 with probabilities 0.66
and 0.34 (Fig. 2(e)). As SCC S1 has only one output state, the replacement

state 1 has only one outgoing transition to 4 with probability 0.66 and a self-
loop with probability 0.34 (Fig. 2(f)). The probability of eventually reach state
4 from state 1 is therefore 1 (Fig. 2(g)). The final abstraction of this loop-free

system only consists of edges from input state 0 to the absorbing states. The
transitions leading to states 4 and 8 with probabilities 0.9 and 0.1 depict the
model checking result for unbounded reachability to these states (Fig. 2(h)).

4 The implementation uses different markings to specify sub-graphs in order to store a single
graph without copying subgraphs. The same holds for edge selections which will be introduced
later.

0 1

2 3

4

1

5 6

7 8

1

0.7

0.3

0.5

0.5

0.6

0.4

0.2 0.8

1 0.5

0.5
0.25 0.25

0.5

S1

S2
S2.1

(a) SCC structure of the DTMC

0 1

2 3

4

1

5 6

8

1

0.7

0.3

0.5

0.5

0.6

0.4

0.2 0.8

1 0.5

0.125

0.25
0.125

S1

S2

(b) Intermediate computation for 6

0 1

2 3

4

1

5 6 8

1

0.7

0.3

0.5

0.5

0.6

0.4

0.2 0.8

1

0.57

0.14
0.29

S1

S2

(c) Abstraction of S2.1

0 1

2 3

4

1

5 8

1

0.7

0.3

0.5

0.5

0.6

0.4

0.2 0.8

0.57

0.29

0.14

S1

(d) Intermediate computation for 5

0 1

2 3

4

1

5 8

1

0.7

0.3

0.5

0.5

0.6

0.4

0.2 0.8

0.66

0.34

S1

(e) Abstraction of 5

0 1 4

1

5 8

1

0.7

0.3

0.66

0.66

0.34

0.34

(f) Intermediate computation for 1

0 1 4

1

5 8

1

0.7

0.3

1

0.66

0.34

(g) Abstraction of 1

0 4

1

8

1

0.9

0.1

(h) Path abstraction

Fig. 2. SCC-based model checking

Algorithm 1

Model check(DTMC M = (S, I, P, L), PCTL-formula P∼λ (♦ p))
begin

(M,Sub) := Abstract SCC(M, ∅); (1)

result :=
(

∑

s∈Inp(M)

∑

t∈Out(M) (I(s) · P (s, t)) ∼ λ
)

; (2)

return (result,M,Sub) (3)
end

Abstract SCC(DTMC M = (S, I, P, L), Abstractions Sub)
begin

for all non-bottom SCCs K in DTMC (S\Inp(M),M) do (4)
MK := DTMC (K,M); (5)
(Mabs

K ,Sub) := Abstract SCC(MK ,Sub); (6)
M := M [Mabs

K /MK] (7)
end for (8)
Mabs := Abs(M); Sub := Sub ∪

{

(M,Mabs)
}

; (9)

return (Mabs,Sub) (10)
end

4 Counterexample Generation

The result of the model checking procedure is an abstract and refinable DTMC.
In this section we present the subsequent computation of a hierarchical coun-
terexample in case the property was refuted.

4.1 Critical Subsystems

Similarly to other counterexample generation approaches, our computation is
based on the detection of single paths. However, instead of just collecting found
paths, we select all transitions appearing in the found paths and build a DTMC
called closure, containing exactly the selected transitions and the involved states.
We call the closure a critical subsystem if its paths form a counterexample for
the violated property. In our approach we do not aim at minimizing the number
of paths in the counterexample, but at minimizing the number of involved states
and transitions and representing them intuitively as a subsystem.

A selection of M = (S, I, P, L) is a relation m ⊆ S × S. Selections can be
extended with the transitions of a path using the function extendM : (2S×S ×
PathsMfin) → 2S×S defined by extend(m,π) =

{

(s, s′)∈S×S
∣

∣ (s, s′)∈m∨(s, s′)∈π
}

.

Definition 5 (Closure). For a DTMC M = (S, I, P, L) and a selection m ⊆
S × S, the closure of m in M , written closureM (m), is given by the DTMC
Mcl = (Scl, Icl, Pcl, Lcl) with

1. Scl = S ⊎ {s⊥},
2. Icl = I,

3. Pcl(s, s
′) =























P (s, s′) for (s, s′) ∈ m,

1−∑

(s,s′′)∈m P (s, s′′) for s ∈ S\{t} and s′ = s⊥,

1 for s = s′ = t or s = s′ = s⊥,

0 otherwise,

4. Lcl(s) = L(s).

1

2

3

4

5

6

7

(a)

1

2

3

4

5

6

7

(b)

Fig. 3. (a) Selection for two intersecting paths and (b) closure for the selection

Algorithm 2

SearchAbstractCex(DTMC M , PCTL-formula P∼λ (♦ p))
begin

(result,Mce,Sub) := ModelCheck(M , P∼λ (♦ p)); (11)
if result = true then (12)

return ⊥ (13)
else (14)

mmax :=
{

(s0, t)
}

; (15)
while true do (16)

mmin := mmax; (17)
(ready,Mce,mmin,mmax) :=

Concretize(Mce,mmin,mmax,Sub); (18)
if (ready = true) then (19)

return closureMce(mmax) (20)
else (21)

mmax :=
FindCriticalSubsystem

(

Mce,mmin,mmax,P∼λ(♦ p)
)

; (22)
end if (23)

end while (24)
end if (25)

end

Given a PCTL property ϕ, we call a DTMC M ′ a critical subsystem of M
for ϕ if M ′ = closureM (m) for some selection m and ϕ is violated for M ′.

To give an intuition, if for the system in Fig. 3 the paths 1 → 2 → 4 →
5 → 4 → 5 → 7 and 1 → 3 → 4 → 6 → 7 are selected, e. g., all paths of
the form 1 → 3 → (4 → 5)+ → 7 with arbitrarily many traversals of the loop
4 → 5 → 4 will be contained in the counterexample. This property guarantees
the termination of our approach even for counterexamples that need an infinite
number of certain loop traversals. Missing transitions are implicitly leading to
s⊥.

4.2 The Basic Hierarchical Algorithm

We compute counterexamples in a hierarchical manner: First we compute a crit-
ical subsystem for the abstract DTMC that is the result of the model checking
procedure. Then we refine the DTMC stepwise hand in hand with its critical sub-
system. For each refinement step, the abstract and the refined critical subsystems
differ only in states and transitions affected by the refinement step.

The method SearchAbstractCex, depicted in Algorithm 2, calls the model
checking procedure (line 11) yielding an abstract DTMC Mce = (Sce, Ice, Pce, Lce)
and a set of abstraction pairs Sub. If the property holds, the algorithm terminates

Algorithm 3

Concretize(DTMC Mce, Selection mmin, Selection mmax, Abstractions Sub)
begin

first = true; (26)
while true do (27)

sa := ChooseAbstractState(closureMce(mmax)); (28)
if (sa = ⊥) then (29)

return (first,Mce,mmin, mmax) (30)
else (31)

first := false; (32)
Let (Mabs ,Mcon) ∈ Sub s. t. sa ∈ Inp(Mabs); (33)
Trabs :=

{

(s, s′) ∈ Sabs×Sabs

∣

∣ s /∈ Out(Mabs) ∧ Pabs(s, s
′) > 0

}

; (34)
Tr con :=

{

(s, s′) ∈ Scon×Scon

∣

∣ s /∈ Out(Mcon) ∧ Pcon (s, s
′) > 0

}

; (35)
mmin := mmin\Trabs ; (36)
mmax :=

(

mmax\Trabs
)

∪ Trcon ; (37)
Mce := Mce[Mcon/Mabs]; (38)

end if (39)
end while (40)

end

s0

t

Mabs
concretize⇒

s0

t

Mcon

mmax

s0

t

Mcon

mmin

Fig. 4. Concretization of Mabs and resulting selections mmin and mmax

(lines 12–13). Otherwise it computes an initial critical subsystem for the abstract
DTMC and refines it iteratively (lines 14–25).

The initial critical subsystem is given by the closure closureMce(mmax) where
the selection mmax contains the only transition from the initial state s0 to the
target state t of Mce (line 15). Note that this initial subsystem represents all
paths of M from its initial to its target state.

The concretization (line 18) is done by the Concretize method, listed in Al-
gorithm 3, which determines heuristically a sequence of abstract states and con-
cretizes them in Mce. During this step, we remove all transitions from mmax

that were removed by the concretization and add all transitions that were added
by the concretization (line 37). It is easy to see that if the closure of mmax in
Mce represents a counterexample, then also the closure of the updated mmax

in the concretization of Mce represents a counterexample with the same proba-
bility. However, this counterexample is often unnecessarily large. For example,
the concretized initial subsystem would still contain all paths from the initial to
the target state. Therefore we search for a selection included in mmax. It should
be smaller if possible, but, in order to generate hierarchical counterexamples, it
should still contain all transitions that were not affected by the concretization
step. To assure the latter requirement, we store a copy of mmax in mmin before
the concretization, and during the concretization we remove concretized transi-
tions from mmin (line 36). This way mmin puts a lower and mmax an upper bound
on the selection inducing the concretized critical subsystem (see Fig. 4).

Algorithm 4 Global Search

FindCriticalSubsystem(DTMC Mce, Selection mmin, Selection mmax,
PCTL-formula P∼λ (♦ p))

begin

Mmax := closureMce(mmax); (41)
Let s0 be the initial and t the target state of Mmax; (42)
k := 0; (43)
repeat (44)

k := k + 1; (45)
π := FindNextPath(s0, t,Mmax, k); (46)
mmin := extend(mmin, π); (47)

until ModelCheck(closureMce(mmin), P∼λ (♦ p)) reports violation; (48)
return mmin; (49)

end

If no concretization was required, the closure of mmax in Mce is the final result
(lines 19–20). Otherwise FindCriticalSubsystem (line 22) is invoked to determine
a selection containing mmin and being contained in mmax, whose closure induces
a counterexample after concretization.

4.3 Global Search

We propose an implementation for FindCriticalSubsystem, listed in Algorithm 4,
which we call the global search algorithm. It searches for most probable paths
from the initial state to the target state in the subsystemMmax = closureMce(mmax)
(line 41). For this search we follow Han et al. [4] and utilize a k-shortest paths
algorithm [7] to accomplish an ordering on paths w. r. t. their probability. After
a next most probable path has been found (line 46), the algorithm extends mmin

with the found path (line 47). This procedure is repeated until the closure of
mmin is large enough to represent a counterexample which is determined by our
SCC-based model checking (line 48). Correctness of the whole method is ensured
by applying model checking for the critical subsystem.

Example 2. Fig. 5 illustrates the global search for the example system of Fig. 2
violating the upper probability bound 0.5 of reaching state 4. Dashed lines de-
note transitions that are not in the closure of mmax, solid lines (both thick and
thin) the closure of mmax, and thick lines the closure of mmin. The initial critical
subsystem, depicted in Fig. 5(a), is the closure of mmax =

{

(0, 4)
}

, and has a
probability mass 0.9 to reach state 4. State 0 is grey, indicating that it will be
concretized in the next step. After concretization, the global search determines
0 → 1 → 4 as the most probable path, and adds (0, 1) to mmin, whose closure
(Fig. 5(b)) has now a sufficient probability mass of 0.7. Note that the dashed
transitions were ignored for the search. After concretizing state 1, the most prob-
able paths 0 → 1 → 4, 0 → 1 → 2 → 3 → 4, and 0 → 1 → 2 → 1 → 4 in the
closure of mmax are sufficient to extend mmin to have a closure in which state 4
is reached with probability 0.66 (Fig. 5(c)).

0 4

8

0.9

0.1

(a) Initial search

0 1 4

5 8

0.7

0.3

1

0.66

0.34

(b) State 0 concretized

0 1

2 3

4

5 8

0.7

0.3

0.5

0.5

0.6

0.4

0.2 0.8

0.66

0.34

(c) State 1 concretized, global search

0 1

2 3

4

5 8

0.7

0.3

0.5

0.5

0.6

0.4

0.2 0.8

0.66

0.34

(d) State 1 concretized, local search

Fig. 5. Example applications of the global and the local search

4.4 Local Search

Though the global search is complete, it has one disadvantage: it may find most
probable paths which do not extend the minimal selection mmin. This can be
time-consuming, e. g., when many different traversals of loops are considered.

In this section we introduce a second implementation for FindCriticalSubsys-
tem which we call the local search (see Algorithm 5), and which overcomes this
problem. In contrast to the global search, the local search finds only paths that
extend the minimal selection and increase the target reachability probability of
its closure. Instead of searching for paths from the initial to the target state, it
aims at finding most probable path fragments that connect fragments of already
found paths to new paths. The path fragments should, as the paths for the global
search, lie in the closure of mmax. But this time they should (1) start at states
reachable from an initial state via transitions of mmin, (2) end in states from
which the target state is reachable via transitions from mmin, and (3) contain
transitions from mmax\mmin only. I. e., we search for path fragments only in the
subgraphs inserted by the last concretization step, which connect path fragments
in the closure of mmin to whole paths from the initial to the target state.

Example 3. We consider the computation of a counterexample for the same sys-
tem as in Example 2, but this time using the local search. Applying local search
to the result of the concretization of state 0 yields the same subsystem as apply-
ing global search (Fig. 5(b)). After concretizing state 1, we search for shortest
path fragments that start at 1, end at 4, and visit states inside the concretized
component (surrounded by a box) only. It is sufficient to extend mmin with the
two shortest path fragments 1 → 4 and 1 → 2 → 1: its closure after the exten-
sion is a critical subsystem with a sufficient probability mass of 0.583. Fig. 5(d)
depicts the closures of the final minimal and maximal selections.

Algorithm 5 Local Search

FindCriticalSubsystem(DTMC Mce, Selection mmin, Selection mmax,
PCTL-formula P∼λ (♦ p))

begin

Mcl := closureMce(mmin); (50)
while ModelCheck(Mcl,P∼λ (♦ p)) reports satisfaction do (51)

Msearch := closureMce(mmax\mmin); (52)
Π :=

{

π′ ∈ Paths
Msearch
fin (s, t)

∣

∣ s ∈ Inp(Msearch) ∧ t ∈ Out(Msearch)
}

; (53)
π := argmaxπ∈Π Prfin(π); (54)
mmin := extend(mmin, π); (55)
Mcl := closureMce(mmin); (56)

end while (57)
return mmin (58)

end

5 Experimental results

We developed a C++ implementation with exact arithmetic for our local and
global search algorithms. We used this tool to run some experiments on a 2.4 GHz
Intel Core2 Duo CPU with 4 GB RAM. We used Prism [9] to generate models for
different instances of the parametrized synchronous leader election protocol [6]
and the crowds protocol [10].

In the synchronous leader election protocol, N processes are connected in a
one-way ring and they want to elect a unique leader. They therefore randomly
choose a natural number, their id , out of the range 1, . . . ,K, which leads to a
uniform probability distribution. These numbers are synchronously passed along
the whole ring such that every process can see all other ids. The leader is the
process with the highest unique id . If there is no unique highest id , a new selection
round is started. This goes on until a leader is elected, which will happen with
probability 1 at some point in time. The crowds protocol aims at anonymous
communication in networks, where n users are divided in g ·n good members and
(1−g)·n bad members. A good member delivers a message to its destination with
probability 1 − pf and forwards it to another member, randomly chosen, with
probability pf . This guarantees that no bad member knows the original sender of
the message. A session is the delivery of a message to a sender and the number
of sessions is r. A user who was identified twice by a bad member, is positively
identified, for this user no anonymity is guaranteed. In the corresponding DTMC
model, such states are labeled with Pos. We verify the property P≤p(♦Pos) while
we fix g = 0.833 and pf = 0.8. The models are parametrized by r and n. We also
used different probability bounds p.

The global and the local search, introduced in the previous section, work on
hierarchical data types. However, they can also directly be applied to concrete
models. We consider this non-hierarchical approach because this allows a fair com-
parison to the k-shortest path approach of [4]. Furthermore, we can demonstrate
on the one hand the advantage of incrementally computing the closure instead
of building sets of paths, and on the other hand the improvements achieved by
connecting most probable path fragments as done in our local search.

For this non-hierarchical application, Table 1 compares the global method
with the k-shortest path search for the leader election protocol, where the prob-

Table 1. Results for the leader benchmark on concrete models (TO > 1h)

states 3902 12302

transitions 5197 16397

prob. threshold 0.92 0.93 0.95 0.95 0.96 0.97

k-sp # paths 1193 8043 41636 3892 53728 -TO-

states 3593 3903 3903 11690 12302 12302

global # paths 1193 1301 1850 3892 4360 5870

states 3593 3634 3676 11690 11815 11941

prob. 0.9205 0.9302 0.9501 0.9502 0.9600 0.9700

Table 2. Results for the crowds benchmark on concrete models (TO > 1h)

states 396 3515 18817

transitions 576 6035 32677

total prob. 0.1891 0.2346 0.4270

prob. threshold 0.12 0.15 0.1 0.12 0.15 0.21 0.23 0.2 0.25

k-sp # paths 1301 26184 3974 26981 488644 -TO- -TO- -TO- -TO-
states 133 133 671 831 1071 -TO- -TO- -TO- -TO-

global # paths 38 76 91 220 935 3478 151639 3007 56657
closures 24 29 58 73 181 364 623 302 767
states 89 93 143 169 631 671 1071 663 2047
prob. 0.1339 0.1514 0.1014 0.1203 0.1501 0.2101 0.2300 0.2002 0.2500

local # paths 26 32 60 68 98 326 665 202 798
states 55 67 99 104 171 670 900 326 1439
prob. 0.1238 0.1509 0.1018 0.1211 0.1525 0.2101 0.2300 0.2001 0.2508

ability of reaching a target state is always 1. Table 2 depicts results for the
crowds benchmark, additionally containing the local search. The global search
finds paths in the same order as k-sp, but due to the closure computation ear-
lier termination, a significantly smaller number of needed paths, and therefore
a smaller number of computation steps are achieved. For probability thresholds
near the total probability, the number of paths for k-sp is several orders of mag-
nitude larger. The number of considered states can also be reduced significantly.
The local search not only leads to smaller critical subsystems in most cases, but
also needs a much smaller number of found path fragments also in comparison to
the global search. The probability mass for all types of counterexamples is always
very close to the specified probability threshold. Note that for our methods we
model check only extended subsystems, while for the local search actually every
new path extends the system.

The search for hierarchical counterexamples is motivated by their usefulness
and understandability. The results in Table 3 show that the hierarchical search
leads to critical subsystems of comparable size (the third last column is the
hierarchical version of the global search in the second last column of Table 2).
The number of found paths is much larger in the hierarchical approach, because
we have to search at each abstraction level. However, due to abstraction, the
found paths are shorter, especially for the local search, and the concretization up
to the concrete level seems not neccessary for many cases. We did experiments
using different heuristics for the number of abstract states that are concretized in
one step (e. g., either a single one or

√
n with n the number of abstract states). We

also tried two different heuristics for the choice of the next abstract state, either

Table 3. Results for a crowds instance (18817 states, 32677 transitions, 0.2 probability thresh-
old) on the hierarchical model

search type global local

abstract states to concretize in one step
√

single
√

single

heuristic to choose the next abstract state prob none prob none prob prob

paths 13525 912455 38379 594881 496 545

closures 728 730 728 729 496 545

states 457 457 458 457 319 347

refinements 13 10 37 37 9 28

being just the next one found (“none”), or the one whose outgoing transitions
have the maximal average probability (“prob”).

6 Related Work and Conclusion

In this paper we introduced two approaches to generate counterexamples for
DTMCs and unbounded PCTL properties. Most related to our work are [4], [3]
and [2]. In [4] two methods are introduced. The first one applies a k shortest paths
search on a DTMC to find the k most probable paths that form a counterexample.
The second approach, based on state elimination, computes a regular expression,
such that the set of paths whose state sequences are in the language of the
regular expression is a counterexample. Although we also use a shortest paths
algorithm, we generate structural counterexamples in form of critical subsystems.
Furthermore, our local search method does not always consider shortest paths,
but focuses on small subsystems.

The work [3] determines the SCCs in the graph of the DTMC. They use stan-
dard PCTL model checking for every non-bottom SCC and every input-output
state pair of the SCC to compute the probabilities of reaching the output state
from the input state, and replace the SCC by a minimal subgraph. An abstract
counterexample is determined on the resulting acyclic DTMC. In contrast to
our hierarchical approach, this abstraction technique allows only a one-level con-
cretization.

In [2], a method for the generation of counterexamples for DTMCs and Con-
tinuous Time Markov Chains is proposed, that uses a directed explicit state
search and represents counterexamples as a diagnostic subgraphs, which is sim-
ilar to our representation as a critical subsystem. Bounded model checking in
combination with loop detection was used in [12] to find most probable paths.
Whereas we focus on PCTL, [11] deals with counterexamples for probabilistic
LTL properties.

In this paper we introduced a global and a local method for the hierarchical
computation of counterexamples for DTMCs and unbounded PCTL properties.
Experimental results showed the advantage of the proposed methods. Currently
we are working on the visualization of the critical subsystems and its refinement
process and on the development of more sophisticated heuristics for the local
search. In the future we will experimentally compare our method with other, both
explicit and symbolic, methods. We also plan to develop a symbolic approach for
the computation of critical subsystems.

References

1. Ábrahám, E., Jansen, N., Wimmer, R., Katoen, J.P., Becker, B.: DTMC model checking
by SCC reduction. In: Proc. of QEST. pp. 37–46. IEEE CS (2010)

2. Aljazzar, H., Leue, S.: Directed explicit state-space search in the generation of counterex-
amples for stochastic model checking. IEEE Trans. on Software Engineering 36(1), 37–60
(2010)

3. Andrés, M.E., D’Argenio, P., van Rossum, P.: Significant diagnostic counterexamples in
probabilistic model checking. In: Proc. of HVC. LNCS, vol. 5394, pp. 129–148. Springer
(2008)

4. Han, T., Katoen, J.P., Damman, B.: Counterexample generation in probabilistic model
checking. IEEE Trans. on Software Engineering 35(2), 241–257 (2009)

5. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects
of Computing 6(5), 512–535 (1994)

6. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Information and Compu-
tation 88(1), 60–87 (1990)

7. Jiménez, V.M., Marzal, A.: Computing the k shortest paths: A new algorithm and an
experimental comparison. In: Int’l Workshop on Algorithm Engineering (WAE). LNCS,
vol. 1668, pp. 15–29. Springer (1999)

8. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of
the probabilistic model checker MRMC. In: Proc. of QEST. pp. 167–176. IEEE CS (2009)

9. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-
time systems. In: Proc. 23rd International Conference on Computer Aided Verification
(CAV’11). LNCS, Springer (2011), to appear

10. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. ACM Trans. on In-
formation and System Security 1(1), 66–92 (1998)

11. Schmalz, M., Varacca, D., Völzer, H.: Counterexamples in probabilistic LTL model checking
for Markov chains. In: Proc. of CONCUR. LNCS, vol. 5710, pp. 587–602. Springer (2009)

12. Wimmer, R., Braitling, B., Becker, B.: Counterexample generation for discrete-time Markov
chains using bounded model checking. In: Proc. of VMCAI. LNCS, vol. 5403, pp. 366–380.
Springer (2009)

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years.

A complete list of reports dating back to 1987 is available from

http://aib.informatik.rwth-aachen.de/. To obtain copies consult the above

URL or send your request to: Informatik-Bibliothek, RWTH Aachen, Ahorn-

str. 55, 52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007

2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, Harald Zankl: Maximal Termination

2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler

2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations

2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message

Passing Programs

2008-07 Alexander Nyßen, Horst Lichter: The MeDUSA Reference Manual, Sec-

ond Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on

Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-

endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-

Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable

Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-

straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl

Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-

proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers

2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves

2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study

2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving

2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems

2008-19 Dirk Wilking: Empirical Studies for the Application of Agile Methods to

Embedded Systems

2009-02 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Quantitative Model Checking of Continuous-Time Markov Chains

Against Timed Automata Specifications

http://aib.informatik.rwth-aachen.de/

2009-03 Alexander Nyßen: Model-Based Construction of Embedded

Real-Time Software - A Methodology for Small Devices

2009-04 Daniel Klünder: Entwurf eingebetteter Software mit abstrakten Zus-

tandsmaschinen und Business Object Notation

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-

erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-

dependent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm

Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the

Correctness of the Upper Bound of a Maximum Independent Set Algo-

rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The

Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in

Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset Games

2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)

2009-15 Joost-Pieter Katoen, Daniel Klink, Martin Neuhäußer: Compositional

Abstraction for Stochastic Systems

2009-16 George B. Mertzios, Derek G. Corneil: Vertex Splitting and the Recog-

nition of Trapezoid Graphs

2009-17 Carsten Kern: Learning Communicating and Nondeterministic Au-

tomata

2009-18 Paul Hänsch, Michaela Slaats, Wolfgang Thomas: Parametrized Regular

Infinite Games and Higher-Order Pushdown Strategies

2010-02 Daniel Neider, Christof Löding: Learning Visibly One-Counter Au-

tomata in Polynomial Time

2010-03 Holger Krahn: MontiCore: Agile Entwicklung von domänenspezifischen

Sprachen im Software-Engineering

2010-04 René Wörzberger: Management dynamischer Geschäftsprozesse auf Ba-

sis statischer Prozessmanagementsysteme

2010-05 Daniel Retkowitz: Softwareunterstützung für adaptive eHome-Systeme

2010-06 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Computing maximum reachability probabilities in Markovian timed au-

tomata

2010-07 George B. Mertzios: A New Intersection Model for Multitolerance

Graphs, Hierarchy, and Efficient Algorithms

2010-08 Carsten Otto, Marc Brockschmidt, Christian von Essen, Jürgen Giesl:

Automated Termination Analysis of Java Bytecode by Term Rewriting

2010-09 George B. Mertzios, Shmuel Zaks: The Structure of the Intersection of

Tolerance and Cocomparability Graphs

2010-10 Peter Schneider-Kamp, Jürgen Giesl, Thomas Ströder, Alexander Sere-

brenik, René Thiemann: Automated Termination Analysis for Logic Pro-

grams with Cut

2010-11 Martin Zimmermann: Parametric LTL Games

2010-12 Thomas Ströder, Peter Schneider-Kamp, Jürgen Giesl: Dependency

Triples for Improving Termination Analysis of Logic Programs with Cut

2010-13 Ashraf Armoush: Design Patterns for Safety-Critical Embedded Systems

2010-14 Michael Codish, Carsten Fuhs, Jürgen Giesl, Peter Schneider-Kamp:

Lazy Abstraction for Size-Change Termination

2010-15 Marc Brockschmidt, Carsten Otto, Christian von Essen, Jürgen Giesl:

Termination Graphs for Java Bytecode

2010-16 Christian Berger: Automating Acceptance Tests for Sensor- and

Actuator-based Systems on the Example of Autonomous Vehicles

2010-17 Hans Grönniger: Systemmodell-basierte Definition objektbasierter Mod-

ellierungssprachen mit semantischen Variationspunkten

2010-18 Ibrahim Armaç: Personalisierte eHomes: Mobilität, Privatsphäre und

Sicherheit

2010-19 Felix Reidl: Experimental Evaluation of an Independent Set Algorithm

2010-20 Wladimir Fridman, Christof Löding, Martin Zimmermann: Degrees of

Lookahead in Context-free Infinite Games

2011-02 Marc Brockschmidt, Carsten Otto, Jürgen Giesl: Modular Termination

Proofs of Recursive Java Bytecode Programs by Term Rewriting

2011-03 Lars Noschinski, Fabian Emmes, Jürgen Giesl: A Dependency Pair

Framework for Innermost Complexity Analysis of Term Rewrite Systems

2011-04 Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, Thomas Noll:

A Local Greibach Normal Form for Hyperedge Replacement Grammars

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

	Hierarchical Counterexamples forDiscrete-Time Markov Chains

