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The human desire for meaningful numerical simulation of physical, chemical,
and biological phenomena in science and engineering has been increasing with
the growing performance of the continuously improving computer systems. As
a result of this development, we are (and will always be) faced with a large (and
growing) number of highly complex numerical simulation codes that run at the
limit of the available high-performance computing resources. These codes often
result from the discretization of systems of differential equations. The runtime
correlates with the resolution that often needs to be very high in order to capture
the real behavior of the underlying system. There is no doubt that the available
hardware will always be used to the extreme. Improvements in the runtime of
the simulations need to be sought through research in numerical algorithms and
their efficient implementation on parallel architectures.

Many of the resulting problems are combinatorial in nature. Most of those
are known to be computationally hard in the sense that efficient (polynomial
in the required time and memory space) algorithms for their exact solution are
unlikely to exist. For example, we have to deal with partitioning, elimination
ordering, coloring, and matching problems for graphs and hypergraphs in vari-
ous contexts. A good approximation of the solution to these abstract problems
may lead to a significant decrease in the runtime of numerical programs that
implement solvers for partial differential equations, nonlinear optimization algo-
rithms, or solvers for generalized Eigenvalue problems. Problem sizes are typi-
cally now in the millions of unknowns; and with emerging large-scale computing
systems, this size is expected to increase by a factor of thousand over the next
five years. Moreover, simulations are increasingly used in design optimization
and parameter identification which is even more complex and requires the high-
est possible computational performance and fundamental enabling algorithmic
technology.

What binds together the community of combinatorial scientific computing is
the focus on practical use of graph algorithms and combinatorial algorithms to
address a variety of different problems that all arise in scientific computing. This
shared common denominator allows us to interact productively and to advance
the state of the art in several different problem areas.

The Fifth SIAM Workshop on Combinatorial Scientific Computing repre-
sents another important milestone. Three CSC experts have been invited to
present plenary talks on various important aspects of CSC:

• Thomas F. Coleman (University of Waterloo, Canada): Efficient Auto-
matic Differentiation for Nonlinear Systems and Continuous Optimization
(by using graphs); joint with SIAM Workshop on Optimization;

• Burkhard Monien (Paderborn University, Germany): Recent Trends in
Graph Partitioning for Scientific Computing;

• Trond Steihaug (Bergen University, Norway): Sparse Matrix Structures
and Higher Derivatives.

This collection of extended abstracts covers all accepted contributed oral and
poster presentations. It is meant to give both participants of CSC11 and other
interested readers an overview of recent results and ongoing research and devel-
opment projects in the area of Combinatorial Scientific Computing.
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1 Computational Challenges in Optimization for
Electrical Grid Operations and Planning

Richard Li-Yang Chen, Genetha A. Gray, Patricia D. Hough, Ali
Pinar, John Siirola, and Jean-Paul Watson

(Sandia National Labs, United States)

Corresponding Author: Genetha Gray (gagray@sandia.gov)

In the United States, the electrical grid has changed very little in the last
100 years, and in fact still works mainly on the principle of one-way flow of con-
sumption. The drivers for the new smart grid include new energy generation
methods, balanced loads and reduced peaking, improved reliability and security,
and the desire for a two-way flow system. To address these goals, solutions to
some fundamental short-term operations and long-term planning problems in
power systems are needed. Almost all of these problems have a combinatorial
component such as adding lines to a network, finding cuts, making assignments
to nodes of a graph. However, we need to solve these problems with uncertain
information, thus we use stochastic mixed-integer optimization for modeling
these problems, which represent a significant challenge since even with major
advances in algorithms over the last decade, their size and complexity makes
them intractable without the extreme scale computational power. Therefore,
this work is based on the belief that the new high performance computing tech-
nologies will radically change the landscape of electric power systems, both
due to widely-available parallelism in many-core systems, and the extreme-scale
computing platforms. In this presentation, we will give a basic overview of elec-
trical grid operations and planning, point to some specific areas of research, and
describe some results obtained for a couple of core optimization problems, unit
commitment and network expansion.

One of the most basic problems in electrical grid planning and operations is
unit commitment. The unit commitment problem is to determine an optimal
on/off schedule for a set of power generating units that both meets load demands
and satisfies operational constraints. Unit-commitment is considered for both
short (e.g., hours or days) and long (e.g., weeks or months) time horizons.
Uncertainties resulting from load forecasts, network outages, and discrete events
must be considered in order to make a robust unit commitment decision. As an
example, we will consider unit commitment with uncertainty due to wind speeds
or solar availabilities. This is a fundamental power systems operational problem
that can be formulated as a mixed integer stochastic optimization problem.
Another such problem in electrical grid planning and operations is network
expansion. Here, the focus is determining how best to upgrade the system in
order to meet future demands. Like unit commitment, network expansion can be
posed as a mixed integer stochastic optimization problem. In planning contexts,
like all generation and transmission expansion problems, inherent uncertainties
in future demand, budgets, and technologies add to the challenge of obtaining
a robust solution.

5



The computational challenges associated with solving stochastic mixed-in-
teger problems like the unit commitment and the network expansion problems
are significant. There are two primary and related factors. First, the (finite)
number of scenarios required to approximate the joint distributions of uncertain
parameters leads to notoriously difficult deterministic mixed-integer optimiza-
tion problems. Second, unrealistic modeling simplifications are often required
to achieve computationally tractability, leading to more costly and potentially
infeasible solutions. High-performance computing technologies have been pro-
posed to mitigate both concerns. In this presentation, we will review these
technologies and present some results for their application to the electrical grid
planning and operation problems.

Decomposition strategies have been developed to deal with the computa-
tional intractability of finite-sample approximations of the underlying stochas-
tic optimization problems. These include the well-known L-Shaped (or Ben-
ders), Progressive Hedging, Dual Decomposition, and Dantzig-Wolfe algorithms.
These algorithms operate by sub-dividing the finite-sample deterministic opti-
mization problem into a number of sub-problems, which are then solved itera-
tively to obtain globally optimal or near-optimal solutions. Typically, the sub-
problems can be solved in parallel, leading to obvious deployment strategies on
high-performance computing platforms. However, a number of critical issues
arise when even modest (e.g., 100s) of scenarios are considered. For example,
sub-problem solve time variability leads significant drops in parallel efficiency,
leading to the need for asynchronous versions of these algorithms. Similarly, cer-
tain schemes scale better than others due to further imbalances in sub-problem
difficulty as the algorithm proceeds, e.g., as occurs in the L-shaped method. We
survey prior work in this area, outline the challenges and key future research
directions.

Modeling simplifications to obtain computational tractability are wide-rang-
ing in the grid optimization literature. For example, unit commitment is often
solved without transmission constraints, and generation and transmission ex-
pansion are often treated independently. Similarly, security (i.e., “n-1”) con-
straints are often ignored, or potential deployment functionality such as trans-
mission switching are avoided. Alternatively, the choice of performance metric
can have a significant bearing on computational tractability in stochastic op-
timization. Of particular note is the impact of risk-oriented metrics such as
conditional value-at-risk or risk-adverse concepts such chance constraints have
on computationally difficult. High-performance computing holds significant po-
tential for solving these more complex and realistic deterministic optimization
problems, either as sub-problems of a stochastic optimization problem or in
isolation. In particular, parallel branch-and-cut algorithms for mixed-integer
programs can yield tractable run-times for such problems. We explore the ap-
plicability of parallel branch-and-cut algorithms for solving complex grid opti-
mization problems, considering both commercial and open-source solvers.

Finally, we note that both problems are particularly difficult in a security-
conscious, cost-constrained world where there is a need to quantify and enu-
merate the tradeoff between uncertain risks (e.g., grid stability, renewable pen-
etration, security threats,) and the costs to mitigate those risks. This need mo-
tivates the development of multi-objective optimization of stochastic systems,
but it also introduces a number of new challenges including quantification of
the tradeoff curve itself, managing the potentially astronomical computational
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budget and educating decision makers in how to interpret and use the results. In
this talk, we will further describe these challenges and present some preliminary
ideas for addressing them.
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2 Detailed Aerodynamic Shape Optimization Based
on an Adjoint Method with Shape Derivatives

Caslav Ilic
(German Aerospace Center Braunschweig, Germany)

Stephan Schmidt and Volker Schulz
(University of Trier, Germany)

Nicolas Gauger
(RWTH Aachen University, Germany)

Corresponding Author: Caslav Ilic (caslav.ilic@dlr.de)

Aerodynamic Optimization

A modern commercial passenger (or cargo) airplane is a highly efficient trans-
portation system, in terms of how much fuel it consumes per passenger (or unit
payload) per unit distance travelled. The increase in efficiency must continue,
however, due to the limited amount of natural fuel sources and the desire to have
more environment-friendly (”greener”) airplanes. This calls for introduction of
powerful numerical means of airplane design optimization, in the disciplines of
aerodynamics, structure, acoustics, and many more.

One of the main drivers of efficiency is the external shape of the airplane.
The shape is progressively refined through several design phases. In the final,
detailed design phase, high-fidelity CFD models with millions of state variables
are used to simulate the performance of the airplane, and thousands of design
parameters may be available to define its aerodynamic shape. At the moment,
the only practical optimization method at this scale of complexity is the adjoint-
based gradient descent.

Optimization Methodology

Gradient descent optimization methods use the gradient information to quickly
converge the objective function to its minimum. In each optimization cycle, the
gradient information is used to determine the descent direction, and then a step
of certain length is taken into that direction, producing an updated set of design
parameters. This is repeated until the convergence criteria is reached.

We parametrize the aerodynamic shape by simply associating a direction to
each node on the corresponding boundaries in the computational mesh, and then
moving the node along that direction (”free-node” parametrization). While this
provides maximum degree of freedom for the shape, it also results in very high
number of design parameters – from hundreds in 2D cases, to tens of thousands
in 3D cases. This approach remains feasible by proper choice of elements of the
optimization algorithm.

We compute the gradient using the adjoint method. In this way, the gradient
can be theoretically computed with the effort roughly equal to that for the
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flow simulation (the primal problem), independently of the number of design
parameters. In practice this is frequently not attained, because of the additional
need to compute sensitivities of the flow residual to mesh deformation (e.g. using
costly finite differencing). Instead, we apply shape differentiation to derive
continuous surface formulation of the gradient, which can be evaluated in single
pass over the flow domain boundaries, achieving independence of the number of
design parameters.

With the gradient in hand, we apply a one-shot reduced SQP method to
compute the descent direction taking constraints into account. One-shot means
that only a small number of simulation steps are made between optimization
cycles, instead of fully converging the flow and adjoint solutions in each cycle.
The Hessian approximation for the SQP is taken to be the discrete Laplace-
Beltrami operator on the discretized shape. Aside from the primary effect of
accelerating the convergence (preconditioning), this choice of Hessian has the
geometric smoothing effect on the shape.

Free-node parametrization has natural multi-level character, whereby an
indicator-based adaptation (e.g. residual, or dual-weighted residual) of the mesh
automatically produces coarser or finer parametrizations as well. We use this
to demonstrate that optimization can be further sped up through a multi-level
approach.

The primal and adjoint flow solutions are computed by the DLR Tau solver.
The flow is modelled using Euler equations, with continuous adjoint formulation.

Results and Outlook

The outlined method has been successfully applied to several 2D and 3D cases
in transonic flow, with the goal of reducing (or completely removing) shock
waves, which give rise to the wave drag. This component of the drag has high
dependency on the shape of the airplane (wing, fuselage), and if not catered for,
it becomes the primary cause of loss of efficiency and performance. In all cases,
we used as constraints the lift and the enclosed volume of the shape.

In 2D, we optimized an RAE 2822 airfoil at Mach number 0.73 and angle of
attack 2 deg, achieving full removal of shocks. The number of design parameters
was 510. The optimization runtime was tenth of that of the classical adjoint
approach, which used finite differencing for the flow residual sensitivities and
smooth parameterization of 32 Hicks-Henne bump functions.

In 3D, we optimized an Onera M6 wing at Mach number 0.83 and angle of
attack 3 deg. The lambda-shock that was formed on the upper surface was com-
pletely removed at the end of optimization. The number of design parameters
was 18,000. We also optimized a blended wing-body configuration VELA, at
Mach 0.85 and AoA 1.8 deg, with 110,000 design parameters. Shocks were not
completely removed in this case, but they were sufficiently weakened to reduce
the drag by 28%.

Current work focuses on extending the method to Navier-Stokes flow. The
crucial element is construction of shape derivatives, which becomes very tedious
when both viscosity and compressibility are taken into account. It is particu-
larly hard on implementation, since there are no ”physical checkpoints” which
could be used to verify implementation part by part. To that end, we work
on constructing a limited automatic symbolic derivator, relying on the rules of
shape derivation. It would take as input a set of symbolic s-expressions of the
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governing PDEs and the objective function, and produce as output a set of C
or Fortran expressions for computing the gradient.
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3 Computing Strong Bounds in Combinatorial
Optimization

Hans Mittelmann
(Arizona State University, United States)

Corresponding Author: Hans Mittelmann (mittelmann@asu.edu)

As is well-known semidefinite relaxations of discrete optimization problems
can yield excellent bounds on their solutions. We present three examples from
our collaborative research. The first addresses the quadratic assignment prob-
lem and a formulation is developed which yields the strongest lower bounds
known for larger dimensions. Utilizing the latest iterative SDP solver and ideas
from verified computing a realistic problem from communications is solved for
dimensions up to 512. A strategy based on the Lovasz theta function is gener-
alized to compute upper bounds on the spherical kissing number utilizing SDP
relaxations. Multiple precision SDP solvers are needed and improvements on
known results for kissing numbers in dimensions up to 23 are obtained. Gener-
alizing ideas of Lex Schrijver improved upper bounds for general binary codes
are obtained in many cases.

In our earlier work [1, 2] we had developed a series of SDP relaxations for
the QAP which lead to improved lower bounds for a number of the QAPLIB
instances of medium and, in particular, large sizes. The QAPs considered in-
cluded those ssociated with Hamming and Manhattan distances as well as more
general QAPs. While some of the QAPLIB instances model real-life problems,
such as the (small) NUG series, there are well-known QAP applications that
lead to rapidly increasing QAPs, for example, in the area of communications.
The associated distance is Hamming and thus the size 2d with d up to 9. Our
approach in [1, 2] would have been too costly for the largest cases and we utilized
an iterative SDP solver in order to reduce both memory requirements and CPU
time. In [4] we were then able to solve the case d = 8 for the index assignment
problem in case of 1-bit errors. An important enhancement of the methods in
[1, 2] was applied which then in [6] also allowed to solve the case d=9 with both
one-bit and multiple bit errors.

Other available methods to compute lower bounds for the QAPs produce
either poor bounds cheaply or excellent bounds at such a cost that a size of
50 is already beyond a reasonable computational effort, see [4, 6]. In order to
provide feasible solutions and an upper bound we also ran a number of heuristics
and report results for the so-called iterated local search.

Closely related to the optimal index assignment problem in communications
is the fundamental question how many binary words of length exist that have
a mutual minimum Hamming distance d. In communications a subset of this
set called the code book is used for coding. In earlier work by Lex Schrijver
important improvements had been obtained over the well-known bound due to
Delsarte’s SDP-based approach. In particular he had considered n-tuples of
words with n = 3. The resulting SDPs were large but had symmetry that could
be exploited to make their solution manageable.
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In the work [5] quadruples of words were used resulting in even larger but
highly symmetric SDPs. The new problem that arose on the computational
side was that the problems were so ill-conditioned that double precision with all
available SDP solvers did not produce acceptable accuracy. It became necessary
to apply multiple precision codes (both SDPA and CSDP were used in quadruple
versions, SDPA also in some cases in octuple precision). This did not only
lenghten the required CPU times substantially but also required some subtle
parameter choices in case of SDPA not to have the computations terminate
prematurely. There are no known strategies guaranteeing convergence.

In a majority of the cases tabulated we were able to improve the known
upper bounds, see [5].

Different from the work on binary codes our work on the spherical kissing
number [3] lead to improvements of all known (upper) bounds as tabulated, for
example, by Wikipedia. The problem of placing spheres of a given radius around
a central sphere was already a point of contention between Isaac Newton and
David Gregory more than 300 years ago. To settle the issue in three dimensions
in Newton’s favor took until 1953. Because of its relevance for spherical codes
the kissing number is also of interest in higher dimensions. Based on earlier
work by C. Bachoc and F. Vallentin, together with the latter, we applied SDP
relaxations, essentially computing the Lovasz theta number as a bound for the
stability number of a certain (packing) graph, As for the binary codes the SDPs
were large which did not cause a problem but they were also ill-conditioned and
multiple precision computations were needed. Not only were all known bounds
improved but also an outstanding conjecture proven due to Conway and Sloane.

All papers listed below are accessible through plato.asu.edu/papers.html.
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4 Clustering via optimization

Suely Oliveira and David E. Stewart
(University of Iowa, United States)

Corresponding Author: David Stewart (dstewart@math.uiowa.edu)

In this abstract the problem of unsupervised clustering of data is considered.
This is the problem of assigning data items to one of a small number of clusters of
related data items. Here we will consider the data items to be vectors of numbers
of consistent dimension. These vectors can be generated from actual data items,
such as text documents, images, or other measurements and observations by
various means according to the kind of data treated. The different components
of these vectors are often scaled and/or shifted so as to make, for example,
the mean of each component equal to zero, and the standard deviation of each
component equal to one.

From data in this form we can obtain measures of similarity and difference
between the data items using the distance between vectors: dij = φ (‖vi − vj‖)
where vi is the vector representing data item i. Typically φ(s) = s or φ(s) = s2.
Representation of the problem of clustering as an optimization problem is quite
old. For example, there is the formulation of Rao [3] for N data items and M
clusters:

min
x

N∑
i,j=1

dij

M∑
k=1

xikxjk subject to (1)

M∑
k=1

xik = 1 for all i, (2)

N∑
i=1

xik ≥ 1 for all k, (3)

xij ∈ {0, 1} for all i and k. (4)

The decision variables are the xij where xij = 1 means that data item i is in

cluster j, and zero otherwise. The objective function (1)
∑N
i,j=1 dij

∑M
k=1 xikxjk

is the sum of distances dij where i and j are in the same cluster. Equation (2)
indicates that every data item is in one and only one cluster. Inequality (3)
indicates that each cluster contains at least one data item.

The problem (1–4) is a combinatorially hard optimization problem, belong-
ing to the family of quadratic binary programs. Recent work has focused on new
ways of representing and approximating such problems (see, for example, [1]),
especially using the convex cone of symmetric copositive matrices. Unfortu-
nately, determining if a symmetric matrix is copositive is NP-hard [2]. This has
led to a great deal of work on approximating this cone by means of semi-definite
matrices [2].

A number of direct SDP relaxations of (1–4) have been proposed. One of
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these is

min
X,Y

D • Y subject to (5)

Xe = e, X ≥ 0, (6)[
Y X
XT I

]
� 0. (7)

This has dropped the explicit constraint (3). However, direct SDP relaxations
of (1–4) have a common problem. If X is a feasible matrix for the original prob-
lem (1–4), then so is XP for any permutation matrix P , and furthermore, the
objective function is the same. This simply expresses the fact that changing the
labels of the clusters does not change either the objective function or feasibility.
Since SDP’s are convex optimization problems, and algorithms for SDP’s tend
to converge to the centroid of the solution set, the computed solutions will have
this same symmetry. This means that the (computed) solution X∗ will have all
columns the same, and so X∗ = eeT /M , which gives no information about how
to cluster the data.

We have been working on a non-convex continuous relaxation of (1–4) which
uses a number of ideas from the SDP relaxations. However, we retain D •XXT

in the objective function rather than D • Y with Y � XXT as in the SDP
relaxation. These relaxations have a parameter α ≥ 0 that can be interpreted
in terms of statistical information theory, or as a convexification parameter. It
can also be used to control the number of clusters found. Effective methods for
finding local minima have been used. These methods are scalable to large-scale
data bases with thousands to millions of data items.
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5 Multithreaded Algorithms for Graph Color-
ing

Assefaw Gebremedhin and Alex Pothen
(Purdue University, United States)

Umit Catalyurek
(The Ohio State University, United States)

John Feo and Mahantesh Halappanavar
(Pacific Northwest National Laboratory, United States)

Corresponding Author: Assefaw Gebremedhin (agebreme@purdue.edu)

We present a set of efficient multicore and massively multithreaded algo-
rithms for a prototypical graph problem, graph coloring. The algorithms are
implemented—and shown to perform and scale well—on a collection of platforms
with varying degrees of multithreading capabilities. The platforms considered
include a 128-processor Cray XMT, a 16-core Sun Niagara 2, and an 8-core Intel
Nehalem system. We find that obtaining good performance on these machines
involves designing algorithms that pay careful attention to and take advantage
of the programming abstractions and hardware features the machines provide.
The resultant algorithms are different from algorithms that do well on earlier
machines that support shared memory and distributed memory programming
models.

Graph coloring is an abstraction for partitioning a set of binary-related ob-
jects into subsets of independent objects. A need for such a partitioning arises
in situations where there is a scarce resource that needs to be utilized optimally.
One example is in discovering concurrency in parallel computing. Graph color-
ing is known to be NP-hard to solve optimally; in fact it is known to be NP-hard
to approximate to within O(n1−ε) for all ε > 0, where n is the number of ver-
tices in the graph [3]. Despite such inapproximability results, however, greedy
coloring algorithms that employ good ordering techniques yield near optimal
solutions on graphs that arise in practice [2].

Graph algorithms have a number of well recognized features that make them
particularly challenging to parallelize with emphasis on performance and scala-
bility: Runtime is dominated by memory latency rather than processor speed;
there exist little computation to hide memory access costs; data locality is poor;
and available concurrency is low. For these reasons, there are few graph algo-
rithms that perform and scale well on distributed memory machines.

Researchers have had more success on shared-memory platforms, and inter-
est in these platforms is growing with the increasing abundance and popularity
of multicore architectures. The primary mechanism for tolerating memory la-
tencies on most shared memory systems is the use of caches, but caches have
been found to be rather ineffective for many graph algorithms. A more effec-
tive mechanism is multithreading. By maintaining multiple threads per core
and switching among them in the event of a long latency operation, a mul-
tithreaded processor uses parallelism to hide latencies. Unlike caches, which
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“hide” only memory latencies, thread parallelism can hide both memory and
synchronization overheads. Thus, multithreaded, shared-memory systems are
more suitable platforms for graph algorithms than either distributed memory
machines or single-threaded, multicore shared-memory systems.

In this presentation, we discuss primarily two different parallel distance-1
coloring algorithms we developed for shared-memory, multithreaded systems.
The first algorithm relies on speculation and iteration, and is suitable for any
shared-memory system, including multicore platforms. The algorithm is derived
from the parallelization framework for coloring on distributed-memory architec-
tures developed in [1]. We benchmarked the algorithm on the Cray XMT, Intel
Nehalem, and Sun Niagara 2 systems mentioned earlier. These systems rep-
resent a broad spectrum of multithreading capabilities and memory structure:
the Cray XMT has a flat, cache-less memory system and utilizes massive mul-
tithreading (128 threads per processor) as the sole mechanism for tolerating
latencies in data access, the Intel Nehalem relies primarily on a cache-based
hierarchical memory system as a means for hiding latencies and supports only
two threads per processor, and the Sun Niagara 2 offers a middle path by utiliz-
ing a moderate number of hardware-threads along with a hierarchical memory
system. We found that the limited parallelism and coarse synchronization of
the iterative algorithm fit well with the limited multithreading capabilities of
the Sun and Intel processors.

The iterative algorithm ran equally well on the Cray XMT, but it does not
take advantage of the system’s massively multithreaded processor and hardware
support for fast synchronization. To better exploit the XMT’s unique hardware
features, we developed a fine-grained, dataflow algorithm requiring single word
synchronization, which is the second algorithm we discuss in this presentation.
This XMT-tailored algorithm achieves shorter runtime and uses fewer colors
than (the generic) iterative algorithm when run on the XMT. The iterative
algorithm has the attractive feature of being portable on different architectures.

We assess the scalability and performance of both algorithms using a set
of massive synthetic graphs carefully designed to include instances that test-
stress the algorithms. We show that the dataflow algorithm scales well (nearly
ideally for certain classes of graphs) on the XMT. The iterative algorithm scales
in a similar fashion on all three platforms considered, with increasing relative
performance on platforms with greater thread concurrency. Further, the number
of colors used by the parallel algorithms is fairly close to what the sequential
algorithm uses. In turn, the number of colors the sequential algorithm uses
is only a small factor of the optimal (we were able to determine the factory
by computing an appropriate lower bound). Hence, there is negligible loss in
quality of solution due to parallelization.

In addition to the results on distance-1 coloring, we will briefly discuss results
from ongoing work on related topics: parallelization of ordering techniques for
reducing the number of colors required; and parallelization of algorithms for
other coloring problems needed in the context of automatic differentiation.
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Background

We propose a method in context of Algorithmic Differentiation (AD) [2] for con-
servative estimation of the sparsity pattern of the Hessian IRm×n×n 3 ∇2F =
∇2F (x) ≡ (f ′′k,j,i)

k=1,...,m
i,j=1,...,n of vector functions y = F (x) given as computer pro-

grams in C and C++ that map a vector IRn 3 x ≡ (xi)i=1,...,n of input values
onto a vector IRm 3 y ≡ (yj)j=1,...,m of output values. We assume that F can
be decomposed into the single assignment code (SAC) at every point of interest
as

xi ≡ vi for i = 1, . . . , n

vk = ϕk(vi)i≺k for k = n+ 1, . . . , q

yj ≡ vj+n+p for j = 1, . . . ,m

where q = n + p + m and i ≺ k denotes a direct dependence of vk on vi
meaning that vi is an argument of the elemental function ϕk ∈ Φ = {+,−, ∗, /
, sin, cos, · · · } . The transitive closure of this relation is denoted by ≺+ . More-
over, we assume F to be canonical in the sense that no algebraic simplifications
such as log(ex) = x are possible. Furthermore, for mathematical correctness of
the derivative calculus F is assumed to be two times continuously differentiable
in some neighborhood of the given argument x. Conceptually, the runtime al-
gorithm for exact Hessian sparsity estimation (EHP) works on the SAC of F by
propagating first- and second-order dependencies

fod(vk) = {i | ∃ x ∈ IRn :
∂vk
∂xi

(x) 6= 0} and

sod(vk) = {(i, j) | ∃ x ∈ IRn :
∂2vk
∂xi∂xj

(x) 6= 0}

of every SAC variable vk on inputs i, j ∈ X = {1, . . . , n} with k ∈ V =
{1, . . . , q}. Thereby, we distinguish between linear and nonlinear type of elemen-
tal functions for ϕk ∈ Φl = {+,−} and ϕk ∈ Φn = {∗, sin, cos, . . .}, respectively.
As shown by Walther [3] for m = 1 EHP is of complexity O(ñ2)·OPS(F ), where
OPS(F ) and ñ denote the operation count of F and the maximal number of
nonzeros per row in ∇2F , respectively. It has to be mentioned here that the
quadratic complexity of EHP is caused by the computation of sodk as cross
product of fodi and union of sodi of their arguments i ≺ k in case of linear
and nonlinear operations, respectively. In the following section we introduce
the conservative algorithm (CHP) and compare its runtime with EHP.
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Figure 1: Exact (a) and overestimate (b) computation of the Hessian pattern.
Exact and overestimated nonzeros are denoted by symbols × and ⊗, respec-
tively.

Conservative Sparsity Detection

We assume in the following that F is partially separable as F (x) =
∑N
i=1 fi(x)

into nonlinear functions fi, which we refer to as nonlinear frontier (NLF) compo-

nents of F . Thus, differentiating F with respect to x yields∇2F =
∑N
i=1∇2fi(x).

Thus, the exact and conservative sparsity pattern of ∇2F is given by

sod(y) =

N⋃
i=1

sod(fi) and

csod(y) =

N⋃
i=1

csod(fi)

, respectively. Thereby,

csod(fi) = fod(fi)
2 = fod(fi)× fod(fi)

denotes the conservative second-order dependencies of fi on x with sod(fi) ⊆
csod(fi). Thus, we can overestimate the sparsity pattern of ∇2F first by com-
puting fod(fi) of all NLF components fi followed by building a union of the
cross products fod(fi)

2.
Algorithm 1 illustrates the computation of csod(vj) with j ∈ Y of the outputs

y on the SAC of F . Thereby, in addition to the computation of fod(vk) with k ∈

V , we propagate the NLF set defined as nlf(vk) =


⋃
i≺k nlf(vi) ϕk ∈ Φl

{k} ϕk ∈ Φn

∅ otherwise.

Obviously, the NLF of a linear operation results from the union of the NLF
of its arguments as shown in line 7, whereas the NLF of a nonlinear operation
is given by itself as shown in line 10. We emphasize here that the computation-
ally expensive cross products along with their unions as shown in line 12 are
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1: for i = 1 to n do
2: fodi = {i}
3: nlfi = ∅
4: end for
5: for k = n+ 1, . . . q do
6: if ϕj ∈ Φl then
7: fodk =

⋃
i≺k fodi

8: nlfk =
⋃
i≺k nlfi

9: end if
10: if ϕj ∈ Φn then
11: fodk =

⋃
i≺k fodi

12: nlfk = {k}
13: end if
14: end for
15: for j = n+ p+ 1 to q do
16: csodj =

⋃
i∈nlfj fodi × fodi

17: end for
Algorithm 1: [CHP]

performed only for output variables in the number of their NLF components.
We can show that

OPS(CHP ) ≤ N ·O(ñ2) +OPS(F ) ·O(ñ) ,

where N = | ⋃
j∈Y

nlfj | and ñ denotes the maximal number of nonzeros per row

in ∇2F . Fig. 1 (a) [(b)] demonstrates on the following example SAC

v1 = x1; v2 = x2; v3 = x3;

v4 = v1 · v2; v5 = v2
3 ; y = v4 + v5;

the computation of fod and sod [nlf ]1. The exact second-order pattern sod4

of v4 results from the cross product of fod(v1) and fod(v2), where the multi-
plication operation is marked as the NLF component of v4 by nf(v4) = {4} as
shown in (b). Thus, we get

csod(y) = fod(v4)× fod(v4) ∪ fod5 × fod5

= {(1, 1), (1, 2), (2, 1), (2, 2)} ∪ {(3, 3)}

with fod(v4) = {1, 2} and fod(v5) = {3} as the conservative second-order
dependency of y on x = (x1, x2, x3).

Numerical Results

We present first performance results in Fig. 2 of the conservative algorithm CHP.
Thereby, we compare the runtime of CHP with EHP implemented in AD tool
ADOL-C on Hessian matrices of an objective function that arise in Simulated

1fod, nlf and sod, csod are denoted as vectors and matrices of dimension 3 and (3 × 3),
respectively.
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Figure 2: Runtimes of CHP and EHP on SMB Code.

Moving Bed (SMB) process a model for liquid chromatographic separation de-
scribed by Assefaw et al. [1]. We observe here a linear growth in input dimension
n of CHP, whereas EHP tends to increase quadratically with n. We observed
also that the resulting compression rate based on the conservative sparsity pat-
tern is not worse even to some extent better than the one gained on the exact
one, on which we expect to report results in more detail at the time of the
workshop.
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Introduction

Deep analysis of very large graphs is vital for practitioners in several disci-
plines, yet the means of analyzing graphs in distributed memory remain a focus
of intense research by algorithm implementers. The absence of an interface to
current graph-analysis packages for non-graph-expert users means that most
potential users do not benefit from the current packages and do not give feed-
back to algorithm implementers on the (non)suitability of particular algorithms.
We built a Python interface of graph abstractions to the Combinatorial BLAS,
a state-of-the-art package known to have excellent performance and scalabil-
ity. We programmed the Graph500 benchmark with only a few calls to this
Knowledge Discovery Toolbox (KDT) interface with strong performance and
are implementing further applications to expand KDT’s coverage. While our
implementation uses the Combinatorial BLAS, the interface could be imple-
mented on top of other infrastructure, such as Parallel Boost Graph Library [8],
Small-world Network Analysis and Partitioning [2] or MultiThreaded Graph
Library [3]. We propose the KDT interface as a starting point for a community-
accepted interface, enabling non-graph-expert domain experts to analyze large
graphs now while permitting algorithm developers to develop better implemen-
tations with a proven avenue to end users.

Background

The Graph Analysis and Pattern Detection Toolbox

In 2005, Gilbert, Shah, and Reinhardt [6] implemented a prototype Graph Anal-
ysis and Pattern Discovery Toolbox in the M language of MATLABTM that pro-
vided graph abstractions in terms of the distributed sparse matrices of Star-P
[5], enabling graph analysis without awareness of how sparse matrices are used
to solve graph problems. Shah used this prototype [7] to implement the graph
analysis benchmark of the Synthetic Scalable Compact Application benchmarks
[10]. This prototype proved that graph abstractions in very-high-level languages
are usable by non-graph-experts and can solve real problems with strong per-
formance.
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Figure 1: Current and Near-Future KDT Contents

The Combinatorial BLAS

In 2009, Buluc and Gilbert developed the Combinatorial BLAS [4] as a scalable
high-performance library enabling graph analysis and data mining. In addi-
tion to its focus on the sparse-matrix functionality needed to solve graph prob-
lems, it extended previous distributed-sparse-matrix implementations by sup-
porting 2-dimensional distributions and delivering unprecedented performance
on distributed-memory clusters.

Current Work

Knowledge Discovery Toolbox via Python

With the lessons of the Graph Analysis and Pattern Discovery Toolbox in hand
and the Combinatorial BLAS available as a portable, high-performance infras-
tructure, building a widely usable graph-analysis package was clearly practical.
We have created Knowledge Discovery Toolbox (KDT) interface in Python,
initially a serial version based on SciPy, but more importantly a distributed-
memory version based on the Combinatorial BLAS.

KDT currently includes the classes and methods shown in Figure 1 in bold
type, with near-future extensions shown in normal type. The data-parallel in-
terface creates and uses objects solely via the provided (distributed) classes, as
the size of distributed objects makes them unlikely to fit in the memory of a
single cluster node.

Given the Combinatorial BLAS functionality, KDT methods were straight-
forward to implement. For example, the bfsTree method is implemented in
about 20 lines of Python code. The exact/approximate betweenness centrality
method is about 110 lines including docstrings and took 11 hours to port from
the serial SciPy version. This bodes well for adding more functionality to KDT
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and for evolving its functionality to respond to user needs. Our focus for KDT
is on implementing higher-level algorithms such as centrality and clustering, as
those are the functions we believe non-graph-experts want. We envision bfsTree
being used primarily as a building block for other higher-level functions.

KDT is hosted at kdt.sourceforge.net and released under the New BSD
open-source license.

Future work

Our current work has focused on solving a few sample directed-graph problems
with robust performance for distributed memory. An important next step is to
broaden the set of problems that are addressable by KDT, and so we are imple-
menting more applications, which we expect will point out missing functionality
or improvements to existing functionality. We expect to extend KDT to bipar-
tite graphs, attributes as needed for semantic graphs, and spectral methods
next.

Another important class of potential users is those solving graph problems
with disk-based infrastructure such as Hadoop [1] or Dryad [9]. Implementing
KDT based on such infrastructure will enable those users to solve their problems
via the same graph abstractions, and potentially open up possibilities for mixed
in-memory/on-disk problem-solving.

Summary

KDT is intended for users who need the benefit of deep graph analysis without
deep understanding of the algorithms and their implementation. The initial
KDT distributed-memory implementation proves the usefulness of the approach
both in terms of ease of use and performance. We will extend it for more
applications and hone the essential set of kernels.
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Computational science and engineering has traditionally been comprised of lin-
ear algebra problems induced by large systems of PDEs. These problems often
possess underlying natural locality which can be determined analytically, often
via static analysis. An increasingly important class of data-intensive applica-
tions is emerging that lacks this natural, or domain-induced, locality. Rather
than being analytically deducible, the dependency structure of this class of com-
putations is determined by the input data itself. This data-carried dependency
structure is expressed at run time and offers limited opportunities for static
analysis. These computations benefit from a variety of fine-grained and dy-
namic solution techniques well suited to the irregular and non-local nature of
these problems.

Introduction

Traditional compute-intensive applications, such as those based on discretized
systems of PDEs, possess natural locality due to the local nature of the un-
derlying operators. This natural locality allows the dependency structure of
the computation to be largely determined before any portion of the computa-
tion occurs. Because locality can be determined analytically at compile-time,
the granularity of the application can be coarsened through static analysis and
the grouping of computations with shared data dependencies. This class of
problems often possesses good separators in the dependency graph which allows
for straightforward parallelization using SPMD techniques such as the coarse-
grained BSP [4] “compute-communicate” model.

Data-intensive applications, such as those based on graphs differ from com-
pute-intensive applications in a number of important ways. Rather than pos-
sessing natural, domain- or operator-induced locality these computations are
highly non-local. The dependency structure of the computation is irregular
and embedded in the input data itself. This means that rather than having
dependency information available at compile time and being able to perform
static analysis and optimization on it, the dependency structure of the com-
putation is discovered dynamically at run time. Finally, because dependency
information is discovered at run-time, work grouping or coalescing cannot be
performed at compile-time and thus the natural granularity of the computation
remains fine-grained.

Expressing Fine-Grained Applications

Coarse-grained BSP solutions often group operations which do not share compu-
tational dependencies in order to coarsen the granularity of an application and
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achieve better performance on real hardware. This approach is reasonable in
applications with a dependency structure which can be determined analytically.
In data-intensive applications with run-time-discovered dependency structures
this approach can artificially extend the critical path of the application how-
ever. It is thus desirable to express applications at the finest level of granularity
possible. Coarsening may still be necessary at run-time, but by providing the
run-time mechanism that performs this coarsening with the full, fine-grained
dependency graph of the application we enable it to make the most effective
decisions about how to perform this coarsening. In order to expose maximum
concurrency, expressing applications as independent, asynchronous collections
of (possibly dependent) tasks has proven to be an effective programming style.
Maintaining the consistency of application metadata in the presence of asyn-
chronous concurrent tasks is necessary if the tasks are to be treated as indepen-
dent operations. The methods by which data consistency is enforced are crucial
to the performance of this model. This requirement for complex, atomic meta-
data manipulation precludes the use of most “one-sided” or passive-target RMA
approaches but can be incorporated into Active Message-based solutions [5].

Run-Time Support

Executing fine-grained applications at their natural level of granularity on mod-
ern HPC hardware has a number of problems. HPC hardware has largely been
designed to solve traditional coarse-grained, compute-intensive problems. One
of the most important manifestations of these design goals with respect to fine-
grained applications is the fact that modern high-performance networks become
injection-rate limited before they become bandwidth limited in the presence
of large numbers of small messages. Secondly, in data-intensive applications
where the dependency graph has no good separators, communication patterns
are likely to be dense. In compute-intensive applications the number of peers a
single processing element (PE) communicates with is often constant or logarith-
mic due to the natural locality of the underlying operators. In data-intensive
applications the number of peers can easily be linear in the number of PEs.
While modern networks support collective all-to-all communication relatively
well, irregular exchange of small messages between O(P 2) pairs of PEs is less
well supported for large P and incurs significant per-connection overhead to
manage the P 2 connections.

The aforementioned limitations of modern HPC networks imply that in order
to efficiently map fine-grained expressions of data-intensive problems to current
hardware, a run-time layer which can dynamically transform the application ex-
pression to an efficient implementation is required. Performing software routing
on a sparser virtual topology allows the number of peers each PE communicates
with to be reduced from O(P ) to O(logP ) or even O(1). Coalescing small mes-
sages into larger messages which better exploit network bandwidth increases
latency but may yield better performance in bandwidth-bound regions of the
application.

Applications

We now demonstrate the application of the programming and execution model
(briefly) described above, to an application within the data-intensive domain.
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Breadth-first search (BFS) is a simple graph kernel which produces a breadth-
first numbering of the vertices of the graph starting with a source vertex s. We
assume a vertex distribution of the adjacency list (row-wise distribution of the
adjacency matrix).

Input: Vertex s, neighbors(v) a function returning the neighboring
vertices of v, Q0, Q1 distributed queues

Output: d[v] the bfs distance of v from s
∀ v ∈ V : d[v] =∞;
d[s]← 0;
Q0, Q1 ← ∅;
enqueue(Q0, {s, 0});
while Q0 6= ∅ do

while Q0 6= ∅ do
{u, dist} ← dequeue(Q0);
if dist < d[u] then

d[u] = dist;
foreach v ∈ neighbors(u) do

enqueue(Q1, {v, dist+ 1});
end

end

end
barrier;
/* Communicate non-local elements of Q1 */

swap(Q0, Q1);
end

Algorithm 1: Coarse-grained BFS

In a traditional SPMD or BSP-style implementation such as Algorithm 1:
we expand one level of the BFS (line 6), then communicate all the vertices
in the next level (line 13), and repeat until the next level is empty (line 5).
This approach has the effect of producing large blocks of data to communicate
collectively, but fails to capture the fine-grained dependency structure of the
application and thus does not express the full concurrency available.

Input: v the vertex to discover, dv the tentative distance of v from s,
neighbors(v) a function returning the neighboring vertices of v

if dv < d[v] then
d[v]← dv;
foreach u ∈ neighbors[v] do

discover(u, dv + 1);
end

end
Algorithm 2: discover(v, dv) – active message handler for vertex discovery

In the fine-grained expression of the algorithm the core operation, discov-
ering new vertices (Algorithm 2), is expressed as an independent asynchronous
operation which may be invoked locally or remotely, and may have many in-
stances executing concurrently. The main body of the algorithm (Algorithm 3)
simply discovers the source vertex (line 3) and waits for the chain of executions
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Input: Vertex s
Output: d[v] the distance of v from s
∀ v ∈ V : d[v] =∞;
begin epoch();
discover(s, 0);
end epoch();

Algorithm 3: Computing a BFS tree using active messages.

of Algorithm 2 this triggers to complete (line 4). There are a number of as-
sumptions implicit in this formulation of BFS. First, because the same method
is invoked to discover a vertex regardless of whether the vertex is local or re-
mote with regard to the discovering process, some method of resolving vertices
to address spaces must exist. As previously discussed, for performance reasons
it is also assumed that an underlying run-time layer coalesces these individual
method calls bound for remote processors into larger messages sufficient to over-
come the injection-rate limitations of the network, and optionally routes them
through a virtual topology to minimize connection overhead.

Results

We have employed the techniques described above to implement a generalized
active message library (AM++ [6]) capable of performing the runtime transfor-
mations described. Comparing the performance of traditional BSP-style formu-
lations of graph algorithms in older versions of the Parallel Boost Graph Li-
brary [1] with asynchronous formulations of the same algorithms implemented
using AM++ demonstrates markedly improved performance (see Figure 1). Ad-
ditionally, by expressing algorithms as collections of asynchronous, concurrent
tasks we simplify the task of leveraging thread-level parallelism as well as
process-level parallelism.
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Figure 1: Strong scaling performance of Parallel BGL and AM++-based imple-
mentations of parallel BFS (227 vertices and 229 edges).
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Motivation Krylov Subspace Methods (KSMs) are a class of iterative algo-
rithms commonly used in scientific applications for solving linear systems, eigen-
value problems, singular value problems, and least squares. Standard KSMs are
communication-bound, due to a sparse matrix vector multiplication (SpMV)
in each iteration. This motivated the formulation of Communication-Avoiding
KSMs, which remove the communication bottleneck to increase performance.
A successful strategy for avoiding communication in KSMs uses a matrix pow-
ers kernel that exploits locality in the graph of the system matrix A. The
matrix powers kernel computes k basis vectors for a Krylov subspace (i.e.,
Kk(A, v) = span{v, Av, ..., Ak−1v}) reading A only once. Since a standard
KSM reads A once per iteration, this approach effectively reduces the commu-
nication cost by a factor of k [7, 8].

The current implementation of the matrix powers kernel [8] partitions the
matrix A given the computed dependencies using graph partitioning of A+AT .
However, the graph model inaccurately represents the communication volume
in SpMV and is difficult to extend to the case of nonsymmetric matrices. A
hypergraph model remedies these two problems for SpMV [2, 5, 3]. The funda-
mental similarity between SpMV and the matrix powers kernel motivates our
decision to pursue a hypergraph communication model.

Contribution We construct a hypergraph that encodes the matrix powers
communication, and prove that a partition of this hypergraph corresponds ex-
actly to the communication required when using the given partition on the rows
of A. Although the hypergraph construction represents an additional prepro-
cessing cost, such a cost is justified when the resulting partition requires sig-
nificantly less communication than a partition obtained using a naive or graph
partitioning approach. We evaluate this tradeoff for various classes of matrices,
and provide guidance in selecting the optimal partitioning method in terms of
preprocessing cost and communication required in the resulting partition. Ad-
ditionally, we evaluate the effectiveness of various heuristics and sparsification
strategies for reducing the cost of constructing and partitioning the hypergraph
for matrix powers.

Using the PaToH hypergraph partitioning software [4] and matrices from
the U.F. Collection [6], we achieve up to an 80% reduction in total (expand)
communication volume over the graph partitioning approach, the largest im-
provements for structurally unsymmetric matrices (e.g., west1505). In general,
the matrix powers kernel shows the most benefit on well-structured (bounded
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aspect ratio) matrices. We demonstate that our techniques will improve ma-
trix powers performance for classes of graphs such as physical meshes that are
structurally unsymmetric.

A Hypergraph Model for Matrix Powers Our formulation is based on
the column-net model, previously described in literature for SpMV [2, 5, 3].
The column-net model was chosen because the matrix powers kernel requires a
rowwise partition, ensuring no communication occurs during the computation.
We first demonstrate correctness of this formulation for y = Ak ·x where k = 1,
and then consider the case where k > 1. The column-net model still holds for
the computation of y = Ak ·x, provided that we find the column-nets for matrix
Ak.

However, matrix powers does not simply calculate an SpMV for some power
of A. In fact, matrix powers performs an SpMV for all powers of A up to k, and
then returns the vectors [x, Ax, ..., Akx] . In general, each power of A expresses
a different set of dependencies so it is insufficient to evaluate the dependencies
for Ak and claim that those encompass all communication in matrix powers. We
show how to combine the dependencies for matrix powers A1 through Ak in a
way to account for all dependencies. We perform this combination using a union
operation, since once a dependency has been accounted for, the communicated
value is available locally (without subsequent communication) for all iterations.
These new nets, which we call k-level column-nets, represent the cumulative
dependencies.

We form a hypergraph Hk with the same vertices as H, above, but now
use the k-level column-nets. We have encapsulated dependencies by nets in Hk

so that the cost of a P -way partition in Hk tells us the communication that
will occur in the execution of the matrix powers kernel. It is worth noting
that minimizing communication in the matrix powers kernel is NP-Hard since
the transformation [A, k, x] → Hk can be performed in polynomial number of
steps, giving a polynomial-time reduction from minimizing communication in
the matrix powers kernel to finding the minimum cost cut of Hk.

Using Heuristics to Reduce Preprocessing Cost Constructing the full
k-level column nets adds a significant cost to the preprocessing algorithm, es-
pecially for large values of k. We evaluate the effectiveness of the following
strategies (and combinations of these strategies) for reducing the algorithmic
cost of both constructing and partitioning our hypergraph for matrix powers:

• Sparsification of the input matrix

• Dropping large nets from consideration during partitioning

• Approximating k-level column-nets with k = 1 + iterative swapping [9]

Current Work Current work involves considering the costs of moving the
redundant entries of the input vector x as well as the rows of matrix A inde-
pendently. That is, our previous formulation assumes a unit cost for each data
dependency, when it would be more accurate to weight the k-level dependen-
cies with unit cost wi = 1, and the 1- through (k − 1)-level dependencies by
a weight wi = 1 + nnzi, where nnzi is the number of nonzeros in matrix row
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Ai. This would be formulated as a multi-constraint hypergraph partitioning
problem, discussed in [1] in the context of SpMV.

Additionally, ongoing work involves exploring the effectiveness of such a
strict communication-avoiding approach in practice. The communication costs
between cores are far less expensive than, for example, between nodes in a
network. Other partitioning schemes, like the 2D decompositions evaluated
in [5], would require communication at each step of the matrix powers kernel
(since columns are partitioned as well), but have greater flexibility in reducing
the overall volume of communication. We believe this flexibility may play a role
in an optimal organization of the algorithm in a shared-memory environment,
and would also provide robustness in pathological cases like a dense row in A.
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Graph partitioning is critical for good performance in many fields, from
laying out the circuits on a chip to efficiently parallelizing scientific applications.
Substantial research effort has been invested in graph partitioning over the last
two decades, which has resulted in a much better theoretical understanding of
the problem and several good quality practical tools. The solutions are typically
based on spectral relaxations of the discrete problem, multilevel algorithms, or
combinations of the two.

In this talk, we focus mainly on applications where a graph is to be parti-
tioned over a very large number of processors in a way that balances compu-
tation and minimizes interpocessor communication. Generalizations to other
frameworks such as data mining are straightforward but not explored. The
interprocessor communication to be minimized is traditionally modeled as the
edge-cut between the partitioned domains. However, in this model there is no
distinction between domains and processors. Thus, the edge-cut does not take
into account that different processor pairs may have different communication
costs since the communication network may involve several physical hops, dif-
ferent or congested hardware links, or a complete heterogeneous infrastructure
as is the case in cloud computing.

There have been several attempts in the literature to extend partitioning
models to include information from the parallel architecture. Hendrickson and
Leland introduced a multilevel spectral model for the hypercube network topol-
ogy. Together with Driessche, they later extended this to other network topolo-
gies using domain biases. These methods have been implemented in the Chaco
software. Another effort is by Pellegrini and collaborators where they consider
an architectural graph to guide the assignment of domains to processors during
a multilevel partitioning algorithm. These ideas are implemented in the (PT)-
SCOTCH partitioning tool where a choice of several typical network topologies
is offered. However, neither of these efforts have resolved satisfactorily the prob-
lem as many researchers have noted over the years. Recently, there has been
renewed interest in this architecture aware partitioning but most efforts have
been adhoc and geared toward special applications.

One of the most successful tools for graph partitioning is the Metis software
by Karypis and Kumar. However, Metis tackles mainly the edge-cut problem
and does not involve information about the communication network. A couple
of years ago, Moulitsas and Karypis attempted to correct this by providing a
general architecture-aware objective function which they approximately mini-
mized in a specific predictor-corrector framework. The predictor step consisted
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of a usual Metis application, while the corrector step applied a classic random-
ized refinement based on the architecture-aware objective. They reported very
promising results but also mentioned that a more thorough approach would in-
volve minimizing directly the architecture-aware objective function during the
multiple levels of Metis. This is the approach we follow in this research.

Starting from the sequential Metis code that also optimizes the number
of connected components, we first note that the coarsening phase should re-
main unchanged as it deals with the connectivity of the application graph and
not its assignment to processors. At the coarsest level, Metis generates p do-
mains. At that time we must solve the Quadratic Assignment Problem (QAP):
Given a communication cost function C(p1, p2) for any pairs of processors, and
a weighted adjacency matrix E for the p domains, assign the p domains onto
p processors so that the total volume of network-aware communication times
is minimized, i.e., min

∑
i,j C(i, j)E(π(i), π(j)) over all permutations π. QAP

is a particularly difficult NP-hard problem which resists most efficient contin-
uous relaxations. The architecture-aware partitioning problem, therefore, is at
least as hard as QAP; With one exception: QAP depends on p the number of
processors, not on |G| the size of the graph. When p is not too large, efficient
simulated annealing methods can produce fairly good assignments. We have
used such a newly developed method to solve the first processor assignment at
the coarsest level.

During every level of the refinement phase, Metis moves graph hypernodes
between domains to reduce the edge-cut while satisfying a few other constraints.
We have changed this phase of Metis to minimize the network-aware volume of
communication time. The goal is to steer the refinement heuristics toward pick-
ing closest communicating network pairs and implicitly minimizing the number
of neighboring domains. To implement this objective function without increas-
ing the overall complexity of the algorithm, we follow the same boundary strat-
egy as Metis, i.e., boundary nodes participate in the relaxation exchange be-
tween domains if they can potentially decrease their edge-cut. Once considered
in the boundary, however, they perform the moves that minimize the architec-
ture aware time. One can argue that with a good initial QAP assignment, the
boundary is similar, but what matters is how the relaxation works.

In this talk, we discuss further the new heuristics for the implementing
architecture-aware graph partitioning and we report results from sequential
runs for a variety of graphs on several network topologies and heterogeneous
networks.
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(CNRS and ENS Lyon, France)

Corresponding Author: Bora Uçar (bora.ucar@ens-lyon.fr)

We are interested in two classical and related problems in sparse matrix
factorization. The first one is to reduce the number of nonzeros in the R fac-
tor of the QR decomposition of a rectangular sparse matrix. The second one
is to reduce the number of nonzeros in the Cholesky factor of a given sparse
symmetric positive definite matrix. For the first one, we compare two known al-
ternatives from the literature where there is no previous comparison study. For
the second one, we investigate a known result on pattern-wise decomposition of
sparse matrices, generalize the result and develop algorithmic tools to obtain
new ordering methods.

Fill-reducing ordering for QR

Let A ∈ Rm×n be a sparse rectangular matrix with a full column rank. The
QR factorization of A is given by A = QR, where Q ∈ Rm×m is an orthogonal
matrix, and R ∈ Rm×n is a sparse upper trapezoidal matrix. The number of
nonzeros in R depends on the column permutation of A (due to the equivalence
of the thin QR factorization of A and the Cholesky factorization of ATA [7,
Theorem 5.2.2]).

A desirable form of ATA which leads to a reduced number of nonzeros in
its Cholesky factorization is the doubly bordered block diagonal form. When
one has small border size, the problem reduces to ordering rows/columns while
respecting the block structure. In order to have a sparse R in the QR decom-
position one can therefore compute the pattern of ATA, order it and apply
the resulting ordering to the columns of A. As is known, ATA can be much
denser than A and therefore this approach is avoided. There are methods that
work only on A (for a concise discussion see [4, Chapter 5]). We compare two
such methods from the literature: the first is the COLAMD [5] algorithm. This
algorithm performs an approximate minimum degree ordering on ATA with-
out forming the product. In the second method, A is permuted into the singly
bordered block diagonal form (diagonal blocks are not necessarily square) by a
hypergraph partitioning method [1]. One has to order the columns by respecting
the singly bordered structure. We combine the constrained COLAMD with Pa-
ToH [2] to accomplish this task. We are not aware of any previous comparisons
between these two known alternatives. We perform comparisons to validate the
hypergraph partitioning-based approach.

For the initial comparisons, we use PaToH as a black box, and with a post
process we make sure that the diagonal blocks in A have more rows than
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columns. Technically we do not need a good balance among the sizes of the
blocks but when PaToH is used as a black box, it obtains such partitions. Even
so, among 14 matrices that we used (the matrices have the following ids in
the UFL collection: 261, 981, 1332, 1870, 1871, 1872, 1964, 2025, 2032, 2069,
2112, 2128, 2129, 2134), the hypergraph based approach obtains on average
16% fewer nonzeros than COLAMD. The best result we obtain is for the matrix
ch7-6-b4 (whose id is 2025) with 45% reduction, and the worst result we obtain
is for the matrix n4c5-b4 (whose id is 2112) with 3% increase. These matrices
are not really large; we expect even better performance on larger matrices.

Fill-reducing ordering for Cholesky

Let A ∈ Rn×n be a sparse symmetric positive matrix. The Cholesky factoriza-
tion of A is given by A = LLT , where L ∈ Rn×n is a lower triangular matrix
with positive diagonal entries. A symmetric permutation on A is performed to
reduce the number of nonzeros in L. There are many alternatives for finding
such a permutation (see [6] for a recent survey). To the best of our knowledge,
all existing methods are based on the standard graph representation of a sym-
metric matrix, except the work in [3]. In this latter work, for a given A, the
authors find a sparse matrix B such that A = BTB holds pattern-wise. Then
the matrix B is ordered as in the previous section to permute A into doubly
bordered block diagonal form, and a constrained approximate minimum degree
algorithm is run to have the final ordering on A. The gist of this approach is
the algorithm that finds a matrix B that is the most useful for the partitioning
purposes.

We show that within this framework one only needs to find a matrix B such
that A ⊆ BTB holds pattern-wise. Therefore, the equality that is enforced
in [3] is an unnecessary restriction. By removing this restriction, we are able to
search for a B within a much larger search space. We follow a few heuristics to
find an upper triangular matrix B such that BTB covers all of the nonzeros of
A and can possibly have more nonzeros. Our objective is to try to reduce the
number of nonzeros in B rather than trying to obtain exactly the same number
of nonzeros in A and BTB. Our algorithm performs a number of iterations. At
each iteration we find a spanning tree (or a forest) of the graph corresponding
to the matrix containing the entries that have not been covered yet in BTB.
Then the algorithm adds the pattern of this tree to the currently found B and
proceeds to the next iteration. Our approach tends to find B matrices that have
fewer nonzeros than those found in [3].

For the initial comparisons we choose a set of matrices from those used in [3]
which have ids 50 200, 201, 340, 346, 350, 362, 752, 760, 763, 764, 868, 1238,
1310, 1311, 1605 in the UFL collection. We compare the number of nonzeros in
the L factors with the numbers reported for the AMD and MeTiS based ordering
methods in the UFL collection. The averages of the ratios of our method to
AMD and MeTiS are 0.94 and 0.99, respectively. The best result with respect
to AMD is obtained for the finan512 matrix, where the ratio is 0.56 (the
worst ratio is 1.09 obtained for shuttle eddy). The best and the worst results
with respect to MeTiS are 0.83 and 1.28 obtained for bcsstk28 and k1 san,
respectively. The B matrices that we find have about 35% of the nonzeros
of the original matrices. We do not compare the run times as most of our
algorithms are implemented in MATLAB. We plan to do run time comparisons
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after improving and implementing the algorithms in a common programming
language.
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(r.ionutiu@jacobs-university.de)

A graph partitioning problem is presented with applications in circuit sim-
ulation. Interpreted as graphs, very large electrical circuits are partitioned into
smaller components which are minimally connected among each-other. Extend-
ing the standard partitioning scope, we formulate an additional constraint for
appropriately distributing a special subset of nodes (terminals) across parti-
tions. If incorporated inside partitioning tools, the terminal constraint could
further enhance analysis of challenging electrical circuits.

Introduction

In circuit simulation very large electrical networks have to be analyzed, which
contain millions of nodes interconnected via basic circuit elements. An analogy
with graphs is immediate: the circuit nodes are the graph vertices, while the
basic circuit elements form the edges. Networks of industrial relevance have
an additional feature: a large subset of their nodes are the input/output nodes,
called terminals, which connect the large network with remaining circuitry. Ter-
minals may form a large fraction of the total number of nodes. E.g. if n is total
number of nodes of which p are terminals typical values are n = 105, p = 103.
Using graph partitioning such large multi-terminal networks are split into com-
ponents which are treated individually in further analysis steps. We will show
for instance how graph partitioning helps to efficiently obtain, from an original
large circuit, a reduced circuit which is “small and sparse” [i.e., its graph repre-
sentation ideally has fewer vertices (circuit nodes) and fewer edges (basic circuit
elements) than the original].

Problem definition

While existing graph partitioners mainly aim at minimizing the communica-
tion among components, a new problem emerges when a special subset of nodes
(here, terminals) should be taken into account: components should be minimally
connected and also satisfy a desirable terminal to node ratio. Fig. 1 provides
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Given is a graph G = (V,E), where V = {v1, . . . , vn} is the set of
n = |V | vertices (nodes) and E = {(vi, vj)| vi, vj ∈ V and vi is directly
connected to vj ; 1 ≤ i, j ≤ n } is the set of edges. Let P ⊂ V form a
special subset of nodes called terminals, |P | = p < n.
Problem: find a partitioning of G into subnets which are (a) minimally
connected and (b) distribute the p terminals subject to a user-defined
constraint.

Figure 1: Graph partitioning with separation of terminals

a rough problem visualization and formulates the partitioning task. More pre-
cisely, let G be partitioned into two2 subnets G1 = (V1, E1) and G2 = (V2, E2),
where V1 ∩ V2 = ∅, V1 ∪ V2 = V , |V1| = n1, |V2| = n2, E1 = {(vi, vj) ∈ E|
vi, vj ∈ V1; 1 ≤ i, j ≤ n1}, E2 = {(vi, vj) ∈ E| vi, vj ∈ V2; 1 ≤ i, j ≤ n2}. Let
P1⊂V1 terminals fall under V1, and P2⊂V2 terminals fall under V2, |P1| = p1,
|P2| = p2. Let K1⊂V1 and K2⊂V2 be the cut nodes3 separating G1 and G2,
|K1| = k1, |K2| = k2, K1 ∩ K2 = ∅. G1 and G2 thus communicate via the
edge set E12 = {(vi, vj) ∈ E|vi ∈ K1, vj ∈ K2; 1 ≤ i ≤ k1, 1 ≤ j ≤ k2}. The
problem is to find the smallest set of cut nodes K1 and K2

4 which partition G
so that the following quantity is minimized:

min
K1⊂V1, K2⊂V2

(p1+k1)(p1+k1−1)

2
+

(p2+k2)(p2+k2−1)

2
+k1k2+p1k2+p2k1︸ ︷︷ ︸

Maxfill

(8)

Note that subnet sizes n1 and n2 need not be the same. Rather, it is more
important that terminals are appropriately distributed. As will be shown, in
model reduction [1] objective (8) controls sparsity: the quantity to minimize is

2A natural extension is a partitioning into k > 2 subnets; the 2-way partitioning is pre-
sented here for simplicity.

3If pK > 0 terminal nodes fall under the cut nodes, then p1 + p2 + pK = p.
4In other words, find the smallest node separator K = K1 ∪K2.
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the maximum fill-in generated by reducing5 each subnet individually.

Preliminary results

A network with n = 16862 nodes of which p = 646 terminals was partitioned
into two subnets communicating via a set of cutnodes (separator). Two par-
titioning algorithms (Mondriaan [3], and Nested dissection [2] via Metis [4])
were applied without explicitly minimizing (8). Results are recorded below.
Note that with Mondriaan the subnets differ in size, while with Nesdis they are
almost equal. This flexibility contributed to a smaller Maxfill value via Mon-
driaan. Incorporating an additional constraint into existing partitioners as to
explicitly minimize fill-in remains an open problem.

Mondriaan
#nodes #terminals #cutnodes Maxfill

Subnet 1 n1 = 14260 p1 = 509 k1 = 58
216771

Subnet 2 n2 = 2602 p2 = 123 k2 = 58

Nesdis
Subnet 1 n1 = 8507 p1 = 328 k1 = 105

252276
Subnet 2 n2 = 8355 p2 = 302 k2 = 104
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Function model

Using the framework of ([1]) we suppose that the vector function F : D ⊂ Rn →
Rm in question is evaluated by a sequence of assignments

v = u ◦ w or v = ϕ(u)

where ◦ ∈ {x,−, ∗} is a polynomial arithmetic operation and

ϕ ∈ Φ ≡ {rec, sqrt, sin, cos, exp, log, . . . ,abs,min,max, sign, . . . }

a univariate function. Here we are particular concerned with the three Lipschitz
continuous elementals abs, min, max and the function sign, which has a discon-
tinuity in the interior of its domain. All of them are piecewise linear and on can
easily express the former three in terms of the latter, namely sign. It also yields
the Heaviside functions and thus can be used as representer of all nonsmooth
piecewise linear functions. However, we will distinguish as composite Lipschitz
continuous the situation where sign is uses by the programmer in such a way
that the result is still continuous. context of min, max and abs.

Piecewise linearization
Now we can simply replace all smooth elementals by their tangent approximation
and sign and thus implicitly also min, max, abs by themselves. Starting from
an increment vector ∆x for the independents we can then propagate increments
∆v for all intermediate quantities according to the following rules:

∆v = ∆u±∆w for v = u± w
∆v = u ∗∆w + ∆u ∗ w for v = u ∗ w
∆v = c ∗∆u with c ≡ ϕ′(u) for v = ϕ(u) 6≡ sign(u)

∆v = sign(u+ ∆u)− sign(u) for v = sign(u)

We will denote the resulting increment ∆y as ∆F (x; ∆x). If all sign elemen-
tals are noncritical in that none of their arguments u = u(x) vanish exactly at
the given x then F is locally differentiable at x and we have for all sufficiently
small ∆x by the chain rule ∆y = ∆F (x; ∆x) ≡ F ′(x)∆x where F ′(x) ∈ Rm×n is
the Jacobian matrix. As observed in [1] we thus have differentiability at almost
all points x, but the crux is that in the vicinity of any nondifferentiability the lo-
cal linearization F ′(x)∆x will not be a good approximation to F (x+∆x)−F (x).
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Consequently equation solvers and other numerical methods based on local lin-
ear models cannot work well, except in the immediate vicinity of a nonsingular
solution. Instead we work with the approximation ∆y = ∆F (x; ∆x). Assuming
that the evaluation procedure contains s sign value calls with arguments ui for
i = 1 . . . s we can represent the switching structure by the signature vector

σ = (σi)i=1...s ∈ {−1, 0, 1}s with σi ≡ sign(ui)

Basic properties of piecewise linear approximation

• At any x ∈ D the function ∆F (x; ∆x) is defined for all ∆x ∈ Rn

• Rn is the disjoint union of at most 3s nonempty simplices Sσ

• ∆F (x; ∆x) is linear on the relative interiors S◦σ with Jacobians Jσ ∈ Rm×n

• For every ∆x, v ∈ Rn we can compute directly from the computational
graph the largest τ̂ ≥ 0 so that ∆F (x; ∆x+ τv) is linear for 0 < τ < τ̂ .

In the Lipschitz-continuous case we have furthermore:

• F (x+ ∆x)− F (x)−∆F (x; ∆x) = O(‖∆x‖2)

• ∆F (z; ∆x)−∆F (x; ∆x) = O(‖∆x‖ ‖z − x‖)

• If the common facet Sσ ∩ Sσ̃ has the maximal dimension n− 1
then Jσ − Jσ̃ = 2ba>, where a is a nonzero normal of the facet.

The structural properties in the Lipschitz continuous case allow the solution
of the path equation ∆F (x; ∆x) = −t F (x) for t ∈ [0, 1] under the coherent
orientation condition of Robinson [2]. The method is similiar to that proposed
by Eaves [3]. Similarly, we work on bundle type methods for unconstrained
optimization, where the generalized gradients are obtained in a systematic way.
We discuss these approaches and demonstrate the surprisingly simple evaluation
of piecewise linear models based on ADOL-C.
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We propose a new method for constructing a preconditioning matrix M to
accelerate the solution of the system

Ax = b,

when using Krylov-based iterative methods. The coefficient matrix A is large
and sparse and we assume it is irreducible, that is it cannot be permuted to
block triangular form. If it is reducible, then we will apply our algorithms to
the irreducible blocks on the diagonal.

Let G = (V,E) be a strongly connected digraph with n vertices and m
weighted edges. Given a permutation σ0 on E, a hierarchical decomposition of
G into its strong components can be defined in the following way. For 1 ≤ i ≤ m,
let σ0(i) be the ith edge in σ0. Let G0 = (V, ∅) be the graph obtained by
removing all the edges from G. Consider that edges are added one by one to
G0 in the order determined by σ0. Let Gi = (V, {σ(j) : 1 ≤ j ≤ i}) be the
digraph obtained after the addition of the first i edges. Initially in G0, there
are n strong components, one for each vertex, and, during the edge addition
process, the strong components gradually coalesce until there is only one. The
hierarchical decomposition of G into its strong components with respect to the
edge permutation σ0 shows which strong components are formed in this process
hierarchically. Note that a strong component in a hierarchical decomposition
is indeed a strong component of some digraph Gi although it is only a strong
subgraph of G.

A hierarchical decomposition can be represented with a hierarchical decom-
position tree T , whose leaf nodes correspond to the vertices in V , non-leaf nodes
correspond to edges in E that create strong components during the process, and
subtrees correspond to the decomposition trees of the strong components that
form as the process proceeds. An example digraph and the corresponding de-
composition tree can be found in Fig. 1.

Given a digraph G = (V,E) and a permutation σ0, the hierarchical decom-
position tree T can be obtained by first constructing G0 and executing Tarjan’s
strong component algorithm (SCC) for each internal digraph Gi obtained dur-
ing the edge addition process. This would be an O(mn + m2) algorithm since
1 ≤ i ≤ m and the cost of SCC is O(n+m). It would thus be prohibitive for large
graphs. To obtain T in a more efficient way, Tarjan first proposed a recursive
algorithm of complexity O(mlog2 n) that he later improved to have complexity
O(m log n) [4]. A high level description of Tarjan’s hierachical decomposition
algorithm, HD, is given in Algorithm 1.
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(a) A digraph (b) The HD tree

Figure 1: A digraph and its hierarchical decomposition tree with respect to the
ordering defined on the edges of the digraph.

1: if |E| − i = 1 then
2: The edge σ(|E|) makes the graph strongly connected. Return the tree T

containing the vertices in V as leaves and a root.
3: else
4: Set j = d(i+ |E|)/2e.
5: if Gj is strongly connected then
6: Call HD(Gj , σ, i).
7: else
8: For each strong component SC of Gj , containing more than one

vertex, call HD(SC, σs, is) where σs is the permutation for E(SC) and
is = max(k) such that SCk is known to be acyclic.

9: Create a condensed graph G′ from G by condensing each strong
component of Gj into one vertex. Call T =HD(G′, σ′, i′) where σ′ is the
permutation for E(G′) and i′ = max(k) s.t. G′k is known to be acyclic.

10: Replace each leaf of T with the subtrees obtained by previous calls.
Return T .

11: end if
12: end if

Algorithm 1: T = HD(G = (V,E), σ, i) . Here, σ is the permutation of E
and Gi is known to be acyclic. For the initial call, σ = σ0 and i = 0.

45



Given a matrix A, our algorithm hierarchically decomposes the correspond-
ing digraph into its strongly connected subgraphs. Later by using the decompo-
sition, it permutes the rows and columns of the original matrix A and obtains a
block triangular preconditioning matrix containing a subset of the nonzeros of
A where the maximum size of a diagonal block is smaller than a desired value
mbs.

We propose some modifications to make HD suitable for preconditioning: Our
first modification allows us to have non-distinct edge weights, that is matrices
with the same value in different positions. To achieve this, we removed the
necessity of using weights during the decomposition process and instead use the
permutation σ0. Another modification to the HD algorithm is that we do not
want to accept any blocks larger than a predefined value, mbs, and this enables
us to stop the recursion earlier than in the original algorithm. As an example,
when mbs = 3 for the example in Fig. 1, we do not need to decompose the
components rooted with 3 and 6 since their sizes are already smaller than mbs.
Our last modification increases the chance for obtaining components of size
at most mbs by combining smaller components already obtained. To achieve
this, during the decomposition process, we delete some edges of the graph that
can only be used to obtain components with more than mbs vertices. Further
explanation of these modifications is given in our technical report [2].

We use the modified algorithm to obtain a block triangular matrix M where
the strong components correspond to the blocks on the diagonal of M. To the
best of our knowledge, this is the first work that uses HD for preconditioning
purposes. After we obtain the block triangular form from this modified HD, we
then see whether any blocks can be merged and finally use a greedy algorithm to
order the blocks on the diagonal so that most of the entries are in the upper tri-
angular part. Before we use algorithm HD, we first scale and permute the matrix
using MC64 [1], which we do also for our experiments on other preconditioners.

We compare our algorithm SCPRE with a block preconditioner XPABLO [3]
and a MATLAB version of the industry-standard ILUT on sets of matrices from
circuit and device simulations from the University of Florida sparse matrix col-
lection. We show below a very abbreviated table from the results in [2]. In the
table, we give the number of iterations (with the least in bold font) and the
relative memory requirement (in the second line for each matrix). For SCPRE,
we use mbs = 1000.

For circuit simulation problems (the upper part), ILUT and SCPRE con-
verge for all matrices in this set. XPABLO fails to converge for bcircuit and
ckt11752 dc 1 and so SCPRE is clearly the best block based preconditioner on
this set of matrices. Although ILUT requires significantly fewer iterations on
G2 circuit and ckt11752 dc 1, in both cases it requires more memory. However,
for G2 circuit, if we increase mbs to 5000, the number of iterations drops to 95
and our relative memory requirement increases to 6.10 and, for ckt11752 dc 1,
by increasing mbs to only 3000 we require only 11 iterations with a relative
memory cost of only 1.45. Thus we feel we can we recommend using SCPRE for
circuit simulation matrices especially when the amount of memory to store the
preconditioner is the main concern.

For the device simulation matrices in the bottom part of the table, the
block based preconditioners are far more robust on this set with convergence
for all the test matrices. We therefore feel that we can recommend SCPRE as the
preconditioner for the device simulation matrices.
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Matrix XPABLO ILUT SCPRE
G2 circuit 727 89 642

1.77 5.47 2.23
circuit 3 572 3 14

1.25 2.16 1.40
bcircuit - 238 16

1.32 1.10 1.38
ckt11752 dc 1 - 11 213

1.02 2.55 1.32
mult dcop 01 12 6 1

1.04 22.48 0.86

2D 27628 bjtcai 45 - 142
1.85 2.58 2.22

3D 28984 Tetra 232 - 98
2.82 1.98 2.65

ibm matrix 2 23 - 13
5.39 23.24 5.12

matrix 9 182 - 205
4.96 37.32 2.27

wang3 100 20 79
2.42 8.02 3.85

To balance these good results, we show in our paper [2] that ILUT out-
performs both block approaches on matrices from CFD applications. Further
research is needed to understand the effect of structure in determining the best
approach.
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We present a new algorithm for computing selected eigenvalues of a banded
symmetric matrix A. The algorithm applies the bisection method [1] directly
to the banded matrix. To compute the inertia of A − σI, we use Kaufman’s
recent symmetric banded factorization algorithm [10]. The number of arithmetic
operations that the algorithm performs on an n-by-n matrix with 2k+1 nonzero
diagonals to compute ` eigenvalues is Θ(`nk2).

The state-of-the-art method for computing selected eigenvalues of a symmet-
ric banded matrix works differently and has a different cost structure. The best
existing method, implemented in lapack’s routine dsbevx [7], first reduces A
to a tridiagonal form T = UAU∗ where U is unitary. The desired eigenvalues
are then computed using the bisection algorithm on the tridiagonal T . If A is
n-by-n and has k nonzero subdiagonals (and superdiagonals), the reduction of
A to T requires Θ(n2k) work (arithmetic operations). An eigenvalue is then
computed using a constant number of inertia computations on T − σI where
σ is a real shift. The constant depends on the precision required, since the
inertia computations essentially amount to a binary search that narrows down
the interval that contains the sought-after eigenvalue. Each inertia computation
factors its tridiagonal input matrix at a cost of Θ(n) operations. The total cost
is Θ(n2k) even if one computes all the eigenvalues.

If the number ` of eigenvalues is such that `k/n is small, the new algorithm
is superior to dsbevx. For a given matrix, the new algorithm is particularly
attractive when the number of required eigenvalues is small.

Computing the inertia of a matrix is the fundamental computation in the
bisection algorithm for computing selected eigenvalues. Computing the inertia
of a matrix requires Θ(n3) work for dense matrices and Θ(n) work for tridiag-
onal ones. Until recently, there were no other classes of matrices for which it
was known how to compute a symmetric inertia-revealing factorization in o(n3)
work. Sparse symmetric indefinite factorization codes can often compute the
inertia dramatically faster (but not always), but there was no theory that guar-
anteed a o(n3) running time. The need to pivot can quickly destroy the sparsity
in the trailing submatrix.

In 2007, the situation changed, but only for one class of sparse matrices,
namely banded ones. Linda Kaufman discovered a symmetric factorization al-
gorithm that requires Θ(nk2) arithmetic operations and which computes the
inertia as a side effect. Her algorithm is related to a slightly earlier symmetric
banded factorization algorithm with the same running-time bound, but which
could not be used for inertial computations [9]. Our algorithm exploits Kauf-
man’s discovery.
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Figure 1: The ratio of the running time of our code and the running time of
dsbevx when both compute the 8 leftmost eigenvalues. Smaller numbers mean
that our code is faster. The matrices are ordered by n2k. The two matrices on
which our code is slower have a much larger k/n ratio than the rest.

The inertia can also be computed from the principal minors of a symmetric
matrix, which in turn can be computed from an unsymmetric factorization. If
the matrix is banded, the band structure is preserved and the inertia compu-
tation costs Θ(nk2) [4]. This alternative factorization is probably less efficient
than Kaufman’s, since it does not exploit symmetry. We plan to compare it to
Kaufman’s method but we have not yet done so.

We have implemented and tested an eigensolver based on bisection applied
directly to a banded matrix, using Kaufman’s factorization to compute inertia.
The implementation uses Kaufman’s banded factorization code. We have also
generalized another technique by Kaufman [8]. In 2000 she observed that when
a bisection eigensolver calls an inertia routine, the inertia is known almost ex-
actly even before the computation begins (most of the time the uncertainty is 1).
Therefore, the inertia routine can halt once enough negative or positive eigen-
values have been discovered to resolve the uncertainty, without completing the
symmetric factorization process. Kaufman’s observation focused on tridiagonal
matrices, but it also applies to banded matrices.

We tested our new code on both random matrices and on a selection of 35
matrices from the University of Florida Sparse Matrix Collection. We chose
matrices that were in reasonably-narrow banded form. We did not reorder the
matrices. On 30 additional matrices from the same collection dsbevx was too
slow (took more than one hour). We ran the experiments on one core of a Core 2
computer running at 2.13 GHz with 2 GB of RAM, using blas and lapack
routines from Intel’s mkl version 10.2.

The results are shown in Figures 1 and 2. On most matrices, our code is
much faster than lapack’s when asked to compute 8 eigenvalues (Figure 1). On
two of the matrices with a large k/n our code took longer than lapack. The
scatter plot in Figure 2 shows that the running time ratio between the codes is
indeed linearly correlated with `k/n. There are some outliers; we are currently
investigating them.

The performance of our algorithm is somewhat sensitive to the location
of the desired eigenvalues, because Kaufman’s factorization algorithm is. The
difference is at most a factor of 2. We omit a detailed analysis from this abstract.

We also omit from this abstract analysis of the significance of early halting
of the factorization [8].
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Figure 2: The relationship between the running time ratios of the two algorithms
and `k/n. The plot contains all the matrices from Figure 1 and runs that
compute 2m eigenvalues for integer value of m from 1 up to the point at which
our algorithm is slower. The line is the linear regression for the data points.

Other approaches to the computation of eigenvalues of symmetric banded
matrices include Wilkinson’s banded QR iteration [3, 2, pp. 557–560], which
was included in eispack (as bqr). This approach seems to have fallen into
disrepute and has not been implemented in lapack. High-quality Lanczos
implementations are also reasonable candidates; we have begun comparisons
with arpack, but we still do not have definite results [6].

The authors thank Dr. Linda Kaufman for her insightful comments and for
providing the code of her retraction algorithm.
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We describe technique that allows Lanczos’s algorithm to accurately and
reliably compute all the eigenvalues of a symmetric real matrix A. The main
innovation of the new technique is a method to produce a certificate that all
the eigenvalues have been found, even if some have multiplicity greater than 1.
To the best of our knowledge, no existing Lanczos code includes this feature,
nor has it been described in the literature. The certificate also describes the
numerical multiplicity of each eigenvalue. The key idea of the new method
is to slightly and randomly perturb A so as to disperse multiple eigenvalues;
with a high probability, the slight dispersal results in a matrix with no multiple
eigenvalues. This provides the algorithm with a provably-effective termination
criterion.

The Lanczos algorithm [1] uses matrix-vector multiplications to build a tridi-
agonal matrix T whose eigenvalues are related to those of A. Let n be the di-
mension of A and let k be the number of iterations (number of times A has been
multiplied by a vector). The matrix T is k-by-k. In exact arithmetic, when t
reaches the number of distinct eigenvalues of A, T has the same eigenvalues,
each with multiplicity 1, and the Lanczos method breaks down. But rounding
errors cause a behavior that is significantly different:

1. Breakdown or even near breakdown (a tiny offdiagonal element in T ) is
almost never observed.

2. Some eigenvalues of A may not appear in T even after n iterations, where
as others may appear with a numerical multiplicity that is greater than
that in A.

3. T often has some eigenvalues which are not eigenvalues of A, called spu-
rious eigenvalues.

These behaviors occur because rounding errors quickly destroy the orthogonal-
ity of the Lanczos basis of the Krylov subspace, which should in theory be
orthogonal. Lanczos knew this and suggested full orthogonalization in every
step; this is often too expensive, so Lanczos’s algorithm was abandoned as a
method for computing accurate eigenvalues (even without orthogonality, Lanc-
zos provides useful information on the spectrum of A, especially extremal ones).
This led researchers to develop Arnoldi-like variants that explicitly orthogonal-
ize the basis vectors. Unfortunately, explicit-orthogonalization variants tend to
be much more expensive than plain Lanczos, especially when some eigenval-
ues have large numerical multiplicity. (Selective orthogonalization techniques
sometimes reduce the cost, but not always.)
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Significant progress was made in the early 1980s, when the Lanczos phe-
nomenon was discovered [3]: even if one makes no effort to keep the basis
vectors orthogonal, the spectrum of T eventually contains all the eigenvalues
of A. A formal proof was given in the 1990’s [4, 5]. This led to codes that
run for more than n iterations in an attempt to reach this “eventual conver-
gence” point [2, 3]. These Lanczos codes faced two problems. One problem is
to classify eigenvalues of T into genuine ones that are also eigenvalues of A and
spurious ones. There are several criteria that can be used; for example, every
numerically-multiple eigenvalue of T is genuine (also an eigenvalue of A) .

The second problem is more difficult: how to determine that we have found
all the eigenvalues of A? If we find n distinct genuine eigenvalues, we can clearly
stop. But if we find n′ < n, is it because A has only n′ distinct eigenvalues, or
because some eigenvalue of A still does not appear in T? The only attempt we
are aware of to address this question is due to Parlett and Reid [2]. Their code
assumes that if an interval [a, b] between two genuine eigenvalues a and b does
not contain any eigenvalue of T , then there are also no eigenvalues of A in [a, b].
This is just a heuristic, and their paper acknowledges that it can fail (they also
write that it is quite robust).

Our new code improves on state-of-the-art codes from the 1980s by adding
a robust way to decide when to stop and to determine multiplicities. If P is a
matrix with ‖P‖2 = δ‖A‖2, then the eigenvalues of A + P lie within distance
δ of the eigenvalues of A. If, in addition, P is random, then the eigenvalues of
A+P are distinct. If A has multiple eigenvalues, the corresponding eigenvalues
of A+ P will be close (closer than δ), but under certain conditions on P , they
will not be too close. We choose δ so that the perturbed eigenvalues are close
enough to those of A to satisfy the user’s requirement (say an absolute error of
at most 10−8‖A‖2), while still allowing a tridiagonal eigensolver applied to T to
separate n distinct eigenvalues of A+P . For example, if δ = 10−9, a tridiagonal
eigensolver can compute the eigenvalues of T to within, say, 10−15‖A‖2, allowing
us to find genuine eigenvalues of A+P to within 10−14‖A‖2, which is less than
the minimum separation we expect to see in the spectrum of A+ P .

We have implemented the algorithm using double-precision hardware float-
ing point arithmetic (in both Matlab and C, and using lapack [6] routines
to compute the spectrum of T ). We have also implemented the algorithm in
C++ using extended precision, using mpack [8], which internally uses qd [7] to
implement double-double precision. The algorithm works well, but we have not
performed enough experiments to fully evaluate it. We have also not yet imple-
mented many optimizations that we have in mind (some of which are described
below).

We are currently exploring several issues. The most important one is a
probabilistic analysis of the minimum eigenvalue gap in A+P , which determines
the accuracy with which we need to compute the eigenvalues of T (however,
using extended-precision packages we can attain very high accuracy, albeit at
the cost of performance). The minimum gap depends on the angle between
invariant spaces of A and P and the dimensions of these subspaces, but we have
not yet completed this analysis.

A second issue that we are working on is finding good ways to generate
P , which needs to be cheap to apply. A diagonal P often works well (as we
wrote, this depends on the invariant subspaces of A), but we are also exploring
alternatives, such as matrices involving randomized fast transforms.
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A third topic of research is the use of m different P ’s concurrently, with the
same or different δ. Naively, this requires m times more memory and work,
but this is not always the case. First, using several P ’s exponentially increases
the probability that some perturbed matrix will not have small gaps in the
spectrum, leading to a quick termination. Second, when using both small and
large δ’s, the T ’s corresponding to large δ’s quickly give us coarse but correct
information about the location of the eigenvalues of A, eliminating unnecessary
work on the small perturbations.

The last issue that we are working on is additional criteria for deducing the
multiplicity of eigenvalues, again in an attemp to avoid long iterations.
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We are concerned about the parallel computation of several entries of the
inverse of a large sparse matrix. We assume that the matrix has already been
factorized by a direct method and that the factors are distributed. There are
many applications where the computation of explicit entries of the inverse of a
sparse matrix are required: statistical analysis of least-squares computations [1],
atomistic level simulation of nanowires [2], computation of short-circuit currents
[3], and approximations of condition numbers [4]. In most of these cases, many
entries are requested, e.g., all the entries of the diagonal, on which we focus in
this abstract for the sake of simplicity.

A distributed sparse factorization can be represented by an assembly tree
where each node of the tree corresponds to the partial factorization of a dense
submatrix. Each node of the tree is associated with the variables that are
eliminated during the partial factorization at that node. The factorization is
performed from the leaf nodes to the root (we assume without loss of generality
that the matrix is irreducible). As the factorization proceeds towards the root,
the submatrices in general become larger so that more than one processor can
be used at each node.

To compute column j of the inverse, the equation Ax = ej can be used, where
ej is the jth column of the identity matrix. One can obtain major savings if
the structural zeros of ej are exploited or if only one entry of the jth column is
requested. If we have an LU factorization of A, a−1

ij , the (i, j) entry of A−1, is
obtained by solving successively the two triangular systems:{

y = L−1ej

a−1
ij = (U−1y)i

(9)

We see from the equations (9) that in the forward substitution phase, the
right-hand side (ej) contains only one nonzero entry and that, in the backward
step, only one entry of the solution vector is required. The following result takes
advantage of both these observations along with the sparsity of A to provide an
efficient computational scheme.
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Theorem 1 (Property 8.9 in [5]). To compute a particular entry a−1
ij of A−1,

the only nodes of the tree which have to be traversed are on the path from the
node j up to the root node, and on the path going back from the root node to the
node i.

Using this result enables us to “prune” the tree by removing all the nodes
which do not take part in the computation of an entry. Thus, for a single entry
of the inverse, the pruned tree only consists of the root node, the nodes i and
j, and all nodes on the unique paths between these nodes and the root. In the
common case, when we require many entries of the inverse, we have to solve for
many right-hand sides and thus we must compute the entries by blocks as we
will not have sufficient memory to compute them all at once. One can apply tree
pruning to these blocks of right-hand sides. In this case the pruned tree will be
effectively the union of all pruned trees corresponding to each right-hand side
in the block. In [6], we considered the combinatorial problem of partitioning
the requested entries into blocks to minimize the overall cost in an out-of-core
environment. In this work, we address the problem of how to compute such
blocks of entries efficiently in parallel.

In order to compute a block of entries in parallel, we solve for several blocks
of nb right-hand sides (that we call the “nb-blocks”) at the same time. At first
glance, this seems embarrassingly parallel. However, in a distributed memory
environment, we need to run parallel instances of a linear solver in parallel,
each one using the whole set of processors to solve for a block of right-hand
sides (because all distributed factors might have to be accessed). This is not
possible using MPI without replicating the factors on all processors.

In the computational setting of [5, 6], the right-hand sides are processed
following an order which tends to put together nodes which are close in the
assembly tree, e.g., a postorder. As a consequence, few processors (probably
only one) will be active in the lower part of tree when processing a block of
right-hand sides. In order to provide more parallelism over the above setting, it
is necessary to develop an interleaving strategy where the entries in the block
are chosen not just from a postorder but so that every processor will be active
when a block of entries is computed. Thus interleaving tends to cancel the ben-
efits of a good permutation for sequential computation; it increases the number
of accesses/flops because it puts together activities that correspond to distant
branches/parts of the assembly tree. Also, choosing a large block of right-hand
side columns to exploit parallelism will result in some processors doing far more
flops if we consider the block as being indivisible. We still want to exploit
the benefits of BLAS/dense computations but not at the expense of too many
unneeded arithmetic operations.

We do this by processing at each node only the columns of the nb-block of
right-hand sides for which the corresponding inverse entries are associated with
the node or with a descendant of the node in the tree. Thus the subblock on
which we do our computations is as small as it can be, and so we are as efficient
in terms of operation count as is possible if the sparsity of an individual right-
hand side were exploited. At the leaf nodes of the pruned tree, the block of
computations will normally be quite small corresponding only to entries present
at that node. As we progress up the tree, the computational block will increase,
with the block at any node being the union of the blocks at the children with any
new entries appearing at the node. At the root node (assuming irreducibility)
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the block will be of size nb. One very important feature is that because the
nb-block of right-hand sides is postordered, the block at any node will always
be a contiguous subset of entries from the nb-block so that only the position of
the first and last entries need to be passed and the merging process at a node
is trivial.

On an earlier version of our algorithm, we requested a minimum size of
computational block (that we call nbsparse) so that the block size at any node
was a multiple of nbsparse although the contiguity property was still maintained.
This had some attractiveness because of specifying minimum computational
units for the BLAS, however it meant that we were doing unnecessary operations.
We illustrate this in Table 1 by simulation runs: more operations are done with
nbsparse = 32 than with nbsparse = 1, which corresponds to the algorithm
described above. Without interleaving (“no IL”), few processors are active
when processing a block, whereas interleaving (“IL”) improves parallelism at
the price of an increase in number of operations. The benefit of our approach
(“IL, nbsparse=1”) is that a low arithmetic cost is obtained while still exploiting
parallelism (the numbers in parenthesis give an idea of the amount of parallelism
one can expect). By the time of the meeting, we plan to show actual performance
results with MUMPS [7].

Strategy Matrix
Purdue201,400 11pt125,000

no IL 4.59 × 1012 7.85 × 1012

no nbsparse (1.54) (2.11)

IL 17.56 × 1012 17.35 × 1012

no nbsparse (11.20) (11.15)

IL 2.59 × 1012 4.58 × 1012

nbsparse=32 (11.20) (11.15)

IL 2.14 × 1012 4.19 × 1012

nbsparse=1 (11.20) (11.15)

Table 1: Number of flops for the computation of the whole diagonal of the
inverse of two matrices on 16 processors; block size is nb = 512; the numbers
in parentheses indicate the average number of active processors at the leaves.
Matrix Purdue201,400 comes from [2], and matrix 11pt125,000 corresponds to an
eleven-point discretization of a 50× 50× 50 domain.
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A linear system Ax = b is symmetric diagonally dominant (SDD) when Aii ≥∑
j 6=i |Aij |. Solvers for such systems are emerging as a powerful algorithm prim-

itive. They are the key subroutine in the fastest known algorithms for a multi-
tude of problems that include the max-flow problem [1] and several optimization
problems in computer vision [2].

The recent intense interest in algorithms that rely on SDD solvers was moti-
vated by the seminal work of Spielman and Teng who gave the first nearly-linear
time algorithm for such systems, running in time O(m logcm log(1/ε)), where m
is the number of non-zero elements in the system matrix, ε is the approximation
error, and c is some large constant [4]. The Spielman and Teng solver is a very
complicated and impractical algorithm.

We present the fastest known solver for SDD systems. Its running time
is O(m log2m log(1/ε)), up to lower order factors. The algorithm is simple,
concise, and potentially practical.

The key contribution: Better Graph Sparsification

It is well known that general SDD systems are linear-time reducible to sys-
tems LAx = b where LA is the Laplacian of a graph A. The Laplacian is a
special SDD matrix with non-positive off-diagonal elements and zero row-sums.
We can thus focus our attention to systems on Laplacians. This brings the prob-
lem into the realm of combinatorial scientific computing and –more specifically–
combinatorial preconditioning an area of research initiated by P. Vaidya [5].

The key to the design of a fast solver is graph sparsification. In the graph
sparsification problem one wants to approximate a given graph A with a graph
B such that: (i) B has significantly fewer edges than A and (ii) the condition
number κ(LA, LB) is as small as possible. There is a trade-off between the
number of edges in B and the condition number between the two Laplacians.

Spielman and Teng proved that if A has n nodes and m edges, it is possi-
ble to produce in O(m logc n) time, a graph B with n + m/k edges such that
κ(LA, LB) ≤ k logc n. Their algorithm is based on complicated graph decom-
positions that partition the edges of the graph into sets which can be sparsified
by uniform sampling.

Spielman and Srivastava [3] studied the related problem of generating a
sparse graph B, under the constraint that κ(LA, LB) < (1 + ε). They gave a
remarkable algorithm that produces a graph B with O(n log n/ε2) edges via a
simple sampling procedure: the edges of A are sampled and added to B with
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probabilities proportional to their effective resistance in the resistive network
defined by A. However, computing the effective resistances seems to require the
solution of a system.

Our incremental sparsification algorithm uses ideas from [3] to show that
the edges of A can be sampled with probabilities proportional to upper bounds
on their effective resistances. We also show that it is possible to compute in
O(m log2 n) time upper bounds that are strong enough to generate a graph B
with n + m/k edges such that κ(LA, LB) ≤ k log2 n. Properly combined with
known techniques, the incremental sparsification algorithm yields our solver.

Acknowledgement This project is partially supported by the National Sci-
ence Foundation under grant number CCF-1018463.
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This paper presents distributed-memory parallel algorithms for generalized
sparse-matrix indexing and assignment. We show that our algorithms, which
use parallel sparse matrix-matrix multiplication as a subroutine, are fast and
scalable for the most general case.

Introduction

Given two sparse vectors of indices, I and J, SpRef is the operation of storing
a submatrix of a sparse matrix in another sparse matrix (B = A(I, J)). It
extracts all the I(i)th rows and all the J(j)th columns for i = 1, ..., length(I)
and j = 1, ..., length(J), respecting the order of indices. When A is the sparse
adjancency matrix of a graph, SpRef corresponds to subgraph selection.

Simple cases such as row-wise (A(i, :)), column-wise (A(:, i)), and element-
wise (A(i, j)) indexing is often handled by special purpose subroutines [5]. A
parallel algorithm for the general case, where I and J are arbitrary vectors of in-
dices, does not exist in the literature. We propose an algorithm that uses parallel
sparse matrix-matrix multiplication (SpGEMM). Our algorithm is amenable to
performance analysis for the general case.

SpAsgn is the operation of assigning a sparse matrix to a submatrix of an-
other sparse matrix (B(I, J) = A). For SpAsgn, we only describe the algorithm
and omit performance results and analysis due to lack of space.

Sequential Algorithm

Performing SpRef by a triple sparse-matrix product is illustrated in Figure 1.
The algorithm can be decribed concisely in Matlab notation as follows:

f unc t i on B = sprefm (A, I , J )

[m, n ] = s i z e (A) ;
l e n i = length ( I ) ;
l e n j = length ( I ) ;
R = spar s e ( 1 : l e n i , I , 1 , l e n i ,m) ;
Q = spar s e (J , 1 : l e n j , 1 , n , l e n j ) ;
B = (R∗A)∗Q;
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Figure 1: Sparse matrix indexing (SpRef) using mixed-mode sparse matrix-
matrix multiplication (SpGEMM). On anm-by-nmatrix A, the SpRef operation
A(I, J) extracts a submatrix of size length(I) x length(J), where I is a vector of
row indices and J is a vector of column indices. The example shows the operation
for A([1, 3], [0, 1, 2]). It performs two SpGEMM operations between a boolean
matrix and a floating point matrix.

The sequential complexity of this algorithm is flops(R ·A)+flops((RA) ·Q).
Due to the special structure of the permutation matrices, the nonzero operations
required to form the product R ·A is equal to the number of nonzero elements
in the product. More precisely, flops(R ·A) = nnz (R ·A) ≤ nnz (A). Similarly,
flops((RA) ·Q) ≤ nnz (A), making the overall complexity of SpRef O(nnz (A))
for any I and J.

Performing SpAsgn by two triple sparse-matrix products and additions is
illustrated in Figure 2. We create two temporary sparse matrices that are of
identical dimensions to A. These matrices contain nonzeros only for the A(I, J)
part, and zeros elsewhere. The first triple product embeds B into a bigger
sparse matrix that we add to A. The second triple product embeds A(I, J) into
an identically sized sparse matrix so that we can zero out the A(I, J) portion
by subtracting it from A. The algorithm can be decribed concisely in Matlab
notation as follows:

f unc t i on C = spasgnm (A, I , J ,B)
% A = spasgnm (A, I , J ,B) performs A( I , J ) = B

[ma, na ] = s i z e (A) ;
[mb, nb ] = s i z e (B) ;
R = spar s e ( I , 1 : mb, 1 ,ma,mb) ;
Q = spar s e ( 1 : nb , J , 1 , nb , na ) ;
S = spar s e ( I , I , 1 ,ma,ma) ;
T = spar s e (J , J , 1 , na , na ) ;
C = A + R∗B∗Q − S∗A∗T;

Parallel Algorithm

The parallelization of the SpRef algorithm poses multiple challenges. The
boolean matrices have only one nonzero per row and column, respectively. For
the parallel 2D algorithm to scale well with increasing number of processors,
data structures and algorithms should respect hypersparsity [2]. Furthermore,
communication should take place over a single processor dimension, lowering
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Figure 2: Conceptual illustration of the SpAsgn (A(I, J) ← B) operation. For
simplicity, the vector indices I and J are assumed to be contiguous, which is not
required by the algorithm.
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Figure 3: Parallel forming of the left hand side boolean matrix R from the
sparse index vector I on 9 processors, logically forming a 3×3 processor grid. R
will be subsequently multiplied with A to extract 6 rows out of 9 from A and
order them as {7, 2, 5, 8, 1, 3}.

costs by a factor of
√
p over a scheme where communication takes place over all

processors.
The communication cost of forming the R matrix in parallel is the cost of

Scatter along the processor column. For the sparse vector I distributed to
√
p

diagonal processors, scattering can be implemented with an average communi-
cation cost of Θ(α · lg p + β · (length(I)/

√
p) [7]. This process is illustrated in

Figure 3. A similar analysis applies to the construction of the Q matrix.
The parallel performance of the SpGEMM routine is a complicated function

of the nonzero density [1, 4]. Special structure of our matrices, however, make
our analysis more precise. We assume that the triple product is evaluated from
left to right, B = (R ·A) ·Q; a similar analysis can be applied to the reverse
evaluation. A conservative estimate of ni(R,A), the number of indices i for
which R(:, i) 6= ∅ and A(i, :) 6= ∅, is nnz (R) = length(I).

Assuming a uniform distribution of nonzeros, each processor owns nnz/p
nonzeros and broadcasts those

√
p times during SpGEMM execution. We can

thus get a rough estimate of the computation and communication costs of the
SpGEMM subroutines:

Tcomp ≈ Θ
(nnz (A)

p
· lg
( length(I)

p
+

length(J)

p
+
√
p
))

Tcomm = Θ(α · √p+ β · nnz (A)√
p

).

We see that SpGEMM costs dominate the cost of SpRef. The extra lg
√
p

factor in Tcomp are due to additions of intermediate triples over
√
p stages. The

bottleneck in scalability is the bandwidth costs, limiting speedup to Θ(
√
p).
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Figure 4: Performance and parallel scaling of applying a random symmetric
permutation to an RMAT matrix of scale 22. This operation corresponds to
relabeling vertices of a graph. The speedup and timings are plotted on different
axes of the same graph.

Experimental Results

We implemented our algorithms within the Combinatorial BLAS framework [3].
We ran benchmarking experiments on NERSC’s Franklin system. Our first set
of experiments randomly permutes the rows and columns of A, a primitive in
parallel matrix computations commonly used for load balancing [8]. In our sec-
ond set of experiments, we tried to simulate subgraph extraction by generating
a random permutation r = randperm(1 : n) and dividing it to k � n chunks
r1, . . . , rk. We then performed k SpRef operations of the form A(ri, ri) one after
another (with a barrier in between).

The performance and parallel scaling of the symmetric random permutation
is shown in Figure 4. The input is an RMAT matrix [6] of scale 22, having
approximately 32 million nonzeros on a matrix with dimensions 222 × 222. We
see that scaling is close to linear for small (up to 64) number of processors, and
proportional to

√
p afterwards, in line with our analysis.

The performance of subgraph extraction for k = 10 induced subgraphs, each
of which has n/k randomly chosen vertices in them, is shown in Figure 5. The
algorithm performs similarly well in this case too. The empirical scalability is
slightly less than the case of applying a single big permutation, which is expected
since we are performing multiple smaller subgraph extractions, increasing span
and decreasing available parallelism.
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We propose a modification of the minimum degree ordering algorithm in
which the nodes are constrained to come only after some other nodes. This is
close to the minimum degree ordering with constraints (CMMD) algorithm [6].
The difference is that during the course of our algorithm we remove some of the
constraints, whereas the constraints are static in the CMMD and its variants.
We have modified the AMD [1] algorithm using the code given in [4] to incor-
porate the dynamical constraints. This AMD code is a fast, state-of-the-art
implementation that includes dense variable detection, mass elimination, and
supervariable detection. We allow the constrained vertices to be mass elimi-
nated at all times but we do not allow them to form supervariables unless the
constraints are removed. Apart from a linear time initialization process, our
modifications amounts to visiting the pattern of the original matrix only once
throughout the whole ordering process. Therefore, our implementation is also
fast and reflects the state of the art.

Such an ordering algorithm can have different applications. We are partic-
ularly motivated by the KKT matrices. These matrices have the form A =(
A11 A12

AT12 O

)
, where A11 is symmetric positive semi-definite, and A12 has full

rank. Such systems are, in general, factored by performing numerical pivoting
using 1× 1 and 2× 2 pivots. As is well known, the numerical pivoting hampers
the performance of the standard factorization algorithms, as the fill-in predicted
in the analysis phase turns out to be much less than the amount required in
the numerical factorization phase. Therefore, ordering strategies that reduce
the fill-in while potentially reducing the need for numerical pivoting are sought.
Bridson [3] modifies the minimum degree-based algorithms to order a variable
in the second block only after all of its neighbors (which are in the first block)
have already been ordered. This has the desirable effect that if A11 is definite
and A12 is full rank then, without any numerical pivoting, an LDLT decompo-
sition with a diagonal D exists. Scott [7] implements Bridson’s method more
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efficiently and investigates it. She concludes that Bridson’s constraint results in
too much fill, and she allows a variable to be eliminated after one of its neighbors
in the first block is eliminated.

We implement these two algorithms in a single method by incorporating a
threshold test for the eliminated neighbors. Bridson sets this threshold value
to the original degree in the matrix; Scott sets the threshold to 1 for all con-
strained variables. Obviously one needs to strike a balance between these two
extremes. Our algorithm performs this using two threshold values. One of them
is associated with the number of eliminated neighbors. The other one tries to
simulate the numerical factorization and allows a variable to be eliminated if the
modification to the associated diagonal entry is deemed to be enough. Clearly
the second test is hard to perform accurately, as we do not do the numerical
factorization. We therefore propose the following mechanism. Let i be a con-
strained variable; at the beginning we set v(i) = τv

∑
a2
ij/ajj where τv is a

threshold parameter between 0 and 1. Every time a variable j from the first
block is eliminated, we update the v(·) value of its neighbors in the second block,
so that v(i) becomes τv

∑
a2
ij/ajj − a2

ij/ajj . If ever v(i) reduces below zero, we
remove the constraint from the variable i. A similar threshold parameter τd is
also used for the number of eliminated neighbors as well; the constraint on a
variable i is removed if d(i) = τd × |{aij 6= 0}| many neighbors have been elimi-
nated. Therefore, our algorithm becomes that of Bridson’s with τv = τd = 1. It
becomes that of Scott’s, with a special τd that sets d(i) = 1 for all constrained
vertices. By playing with τv and τd one can therefore try to strike a balance
between predicted fill-in and the need for numerical pivoting.

Below we present some results with MUMPS [2]. We kept all control vari-
ables of MUMPS at default except that we do not allow it to perform any
permutation in the analysis phase. We tried both the partial pivoting and
static pivoting approaches. In the former case, the number of off-diagonal piv-
ots should be reduced, and the predicted and actual nonzeros in the factors
should be close to each other. In the latter case, the number of pivots that are
modified should be small as well as the backward error and the number of the
iterative refinement steps. We have tried the ordering algorithm with different
τv and τd (τd = ε corresponds to relieving the constraint on a variable as soon
as one of its neighbors has been eliminated).

Partial pivoting Static pivoting

matrix mthd estNnz actNnz nnz accuracy it.ref modPvts

c-69 τv = 1, τd = 1 26458644 26458644 26458644 6,29E-11 0 0
τv = 1, τd = ε 3475196 3515889 3475196 4,00E-07 1 141
τv = 0.5, τd = 1 3568779 3599518 3568779 3,64E-07 1 108

stokes128 τv = 1, τd = 1 4181157 4346690 4181157 2,74E-05 7 1806
τv = 1, τd = ε 3078088 3526488 3078088 8,14E-10 1 7938
τv = 0.5, τd = 1 3665874 3933954 3665874 3,08E-05 6 3797

ncvxqp5 τv = 1, τd = 1 56381037 56544852 56381037 3,54E-08 1 147
τv = 1, τd = ε 49746367 58359444 49746367 6,78E-08 1 1774
τv = 0.5, τd = 1 56735901 58876213 56735901 5,27E-08 1 637

In general, the estimates in the partial pivoting case are tighter as τv in-
creases, due to reduced pivoting. For the static pivoting case, smaller number
of tiny pivots were replaced as τv increases.

We will present more results and try to see the relation with the methods
discussed in [5, 8].
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Automatic differentiation (AD) is a family of methods for obtaining the
derivatives of functions computed by a program [1]. AD couples rule-based dif-
ferentiation of language intrinsics with derivative accumulation according to the
chain rule. The associativity of the chain rule leads to many possible “modes”
of combining partial derivatives. The simplest method, the forward mode, com-
bines partial derivatives starting with the independent variables and propagat-
ing forward to the dependent variables. The reverse mode combines partial
derivatives starting with the dependent variables and propagating back to the
independent variables. Exponentially many hybrid, or cross-country, modes are
possible. Finding the optimal Jacobian accumulation strategy is NP hard [2].
Therefore, all AD tools employ some sort of heuristic strategy. The most pop-
ular heuristics are pure forward mode, pure reverse mode, and a hierarchical
strategy using forward mode overall but “preaccumulating” the derivatives of
small program units (often statements or basic blocks). Figure 1 gives an ex-
ample of four strategies for differentiating the simple function segment

a = cos(x)

b = sin(y)*y*y

f = exp(a*b)

This trivial example is not intended as a complete illustration of automatic
differentiation, but rather as an illustration of the differences in accumulation
strategies. Real applications have control flow, aliasing, output dependences,
intrinsics evaluated at points of nondifferentiability, and thousands or millions
of lines of code. AD tools must deal with these realities. Nonetheless, this trivial
example illustrates the advantages of hierarchical accumulation strategies. If the
number of directional derivatives to be computed (variable p in Figure 1) is large,
the optimal basic block accumulation strategy (17 + 3p flops) is significantly
cheaper than pure forward mode (9 + 12p flops), even for this tiny example.

Algorithms for automatic differentiation are often expressed in terms of the
computational graph. Figure 2 shows the computational graph for our simple
example. If the edges of the computational graph are assigned weights equal to
partial derivatives, then the derivative of a dependent variable vj with respect
to an independent variable vi is the sum over all paths from vi to vj of the
product of the edge weights along that path. The optimal Jacobian accumula-
tion problem is reduced to finding an optimal order in which to combine edge
weights. A simplified version of this problem is to find an optimal vertex elimi-
nation strategy, where a vertex is eliminated by combining all in edges with all
out edges (requiring |in| × |out| multiplications).
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We have developed an integer linear programming formulation of the op-
timal vertex elimination problem. This enables us to use a standard integer
optimization solver to find an optimal vertex elimination strategy. Our objec-
tive is not to replace the elimination heuristics used in AD tools, since finding
the optimal elimination strategy for all basic blocks would be prohibitively ex-
pensive. Rather, we hope to use the optimization formulation to 1) evaluate
the effectiveness of heuristics and 2) find an optimal strategy for certain key
computational kernels. In addition to a basic formulation, we have developed
some simple lower bounds and symmetry-breaking constraints. Table 1 presents
preliminary results for several small test problems and Table 2 shows results for
several larger instances.

a = cos(x)
dadx = -sin(x)
g_a(1:p) = dadx*g_x(1:p)

tmp1 = sin(y)
d1dy = cos(y)
g_1(1:p) = d1dy*g_y(1:p)

tmp2 = tmp1*y
g_2(1:p) = y*g_1(1:p)+tmp1*g_y(1:p)

b = tmp2*y
g_b(1:p) = y*g_2(1:p)+tmp2*g_y(1:p)

tmp1 = a*b
g_1(1:p) = b*g_a(1:p)+a*g_b(1:p)

f = exp(tmp1)
g_f(1:p) = f*g_1(1:p)

(a)

a = cos(x)
dadx = -sin(x)
g_a(1:p) = dadx*g_x(1:p)

tmp1 = sin(y)
d1dy = cos(y)

tmp2 = tmp1*y
b = tmp2*y

adjy = y*y*d1dy + y*tmp1 + tmp2
g_b(1:p) = adjy*g_y(1:p)

f = exp(a*b)
adja = f*b
adjb = f*a
g_f(1:p) = adja*g_a(1:p)+adjb*g_b(1:p)

(b)

a = cos(x)
dadx = -sin(x)
g_a(1:p) = dadx*g_x(1:p)

tmp1 = sin(y)
d1dy = cos(y)

tmp2 = tmp1*y
b = tmp2*y

adjy = (tmp1 + d1dy*y)*y + tmp2
g_b(1:p) = adjy*g_y(1:p)

f = exp(a*b)
adja = f*b
adjb = f*a
g_f(1:p) = adja*g_a(1:p)+adjb*g_b(1:p)

(c)

a = cos(x)
dadx = -sin(x)

tmp1 = sin(y)
d1dy = cos(y)

tmp2 = tmp1 * y
b = tmp2*y
f = exp(a*b)

adjx = f*a*dadx
adjy = f*a*(tmp2 + y*(tmp1 + d1dy*y))
g_f(1:p) = adjx*g_x(1:p)+adjy*g_y(1:p)

(d)

Figure 1: Comparison of several strategies for the simple example: (a) pure
forward mode, (b) reverse mode statement level preaccumulation, (c) optimal
statement level preaccumulation, (d) optimal basic block preaccumulation.
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Figure 2: Computational graph (left) for the simple example, (right) after elim-
ination of vertex a*b.

Table 1: Solve times (in seconds) for several small test problems, with and
without lower bounds and symmetry-breaking constraints (*** indicates failure
to find a provably optimal solution within 10 minutes).

Problem Indeps Deps Total Verts Opt Cost Time Time
w/o Consts w/ Consts

fig10.4 4 3 10 18 0.04 0.15
ex10.8 4 3 12 22 0.66 1.07
ex10.8a 4 3 12 30 0.74 1.26
revbound 1 1 12 10 *** 8.38
butterfly 4 4 16 48 *** 258

Table 2: Solve times (in seconds) for several larger instances.

Problem Total Verts Total Edges Opt Cost Opt Cost by Solver Time
seu20 4 1 24 62 58 58 2.34
seu40 4 1 44 124 114 114 37.57
seu80 4 1 84 250 235 235 1531.68
flattenedFDC 89 126 ? 124 172.67
flattenedRF 131 204 ? 269 24376.72
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We consider implementations of multivariate vector functions F : IRn → IRm

as computer programs mapping a vector of inputs x ∈ IRn onto a vector of
outputs y ∈ IRm as y = F (x). The given implementation of F is assumed to
decompose into a single assignment code (SAC) as follows:

for j = n+ 1, . . . , n+ p+m

vj = ϕj(vi)i≺j

where i ≺ j denotes a direct dependence of vj on vi. A directed acyclic graph
(DAG) G = (V,E) with integer vertices V = X ∪Z ∪ Y and edges E = {(i, j) :
i, j ∈ V, i ≺ j}, where X = {1, . . . , n}, Z = {n + 1, . . . , n + p}, Y = {n + p +
1, . . . , n+ p+m}, is induced.

In Algorithmic Differentiation (AD) [2] the DAG G is linearized conceptually
by attaching the values of local partial derivatives

c(k,j) ≡
∂ϕj
∂vk

(vi)i≺j

to all edges (k, j) ∈ E yielding the linearized DAG or l-DAG. The ϕj , j =
n+1, . . . , n+p+m, are assumed to be continuously differentiable in a neighbor-
hood of their respective arguments. A graph-based interpretation of the chain
rule of differential calculus first presented in [1] yields the following method for
accumulating all entries of the Jacobian matrix A = F ′(x) ∈ IRm×n of F at
some point x ∈ IRn. Let (i, . . . , j) denote a path connecting a vertex i with a
vertex j in G and let A = (aj,i)

j=n+p+1,...,n+p+m
i=1,...,n . Then

a(j, i) =
∑

(i,...,j)

∏
(k,l)∈(i,...,j)

c(k,l) (10)

for all sources i ∈ {1, . . . , n} and sinks j ∈ {n + p + 1, . . . , n + p + m}. The
Optimal Jacobian Accumulation (OJA) problem aims to minimize the
number of fused multiply-add (fma) operations required for the accumulation
of the whole Jacobian. This problem is known to be NP-hard [5]. Hence in
practice search space reduction heuristics like vertex and edge elimination are
used. Both exploit the associativity of the chain rule of differential calculus.
Front elimination of an edge (i, j) is defined through the application of Equa-
tion (10) to the subgraph induced by (i, j) and all edges emanating from j.
New edges (i, j′) are introduced for all j′ with j ≺ j′ and i ⊀ j′. The new
edge labels are set to c(i,j′) = c(i,j)c(j,j′). If (i, j′) ∈ E, then the existing edge
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labels are updated according to c(i,j′) = c(i,j′) + c(i,j)c(j,j′) as shown in Fig. 1.
Finally (i, j) is removed. If (i, j) is the only in-edge of j (as in Fig. 1) then j
is removed as well as all edges emanating from j. Back elimination of (i, j) is

1

2

3 4 5

c1,2

c2,3 c2,4 c2,5

c1,5

1

2

3 4 5

c1,5 + c1,2c2,5c1,2c2,3
c1,2c2,4

Figure 1: Front elimination of edge (1, 2)

defined analogously on the subgraph induced by (i, j) and all edges with sink
i. The elimination of vertex v is performed by front elimination of all its in-
or back elimination of all its out-edges [3]. To accumulate the Jacobian with
these elimination techniques one has to perform vertex [edge] eliminations until
the resulting graph becomes bipartite. The remaining edge labels correspond
to the Jacobian entries. This approach yields the problem of finding a vertex
[edge] elimination sequence transforming the l-DAG G into a bipartite graph
with minimal number of fmas. We refer to such elimination sequences as op-
timal. V E [EE] denote the number of fmas performed by an optimal vertex
[edge] elimination sequence. For the theoretical investigation of this combinato-
rial optimisation problems guaranteed results for optimal elimination sequences
are essential. To support this research we propose a branch and bound algo-
rithm based on depth first search (DFS). To reduce the search space we use two
different ideas. Under certain constraints the permutation of two subsequent
eliminations in an elimination sequence does not change the total number of
operations. We refer to this technique as reordering. Furthermore we exploit
lower bounds for the minimum number of operations in order to stop exploring
the actual branch of the search tree as soon as possible.

-1 0

1

2

3

4 5 6

(a) G

-1 0

1

2

4 5 6

(b) G− 3

Figure 2: DFS with vertex elimination

Consider the example in Fig. 2(a). DFS leads to the search tree in Fig. 3

(edge labels represent the costs of the corresponding vertex elimination). The
elimination sequence [2, 1, 3] yields the smallest costs of 9 fmas. Even without
any further bounding strategies there is no need to test the elimination of vertex
1 after the elimination of [3, 2] because σ[3, 2] = σ[2, 3, 1] = 9, where σ denotes
the cost of an elimination sequence.

74



21 3

32 1 3 1 2

3 2 3 1 2

12 6

2 6 2 6 2 3

6 6 6 6 6

Figure 3: Search tree

Following lower bounds for the minimal cost of vertex and edge elimination
sequences are used in the current implementation of the algorithm:

V E ≥ EE ≥ max
{
|Z|, |E∗| − |Z|

}
, (11)

where E∗ = E \
(
X × Y

)
denotes the set of removable edges. In our example

the removal of vertex 3 (Fig. 2(b)) involves 6 fmas. Applying Equation (11)
delivers a lower bound of 4. Hence none of the elimination sequences starting
with the elimination of vertex 3 yield a lower cost than the sequence [2, 1, 3]. As
a consequence we can stop exploring this branch of the tree. Reordering exploits
the fact that for two arbitrary vertices a, b, the identity G − [a, b] = G − [b, a]
holds, where G− [a, b] denotes a graph after the application of the elimination
sequence [a, b]. If a and b are not adjacent then σ[a, b] = σ[b, a]. Hence [1, 3, 2]
and [3, 1, 2] have the same costs, implying that we can omit testing the latter.
The results of the application of search space reduction techniques to a graph
with 15 intermediate nodes are presented in Table 1. We were able to reduce the
computation time from ≈600 days to 21,09 minutes. Mostly due to reordering.
The currently used lower bound turned out to be not tight enough to speed up
the algorithm significantly.

Used Bounding Technique Time
none (DFS) ≈ 600d
lower bound ≈ 200d
reordering 63,54m
both 21,09m

Table 1: Runtime results

Similar reordering results for edge elimination are more restrictive. The
search space for edge elimination is much larger than that of vertex elimination.
So far we are able to compute optimal edge elimination sequences only for small
problems like the lion or bat graph presented in [4]. Better lower bounds are
the subject of ongoing research.

This talk introduces the branch and bound algorithm and presents first run-
time results. Moreover we discuss search space reduction techniques for a specific
class of DAG’s referred as absorption-free. Ways to generalize these observations
for arbitrary DAG’s are presented.
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In earlier work [3], we presented a one-dimensional (1D) cache-oblivious
sparse matrix dense vector multiplication (SpMV) scheme. By reordering un-
structured sparse m×n input matrices A by using only row and column permu-
tations, SpMV y = Ax on the reordered matrix (PAQ, with P and Q permu-
tation matrices) is more efficient in terms of cache utilisation. This reordering
is based on a one-dimensional scheme for sparse matrix partitioning, of which
the original goal was to efficiently parallelise the SpMV; thus specifically for
the SpMV, a direct connection between cache misses in the sequential case and
communication volume in the parallel case was shown. Partitioners which can
be used in the reordering method typically take as parameters (amongst others)
the number of processors p and a maximum imbalance parameter ε ∈ [0,∞),
typically taken small. The 1D method presented is cache-oblivious, in the sense
that this underlying partitioner is recursive, and that recurring farther than
the optimal number of parts p in sequential SpMV (p → ∞) theoretically still
retains optimal performance.

At present, parallel applications are more frequently using two-dimensional
(2D) partitioning. Extending the work done in the 1D case to the 2D realm
is not a trivial task, primarily due to the standard Compressed Row Storage
(CRS) datastructure being potentially inefficient when used on a 2D reordered
matrix. In recent work [5], we investigate the 2D case; several datastructures
are considered and experimented with, leading to block-based datastructures to
be theoretically more efficient than CRS or variants of CRS. This block-based
datastructure relies on using the 2D reordering method to derive sparse blocks
within A, which are then handled in a specific recursive block order, based on the
position of the blocks in PAQ. Nonzeroes within each block are then still stored
using (a variant of) CRS, although any alternative (auto-)tuned datastructure
may also be used.

Hypergraph-based partitioning

We proceed with a short description of the hypergraph-based partitioning meth-
ods considered in this work. The sparsity structure of A can be modelled
by hypergraphs H = (V,N ) using various models; examples are the row-net,
column-net, and fine-grain [1] models, where respectively matrix columns, rows
and nonzeroes are modelled by vertices in V. Matrix rows and columns are
modelled by the nets (or hyperedges) in N , when appropiate, and contain a
subset of the vertices.

Within all these models, a partitioning can be defined as a splitting of V
into V0 ∪ · · · ∪ Vp−1 where all pairs of the p parts V{i,j} are disjoint. Then,
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for each net a connectivity λi over a partitioning V0, . . . ,Vp−1 of V can be
defined. This enables us to define cut row nets N row

c ⊂ N as row nets with
connectivity larger than one, as well as N column

c . We consider only recursive
bipartitioners which start on the entire set of vertices V. The partitioner in
general takes a partitioning of p parts of V, and splits a specific part Vi thereof
into two disjoint sets Vnew

i ,Vp. The final goal is to minimise
∑
ni∈N (λi − 1)

under the constraint |Vj | ≤ (1 + ε)nz/p for all j ∈ [0, p − 1]. The function
minimised corresponds exactly to the communication volume in parallel SpMV,
and the constraint translates to a load-balance criterion. Note that the fine-
grain method is 2D, whereas the row-net and column-net are 1D representations.
These 1D representations can be combined during partitioning to obtain another
2D method, which is the Mondriaan partitioning scheme [2].

Cache-oblivious multiplication

For all these hypergraph models we can now describe the connection to matrix
reordering in the same uniform way. After each iterative bipartitioning of a
vertex set into Vleft and Vright, the hypergraph nets can be divided into sev-
eral categories: N row

− , which are nets corresponding to matrix rows containing
only nonzeroes from Vleft; N row

c , nets corresponding to matrix rows containing
nonzeroes from both Vleft and Vright; and N row

+ , nets corresponding to matrix
rows containing only nonzeroes from Vright. Analogously, N t

c extcolumn can be
defined. The key idea of both 1D and 2D cache-oblivious SpMV is to apply row
and column permutations according to these classifications; see Figure 1(left).
Note that for the 1D row-net model, the sets N column

{−,c,+} are empty and the figure

simplifies to that in [3]. Applying the method in 2D directly according to this
earlier work leads to inefficiencies which worsen as p increases, as seen in the
middle picture. This is solved in our recent work [5] by applying sparse block-
ing, as shown in the right picture. Experiments6 have been performed on an
IBM Power6+ architecture, with a 64kB (data) L1 cache, a 4MB L2 cache, and
a 32MB L3 cache. Results for large matrices are shown in Table 1.

A different way to obtain a cache-oblivious SpMV is to adapt only the sparse
matrix storage scheme, and keep the original sparse matrix intact. An idea to use
the Hilbert curve to induce an ordering on the nonzeroes during SpMV has been
made competitive in our work in [4]. We now seek to combine this method with
the 2D reordering, either directly, or within the block datastructure schemes.
Another extension is to make use of all data available from partitioning, and
perform the cache-oblivious SpMV in parallel, either for distributed or shared-
memory.
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Figure 1: 2D matrix reordering, for p = 2 (left). The inefficient nonzero traversal for
p = 4 using ZZ-CRS ordering (middle) is countered by imposing an ordering on the
sparse blocks (right).

Matrix Original 1D [3] 1D & Blocking

stanford 18.99 9.92 (10) 9.52 (9)
stanford berkeley 20.93 20.10 (4) 19.26 (9)
cage14 69.36 75.47 (2) 76.48 (2)
wikipedia-2005 248.63 154.93 (10) 142.32 (9)
wikipedia-2006 688.42 378.30 (9) 302.35 (9)

Matrix 2D Mondriaan 2D Fine-grain

stanford 9.35C (8) 9.73C (10)
stanford berkeley 19.18B (4) 19.41B (9)
cage14 74.37C (2) 75.13C (2)
wikipedia-2005 115.56C (8) 124.18B (8)
wikipedia-2006 256.43C (9) 267.47B (8)

Table 1: Time of an SpMV multiplication using various schemes. Time is measured
in milliseconds. The best running time (averaged over 100 runs) together with the
number of parts p resulting in the fastest SpMV is shown. Superscripts indicate
whether a block-based (B) or CRS-based (C) datastructure was used (applicable to
2D only, others use CRS variants only).

[2] B. Vastenhouw and R. H. Bisseling. A two-dimensional data distribu-
tion method for parallel sparse matrix-vector multiplication. SIAM Rev.,
47(1):67–95, 2005.

[3] A. N. Yzelman and Rob H. Bisseling. Cache-oblivious sparse matrix–vector
multiplication by using sparse matrix partitioning methods. SIAM Journal
on Scientific Computing, 31(4):3128–3154, 2009.

[4] A. N. Yzelman and Rob H. Bisseling. A cache-oblivious sparse matrix–vector
multiplication scheme based on the Hilbert curve. Preprint, 2010.

[5] A. N. Yzelman and Rob H. Bisseling. Two-dimensional cache-oblivious
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The communication of an algorithm (e.g., transferring data between the CPU
and memory devices, or between parallel processors, a.k.a. I/O-complexity )
often costs significantly more time than its arithmetic It is therefore of interest to
design and implement algorithms minimizing communication on the one hand,
and to obtain lower bounds for the communication needed, on the other hand.

Previous Work. In [2, 3] we generalize the results of [10, 12] regarding matrix
multiplication, to attain new I/O-complexity lower bounds for a much wider
variety of algorithms (most of the bounds were shown to be tight). This includes
algorithms for LU factorization, Cholesky factorization, LDLT factorization,
QR factorization, as well as algorithms for eigenvalues and singular values. Thus
we essentially cover all direct methods of linear algebra. The results hold for
dense matrix algorithms (most of them are of cubic time), as well as sparse
matrix algorithms (whose running time depends on the number of non-zero
elements). They apply to sequential and parallel algorithms, to compositions
of linear algebra operations (like computing the powers of a matrix), and to
certain graph theoretic problems7.

In [2, 3] we use the approach of [12], based on the Loomis-Whitney geometric
theorem [13, 4], by embedding segments of the computation process into a three
dimensional cube. This approach, however, is not suitable when distributivity
is used, as is the case in Strassen [16] and other fast matrix-multiplication
algorithms (e.g., [7, 6]).

The I/O-complexity of classic matrix multiplication and algorithms with sim-
ilar structure is quite well understood. This is not the case for algorithms of
more complex structure. Avoiding the communication of parallel classical ma-
trix multiplication was addressed [5] almost simultaneously with the publication
of Strassen’s fast matrix-multiplication [16]. Moreover, an I/O-complexity lower
bound for the classical matrix-multiplication algorithm is known for almost three
decades. Nevertheless, the I/O-complexity of Strassen’s fast matrix multiplica-
tion and similar algorithms has not yet been resolved.

Communication Cost of Fast Matrix Multiplication.

Upper bound. The I/O-complexity IO(n) of Strassen’s algorithm applied to
n-by-n matrices on a machine with fast memory of size M , can be bounded
above as follows (for actual uses of Strassen’s algorithm, see [9, 11, 8]): Run

7See [14] for bounds on graph-related problems, and our [3] for a detailed list of previ-
ously known and recently designed sequential and parallel algorithms that attain the above
mentioned lower bounds.
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the recursion until matrices are sufficiently small. Then, read the two input
matrices into the fast memory, perform the matrix multiplication inside the fast
memory, and write the result into the slow memory. We thus have IO(n) ≤
7 · IO

(
n
2

)
+O(n2) and IO

(√
M
3

)
= O(M). Thus

IO(n) = O

((
n√
M

)ω0

·M
)
. (12)

where ω0 = lg 7.

Lower bound. In this paper, we obtain a tight lower bound:

Theorem 1. (Main Theorem) The I/O-complexity IO(n) of Strassen’s algo-
rithm on a machine with fast memory of size M is

IO(n) = Ω

((
n√
M

)ω0

·M
)
. (13)

It holds for any implementation and any known variant of Strassen’s algo-
rithm. This includes Winograd’s O(nω0) variant that uses 15 additions instead
of 18, which is the most used fast matrix multiplication algorithm in practice
[9].

We then extend the lower-bound to a wider class of all stationary (i.e.,
Strassen-like) and non-stationary but uniform fast matrix-multiplication algo-
rithms, and obtain tight lower bounds for these algorithms as well (where the
new value of w0 corresponds to the relevant algorithm). We also conclude a
corresponding lower bound for parallel implementation of these algorithm.

The Expansion Approach. The proof of the main theorem is similar to
the one taken by Hong and Kung [10] and is based on estimating the edge
expansion of the computation directed acyclic graph (CDAG) of an algorithm
(where we have a vertex for each input / intermediate / output argument, and
edges according to dependencies).

An implementation of an algorithm determines, in the parallel model, which
arithmetic operations are performed by which of the p processor. This corre-
sponds to partitioning the corresponding CDAG into p parts. Edges crossing
between the various parts, correspond to arguments that are in the possession
of one processor, but are needed by other processor, and therefore relate to
communication. A corresponding interpretation can be given for the sequential
model.

The I/O-complexity is thus tightly connected to the edge expansion proper-
ties of this graph. As the graph has a recursive structure, the expansion can
be analyzed directly (combinatorially, similarly to what is done in [1]) or by
spectral analysis (in the spirit of what was done for the Zig-Zag expanders [15]).
There is however, a new technical challenge. While the replacement and Zig-Zag
products act similarly on all vertices, this is not the case here: multiplication
and addition vertices behave differently when applying a recursive step.

81



Bibliography

[1] N. Alon, O. Schwartz, and A. Shapira. An elementary construction
of constant-degree expanders. Combinatorics, Probability & Computing,
17(3):319–327, 2008.

[2] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Communication-optimal
Parallel and Sequential Cholesky Decomposition. In SPAA ’09: Proceedings
of the twenty-first annual symposium on Parallelism in algorithms and ar-
chitectures, pages 245–252, New York, NY, USA, 2009. ACM.

[3] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimiz-
ing Communication in Linear Algebra. Submitted. Available from
http://arxiv.org/abs/0905.2485, 2009.

[4] Y. D. Burago and V. A. Zalgaller. Geometric Inequalities, volume 285 of
Grundlehren der Mathematische Wissenschaften. Springer, Berlin, 1988.

[5] L. Cannon. A cellular computer to implement the Kalman filter algorithm.
PhD thesis, Montana State University, Bozeman, MN, 1969.

[6] H. Cohn, R. D. Kleinberg, B. Szegedy, and C. Umans. Group-theoretic
algorithms for matrix multiplication. In FOCS, pages 379–388, 2005.

[7] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. J. Symb. Comput., 9(3):251–280, 1990.

[8] F. Desprez and F. Suter. Impact of mixed-parallelism on parallel imple-
mentations of the strassen and winograd matrix multiplication algorithms:
Research articles. Concurrency and Computation: Practice and Experience,
16(8):771–797, 2004.

[9] C. C. Douglas, M. Heroux, G. Slishman, and R. M. Smith. GEMMW: A
portable level 3 BLAS winograd variant of strassen’s matrix-matrix multiply
algorithm. Journal of Computational Physics, 110(1):1–10, 1994.

[10] J. W. Hong and H. T. Kung. I/O complexity: The red-blue pebble game. In
STOC ’81: Proceedings of the thirteenth annual ACM symposium on Theory
of computing, pages 326–333, New York, NY, USA, 1981. ACM.

[11] S. Huss-Lederman, E. M. Jacobson, J. R. Johnson, A. Tsao, and T. Turn-
bull. Implementation of strassen’s algorithm for matrix multiplication. In
Supercomputing ’96: Proceedings of the 1996 ACM/IEEE conference on Su-
percomputing (CDROM), page 32, Washington, DC, USA, 1996. IEEE Com-
puter Society.

[12] D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for
distributed-memory matrix multiplication. J. Parallel Distrib. Comput.,
64(9):1017–1026, 2004.

[13] L. H. Loomis and H. Whitney. An inequality related to the isoperimetric
inequality. Bulletin of the AMS, 55:961–962, 1949.

82



[14] J. P. Michael, M. Penner, and V. K. Prasanna. Optimizing graph algorithms
for improved cache performance. In In Proc. Intl Parallel and Distributed
Processing Symp. (IPDPS 2002), Fort Lauderdale, FL, pages 769–782, 2002.

[15] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag
graph product, and new constant-degree expanders. Annals of Mathematics,
155(1):157–187, 2002.

[16] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–
356, 1969.

83



25 A Hybrid Parallel Solver Framework for Gen-
eral Sparse Linear Systems

Sivasankaran Rajamanickam, Erik G. Boman, and Michael A.
Heroux

(Sandia National Labs, United States)

Corresponding Author: Siva Rajamanickam (srajama@sandia.gov)

Introduction

As parallelism in a single node increases, computational science applications
have to adapt to a hybrid system where each compute node by itself is a shared
memory system. This presents new challenges and opportunities for robust
sparse linear solvers and preconditioners on the node. For example, domain
decomposition based preconditioners can scale better with node level sparse
linear solver/preconditioner as the number of subdomains can be limited to
the number of nodes (leading to fewer iterations). Even within a node, high
performance solvers should account for NUMA based architectures. We present
a hybrid solver, ShyLU, for solving general sparse linear systems on the node.
ShyLU can also be used as a preconditioner.

Solver Framework

Our approach includes two levels of parallelism, where the top level is based on
exploiting bordered block structure. Although such structure sometimes occurs
naturally, we use hypergraph partitioning to find such block structure. Solvers
that use this idea have been implemented in distributed memory architectures
[1]. We use a similar framework for our solver, but limit the subdomains (and
MPI tasks) to the NUMA regions in a shared memory node. Each subdomain
(diagonal block) can be solved either exactly or ineaxactly. Note that any
multithreaded sparse solver can be used here to exploit fine-grain parallelism.

Figure 1: Column ordering and symmetric reordering using hypergraph parti-
tioning.

Figure 1(a) shows a matrix A with column ordering from a hypergraph
partition. The hypergraph model in general can handle unsymmetric sparse
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matrices. It is also more suitable for partial pivoting on the columns and for
a left-looking sparse LU factorization on each of the subdomain (as no row is
shared between two subdomains). For symmetric matrices, the column ordering
can also be used as a row ordering to get square subdomains, and the reordered
matrix will have the structure shown in figure 1(b). Once the subdomains
are solved in parallel we can solve for the Schur complement to solve for A.
The Schur complement is never explicitly computed. We compute an approx-
imate Schur complement using probing for a predetermined structure and use
an inner iteration to solve it. This results in a much smaller system for the
iterative methods. We can also replace the solve on the subdomains with in-
complete factorization algorithms and use this framework as a node level hybrid
preconditioner in a global solve.

Experimental Results

ShyLU is currently implemented as a preconditioner in the Trilinos framework
[2] with AztecOO as the iterative solver. The serial solver KLU is used to
solve each subdomain, as our multithreaded version is still under development.
All the experiments use Zoltan as the hypergraph partitioner to partition for
four subdomains (for the NUMA regions/sockets). The tests use symmetric
matrices of the size 10K to 20K rows from the UF sparse matrix collection, one
matrix from a Sandia application (Tramanto) and a synthetic FEM matrix from
MATLAB (wathenLarge).

Trilinos framework has no support for hybrid methods like ShyLU where
the iterative method can be used just on the Schur complement. As a result,
the experiments iterate over the entire matrix, even when the subdomains were
solved exactly using KLU. The results will get better as the software can be
adapted to iterate on the Schur complement. Table 1 shows the number of iter-
ations for AztecOO to converge for ShyLU, ML (Algebraic multilevel method)
and two incomplete factorizations. A ‘-’ in the number of iterations show that
the method did not converge for that test case. ShyLU is as good as or better
than the other incomplete factorizations for these tests. The parameters of ILU
and ILUT can be modified for better performance than shown here. The ex-
periments shown here uses the default values level of fill zero for ILU and ILUT
with level of fill as one and drop tolerance as 1e− 12.

Matrix Name ShyLU ML ILU ILUT
Cage11 13 14 12 12
cbuckle 101 - - -
Lourakis 28 20 42 38
FIDAPex35 16 - - -
Oberwolfach - 27 - -
fem 3d thermal 25 23 26 25
Dubkova1 56 55 189 154
Tramanto 112 - - -
wathenLarge 35 14 36 37

Observations

Although the hypergraph based nested dissection exposes parallelism for our
solver framework, the objective for the partitioning in our problem is different
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Figure 2: Comparison of the size of the Schur complement for graph and hy-
pergraph partitioning.

than the objective for hypergraph partitioning. The ideal partitioning objective
for ShyLU style solver is that subdomains be better balanced, with a small sep-
arator and a sparser (or better structured) Schur complement. No partitioners
solve this objective directly. However, graph partitioning can be used instead
of hypergraph partitioning as the test matrices were symmetric. Figure 2 com-
pares graph (METIS) and hypergraph (Patoh) partitioning with 53 matrices of
size 1K to 10K rows from the UF sparse matrix collection. We explicitly com-
pute the Schur complement in MATLAB for these matrices. The improvement
in hypergraph partitioner over graph partitioner in terms of the number of non-
zeros in the Schur complement is marginal for this set of matrices. However,
hypergraph partitioning is best suited for our approach of using a left-looking
solver that uses partial pivoting in the subdomains.
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Introduction. A hybrid linear solver based on the Schur complement
method has great potential to be a general purpose solver scalable on tens of
thousands of processors. In this method, the original linear system is first parti-
tioned into k subdomain problems using a parallel graph partitioning algorithm.
This results in a linear system of the following block structure:

D1 E1

D2 E2

. . .
...

Dk Ek
F1 F2 . . . Fk C




u1

u2

...
uk
y

 =


f1

f2

...
fk
g

 , (14)

where D` is the `-th subdomain, C consists of the vertex separators, and E`
and F` are the interfaces between D` and C. By eliminating the unknowns
associated with the subdomains, we obtain the Schur complement system,

Sy = ĝ, (15)

where S = C −∑k
`=1 F`D

−1
` E` and ĝ = g −∑k

`=1 F`D
−1
` f`. Subsequently, the

solution of the linear system (14) can be computed by first solving the Schur
complement system (15) for y, then solving the subdomain problem,

D`u` = f` − E`y, (16)

for u`. This method provides a framework for developing an effective parallel
hybrid solver, where each subdomain problem (16) is solved using a parallel
direct solver, while a parallel preconditioned iterative solver is used to solve the
Schur complement system (15). However, to achieve high performance, there
are several combinatorial problems that need to be resolved. In this talk, we
will disucss two such problems.

Partitioning with multiple constraints to extract subdomains. The
parallel performance of our hybrid solver is greatly influenced by the initial
partitioning to extract the k subdomains. To achieve good load-balance, the
subdomains and interfaces need to be balanced (e.g., in terms of their dimensions
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or numbers of nonzeros), while the total size of the vertex separators should be
small. Even though a nested dissection algorithm is a popular approach for
this, the recursive bisections are performed independently from each other, and
it often results in an imbalance of the global partition as more subdomains are
extracted. To address this, we developed k-way partitioning algorithms, which
try to achieve the global constraints directly. Specifically, we first compute a k-
way edge partition of the adjacency graph of the global matrix, which typically
has well-balanced subdomains. Then, we extract all the edge separators whose
end points belong to two different partitions. Finally, vertex separators are
extracted within the edge separators by, for example, finding a minimal vertex
cover. An important aspect of these algorithms is a heuristic to select the next
vertex or edge that is moved from the edge separators to the vertex separators.
We found that an effective heuristic is to select the vertex with the largest edge
degree from a large subdomain. This allow us to maintain the balance between
the subdomains while trying to minimize the size of the vertex separators. We
have observed that our k-way partitioning algorihms often obtain partitions that
are better balanced than those obtained from the nested dissection algorithm.
However, the sizes of the Schur complements are typically increased by factors
of about two.

Reordering sparse right-hand sides for triangular solution. To com-
pute a preconditioner for solving (15), our hybrid solver uses SuperLU DIST [3]
to solve two triangular systems L`G` = E` and UT` W` = FT` for G` and W`,
respectively, where D` = L`U` is an LU factorization of the `-th subdomain
D`. For the rest of the discussion, we will focus on the triangular solutions
L`G` = E`, but the same arguments can be made for UT` W` = FT` .

To achive high performance, the sparsity of the right-hand sides E` needs to
be exploited. In SuperLU DIST, the jth columns E`(:, j) and G`(:, j) of E` and
G`, respectively, are partitioned following the supernode structure of L`. When
fill occurs in a supernodal segment of G`(:, j) during the triangular solution, the
segment becomes full from the first nonzero position in this segment to the next
supernode boundary. Based on this observation, during the numerical solution,
we avoid the operations with explicit zeros by performing the block operations
only with the part of the segments under the first nonzeros.

There could be tens to hundreds of thousands of columns in the right-hand
sides E`. To improve the data locality and reduce the message counts, triangular
solution is computed for a block of h columns at a time. These h right-hand-side
columns within each block must have the same nonzero pattern. Hence, for each
supernodal segment of a block, padded zeros are explicitly introduced between
the first nonzero position of the entire block and that of the individual column.
In order to minimize the number of padded zeros, we developed the following
two techniques to reorder the columns of E`.

1) Reordering based on a postordering of elimination tree We first
permute the rows of E` based on a postorder of the elimination tree of D`. Then,
the columns of E` are reordered in the increasing order of the row indices of
their first nonzeros. The motivation for this reordering is that if the i-th element
is the first nonzero of the column E`(:, j), then, according to the Gilbert’s path
theorem, the fill will be generated in G`(:, j) at the positions corresponding to
the nodes on the path from the i-th node to the root of the elimination tree.
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Thus, when the right-hand-side columns are reordered based on this postorder,
it is likely that the staring nodes of the adjacent columns are close together
in the elimination tree, and their paths to the root have large overlap. Even
though this technique considers only the first nonzeros of the right-hand sides,
we have observed that in comparison to the natural ordering, the number of
padded zeros was reduced by a factor of about 1.4 for the matrices arising from
accelerator and fusion applications [1, 2].

2) Reordering based on a hypergraph model Consider a partition Π =
(V1, . . . ,Vm) of the columns of G`. If ri is the ith row of G`, then for a given
part Vk, the number of padded zeros in ri is given by

cost(ri,Vk) =

{
|Vk| − |ri ∩ Vk| if ri ∩ Vk 6= ∅
0 otherwise,

(17)

where | · | denotes the cardinality of a set. If Λi is the set of the parts that are
connected by the row ri in the partition Π, then the total number of padded
zeros is given by

cost(Π) =
∑
i

∑
Vk∈Λi

(|Vk| − |ri ∩ Vk|) =
∑
i

(λih− |ri|), (18)

where |Vk| = h for k = 1, 2, . . . ,m, and λi = |Λi|. We do not know any
algorithm to minimize (18). However, if we assume that each row ri contains
about h nonzeros, then the cost function (18) is approximated by

cost(Π) ≈
∑
i

h(λi − 1) . (19)

This function (19) can be minimized using a row-net hypergraph model. In
comparison to postordering, we observed that this hypergraph model reduces
the number of padded zeros by a factor of about 1.2.
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Introduction

Finding the trace of an explicit matrix is a simple operation. But there are
application areas where one needs to compute the trace of an implicit matrix,
that is, a matrix represented as a function. For example, in lattice Quan-
tum Chromodynamics, one often needs to compute the trace of a function of
a large matrix, trace(f(A)). Explicitly computing f(A) for large matrices is
not practical, but computing the bilinear form xT f(A)x for an arbitrary x is
feasible [4, 3]. Other examples include the regularized solution of least-squares
problems using the Generalized Cross-Validation approach (see [6]), estimating

‖A‖F and
∥∥A−1

∥∥
F

(using the well-known identity ‖A‖2F = trace(A∗A)) ), and
computing the number of triangles in a graph [1].

The standard approach for computing the trace of an implicit function is
Monte-Carlo simulation, where the trace is estimated by 1

M

∑M
i=1 z

T
i Azi, where

the zi are random vectors. The original method is due to Hutchinson [6]. Al-
though this method has been improved over the years ([5, 7, 8]), no paper to
date has presented a theoretical bound on the number of samples required to
achieve an ε-approximation of the trace; only the variance of estimators has
been analyzed.

We describe four significant contributions to this area:

1. We provide rigorous bounds on the number of Monte-Carlo samples re-
quired to achieve a maximum error ε with probability at least 1 − δ in
several trace estimators. The bounds are surprising: the method with the
best bound is not the method with the smallest variance.

2. We provide specialized bounds for the case of projection matrices, which
are important in certain applications.

3. We propose a new trace estimator in which the zis are random columns of
a unitary matrix with entries that are small in magnitude. This estimator
converges slower than known ones, but it also uses fewer random bits.

4. We experimentally evaluate the convergence of the three methods on a
few interesting matrices.
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Theoretical results

We study five different trace estimators. They differ in the way random vectors
zi are generated. The question arises: how do we compare the estimators? The
easiest way to analyze the quality of trace estimators is to analyze their variance.
For any Monte-Carlo estimator RM we have V ar(RM ) = V ar(R1)/M so we only
need to analyze the variance of a single sample. This type of analysis usually
does not reveal much about the estimator, because the variance is usually too
large to apply Chebyshev’s inequality effectively.

A better way to analyze an estimator is to bound the number of samples
required to guarantee that the probability of the relative error exceeding ε is at
most δ; this is what we focus on.

Definition 1. Let A be a symmetric positive semi-definite matrix. A random-
ized trace estimator T is an (ε, δ)-approximator of trace(A) if

Pr (|T − trace(A)| ≤ ε trace(A)) ≥ 1− δ .

A third important metric is the number of random bits used by the algo-
rithm, i.e. the randomness of the algorithm. The trace estimators are highly
parallel; each Rayleigh quotient can be computed by a separate processor. If
the number of random bits is small, they can be precomputed by a sequen-
tial random number generator. If the number is large (e.g., O(n) per Rayleigh
quotient), the implementation will require a parallel random-number generator.
This concern is common to all Monte-Carlo methods.

Table 1 summarizes the results of our analysis. The table also shows which
estimators and analyses are new. The definition of the estimators and the proof
of the bounds appear in the full version of the paper. The estimators are also
evaluated experimentally (see full version).

In some special cases it is possible to prove better bounds, or even the
exact trace. For example, we show that using a Gaussian trace estimator we
can compute the rank of a projection matrix (i.e., a matrix with only 0 and 1
eigenvalues) using only O(rank(A) log(2/δ)) samples (where δ is a probability
of failure; there is no dependence on ε). See full version of the paper [2].
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With the increased development and availability of many-core processors
(both CPUs and GPUs) it is important to have algorithms that can make use
of these architectures. To this end, we present a new recursive hypergraph
partitioning algorithm that uses the underlying geometry of the hypergraph to
generate the partitioning, largely done using shared-memory parallelism. Hyper-
graph geometry may either be provided from the problem at hand or generated
by the partitioning software. The above illustrates this process for the matrix
twotone (left): we first generate twotone’s geometry (middle), and then use
this to permute the matrix (right).

As an example of immediately available geometry we consider the pothen

collection of matrices, available from [7], which consists of NASA structural en-
gineering matrices collected by A. Pothen. The square pattern matrices from
this collection have a natural visual representation: each row/column corre-
sponds to a vertex (the coordinates of which are supplied in a separate file)
and each nonzero to an edge between the vertices corresponding to the row and
column to which the nonzero belongs. These vertices give an immediate visual
representation, as illustrated for sphere3, pwt, and commanche dual below.

However, not all matrices have an immediate geometric origin (e.g. twotone),
so we would like to be able to create such a visual representation ourselves
if it cannot be provided directly. We do this by generalizing the graph vi-
sualization method described in [1] to hypergraphs. For a hypergraph G =
({1, . . . , k}, {e1, . . . , el}) (usually a representation of a sparse matrix) with ver-
tex weights w1, . . . , wk > 0 and hyperedge costs c1, . . . , cl > 0, we determine a
visual representation of G by minimizing the energy function f in eqn (20) to
obtain positions x1, . . . , xk ∈ Rd in d-dimensional space (d ≥ 3) for all vertices
of G. A minimum energy configuration exists if and only if G is connected,
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and is approximated by a multilevel gradient stepping method of complexity
O(k log(k) + l), suitable for shared-memory parallelism [8]. The energy func-
tion is chosen in such a way that vertices which are very much interconnected
will remain closely together, while loosely connected groups of vertices drift
apart. This permits us to isolate clusters of interconnected vertices by applying
the k-means++ algorithm [2] in parallel.

By recursively dividing the vertices of G into two clusters we obtain a re-
cursive bipartitioning of the vertices of the hypergraph G. This can be used to
permute sparse matrices to Bordered Block Diagonal (BBD, left for rhpentium)
or Separated Block Diagonal (SBD, right for wikipedia-20070206) form.

f(x1, . . . , xk) =
1

2

l∑
j=1

cj
∑
i∈ej

‖xi − zj‖2 +
1

2

k∑
j=1

k∑
i=1
i 6=j

wi wj
‖xi − xj‖d−2

, (20)

zj :=
1

|ej |
∑
i∈ej

xi.

The quality of the generated bipartitionings is measured in two ways. Firstly,
by using the bipartitionings to bring the matrix into recursive SBD form for
cache-oblivious sparse matrix–vector multiplication [3, 4]. We compare the per-
mutations generated by the Mondriaan 3.0 hypergraph partitioner to our visual
matrix orderings (VMOs) in this context in the top-right table. Here we find
the original sparse matrix–vector multiplication time (Orig.) in milliseconds,
the best result from [4], which used Mondriaan 3.0, and VMO. On average,
generating VMOs was 21.6 times faster than generating permutations using
Mondriaan, while the improvement over the original sparse matrix–vector mul-
tiplication time is comparable to that of Mondriaan, except for lp nug30 and
cage14. Generating geometry for lp nug30 with our multilevel scheme failed
to bring out the structure of the matrix and the original layout of cage14 was
already optimized for sparse matrix–vector multiplication (Mondriaan also fails
to improve).

Secondly, we used VMO to generate a nested-dissection (recursive BBD)
layout for the purpose of LU decomposition [6, 5]. Here, we measure the fill-in
(defined as (nz (L) + nz (U)− nz (I))/nz (A) for A = LU) obtained by SuperLU
4.1 for the VMO, as well as SuperLU’s built-in COLAMD, MMD(AT +A), and
MMD(AT A) orderings. The results are shown in the table on the bottom-right:
on average the VMO fill-in is 1.52 times the lowest fill-in of the other methods.
SuperLU’s orderings are outperformed by VMO in 8 of the 28 cases. The recur-
sive BBD layout is furthermore suitable for parallelizing the LU decomposition
[8].

These examples show that the partitionings generated by this geometrical
method are of sufficient quality, with the additional advantage that they can be
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Matrix Orig. [4] VMO
ex37 0.116 0.113 0.113
memplus 0.308 0.300 0.280
rhpentium 0.645 0.515 0.646
lhr34 1.37 1.34 1.34
lp nug30 5.35 4.85 9.15
s3dkt3m2 7.81 7.27 7.80
tbdlinux 6.43 2.36 5.66
stanford 19.0 9.35 5.88
stanford berkeley 20.9 19.2 22.5
wikipedia-20051105 249 116 128
cage14 69.4 74.4 99.0
wikipedia-20060925 688 256 264

Table 1: Sparse matrix–vector multiplication timings (ms).

Matrix VMO CMD MMD+ MMD×
swang1 6.2 7.7 6.7 8.2
lns 3937 15.0 17.5 132.2 17.5
poli large 1.6 1.6 1.6 1.6
mark3jac020 68.1 45.6 121.3 43.9
fd18 21.9 24.1 302.0 25.5
lhr04 6.0 4.1 20.6 4.3
raefsky6 2.7 3.4 4.5 3.1
shermanACb 19.0 45.3 14.3 57.2
bayer04 10.2 4.2 41.8 4.2
Zhao2 158.1 115.1 1280.1 107.0
mult dcop 03 3.1 2.0 3.4 5.9
jan99jac120sc 71.8 15.9 52.4 19.7
bayer01 7.5 5.4 47.6 5.6
sinc12 37.8 44.7 36.3 45.3
onetone1 32.1 14.4 149.0 14.2
mark3jac140sc 111.0 125.7 4435.0 152.0
af23560 24.8 25.0 82.7 26.9
e40r0100 9.2 9.2 137.5 8.4
sinc15 56.3 58.0 48.7 57.2
Zd Jac2 db 9.6 5.1 32.1 5.7
lhr34c 7.0 4.7 50.5 4.7
sinc18 65.7 67.8 68.2 72.3
torso2 10.2 16.8 8.2 14.5
twotone 35.8 15.2 1448.1 17.0
lhr71c 6.7 4.8 66.4 4.7
av41092 64.6 26.0 177.6 23.8
bbmat 32.0 26.7 1000.6 26.8

Table 2: LU decomposition fill-in.

generated quickly (a 21.6 times speedup over Mondriaan in the first experiment),
using methods suitable for shared-memory parallelism.
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Introduction

Adjoint codes play an increasingly important role in scientific computing [2, 3, 4].
Data flow reversal is a fundamental ingredient of adjoint codes and very memory
consuming. We aim to find an optimal subroutine argument checkpointing
scheme. This combinatorial optimization problem is referred to as the Call
Tree Reversal (CTR) problem and is shown to be NP-complete in [5]. For a
given amount of persistent memory the objective is to checkpoint arguments of
selected subroutine calls such that a reasonable approximate solution of the un-
derlying DAG Reversal problem is obtained. Motivated by the NP-complete-
ness of CTR heuristics are developed and test results are presented.

Background

We consider implementations of multivariate vector functions

F : IRn → IRm

as computer programs mapping a vector of inputs x ∈ IRn onto a vector of
outputs y ∈ IRm as y = F (x). The given implementation of F is assumed to
decompose into a single assignment code (SAC) as follows:

for j = n+ 1, . . . , n+ p+m

vj = ϕj(vi)i≺j

where i ≺ j denotes a direct dependence of vj on vi. The result of each elemental
function ϕj is assigned to a unique auxiliary variable vj . The n inputs xi = vi,
for i = 1, . . . , n, are mapped onto m outputs yj = vn+p+j , for j = 1, . . . ,m. This
mapping involves the computation of the values of p intermediate variables vk,
for k = n+ 1, . . . , n+ p.

The data flow is reversed, that is, the computed values of the intermediate
and output SAC variables are accessed in reverse order during the computation
of the local partial derivatives of the ϕj in the adjoint code:

for i ≺ j and j = n+ p+m, . . . , n+ 1

v̄i = v̄i + v̄j ·
∂ϕj
∂vi

(vk)k≺j .

The v̄j are assumed to be initialized to ȳj for j = n+p+1, . . . , n+p+m and to
zero for j = 1, . . . , n+ p. The correctness of this approach follows immediately
from the associativity of the chain rule.



f15
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f45
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Figure 1: Annotated call tree: |xf1 | = 5, |xf2 | = 5, |xf3 | = 10 and |xf4 | = 5;
|SACf1 | = [15, 5], |SACf2 | = [10, 10, 10], |SACf3 | = [200] and |SACf4 | = [50].

fi

fj

fi

fj

(a) ci,j = 0

fi

fj

fi

fj fj

(b) ci,j = 1

Figure 2: Call reversal modes

The data section of the program is assumed to be non-persistent and SAC
values cannot be expected to be available after the execution of F due to pos-
sible overwriting. Therefore all required variables must be stored on a stack
(taped). SACs induce directed acyclic graphs (DAG). The corresponding DAG
Reversal problem is shown to be NP-complete in [6].

Call Tree Reversal

For a given implementation of F the SAC is grouped into several subroutines in-
ducing a call tree T at runtime. For each subroutine f the memory consumption
|xf | of their argument checkpoints and the number of floating-point operations

(flops) executed before (|SACf0 |), inbetween (|SACfi |,i = 1, ..., k − 1) and after

(|SACfk |) k internal subroutine calls are assumed to be known. The number of
flops is assumed to be identical to the memory required to store all intermediate
and output SAC variables. This information can be attached to a graphical rep-
resentation of T as shown in Fig. 1. Each node in T corresponds uniquely to a
subroutine call. For reverting the data flow in a call tree a subroutine argument
checkpointing scheme C : E → {0, 1} is applied to the set of all edges E. If for
an edge eij ∈ E connecting fi and fj , ci,j = C(eij) = 0, then the SAC of fj is
taped as part of the tape of fi. If ci,j = 1, then the arguments of fj are stored
on the stack and fj is executed without taping followed by taping the remainder
of fi. The checkpoint enables an out-of-context evaluation and reversal of fj
when reaching the argument checkpoint during the reversal of fi (see Fig. 2).
The graphical notation for the possible execution modes of a subroutine is given
in Fig. 3.

The CTR problem is to find an argument checkpointing scheme C for T
for a given upper bound M̂ on the available persistent memory such that the
corresponding reversal tree T is feasible, that is, M(T ) ≤ M̂ , and there is no

reversal tree T ′ with a lower operations count O(T ′) than T .
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advance (run subroutine)

tape (store SAC variables)

store arguments and advance

restore arguments and tape

restore and use SAC variables
in reverse order

Figure 3: Calling modes for call tree reversal.

f1

f2

f3 f4

f1

f2

f4 f3 f3

Figure 4: Optimal LMI Solution

Heuristics

We propose two greedy heuristics for CTR. Both start with a reversal scheme
having minimal memory consumption, that is (assuming |xf | ≤ |SACf | ∀ f),
ci,j = 1 ∀i, j : eij ∈ E. Step by step ci,j is set to 0 for as long as M(T ) ≤
M̂ . The Lowest Memory Increase First heuristic (LMI) prioritizes edges
that yield the lowest increase in memory requirement. The Highest Memory
Increase First heuristic (HMI) prioritizes edges that yield the highest increase
in memory requirement. A solution for the example in Fig. 1 (M̂ = 250)
produced by LMI is given in Fig. 4 (c1,2 = 0, c2,3 = 1, c2,4 = 0). It requires a
persistent memory of size M = 225 and yields an operation count of O = 500.

In Table 1 results of both heuristics are compared on a set of randomly
generated call trees. Near-optimal use of the available memory resources gives
improvements of 20% to 55% in the operations count.

The formal analysis of both heuristics as well as the development of further
heuristics is the subject of ongoing research.

|N | M̂ LMI HMI C ≡ 1

4 800 M = 713 M = 774 M = 687
O = 1367 O = 1378 O = 2991

6 800 M = 585 M = 784 M = 480
O = 2101 O = 1353 O = 2562

8 800 M = 794 M = 777 M = 681
O = 2300 O = 2429 O = 3998

10 1000 M = 968 M = 994 M = 710
O = 4029 O = 4156 O = 5083

12 1000 M = 898 M = 976 M = 559
O = 3542 O = 3613 O = 5547

14 1000 M = 978 M = 989 M = 812
O = 4530 O = 4569 O = 8023

Table 1: Test Results on Random Call Trees
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Background. Metabolic Engineering aims to optimize the production capa-
bilities of biotechnologically used organisms. In this context, the term Metabolic
Flux Analysis (MFA) covers a family of computational techniques for the in vivo-
quantification of reaction rates (fluxes) in the enzyme-driven, biochemical reac-
tion chains (metabolic pathways) of microorganisms and higher cells. Because
the result of MFA, the metabolic flux map, allows to evaluate the physiological
effects of genetic manipulations, MFA became an invaluable tool for Metabolic
Engineering.

Currently, the most widely used and reliable variants of MFA are based on
carbon labeling experiments. In these experiments a (non-radioactive) 13C la-
beling substrate yinput, e.g. provided by specifically labeled glucose molecules,
forms a characteristic labeling imprint in the intermediate products of the
metabolism (metabolites). The fractional abundances of the metabolites’ differ-
ent labeling patterns is then measured using mass spectrometry (MS) or nuclear
magnetic resonance (NMR) devices. Since the details of the 13C enrichment are
determined by the enzymes’ reaction rates, the measured labeling data can be
used to estimate the underlying in-vivo reaction rates v.

Methods. 13C-MFA requires the solution of a high-dimensional inverse prob-
lem. In particular, an optimization algorithm manages to estimate the reaction
rates v based on a simulation of the labeling imprint x = (0x, 1x, . . . ) and a
subsequent simulation of the MS or NMR measurement equipment, resulting in
synthetic measurement values y(x). Depending on the type of measurements,
the simulation of x is based on either the Cumomer Method [1], or the EMU
Method [2]. Both methods share the same mathematical model which is given
by a number of cascaded linear equation systems:

0x = 1
0 = kA(v) · kx + kb

(
v,yinput,

1x, . . . , k−1x
)
.

for k = 1, 2, . . .
(21)

These systems are obtained by serializing the relations described by the Cumo-
mer / EMU hyper-graph (a flow network) into balance equations. In particular,
the coefficients in the compartmental matrices kA encode the stoichiometric
relations of the reaction network model, whereas the nonlinear terms in kb for-
mulate the influence of labeling substrate yinput. The hyper-graph’s nodes are
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represented by the unknowns x = (0x, 1x, . . . ). Each node kxi ∈ kx corresponds
to a 13C-labeled molecule fragment consisting of k carbon atoms. Hence, in to-
tal, for a metabolite consisting of n carbon atoms 2n possible fragments exist,
from which

(
n
k

)
are balanced in the equation system (21) on cascade level k.

Clearly, the dimensions of the equation systems (21) grow exponentially with
the number of carbon atoms in the modeled metabolites.

The currently largest metabolic reaction network modeled this way com-
prises more than 300 different metabolites, which are connected by about 400
biochemical reactions. Because the largest metabolite in this network has 57
carbon atoms, the 57 cascaded equation systems would balance around 1.44·1017

different fragments (unknowns), whereas the largest equation system would have
dimension 1.5·1016. The corresponding computational problem is clearly beyond
the possibilities of today’s computers.

The previously used approach for handling this complexity was to restrict
the network models to the most important reactions of the central metabolism,
containing only small metabolites with few carbon atoms. While the overall
performance was still bad, these simplifications limited the quality of the results
and, after all, even the applicability of the method. For example, in order
to reveal the reliability of an obtained flux estimation a subsequent statistical
analysis is necessary. Ideally, this analysis should be based on accurate nonlinear
statistics generated by a Monte Carlo bootstrap procedure. However, such a
Monte Carlo technique requires thousands of flux estimations, each based on
several hundred or thousand simulation runs, in turn.

Results. Newly developed simulation algorithms allow to handle the com-
binatorial explosion of the system dimensions. Now, without any additional
simplifications, even the largest available metabolic reaction network model (in-
cluding a number of MS measurements) can be simulated in less than a second
on a normal desktop computer. This success is based on the combination of two
algorithmic techniques [3, 4]:

• Instead of constructing the full Cumomer / EMU network graph only a
highly reduced network graph is built. These reduced graphs model only
those molecule fragments which are both affected by the substrate labeling
and required for the simulation of the measurements.

• Reflecting the adjacency of the underlying metabolic network, the result-
ing balance equation systems (21) are highly sparse. A topological analy-
sis of the network graphs revealed that the sparsity of kA has to increase
with increasing cascade level k. Furthermore the network graphs contain
isomorphic subgraphs to great extent. The resulting equation systems
(21) are compartmental and therefore diagonal dominant. The observed
(sub-)graph isomorphism results in redundancy and isomorphic linear sub-
systems. A specialized linear solver was implemented which allows to use
all these properties.

As a result, the size of the overall computational problem reduces signif-
icantly. For the currently desirable measurement configurations and network
sizes it was possible to increase the speed of the simulator by four to five orders
of magnitude. Based on this progress it is now possible to evaluate nonlinear
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statistics and to perform unsupervised flux estimations based on large high-
throughput labeling data sets, generated from hundreds of labeling experiments
run in parallel.
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There have been numerous studies about the topological structures of real-
world networks, from the Internet to social, biological and technological net-
works. One common result is the existence of power-law or log-normal distribu-
tions over many quantities and in particular the degree distribution: the number
of nodes of degree k is proportional to k−α. The ubiquity of this distribution has
been a motivator for many different generative models, like preferential attach-
ment, the copying model, the Barabasi hierarchical model, forest-fire model,
the Kronecker graph model and geometric preferential attachment. Many of
these models also match other observed features, such as small diameter or den-
sification. However, recent studies comparing the generative models with real
networks on metrics like conductance show that the models do not match other
important features of the networks.

Intuitively, if the degree distribution (DD) of a graph describes the probabil-
ity that a vertex selected uniformly at random will be of degree k then the joint
degree distribution (JDD) is the probability that a randomly selected edge will
be between nodes of degree k and l. Graphs with the same degree distribution
may have very different joint degree distributions. For example, the assortativ-
ity of a network measures whether nodes prefer to attach to other similar or
dissimilar nodes. When similarity is defined in terms of a node’s degree, it is
a sufficient statistic of the joint degree distribution and measures how different
the joint degree distribution is from one where all of the edges are between nodes
of the same degree. Studies of the assortativity of networks show that social
networks tend to be assortative, while biological and technological networks like
the internet tend to be dissortative.

Before attempting to use the joint degree distribution as a metric for design-
ing generative models, it is important to know how tractable it is to work with.
Given a joint degree distribution and an integer n, is it possible to construct a
graph of size n with that joint degree distribution? Is it possible to construct or
generate a uniformly random graph with that same joint degree distribution?
We address both of these problems in this paper.

Contributions. In this work, we first analyzed the necessary and sufficient
conditions for a given joint degree vector to be graphical. We proved that
these conditions are sufficient by providing a new constructive algorithm that
can generate a graph with any feasible prescribed degree distribution. Next, we
introduce a new configuration model for the joint degree matrix problem which is
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a natural extension of the configuration model for the degree sequence problem.
This new reconfiguration model locally rearranges edges of a graph, such that
a new graph is generated that retains the specified joint degree distribution.
Finally, using this configuration model, we develop Markov Chains for sampling
both pseudographs and simple graphs with a fixed joint degree vector. We prove
correctness of both chains and mixing time proofs for the pseudograph chain.
The connectedness of the Markov Chain implies that we will be able to generate
any graph with the given joint degree distribution, starting from a graph with
the same joint degree distribution using our reconfiguration model, and thus we
will eventually generate all graphs with the given joint degree distribution, if
we keep running of Markov Chain.

The remaining question is how fast the Markov chain mixes, i.e., how fast do
we reach a random graph using our reconfiguration model. We have performed
an empirical study to observe how fast our Markov chain mixes. For our de-
tailed studies, we restricted ourselves to only small graphs on the order of 100
vertices. Note that even if the graph is small, the size of the Markov chain can
be enormous. Our experiments showed that the following results.

• We checked the auto correlation value for each edge. Intuitively, an in-
herent problem with a Markov Chain method is that successive states
generated by the chain may be highly correlated. If we were able to draw
independent samples from the stationary distribution, then the autocorre-
lation of that set of samples with itself would go 0 as the number of samples
increased. The autocorrelation time is capturing the size of the gaps be-
tween sampled states of the chain needed before the autocorrelation of
this ‘thinned’ chain is very small. If the thinned chain has 0 autocorrela-
tion, then it must be exactly sampled from the stationary distribution. In
practice, when estimating the autocorrelation from a

nite number of samples, we do not expect it to go to exactly 0, but we do
expect it to ‘die away’ as the number of samples and gap increases.

Our experiments showed that the autocorrelations times dies away expo-
nentially, which shows the Markov Chain mixes very fast.

• Given a joint degree distribution, we can compute the mean of edge, i.e.,
the ratio of number of graphs with this edge to all graphs with the same
degree distribution. We used the mean of an edge as another metric to test
the mixing time of the Markov chain. Our experiments showed that the
sample mean approached the real mean, and this happened very rapidly.

• As the final set of experiments, we investigated the relationship between
the real mean of an edge and the autocorrelation times. Our results showed
that the two metrics were related, and the autocorrelation were smaller
as the means were closer to 0 or 1, and larger when the mean as around
0.5. To better observe this relationship, we designed a graph that has
edges whose means cover the [0,1] interval. Experiments on this graph
confirmed our initial observations that the auto correlations are inversely
proportional to the absolute value of (edge mean- 0.5). We are currently
working on how to exploit this observation for faster mixing times.
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Let A ∈ IRn,n be a sparse symmetric positive definite matrix and consider
the Cholesky factorization LLT = PAPT where P is a permutation matrix and
L a unit lower triangular matrix. The nonzero pattern of L is a superset of the
nonzero pattern of the lower triangular part of A, and the number of additional
nonzero elements, called fill elements, depends only on the choice of P . Another
metric of interest is the number of floating point operations (flops) needed to
construct the Cholesky factor L; this number depends only on the permutation
matrix P , too. In this work we investigate the relationship of these two metrics.

The symmetric sparse elimination process can be described by the well-
known graph theoretic model developed by Rose [2], from which we adopt ter-
minolgy here. Let G := GA = (V,E) be the graph of A, α : {1, . . . , n} → V an
elimination ordering and d(α(i)) the degree of α(i) at the time of its elimination.
We set P to be the permutation matrix correspoding to α. If LLT = PAPT is
the Cholesky factorization of PAPT and li denotes the number of nonzeros in
the i-th column, the two optimization problems from the metrics above can be
described as

minfill(G) := arg min
α

n∑
i=1

d(α(i)) + 1 =

n∑
i=1

li (22)

minflop(G) := arg min
α

n∑
i=1

(d(α(i)) + 1)2 =

n∑
i=1

l2i . (23)

In (22) we minimize over the total number of nonzeros in L instead of the
fill elements only, which is an equivalent optimization formulation (the two
problems are not equivalent in an approximation sense, though).

For chordal graphs, the two optimization problems are equivalent and

minfill(G) = minflop(G) = {α | α is a PEO}. (24)

whereas not much seems to be known about the relation of the orderings that
attain the minima in the two optimizations above.

In figure 1 a very simple example is given where minflop(G) ( minfill(G).
The graph is not chordal, but after the first elimination step, the remaining
graph is chordal, so after having chosen α(1), we can always extend α by a
PEO. Since all vertices of {v1, v2, v3} and all of {s1, s2, s3} have the same neigh-
borhoods, we only need to analyze the cases where w, v1 and s1 are the first
nodes to be eliminated. No matter which one we choose, the resulting number
of nonzeros in L is always 25, whereas the minimum number of flops (105) is
only attained if we start at a node s1 (or s2, s3).
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Figure 1: A matrix and its graph G for which minflop(G) ( minfill(G)

Analyzing a class of graphs given by Kloks [1] to show that minimum fill
and minimum tree width are different, we show that the sets of optima in (22)
and (23) may in fact be disjoint.
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Introduction

A matrix pencil is a polynomial matrix in which the degree of each entry is
at most one. We express a matrix pencil as D(s) = sX + Y by a pair of
constant matrices X and Y . A matrix pencil D(s) can be brought into its
Kronecker canonical form by an equivalence transformation with constant non-
singular matrices. The Kronecker canonical form plays an important role in
many applications such as control theory and differential-algebraic equations.

Matrix pencils arising in practice are often very sparse, and it is tempting to
exploit their combinatorial structures. The Kronecker canonical form is a block
diagonal matrix which consists of nilpotent blocks, rectangular blocks, and a
residual square block. Among them, nilpotent blocks admit two combinatorial
characterizations. The first one utilizes the highest degree of subdeterminants.
The second characterization is based on the ranks of larger constant matri-
ces, called expanded matrices. Under the genericity assumption that the set of
nonzero coefficients is algebraically independent, it is shown in [3] that the rank
of the expanded matrix coincides with the maximum weight of a matching in a
bipartite graph. In this paper, we extend these results to mixed matrix pencils
by using matroid theory.

The genericity assumption is justified by the fact that physical characteristics
in engineering systems are not precise in values because of measurement noise.
However, it is not always valid in practical situations. In fact, exact numbers
do arise, for instance, in conservation laws. This observation led Murota and
Iri to introduce the notion of a mixed matrix [4].

A mixed matrix is a constant matrix that consists of two kinds of numbers
as follows.

Accurate Numbers Numbers that account for conservation laws are precise
in values. These numbers should be treated numerically.

Inaccurate Numbers Numbers that represent physical characteristics are not
precise in values. These numbers should be treated combinatorially as
nonzero parameters without reference to their nominal values. Since each
such nonzero entry often comes from a single physical device, the param-
eters are assumed to be independent.
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In order to deal with dynamical systems, it is natural to consider the matrix
pencil version, which is called a mixed matrix pencil.

In this paper, we prove that the computation of the ranks of expanded matri-
ces for mixed matrix pencils reduces to solving independent matching problems.
This leads to an algorithm for determining nilpotent blocks of a mixed matrix
pencil. Since the independent matching problem in this case is equivalent to a
linear matroid intersection problem, we can use the efficient algorithms proposed
in [1, 2].

Kronecker Canonical Form

A matrix pencil is known to be strictly equivalent to its Kronecker canonical
form

where Jν is a ν × ν constant matrix, Nµ and Lε are µ × µ and ε × (ε + 1)
matrix pencils defined by

block-diag(sIν + Jν , Nµ1
, . . . , Nµd , Lε1 , . . . , Lεp , L

>
η1 , . . . , L

>
ηq , O),

Nµ =



1 s 0 · · · 0

0 1 s
. . .

...
.
..

. . .
. . .

. . . 0
...

. . . 1 s
0 · · · · · · 0 1


, Lε =


s 1 0 · · · 0

0 s 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 s 1

 ,

and block-diag(D1, . . . , Db) denotes the block-diagonal matrix pencil with diag-
onal blocks D1, . . . , Db. The numbers ν, d, p, q, µ1, . . . , µd, ε1, . . . , εp, η1, . . . , ηq
are uniquely determined. The matrices Nµ1

, . . . , Nµd are called the nilpotent
blocks, and the numbers µ1, . . . , µd (µ1 ≥ · · · ≥ µd > 0) are called the indices of
nilpotency.

For an m× n matrix pencil D(s) = sX + Y , we consider a km× kn matrix
Θk(D) defined by

Θk(D) =



X O · · · · · · O

Y X
. . .

...

O Y
. . .

. . .
...

...
. . .

. . . X O
O · · · O Y X


.

The rank of Θk(D) is expressed by

rank Θk(D) = rk −
d∑
i=1

min{k, µi},

where r denotes the rank of D(s). Therefore, the indices µ1, . . . , µd are de-
termined by the ranks of Θk(D) for k = 1, . . . , r. In this paper, we analyze
rank Θk(D) for a mixed matrix pencil D(s) in order to obtain µ1, . . . , µd.

Ranks of Expanded Matrices

A matrix pencil D(s) is called a mixed matrix pencil if D(s) is given by D(s) =
(sXQ + YQ) + (sXT + YT ) that satisfy the following two conditions.
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Figure 1: An expanded matrix Θ3(D).

(MP-Q) XQ and YQ are constant matrices.

(MP-T) Nonzero entries in XT and YT are independent parameters.

For the sake of simplicity, we focus on a mixed matrix pencil given by D(s) =(
sXQ+YQ
sXT+YT

)
. The general case can be reduced to this special case.

By using Q̄ = Θk(sXQ + YQ) and T̄ = Θk(sXT + YT ), we denote Θk(D) by(Q̄
T̄

)
. Let us denote the hth column set of Θk(D) by Ch, and the hth row set of

T̄ by RTh for h = 1, . . . , k. We denote the copy of Ch by CQh . These notations
are summarized in Figure 1.

We define a bipartite graph G(Θk(D)) = (V̄ +, V̄ −; Ē) with

V̄ + =

k⋃
h=1

CQh ∪
k⋃
h=1

RTh , V̄ − =

k⋃
h=1

Ch,

Ē =

k⋃
h=1

EQh ∪
k⋃
h=1

EXh ∪
k−1⋃
h=1

EYh ,

where EQh = {(iQh , ih) | iQh ∈ C
Q
h , ih ∈ Ch}, and EXh and EYh correspond to the

set of nonzero entries in XT and YT . Figure 2 illustrates G(Θ3(D)) for

D(s) =


s 0 0 1
0 1 s s
t1s 0 0 t2s
t3 t4 0 0
0 0 t5s t6


with independent parameters t1, . . . , t6.

Let M+ = (V̄ +, I+) be the linear matroid represented by Q̄. We consider
the following independent matching problem.

[IMP(Θk(D))]
Find a matching M ⊆ Ē that maximizes |M | subject to ∂+M ∈ I+, where
∂+M denotes the set of vertices in V̄ + incident to M .

Our main result is as follows.

Theorem 1. For a mixed matrix pencil D(s) =
(
sXQ+YQ
sXT+YT

)
, the rank of Θk(D)

coincides with the optimal value of IMP(Θk(D)).
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Figure 2: A graph G(Θ3(D)) with EQh (solid line), EXh (heavy line), and
EYh (dotted line).
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We want to design scalable algorithms that address communication prob-
lems endemic in distributed computations on graphs using a set of overlapping
clusters, or vertex partitions that intersect. With overlapping clusters, we store
more of the graph than required. The framework then affords the ease of im-
plementation of vertex partitioning, and by removing the minimum storage
constraint, our hope is that this technique allows us to reduce communication
in a distributed computation. In our experiments, we observe a drastic re-
duction in communication volume for geometric graphs and some reduction in
communication volume for information networks.

Related work

Our proposal for overlapping clusters is novel in its implementation, but not so
in concept. These have been studied for a long time in the field of domain de-
composition. There, overlapping domains are used to solve a partial differential
equation (PDE) using a Schwarz method. These ideas have been generalized to
solve many linear systems Ax = b in either an additive or multiplicative Schwarz
method [5]. We investigate using an additive Schwarz method method to solve
a linear system with our overlapping clusters. These techniques have been ap-
plied to solving PageRank [2]. Recently [3] investigated generating overlap from
an existing graph partition. Another related idea is the notion of a communica-
tion avoiding algorithm. These substitute local computation for communication.
For example, [4] create overlap among the vertices managed by each processor
to reduce the communication required for k consecutive sparse matrix-vector
products. A key difference between our work and the two previous projects is
that they start with a partitioning and add overlap; instead, we build a set of
overlapping clusters and add a mapping from vertices to clusters.

Theoretical support for overlap

Let G = (V,E) be a graph. An overlapping clustering (C, τ) consists of a
collection C of clusters, which are subsets of V , and a mapping τ : V → C that
associates each vertex v ∈ V with a single cluster τ(v) ∈ C. We require that
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the collection C cover the graph, and that each vertex v be contained in its
associated cluster τ(v).

Given a maximum volume MaxVol as an upper bound for the volume of a
graph subset stored on each machine (the sum of degrees of all the vertices),
we need to divide a large graph into several clusters and store each cluster on
one machine. Define a random walk process, X0, . . . in the usual way. We
can simulate the random walk process in a graph G using a collection (C, τ) of
overlapping clusters. For each time step t let Ct be the current active cluster.
The current vertex Xt is some vertex in V , and the current active cluster Ct is
some cluster in C that contains Xt. Initially, X0 is a specified starting vertex,
and X0 = τ(X0). To advance to the next time step, the active cluster Ct
chooses the next vertex Xt+1 uniformly at random from the neighbors of Xt.
If the new vertex Xt+1 is contained in Ct, then the current cluster remains the
active cluster. If the new vertex Xt+1 is not contained in Ct, then the cluster
τ(Xt+1) becomes the active cluster. Our first goal is to minimize the number of
times the active cluster Ct must be changed during the simulation of the walk.
A good collection C will allow us to simulate a random walk without constantly
switching between clusters. We define Swaps(X0, . . . , XT ) to be the number of
times the active cluster Ct changes during the walk X0, . . . , XT , and we define
ρ∞ as the mean of the expected limiting swapping probability over all vertices.
This setup allows us to prove the following theorem.

Theorem 1. Consider a large cycle Cn of n = M` nodes for a large number
M > 0, and let the maximum volume of a cluster MaxVol be `. Let P be the
optimal partitioning of G to non-overlapping clusters of size at most MaxVol
and ρ∗∞ be the swapping probability of P . There exists an overlapping cover

with TotalVol of 2Vol(G) whose swapping probability ρ′∞ is less than
ρ∗∞

Ω(MaxVol) .

Also, we show that finding a set of clusters to minimize ρ∞ is NP-hard
and also hard to approximate. This follows via a reduction from the minimum
bisection problem.

Finding good clusters

We detail a heuristic algorithm to find a good set of overlapping clusters. The
algorithm roughly works as follows.

Identify candidate clusters. At first, we find clusters with maximum volume
MaxVol and small conductance with a PageRank clustering heuristic [1]
or metis.

Compute well-contained sets. For each cluster, we compute a containment
score for each vertex. The vertices with highest containment are assigned
as cores of the cluster. A random walk from a core vertex should take a
while to leave the cluster.

Cover with cluster cores. We now find a subset of the candidates based on
three measures: (i) the total volume shouldn’t be too large; (ii) the sum
of the cut sizes should be small; and (iii) for each node v, we should pick
a cluster C such that v is in the core of C. This will yield a set-cover
problem, which we use a greedy approximation algorithm to solve.
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Figure 1: Overlapping performance

Combine clusters. Finally, we combine any small clusters until the final size of
each is about MaxVol.

Results

In our experiments, we evaluate clusters from our algorithms on two mea-
sures: (i) the swapping probability of a random walk, computed via simula-
tion; and (ii) the communication required for solving PageRank via an addi-
tive Schwarz method. At right, we present results from two networks with
around 150,000 vertices (us-roads) and 800,000 vertices (web-Google). The hor-
izontal axis is the amount of extra storage required and the vertical axis is
the relative work compared to the metis partitioner. This exemplifies how
overlap can help a distributed computation; although we do not always get
such great results for information networks. Let us explicitly note that we
only have a proof of concept demonstration that overlap can help, which only
simulates communication. Because of this nature and that many of our re-
sults appear to depend strongly on the individual properties of the graph, we
make our codes and experiments available for others to use and reproduce:
https://dgleich.com/projects/overlapping-clusters
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Finding a suitable compressed representation of large-scale networks has
been intensively studied in both practical and theoretical branches of data min-
ing [6, 1, 5, 3, 10]. In particular, the success of applying some of the recently
proposed compression schemes [5, 3, 2] strongly depends on the “compression-
friendly” arrangement of network nodes. Usually, the goal of these arrangements
is to order the nodes such that the endpoints of network links (edges) are lo-
cated as close as possible. Doing so leads to a more compact representation
of links and allows a better performance of compression schemes and network
element access operations. In [5], Chierichetti et al. propose a combinatorial
optimization problem, namely, the minimum logarithmic arrangement problem
(MLogA), that minimizes the number of bits in gap encodings of edges stretched
between their endpoints.

A network is described by a weighted directed graph G = (V, E), where
V = {1, 2, ..., n} is the set of nodes and E is the set of directed edges. If
ij ∈ E, then there exists an edge i→ j. Denote by wij the nonnegative weight
of the directed edge ij between nodes i and j; if ij /∈ E, then wij = 0. We
generalize MLogA and formulate the link- and node-weighted version of MLogA
(GMLogA); each vertex i is assigned with a volume, denoted vi. The task is to
minimize the cost c(G, x), namely,

min
π

c(G, x) =
∑
ij∈E

wij lg |xi − xj | (25)

such that xi =
vi
2

+
∑

k,π(k)<π(i)

vk

over all possible permutations π.
Coarsening. We present a multiscale framework in which coarsening is

interpreted as a modified process of weighted aggregation reinforced by the
algebraic distance couplings for GMLogA. Algebraic distance-based coupling is
a measure of connectivity strength between two nodes connected by an edge
[9, 4]. Given the weighted Laplacian of a graph, denoted by L = D −W , we
define an iteration matrixH for Jacobi overrelaxation asH = (1−ω)I+ωD−1W ,
where 0 ≤ ω ≤ 1 . The algebraic distance coupling ρij is defined as

ρij = 1/
( R∑
r=1

lg |χ(k,r)
i − χ(k,r)

j |
)
,

where χ(k,r) = Hkχ(0,r) is a relaxed randomly initialized test vector, R is the
number of initial test vectors, and k is the number of iterations. Considering
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ρij as an edge strength measure, one can construct a coarse graph by defining
a classical AMG interpolation operator ↑fc that will project the fine graph to
the coarse graph. The projection is represented as Lc ←↑fc Lf (↑fc )T , in which
the centers of coarse aggregates are selected by traversing all nodes and leaving
those nodes i in F that satisfy∑

j∈C
ρij/

∑
j∈Vf

ρij ≥ Θ1 and
∑
j∈C

wij/
∑
j∈Vf

wij ≥ Θ2 . (26)

After identifying coarse nodes, we define for each fine i its coarse neighbor-
hood N c

i that contains a limited set of coarse nodes to which i is connected.
The criterion for choosing C-nodes to N c

i is also based on ρij .
Uncoarsening. The uncoarsening contains the following four components:

initial interpolation, Gauss-Seidel and compatible relaxations and refinement.
Minimization of the contribution of a single node is a central question of in-
terpolation and relaxations. Given an initial ordering, denote by Ni the set
of ith neighbors with already assigned coordinates x̃j . To minimize the local
contribution of i to the total energy (25), we assign to it a coordinate xi that
minimizes ∑

j∈Ni

wij lg |xi − x̃j | . (27)

Since for every j ∈ Ni, xi = x̃j implies that the sum (27) is minus infinity,
we resolve this ambiguity by setting

xi = x̃t ⇐⇒ t = arg min
k∈Ni

∑
k 6=j∈Ni

wkj lg |x̃k − x̃j | . (28)

The trivial exact solution has a running time O(|Ni|2), as it requires computing
|Ni| sums, each one with |Ni|−1 terms. Thus, to preserve the linear complexity
of the entire algorithm, one can use the trivial solution for nodes with small |Ni|
only. We approximate (28) using a heuristic that seeks the nearly minimum sum
in the point of maximal density. Consider set {x̃j : j ∈ Ni} as independent and
identically distributed samples of a random variable with unknown distribution
and wij as a posteriori probability of a sample x̃j . Assuming that, we have to
choose a point where the estimated probability density is maximized. We do so
using the kernel density estimation, where the density at point x is estimated
using the Gaussian kernel

d̂(x) =
1

|Ni|h
∑
j∈Ni

wij2
−|x−x̃j |/h .

We will present a linear time algorithm for the density estimation.
Computational results. We compare our numerical results with several

recent state-of-the-art methods: random-based, lexicographical, Gray, (double)
shingle, spectral, and LayeredLPA orderings [3, 5]. Our benchmark consists of
100 graphs of different nature and size (most of them are taken from [7] and [8]).
Evaluation of our method (with and without further compression) shows that
algebraic distance based AMG framework significantly outperforms the existing
methods, allowing network compression by up to 5 times better without losing
good scalability.
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Despite the increasing importance of discrete and geometric algorithms in
computational science and engineering, combinatorial scientific computing (CSC)
is currently not among the standard courses taught at university level. Based
on experiences with teaching a CSC course within the curriculum of computer
science at RWTH Aachen University, we began the design and implementation
of educational modules aimed at better illustrating elements of CSC. In this
talk, we introduce a collection of web-based educational modules for teaching in
the area of CSC. We refer to this collection as EXPLAIN (EXPLore Algorithms
INteractively). The general philosophy behind EXPLAIN is not to replace the
rich dynamic of verbal communication in a face-to-face learning environment by
a comprehensive e-learning environment. Rather, the intention is to add—to
the traditional classroom paradigm—interactive resources for exploring graph
and the corresponding matrix transformations.

The common layout of the educational modules reflects this intention by
showing a graph and its corresponding matrix representation next to each other.
A typical layout of an EXPLAIN module is depicted in Figure 1. This module
illustrates the symbolic Cholesky factorization of a sparse matrix. More pre-
cisely, the students use this module to interactively explore the phenomenon of
fill-in, i.e., nonzero elements generated at positions, where the matrix to which
the Cholesky factorization is applied, contains zero elements. Symbolic matrix
factorizations of sparse matrices are commonly modeled by sequences of graphs
obtained from eliminating vertices one after another obeying certain rules that
also effect the edges [1, 2, 3, 7, 8]. EXPLAIN visualizes and allows to explore
these sequences in terms of both elimination graphs and corresponding matrix
representation.

In Figure 1, for instance, the elimination graph of a sparse 6 × 6 matrix is
shown after the vertices 3 and 1 have already been eliminated during the pre-
vious steps of the Cholesky factorization. The order of the vertex elimination
is depicted in that figure by the indices of the rows/columns. Dynamic user
interaction is possible by selecting a vertex for the next factorization step us-
ing the computer mouse or by going backward and forward in the elimination
ordering. The educational module also offers the opportunity to open an addi-
tional window (not shown here) to visualize, for a single factorization step, the
elimination of edges one after another. Fill-in edges and corresponding matrix
entries are highlighted by red color. EXPLAIN also offers support for uploading
matrices so that students can experiment with their own matrices.

The EXPLAIN collection is written in Python and is accessible via a web
interface to minimize the effort needed for the instructor to make the collec-
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Figure 1: A typical layout of a module showing an instance of a graph G(A)
along with the nonzero pattern of a corresponding matrix A. Transformations
carried out by interactively clicking on the graph are simultaneously carried out
and visualized on the matrix.

tion available to the students. Several different software packages are combined,
among others NetworkX [4] for providing graph data structures and matplotlib
[5] for visualizing graphs and matrices. A predecessor of EXPLAIN is the stan-
dalone implementation of a Cholesky factorization module presented in [6]. In
contrast to EXPLAIN, this educational module is not available using a web
browser. Furthermore, EXPLAIN is not restricted to the symbolic Cholesky
factorization and is designed to allow seamless integration of various other CSC
algorithms, e.g., graph coloring and vertex elimination algorithms occurring in
automatic differentiation.
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Motivation and Industrial Applications

Limited fossil fuel supply and increasing awareness of climate change has led to
a raise in demand of highly efficient cars and industrial machines. These can
be constructed to be more efficient, for example, by reducing their mass. We
deal with the concept of a new kind of lightweight material that uses particle
filled hollow spheres which are embedded within technical structures. When
the structure is vibrating, for example, caused by an engine, the particles, e.g.
a ceramic powder, can help to suppress these vibrations quickly by converting
kinetic energy to heat through friction arising from collisions of the particles
with each other and with the hull of the sphere. This new material could be
deployed in machine casings to reduce noise, wear and tear that is caused by
vibration.

Computational methods

Modern molecular dynamics methods are capable to simulate large numbers
of particles. However, the modelling used there is not realistic for the behav-
ior we want to simulate. For instance, in molecular dynamics usually periodic
boundary conditions are considered for the simulation volume. In our case, the
particles must interact with the boundary of the simulation box to allow for
energy transfer by vibration and particle impact. Additionally, most implemen-
tations only allow for a limited number of shapes for the simulation volume.
Therefore, several adjustments need to be made. We based our algorithm on a
molecular dynamics code developed at the Department of Engineering, Univer-
sity of Paderborn. Newton’s equations of motion of the particles are numerically
solved by the leapfrog method that computes particle positions, velocities and
forces between the particles alternatingly (therefore “leaping”).

In the first part of the leapfrog scheme, at time ti, the velocities are updated
based on the forces of the previous step. These velocities are then used to
calculate the new positions of the particles. Next, at time ti+ 1

2
, the moments

and the (impact-) forces between the new sites of the particles are evaluated.
The forces are based on the Lennard-Jones (LJ) potential, a pair potential,
which is also widely used in molecular dynamics. This is then repeated at time
ti+1.
The Lennard-Jones potential Uij is the source of the force Fij acting between
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two particles i and j, whose distance is rij . It is given as

Uij = 4ε

{(
σ

rij

)12

−
(
σ

rij

)6
}

and the force acting on the particles i and j is

Fij = −∂Uij
∂rij

.

Here ε signifies the depth of the potential energy well and σ is the size param-
eter which defines the range of the repulsive force. For our application, the
LJ-potential needs to be cut off at a certain distance as otherwise the particles
would keep interacting even when they are far away from each other. This is like
a gravitational effect that needs to be taken into account in molecular dynamics
but is not realistic when simulating granular particles. When particles collide
with each other, the LJ-potential causes a repulsive force between the particles
that will have an effect on the velocities of those particles in the next step of the
leapfrog algorithm. Besides just evaluating the translational motion, rotational
motion is also tracked. A quaternion representation is used for the rotation of
the particles and Fincham’s explicit quaternion algorithm is applied to solve the
rotational equations of motion. The simulation is executed inside a spherical
volume. The sphere itself can be excited to vibrate, giving an additional effect.
The hull carries its own Lennard-Jones potential and acts as a reflective bound-
ary condition. When a particle collides with the wall, it is reflected.
In this talk, we present first results with respect to a moderate number of par-
ticles inside the hollow sphere.
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A significant portion of scientific problems include the solution of sparse and
large linear systems. In these cases, the minimizing of the bandwidth and re-
ducing of the envelope are ways to simplify the solution of these systems. These
pre-processing methods consist of performing permutation between rows and
columns. In the context of the solution systems via direct methods, minimizing
the bandwidth reduces the filling that occurs in LU decomposition. Large lin-
ear systems, however, are usually resolved by non-stationary iterative methods.
These methods do not change the sparsity of the matrix but require convergence
criteria.Generally, a process to accelerate convergence, called preconditioning,
is necessary. The preconditioners, based on incomplete LU decomposition, are
widely used to sharply accelerate the convergence rate. Such operations alter
the sparseness of the matrix and consequently the effectiveness of the precondi-
tioners depends on matrix reordering.

This work analyzes the influence of matrices reordering algorithms on solv-
ing linear systems using preconditioned Krylov-type iterative methods consider-
ing the incomplete LU factorization preconditioners. The algorithms referenced
most often in the literature for the reordering of matrices are Reverse Cuthill-
McKee (RCM) ([1, 2]), Gibbs-Poole-Stockmeyer (GPS) ([3]) and Spectral (ES)
([4]). We analyze some of these algorithms and propose modifications compar-
ing their solution qualities and performance in term of processing time when
they are using as a pre-processing in the ILU(p) preconditioner for the GMRES
method.

Those algorithms relate the problem of reordering matrices with the prob-
lem of relabeling in graphs. The RCM and GPS apply a breadth-first search
procedure on the graph associated to the sparse matrix and return a new la-
beling order of its vertexes, which corresponds to the permutation of rows and
columns of the matrix. The algorithm ES is based on the use of eigenvalues
and eigenvectors of the Laplacian matrix of the corresponding graph, sorting a
specific eigenvector associated to the graph vertexes and applying this sort as
the permutation of rows and columns of the sparse matrix.

Recently, we proposed some modifications to those algorithms, in order to
improve the quality of the solution and reduce the processing time, [5]. For the
RCM algorithm we proposed to use the level structure of the vertex obtained
by the heuristic proposed by [2], performing the new labeling of the vertexes
from their positions in levels and increasing order of degrees. This algorithm,
called RCM-P2, needs a smaller processing time than the RCM, with a similar
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(a) Number of iterations (b) Processing time (seg)

Figure 1: Number of iterations and processing time for the GMRES method.

quality solution. The reduction in processing time may be explained by no long
needing to execute the breadth-first search of the RCM algorithm.

The calculation of the eigenvalue and eigenvector associated required in the
ES algorithm is highly complex. For this, we chosen in our implementation
the Chaco library due to optimized storage matrix and low processing time.
We utilized the Multilevel Symmlq/RQI algorithm, that is suitable for large-
sized matrices. This algorithm considers the RQI (Rayleigh Quotient Iteration)
iterative method, which solves a linear system using the LQ decomposition in
each iteration. It is worth noting that the quality of solution obtained depends
strongly on the tolerance considered for the iterative process. We also point out
that we have changed the source code for Chaco. To reduce the processing time
we calculate only the eigenvector associated with the second smallest eigenvalue,
that is needed on the ES algorithm.

The matrices used in the computational tests are in the Matrix Market
format available on the websites http://math.nist.gov/MatrixMarket/ and
http://www.cise.ufl.edu/research/sparse/matrices/. These matrices orig-
inate from a variety of application field such as computational fluid dynamics
(CFD), electromagnetism, chemistry, and so forth. In this abstract we are to
comment only the behavior of a finite element resulting matrix (FEM-3D-t2),
that is come from of the CFD application area, but a complete study can be
found in [6].

Figure 1 shows the number of iterations and processing time for GMRES
without preconditioning and with ILU(p), p= 0, 1, . . . , 5 preconditioner for the
FEM-3D-t2 matrix. This matrix has 147900 rows, 3489300 non-zero elements,
that represents a sparsity percentage of 99, 98%. In Fig. 1, SP means without
preconditioning and SR means without reordering. The number of GMRES iter-
ations decreases drastically when an ILU(p) preconditioner is used and continue
decreasing when p increases, as we can see in Fig. 1(a). The use of the reordering
strategy reduces discretely the number of GMRES iterations. For FEM-3D-t2
matrix the ES reordering algorithm leads a smallest number of iterations for all
considerations (SP and ILU(p), p=0, 1, . . . , 5).

However, the processing time has a different configuration, as we can see in
Fig. 1(b). In general, when p increases the processing time also increases. But,
using ES reordering and ILU(0) preconditioner we need a smallest processing
time for FEM-3D-t2 matrix. For this matrix, the RCM-P2 does not reduce the
processing time without preconditioning (SP) and for ILU(p), p= 0, 1, 2 when
compared with SR and ES.
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Using a set of sparse matrices do not show here for compactness, we conclude
that the reordering of matrices, in most cases, reduces the number of iterations
in the GMRES method, but that reducing the processing time depends on the
size and conditioning of the matrix.
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The degree of parallelism that must be exposed to efficiently utilize mod-
ern large-scale parallel computing systems is intimidating. Because individual
processor performance gains are currently achieved primarily through multi-
ple cores on a chip and multiple threads of execution in a core, the rate at
which parallelism must be exposed by an application will increase as a func-
tion of overall machine performance relative to historical trends. This results in
greater design complexity for both machine architects and application software
developers. The use of simulation, however, can aid both in their efforts to
obtain high utilization from future computing platforms.

Simulation is already used extensively in the design of computing systems
for both functional verification and timing estimation. As an example of the
range of capabilities available, including just a few examples of open-source
timing simulators, there are processor simulators (Binkert et al., 2006; M5Sim),
memory simulators (Jacob; Wang et al., 2005), and network ns-3 (ns-3).

Several simulators have been developed to generate performance estimates
for high-performance computing architectures. These range from high-fidelity
and computationally expensive simulators for measuring performance between
two nodes (Rodrigues et al., 2003; Underwood, Levenhagen, & Rodrigues, 2007)
to lower-fidelity and lower-cost simulators that can estimate performance on
large-scale machines. These lower-fidelity simulators use a variety of approaches
to generate the applications processor and network workload including tracing,
direct execution, and the use of skeleton applications. Additionally, the flow
of data through the network is modeled with varying fidelity. In the present
paper we are concerned with lower-fidelity and lower-costsimulation techniques
to enable simulation at very large scales.

In the present work we describe a macroscale simulator for estimating the
performance of large-scale parallel machines. The goals of the simulator are to
assist in system design and application development. The simulator is modular,
permitting multiple computation and communication models to be employed.
This will allow the study of architectures at a variety of fidelities so we can trade
off the computational cost of doing a simulation against the accuracy of the re-
sult. The simulator will be distributed under an open-source license to maximize
its usefulness to the high-performance computing community. We focus on an
extremely lightweight implementation, rather than enabling parallelism in the
simulator itself. Parallelism can be easily introduced when performing inde-
pendent simulations of architecture variants. We also provide a detailed MPI
model that converts the high-level MPI events into the necessary communica-
tion operations. Because the MPI capability is implemented to be modular, it is
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simple to investigate the relative performance of various MPI algorithms. The
simulator is designed to allow the use of alternative programming models, as
well.

We believe that our simulator can be a critical enabling technology for the
combinatorial scientific computing (CSC) community. Load balancing among
processors and minimizing the effect of communication has been at the heart of
many research activities in the CSC community. While the literature produced
is very rich, the results are commonly presented in symbolic metrics, such load
imbalance ratios, total communication volumes, or total communication pairs,
etc. While these results are important to show the effectiveness of proposed
solution methods, they can fail short while trying to convince potential users of
these results to invest the time to adopt these novel techniques. For that reason,
nothing will be as effective as actual timings on a real machine, but timings on
a real machine is hard, since i) they cannot be available to everyone ii) it is
hard to isolate the effects of the proposed techniques from everything else in
the system iii) and basic research typically targets machines of the future. Our
simulator can avoid all these problems. First, it is publicly available and can
be run on almost any platform. Secondly, the simulation not only provides a
nice abstraction of a real machine, but also can provide more than merely a
runtime, as information about the performance bottlenecks is available within
the simulator. Finally, the driving force for this simulator is to be able to
simulate and design future machines.

The simulation can be driven either by traces collected from a real appli-
cation, or by skeleton application that mimics a real application without any
of the details of the application. In this talk, we will explain the machinery
behind our simulator, and explain how it can used, and how one can generate
a skeleton application to observe the effects of a proposed technique.

Our work is done in the context of a larger project to develop a parallel
multiscale simulator that permits users of the simulator to select the desired
level of fidelity for each component of the machine. This larger project is an
outgrowth of the Structural Simulation Toolkit (SST) (Rodrigues et al., 2003;
Underwood et al., 2007) and the macroscale components described herein will
be referred to as SST/macro to distinguish them from the existing microscale
SST components.
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With widespread availability of graph-structured data from sources rang-
ing from social networks to biochemical processes, there is increasing impetus
for efficient and scalable graph analyses techniques. An important problem in
analyses of graph databases is the computation of node-wise similarity across
graphs (or within the same graph). These node similarity scores can be used
to quantify aggregate similarity, or as seeds for identifying similar (conserved)
sub-graphs.

The similarity of two nodes can be recursively quantified in terms of the
similarity of their neighbors. Best matching pairs of nodes in the two graphs
can be identified through a maximum weighted bipartite matching algorithm.

To reduce the computational cost of these two expensive steps, we present
similarity computation and matching algorithms, along with their highly scal-
able parallel formulations. Our similarity computations uncouple and decom-
pose the similarity matrix to significantly reduce operation count, as well as
enhance inherent concurrency. Our matching algorithm is based on a parallel
implementation of the auction algorithm, which provides excellent performance
and scaling, in conjunction with our similarity computations.

Numerical experiments on the Cray XE6 demonstrate that:

1. our similarity computation algorithm is at least an order of magnitude
faster than a state-of-the-art implementation in terms of serial perfor-
mance,

2. scales almost linearly on up to 3, 072 compute cores, and

3. the integration of this similarity computation with auction-based matching
enables the similarity analysis of networks of sizes at least three orders
of magnitude larger than currently possible (millions of nodes, tens of
millions of edges).
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ADOL-C is an open-source package for the automatic differentiation of C
and C++ programs. For this purpose ADOL-C uses operator overloading to
generate an internal representation of the function to be differentiated, the so-
called tape. Subsequently, the tape is used to compute for first and higher-order
derivatives. Up to now, ADOL-C can be used to differentiate serial programs
and programs that are parallelized using a small subset of OpenMP.

This project extends the ADOL-C package such that the differentiation of
MPI-parallel simulation codes becomes possible. Since the user decides which
calculation is done by which process an appropriate parallelization of the tap-
ing process is required, where each process generates a separate tape. Hence,
the originally purely sequential taping is splitted into the generation multiple
subtapes and the information of a subtape only is used by the corresponding
process. Consequently, the coupling of the several processes also has to be
incorporated in the taping.

Currently the MPI-parallel simulation to be differentiated with ADOL-C can
include the MPI routines Send, Receive, Barrier, Broadcast, Reduce. For the
implementation of these MPI routines each MPI-function has its own wrapper
containing appropriate algorithms for sending/receiving data during the tap-
ing. Hence, each process transfers calculated data to other processes which are
waiting for the data in order to continue the calculation.

For the subsequent derivative calculation, additional send- and receive op-
erations were added to take different modes like first order scalar, higher order
vector , . . . into account. Furthermore, strategies to compute all function calls
in the corresponding order were included for the handling of the differentiation
in forward or reverse mode.

Putting everything together, the frequently used ADOL-C drivers gradi-
ent(..), hessian(..), and jacobian(..) now can handle MPI-parallel simulations.
Furthermore, also sparsity can be taken into account since also the detection of
sparsity structures was extended correspondingly. Therefore, even sparse Hes-
sians and Jacobians can be computed in parallel. For this purpose, the coloring
is still done in a serial fashion. An appropriate parallelization of this part will
be the subject of future joint work with the developers of the ColPack package.

The poster will also contain an illustration of the runtime and communication
behavior for an example originating from an optimal power flow problem.
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The PageRank algorithm is an important component in effective Web search.
At the core of this algorithm are repeated sparse matrix-vector multiplications
(SpMxV) where the involved Web matrices grow in parallel with the growth of
the Web and are stored in a distributed manner due to space, network and time
limitations. Hence, the PageRank computation, which is frequently repeated,
must be performed in parallel with high efficiency and low preprocessing over-
head while considering the initial distributed nature of the Web matrices.

Sparse matrix partitioning models are shown to be quite successful in load
balancing and minimizing the total volume of communication during the re-
peated parallel SpMxV in PageRank computations [2]. However, the vast sizes
of the Web matrices and the high preprocessing overhead incurred by these mod-
els render this solution infeasible in practice. In [5], we first focus on reducing
the above-mentioned partitioning overhead. For this purpose, we propose two
different Web matrix compression schemes, namely 1D and 2D compression, by
exploiting the site information inherently available in page links. The 1D scheme
compresses the n×n Web matrix along only one dimension, i.e., either along
rows or columns, thus obtaining an m×n or n×m matrix, where n is the number
of pages and m is the number of sites. 1D rowwise and 1D columnwise partition-
ing models are discussed under this 1D compression scheme. Only hypergraph
partitioning (HP) models are considered for partitioning 1D-compressed Web
matrices since the graph partitioning (GP) models are not suitable for parti-
tioning rectangular matrices. The 2D scheme compresses the matrix in both
dimensions, obtaining an m×m matrix. Since 2D-compressed Web matrices
are square, both HP and GP models can be used for partitioning. However,
even though the weights of the nonzeros of hypergraph models for these 2D-
compressed Web matrices correctly summarize the computational requirements
of both row-parallel and column-parallel SpMxVs, the sparsity patterns of them
do not correctly summarize the communication requirements. Hence, as the
superiority of the HP models depends on the correct modeling of the commu-
nication volume, it is not meaningful to use HP and we utilize GP models for
these matrices. 1D rowwise and 1D columnwise partitioning models are for-
mulated and discussed under this 2D compression scheme. These partitioning
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models significantly decrease the preprocessing overhead of partitioning the n×n
matrix, without sacrificing the parallel efficiency.

Partitioning models discussed in the literature generally assume availability
of a global Web graph, possibly stored as a single file or dataset in a host ma-
chine. However, in a real-world scenario, this assumption may not be valid since
the initial Web dataset is likely to be distributed among many processors. In
such a setup, the data has to be redistributed among processors for efficient par-
allel PageRank computations. Hence, partitioning models should encapsulate
the initial data redistribution overhead as well as the communication overhead
that will be incurred during the parallel PageRank computations. This prob-
lem constitutes a typical instance of the repartitioning (remapping) problem.
In [5], we adopt the recently proposed repartitioning models [1, 3, 4], which are
based on HP and GP with fixed vertices, and apply them on top of our above-
mentioned site-based models in order to encapsulate the initial redistribution
overhead in parallel PageRank computations.

Moreover, in [5], we propose a simple yet effective method to handle pages
with no in-links. This method avoids the SpMxVs associated with the submatri-
ces corresponding to the pages with no in-links throughout the iterations by only
performing two SpMxVs at the beginning. All of our contributions are presented
in the context of a state-of-the-art sequential PageRank algorithm proposed by
Ipsen and Selee [7], whereas our contributions can be easily extended to other
iterative PageRank algorithms. This power-method-based algorithm [7] utilizes
the lumping method to handle the dangling pages efficiently via applying the
power method only to the smaller lumped matrix, where the convergence rate
remains the same as that of the power method applied to the full matrix. It
also has the advantage of allowing the dangling node vectors and personalization
vectors to be different, thus enabling the implementation of TrustRank [6]. This
algorithm is parallelized and tested on two PC clusters with 40 and 64 processors
in order to verify the validity of the proposed techniques. PageRank computa-
tions conducted on eight well-known, large Web datasets (the largest of which
has 133 million pages and 5.5 billion links) indicate the effectiveness of the pro-
posed techniques. These techniques result in considerably high speedups while
incurring a preprocessing overhead of several iterations (for some instances even
less than a single iteration) of the underlying sequential PageRank algorithm.
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Using the example of an inverse medium problem [1] we demonstrate how
combinatorial techniques play a significant role for the efficient solution of large-
scale optimization problems. In particular, the fast computation of sparse
derivative matrices using algorithmic differentiation is made possible by col-
oring algorithms, and the efficient solution of sparse linear systems requires
weighted graph matching algorithms.
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Differentiation and Nonlinear Optimization for an Inverse Medium Prob-
lem. Book Chapter in Combinatorial Scientific Computing, Edited by U.
Naumann and O. Schenk, Chapman-Hall CRC Computational Science.

136



Aachener Informatik-Berichte

This list contains all technical reports published during the past three years. A complete

list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007

2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,
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