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Abstract

In [4, 14] we presented an approach to prove termination of non-recursive Java Bytecode (JBC) pro-

grams automatically. Here, JBC programs are first transformed to finite termination graphs which

represent all possible runs of the program. Afterwards, the termination graphs are translated to

term rewrite systems (TRSs) such that termination of the resulting TRSs implies termination

of the original JBC programs. So in this way, existing techniques and tools from term rewriting

can be used to prove termination of JBC automatically. In this paper, we improve this approach

substantially in two ways:

(1) We extend it in order to also analyze recursive JBC programs. To this end, one has to

represent call stacks of arbitrary size.

(2) To handle JBC programs with several methods, we modularize our approach in order to re-

use termination graphs and TRSs for the separate methods and to prove termination of the

resulting TRS in a modular way.

We implemented our approach in the tool AProVE. Our experiments show that the new contri-

butions increase the power of termination analysis for JBC significantly.

1 Introduction

While termination of TRSs and logic programs was studied for decades, recently there have

also been many results on termination of imperative programs (e.g., [3, 5, 6, 7]). However,

these methods do not re-use the many existing termination techniques for TRSs and declar-

ative languages. Therefore, in [4, 14] we presented the first rewriting-based approach for

proving termination of a real imperative object-oriented language, viz. Java Bytecode [13].

We only know of two other automated methods to analyze JBC termination, implemented

in the tools COSTA [2] and Julia [15]. They transform JBC into a constraint logic program

by abstracting objects of dynamic data types to integers denoting their path-length (e.g., list

objects are abstracted to their length). While this fixed mapping from objects to integers

leads to high efficiency, it also restricts the power of these methods.

In contrast, in [4, 14] we represent data objects not by integers, but by terms which express

as much information as possible about the objects. For example, list objects are represented

by terms of the form List(t1, List(t2, . . . List(tn, null) . . .)). In this way, we benefit from the fact

that rewrite techniques can automatically generate well-founded orders comparing arbitrary

forms of terms. Moreover, by using TRSs with built-in integers [8], our approach is not only

powerful for algorithms on user-defined data structures, but also for algorithms on pre-defined

data types like integers. To obtain TRSs that are suitable for termination analysis, our

∗ Supported by the DFG grant GI 274/5-3 and the G.I.F. grant 966-116.6.



2 Modular Termination Proofs of Recursive JBC Programs by Term Rewriting

approach first transforms a JBC program into a termination graph which represents all

possible runs of the program. These graphs handle all aspects of JBC that cannot easily be

expressed in term rewriting (e.g., side effects, cyclic data objects, object-orientation, etc.).
Afterwards, a TRS is generated from the termination graph. As proved in [4, 14], termination
of this TRS implies termination of the original JBC program.

We implemented this approach in our tool AProVE [9] and in the International Termination
Competitions,1 AProVE achieved competitive results compared to Julia and COSTA.

However, a significant drawback was that (in contrast to techniques that abstract objects
to integers [2, 7, 15]), our approach in [4, 14] could not deal with recursion. The problem is
that for recursive methods, the size of the call stack usually depends on the input arguments.
Hence, to represent all possible runs, this would lead to termination graphs with infinitely
many states (since [4, 14] used no abstraction on call stacks). An abstraction of call stacks is
non-trivial due to possible aliasing between references in different stack frames.

In the current paper, we solve these problems. Instead of directly generating a termination
graph for the whole program as in [4, 14], in Sect. 2 we construct a separate termination
graph for each method. These graphs can be combined afterwards. Similarly, one can also
combine the TRSs resulting from these “method graphs” (Sect. 3). As demonstrated by our
implementation in AProVE (Sect. 4), our new approach has two main advantages over [4, 14]:

(1) We can now analyze recursive methods, since our new approach can deal with call stacks
that may grow unboundedly due to method calls.

(2) We obtain a modular approach, because one can re-use a method graph (and the rewrite
rules generated from it) whenever the method is called. So in contrast to [4, 14], now we
generate TRSs that are amenable to modular termination proofs.

See the appendix for all proofs, and [1] for experimental details and our previous papers
[4, 14] (including proofs).

2 From Recursive JBC to Modular Termination Graphs

To analyze termination of a set of desired initial (concrete) program states, we represent this
set by a suitable abstract state which is the initial node of the termination graph. Then this
state is evaluated symbolically, which leads to its child nodes in the termination graph.

Our approach is restricted to verified2 sequential JBC programs. To simplify the present-
ation in this paper, we exclude arrays, static class fields, interfaces, and exceptions. We also
do not describe the annotations introduced in [4, 14] to handle complex sharing effects. With
such annotations one can for example also model “unknown” objects with arbitrary sharing
behavior as well as cyclic objects. Extending our approach to such constructs is easily possi-
ble and has been done for our implementation in the termination prover AProVE. However, cur-
rently our implementation has only minimal support for features like floating point arithmetic,
strings, static initialization of classes, instances of java.lang.Class, reflection, etc.

Sect. 2.1 presents our notion of states. Sect. 2.2 introduces termination graphs for one
method and Sect. 2.3 shows how to re-use these graphs for programs with many methods.

2.1 States

1 See http://www.termination-portal.org/wiki/Termination_Competition.
2 The bytecode verifier of the JVM [13] ensures certain properties of the code that are useful for our
analysis, e.g., that there is no overflow or underflow of the operand stack.
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final class List {
List n;
public void appE(int i) {

if (n == null ) {
if (i <= 0) return ;
n = new List ();
i--;

}
n.appE(i);

}}

00: aload_0 // load this to opstack
01: getfield n // load this.n to opstack
04: ifnonnull 26 // jump to 26 if n is not null
07: iload_1 // load i to opstack
08: ifgt 12 // jump to 12 if i > 0
11: return // return ( without value )
12: aload_0 // load this to opstack
13: new List // create new List object
16: dup // duplicate top stack entry
17: invokespecial <init > // invoke constructor
20: putfield n // write new List to field n
23: iinc 1, -1 // decrement i by 1
26: aload_0 // load this to opstack
27: getfield n // load this.n to opstack
30: iload_1 // load i to opstack
31: invokevirtual appE // recursive call
34: return // return ( without value )

Consider the recursive method

appE (presented in both Java and

JBC). We use a class List where

the field n points to the next list

element. For brevity, we omitted a field for the value of a list element. The method appE

recursively traverses the list to its end, where it attaches i fresh elements (if i > 0).

o1, i3 | 0 | t :o1,i : i3 | ε
o1:List(n=o2) i3:Z
o2:List(?)

Figure 1 State

Fig. 1 displays an abstract state of appE. A state consists of a

sequence of stack frames and the heap, i.e., States = SFrames
∗

×Heap. The state in Fig. 1 has just a single stack frame “o1, i3 | 0 |

t :o1,i : i3 | ε” which consists of four components. Its first component

o1, i3 are the input arguments, i.e., those objects that are “visible” from outside the analyzed

method. This component is new compared to [4, 14] and it is needed to denote later on which

of these objects have been modified by side effects during the execution of the method. In
our example, appE has two input arguments, viz. the implicit formal parameter this (whose
value is o1) and the formal parameter i with value i3. In contrast to JBC, we also represent
integers by references and adapt the semantics of all instructions to handle this correctly. So
o1, i3 ∈ Refs, where Refs is an infinite set of names for addresses on the heap.

The second component 0 of the stack frame is the program position (from ProgPos),
i.e., the index of the next instruction. So 0 means that evaluation continues with aload_0.

The third component is the list of values of local variables, i.e., LocVar = Refs
∗. To

ease readability, we do not only display the values, but also the variable names. For example,
the name of the first local variable this is shortened to t and its value is o1.

The fourth component is the operand stack to store temporary results, i.e., OpStack =

Refs
∗. Here, ε is the empty stack and “o8, o1” denotes a stack with o8 on top.

So the set of all stack frames is SFrames=InpArgs × ProgPos × LocVar × OpStack.
As mentioned, the call stack of a state can consist of several stack frames. If a method calls
another method, then a new frame is put on top of the call stack.

In addition to the call stack, a state contains information on the heap. The heap is a partial
function mapping references to their value, i.e., Heap = Refs → Integers ∪ Instances ∪

Unknown ∪{null}.We depict a heap by pairs of a reference and a value, separated by “:”.
Integers are represented by intervals, i.e., Integers = {{x ∈ Z | a ≤ x ≤ b} | a ∈

Z∪ {−∞}, b ∈ Z∪ {∞}, a ≤ b}. We abbreviate (−∞, ∞) by Z, [1, ∞) by [> 0], etc. So “i3 :

Z” means that any integer can be at the address i3. Since current TRS tools cannot handle
32-bit int-numbers, we treat all numeric types like int as the infinite set of all integers.

To represent Instances (i.e., objects) of some class, we store their type and the values of
their fields, i.e., Instances = Classnames ×(FieldIDs → Refs). Classnames contains
the names of all classes. FieldIDs is the set of all field names. To prevent ambiguities, in
general the FieldIDs also include the respective class name. For all (cl, f) ∈ Instances,
the function f is defined for all fields of cl and of its superclasses. Thus, “o1 : List(n = o2)”
means that at the address o1, there is a List object whose field n has the value o2.

Unknown = Classnames ×{?} represents null and all tree-shaped objects for which
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we only have type information. In particular, Unknown objects are acyclic and do not

share parts of the heap with any objects at the other references in the state. For example,

“o2 : List(?)” means that o2 is null or an instance of List (or a subtype of List).

Every input argument has a boolean flag, where false indicates that it may have been

modified (as a side effect) by the current method. Moreover, we store which formal parameter
of the method corresponds to this input argument. So in Fig. 1, the full input arguments are
(o1, lv0,0, true) and (i3, lv0,1, true). Here, lvi,j is the position of the j-th local variable in
the i-th stack frame. When the top stack frame (i.e., frame 0) is at program position 0 of a
method, then its 0-th and 1-st local variables (at positions lv0,0 and lv0,1) correspond to
the first and second formal parameter of the method. Formally, InpArgs = 2Refs × SPos ×B.

A state position π ∈ SPos(s) is a sequence starting with lvi,j , osi,j (for operand stack
entries), or ini,τ (for input arguments (r, τ, b) in the i-th stack frame), followed by a sequence
of FieldIDs. This sequence indicates how to access a particular object.

◮ Definition 1 (State Positions). Let s = (〈fr0, . . . , frn〉, h) ∈ States where fr i = (ini, ppi,

lvi, osi). Then SPos(s) is the smallest set containing all the following sequences π:

π = lvi,j where 0 ≤ i ≤ n, lvi = 〈l0, . . . , lm〉, 0 ≤ j ≤ m. Then s|π is lj .
π = osi,j where 0 ≤ i ≤ n, osi = 〈o0, . . . , ok〉, 0 ≤ j ≤ k. Then s|π is oj .
π = ini,τ where 0 ≤ i ≤ n and (r, τ, b) ∈ ini. Then s|π is r.
π = π′ v for some v ∈ FieldIDs and some π′ ∈ SPos(s) where h(s|π′) = (cl, f) ∈

Instances and where f(v) is defined. Then s|π is f(v).

The references in the state s are defined as Ref (s) = {s|π | π ∈ SPos(s)}.

So for the state s in Fig. 1, we have s|lv0,0
= s|in0,lv0,0

= o1, s|lv0,0 n = s|in0,lv0,0
n = o2, etc.

2.2 Termination Graphs for a Single Method

In Fig. 2, we construct the termination graph of appE. The state in Fig. 1 is its initial state
A, i.e., we analyze termination of appE for acyclic lists of arbitrary length and any integer.

In A, aload_0 loads the value of the 0-th local variable this on the operand stack. So
A is connected by an evaluation edge to a state with program position 1 (omitted from
Fig. 2 due to space reasons, i.e., dotted arrows abbreviate several steps). Then “getfield

n” replaces o1 on the operand stack by the value o2 of its field n, resulting in state B. The
value List(?) of o2 does not provide enough information to evaluate ifnonnull. Thus, we
perform an instance refinement [4, Def. 5] resulting in C and D, i.e., a case analysis whether
o2’s value is null. Refinement edges are denoted by dashed lines. In C, we assume that o2’s
value is not null. Thus, we replace o2 by a fresh3 reference o4, which points to List(n = o5).
Hence, we can now evaluate ifnonnull and jump to instruction 26 in state M .

In D, we assume that o2’s value is null , i.e., “o1 : List(n = o2)” and “o2 : null”. To
ease the presentation, in such states we simply replace all occurrences of o2 with null . After
evaluating the instruction “ifnonnull 26”, in the next state (which we omitted from Fig. 2
for space reasons), the instruction “iload_1” loads the value of i on the operand stack. This
results in state E. Now again we do not have enough information to evaluate ifgt. Thus,
we perform an integer refinement [4, Def. 1], leading to states F (if i <= 0) and H.

In F , we evaluate ifgt, leading to G. We label the edge from F to G with the condition
i6 ≤ 0 of this case. This label will be used when generating a TRS from the termination

3 We rename references that are refined to ease the formal definition of the refinements, cf. [4].
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o1, i3 | 0 | t :o1,i : i3 | ε
o1:List(n=o2) i3:Z
o2:List(?)

A

o1, i3 | 4 | t :o1,i : i3 | o2

o1:List(n=o2) i3:Z
o2:List(?)

B

o1, i3 | 4 | t :o1,i : i3 | o4

o1:List(n=o4) i3:Z
o4:List(n=o5) o5:List(?)

C
o1, i3 | 4 | t :o1,i : i3 | null

o1:List(n=null ) i3:Z

D

o1, i3 | 8 | t :o1,i : i3 | i3

o1:List(n=null ) i3:Z

E

o1, i6 | 8 | t :o1,i : i6 | i6

o1:List(n=null ) i6: [≤ 0]

F

o1, i6 | 11 | t :o1,i : i6 | ε
o1:List(n=null ) i6: [≤ 0]

G

o1, i7 | 8 | t :o1,i : i7 | i7

o1:List(n=null ) i7: [> 0]

H
o1, i7 | 12 | t :o1,i : i7 | ε
o1:List(n=null ) i7: [> 0]

I

o1, i7 | 20 | t :o1,i : i7 | o8, o1

o1:List(n=null ) i7: [> 0]
o8:List(n=null )

J

o1, i7 | 23 | t :o1,i : i7 | ε
o1:List(n=o8) i7: [> 0]
o8:List(n=null )

K

o1, i7 | 26 | t :o1,i : i8 | ε
o1:List(n=o8) i8: [≥ 0]
o8:List(n=null ) i7: [> 0]

L

o1, i3 | 26 | t :o1,i : i3 | ε
o1:List(n=o4) i3:Z
o4:List(n=o5) o5:List(?)

M

o1, i9 | 26 | t :o1,i : i10 | ε
o1:List(n=o4) i9:Z i10:Z
o4:List(n=o5) o5:List(?)

N

o1, i9 | 31 | t :o1,i : i10 | i10,o4

o1:List(n=o4) i9:Z i10:Z
o4:List(n=o5) o5:List(?)

O

o4, i10 | 0 | t :o4,i : i10 | ε
o1, i9 | 34 | t :o1,i : i10 | ε
o1:List(n=o4) i9:Z i10:Z
o4:List(n=o5) o5:List(?)

Po4, i10 | 0 | t :o4,i : i10 | ε
o4:List(n=o5) i10:Z
o5:List(?)

Q

o11, i12 | 11 | t :o11,i : i12 | ε
o1, i9 | 34 | t :o1,i : i12 | ε
o1:List(n=o11) i9:Z
o11:List(n=null ) i12: [≤0]

R

o1, i9 | 34 | t :o1,i : i12 | ε
o1:List(n=o11) i9:Z
o11:List(n=null ) i12: [≤0]

S

o14, i13 | 34 | t :o14,i : i15 | ε
o1, i9 | 34 | t :o1,i : i13 | ε
o1:List(n=o14) i9:Z
o14:List(n=o16) i13:Z
o16:List(n=null ) i15: [≤0]

T

o1, i9 | 34 | t :o1,i : i13 | ε
o1:List(n=o14) i9:Z
o14:List(n=o16) i13:Z
o16:List(n=null )

U

o1, i9 | 34 | t :o1,i : i13 | ε
o1:List(n=o14) i9:Z
o14:List(n=o16) i13:Z
o16:List(?)

V

o17, i19 | 34 | t :o17,i : i21 | ε
o1, i9 | 34 | t :o1,i : i19 | ε
o1:List(n=o17) i9:Z i21:Z
o17:List(n=o18) i19:Z
o18:List(n=o20) o20:List(?)

W o1, i9 | 34 | t :o1,i : i19 |ε
o1:List(n=o17) o20:List(?)
o17:List(n=o18) i19:Z
o18:List(n=o20) i9:Z

X

i6 ≤0

i7 > 0

i8 = i7 − 1

with P

with P

with P

Figure 2 Termination Graph of appE

graph. States like G that have only a single stack frame which is at a return position are

called return states. Thus, we reach a program end, denoted by �. From H, we jump to

instruction 12 in I and label the edge with i7 > 0. In I, o1 is pushed on the operand stack.

Afterwards, we create another list element o8, where we skipped the constructor call in Fig. 2.

In K, o8 has been written to the field n of o1. This is a side effect on an object that is visible

from outside the method (since o1 is an input argument). Hence, in K we set the boolean

flag for o1 to false (depicted by crossing out the input argument o1).

In L, the value of the 1-st local variable i is decremented by 1. In contrast to JBC,

we represent primitive data types by references. Hence, we introduce a fresh reference i8,

pointing to the adapted value. Since i7’s value did not change, i7 is not crossed out.

State L is similar to the state M we obtained from the other branch of our first refinement.

To simplify the graph, we create a generalized state N , which represents a superset of all

concrete states represented by L or M . N is almost like M (up to renaming of references)

and only differs in the information about input arguments, which is taken from L. We draw
instance edges (double arrows) from L and M to N and only consider N in the remainder.

In O, we have loaded this.n and i on the operand stack and invoke appE on these values.
So in P , a second stack frame is pushed on top of the previous one. States like P that contain
at least two frames where the top frame is at the start of a method are call states.
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We now introduce a new approach to represent call stacks of arbitrary size by splitting up

call stacks. Otherwise, for recursive methods the call stack could grow unboundedly and we

would obtain an infinite termination graph. So P has a call edge (thick arrow) to Q which

only contains P ’s top stack frame. Since Q is identical to A (modulo renaming), we do not

have to analyze appE again, but simply draw an instance edge from Q to A.

Up to now A only represented concrete states where appE was called “directly”. However,

now A can also be reached from a “method call” in P . Hence, now A and the other abstract

states s of appE’s termination graph also represent states where appE was called “recursively”,

i.e., where below the stack frames of s, one has the stack frames of P (only P ’s top frame

is replaced by the frames of s).4 For each return state we now consider two cases: Either

there are no further frames below the top frame (then one reaches a leaf of the termination

graph) or else, there are further frames below the top (which result from the method call

in P ). Hence, for every return state like G, we now create an additional successor state R

(the context concretization of G with P ), connected by a context concretization edge (a thick

dotted arrow). R has the same stack frame as G (up to renaming), but below we add the

call stack of P (without P ’s top frame that corresponded to the method call).

In R, appE’s recursive call has just reached the return statement at index 11. Here, we

identified o1 and i6 from state G with o4 and i10 from P and renamed them to o11 and i12.

We now consider which information we have about R’s heap. According to state G, the input

arguments of appE’s recursive call were not modified during the execution of this recursive

call. Thus, for the input arguments o11 and i12 in R, we can use both the information on

o1 and i6 in G and on o4 and i10 in P . According to G, o1 is a list of length 1 and i6 ≤ 0.

According to P , o4 has at least length 1 and i10 is arbitrary. Hence, in R we can take the

intersection of this information and deduce that o11 has length 1 and i12 ≤ 0. (So in this

example, the intersection of G’s and P ’s information coincides with the information in G.)

When constructing termination graphs, context concretization is only needed for return

states. But to formulate Thm. 3 on the soundness of termination graphs later on, in Def. 2

we introduce context concretization for arbitrary states s = (〈fr0, . . . , frn〉, h). So s re-

sults from evaluating the method in the bottom frame frn (i.e., frn−1 was created by a call

in frn, frn−2 was created by a call in frn−1, etc.). Context concretization of s with a call

state s = (〈fr0, . . . , frm〉, h) means that we consider the case where frn results from a call in

fr1. Thus, the top frame fr0 of s is at the start of some method and the bottom frame frn of

s must be at an instruction of the same method. Moreover, for all input arguments (r, τ, b) in

fr0 there must be a corresponding input argument (r, τ, b) in frn.
5 To ease the formalization,

let Ref (s) and Ref (s) be disjoint. For instance, if s is G and s is P , we can mark the

references by G and P to achieve disjointness (e.g., oG
1 ∈ Ref (G) and oP

1 ∈ Ref (P )).

Then we add the frames fr1, . . . , frm of the call state s below the call stack of s to obtain

a new state s̃ with the call stack 〈fr0σ, . . . , frnσ, fr1σ, . . . , frmσ〉. The identification substi-

tution σ identifies every input argument r of fr0 with the corresponding input argument r

of frn. If the boolean flag for the input argument r in s is false, then this object may have

changed during the evaluation of the method and in s̃, we should only use the information

from s. But if the flag is true, then the object did not change. Then, both the information in

s and in s about this object is correct and for s̃, we take the intersection of this information.

4 For example, A now represents all states with call stacks 〈frA, frP
1

, frP
1

, . . . , frP
1

〉 where frA is A’s stack

frame and frP
1

, frP
1

, . . . , frP
1
are copies of P ’s bottom frame (in which references may have been renamed).

So A represents states where appE was called within an arbitrary high context of recursive calls.
5 This obviously holds for all input arguments corresponding to formal parameters of the method, but
Sect. 2.3 will illustrate that sometimes fr

0
may have additional input arguments.
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In our example, σ(oG
1 ) = σ(oP

4 ) = oR
11 and σ(iG

6 ) = σ(iP
10) = iR

12. Since the flags of the input

arguments oG
1 and iG

6 are true, for oR
11 and iR

12, we intersect the information from G and P .

If we identify r and r, and both point to Instances, then we may also have to identify

the references in their fields. To this end, we define an equivalence relation ≡ ⊆ Refs × Refs

where “r ≡ r” means that r and r are identified. Let r ≡ r and let r be no input argument in

s with the flag false. If r points to (cl, f) in s and r points to (cl, f) in s, then all references

in the fields v of cl and its superclasses also have to be identified, i.e., f(v) ≡ f(v).

To illustrate this in our example, note that we abbreviated the information on G’s heap

in Fig. 2. In reality we have “oG
1 : List(n = oG

2 )”, “o
G
2 : null”, and “iG

6 : [≤ 0]”. Hence, we

do not only obtain iG
6 ≡ iP

10 and oG
1 ≡ oP

4 , but since oG
1 ’s boolean flag is not false, we also

have to identify the references at the field n of the object, i.e., oG
2 ≡ oP

5 .

Let ρ be an injective function that maps each ≡-equivalence class to a fresh reference. We

define the identification substitution σ as σ(r) = ρ([r]≡) for all r ∈ Ref (s) ∪ Ref (s). So we

map equivalent references to the same new reference and we map non-equivalent references to

different references. To construct s̃, if r ∈ Ref (s) points to an object which was not modified
by side effects during the execution of the called method (i.e., where the flag is not false),
we intersect all information in s and s on the references in [r]≡. For all other references in
Ref (s) resp. Ref (s), we only take the information from s resp. s and apply σ.

In our example, we have the equivalence classes {oG
1 , oP

4 }, {oG
2 , oP

5 }, {iG
6 , iP

10}, {oP
1 },

and {iP
9 }. For these classes we choose the new references oR

11, oR
2 , iR

12, oR
1 , iR

9 , and obtain
σ = {oG

1 /oR
11, oP

4 /oR
11, oG

2 /oR
2 , oP

5 /oR
2 , iG

6 /iR
12, iP

10/iR
12, oP

1 /oR
1 , iP

9 /iR
9 }. The information for oR

11,
oR
2 , and iR

12 is obtained by intersecting the respective information from G and P . The
information for oR

1 and iR
9 is taken over from P (by applying σ).

Def. 2 also introduces the concept of intersection formally. If r ∈ Refs(s), r ∈ Refs(s),
and h resp. h are the heaps of s resp. s, then intuitively, h(r) ∩ h(r) consists of those
values that are represented by both h(r) and h(r). For example, if h(r) = [≥ 0] = (−1, ∞)

and h(r) = [≤ 0] = (−∞, 1), then the intersection is (−1, 1) = [0, 0]. Similarly, if h(r) or
h(r) is null, then their intersection is again null. If h(r), h(r) are Unknown instances of
classes cl1, cl2, then their intersection is an Unknown instance of the more special class
min(cl1, cl2). Here, min(cl1, cl2) = cl1 if cl1 is a (not necessarily proper) subtype of cl2 and
min(cl1, cl2) = cl2 if cl2 is a subtype of cl1. Otherwise, cl1 and cl2 are called orthogonal. If
h(r) ∈ Unknown and h(r) ∈ Instances, then their intersection is from Instances using
the more special type. Finally, if both h(r), h(r) ∈ Instances with the same type, then their
intersection is again from Instances. For the references in its fields, we use the identification
substitution σ that renames equivalent references to the same new reference.

Note that one may also have to identify different references in the same state. For
example, s could have the input arguments (r, τ1, b) and (r, τ2, b) with the corresponding
input arguments (r1, τ1, b1) and (r2, τ2, b2) in s. Then r ≡ r1 ≡ r2. Note that if r1 Ó= r2
are references from the same state where h(r1) ∈ Instances, then they point to different
objects (i.e., then h(r1) ∩ h(r2) is empty). Similarly, if h(r1), h(r2) ∈ Unknown, then they
also point to different objects or to null (i.e., then h(r1) ∩ h(r2) is null).

◮ Definition 2 (Context Concretization). Let s = (〈fr0, . . . , frn〉, h) and let s = (〈fr0, . . . ,

frm〉, h) be a call state where frn and fr0 correspond to the same method. (So fr0 is at the
start of the method and frn can be at any position of the method.) Let inn resp. in0 be the
input arguments of frn resp. fr0, and let Ref (s) ∩ Ref (s) = ∅. For every input argument
(r, τ, b) ∈ in0 there must be a corresponding input argument (r, τ, b) ∈ inn (i.e., with the same
position τ), otherwise there is no context concretization of s with s. Let ≡ ⊆ Refs × Refs

be the smallest equivalence relation which satisfies the following two conditions:
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if (r, τ, b) ∈ in0 and (r, τ, b) ∈ inn, then r ≡ r.

if r ∈ Ref (s), r ∈ Ref (s), r ≡ r, and there is no (r, τ, false) ∈ inn, then h(r) = (cl, f) and

h(r) = (cl, f) implies that f(v) ≡ f(v) holds for all fields v of cl and its superclasses.

Let ρ : Refs /≡ → Refs be an injective mapping to fresh references /∈ Ref (s) ∪ Ref (s) and

let σ(r) = ρ([r]≡) for all r ∈ Ref (s) ∪ Ref (s). Then the context concretization of s with s is

the state s̃ = (〈fr0σ, . . . , frnσ, fr1σ, . . . , frmσ〉, h̃). Here, we define h̃(σ(r)) to be

h(r1)∩ . . .∩h(rk)∩h(r1)∩ . . .∩h(rd), if [r]≡ ∩Ref (s) = {r1, . . . , rk}, [r]≡ ∩Ref (s) = {r1,

. . . , rd}, and there is no input argument (ri, τ, false) ∈ inn

h(r1) ∩ . . . ∩ h(rk), if [r]≡ ∩ Ref (s) = {r1, . . . , rk}, and there is an (ri, τ, false) ∈ inn

If the intersection is empty, then there is no concretization of s with s. Moreover, whenever

there is an input argument (r, τ, b) ∈ in0 with corresponding input argument (r, τ, false) ∈ inn,

then for all input arguments (r′, τ ′, b
′
) in lower stack frames of s where r′ reaches6 r in h,

the flag b
′
must be replaced by false when creating the context concretization s̃. In other

words, in the lower stack frame of s̃, we then have the input argument (r′σ, τ ′, false).

Finally, for all s1, . . . , sk ∈ {s, s} where hi is the heap of si, and for all pairwise different
references r1, . . . , rk with ri ∈ Ref (si) where r1 ≡ . . . ≡ rk, we define h1(r1)∩ . . . ∩ hk(rk) to
be h1(r1)σ if k = 1. Otherwise, h1(r1) ∩ . . . ∩ hk(rk) is

(max(a1, . . . , ak),min(b1, . . . , bk)), if all hi(ri) = (ai, bi) ∈ Integers and max(a1, . . . ,

ak) + 1 < min(b1, . . . , bk)

null, if all hi(ri) ∈ Unknown ∪{null} and at least one of them is null

null, if all hi(ri) ∈ Unknown and there are j Ó= j′ with sj = sj′

null, if k = 2, h1(r1) = (cl1, ?), h2(r2) = (cl2, ?) and cl1, cl2 are orthogonal
(min(cl1, cl2), ?), if k = 2, s1 Ó= s2, h1(r1) = (cl1, ?), h2(r2) = (cl2, ?), and cl1, cl2 are not
orthogonal
(cl, f), if k = 2, s1 Ó= s2, h1(r1) = (cl, f1), h2(r2) = (cl, f2) ∈ Instances. Here,
f(v) = σ(f1(v)) = σ(f2(v)) for all fields v of cl and its superclasses.
(min(cl1, cl2), f), if k = 2, s1 Ó= s2, h1(r1) = (cl1, ?), h2(r2) = (cl2, f2), and cl1, cl2 are
not orthogonal. Here, f(v) = σ(f2(v)) for all fields v of cl2 and its superclasses. If cl1 is
a subtype of cl2, then for those fields v of cl1 and its superclasses where f2 is not defined,
f(v) returns a fresh reference rv where h̃(rv) = (−∞, ∞) if the field v has an integer
type and h̃(rv) = (clv, ?) if the type of the field v is some class clv. The case where
h1(r1) ∈ Instances and h2(r2) ∈ Unknown is analogous.

In all other cases, h1(r1) ∩ . . . ∩ hk(rk) is empty.

We continue with constructing appE’s termination graph. When evaluating R, the top
frame is removed from the call stack and due to the lower stack frame, we now reach a
new return state S. As above, for every return state, we have to create a new context
concretization T which is like the call state P , but where P ’s top stack frame is replaced by
the stack frame of the return state S. We use an identification substitution σ which maps
oS
1 and oP

4 to oT
14, iS

9 and iP
10 to iT

13, iS
12 to iT

15, oS
11 to oT

16, oP
1 to oT

1 , and iP
9 to iT

9 . The value
of oT

14 (i.e., oS
1 and oP

4 ) may have changed during the execution of the top frame (as oS
1 is

crossed out). Hence, we only take the value from S, i.e., oT
14 is a list of length 2. For iT

13, we
intersect the information on iS

9 and on iP
10. The information on iT

15 is taken from iS
12 and the

information on oT
1 resp. iT

9 is taken from oP
1 resp. iP

9 (where σ is applied).

6 We say that r′ reaches r in h iff there is a position π1 π2 ∈ SPos(s) such that s|π1
= r′ and s|π1 π2

= r.
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When evaluating T , the top frame is removed and we reach a new return state U . If we

continued in this way, we would perform context concretization on U again, etc. Then the

construction would not finish and we would get an infinite termination graph.

To obtain finite graphs, we use the heuristic to generalize all return states with the same

program position to one common state, i.e., only one of them may have no outgoing instance

edge. Then this generalized state can be used instead of the original ones. In S, this is a list

of length 2, whereas in U , this has length 3. Moreover, i ≤ 0 in S, whereas i is arbitrary in

U . Therefore, we generalize S and U to a new state V where this has length ≥ 2 and i is

arbitrary. Now T and U are not needed anymore and could be removed.

As V is a return state, we have to create a new successor W by context concretization,

which is like the call state P , but where P ’s top frame is replaced by V ’s frame (analogous

to the construction of T ). Evaluating W leads to X, which is an instance of V . Thus, we

draw an instance edge from X to V and the termination graph construction is finished.

In general, a state s′ is an instance of a state s (denoted s′ ⊑ s) if all concrete states

represented by s′ are also represented by s. For a formal definition of “⊑”, we refer to [4,

Def. 3] and [14, Def. 2.3]. The only condition that has to be added to this definition is that

for every input argument (r′, τ, b′) in the i-th frame of s′, there must also be a corresponding

input argument (r, τ, b) in the i-th frame of s, where b′ = false implies b = false.

However in [4, 14], s′ ⊑ s only holds if s′ and s have the same call stack size. In contrast,

we now also allow larger call stacks in s′ and define s′ ⊑ s iff a state s̃ can be obtained by
repeated context concretization from s, where s′ and s̃ have the same call stack size and
s′ ⊑ s̃. For example, P ⊑ A, although P has two and A only has one stack frame, since
context concretization of A (with P ) yields a state Ã which is a renaming of P (thus, P ⊑ Ã).

2.3 Termination Graphs for Several Methods

static void cappE (int j) {
List a = new List ();
if (j > 0) {

a.appE(j);
while (a.n == null ) {}

}}

Termination graphs for a method can be re-used whenever
the method is called. To illustrate this, consider a method
cappE which calls appE. It constructs a new List a, checks
if the formal parameter j is > 0, and calls a.appE(j) to
append j elements to a. Then, if a.n is null, one enters a

non-terminating loop. But as j > 0, our analysis can detect that after the call a.appE(j),
the list a.n is not null. Hence, the loop is never executed and cappE is terminating.

i1 | 14 | j : i1,a :o2 | i1, o2

o2:List(n=null ) i1: [>0]

A′

o2, i1 | 0 | t :o2,i : i1 | ε
i1 | 17 | j : i1,a :o2 | ε
o2:List(n=null ) i1: [>0]

B′

appE

. . .
G

. . .
V

o4, i3 | 34 | t :o4,i : i7 | ε
i3 | 17 | j : i3,a :o4 | ε
o4:List(n=o5) i3: [>0]
o5:List(n=o6) o6:List(?)

C′

i1 > 0

with B′

In cappE’s termination graph, after constructing the new
List and checking j > 0, one reaches A′. The call of appE

leads to the call state B′, whose top frame is at position 0 of
appE. As in the step from P to Q in Fig. 2, we now split the
call stack. The resulting state (with only B′’s top frame) is con-
nected by an instance edge to the initial state A of appE’s
termination graph, i.e., we re-use the graph of Fig. 2. Recall
that for every call state s that calls appE and each return state s

in appE’s termination graph, we perform context concretization
of s with s. In fact, one can restrict this to return states s

without outgoing instance edges (i.e., to G and V ).
Now we have another call state B′ which calls appE. G

has no context concretization with B′, as the second input
argument is ≤ 0 in G and > 0 in B′ (i.e., the intersection is empty). Context concretization
of V with B′ yields state C ′. Here, iC′

3 results from intersecting iV
9 and iB′

1 , whereas oC′

4 is
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taken over from oV
1 (thus in C ′, a.n is not null and hence, the while loop is not executed).7

To define termination graphs formally, in [4, Def. 6] we extended JBC-evaluation to

abstract states, i.e., “s
SyEv
−→ s′” means that s symbolically evaluates to s′. We now extend

[4, Def. 6] to handle input arguments. Input arguments remain unchanged by symbolic

evaluation, except when evaluating putfield or invoking a method. If evaluation of a

putfield instruction changes an object at a position ini,τ π, then we set the boolean flag b

of the input argument (r, τ, b) in the i-th stack frame to false (cf. J
SyEv
−→ K in Fig. 2).

Now we explain how to create the input arguments for new stack frames which are

generated when invoking a method. In general, one may need more input arguments than

the method’s formal parameters. To see this, consider a variant of cappE, where before the

call of appE, we add the instruction “List b = a.n = new List();”. Thus, now a is a list

of length 2 and b also points to a’s second element. Hence, in state A′ we now have the local

variables “j : i1, a :o2, b :o3” where “o2 : List(n = o3)” and “o3 : List(n = null)”. As before,

appE is called with the arguments o2 and i1 and its execution modifies the object at o2 as a

side effect. However, due to this, the object at o3 is modified as well. We have to take this
into account, because after the execution of appE, the object at o3 is still accessible via the
local variable b. So here the execution of a called method has a side effect on objects that
are visible from lower frames of the call stack.

Recall that the purpose of the input arguments is to describe which objects may have
changed (as a side effect) during the execution of the method. Therefore in B′, we now
have to add o3 as an additional input argument when calling appE. More precisely, the
three input arguments of B′ would be (o2, lv0,0, true), (i1, lv0,1, true), and (o3, lv0,0 n, true)

(corresponding to the field n of appE’s first formal parameter).
Consequently, we now have to re-process the termination graph of appE to obtain a

variant where the states have three input arguments. The stack frame of V would then be
“o1, i9, o14, | 34 | t :o1, i : i13 | ε”. Hence, in the context concretization of V with B′ (where
oV
14 is identified with oB′

3 ), the information on oB′

3 is longer valid, but instead one has to use
oV
14. Thus in C ′, the value of b is no longer “o3 : List(n = null)”, but “o5 : List(n = oC′

6 )”,
where oC′

6 ’s value is a copy of V ’s value for oV
16, i.e., List(?).

So for any call state8 s, if there is a number i and a τ ∈ FieldIDs
∗ such that s|lv0,i τ = r,

then (r, lv0,i τ, true) should be included in the input arguments of the top stack frame. The

only exception are references r that are no top references and where all predecessors of r can

also be reached from some formal parameter s|lv0,j
of the called method. The reason is that

then r is only reachable from other input arguments of s and hence, their flags suffice to

indicate whether the object at r has changed. Here, r is a top reference iff s|π = r holds for

some position π with |π| = 1 (i.e., π has the form lvi,j , osi,j , or ini,τ ). A reference r′ is a

predecessor of r iff s|π = r′ and s|π v = r for some π ∈ SPos(s) and some v ∈ FieldIDs.

For P in Fig. 2, o4, i10, and o5 are at positions of the form lv0,i τ . However, only o4 and

i10 must be input arguments (o5 is not at a top position and its only predecessor is o4).

Finally, we can explain how to construct termination graphs in general:

7 When methods modify objects as a side effect, the exact result of this modification is often not expressible
if objects are abstracted to integers. Therefore tools like Julia and COSTA often do not try to express
such modifications and fail if this would have been crucial for the termination proof. Indeed, for cappE’s
termination, one needs information about the object a after it was modified by a.appE(j). Therefore,
while Julia and COSTA can prove termination of appE, they fail on cappE (although in this example, the
effect of the modification would even be expressible when using the path-length abstraction to integers).

8 In fact, this requirement also has to be imposed for initial states of method graphs, i.e., states with just
one stack frame and program position 0 (i.e., at the start of a method).
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Each call state (〈fr0, . . . , frm〉, h) is connected to (〈fr0〉, h) by a call edge.

Each return state s = (〈fr〉, h) has an edge to the program end (ε, h) and context concreti-

zation edges to all context concretizations of s with call states of the termination graph.

For all other states s, if s
SyEv
−→ s′, then we connect s to s′ by an evaluation edge.

If evaluation is impossible, we use integer or instance refinement (using refinement edges).

To get finite graphs,9 we use a heuristic which sometimes introduces more general states

(e.g., when a program position is visited twice). If s′ ⊑ s, then s′ can be connected to s

by an instance edge. However, all cycles of the graph must contain an evaluation edge.

In a termination graph, all nodes except program ends must have outgoing edges.

In [4, Thm. 10] we proved that on concrete states, our notion of symbolic evaluation
SyEv
−→

is equivalent to evaluation in JBC. Thm. 3 shows that symbolic evaluation of abstract states

correctly simulates the evaluation of concrete states (and hence, of JBC).

◮ Theorem 3 (Soundness of Termination Graphs). Let c, c′ be concrete states where c can be

evaluated to c′ (i.e., c
SyEv
−→ c′). If a termination graph contains an abstract state s which

represents c (i.e., c ⊑ s), then the graph has a path from s to a state s′ with c′ ⊑ s′.

Paths in the termination graph that correspond to repeated evaluations of concrete states

are called computation paths. Note that Thm. 3 can be used to prove the soundness of

our approach: Suppose there is an infinite JBC-computation, i.e., an infinite evaluation of

concrete states c1
SyEv
−→ c2

SyEv
−→ . . . If c1 is represented in the termination graph, then by

Thm. 3 there is an infinite computation path in the termination graph. In Thm. 6, we will

show that then the TRS resulting from the termination graph is not terminating.

3 From Modular Termination Graphs to Term Rewriting

We now transform termination graphs into integer term rewrite system (ITRSs) [8]. These are

conditional TRSs where the booleans, integers, standard arithmetic operations ArithOp like

+, −, ∗, /, . . . , and standard relations RelOp like >, <, . . . are pre-defined by an infinite set

of rules PD. For example, PD contains 4 + 2 → 6 and 2 < 3 → true. The rewrite relation

→֒R of an ITRS R is defined as the innermost rewrite relation of R ∪ PD, where all variables

(including extra variables in conditions or right-hand sides of rules) may only be instantiated by

normal forms. So if R contains “f(x) → g(x, y) | x > 2”, then f(4 + 2) →֒R f(6) →֒R g(6, 23).

TRS termination techniques can easily be adapted to ITRSs as well [8].

As in [14, Def. 3.2], a reference r in a state s with heap h is transformed into a term by

the function tr(s, r). If h(r) ∈ Unknown or h(r) is an integer interval of several numbers,

then tr(s, r) is a variable with the name r. If h(r) is a concrete integer like [5, 5], then tr(s, r)

is the corresponding constant 5. If h(r) = null , then tr(s, r) is the constant null.

The main advantage of our rewrite-based approach becomes obvious when transforming

data objects into terms (i.e., when h(r) ∈ Instances). The reason is that such data objects

essentially are terms and hence, our transformation can keep their structure. We use the

class names as function symbols, and the arguments of these symbols represent the values of

fields. So to represent objects of the class List, we use a unary function symbol List whose

argument corresponds to the value of the field n. Thus, o1 in P from Fig. 2 is transformed

9 Indeed, our implementation uses heuristics which guarantee that we automatically generate a finite
termination graph for any JBC program.
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into the term tr(P, o1) = List(List(o5)).
10 However, references r pointing to cyclic objects

are transformed to a variable r in order to represent an “arbitrary unknown” object.

Now we show how to transform states into terms. In [4, 14], for each state s we used a

function symbol fs which had one argument for each top position in the state. In contrast,

to model the call and return of methods, we now encode each stack frame on its own. Then

a state is represented by nesting the terms for its stack frames.

To encode a stack frame (in, pp, lv, os) of s to a term, we use a function symbol fs,pp

whose arguments correspond to the top positions in this frame. To represent the call stack,

fs,pp gets an additional first argument, which contains the encoding of the frame above the

current one, or eos (for “end of stack”) if there is no such frame. So the top stack frame is

always at an innermost position of the form 1 1 . . . 1. Thus, state P is encoded as the term

ts(P ) = fP,34( fP,0(eos, List(o5)
︸ ︷︷ ︸

o4

, i10, List(o5)
︸ ︷︷ ︸

o4

, i10), List(List(o5))
︸ ︷︷ ︸

o1

, i9, List(List(o5))
︸ ︷︷ ︸

o1

, i10)

In Def. 4, for any sequence 〈r1, ..., rk〉, “tr(s, 〈r1, ..., rk〉)” stands for “tr(s, r1), . . . , tr(s, rk)”.

◮ Definition 4 (Transforming States). Let s=(〈fr0, . . . , frn〉, h) with fr i = (ini, ppi, lvi, osi)

and ini = {(ri,0, τi,0, bi,0), . . . , (ri,ki
, τi,ki

, bi,ki
)}, for all i. We define ts(s) = ts(s, n), where

ts(s, i) =

{

fs,ppi

(
ts(s, i − 1), tr(s, 〈ri,0 . . . ri,ki

〉), tr(s, lvi), tr(s, osi)
)

, if i ≥ 0

eos, otherwise

As in [14], the instance relation on states is related to the matching relation on the

corresponding terms. If s′ ⊑ s and the call stack of s has size n, then ts(s) matches the

subterm of ts(s′) that encodes the upper n frames of the call stack. Hence, if one generates

rewrite rules to evaluate ts(s), then they can also be applied to ts(s′). Here, one of course

has to label the function symbols in ts(s) and ts(s′) in the same way. To this end, let tss(s
′)

be a copy of ts(s′) where all symbols are labeled by s instead of s′. Consider Fig. 2, where

P ⊑ A and where the call stacks of P and A have size 2 and 1, respectively. Here, ts(A) =

fA,0(eos, List(o2), i3, List(o2), i3) matches tsA(P )|1 = fA,0(eos, List(o5), i10, List(o5), i10).

To ease presentation,11 we assume that frames of the same method refer to the “same”

input arguments. More precisely, let fr = (pp, in, lv, os) and fr ′ = (pp′, in′, lv′, os′) be frames

with pp and pp′ in the same method. If in = {(r1, τ1, b1), . . . , (rk, τk, bk)}, then we assume

that in′ = {(r′
1, τ1, b′

1), . . . , (r′
k, τk, b′

k)} for the same positions τ1, . . . , τk. When encoding fr

and fr ′ to terms t and t′ in Def. 4, we fix a total order on positions τ1, . . . , τk. Then the

argument positions that correspond to (ri, τi, bi) in t and to (r′
i, τi, b′

i) in t′ are the same.

◮ Lemma 5. Let s′ ⊑ s and let i = |s′| − |s| be the difference of their call stack sizes. Then

there is a substitution σ with ts(s)σ = tss(s
′)|1i . Here, “1i” means “1 1 . . . 1” (i times).

Now we construct ITRSs whose termination implies termination of the original programs.

To this end, we transform the edges of the termination graph into rewrite rules.

If there is an evaluation edge from s to s̃, then we generate the rule ts(s) → ts(s̃) which

rewrites any instance of s to the corresponding instance of s̃. As in [14], if this edge is labeled

10 In general, tr also takes the class hierarchy into account. To simplify the presentation, we refer to [14,
Def. 3.3] for details and use the above representation in the illustrating examples.

11Without this assumption, s′ ⊑ s would not imply that ts(s) matches a subterm of tss(s
′). Instead, one

first would have to expand tss(s
′) by the additional input arguments of s that are missing in s′. The

remaining construction and Thm. 6 are easily adapted accordingly (but it complicates the presentation).
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with o1 = o2 ◦ o3 where ◦ ∈ ArithOp, then in ts(s̃) we replace o1 by tr(s, o2) ◦ tr(s, o3). If

the edge is labeled by o1 ◦ o2 where ◦ ∈ RelOp, then we add the condition tr(s, o1) ◦ tr(s, o2)

to the generated rule. So the edge from H to I in Fig. 2 results in

fH,8(eos, List(null), i7, List(null), i7, i7) → fI,12(eos, List(null), i7, List(null), i7) | i7 > 0

If there is an instance edge from s to s̃, then in the resulting rule we keep all information

that we already have for the specialized state s and continue rewriting with the rules we

already created for s̃. So instead of ts(s) → ts(s̃), we generate the rule ts(s) → tss̃(s). For

example, for the instance edge from L to N , we generate the rule

fL,26(eos, List(List(null)), i7, List(List(null)), i8) → fN,26(eos, List(List(null)), i7, List(List(null)), i8)

Similarly, if there is a refinement edge from s to s̃, then s̃ is a specialized version of s.

These edges represent a case analysis and hence, some instances of s are also instances of s̃,

but others are no instances of s̃. By Lemma 5, we can use pattern matching to perform the

necessary case analysis. Thus, instead of ts(s) → ts(s̃) we generate the rule tss(s̃) → ts(s̃).

As an example, the instance refinement from B to D results in the rule

fB,4(eos, List(null), i3, List(null), i3, null) → fD,4(eos, List(null), i3, List(null), i3, null)

If there is a call edge from s to s̃, then s̃ only contains the top frame of the call stack of

s. Here, we also generate the rule tss(s̃) → ts(s̃). So for the edge from P to Q, we get

fP,0(eos, List(o5), i10, List(o5), i10) → fQ,0(eos, List(o5), i10, List(o5), i10)

Now this rule and the other appE-rules can be applied in terms like fP,34(fP,0(eos, . . .), . . .) to

rewrite the underlined subterm that represents a recursive call of appE. By applying all rules

corresponding to the edges from Q up to P , one then obtains fP,34(fP,34(fP,0(eos, . . .), . . .), . . .).

So the rules resulting from a termination graph can create call stacks of arbitrary size.

For a context concretization edge from s to s̃ with the call-state s, the left-hand side of

the corresponding rule should essentially represent the state where the method in the top

frame of s has been called and its execution reached the return statement in s. So the

left-hand side should be like ts(s), but the subterm at position π = 1|s|−1 (which encodes

the top stack frame of s) is replaced by ts(s). Hence, we obtain ts(s)[ts(s)]π. Note that in

the new state s̃, we used the identification substitution σ for the references from s and s, cf.

Def. 2. Therefore, in the corresponding rewrite rule, we should use the new names of these

references not only on the right-hand side of the rule (which results from encoding s̃), but

also on the left-hand side. In other words, we create the rule (ts(s)[ts(s)]π)σ → ts(s̃).

As an example, let s be the return state V , s be the call state P , and s̃ be the context

concretization W . We abbreviate “List” by “L”. Then for the edge from V to W , we get

fP,34( fV,34(eos, L(L(oW
20)), iW

19 , L(L(oW
20)), iW

21), L(L(oW
5 )), iW

9 , L(L(oW
5 )), iW

19) →

fW,34( fW,34(eos, L(L(oW
20)), iW

19 , L(L(oW
20)), iW

21), L(L(L(oW
20))), iW

9 , L(L(L(oW
20))), iW

19)

Note that on the left-hand side of this rule, for the lower stack frames of P , we still have

the values before the execution of the method (then, o1 had the value L(L(o5)) in P ). The

reason is that when simulating the evaluation of states via term rewriting, our rules only

modify the subterm corresponding to the top stack frame, until the method of the top frame

reaches a return. At that point, we perform all side effects that were caused by the executed
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method and modify the objects in lower stack frames accordingly. Therefore, the above rule

performs the side effect of changing the object at o1 from L(L(o5)) to L(L(L(o20))).12

As explained in [14], to simplify the resulting TRS, one can often merge rules (where
essentially, a rule ℓ → r | b is used to narrow all right-hand sides where it is applicable and
afterwards, the rule is removed). In this way, the termination graph for appE of Fig. 2 is
transformed into the following ITRS. The rules correspond to the paths from state A via D

and F to G (rule (1)), from A via D, H, and P back to A (rule (2)), from A via C and P

back to A (rule (3)), from G to V (rule (4)), and from V via W back to V (rule (5)). To
ease readability, we omitted “eos” and the arguments for local variables and operand stack
entries from the rules. Moreover, we abbreviated “null” by “n”.

fA,0(L(n), i6)→ fG,11(L(n), i6) |i6 ≤ 0 (1)

fA,0(L(n), i7)→ fP,34( fA,0(L(n), i7 − 1), L(L(n)), i7) |i7 > 0 (2)

fA,0(L(L(o5)), i3)→ fP,34( fA,0(L(o5), i3), L(L(o5)), i3) (3)

fP,34( fG,11(L(n), i12), L(L(n)), i9)→ fV,34(L(L(n)), i9) (4)

fP,34( fV,34(L(L(o20)), i19), L(L(o5)), i9)→ fV,34(L(L(L(o20))), i9) (5)

These rules are a natural representation of the original JBC algorithm as a TRS. Rules (1)
and (2) handle the case where the length of the input list is 1 (i.e., n == null). If the integer
parameter i is <= 0, then we immediately return (rule (1)). Otherwise, in rule (2) a new
element is attached to the input list (i.e., now the input list is L(L(n)), and the algorithm
is called recursively with the tail of the list (i.e., again with L(n)) and with i - 1. In rule
(3), the input list has length ≥ 2. Here, the algorithm is called recursively with the tail of
the list, whereas the integer parameter is unchanged. Rules (4) and (5) state that after the
execution of the recursive call n.appE(i), the list that results from this recursive call (e.g.,
L(L(o20)) in rule (5)) is written to the field n of the current list as a side effect (e.g., in rule
(5), the subterm L(o5) in the current list L(L(o5)) is replaced by L(L(o20))).

Termination of this ITRS can easily be proved automatically. In the only recursive rules
(2) and (3), either the number in the second argument or the length of the list in the first
argument of fA,0 decreases. As mentioned before, termination of appE can also be proved
by Julia and COSTA, because here it suffices to compare arguments by their path-length.
However, if lists or other data objects have to be compared in a different way, tools like Julia

and COSTA fail, whereas rewrite techniques can compare arbitrary forms of terms, cf. Sect. 4.
Note that in [4, 14], JBC was transformed into TRSs where defined symbols (except

pre-defined operations on integers and booleans) only occur on root positions. So instead of
a term like fP,34( fA,0(L(n), i7 − 1), L(L(n)), i7) on the right-hand side of rule (2), we would
generate a term fP A(L(n), i7 − 1, L(L(n)), i7) for a new symbol fP A. The disadvantage is that
then it is not possible to re-use TRSs and their termination proofs for auxiliary methods
that are called in the current method (i.e., one cannot prove termination in a modular way).

So for cappE from Sect. 2.3, with our new approach the rule for the call of appE is
fA′,14(. . .) → fB′,17(fA,0(L(n), i1), . . .) and the rule for its return is fB′,17(fV,34(L(L(o6)), i3), . . .)

→ fC′,17(fC′,34(. . .), . . .). The rules for fA,0 and the other function symbols from appE remain

12So for objects that were changed during the execution of the method, the information from s̃ may
not be used on the left-hand side of the resulting rewrite rule. However, one could improve the
generation of the left-hand-sides by allowing to use the information from s̃ for those references which
were not changed by the method (i.e., where the information in s̃ results from the intersection of
the corresponding information in s and s). Then for the edge from G to R, one would obtain a rule

where instead of the left-hand side fP,34(fG,11(. . .), L(L(oR
2 )), iR

9 , L(L(oR
2 )), iR

12) one has the left-hand side

fP,34(fG,11(. . .), L(L(null)), iR
9 , L(L(null)), iR

12). We used this improvement in rule (4) above.
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unchanged and can be re-used. Hence, their (innermost) termination proof can also be

re-used. Since the remaining rules for cappE have no recursion, termination of the cappE-TRS

trivially follows from termination of the appE-TRS. This illustrates the advantages of our

modular approach which leads to TRSs that form hierarchical combinations. Hence, one can

benefit from termination methods like the dependency pair technique that prove innermost

termination of hierarchical combinations in a modular way, cf. [10, 11, 12]. Note that while

COSTA and Julia can prove termination of appE, they fail on cappE.

Using Lemma 5, we can now prove that every computation path in a termination graph

can be simulated by a rewrite sequence with the corresponding ITRS.

◮ Theorem 6 (Soundness of ITRS Translation). If the ITRS corresponding to a termination

graph G is terminating, then G has no infinite computation path.

As explained at the end of Sect. 2.3, by combining Thm. 6 with Thm. 3, we obtain that

termination of the resulting ITRS implies termination of the original JBC program for all

concrete states represented in the termination graph. Of course, the converse does not hold,

i.e., our approach cannot be used to prove non-termination of JBC. Future work will be

concerned with using our termination graphs also for non-termination analysis, as well as for

other analyses like absence of null pointer exceptions and side effect freeness.

4 Experiments and Conclusion

We presented a new approach to prove termination of JBC programs automatically. In contrast
to our earlier work [4, 14], we introduced a technique (based on context concretizations)
that abstracts from the exact form of the call stack. In this way, we can now also analyze
recursive methods, which were excluded in [4, 14]. Moreover, we obtain a modular approach,
since one can now generate termination graphs for different methods separately and re-use
them whenever a method is called. In contrast to [4, 14], we now also synthesize TRSs from
the termination graphs whose termination can be proved in a modular way.

We implemented our new approach in the termination tool AProVE [9] and evaluated it
on a collection of 83 recursive and 133 non-recursive JBC programs. These examples contain
the 172 JBC programs from the Termination Problem Data Base (used in the International
Termination Competition)13 as well as a number of additional typical recursive programs.14

Below, we compare AProVE 2011 (which contains all contributions of this paper), AProVE 2010

(which implements [4, 14]),15 Julia [15], and COSTA [2]. We used a runtime of 2 minutes for

recursion no recursion

Y F T R Y F T R

AProVE 2011 67 0 16 30 108 0 25 27

AProVE 2010 15 3 65 96 103 13 17 23

Julia 57 26 0 3 96 37 0 2

COSTA 47 35 1 6 73 60 0 5

each example. “Yes” indicates
how many examples could be
proved, “Fail” states how often
the tool failed in less than 2
minutes, “T” indicates how many
examples led to a Time-out, and
“R” gives the average Runtime
in seconds for each example.

So due to our new modular approach, AProVE 2011 yields the most precise results for the

13We removed one controversial example whose termination depends on the handling of integer overflows.
14Of course, we also included appE and cappE, and AProVE 2011 easily proves termination of them.
15 In addition, whenever a recursive method is called with fixed inputs, AProVE 2010 tries to evaluate it.
But it cannot prove termination of recursive method for (infinite) sets of possible inputs.
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recursive JBC programs in the collection. (However, there are also several examples where

Julia or COSTA succeed whereas AProVE fails.) On non-recursive programs, AProVE 2010 was

already powerful (but the modularity of our new approach helps in large examples). Of course,

Julia and COSTA are significantly faster than AProVE. This is because Julia and COSTA

use a fixed abstraction from objects to integers, whereas AProVE applies rewrite techniques

to generate (potentially different) suitable well-founded orders in every termination proof.
Nevertheless, the experiments clearly show that rewrite techniques are not only powerful,
but also efficient enough for termination of JBC. So a fruitful approach for the future could
be to couple the rewrite-based approach of AProVE with the technique of Julia and COSTA

to combine their respective advantages. To experiment with our implementation via a web
interface and for details on the experiments, we refer to [1].

Acknowledgement. We are grateful to F. Spoto and S. Genaim for help with the experiments and

to the referees for many helpful suggestions.
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A Proofs for Sect. 2

We first recapitulate the definition of the instance relation on states [4, Def. 3], which we

extend to input arguments as explained in Sect. 2.

◮ Definition 7 (Instance). Let s′ = (〈fr ′
0, . . . , fr ′

n〉, h′) and s = (〈fr0, . . . , frm〉, h). Then s′ is

an instance of s (denoted s′ ⊑ s) iff n ≥ m and there is a state s̃ that can be obtained from
s by (repeated) context concretization with call states from the termination graph, where
s̃ = (〈f̃r0, . . . , f̃rn〉, h̃), f̃r i = (ĩni, p̃pi, l̃vi, õsi), and fr ′

i = (in′
i, pp′

i, lv′
i, os′

i), such that for all
π Ó= π′ ∈ SPos(s′) the following conditions hold:

(a) p̃pi = pp′
i for all 0 ≤ i ≤ n.

(b) if (r′, τ ′, b′) ∈ in′
i, then (r̃, τ ′, b̃) ∈ ĩni and if b′ = false, then b̃ = false.

(c) if s′|π = s′|π′ and h′(s′|π) ∈ Instances ∪ Unknown, then π, π′ ∈ SPos(s̃) and s̃|π =

s̃|π′ .
(d) if s′|π Ó= s′|π′ and π, π′ ∈ SPos(s̃), then s̃|π Ó= s̃|π′ .
(e) if h′(s′|π)∈Integers and π ∈SPos(s̃), then h′(s′|π) ⊆ h̃(s̃|π)∈Integers.
(f) if h′(s′|π) = null and π ∈ SPos(s̃), then h̃(s̃|π) = null or h̃(s̃|π) ∈ Unknown.
(g) if h′(s′|π) = (cl ′, ?) ∈ Unknown and π ∈ SPos(s̃), then

h̃(s̃|π) = (cl, ?) ∈ Unknown and cl ′ is cl or a subtype of cl.
(h) if h′(s′|π) = (cl ′, f ′) ∈ Instances and π ∈ SPos(s̃), then h̃(s̃|π) = (cl, ?)

or h̃(s̃|π) = (cl ′, f) ∈ Instances, where cl ′ must be cl or a subtype of cl.

To prove the soundness of termination graphs (Thm. 3), we need to show that if there is
a concrete state c and an abstract state s in our graph with c ⊑ s, then a direct successor of
s either represents c or the state obtained by evaluating c. In particular, if s is connected
to its successor s̃ by an instance edge (i.e., s ⊑ s̃), we need to ensure that c ⊑ s̃ holds. For
this, we have to show the transitivity of ⊑. To this end, we first prove that ⊑ is stable under
context concretization with the same call state.

◮ Lemma 8 (Stability of ⊑ under Context Concretization). Let s, s′ ∈ States with |s′| = |s| ,

s′ ⊑ s, and let s be a call state. If there is a context concretization s̃′ of s′ with s, then there

is also a context concretization s̃ of s with s, and we have s̃′ ⊑ s̃.

Proof. Let s′ = (〈fr ′
0, . . . , fr ′

n〉, h′), s = (〈fr0, . . . , frn〉, h) and s = (〈fr0, . . . , frm〉, h).
We first prove that there is indeed a context concretization of s with s. Since there exists

a context concretization of s′ with s, fr0 is at position 0 in some method and fr ′
n is at some

position in the same method. By Def. 7(a), frn is at the same position as fr ′
n. Similarly,

for each input argument (r, τ, b) in fr0, there is an input argument (r′, τ, b′) in fr ′
n and by

Def. 7(b), there is also an input argument (r, τ, b) in frn.
To prove that there is a context concretization of s with s, we now need to show that none

of the used intersections are empty. For that, assume that there are π1, . . . , πu ∈ SPos(s)

and π1, . . . , πv ∈ SPos(s) such that s|π1
≡ . . . ≡ s|πu

≡ s|π1
≡ . . . ≡ s|πv

16 Remember
that s′ ⊑ s implies πi ⊑ SPos(s′) for all 1 ≤ i ≤ u, cf. [14, Lemma 4.1]. Furthermore, by
Def. 7(c), (d), and (h), we know that then also s′|π1

≡ . . . ≡ s′|πu
≡ π1 ≡ . . . ≡ πv. From

Def. 7(b) we also have that if there is no input argument (s|πi
, τ, false) of frn, then there

is no input argument (s′|πi
, τ, false) in fr ′

n, i.e., if we need to intersect the values of one

16We assume that s|πi Ó= s|πj for all i, j. If references appear twice, one can always ignore one of the
copies.
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equivalence class for concretizing s, then we also needed to intersect them for concretizing s′.

We now check each of the conditions of Def. 2:

If h(s|πj
) = Vj ∈ Integers, then by Def. 7(e), h′(s′|πj

) = V ′
j ∈ Integers with V ′

j ⊆ Vj .

Let V i = h(s|πi
) and V = V 1 ∩ . . . ∩ V v. Then, as V ′

1 ∩ . . . ∩ V ′
u ∩ V is non-empty, we

know that V1 ∩ . . . ∩ Vu ∩ V is also non-empty.

If h(s|πj
) = null for some j, then by Def. 7(f), h′(s′|πj

) = null. Thus, as h′(s′|π1
) ∩

. . . ∩ h′(s′|πu
) ∩ h(s|π1

) ∩ . . . ∩ h(s|πv
) is non-empty (actually, it is null), we know

that h′(s′|π1
) . . . h′(s′|πu

) ∈ Unknown ∪{null} and thus by Def. 7(f) and (g), also

h(s|π1
) . . . h(s|πu

) ∈ Unknown ∪{null}. Then, h′(s′|π1
)∩ . . . ∩ h′(s′|πu

)∩ h(s|π1
)∩ . . . ∩

h(s|πv
) is also null.

If h(s|π
j
) = null for some j and h′(s′|π1

) ∩ . . . ∩ h′(s′|πu
) ∩ h(s|π1

) ∩ . . . ∩ h(s|πv
)

is non-empty, then h′(s′|π1
) . . . h′(s′|πu

) ∈ Unknown ∪{null} and h(s|π1
) . . . h(s|πu

) ∈

Unknown ∪{null} as before. Then also h′(s′|π1
)∩. . .∩h′(s′|πu

)∩h(s|π1
)∩. . .∩h(s|πv

) =

null .

If h(s|π1
) . . . h(s|πu

), h(s|π1
) . . . h(s|πv

) ∈ Unknown, then the intersection is always non-

empty (it at least contains null ).

If h(s|πj
) = (cl, f) ∈ Instances for some j, then by Def. 7(h) also h′(s′|πj

) = (cl, f ′) ∈

Instances. As the intersection h′(s′|π1
) ∩ . . . ∩ h′(s′|πu

) ∩ h(s|π1
) ∩ . . . ∩ h(s|πv

) is

non-empty, we know that u = 1 and v = 1 and that h(s|π1
) = (cl, ?) ∈ Unknown or

h(s|π1
) = (cl, f) ∈ Instances.

Assume that h(s|π1
) = (cl, ?) ∈ Unknown. Then, as cl and cl were not orthogonal in

the concretization of s′, we know that h(s|π1
) ∩ h(s|π1

) = (min(cl, cl), f̃).

Otherwise, assume h(s|π1
) = (cl, f) ∈ Instances. Then, the intersection is trivially

non-empty.

If h(s|πj
) = (cl, ?) ∈ Unknown for all j and there is a j with h(s|π

j
) = (cl, f) ∈

Instances, then we can conclude, as above, that u = 1 and v = 1 and that h(s|πj
) Ó= null.

Furthermore, h′(s′|π1
) ∈ Unknown ∪ Instances by Def. 7(g) and (h).

Assume that h′(s′|π1
) = (cl ′, ?) ∈ Unknown. Then, as cl ′ is a subtype of cl, we also

know that cl is a subtype of cl.17 Thus, the intersection is non-empty.

Otherwise, assume h′(s′|π1
) = (cl, f ′). Then cl is obviously a subtype of cl and the

intersection is non-empty.

We now need to show that s̃′ ⊑ s̃ holds. For that, we check each of the conditions of Def. 7.

From |s′| = |s|, we conclude |s̃′| = |s̃|. Let s̃′ = (〈f̃r
′

0, . . . , f̃r
′

k〉, h̃′), s̃ = (〈f̃r0, . . . , f̃rk〉, h̃),

f̃r
′

i = (ĩn
′
i, p̃p′

i, l̃v
′

i, õs′
i), f̃r i = (ĩni, p̃pi, l̃vi, õsi) and fr i = (ini, ppi, lvi, osi). Let π Ó= π′ ∈

SPos(s̃′):

(a) p̃p′
i = pp′

i = ppi = p̃pi for all 0 ≤ i ≤ n and p̃p′
i = ppi−n = p̃pi for all n < i < n + m.

(b) If (r̃′, τ, b̃′) ∈ ĩn
′
i for some 0 ≤ i ≤ n, then (r′, τ, b′) ∈ in′

i and by s′ ⊑ s, there is a

(r, τ, b) ∈ ini and consequently also a (r̃, τ, b̃) ∈ ĩni. If b̃′ = b′ = false, then also by s′ ⊑ s,

b = b̃ = false.

If (r̃′, τ, b̃′) ∈ ĩn
′
i for some n < i < n + m, then there is also (r̃, τ, b̃) ∈ ĩni, as both are

derived from (r′, τ, b
′
) ∈ ini−n. If b

′
Ó= b̃′ = false, then r′ reaches some input argument

(r, τ, b) in h that corresponds to an input argument (r′, τ, false) ∈ in′
n. As s′ ⊑ s, there

is a similar input argument (r, τ, false) ∈ inn and thus b̃ was also set to false when

performing the context concretization of s with s.

17Remember that Java does not allow multiple inheritance and we do not consider interfaces in this paper.



M. Brockschmidt, C. Otto, J. Giesl 19

(c) If s̃′|π = s̃′|π′ , h̃′(s̃′|π) ∈ Instances ∪ Unknown and π, π′ ∈ SPos(s′), then either

s′|π = s′|π′ and by s′ ⊑ s also s|π = s|π′ , thus s̃|π = s̃|π′ or

h̃′(s̃′|π) = h′(s′|π) ∩ h(r) and h̃′(s̃′|π′) = h′(s′|π′) ∩ h(r′) with s′|π ≡ s′|π′ . But then, also

s|π ≡ s|π′ and thus s̃|π = s̃|π′ .

If s̃′|π = s̃′|π′ , h̃′(s̃′|π) ∈ Instances ∪ Unknown and π, π′ Ó∈ SPos(s′), then the ref-

erences s̃′|π, s̃′|π′ were created from references at the corresponding positions π, π′ in

s and we had s|π ≡ s|π′ . This means that we either had s|π = s|π′ or there were

τ, τ ′ ∈ SPos(s′) such that s′|τ ≡ s|π and s′|τ ′ ≡ s|π′ . As the positions π, π′ exist in s̃,

we also have τ, τ ′ ∈ SPos(s) and s|τ ≡ s|τ ′ . Consequently, we choose the same fresh

identifiers for both references in the concretization and thus s̃|π = s̃|π′ .

(d) Analogously to (c).

(e) If h̃′(s̃′|π) = Ṽ ′ ∈ Integers and π ∈ SPos(s̃), then h̃(s̃|π) = Ṽ . If π ∈ SPos(s′), then

Ṽ ′ = h′(s′|π)∩ M for some M (where M = Z if there was no intersection involved). Then

Ṽ = h(s|π) ∩ M for that same M and as h′(s′|π) ⊆ h(s|π), we have Ṽ ′ ⊆ Ṽ .

If π Ó∈ SPos(s′), then Ṽ ′ = h(s|π) ∩ M where M = Z or M = h′(s′|τ ) for some

τ ∈ SPos(s′). If τ ∈ SPos(s), then h′(s′|τ ) ⊆ h(s|τ ) and thus, as Ṽ = h(s|π) ∩ M , we

have Ṽ ′ ⊆ Ṽ . If τ Ó∈ SPos(s), then Ṽ = h(s|π) and obviously, Ṽ ′ ⊆ Ṽ .

(f),(g),(h) Analogously to (e).

◭

Using Lemma 8, transitivity of ⊑ can now easily proved by reducing it to the case of

states with call stacks of the same size. (For this case, we proved transitivity of ⊑ already in

[4, Lemma 13].)

◮ Lemma 9 (⊑ transitive). Let s, s′, s′′ ∈ States with s′′ ⊑ s′ and s′ ⊑ s. Then s′′ ⊑ s.

Proof. We have |s′′| ≥ |s′| ≥ |s|. From s′′ ⊑ s′, we can conclude that there is a state s̃′ that

can be obtained by repeated context concretization of s′ such that |s′′| = |s̃′| and s′′ ⊑ s̃′.

Let s̃ be the state resulting from s by performing the same context concretizations. Thus,

|s̃′| ≥ |s̃| and by Lemma 8, we have s̃′ ⊑ s̃.

Hence, by further repeated context concretization of s̃, we can obtain a state ŝ with

|s̃′| = |ŝ| and s̃′ ⊑ ŝ. Hence, we now have |s′′| = |s̃′| = |ŝ| and s′′ ⊑ s̃′ ⊑ ŝ. Thus, [4, Lemma

13] implies s′′ ⊑ ŝ. Since ŝ was obtained by repeated context concretization from s, this also

implies s′′ ⊑ s. ◭

After having shown the soundness of instance edges, we now prove the soundness of

context concretization edges.

◮ Lemma 10 (Soundness of Context Concretization Edges). Let c ⊑ s for a return state s and

c
SyEv
−→ c′. Then there exists a context concretization s̃ of s with a call state s such that c ⊑ s̃.

Proof. As c
SyEv
−→ c′, c cannot be a program end. As the top stack frames of c and s are

at the same program position (i.e., at a return instruction), we obtain |c| ≥ 2 and thus,

|c| > |s|. Hence, according to Def. 7, there exists a state ŝ obtained by repeated context

concretization from s such that |c| = |ŝ| and c ⊑ ŝ. Since |c| > |s|, we must perform at least

one context concretization step from s to ŝ. Let s̃ be the result of performing the first of

these context concretizations on s. Then by Def. 7, we also have c ⊑ s̃. ◭

Next we now prove the soundness of refinement edges. Let c be a concrete state (i.e., a

state where the heap maps all integer references to singleton intervals and no object reference

is mapped to Unknown). If c ⊑ s and s has refinement edges to s1, . . . , sn (i.e., we say that
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{s1, . . . , sn} is a refinement of s), then there is an si with c ⊑ si. We call such refinements

valid. The following two lemmas adapt our proofs for the validity of the integer and the

instance refinement from [4] to the setting of the current paper.

◮ Lemma 11. The integer refinement is valid.

Proof. Let c be a concrete state, c ⊑ s, and let {s1, . . . , sn} be an integer refinement of s.

As c ⊑ s, there is a state s̃ obtained by context concretization steps with s1, . . . , sk from s

such that |c| = |s̃| and c ⊑ s̃. Let hc, h, h̃, h1, . . . , hk be the heaps of c, s, s̃, s1, . . . , sk. We

want to prove that there is an si ∈ {s1, . . . , sn} such that c ⊑ si.

Let r ∈ Refs be the reference on which the refinement was performed and let r1, . . . , rn

be the fresh references used in s1, . . . , sn to replace r in s. Let Π = {π ∈ SPos(s̃) | h̃(s̃|π) =

h(r) ∩ h1(r1,1) ∩ . . . ∩ h1(r1,d1
) ∩ . . . ∩ hk(rk,1) ∩ . . . ∩ hk(rk,dk

)} be the set of positions in

s̃ at which an integer is stored that was created by intersecting h(r) in the concretization

process.18

By [14, Lemma 4.1], c ⊑ s̃ implies Π ⊆ SPos(c). By construction, s̃|π = s̃|π′ for all

π, π′ ∈ Π. Then, by Def. 7(d), we also have c|π = c|π′ and thus we can now choose si by

taking the singleton integer interval hc(c|π) from c at one of these positions and by choosing

the state si ∈ {s1, . . . , sn} whose heap hi satisfies hc(c|π) ⊆ hi(ri). As hc(c|π) is a singleton

interval and the values h1(r1), . . . , hn(rn) are a partition of h(r), such an si exists. Then, we

can define s̃i as the result of applying context concretization of si with the same call states

s1, . . . , sk. This is still possible, because the refinement from s to si did not change program

positions and it also did not change the number of input arguments or the positions used in

input arguments. Furthermore, all intersections are non-empty: Let h̃i be the heap of s̃i. We

only consider the position π from above, as all other values have not changed. In s̃, we had

h̃(s̃|π) = h(r)∩ h1(r1,1)∩ . . . ∩ h1(r1,d1
)∩ . . . ∩ hk(rk,1)∩ . . . ∩ hk(rk,dk

) and hc(c|π) ⊆ h̃(s̃|π).

Thus, hc(c|π) is contained in all sets hj(rj,ℓ) in this intersection. By the choice of si, we

have hc(c|π) ⊆ hi(ri) and thus, the intersection h̃i(s̃i|π) = hi(ri)∩ h1(r1,1)∩ . . . ∩ h1(r1,d1
)∩

. . . ∩ hk(rk,1) ∩ . . . ∩ hk(rk,dk
) is also non-empty, as it at least contains hc(c|π). Therefore,

Def. 7(e) is also satisfied. This implies c ⊑ s̃i ⊑ si. ◭

◮ Lemma 12. The instance refinement is valid.

Proof. Let c be a concrete state, c ⊑ s, and let {s0, . . . , sn} be an instance refinement of

s. As c ⊑ s, there is a state s̃ obtained by context concretization steps from s such that

|c| = |s̃| and c ⊑ s̃. Let hc, h, h̃, h0, . . . , hn be the heaps of c, s, s̃, s0, . . . , sn. We want to

prove that there is an si ∈ {s0, . . . , sn} such that c ⊑ si.

Let r ∈ Refs be the reference on which the refinement was performed and let r1, . . . , rn

be the fresh references used in s1, . . . , sn to replace r in s. So h(r) = (cl, ?) and s1, . . . , sn

result from replacing r by ri where h0(r0) = null and for 1 ≤ i ≤ n, hi(ri) = (cli, fi) where

the cli are all (not necessarily proper) subtypes of cl and fi assigns unknown values to all

fields of cli and its superclasses.

Analogously to Lemma 11, we can construct a set Π of positions that are affected by the
refinement. Here, we do not always intersect the values of s and all call states, since the
input arguments may have the flag false. However, this does not affect the structure of the
set Π. Again, we can conclude that c|π = c|π′ for all π, π′ ∈ Π.

18Remember that integers are immutable in the sense that each change to them creates a fresh reference
(i.e., integer input arguments always have the flag true). Thus, when performing context concretization,
integers are always intersected.
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In the first case, we assume hc(c|π) = null. We show that then we have c ⊑ s0. As

h̃(s̃|π) represents hc(c|π) (i.e., c ⊑ s̃ implies that h̃(s̃|π) is null or in Unknown by Def. 2),

was null or Unknown, we know that by construction all values used in the (repeated)

intersections in the construction of h̃(s̃|π) are also either null or Unknown. Let s̃0 result

from s0 by applying the same context concretization steps that were used to create s̃ from

s. This context concretization exists, since neither program positions nor the names or the

positions of input arguments were changed in the refinement from s to s0. Let h̃0 be the heap

of s̃0. As intersecting null with Unknown or null always results in null , the intersection

is non-empty and we have h̃0(s̃0|π) = null. Accordingly, c ⊑ s̃0 ⊑ s0.

In the second case, we assume hc(c|π) = (clc, fc). By Def. 7(h), clc is a (not necessarily

proper) subtype of cl. Hence, there exists an si with hi(ri) = (cli, fi) and cli = clc.

As h̃(s̃|π) represents hc(c|π), by Def. 2 we can conclude h̃(s̃|π) is (cl, f̃) ∈ Instances or

(c̃l, ?) ∈ Unknown where cl is a subtype of c̃l. Thus, we know that by construction all

values used in the intersection when constructing h̃(s̃|π) were of the form (cl, f) ∈ Instances

or (cl, ?) where cl is a subtype of cl. Let s̃i result from si by applying the same context

concretization steps that were used to create s̃ from s. This context concretization exists,

since neither program positions nor the names or the positions of input arguments were

changed in the refinement from s to si. Let h̃i be the heap of s̃i. As intersecting hi(ri) =

(cl, fi) ∈ Instances always results in Instances of the same type cl again, the intersection

is non-empty and we have h̃i(s̃i|π) = (cl, f̃i). Accordingly, c ⊑ s̃i ⊑ si. ◭

To prove the soundness of call edges, we show that if a call state s has a call edge to s

(i.e., s contains only the top stack frame of s), then this call stack split can be undone by

context concretization of s with the call state s. Hence, s ⊑ s and thus, c ⊑ s implies c ⊑ s

by the transitivity of ⊑ (Lemma 9).

◮ Lemma 13 (Soundness of Call Edges). Let s = (〈fr0, . . . , frn〉, h) be a call state and let

s = (〈fr0〉, h). Then s ⊑ s.

Proof. Context concretization of s with s results in a state that is identical to s (up to

renaming of variables). This implies s ⊑ s by Def. 7. ◭

Now we have proved the soundness of instance, context concretization, refinement, and

call edges. It remains to show the soundness of evaluation edges, i.e., we still have to prove

that our symbolic evaluation can simulate the evaluation of JBC. In other words, we have to

show that whenever c
SyEv
−→ c′ for concrete states where c ⊑ s and where s

SyEv
−→ s′, then we

also have c′ ⊑ s′. For the non-modular case, we already proved this in [4, Lemma 19]. To

extend this to the modular case, one only has to consider references in c which can reach

a reference which can also be reached from the top stack frame. Otherwise the reference’s

value is not influenced by the evaluation step.

Consider a reference r which is both reachable from one of c’s stack frames that is not

explicitly represented by s and from the top stack frame of c. Then we need to prove that

when applying context concretization to s′, then this changed value is correctly propagated

to the stack frames added by the context concretization. We know that if a reference is

reachable from the top frame and from one of the lower stack frames, then this reference (or

a reference which reaches it) was passed to the upper stack frames through the parameters

of method calls. Here, our input arguments play an important role. For every position of

these parameters and the references reachable from them where the position starts in a

lower stack frame, our requirements on the input arguments of top frames ensure that there

is a corresponding input argument. Thus, when an object is modified by the evaluation
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of the method in the top frame, then the modified value is used when performing context

concretization and this modified value is copied to the corresponding positions in the lower

stack frames created by context concretization. Thus, we only have to show for each position

of a manipulated object where the position starts in a lower stack frame, that there is a

corresponding input argument in the top frame. Then, we know by definition of our context

concretization that the modified new value is copied.
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Figure 3 Proof of Lemma 14

The left-hand side of Fig. 3 shows a sketch of the

situation that we have when proving the soundness

of evaluation edges. By c ⊑ s, we know that there

is a context concretization s̃ of s with |s̃| = |c| and

c ⊑ s̃. This state s̃ is constructed by performing k

context concretizations of s with call states s1 . . . sk.

We prove the lemma by by induction on the number

k of these context concretization steps.

We show that we can perform the same concret-

ization on s′ to obtain a state s̃′. Our goal is to show

that c′ ⊑ s̃′ holds. To this end, we consider the states ĉ and ĉ′. These are constructed from

c resp. c′, by removing the stack frames corresponding to the last concretization step with

call state sk, i.e., we simply cut off the bottommost |sk| stack frames. Clearly, we have

ĉ
SyEv
−→ ĉ′ and ĉ ⊑ s (as we only removed some positions from c). Hence, we can apply the

induction hypothesis and conclude that ĉ′ ⊑ s′ holds. We then prove that we can concretize
ĉ′ with sk to obtain c̃′, i.e., that we can re-add those stack frames that were removed in the
construction of ĉ′ from c′ by concretization. We then have |c̃′| = |c′| and prove c′ ⊑ c̃′, from
which we can conclude from the transitivity of ⊑ that c′ ⊑ s′. This situation is presented on
the right-hand side of Fig. 3.

◮ Lemma 14 (Soundness of Symbolic Evaluation). Let c be a concrete state and let c ⊑ s. If

c
SyEv
−→ c′ and s

SyEv
−→ s′, then c′ ⊑ s′.

Proof. For all instructions not modifying the heap, the claim is obvious, as they only concern
the references in local variables or the operand stack. Therefore, we now only consider an
evaluation of the putfield instruction.

As c ⊑ s, there is some s̃ obtained by k concretizations of s with call states s1, . . . , sk such
that |c| = |s̃| and c ⊑ s̃. We prove a slightly stronger statement than just the lemma. More
precisely, we show that not only c′ ⊑ s′, but that we can use the same contexts s1, . . . , sk

to concretize s′ to obtain a s̃′ with c′ ⊑ s̃′. The statement is shown by induction on k. To
simplify the presentation, we assume that c and s have the same input arguments, which can
easily be achieved by adding missing input arguments to c with values taken from s.
Case k = 0:
This was already proved in [4, Lemma 19].
Case k > 0:
Assume that the claim holds for k−1 ≥ 0. Let c = (〈fr0, . . . , frn〉, hc), c′ = (〈fr ′

0, . . . , fr ′
n〉, h′

c).
When repeatedly performing context concretization to transform s to s̃ = (〈f̃r0, . . . , f̃rn〉, h̃s),
we obtain states s = s̃0, s̃1, . . . , s̃k−1, s̃k = s̃ such that s̃i+1 results from context concretization
of s̃i with si+1. Let ŝ = s̃k−1 = (〈f̃r0, . . . , f̃rℓ〉, ĥ). Now let ĉ = (〈fr0, . . . , frℓ〉, hc) be the
“abridged” version of c where we removed the stack frames corresponding to the last context
concretization step from ŝ to s̃. From c ⊑ s̃, we can conclude that also ĉ ⊑ ŝ. For this,
remember that SPos(ĉ) ⊆ SPos(c). For all positions π from SPos(ĉ) ∩ SPos(ŝ), c ⊑ s̃

implies that hc(s|π) is represented by the corresponding value h̃s(s̃|π). However, h̃s(s̃|π)
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is obtained by either copying the value from ĥ(ŝ|π) or by intersecting it with other values.

Thus, hc(s|π) is also represented by the ĥ(ŝ|π) and we have ĉ ⊑ ŝ. As ŝ ⊑ s by construction,

the transitivity of ⊑ (Lemma 9) implies ĉ ⊑ s.

We can construct, similar to ĉ, a state ĉ′ = (〈fr ′
0, . . . , fr ′

ℓ〉, h′
c) that corresponds to the

“abridged” version of c′. Clearly, ĉ
SyEv
−→ ĉ′ follows from c

SyEv
−→ c′. As we only need k − 1

concretization steps on s to obtain a state ŝ with ĉ ⊑ ŝ, we can apply our induction hypothesis

and conclude that ĉ′ ⊑ s′ and that we can concretize s′ with s1 . . . sk−1 to obtain a s̃′
k−1

with ĉ′ ⊑ s̃′
k−1. We now prove that one can concretize ĉ′ with sk to obtain c̃′ and that c′ ⊑ c̃′.

Then, by transitivity, c′ ⊑ s′. Furthermore, we can then apply Lemma 8 to conclude that we

can also concretize s̃′
k−1 (i.e., the result of concretizing s′ with s1 . . . sk−1, which is possible

by our induction hypothesis) with sk to obtain a s̃′
k with c′ ⊑ s̃′

k.

First, we show that that one can perform context concretization of ĉ′ with sk which yields

a state c̃′ with heap h̃′. Let ĥ′, hk, ĥ and h̃′
k−1 be the heaps of ĉ′, sk, ŝ and s̃′

k−1. As sk could

be used to concretize s̃k−1, we know that sk’s top stack frame is at the first program position

of the method of the bottom stack frame of s̃k−1. As ĉ ⊑ s̃k−1, ĉ’s bottom stack frame is

at that same position. Furthermore, the program position of the bottom stack frame of ĉ

does not change when evaluating it to ĉ′. Thus, sk is at the right program position to be

used in the context concretization of ĉ′. Furthermore, by our assumption about the input

arguments of c and s, its input arguments are also represented by ĉ′. Now assume that there

is an ≡ equivalence class {r1, . . . , ru, ru+1, . . . , rm} of references such that r1 . . . ru ∈ Ref (ĉ′)

and ru+1 . . . rm ∈ Ref (sk). If m > 1 and none of them corresponds to an input argument

(ri, τ, false) of fr ′
ℓ, we need to check whether their intersection is empty. However, in this

case, their values were not modified in the evaluation. Let π1, . . . , πu be such that ĉ′|πj
= rj .

Then we also have ĉ|πj
= rj . As ĉ ⊑ ŝ, we know by Def. 7(c) that the references at positions

π1 . . . πu are also in the same equivalence class when concretizing ŝ with sk and none of the

elements of this equivalence class was corresponding to a changed input argument. As the

intersection of ŝ with sk for this equivalence class was non-empty and the resulting value

represented h(c|πj
), we can conclude that the intersection with h(c|πj

) is also non-empty.

Thus, c̃′ exists.

As c̃′ ⊑ ĉ′, it suffices to prove c′ ⊑ c̃′. Note that |c′| = |c̃′|. We now check the conditions

of Def. 7 for all π Ó= π′ ∈ SPos(c′):

(a) Given by construction.

(b) Given by construction.

(c) Let c′|π = c′|π′ . We perform the following case analysis.

Case 1: neither π nor π′ were affected by the evaluation

Then we also have c|π = c|π′ . Thus, ĉ|π = ĉ|π′ and also ĉ′|π = ĉ′|π′ , and therefore

c̃′|π = c̃′|π′ .

Case 2: π, π′ ∈ SPos(ĉ′) and no τ ∈ SPos(c′) \ SPos(ĉ′) with c′|τ = c′|π or c′|τ = c′|π′ exists

In this case, the considered positions were not influenced by the concretization and thus,

we are done by our induction hypothesis.

Case 3: Only c′|π has been affected and it is not in SPos(ĉ′)

As c′|π is affected, we know that there is some decomposition π = τvµ with c|τ = c|os0,1

(i.e., the reference whose field v is modified in the evaluation of putfield) and τ of
minimal length. Whenever a reference from a lower stack frame is passed to a higher stack
frame, then this is due to a method call and the corresponding reference is included in the
input arguments of the called method. As the reference c|τ is used in the top stack frame
of c and the position τ begins as local variable, operand stack entry or input variable of
a stack frame below frℓ, we have an input argument (r, ρ, b) of frℓ such that there is a
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ν with c′|inℓ,ρ ν = c′|τ . Thus, as τ is by choice not modified by the evaluation, we have

c|τ = c|inℓ,ρ ν = c′|inℓ,ρ ν . But as inℓ,ρ ∈ SPos(ĉ), we also have inℓ,ρ ∈ SPos(ĉ′) and thus,

ĉ|os0,1
= ĉ|inℓ,ρ ν = ĉ′|inℓ,ρ ν . Here, we can append η again and obtain ĉ′|inℓ,ρ νη = c′|π.

Case 3(a): π′ ∈ SPos(ĉ′)

In this case, we now know that c|os0,0 µ = c|π′ implies ĉ′|inℓ,ρ νvµ = ĉ′|π′ . Then, we know

that ĉ′|inℓ,ρ νvµ ≡ ĉ′|π′ and thus after the concretization, we have c̃′|inℓ,ρ νµ = c̃′|π′ . By

choice of inℓ,ρ, we also have c̃′|inℓ,ρ νvµ = c̃′|π.

Case 3(b): π′ Ó∈ SPos(ĉ′)

In this case, we can construct a decomposition αβ of π′ such that c|α = c|inℓ,ρ′
, as

c|π′ is reachable from the top stack frame. We then also have c|os0,0 µ = c|inℓ,ρ′ β and

consequently, ĉ′|inℓ,ρ νvµ = ĉ′|inℓ,ρ′ β . Then, by choice of inℓ,ρ and inℓ,ρ′ , we also have

c̃′|π = c̃′|inℓ,ρ νvµ = c̃′|inℓ,ρ′ β = c̃′|π′ .

Case 4: Only c|π′ has been affected and it is not in SPos(ĉ′)

Symmetrical to case 3.
Case 5: Both c|π, c|π′ have been affected and are not in SPos(ĉ′)

As in case 3, we construct inℓ,ρ νvµ and inℓ,ρ′ ν′vµ′ such that c′|inℓ,ρ νvµ = c′|π and
c′|inℓ,ρ′ ν′vµ′ = c′|π′ . Then, we can conclude that we already have ĉ′|inℓ,ρ νvµ = ĉ′|inℓ,ρ′ ν′vµ′

and thus, after concretization, we have c̃′|π = c̃′|inℓ,ρ νvµ = c̃′|inℓ,ρ′ ν′vµ′ = c̃′|π′ .
(d) Analogous to (c).
(e) Trivial for π ∈ SPos(ĉ′). The case that π was not modified by the evaluation is also

trivial. Assume π Ó∈ SPos(ĉ′) and π was modified by the evaluation. Then, as above,
there are ρ, ν, η such that c′|π = c′|inℓ,ρ νη = ĉ′|inℓ,ρ νη. By our induction hypothesis,
the value at ĉ′|inℓ,ρ νη is correct, i.e., the same as obtained by concrete evaluation. The
boolean flag of the input position inℓ,ρ is false, as some successor was modified by the
evaluation and thus, this correct value of c′|inℓ,ρ νη is copied when concretizing, such that
h̃′(c̃′|π) = ĥ′(ĉ′|inℓ,ρ νη). Consequently, h′(c′|π) ⊆ h̃′(c̃′|π).

(f),(g),(h) Analogous to (e).

◭

Using these lemmas, we can now prove the soundness of termination graphs, i.e., that
every concrete JBC-evaluation corresponds to a computation path in the termination graph.

◮ Theorem 3 (Soundness of Termination Graphs). Let c, c′ be concrete states where c can be

evaluated to c′ (i.e., c
SyEv
−→ c′). If a termination graph contains an abstract state s which

represents c (i.e., c ⊑ s), then the graph has a path from s to a state s′ with c′ ⊑ s′.

Proof. We prove the theorem by induction on the sum of the lengths of all paths from s to
the next evaluation edge. This sum is always finite, since we required that every cycle of a
termination graph must contains at least one evaluation edge.

We perform a case analysis on the type of the outgoing edges of s. If s has a call edge or
an instantiation edge to s̃, then s ⊑ s̃ by Lemma 13. Hence, we obtain c ⊑ s̃ by transitivity
of ⊑ (Lemma 9) and the claim follows from the induction hypothesis.

If the outgoing edges of s are context concretization or refinement edges to s1, . . . , sn, we
know by Lemma 10, Lemma 11 and Lemma 12 that there is an si with c ⊑ si. Again, then
the claim follows from the induction hypothesis.

Finally, if there is an evaluation edge from s to s′ (i.e., s
SyEv
−→ s′), we know by Lemma 14

that c′ ⊑ s′. ◭
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B Proofs for Sect. 3

◮ Lemma 5. Let s′ ⊑ s and let i = |s′| − |s| be the difference of their call stack sizes. Then

there is a substitution σ with ts(s)σ = tss(s
′)|1i . Here, “1i” means “1 1 . . . 1” (i times).

Proof. This is essentially a copy of the proof in [14, Lemma 3.5], just changed to the new

encoding of stack frames and the addition of input arguments. ◭

For the proof of Thm. 6, we need to show that each evaluation of a concrete state that is

represented in the termination graph can be simulated by the rules to generate termination

graphs. To this end, we prove two auxiliary lemmas.

◮ Lemma 15. Let c0
SyEv
−→ . . .

SyEv
−→ cn be an evaluation of concrete states with n > 0, let there

be a path from a state s0 to a state sm in a termination graph G with c0 ⊑ s0 and cn ⊑ sm.

Let |c0| = |cn| and |c0| ≤ |ci| for all 1 ≤ i ≤ n. Then, for the ITRS R corresponding to the

termination graph G, we have tss0
(c0)|1k →֒+

R tssm
(cn)|1k , where k = |c0| − |s0|.

Proof. We prove the lemma by induction over the number ℓ of call edges on the path from

s0 to sm.

Case ℓ = 0: There are no call edges and consequently, no context concretization edges.

In this case, we can apply [14, Lemma 4.10] to prove the claim.

Case ℓ > 0: We assume that the lemma holds for all values smaller that ℓ. Let

s0, s1, . . . , sm be the sequence of states on the path from s0 to sm and let i, j such that the

edge from si to si+1 is the first call edge on this path and the edge from sj to sj+1 is the

context concretization edge corresponding to the return from the method called between si

and si+1, i.e., where we concretized sj with the call state si to obtain sj+1.

Let ci′ and cj′ be the states of the concrete evaluation such that ci′ ⊑ si and cj′ ⊑ sj

(thus, also cj′ ⊑ sj+1). The correspondence between the method call and return implies that

we have |ci′ | = |cj′ |.

For the subsequence s0, . . . , si, there is no call edge and we can apply [14, Lemma 4.10],

as in the base case, to obtain tss0
(c0)|1k →֒∗

R tssi
(ci′)|1k . For the call edge from si to

si+1, we generate the rule tssi
(si+1) → ts(si+1). As si+1’s call stack is just a copy of si’s

top stack frame, we have tssi
(si+1) = ts(si)|1a where a = |si| − 1. From ci′ ⊑ si we can

conclude by Lemma 5 that there is a substitution σi such that ts(si)σi = tssi
(ci′)|1k (since

|ci′ | − |si| = |c0| − |s0| = k). Consequently, we can apply the generated rule to continue the

rewrite sequence, i.e.,

tss0
(c0)|1k

→֒∗
R tssi

(ci′)|1k

= ts(si)σi

= (tssi
(ci′)[tssi

(si+1)σi]1a)|1k

→֒R (tssi
(ci′)[ts(si+1)σi]1a)|1k

However, as we have ci′ ⊑ si+1 by construction, we can use the induction hypothesis for the

evaluation ci′

SyEv
−→ . . .

SyEv
−→ cj′ , where ci′ ⊑ si+1 and cj′ ⊑ sj , as we have fewer call edges on

this path. Thus, we can rewrite tssi+1
(ci′)|1a+k to tssj

(cj′)|1a+k . Hence, the above rewrite

sequence can be continued:

tss0
(c0)|1k

→֒+
R (tssi

(ci′)[ts(si+1)σi]1a)|1k

→֒R (tssi
(ci′)[tssj

(cj′)|1a+k ]1a)|1k
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For the context concretization edge from sj to sj+1, we generate the rule

(ts(si)[ts(sj)]1a)ρ → ts(sj+1), (6)

where ρ is the identification substitution from the concretization of sj with si. As we have

cj′ ⊑ sj , there is some substitution σj such that ts(sj)σj = tssj
(cj′)|1a+k (cf. Lemma 5). We

can apply the rule to our term as ρ only merges those identifiers that correspond to the same

reference in cj′ anyway. Thus, these identifiers need to be instantiated with the same terms

by σi and σj . Thus, the following substitution ρ′ is well defined:

ρ′ = {ρ(r)/σi(r) | r ∈ Ref (si)} ∪ {ρ(r)/σj(r) | r ∈ Ref (sj)}

The substitution ρ′ is a matcher such that (ts(si)[ts(sj)]1a)ρρ′ = (tssi
(ci′)[tssj

(cj′)|1a+k ]1a)|1k

and thus we can apply rule (6) to rewrite our term to ts(sj+1)ρ
′. With that, we can rewrite

tss0
(c0)|1k →֒+

R tssj+1
(cj′)|1k . If there are no further call edges on the path from sj+1 to sm,

we can apply the base case to rewrite tssj+1
(cj′)|1k to tssm

(cn)|1k and thus prove the lemma.

If there are further call edges, we would need to use the same proof as for the edge following

si until finally, there is no call edge anymore. ◭

Using this, we can prove Thm. 6 only for terminating cases. For the case that the control

flow never returns from a called method to the caller, we need the following lemma.

◮ Lemma 16. Let c0
SyEv
−→ c1 be an evaluation step of concrete states such that |c0| < |c1|

and let there be a corresponding computation path from s0 to s1 in a termination graph G

with c0 ⊑ s0 and c1 ⊑ s1. Then, for the corresponding ITRS R, we have tss0
(c0)|1k →֒R

tss1
(c1)|1ℓ , where k = |c0| − |s0| and ℓ = |c1| − |s1|.

Proof. This is just the first part of the proof of Lemma 15. ◭

Based on these two lemmas, we can now prove our main result:

◮ Theorem 6 (Soundness of ITRS Translation). If the ITRS corresponding to a termination

graph G is terminating, then G has no infinite computation path.

Proof. We assume that there is some infinite computation path s00, s10, . . . , s01, s11, . . . in G,

i.e., that there is an infinite computation sequence c0
SyEv
−→ c1

SyEv
−→ . . . of concrete states with

ci ⊑ sj
i for all i, j. Without loss of generality, we assume that |c0| ≤ |ci| for all i > 0.19

We now show how to obtain an infinite rewrite sequence starting with tss0
0
(c0)|1a from

this computation path resp. from the infinite computation sequence c0
SyEv
−→ c1

SyEv
−→ . . .,

where a = |c0| − |s00|.

If we have |c0| < |cn| for all n > 0, then we know that from c0 to c1, there is a method call

which never returns. By Lemma 16, we have tss0
0
(c0)|1a →֒R tss0

1
(c1)|1b , where a = |c0| − |s00|

and b = |c1| − |s01|. Now the construction is continued for the infinite computation sequence

c1
SyEv
−→ c2

SyEv
−→ . . .

Otherwise, we consider the smallest n > 0 with |c0| = |cn|. Here, we apply Lemma 15

to obtain tss0
0
(c0)|1a →֒+

R tss0
n
(cn)|1b , where a = |c0| − |s00| and b = |cn| − |s0n|. Now the

construction is continued for the infinite computation sequence cn
SyEv
−→ cn+1

SyEv
−→ . . . ◭

19Otherwise, one can simply start at a later point in the the infinite sequence.
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