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Abstract. In [CMN+11] the library modMC was presented which allows the
propagation of McCormick relaxations and their corresponding subgradients based
on the forward mode of Algorithmic Differentiation (AD). Subgradients are natu-
ral extensions of usual derivatives which allow the application of derivative based
methods on possibly nondifferentiable convex and concave functions. These sub-
gradients can be computed by AD, a method which allows the computation of
derivatives with machine accuracy even for highly complex functions implemented
by a computer program. In this article we present the advancement of modMC by
reverse mode AD. Reverse mode AD is an adjoint method for the propagation of
derivatives which is preferable when scalar functions are considered. We describe
the theory behind the application of reverse mode in subgradient propagation
as well as the improved library amodMC in detail. The calculated subgradients
are used in an deterministic global optimization algorithm which is based on a
branch-and-bound method. The improvements gained using Reverse instead of
Forward mode AD are illustrated by examples.

1 Motivation & Context

Optimization problems in engineering often have nonconvex objective and con-
straints and require global optimization algorithms. Deterministic global opti-
mization algorithms based on the branch-and-bound methods solve relaxations
of the original program. These are constructed by convex/concave under-/over-
estimators of the functions involved. One of the alternative methods to construct
these estimating functions are McCormick relaxations (see [McC76]). Without
auxiliary variables this technique results in nonsmooth estimators, and thus to
obtain derivative information, subgradients are needed. These can be calculated
using techniques from AD [MCB09],[CMN+11]. This is especially very useful if
the functions are given by a long and complex computer program. AD allows
the calculation of derivatives, and here additionally the relaxations, with ma-
chine accuracy. Hence numerical error based on finite difference approximations
are avoided. Two important methods of AD are the forward (or tangent-linear)
and the reverse (or adjoint) mode. The choice of the method depends on the
dimensionality of the function to be relaxed/differentiated.

The combination of the afore mentioned methods into global optimization
was first discussed in [MCB09] using forward mode AD. Enhancements of the
implementation were presented in [CMN+11] wherein runtimes were improved
by using Fortran specifics and compiler support enabled AD by source transfor-
mation. However, [CMN+11] was still lacking a reverse mode implementation,
which is a disadvantage since sometimes the number of inputs (optimization vari-
ables) is much greater than the number of outputs (objective, constraints). Such
an enhancement is given in this paper.



2 Theoretical Development

Let F : Z → IR be a function given on a convex set Z ⊆ IRn. Then, a convex
(concave) function F cv (F cc) for which F cv(z) ≤ F (z) (F cc(z) ≥ F (z)) holds for
all z ∈ Z is called a convex (concave) relaxation of F . As a special case we now
observe McCormick relaxations of factorizable functions. In [MCB09] a proce-
dure for propagating subgradients of relaxations is presented, which is based on
the forward mode of Algorithmic Differentiation (AD). Our goal is to extend this
procedure to a reverse mode.

Examine first the structure of propagating subgradients with AD methods.
The propagation of the convex and concave relaxation of the function

F : Z ⊆ IRn → IR, (z1, . . . , zn) 7→ y

can be considered as the composition g ◦ f =

(
F cv

F cc

)
of the two functions

f : Z ⊆ IRn → IR2n, (z1, . . . , zn) 7→ (zcv1 , z
cc
1 , . . . , z

cv
n , z

cc
n ) = (z1, z1, . . . , zn, zn)

and

g = (gcv, gcc) : Z+ ⊆ IR2n → IR2, (zcv1 , z
cc
1 , . . . , z

cv
n , z

cc
n ) 7→ (ycv, ycc) ,

where Z+ denotes the set
{

(z1, z1, . . . , zn, zn) ∈ IR2n | z = (z1, . . . , zn) ∈ Z
}

.

This means ycv = F cv(z) = gcv(f(z)) = gcv(z+) and ycc = F cc(z) =
gcc(f(z)) = gcc(z+). Here g really represents the simultaneous propagation pro-
cess of the convex and concave relaxation, for which the duplication f of the
variables is needed. (Note that both the convex and concave relaxation of the
identity f(z) = z are equal to f.)
The following Theorem explains our further proceedings. For a vector z =
(z1, . . . , zn) ∈ Z, z+ denotes the corresponding vector z+ = (z1, z1, . . . , zn, zn) ∈
Z+.

Theorem 1. Let g ◦ f be defined as the above composition, z ∈ Z and let

sgcv
(
z+
)

=
(
∂ycv

∂zcv1
, ∂y

cv

∂zcc1
, . . . , ∂y

cv

∂zcvn
, ∂y

cv

∂zccn

)
denote a subgradient of the convex relaxation gcv at z+ and

sgcc
(
z+
)

=
(
∂ycc

∂zcv1
, ∂y

cc

∂zcc1
, . . . , ∂y

cc

∂zcvn
, ∂y

cc

∂zccn

)
denote a subgradient of the concave relaxation gcc at z+.
Then a subgradient of the convex relaxation F cv of F at z is given by

sF cv(z) :=

(
∂ycv

∂zcv1
+
∂ycv

∂zcc1
, . . . ,

∂ycv

∂zcvn
+
∂ycv

∂zccn

)
. (1)

Similarly the subgradient of the concave relaxation F cc of F at z is given by

sF cc(z) :=

(
∂ycc

∂zcv1
+
∂ycc

∂zcc1
, . . . ,

∂ycc

∂zcvn
+
∂ycc

∂zccn

)
. (2)
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Proof. It is easy to see that Z+ is a convex set and gcv is a convex function for
all convex sets Z ⊆ IRn. This implies the existence of the above subgradients.
According to Definition 1.1.4 on page 165 in [HUL93] we need to show that

〈sF cv(z), d〉 ≤ (F cv)′(z,d) ∀d ∈ IRn , (3)

where

(F cv)′(z,d) := lim
t→+0

F cv(z + t · d)− F cv(z)

t
.

We observe for arbitrary d ∈ IRn:

〈sF cv(z),d〉 =

(
∂ycv

∂zcv1
+
∂ycv

∂zcc1
, . . . ,

∂ycv

∂zcvn
+
∂ycv

∂zccn

)
·

d1...
dn


= d1 ·

(
∂ycv

∂zcv1
+
∂ycv

∂zcc1

)
+ · · ·+ dn ·

(
∂ycv

∂zcvn
+
∂ycv

∂zccn

)
= d1 ·

∂ycv

∂zcv1
+ d1 ·

∂ycv

∂zcc1
+ · · ·+ dn ·

∂ycv

∂zcvn
+ dn ·

∂ycv

∂zccn

=

(
∂ycv

∂zcv1
,
∂ycv

∂zcc1
, . . . ,

∂ycv

∂zcvn
,
∂ycv

∂zccn

)
·


d1
d1
...
dn
dn


= 〈sgcv(z+),d+〉

≤
Def. of subgradient

lim
t→+0

gcv(z+ + t · d+)− gcv(z+)

t
)

= lim
t→+0

gcv(f(z + t · d))− gcv(f(z))

t

= (F cv)′(z,d) .

This shows (3) and completes the proof for the convex relaxation. The proof for
the concave relaxation is analogue by considering the convex function −F cc.

Remark 1. Theorem 1 yields the following view on the propagation of subgradi-
ents of convex and concave McCormick relaxations:
If we interprete the matrices

Dg :=


∂ycv

∂zcv1

∂ycv

∂zcc1
. . . ∂y

cv

∂zcvn

∂ycv

∂zccn

∂ycc

∂zcv1

∂ycc

∂zcc1
. . . ∂y

cc

∂zcvn

∂ycc

∂zccn

 ∈ IR2×2n . (4)
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and

Df :=



1 0 0 . . . 0
1 0 0 . . . 0
0 1 0 . . . 0
0 1 0 . . . 0
0 0 1 0
...

...
...

. . .
...

0 0 0
. . . 1

0 0 0 . . . 1


∈ IR2n×n

as “Jacobians” of g and f and multiply them we get

Dg ∗Df =


∂ycv

∂zcv1
+ ∂ycv

∂zcc1
. . . ∂y

cv

∂zcvn
+ ∂ycv

∂zccn

∂ycc

∂zcv1
+ ∂ycc

∂zcc1
. . . ∂y

cc

∂zcvn
+ ∂ycc

∂zccn

 ∈ IR2×n . (5)

This is a coincidence with the chain rule

D[g ◦ f ](z) = Dg (f(z)) ∗Df(z)

of differential calculus.

Lets call (5) the sub-Jacobian of F , where the first row contains the subgradient
of the convex underestimator F cv and the second row is given by the subgradient
of the concave overestimator F cc of F .

The above approach was used in [MCB09] and [CMN+11] for propagating
subgradients in tangent-linear mode. By seeding the tangent vectors (scvi )i=1,...,n

and (scci )i=1,...,n for the independent variables (zi)i=1,...,n to the Cartesian basis
vectors

scvi = scci = ei

and applying the propagation rules given in [MCB09], the calculation of the
sub-Jacobian given in (5) is performed.

We see that by this approach n projections of the matrix Dg have to be cal-
culated. Similar to standard AD, high input dimensions n of the Function F lead
to high computational costs for the evaluation of its sub-Jacobian. Since we are
only considering scalar functions (leading to two-dimensional output) an adjoint
computation of the subgradients is preferable. For applying an adjoint compu-
tation one has to be cautious about the seeding. In adjoint mode projections of
the transposed Jacobian are calculated. In our context this means we derive the
product 

∂ycv

∂zcv1

∂ycc

∂zcv1

∂ycv

∂zcc1

∂ycc

∂zcc1
...

...
∂ycv

∂zcvn

∂ycc

∂zcvn

∂ycv

∂zccn

∂ycc

∂zccn


· v̄ .
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The structure of the transposed matrix implies that there is no possibility of
gaining the sub-Jacobian (5) by projecting only one (adjoint) direction vector v̄.

We have to initialize the two adjoints v̄1 =

(
1
0

)
and v̄2 =

(
0
1

)
. leading to

the adjoint AD propagation of the vectors

¯df cv =



∂ycv

∂zcv1
∂ycv

∂zcc1
...

∂ycv

∂zcvn
∂ycv

∂zccn


and ¯df cc =



∂ycc

∂zcv1
∂ycc

∂zcc1
...

∂ycc

∂zcvn
∂ycc

∂zccn


.

Summing the right entries in each vector leads to the entries of the desired sub-
Jacobian. The following example shows the operations performed in tangent-
linear and adjoint mode to calculate the subgradients of a simple function.

Example 1. Consider the evaluation of the subgradients of the convex and con-
cave relaxations of F (z) = exp(z1) ·z1 ·z2 on the box [−1, 1]× [−2, 2] at (z1, z2) =
(−0.5, 1.3). Table 1 demonstrates the evaluation of the relaxations and the cor-
responding subgradients in the forward mode according to the rules given in
[MCB09].
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Initialization

vL1 = −1 vU1 = 1
vcv
1 = z = −0.5 vcc

1 = z = −0.5
scv1 = (1, 0) scc1 = (1, 0)

vL2 = −2 vU2 = 2
vcv
2 = z = 1.3 vcc

2 = z = 1.3
scv2 = (0, 1) scc2 = (0, 1)

v3 = exp(v1)

vL3 = exp(vL1 ) = exp(−1) = 0.37 vU3 = exp(vU1 ) = exp(1) ≈ 2.72

vcv
3 = exp(mid(vcv1 , v

cc
1 , xmin) vcc

3 = ev
U
1 −ev

L
1

vU1 −vL1
mid(vcv1 , v

cc
1 , xmax)

+
vU1 ev

L
1 −vL1 e

vU1

vU1 −vL1
= exp(mid(−0.5,−0.5,−1)) = e1−e−1

2 (−0.5) + 1 e−1−(−1) e1
2

= exp(−0.5) ≈ 0.61 ≈ 0.96

scv3 =


0 if vcv1 ≤ xmin ≤ vcc1 ,
σuo3 scc1 if vcc1 < xmin,

σuu3 scv1 if xmin < vcv1 .

scc3 =


0 if vcv1 ≤ xmax ≤ vcc1 ,
σoo3 scc1 if vcc1 < xmax,

σou3 scv1 if xmin < vcv1 .

= σuu3 scv1 = σoo3 scc1

= exp(vcv1 ) ∗ (1, 0) = ev
U
1 −ev

L
1

vU1 −vL1
(1, 0)

= exp(−0.5) ∗ (1, 0) ≈ (0.61, 0) = e1−e−1

2 ≈ (1.18, 0)

v4 = v3 · v1
vL4 = −2.72 vU4 = 2.72

α1 = min(vL1 · vcv3 , vL1 · vcc3 ) α2 = min(vL3 · vcv1 , vL3 · vcc1 )
= min(−0.61,−0.96) = −0.96 = min(−0.19,−0.19) = −0.19

β1 = min(vU1 · vcv3 , vU1 · vcc3 ) β2 = min(vU3 · vcv1 , vU3 · vcc1 )
= min(0.61, 0.96) = 0.61 = min(−1.36,−1.36) = −1.36

γ1 = max(vL1 · vcv3 , vL1 · vcc3 ) γ2 = max(vU3 · vcv1 , vU3 · vcc1 )
= max(−0.61,−0.96) = −0.61 = max(−1.36,−1.36) = −1.36

δ1 = max(vU1 · vcv3 , vU1 · vcc3 ) δ2 = max(vL3 · vcv1 , vL3 · vcc1 )
= max(0.61, 0.96) = 0.96 = max(−0.19,−0.19) = −0.19

vcv
4 = max(α1 + α2 − vL3 · vL1 , β1 + β2 − vU3 · vU1 ) vcc

4 = min(γ1 + γ2 − vU3 · vL1 , δ1 + δ2 − vL3 · vU1 )
= max(−0.78,−3.47) = min(0.75, 0.4)
= −0.78 = 0.4

sα1 = vL1 · scc3 sα2 = vL3 · scv1
= (−1, 18, 0) = (0.37, 0)

sβ1 = vU1 · scv3 sβ2 = vU3 · scv1
= (0.61, 0) = (2.72, 0)

sγ1 = vL1 · scv3 sγ2 = vU3 · scc1
= (−0.61, 0) = (2.72, 0)

sδ1 = vU1 · scc3 sδ2 = vL3 · scc1
= (1.18, 0) = (0.37, 0)

scv4 = sα1 + sα2 scc4 = sδ1 + sδ2

= (−0.81, 0) = (1.55, 0)
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v5 = v4 · v2
vL5 = −5.44 vU5 = 5.44

α1 = min(vL2 · vcv4 , vL2 · vcc4 ) α2 = min(vL4 · vcv2 , vL4 · vcc2 )
= min(1.56,−0.8) = −0.8 = min(−3.54,−3.54) = −3.54

β1 = min(vU2 · vcv4 , vU2 · vcc4 ) β2 = min(vU4 · vcv2 , vU4 · vcc2 )
= min(−1.56, 0.8) = −1.56 = min(3.54, 3.54) = 3.54

γ1 = max(vL2 · vcv4 , vL2 · vcc4 ) γ2 = max(vU4 · vcv2 , vU4 · vcc2 )
= max(1.56,−0.8) = 1.56 = max(3.54, 3.54) = 3.54

δ1 = max(vU2 · vcv4 , vU2 · vcc4 ) δ2 = max(vL4 · vcv2 , vL4 · vcc2 )
= max(−1.56, 0.8) = 0.8 = max(−3.54,−3.54) = −3.54

vcv
5 = max(α1 + α2 − vL4 · vL2 , β1 + β2 − vU4 · vU2 ) vcc

5 = min(γ1 + γ2 − vU4 · vL2 , δ1 + δ2 − vL4 · vU2 )
= max(−9.78,−3.46) = min(10.54, 2.7)
= −3.46 = 2.7

sα1 = vL2 · scc4 sα2 = vL4 · scv2
= (−3.1, 0) = (0,−2.72)

sβ1 = vU2 · scv4 sβ2 = vU4 · scv2
= (−1.62, 0) = (0, 2.72)

sγ1 = vL2 · s44 sγ2 = vU4 · scc2
= (1.62, 0) = (0, 2.72)

sδ1 = vU2 · scc4 sδ2 = vL4 · scc2
= (3.1, 0) = (0,−2.72)

scv5 = sβ1 + sβ2 scc5 = sδ1 + sδ2

= (−1.62, 2.72) = (3.1,−2.72)

Table 1: Forward Propagation of Relaxations and Subgradi-
ents

Hence the values of the relaxations of F are given by F vc = −3.46 and
F cc = 2.7. The corresponding subgradients are shown to be sF cv = (−1.62, 2.72)
and sF cc = (3.1,−2.72).

In the following we show how these subgradients are computed in reverse
mode. Here the ”Jacobian” (4) of the (extended) function g of F from page 5 is
given by

Dg :=


∂F cv

∂zcv1

∂F cv

∂zcc1

∂F cv

∂zcv2

∂F cv

∂zcc2

∂F cc

∂zcv1

∂F cc

∂zcc1

∂F cc

∂zcv2

∂F cc

∂zcc2

 ∈ IR2×4.
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In reverse mode we calculate the product

Df t2 ∗ v̄ =



∂F cv

∂zcv1

∂F cc

∂zcv1

∂F cv

∂zcc1

∂F cc

∂zcc1

∂F cv

∂zcv2

∂F cc

∂zcv2

∂F cv

∂zcc2

∂F cc

∂zcc2


∗ v̄

of the transposed sub-Jacobian with an adjoint vector v̄. So in order to obtain
the subgradients given by (1) and (2) in this case we have to, simultaneously,

propagate two adjoint vectors v̄1 =

(
1
0

)
and v̄2 =

(
0
1

)
. This leads to the two

vectors ¯df cv =
(
∂F cv

∂zcv1

∂F cv

∂zcc1

∂F cv

∂zcv2

∂F cv

∂zcc2

)t
and ¯df cv =

(
∂F cv

∂zcv1

∂F cv

∂zcc1

∂F cv

∂zcv2

∂F cv

∂zcc2

)t
. Sum-

ming the right entries of each vector leads to the desired subgradients su and so.
The reverse sweep of our example function is given in Table 2. First all variables
for the adjoint vectors, that are scv cvi , scv cci , scc cvi and scc cci for i = 1, . . . , 5, are
set to zero. The adjoint computation of the subgradients can be seen in Table 2.

10



Initialization of Adjoints

scv cv
5 = 1 scc cv

5 = 0
scv cc
5 = 0 scc cc

5 = 1

v5 = v4 · v2

scv cv
4 = scv cv

4 + scv cv
5 · tmpcv(2) scc cv

4 = scc cv
4 + scc cv

5 · tmpcv(2)
+ scv cc

5 · tmpcc(2) + scc cc
5 · tmpcc(2)

= 0 + 1 · 2 + 0 · 0 = 2 = 0 + 0 · 2 + 1 · 0 = 0
scv cc
4 = scv cc

4 + scv cc
5 · tmpcc(1) scc cc

4 = scc cc
4 + scc cc

5 · tmpcc(1)
+ scv cv

5 · tmpcv(1) + scc cv
5 · tmpcv(1)

= 0 + 0 · 2 + 1 · 0 = 0 = 0 + 1 · 2 + 0 · 0 = 2

scv cv
2 = scv cv

2 + scv cv
5 · tmpcv(4) scc cv

2 = scc cv
2 + scc cv

5 · tmpcv(4)
+ scv cc

5 · tmpcc(4) + scc cc
5 · tmpcc(4)

= 0 + 1 · 2.72 + 0 · (−2.72) = 2.72 = 0 + 0 · 2.72 + 1 · (−2.72) = −2.72
scv cc
2 = scv cc

2 + scv cc
5 · tmpcc(3) scc cc

2 = scc cc
2 + scc cc

5 · tmpcc(3)
+ scv cv

5 · tmpcv(3) + scc cv
5 · tmpcv(3)

= 0 + 0 · 0 + 1 · 0 = 0 = 0 + 1 · 0 + 0 · 0 = 0

v4 = v3 · v1

scv cv
3 = scv cv

3 + scv cv
4 · tmpcv(2) scc cv

3 = scc cv
3 + scc cv

4 · tmpcv(2)
+ scv cc

4 · tmpcc(2) + scc cc
4 · tmpcc(2)

= 0 + 2 · 0 + 0 · 0 = 0 = 0 + 0 · 0 + 2 · 0 = 0
scv cc
3 = scv cc

3 + scv cc
4 · tmpcc(1) scc cc

3 = scc cc
3 + scc cc

4 · tmpcc(1)
+ scv cv

4 · tmpcv(1) + scc cv
4 · tmpcv(1)

= 0 + 0 · 1 + 2 · (−1) = −2 = 0 + 2 · 1 + 0 · (−1) = 2

scv cv
1 = scv cv

1 + scv cv
4 · tmpcv(4) scc cv

1 = scc cv
1 + scc cv

4 · tmpcv(4)
+ scv cc

4 · tmpcc(4) + scc cc
4 · tmpcc(4)

= 0 + 2 · 0.37 + 0 · 0 = 0.74 = 0 + 0 · 0.37 + 2 · 0 = 0
scv cc
1 = scv cc

1 + scv cc
4 · tmpcc(3) scc cc

1 = scc cc
1 + scc cc

4 · tmpcc(3)
+ scv cv

4 · tmpcv(3) + scc cv
4 · tmpcv(3)

= 0 + 0 · 0.37 + 2 · 0 = 0 = 0 + 2 · 0.37 + 0 · 0 = 0.74

v3 = exp(v1)

scv cv
1 = scv cv

1 + scv cv
3 · tmpcv(2) scc cv

1 = scc cv
1 + scc cv

3 · tmpcv(2)
= 0.74 + 0 · 0.61 = 0.74 = 0 + 0 · 0.61 = 0

scv cc
1 = scv cc

1 + scv cc
3 · tmpcc(2) scc cc

1 = scc cc
1 + scc cc

3 · tmpcc(2)
= 0 + (−2) · 1.18 = −2.36 = 0.74 + 2 · 1.18 = 3.1

Subgradients

scv =

(
scv cv
1 + scv cc

1

scv cv
2 + scv cc

2

)
scc =

(
scc cv
1 + scc cc

1

scc cv
2 + scc cc

2

)
=

(
0.74 − 2.36

2.72 + 0

)
=

(
0 + 3.1

−2.72 + 0

)
=

(
−1.62
2.72

)
=

(
3.1

−2.72

)
Table 2. Reverse Propagation of Subgradients

3 amodMC: Adjoint McCormick Relaxations and Subgradients
by Overloading in Fortran

This section covers amodMC, an adjoint variant of the tangent-linear modMC
Fortran library described in [CMN+11]. amodMC calculates McCormick relax-
ations by overloading arithmetic operators and intrinsic functions for the derived
type McCormick. Subgradients are calculated during the so-called reverse sweep,
an evaluation phase of the amodMC library, manually invoked by the user at the
end of the desired user function. Arguments required for subgradient calculation
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are automatically stored on an internal tape during overloaded operator and
overloaded intrinsic function calls. The reverse sweep evaluates tape entries from
the end of the stored tape to the first entry, hence reverses the original program
flow. Support subroutines are provided for type initialization, error handling, and
to produce human-readable type instance and tape printouts for debugging and
documentation.

3.1 Compilation

amodMC is distributed under the ECLIPSE PUBLIC LICENSE1. The latest
version can be downloaded as a compressed tar-archive containing the complete
source code from http://wiki.stce.rwth-aachen.de/amodMC/. The build pro-
cess complies with the GNU Code Standards2 and is based on the GNU Auto-
tools3. To compile amodMC upon successful download, the following steps are
required:

1. Extract package contents using the tar command-line utility:

tar -xvj amodmc -1 .0.tar.bz2

2. Change into the directory created during package extraction. Note, that the
version number 1.0 may differ for the latest version available:

cd amodmc -1.0

3. Run the configure command to determine local system settings and to select
an appropriate compiler:

./configure

Note: ./configure --help lists available options.
4. Compile amodMC. Binaries are placed inside the src directory:

make

The following files are created: libamodmc.a contains the binary object code
and mccormick.mod contains the Fortran-specific interface description of amodMC.
It is possible to compile a Fortran project that uses amodMC without actu-
ally installing amodMC. The file mccormick.mod needs to be placed inside
the project directory. The static library libamodmc.a must be provided only
at link time.

5. Optional. To use modMC in multiple projects (all using the same Fortran
compiler), a local installation can be generated:

su

make install

exit

su opens a new subshell with system administrator privileges; make install

performs a local installation of amodMC; exit closes the previously spawned
subshell. If the sudo command is available, then the previous three lines can
be combined into

sudo make install

1 http://www.eclipse.org/legal/epl-v10.html
2 http://www.gnu.org/prep/standards/
3 http://www.gnu.org/software/autoconf/
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After installation amodMC is available to all users. The Fortran interface
description file mccormick.mod is installed into the include directory defined
during package configuration. Let program.f90 use the McCormick data type
and suppose that the GNU Fortran compiler gfortran is used. Then

gfortran program.f90 -lamodmc -I/usr/include/amodmc

is a feasible build instruction.
The compiler option -lamodmc advises gfortran to link with the libamodmc.a
library. The -I parameter defines an include path to locate mccormick.mod.
Default se paths may differ between machines. The installation path of amodMC
is set via the --prefix command line argument of the configure script.

3.2 Usage

Given a function implemented in Fortran, McCormick relaxations are easily ob-
tained by replacing floating-point types for optimization, output and intermedi-
ate variables with the new derived type McCormick. Initialization of such variables
requires calls to the mccormick_init() subroutine, setting the variable bounds, as
well as a unique index for each variable. This procedure has to be repeated for
each function or subroutine in the call tree of the main function.

1 program ex1

2 implicit none

3

4 double precision :: x1 = 4.5d0, x2 = 3.0d0

5 double precision :: y

6

7 ! Function.

8 y = sqrt(x1 ** 2 + exp(x2) / x1)

9

10 print *, y

11 end program

Listing 1.1. Sample user function with parameters x1 and x2 and result variable
y �

1 4.97126268161292� �
Listing 1.2. Output of example program Listing 1.1

No further modifications to the original source code are necessary. At the end
of the main function, the convex underestimator and concave overestimator of
each objective variable are accessible via the component values cv and cc. This is
equally achieved using modMC. Confer to Listing 1.3 for a McCormick-enabled
variant of the sample function in Listing 1.1.

1 program ex1_mc

2 use mccormick

3 implicit none

4

5 type(mccormick_type) :: x1, x2

6 type(mccormick_type) :: y

7

8 ! Type initialisation including boundaries.

9 call mccormick_init (x1, 2.0d0, 7.0d0, 4.5d0, 0)

10 call mccormick_init (x2, 1.0d0, 5.0d0, 3.0d0, 0)
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11

12 ! Function.

13 y = sqrt(x1 ** 2 + exp(x2) / x1)

14

15 ! Get the convex underestimator.

16 write (*,*) y%cv

17 ! Get the concave overestimator.

18 write (*,*) y%cc

19 end program

Listing 1.3. Calculation of McCormick relaxations of previous sample function;
this is equally achived using both modMC and amodMC �

1 3.53077358673985

2 7.98733076586861� �
Listing 1.4. Output of example program Listing 1.3

To retrieve subgradients, amodMC needs information on whether a variable
is dependent (i.e. evaluates the objective function or a constraint) or independent
(i.e. is an optimization parameter). This is achieved by calling the subroutines
mccormick_dep() and mccormick_indep_set() for each independent and dependent
variable, respectively. These subroutines create specific tape entries for the vari-
able and connect it with its tape entry. Registration of independent variables
is required prior to the function code, registration of dependent variables after-
wards. The latter additionally allows to provide a scaling factor for subgradients
and defaults to 1.0d0.
The reverse sweep must be manually initiated by calling the provided library
function mccormick_tape_interpret() after function code and dependent variable
registration. Once this process is finished, subgradients with respect to an inde-
pendent (optimization) variable can be retrieved by calling mccormick_indep_get()

on the selected independent variable. The function either extracts subgradients
for the convex underestimator, concave overestimator or both: The subcv and
subcc parameters denote destinations, are both optional and can be provided as
necessary. Listing 1.5 extends the previous shown example function to retrieve
subgradients calculated by amodMC.

1 program ex1_ad

2 use mccormick

3 implicit none

4

5 ! Type changes.

6 type(mccormick_type) :: x1, x2

7 type(mccormick_type) :: y

8 double precision scc , scv

9

10 ! Initialisation of optimisation parameters.

11 call mccormick_init (x1, 2.0d0, 7.0d0, 4.5d0, 0)

12 call mccormick_init (x2, 1.0d0, 5.0d0, 3.0d0, 0)

13

14 ! Setup tape with static size (no. of maximum entries).

15 call mccormick_tape_init (64)

16

17 ! Registration of independent variable(s).

18 call mccormick_indep_set (x1)

19 call mccormick_indep_set (x2)
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20

21 ! Unmodified original program code.

22 y = sqrt(x1 ** 2 + exp(x2) / x1)

23

24 ! Registration of dependent variable(s).

25 call mccormick_dep (y, 1.0d0)

26

27 ! Initiate tape interpretation.

28 call mccormick_tape_interpret

29

30 ! Get the convex underestimator.

31 write (*,*) y%cv

32 ! Get the concave overestimator.

33 write (*,*) y%cc

34 ! Get the subgradients with respect to the 1st variable (x1).

35 call mccormick_indep_get (x1, subcv = scv , subcc = scc)

36 write (*,*) "subgradients for x1 = ", scv , scc

37 ! Get the subgradients with respect to the 2nd variable (x2).

38 call mccormick_indep_get (x2, subcv = scv , subcc = scc)

39 write (*,*) "subgradients for x2 = ", scv , scc

40 end program

Listing 1.5. McCormick-enabled variant based on amodMC subgradient
calculation of sample function �

1 3.53077358673985

2 7.98733076586861

3 subgradients for x1 = 0.671919627773534 -1.254705216708113E-002

4 subgradients for x2 = 0.217463600198994 4.078053471330346E-002� �
Listing 1.6. Output of example program Listing 1.5

More complex functions include calls to other functions and procedures, which
themselves may contain further function calls. Type changes and initializations
must be applied to all functions contained in the call tree created by tracing
function calls. Registration of independent and dependent variables is only re-
quired once in the main function. The same holds true for tape interpretation
and access to subgradients.

3.3 McCormick Implementation

The amodMC library defines a new derived type McCormick shown in Listing 1.7.
This structure is similar to the McCormick type used by modMC but differs in com-
ponents used for subgradient calculation: Instead of storing subgradient arrays
that are propagated through the program flow (cf. [CMN+11]), each McCormick

instance stores virtual tape addresses. All computations are based on instances
of this structure and rely on the lower and upper interval bounds l and u, the
relaxations cv and cc and the virtual tape addresses j and k.

type mccormick_type

sequence

! lower bound

double precision l

! upper bound

double precision u

! convex underestimator

double precision cv
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! concave overestimator

double precision cc

! virtual tape address

integer :: j = 0

! virtual tape address used during independent registration

integer :: k = 0

end type mccormick_type

Listing 1.7. amodMC McCormick data type structure

The primary tape address j points to the tape entry stored with the instantiation
of the instance itself. k points to the tape entry of an independent registration,
hence is only set for independent variables (parameters, optimization variables)
and zero otherwise. The latter is required to retain the connection between an
independent variable and its registration even if a new value is assigned to the
variable.

3.4 The Tape

The internal tape is a global array of tape_entry derived type data entries as
shown in Listing 1.8. A tape entry is created by amodMC on each overloaded
operator and overloaded intrinsic function call, including arithmetics with at least
one argument of McCormick type, assignments to and independent plus dependent
registration of McCormick instances. Each operation is identified by an integer oper-
ation code, short opcode, stored in op. Currently operators and intrinsic functions
require at most 2 arguments: The p1 and p2 components store tape addresses of up
to two arguments, zero otherwise. Copies of the current convex underestimator
and concave overestimator (at the time of the overloaded operator or function
execution) are stored in cv and cc, respectively, and are required to calculate
subgradients during tape interpretation. Two arrays of temporaries, xcv and xcc,
store additional operator-specific values required for tape interpretation. Their
size is dynamically set by the overloaded operator implementation and usage dif-
fers vastly. During the reversed tape interpretation sweep, so-called adjoints are
propagated through the tape originating from dependent variables (including the
scaling factor used) to their independent destinations: adcvcv stores ∂ycv/∂zcv,
adcvcc stores ∂ycv/∂zcc, adcccv stores ∂ycc/∂zcv and adcccc stores ∂ycc/∂zcc. This
corresponds directly to the adjoints and their propagation presented in Section 2.

type tape_entry

integer :: op = 0 ! opcode

integer :: p1 = 0 ! tape address of 1st argument

integer :: p2 = 0 ! tape address of 2nd argument

! actual cv and cc values

double precision :: cv = 0.0d0

double precision :: cc = 0.0d0

! temporaries used for adjoint computation;

! usage depends on opcode

double precision , dimension (:), allocatable :: xcv

double precision , dimension (:), allocatable :: xcc

! adjoints

double precision :: adcvcv = 0.0d0 ! dy.cv/dx.cv

double precision :: adcvcc = 0.0d0 ! dy.cv/dx.cc
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double precision :: adcccv = 0.0d0 ! dy.cc/dx.cv

double precision :: adcccc = 0.0d0 ! dy.cc/dx.cc

end type tape_entry

Listing 1.8. amodMC tape entry data type structure

Table 3 summarizes all tape operation codes currently used. Opcodes 0, 22
and higher should never occur and indicate a tape error: If a 0 opcode is en-
countered, a tape entry initialization is missing; opcodes 22 and higher are not
yet defined, indicating a probably incomplete tape extension or damaged data.
The letter “a” denotes a McCormick typed argument, “r” either a real or double
precision value and ”i” an integer. Since real arguments are stored as double
precision temporaries in tape entries, real and double precision arguments are
treated equally from the tape’s point of view. The Arrhenius formula represents

Display # Opcode Description

? undef 0 Error: Undefined operand (not properly initialized).
=(a,a) 1 McCormick assignment.
+(a,a) 2 McCormick addition.
-(a,a) 3 McCormick subtraction.
*(a,a) 4 McCormick multiplication.
sin(a) 5 McCormick sine.
exp(a) 6 McCormick exponential.
indep 7 Independent registration.
dep 8 Dependent registration.
-(a) 9 Unary McCormick minus.

log(a) 10 Natural McCormick logarithm.
*(d,a) 11 Double value times McCormick instance.

sqrt(a) 12 McCormick square root.
abs(a) 13 Absolute value of McCormick instance.
.inv.a 14 Inverse of McCormick instance.
-(r,a) 15 Real or double value minus McCormick instance.
=(a,r) 16 Real or double value assigned to McCormick instance.

pow(a,i) 17 McCormick exponentiation with integer exponent.
+(r,a) 18 Real or double value plus McCormick instance or vice-versa.
-(a,r) 19 McCormick instance minus real or double value.
arh(a) 20 McCormick Arrhenius function.

xlog(a) 21 x log(x) variant for McCormick instances.
N O O P . . . Error: Invalid tape extension or tape damaged.

Table 3. amodMC tape entry operation codes (opcodes): Display name used by printout rou-
tine, internal identifier and type description

the dependence of the rate constant of a chemical reaction on the activation en-
ergy and absolute temperature. The amodMC variant of this function calculates
this rate constant without a pre-exponential factor taking both the activation
energy and absolute temperature as its arguments.

Tape Printout amodMC exports a mccormick_tape_print() subroutine that al-
lows users to print tape contents either to the console or a file. The display names
shown in the first column of Table 3 are used to output readable opcode names
instead of a numeric opcode. Tape printouts contain all data stored on the re-
quested tape segment including temporaries; additionally, the output format is
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designed to be parseable. Control parameters allow printouts of single tape en-
tries, segments or the complete tape: This allows to obtain live printouts during
debug sessions, e.g. in dbg, and enables automated external test systems to ver-
ify data integrity. Listing 1.9 shows the complete internal tape of the example
function of Listing 1.5. �

1 %TAPE

2 \buffer -status [12:64]

3 \content[

4 id , op ,p1 ,p2 , cv , cc , adcvcv , adcccv , adcvcc , adcccc;

5 11, dep ,10, 0, 3.531e0 ,7.987e0 ,1.000e0 ,0.000e0 ,0.000e0 ,1.000 e0;

6 10, =(a,a), 9, 0, 3.531e0 ,7.987e0 ,0.000e0 ,0.000e0 ,0.000e0 ,0.000 e0;

7 9,sqrt(a), 8, 0, 3.531e0 ,7.987e0 ,0.000e0 ,0.000e0 ,0.000e0 ,0.000 e0;

8 8, +(a,a), 3, 7, 2.334e1 ,6.380e1 ,0.000e0 ,0.000e0 ,0.000e0 ,0.000 e0;

9 7, =(a,a), 6, 0, 3.085e0 ,3.730e1 ,0.000e0 ,0.000e0 ,0.000e0 ,0.000 e0;

10 6, *(a,a), 4, 5, 3.085e0 ,3.730e1 ,0.000e0 ,0.000e0 ,0.000e0 ,0.000 e0;

11 5,.inv.a , 1, 0, 0.222e0 ,0.321e0 ,0.000e0 ,0.000e0 ,0.000e0 ,0.000 e0;

12 4, exp(A), 2, 0, 2.009e1 ,7.557e1 ,0.000e0 ,0.000e0 ,0.000e0 ,0.000 e0;

13 3,pow(ai), 1, 0, 2.025e1 ,2.650e1 ,0.000e0 ,0.000e0 ,0.000e0 ,0.000 e0;

14 2, indep , 0, 0, 3.000e0 ,3.000e0 ,0.000e0 ,0.000e0 ,0.000e0 ,0.000 e0;

15 1, indep , 0, 0, 4.500e0 ,4.500e0 ,0.000e0 ,0.000e0 ,0.000e0 ,0.000 e0;

16 ]� �
Listing 1.9. Tape contents in descending order prior interpretation call of
example function in Listing 1.5; to improve readability, temporaries and spaces
have been removed, numbers vastly simplified and headers abbreviated. An
unmodified tape printout would include four additional columns of temporaries
and contain extended precision numbers

After tape interpretation completes, adjoints are propagated through the re-
versed tape. Listing 1.10 contains the same tape as Listing 1.9 but tape interpre-
tation has been completed; starting from index 11 with adcvcv and acccc initially
set to 1.0d0, during revere sweep these values are used in adjoint computation and
are finally stored in tape entries of independent variable registrations (indices 1
and 2 in the given example). �

1 %TAPE

2 \buffer -status [12:64]

3 \content[

4 id , op ,p1 ,p2 , cv , cc , adcvcv , adcccv , adcvcc , adcccc;

5 11, dep ,10, 0, 3.531e0 ,7.987e0 ,1.000e0 ,0.000e0 ,0.000e0 ,1.000 e0;

6 10, =(a,a), 9, 0, 3.531e0 ,7.987e0 ,1.000e0 ,0.000e0 ,0.000e0 ,1.000 e0;

7 9,sqrt(a), 8, 0, 3.531e0 ,7.987e0 ,1.000e0 ,0.000e0 ,0.000e0 ,1.000 e0;

8 8, +(a,a), 3, 7, 2.334e1 ,6.380e1 ,0.076e0 ,0.000e0 ,0.000e0 ,0.008 e0;

9 7, =(a,a), 6, 0, 3.085e0 ,3.730e1 ,0.076e0 ,0.000e0 ,0.000e0 ,0.008 e0;

10 6, *(a,a), 4, 5, 3.085e0 ,3.730e1 ,0.076e0 ,0.000e0 ,0.000e0 ,0.008 e0;

11 5,.inv.a , 1, 0, 0.222e0 ,0.321e0 ,0.206e0 ,0.000e0 ,0.000e0 ,1.163 e0;

12 4, exp(A), 2, 0, 2.009e1 ,7.557e1 ,0.011e0 ,0.000e0 ,0.000e0 ,0.001 e0;

13 3,pow(ai), 1, 0, 2.025e1 ,2.650e1 ,0.076e0 ,0.000e0 ,0.000e0 ,0.008 e0;

14 2, indep , 0, 0, 3.000e0 ,3.000e0 ,0.217e0 ,0.000e0 ,0.000e0 ,0.041 e0;

15 1, indep , 0, 0, 4.500e0 ,4.500e0 ,0.682e0 , -0.0831 , -0.0102 ,0.071e0;

16 ]� �
Listing 1.10. Tape contents in descending order after tape interpretation

Summarizing adcvcv and adcvcc yields the subgradient for the convex underes-
timator w.r.t. the independent variable, and the sum of adcccv and adcccc the
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concave overestimator w.r.t. the independent variable. This equals a call to
mccormick_indep_get.

3.5 Tape Extensions

The amodMC library was designed to easily allow the integration of additional
McCormick-enabled operators and intrinsics. For each operator family that shares
the same reverse sweep implementation, a new opcode should be added to the
internal mccormick_tape_opcodes array. Listing 1.11 contains the amodMC imple-
mentation of the exp function for McCormick arguments. tape_alloc is used to
reserve two temporaries on the current tape entry. After computation of the con-
vex underestimator and concave overestimator, the determined index and scaling
factor are stored to these temporaries by directly accessing the tape. Temporaries
are allocated per estimator, therefore four temporaries in total are available. At
the end of the overloaded intrinsic, tape_push is called. This internal subroutine
completes the current tape entry, using the opcode provided as its first argument
(6), the variable returned by the overloaded operator or intrinsic (that is inter-
nally connected to the new tape entry) and up to two arguments of the overload
operator or intrinsic used to trace the control flow of McCormick variables.

1 function exp_mc (a) result (r)

2 type(mccormick_type), intent(in) :: a

3 type(mccormick_type) :: r

4 integer index

5 double precision scale

6

7 ! Compute boundaries.

8 r%l = exp(a%l)

9 r%u = exp(a%u)

10

11 call tape_alloc (tmp = 2)

12

13 ! Compute the convex underestimator.

14 index = -1

15

16 r%cv = exp(mid (a%cv , a%cc , a%l, index))

17

18 tape(tape_ptr)%xcv (1) = index

19 tape(tape_ptr)%xcv (2) = r%cv

20

21 ! Compute the concave overestimator.

22 index = -1

23 scale = 0.0d0

24

25 if (.not.equal_dp (a%l, a%u)) &

26 then

27 scale = (r%u - r%l) / (a%u - a%l)

28 endif

29

30 r%cc = exp(a%l) + scale * (mid (a%cv , a%cc , a%u, index) - a%l)

31

32 tape(tape_ptr)%xcc (1) = index

33 tape(tape_ptr)%xcc (2) = scale

34

35 call tape_push (6, r, a)
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36 end function

Listing 1.11. amodMC implementation of exp function with McCormick type
argument

Note, that composed functions implemented via calls to other composed or over-
loaded functions and operators require no special handling. The overloaded ex-
ponentiation intrinsic shown in Listing 1.12 will be represented by three tape
entries: natural logarithm, multiplication and the exponential function.
Hence it is not possible during tape interpretation to determine whether a com-
posed function has been called, operators and intrinsics that allow optimized (in
terms of efficiency and numerical stability) reverse sweep implementations should
be implemented directly, probably using redundant code, with an own opcode
and reverse sweep code segment. Otherwise compositions are recommended due
to improved readability, algorithmic stability and maintenance.

1 function pow_mc_mc (a, b) result (r)

2 type(mccormick_type), intent(in) :: a, b

3 type(mccormick_type) :: r

4

5 r = exp (b * log (a))

6 end function

Listing 1.12. Example implementation of a composed function

Tape interpretation iterates over the stored tape in descending order and executes
specific code for each opcode. The current implementation uses a select case

statement and combines opcodes for different operator groups and intrinsics
with an equal reverse mode semantic. Listing 1.13 contains an excerpt from the
tape interpretation subroutine, leaving out all but one adjoint computation for
the overloaded McCormick assignment operator, addition of McCormick variables and
scalars and subtraction of a scalar from a McCormick variable. New opcodes are
easily appended to the current interpretation chain or combined with existing
reverse sweeps. tape_ptr is a global variable storing the index of the next open
tape entry.

1 subroutine mccormick_tape_interpret ()

2 integer i

3

4 do i = tape_ptr - 1, 1, -1

5 select case (tape(i)%op)

6 case (1, 18, 19)

7 ! Opcode 1 = =(a,a),

8 ! 18 = +(a,r) and +(r,a),

9 ! 19 = -(a,r)

10 ! Computate subgradient convex.

11 tape(tape(i)%p1)%adcvcv = &

12 & tape(tape(i)%p1)%adcvcv + tape(i)%adcvcv

13 tape(tape(i)%p1)%adcvcc = &

14 & tape(tape(i)%p1)%adcvcc + tape(i)%adcvcc

15 ! Computate subgradient concave.

16 tape(tape(i)%p1)%adcccv = &

17 & tape(tape(i)%p1)%adcccv + tape(i)%adcccv

18 tape(tape(i)%p1)%adcccc = &

19 & tape(tape(i)%p1)%adcccc + tape(i)%adcccc

20

21 case (...)
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22 ...

23

24 end select

25 enddo

26 end subroutine

Listing 1.13. Excerpt from the main tape interpretation subroutine with one
reverse code segment shared by three opcodes

4 Results

The runtimes for f(x) = exp
(

log
(
x1 +

∑n−1
i=1

xi+1

xi

))
can be found in Figure 1.

n Tangent-Linear Adjoint

50 0.004 0.004
100 0.006 0.004
200 0.011 0.005
250 0.018 0.005
500 0.043 0.008
1000 0.157 0.010
2000 0.607 0.017

Fig. 1. Runtimes in seconds for f

The runtimes for the branch-and-bound minimization of g(x) = − exp
(
−
∑n

i=1 (xj − 1)2
)

for different n are given in Figure 2.

n Tangent-Linear Adjoint

10 0.4 0.45
20 2.4 1.75
30 6.2 3.9
40 13.0 7.1
50 23.0 10.9
60 42.2 20.36
90 129.34 51.32

Fig. 2. Runtimes for branch-and-bound for g

5 Conclusion and Outlook

This paper presented amodMC, a C++-library for propagating subgradients
which enhances the former library modMC by an adjoint method. This method
shares the same advantages as the reverse mode of usual AD for derivative cal-
culations. Users now can choose between forward and reverse propagation of the
needed subgradients based on the dimensionality of their problem. Usually the
reverse mode is preferable if the input dimension is twice as high as the output
dimension of the subdifferentiated function.

So up to now the two main procedures (forward an reverse) of AD have
been successfully applied to subgradient propagation. The libraries modMC and
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amodMC cover the same range of intrinsic functions as the original libMC pre-
sented in [MCB09]. This range is quite limited, i.e. it does not cover trigono-
metric or hyperbolic functions. The problem for these functions is the one of
finding suitable convex and concave relaxations. Future work will especially be
focused on this area making our library usable for a larger range of applications.
Furthermore nearly all research results of AD, covering i.e. sparsity exploitation,
elimination techniques or special heuristics, may be applied in this area.
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