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Abstract

In projects dealing with autonomous vehicles which areidgyn different contexts like
highways, urban environments, and rough areas, managengpftware’s quality for the
entire data processing chain of sensor- and actuator-lsagedomous systems is increas-
ingly complex. One main reason is the early dependency @ea#or’s raw data to setup
the data processing chain and to identify subsystems. Tdessors’ data might be ex-
tensive, especially if laser scanners or color camera systge continuously producing
a vast amount of raw data. Moreover, due to this dependeecsethsors’ setup including
their respectively specified mounting positions and catibn information is also neces-
sary to gather real input data from real surroundings’ sitna of the system. This is even
more important before actually starting to integrate iredefently developed subsystems
for carrying out tests for the entire data processing chain.

To reduce this dependency and therefore to decouple taskgifie project’s critical path,

an approach is outlined in this thesis which was developesuipport the software en-
gineering for sensor- and actuator-based autonomousnsyst€his approach relies on
customer’s requirements and corresponding customeré&péanece criteria as well as the
decoupling of the software engineering from the real hardvesavironment to allow ap-
propriate system simulations.

Based on the customer’s requirements, formally specifiedast®s using a domain spe-
cific language are derived which are used to provide surriogscand suitable situations
for a sensor- and actuator-based autonomous system. Fesa fibrmally specified sur-
roundings, the required input data is derived for diffedagers of a sensor data process-
ing system to generate actions within the system’s conféxs input data itself depends
on a given sensor model to compute its specific raw data. Astartbers, on the exam-
ple of laser scanners and camera systems, algorithms usidgrmgraphical processing
units are outlined to generate the required raw data everofoplex situations.

To realize the aforementioned aspects, a developmenbament is necessary consisting
of tools for modeling and working with instances of a domaieafic language. Further-
more, a software framework is required which provides gasshble and mature solu-
tions for common programming requirements like synchrainan for concurrent threads

Vii
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or communication in a high-level point of view. For relying a consistent and homoge-
neous software framework for implementing the conceptglayportable and real-time-

capable software framework for distributed applicatiorss wealized which was written

entirely from scratch in strictly object-oriented C++. Mover, this software framework

also integrates the formally modeled input data derivethftbe specified requirements
and the sensors’ models to allow unattended system sirongatd support the acceptance
tests for subsystems or an entire system.

On the example of autonomous vehicles, the applicabilitthefapproach and the soft-
ware framework is demonstrated by implementing a vehiclegaéion algorithm which
uses a given digital map for finding the best route to a desiestination from an arbitrar-
ily chosen starting point. This algorithm was developedsidering the test-first-principle
and is continuously evaluated by unattended and automaitwase tests which are ex-
ecuted on a continuous integration system. Its implemientas well as its evaluation
make use of the aforementioned concepts and algorithmsreftine, the vehicle’s sur-
roundings were formally modeled together with its necgssansors using the provided
development tools and environment for performing and etalg unattended system runs
before the algorithm was put into operation on the real \tehic

viii









1 Introduction and Motivation

This chapter provides an overview and introduction for tlegelbpment of complex
software-intense embedded systems. The main focus isiabpea sensor- and actuator-
based autonomous systems which can be found in recent dgsistance systems or even
in autonomous vehicles for example.

1.1 Introduction

The resulting quality of software-intense system develepinprojects depends to a large
extent on well understood customer’s requirements. Thuesyedevelopment process
starts with collecting and discussing requirements tagetith the customer and ends
up in testing the final product against previously definediiregnents for matching their
fulfillment on the customer’s demands.

Using these requirements, programmers and engineersogetved system according to
specifications written in regular word processing systemeven in more complex re-
quirements management systems like DOORS [83]. Moreovecifsgation documents

are the contractual base for collaboration with third payppliers. Thus, these docu-
ments build an important source for many other developmeifdets, for example class

diagrams or test cases.

Furthermore, requirements evolve over time due to techhiodations or legal aspects
in the implementation stage or due to changes to former mests circumstances. New
requirements are added while others change. Ideally, ttersyto be developed should
fulfill every single customer’s requirement at any time oowld iteratively fulfill selected
customer’s requirements at dedicated milestones.

Due to shorter production times or output-related projeetis, the quality assurance must
be carried out regularly especially for sensor- and actdzdased autonomous systems
which require extensive tests. Even within a tight schedidgular and automatically

executed test suites which are intended to cover large phtte system’s source code
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are a proper methodology for the software engineering taageaable and high quality
product nowadays.

1.2 Motivation

As already mentioned above, requirements found the soorcanly design decision or
system specification. This important impact is indeed racegl by every project, but the
continuous evaluation of their fulfilment is often difficub monitor. This is caused by
the specification’s representation itself which is notclisepart of a machine-processable
software buildand quality assurance process. The main reason is the form ohance
since specifications are either written in a natural languargentered in databases. On
the other hand, a coherent and consistent methodologyrimulating requirements to be
part of the system development process itself does notiexggneral.

Natural language-based specifications are simple and gufokmulate but they leave an
enormous gap for misunderstandings and interpretationgh&more, modern revision
systems to track changes cannot be applied easily to rendrdsualize modifications or
changes compared to prior versions.

However, database systems perhaps with Wiki front-ends isgecollecting and record-
ing requirements allow a distributed collaboration andiar tracking for all responsible
authors, but in general they are not part of the system dpwetat and quality assur-
ance process as well. Furthermore, entries in the databagéenoutdated, invalid, or
contradictory without being noticed by the developer ometie customer.

Newer approaches like the Requirements Interchange FoRI&Y [82] simplify the po-
tentially erroneous process of correct requirements exgihavith suppliers by reducing
misunderstandings on both contractual partners. Yetfdamsat cannot be part of the soft-
ware build process at all due to its heterogeneous layouaitong formal elements and
arbitrary binary data. However, they improve the humanatutation between different
project partners.

Moreover, requirements describe omyatexactly a customer wants to get. But in gen-
eral, requirements do not descrihew and whenthe customemlcceptsthe developed
system, i.ewhichare the customer’s acceptance criteria. This means fondra@e of

a driver assistance system for automatically parking thecle between other vehicles
at the roadside: The main objective of the vehicle’s parleystem is evident, but differ-
ent system engineers may have different opinions alwbena vehicle is finally parked:
For example, one engineer might prefer a smaller distantteetourb while another does
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not. The customer’s acceptance criterion for the systeremt#gon his interpretation of
a specific objective.

Nowadays, proper software engineering methods to tacklénitreasing complexity in
embedded systems are still evolving [162]. The main reaaom®n one hand the chal-
lenge to integrate complex third party software and on therohand inappropriate de-
velopment processes to handle complex software platfotineslatter are due to an in-
sufficient evolvement over time compared to the evolveménih® software functions’
complexity.

Moreover, today’s development projects consist of manyelbpers and the resulting
quality suffers from insufficient tested software artifaclue to undiscovered software
and system bugs. Finally, an approach to test the entirersyafter integration is missing,
often due to inadequate resource allocation for softwadesgatem testing.

Especially for the automotive domain, an increasing comiflen Electronic Control
Units (ECU) and caused by their integration in vehicle buses is rendekia the last
years [61, 171]. To overcome these problems, the Autom@jven System Architecture
(AUTOSARapproach was founded in 2002 by several Original Equipiamufacturers
(OEM), namely BMW, Daimler, and Volkswagen to standardize tooiterfaces, and
processes. Using AUTOSAR, the exchange of ECUs or softwarg@aoemts between
different suppliers should be simplified. But AUTOSAR itsislhot capable of handling
directly customer’s requirements and acceptance cribetause this is not its intended
scope [77].

Newer approaches in software engineering have develogfedetit methods for auto-
matic software tests even in early stages of the developpreness. These methods are
known asunit teststo specify expected results of a function or algorithm foraeg set

of input values [102]. But they only validate the algorithnasnformance to one spe-
cific sample or to specific boundaries, but they cannot priegebsence of errors or even
verify its formal correctness.

Furthermore, unit tests are mainly used to figure out disaat time independent algo-
rithms. For evaluating continuous algorithms which reguontinuous input data from
complex surroundings in terms of closed-loops-tests, timeept behind unit tests must
be extendedMock objectsnable the specification of complex system behavior even if
some parts are unavailable. Mock objects are used to autkssitibsystems or parts of
the entire system like database connections by imitatiegstib-system’s behavior and
replies to function calls. Thus, their usage is usuallyt@dito parts of an entire system.

For software and systems realized using the Java progragniamguage, a stable and
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mature set of tools for checking the software and systenedityus available. Further-
more, this tooling is well integrated in graphical IntegghiDevelopment Environments
(IDE) like Eclipse providing all necessary information to theeleper at a glance which
is sponsored by all important software suppliers like GralM, and Google.

Yet, besides a mature tooling comparable to Java systemdutidamental source of
requirements and their corresponding acceptance craeeigtill lacking. For ensuring
the system quality, the use of its specifying requiremesdigible. Modern development
processes stay abreast of changes by defining iterativéogevent cycles which integrate
the customer to lower communication barriers.

1.3 Main Goals and Results

The early and intense integration of customer’s requiregmienthe development process
shortens response times and reduces misunderstandingsttidtess, a formal require-
ments specification which can be directly used as a congistaoeable, and formal arti-
fact as part of the software engineering and not only forgmtojnanagement is missing.
Moreover, the development and evaluation of sensor- andewtbased autonomous sys-
tems is getting more and more complex nowadays caused bycesmsing amount of
sensors’ raw data. Furthermore, testing such systemsagjatting more extensive due
to more complex or dangerous situations which have to bepsetthe systems’ surround-
ings to provide the required input data.

Hence, for reducing the software’s dependency on a mosthptete sensor’s setup wait-
ing for required input data before starting the actual dgwelent, an appropriate method-
ology is necessary to support the development, integraind evaluation of these sys-
tems already at early stages. Depending on the system toveéogded, the interactive
development as well as the system’s evaluation requirege land complex stationary
and dynamic context which cannot be achieved by using theeientioned mock ob-
jects.

A methodology which integrates the requirements and apjatepacceptance criteria for
the software quality process is required for sensor- angagémt-based autonomous sys-
tems. The conceptual theory presented in this thesis isstth@scustomer’s requirements
and acceptance criteria to derive a forrmahchine-processablgpecification of the sys-
tem’s context of a System Under DevelopmesitD) to generate and perform interactive
as well as unattended and automatable simulations for tie $hke following goals have
been achieved:
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» Circumstances of a sensor- and actuator-based autonorysiesnsdevelopment
project are analyzed. Hereby, the design of a Domain Spéafiguage DSL) to
specify the system’s context of an SUD based on the custsmeguirements to
describe an autonomous vehicle’s behavior in its systeariext is developed.

» Having formulated the system’s context as basis for théegysievelopment, the
definition of metrics for measuring the evolving requirensefulfillment is subject
for analysis. Hence, the customer’s acceptance criteedhes basis for deriving
metrics which are used to validate the developed system.

» Unit tests are the right choice to perform unattended abohaatic regression tests.
But for complex software systems especially based on algostwhich produce
and process continuous input data, the sole use of unitdestsck objects is insuf-
ficient. Thus, a software engineering methodology whicluites the automatable
system’s evaluation of an SUD is presented which requiregdfinition and imple-
mentation of an unattendedly executable system simulafldrve aforementioned
metrics are used to establish a concept similar to unit.tests

» To realize the system simulation framework which shoultb®a stand-alone tool
but shall instead use the same concepts and software emerdrike the regu-
lar system development for reducing the tools’ heterodgnai highly portable
and real-time-capable software framework written entifedbm scratch in object-
oriented C++ was developed which simplifies the developmedistributed appli-
cations.

 Finally, a proof-of-concept for the software frameworldahe outlined methodol-
ogy as well is given by performing a case study on the exanfgleeadevelopment
for an autonomous ground vehicle.

1.4 Thesis’ Structure

The thesis is structured as follows. First, the context aistbty of autonomous vehi-
cles is presented because they are the ongoing exampleddhdsis. Afterwards, the
overall software engineering methodology to completelyodgple and thus to virtualize
the software and system development from any real hardwgyiementation is outlined.
Following, the theoretical background for formulating alDi specify the system’s con-
text of autonomous ground vehicles in a machine-processabhner is presented. This
DSL is used in a software framework callétesperia which itself supports the develop-
ment of distributed real-time applications. Furthermdrean be used as a framework for
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realizing embedded software by providing high-level ifgees and ready-to-use imple-
mentation patterns for common programming tasks. Theke taslude synchronous and
asynchronous communication between processes and sybi@mading for complex data
structures, or high-level programming concepts. Secdmal entire system simulation
framework which is a core part of the methodology is realigdising this framework
and thus is directly incorporated into the framework.

Afterwards, the evaluation of the fulfilment of the custataeequirements using all parts
as described before in so-called system simulations isnedtl Furthermore, interactive
inspection as well as unattended monitoring of a running S®described before a
proof-of-concept is given by presenting an example for tigiag an algorithm for an
autonomous ground vehicle using the elaborated concejptallyf related work is dis-
cussed as well as an overall conclusion of this work with &tool for future approaches
is given.

1.5 Publications

This thesis mainly bases on several contributions desgriaspects of this work. In the
following, a list of these publications is given.

* In [131], some aspects of design patterns are presentediscalssed for imple-
menting safety in embedded systems. Embedded systems a&araple from the
automotive context are chosen. For this thesis, the predelgsign patterns had an
impact on the concepts of the software framewsfdisperia which is presented in
Chapter 5.

» The work in [54] outlines design criteria and general cdagktions for the develop-
ment of the autonomously driving vehicle “Caroline” whickeiplained in greater
detail in Section 2.3. Furthermore, aspects of the intevnat competition 2007
DARPA Urban Challenge are presented.

* The publication [10] presents a preliminary concept fatitey intelligent algo-
rithms which use continuous input data to produce discreteontinuous output
data. This aspect is elaborated in Chapter 6 which presergateanced and inte-
grated concept for testing algorithms from sensor- andaasttbased autonomous
systems at various layers with different types of input dik@sensor raw data or
abstract high-level data.

 Further details of the previous contribution and its agadion in the project for
developing “Caroline” are outlined in [11]. In that publicat, first aspects about
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the methodical integration of the system simulation cohgep development pro-
cess which is based on the customer’s requirements arenpeesd his concept is
elaborated in Chapter 3.

Conclusions and results from the application of the systenulation concept in
the project for developing “Caroline” are presented at a o during the “Inter-
national Conference on Robotics and Automation” in [12].

The publication [9] along with [122] present results anddasions from the “Car-
OLQO” project and the vehicle “Caroline” and its performannehe international
competition 2007 DARPA Urban Challenge. These contributidescribe all as-
pects about the hardware setup, the software archite¢heelgorithms used on
the vehicle, and the concept of the quality assurance psoces

In [7], the automatically driving vehicle “iCar” for highwa is presented. In this
work, a strategical and tactical software component foivdey driving decisions

and especially its quality assurance are outlined. Somee rdetails about this
vehicle are given in Chapter 2.

The work in [18] explains and discusses an algorithm foregating synthetic sen-
sor raw data using a GPU on the example of a single layer lasemsr. The
algorithm itself is elaborated and embedded in the softirameworkHesperia.
The algorithm is outlined in detail in Section 6.4.6.

In [17], the software framework{esperia is presented. An in-depth description of
the framework is given in Chapter 5.

The publication [21] describes the so-called Berkeley AscRobotics Toolkit
(BART) and its application for integrating and calibrating newms®s. The soft-
ware toolkit BART combines the features of the software faork Hesperia with
elements of the software framework IRT developed at thedAamous Ground Ve-
hicles” group at the Center for Hybrid and Embedded Softwasdeins CHESS
at University of Berkeley, California. In Chapter 8, the apalion of the software
frameworkHesperia for developing an algorithm to navigate a vehicla digital
map is described.

In [19], first ideas for using a simulation-based approackupport the software
guality assurance- and evaluation-team are outlined. eltiEsas were developed
and applied to the CarOLO project during the 2007 DARPA Urban€hge.






2 Autonomous Ground Vehicles

The continuous example used in this thesis are Autonomoaar@r\Vehicles AGV) as
specific sensor- and actuator-based systems. This chaptiuces AGVs and gives a
brief historic overview about their evolution. Finally, @chnical overview describing a
more generic system architecture for sensor- and actbased autonomous systems is
presented to found the base for the further chapters.

2.1 History of Autonomous Ground Vehicles

The history of AGVs started on January 29, 1886 with patemilver 37,435 given by
the Kaiserliche Patentamt of the German Reich for the ingantehicle with gas engine
[16]. That date can be regarded as the birthday of vehicldgsasimbustion engines which
changed fundamentally today’s life.

The vision for driving autonomously was already present@89lat the World Fair in
New York in the General MotorggM) Pavilion [52]. In 1950 already, GM demonstrated
a conceptual vehicle that was able to follow autonomouslyréel cable emitting a Ra-
dio FrequencyRF) signal [164]. But only about 60 years later, GM’s Chief Ex@at
Officer (CEO) from 2003-2009 [66], Rick Wagoner, announced at the 2006 @oas
Electronics Show in Las Vegas the sale of autonomouslyrdyivehicles by 2018 [33].
His announcement based probably on the success of the cgimgaonnsorship for the
Carnegie Mellon University in the 2007 DARPA Urban Challenge @etition [141, 147].
A more detailed description of the 2007 DARPA Urban Challengg the participation
of Technische Universitat Braunschweig is provided in $&c#.3. Considering today’s
focus on low energy cars this goal might be changed or delay# near future.

The first automatically driving vehicle however was docutednn 1961 from Stanford
University. The robot named Cart was remotely controlled lopmera-based approach.
It drove at an average speed of 0.0016m/s which meant 1m itotéb minutes. The
robot was extended by Carnegie Mellon University for spequi$ou0.016m/s. These
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robots needed up to five minutes for computing a drivablettayy from an acquired
camera image [106].

Further work was carried out in 1977 by Tsukuba Mechanicaifgering Laborato-
ries, Japan for the development of a robot guide dog. Thetsdd&LDOG I-I1V were
equipped using ultra sonic and camera devices for obstatéziibon [150, 151]. Those
results led in 1979 to the development of a vehicle for carbassed road guidance. That
car drove about 50m with a maximum speed of about 8m/s [159].

In the 1980s, DARPA funded a project for autonomous land Vesi®uring this project,
a vehicle capable to follow roads automatically using a&ctigght Detection And Ranging
(LIDAR) sensors was developed. Also, Carnegie Mellon Universityamaong the project
partners [4].

The first activities in Germany were carried out by the Ursiét der Bundeswehr
Minchen in the first half of the 1980s. The vehicle “Versuahsteug zur autonomen
Mobilitdt und Rechnersehen”, vehicle for autonomous mugbénd computer visionva-
MoR) based on a Daimler-Benz van achieved in 1986 a maximum sgedzbat 25m/s
on a separated highway. The car was able to drive autonoyntarsihe lateral control
[177].

Based on the success of the aforementioned VaMoR vehicla, 1887 to 1994 the Eu-
ropean Commission funded the Program for European Trafficigiie$t Efficiency and
Unprecedented SafetfROMETHEU$ [26, 27]. Within this program, Daimler-Benz
developed an autonomous road vehicle named “Vision Teoggohpplication” VITA)
which was able to stay inside its own lane, to detect obstankde the current lane, to
change the lane to the left or right neighbor lane initiatgdHe driver, and to detect in-
tersections [160, 161]. Another vehicle resulting from BEROMETHEUS project was
named “VaMoRs PKW”, VaMoR’s automobil&/4MP). That vehicle proved a long-run
reliability for more than 1,000km with an average speed oh3915, 41].

Parallel to the PROMETHEUS effort in Europe, the vehicle “RigpAdapting Lateral
Position Handler” RALPH), developed by Carnegie Mellon University drove success-
fully from Pittsburgh, PA through eight states to San Die@8é., The lateral control was
operating autonomously and was implemented using a visa&sed approach whereas
the speed was controlled by a human safety driver. Its aeespged was about 25m/s
[117, 118, 119].

Daimler-Benz demonstrated 1994 the vehicle “Optically &tdeCar” OSCAR which
was an approach for vision-based adaptive intelligenseraontrol [62]. In 1998, Daim-
lerChrysler enhanced that approach within a vehicle calldhén Traffic Assistant”

10
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(UTA) combining autonomous following a lead vehicle for highwayd urban environ-
ments [57] as well as assistance in inner-city areas [65lguaivision-based approach.
One main area of interest was the traffic sign and traffic lagtection as well as pedes-
trian detection in urban environments [58, 59, 60].

From 1996 to 2001, the Italian government funded a projectatize autonomous driv-
ing using only passive sensors [29]. The vehicle named ARG®ednearly 2,000km

in June 1998 on Italian highways with a maximum distance oBl&G# without human

intervention [28].

Besides independent AGVs, research also concentrates debeepment of virtual ve-
hicle platoons or automated highway systems. The Europ@gngm Promote Chauffeur
| from 1996 to 1998 and Promote Chauffeur Il from 2000 to 2008ewaarried out for
virtual platooning for trucks. The main goal for those piags was the development of a
virtual tow bar for saving fuel by lowering the distance beém several trucks. The result-
ing truck platoon drove with a distance of 15m between eabbradt a speed of nearly
23m/s [137, 138]. The results of that program were furthexdyaed using a scenario-
based approach subject to building a platoon, driving asgfa platoon, and leaving a
platoon [79].

In California, the program Partners for Advanced Transit Eighways PATH) [142]
and in Japan, the program Intelligent Multi-mode Transgtggn (MTS) [2] were set up
to foster research in the similar area. The main focus fadlpgograms is to increase the
number of vehicles and the safety on highways and to lowar@mwental pollution.

In 1998, Wolkswagen demonstrated its autonomously driwiabicle KLAUS. Using
KLAUS, human exposure for test drivers could be significaltwered [134, 173].

In 2004, DARPA announced and carried out the first Grand Chgdlexalled “Barstow
to Primm” named by the course which led from Barstow, CA to Priri [139]. The
course had a length of about 142 miles. The participatiosisted of a qualification and
a vehicle inspection prior to the final event. None of the 1&petitors completed the
course and the farthest distance traveled autonomouslalb@sg 7.4 miles by Carnegie
Mellon University’s team [139].

For enforcing a higher quality of the competition’s entfiB&ARPA announced the repe-
tition in 2005 named “Desert Classic” and modified the enturalidjcation process [70].
The process consisted of a video submission demonstradisig ehicle’s capabilities,
on site inspections carried out by DARPA's officials prior ke tNational Qualification
Event NQE). The NQE was meant to be the semifinal to select the compefaothe fi-
nal event. From initially 195 competitors, only 43 teamsieedd the semifinal. 23 teams

11
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achieved the final event held on October 8, 2005 for cometie 131.6 miles course
started at Primm, NV. Only five teams completed the entirgsmuour of them within
the 10 hours time limit, from which the vehicle named “Stghlef Stanford University
won the race and the $2 million first prize [71].

Figure 2.1: Autonomously driving vehicle “Caroline” at the@ DARPA Urban Chal-
lenge in Victorville, CA. This vehicle was the contributioroin Technische Universitét
Braunschweig for that international competition. The vihieas a 2006 Volkswagen Pas-
sat station wagon which was modified for driving autonompuslurban environments.
Detailed information about the vehicle, its modificatioasd its performance during the
competition can be found at [122].

In May 2006, DARPA announced a subsequent competition for Ghe 2007 DARPA
Urban Challenge which also declared the goal to be reachetidbogdmpetitors [170].
The qualification process was similar to the one for the previchallenge, consisting of
a video submission, a demonstration at performers’ sitd,aasemifinal along with the
final taking place in Victorville, CA at the former George Aioif€e Base from October
26 to October 31, 2007. 35 teams from initially 89 compesitachieved the semifinal and
only eleven qualified for the final event held on November 3720The contribution of
Technische Universitat Braunschweig named “Caroline” shiowfigure 2.1 was among
the eleven finalists and achieved as the best European atonpiee seventh place [122].
Team Tartan Racing from the Carnegie Mellon University wonUhiean Challenge and
the $2 million first prize [141].

In spring 2008, Volkswagen together with regional reseamti development partners
presented “Intelligent Car” at the Ehra proving ground assshm Figure 2.2. The ve-
hicle which based on a 2006 Volkswagen Passat station wagyoomstrated its abilities
for automatic driving on highways which was demonstratedhenproving ground from
Volkswagen in Ehra. For achieving that goal, the vehicldyaes its surroundings and
recommends passing maneuvers of slower vehicles. Its nnaxispeed was about 36m/s
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[172].

Figure 2.2: Vehicle “Intelligent Car” from Volkswagen at tkempany’s own proving
ground in Ehra. This vehicle was able to drive automaticatlyhighways by continu-
ously evaluating its surroundings to derive suitable dgvypropositions for safely passing
slower moving vehicles for example. Further informatiooatithe vehicle can be found
at [7]; image credit: Volkswagen Corporation.

The first European variant of a program similar to the chgksnorganized by DARPA
was held in 2006 by Bundeswehr (German Federal Armed Fordedike the American
challenges, this program which is called European Land Rdhbat (ELROB is not a
competition but a demonstration of the capabilities of theent robotics research. The
program is split into a Military ELROBN-ELROB and a Civilian ELROB C-ELROB
demonstration which alternate yearly. In 2009, C-ELROB tptdce from June, 15 to
June, 18 in Oulu, Finland [56].

The Netherlands are organizing an international challemgeooperative driving. The
goal within this challenge is to interact with other traffiarpcipants to optimize the
overall traffic flow. Currently, rules and judging of the paipants are discussed. The
event will probably take place in 2011 [81].

2.2 Architecture of Sensor- and Actuator-based Systems

This section describes the general architecture of seasdractuator-based autonomous
systems from a functional point of view in general which camalso found in AGVs as
mentioned in several publications [41, 122, 155, 172]. lkemhore, necessary software
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and system components for proper system function are edtlas well. First, neces-
sary definitions and terms are given before afterwards & &rerview over one concrete
example is presented.

2.2.1 Terms and Definitions

In the following, a list of definitions for the following chégrs is given.

14

Automatically driving vehicleAn automatically driving vehicle is able to drive for
itself under supervision of the driver. A recent popularrapée is an automatic
parking system or “intelligent Car” [7, 172].

Autonomously driving vehicl€ontrary, an autonomously driving vehicle is a robot
trying to reach a predefined goal for itself without intertiens of a driver. An
example is “Caroline” as described shortly in Section 2.3hertehicle described
in the case study in Chapter 8.2.1.

System. This term is the short term for sensor- and actuator-bastzhaomous
system which can be for example an automatically or autonsiyalriving vehicle
with all components including its software.

Subsystem.Hereby, either a software or hardware component from a 1Isyste
denoted.

System’s contex@he system’s context denotes the environment for whichyke s
tem is designed for. This includes elements from its surlgs as well as techni-
cal dependencies for correct operation. The short tmntextis used interchange-
ably.

Surroundings Surroundings of an autonomously driving vehicle are alblesele-
ments like pedestrians, trees, or lane markings as welbgsalcelements like speed
limits for example as described in Section 4.3.

Rigid body.A surroundings’ element which does not change its shape tvhesla-

tions or rotations are applied, i.e. the distances betwk@oiats forming its shape
do not change. For the sake of simplification, collisiondwaither rigid bodies and
their impact are explicitly excluded. The terrbedy andelementare used inter-
changeably as well.

Real-time. By this term, a context is denoted which is not entirely cditdlde,
mostly caused by an independent time source or unconttekdbments.
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2.2.2 General System Architecture

An autonomously or automatically driving vehicle is a systteracting with the sys-
tem’s context bycontinuouslydetecting its surroundings, assessing and interpretiag th
detected environment for deriving an action, and perfognaimaction. In recent literature,
a sensor- and actuator-based autonomous system is alsgavdae as a Cyber Physical
System CPS§ [94].

System's Context

Sensor- and Actuator-based Autonomous System

Perception Layer Decision Layer Action Layer

e gt o P ;
> Action supervisor

A Sensor 1

Situational assessment I

e Sensor 2

Sensor data fusion

A Sensor n
Preset data 1

Support Layer

Short term planner }

Action generator >

Long term plannerl

IMonitoring I I Logging I I Recording I IVisualization

Figure 2.3: General system architecture of a sensor- anatactbased autonomous sys-
tem consisting of @erception LayeraDecision Layerand anmAction Layer The leftmost
layer is responsible for gathering information from thetegss context by processing in-
coming data from all available sensors. Furthermore, e applies algorithms for
fusing and optimizing potentially uncertain sensors’ rasecto derive a reliable abstract
representation. This abstract representation is the idgtat for the next layer which in-
terprets and evaluates this abstract model to derive amnacthis action is passed to the
rightmost layer which calculates required set points ferdbntrol algorithms. To support
the development as well as to supervise the data procedsamgwhich is realized by the
aforementioned three stages the support layer provide®ppgie tools for visualizing,
capturing, and replaying data streams. The overall dateegsing chain realized by this
architecture ilosedby the environmental system’s context as indicated by ttieedo
arrows.

The general system architecture for sensor- and actuag&elsystems is shown in Figure
2.3. It consists of three major parts which form a data preiogschain to modify incom-
ing data:Data Perception LayeDecision Deriving LayerandAction Layer These parts
describe the data flow for a sensor’s datum through the sylkiegausing some action
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in the system’s context while the data’s complexity mightréase during processing.
Beyond, an additional layer is depicted for supporting theagor parts for example by
simply recording the data flow.

The first layer is th@erception layer This layer is the adapter for continuously acquiring
data from any source into the system. As shown in the diagrata whay be acquired
from outside the system denoted 8gnsor like data from a GPS. The acquisition of
internal data from the system itself like an odometer isdatdd bySensor 2 This data
may be improved and combined with another sensor’s datg asensor data fusioas
explained in greater detail in [75] for example. Furtherey@reset data like a digital map
can be provided by this layer.

The following layer is namedecision layemwhich is fed by the perception layer. In this
part, all continuously incoming data is situationally mpeeted to feed back information
to the perception layer for optimizing the data acquisitigtainly, the Situational assess-
mentprovides processed data to a short and an optional long termngr to generate a
decision for the next layer. Furthermore, both planners@mfte each other to avoid short
term decisions which do not accomplish the system’s ovgadl. Otherwise, if none
short term decision could be derived, the long term plan rbesadjusted regarding the
changed situation.

The last processing stage is callection layerwhich receives its data from the decision
layer. In this layer an abstract decision is split up intogants fed to controllers for
the system'’s actuators by tietion supervisarTheAction generatorepresents all con-
trollers and performs the actual low-level controlling bpmitoring feedback variables
to compute new actuating variables. Obviously, this gdonemaodifies the system it-
self but may also influence the system’s context by transrgitiata as indicated by the
white outer frame around the system. Shortcuts from thegpéian layer into the action
layer which bypass the decision layer can also be found is@semnd actuator-based
autonomous systems to reduce the latency for example. HowevFigure 2.3 these
shortcuts are not explicitly shown.

All aforementioned elements and layers are assisted bgupport layer The layer it-
self is not part of the data processing chain but maintaiasctiain by logging events,
recording or simply visualizing the data flow, and monitgrihe system’s overall state.
Due to the system’s interactions with the reality in perhegigcal applications like an
Adaptive Cruise ControlACC) system, the support layer must not interfere the actual
data processing chain. Thus, its operation must be norsirezand non-reactive.

The system architecture for a sensor- and actuator-basedamous system is common
for many AGVs. Thus, this architecture of a continuoushadaibcessing system interact-
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ing with its surroundings is the base for all further chagptén the following, an example
for an AGV implementing the aforementioned model is preseént

2.3 Example: Autonomously Driving Vehicle “Caroline”

In this section, an overview of the autonomously drivingigkh“Caroline” is presented.
“Caroline”, named according to the founder of Technische/esitat Carolo-Wilhelmina
at Braunschweig, Carl 1., is a 2006 Volkswagen Passat stateggomw It is able to drive
autonomously in urban environments and competed with @myther teams in the 2007
DARPA Urban Challenge final event [140].

(a) Caroline’s sensor setup for the front side: Several senfb) Caroline’s trunk which carries the
sors with different measuring principles and overlap- processing units: Automotive com-
ping viewing angles and ranges are used to perceive puters were used running a De-
reliably its surroundings. To detect stationary and dy- bian Linux with a special real-time
namic obstacles like parked or moving cars, active sen- Linux kernel.
sors like laser scanners and radars are used; for sensing
lane markings or drivable areas cameras with different
resolutions were used.

Figure 2.4: Overview of Caroline’s sensors and trunk (base{d 22]).

In Figure 2.4, the general setup of the vehicle is shown. @netft hand side, the sensors
for environmental perception are depicted, whereas tli hignd side shows the comput-
ing units in the trunk. “Caroline” was equipped with a redumidsensor configuration to
improve the perception’s reliability on one hand and to emleahe abstract environmen-
tal model produced from the sensor data fusion by usingreiffemeasuring principles
for overlapping fields of view on the other hand.

Depending on the desired perception of the surroundingshehts, different types of
sensors were used. “Caroline” detected the road and drieabéein front of the vehicle,
lane markings from the own and the left and right neighboe$arand stationary and
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dynamic obstacles. At the rear side, sensors to perceitiersigy and dynamic obstacles
only were mounted.

Starting at the lowermost surroundings’ element to det€ctroline” used a color camera
combined with two one layer laser scanners to detect theesfraghthe course of drivable
terrain up to about 50m at 10Hz. Using this information, te&igle could drive on the
road by centering itself between curbs or on similar cola@ed shaped ground [20]. For
using the correct side of a road, potentially available laaekings were detected using a
setup of four color cameras looking up to 35m with a Field &dwiFOV) of 58° at 10Hz
as well [99].

For detecting stationary and moving obstacles, only astvesors with varying measuring
principles for different distances were used. To detectaatss at the farthest distance, a
beam LIDAR sensor for up to 200m with a FOV of 12° was mountddvé¢he license
plate. For a FOV of 240° up to 60m, two scanning four layersriasanners operating as
a fusion cluster were mounted on the left and right frontisactBetween both sensors,
a radar sensor covers the FOV of 40° up to 150m. From all thesssoss, the raw or pre-
processed data by the sensor’s own ECU was fused using a siatadusion to generate
an abstract environmental model from the vehicle’s surdowgs [45].

Following the perception layer, the decision layer analyaed interpreted the pre-
processed data as next stage in the data processing chairlif€aused an approach
based on [128] for generating weighted curvatures usingjtitgtional assessment. The
highest rated curvature was chosen to compute a trajecttey driven by the action layer.
For controlling the vehicle in rule-based situations, #qproach was enhanced with an
interceptive system taking control at intersections opienforming a U-turn for example.

Using trajectories from the previous stage, the actionrlaypervised the vehicle’s overall
state and computed the necessary set points for the actutablliog algorithms. Further-
more, preset complex maneuvers like performing a U-turtdclbe commanded from the
decision layer by issuing a command providing an approptiaturn polygon to be used
as the area to carry out a U-turn [174, 175].

The vehicle’s support layer consisted not only of simplegiag and supervising compo-
nents for run-time. Moreover, a graphical run-time viszation [98] to be used also as
front-end for the simulation of “Caroline” during developmi@vas provided [11]. Further
information in greater detail can be found in [9, 122].
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3 Methodology for Automating
Acceptance Tests

In this chapter, a methodology fautomating acceptance testsring the system develop-
ment is presented. Furthermore, preconditions, requinésnand necessary concepts for
implementing a supporting tool chain are derived which dabaated in the following
chapters.

3.1 General Considerations

Referring to [31], [120], and [162], related research chregks especially in automotive
software and systems engineering—which can also be apf@ifaer similar domains for
system development relying on sensors and actuators—owvdnk include nowadays:

» Languages, models, and traceability for requirements megfing. Approaches for
handling requirements must include the customer’s poivi@#. However, since
most requirements are provided in natural language, theyatde directly part of
the software and system development process by definition.

Furthermore, as required by process audits to achieveatéavel of certification,
not only requirements which might stem from customers &t ahange requests
caused by identified faults in the software or due to changedrostances must be
tracked down to single lines of code. Hence, a machine-gsat#e integration of
these requirements into the system and software develdgmeress is desirable
to support these tasks.

* Middleware to enable communication between heterogeneaisnsy. Today’s
vehicles are equipped with different communication infastures, for example
CAN-, Flexray-, or LIN-buses; even newer ones are evaluatedsearch depart-
ments of various OEMs. Moreover, Road Side UnRS{ enabling communi-
cation between a vehicle and its infrastructure need to lvered by technical
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approaches which require a reliable, safe, and uncompeahsimmunication be-
tween sender and one or many receivers. Furthermore, dimtging hardware

platforms and thus changing ECUs, software shall be robustrars embrace these
changes with only a minimum of additional system tests.

» Continuous integration of evolving software artifacWell supported by tools for
the Java programming language, this aspect is currenttg tjme-consuming for
sensor- and actuator-based autonomous systems due tficiestiftools. This is
caused by the dependency on sensor’s input data to stintbtgata processing
chain. Furthermore, sometimes complex situations musebapsin the system’s
context to evaluate an SUD’s actions.

In the following, the generic system architecture for sensmd actuator-based au-
tonomous systems is analyzed to identify requirements aecbpditions related to the

V-model development process to derive a development metbggwhich is independent

from the real existing hardware already at early stagese®aar, this methodology shall

allow an automation of acceptance tests by deriving thesystcontext of an SUD based
on the customer’s requirements in a machine-processableen#o integrate it directly

into the system- and software development process for asidige the aforementioned
issues.

3.2 Virtualizing a Sensor- and Actuator-based
Autonomous System for the V-model-based
Development Process

In Figure 3.1, the V-model alongside with the previouslycdssed general system archi-
tecture for sensor- and actuator-based autonomous systelmgicted. The development
process starts on its highest level with an analysis of tistoooer’s requirements. For
the development of a sensor- and actuator-based auton@ystesn, these requirements
describe in general the customenisservable behavioof the system in its intended sys-
tem’s context as shown in Figure 2.3. From a different pointi@w, these requirements
describe the “interface” and “behavior” of the system.

When developing sensor- and actuator-based autonomoesrsyshe software develop-
ment depends not only on the real hardware environmentdirguactuators and sensors
with their corresponding mounting positions and fields @wibut also on the system’s
context causing various and often unlimited differentatittns which must be handled
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Figure 3.1: Methodology which uses the customer’s requeresfrom the topmost level
of the V-model as the basis for a formal specification of th&ey’s context. This speci-
fication is used to generate the required input data for tierdnt layers of a sensor- and
actuator-based autonomous system. Moreover, complétengustomer’s requirements,
its acceptance criteria are used to specify metrics foruewmg individual layers or the
entire data processing system.

safely and in time by the SUD. Thus, several limitations ulrfee the software engineer-
ing which are selectively listed in the following:

Dependency on the sensors may delay the software developbwemto the fact
that the sensors’ raw data is necessary to develop appi@pafiware components
to evaluate and interpret the system’s context for gemegatn abstract model of
its surroundings, the development of these componentslayetk until situation-
dependent raw data can be produced even if the softwardeotthie is decomposed
into layers with interfaces. Thus, the availability and mig of sensors is on the
project’s critical path.

Early and continuous integration of software componentsaisily possible.Fol-
lowed by the aforementioned issue, the continuous and e#dgration of inde-
pendent software artifacts is hardly possible. Thus, ssueich arise from the
component’s interaction or from architectural faults aatrive fixed early and cause
delays later on.
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» Test automation is only possible in a limited mann€aused by the dependency

on sensors’ raw data, automation for unit tests and thus eometed continuous
integration system is only available for selected partfiefdoftware system. Thus,
a report about the quality and robustness for the entiresys only possible when
it is integrated and tested in reality which is impossibledach single modification
to the entire source code.

Dependency on continuous input data from the system’sxtoiitefeed required in-
put data into the data processing chain of a sensor- andtactesed autonomous
system, its actions within its intended system’s contextseaon one hand reac-
tions in the surroundings. On the other hand, these reactiball elements from
the system’s context must be returned into the data prowgssiain in terms of
a closed-loop. However, the closing of the data procesdwmagnocan be realized
at different layers of the chain as shown in Figure 2.3. Tiloeeg various abstrac-
tions from the system’s context are required for the diffiétayers; for example,
the necessary input data for a sensor data fusion moduls heée more complex
compared to the input data which is necessary for a high-fgaaning algorithm
which may only require an aggregated abstraction from tkeegys context.

In the following, a methodology is outlined which addresthese challenges for the soft-
ware engineering in the development of sensor- and actbat®d autonomous systems.

3.2.1 Preconditions and Limitations

For applying recent methodologies from the software ergging domain including test
automation to all parts of the system’s software, seveedqmnditions must be met. These
are listed in the following.
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» Formal specification of the system’s contdxr developing a sensor- and actuator-

based autonomous system which relies on stimuli from iesnitéd system’s con-
text, input data must be available to provide informationwhts surroundings.
To get this data in a reliable and consistent manner, the SQitem’s context
including stationary and dynamic elements must be spedifiedally to provide
scenarios. These scenarios are re-usable artifacts wi@chachine-processable in
the software development process and can be derived frogutemer’s require-
ments.

Specification of customer’s acceptance critefar carrying out acceptance tests to
evaluate the behavior of the SUD, metrics which reflect tretaruer’s acceptance
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criteria must be specified. These metrics are used to eealbatSUD’s behavior
on stimuli from the stationary and dynamic system’s context

» Decoupling the system and software development processlimmneal hardware
environment and the system’s conteXb realize an automatic validation of the
SUD, the software and system development must be operablaurely virtualized
manner. Thus, the SUD itself must be available in a completeiualized way.

Therefore, the CPS’s interface to its real world must be alined. Hence, a model
of each sensor and actuator must be available to decouplgUbefrom its sur-
roundings. Furthermore, a fail-safe, reproducible, anavenient framework to
support the active software development as well as the ataahvalidation must
be available which is able to provide the required input daita data stream pro-
cessing system using sensors to understand its surrowahagactuators to interact
with its surroundings.

» Enabling the testabilityTo apply software testing methods on the SUD, the system
itself and especially its components which may be suppliethiod party contribu-
tors must be testable. Thus, a testable architecture mastiable which supports
the testing of individual layers or even subsystems.

However, a purely virtualized system and software devekmprocess can extend and
partly substitute real system tests but cannot completddgtgute them. The main rea-
sons are the simplifications and assumptions which were mnadieveloping a model to
feed data into the SUD. Instead, the main goal behind a smtdavelopment process
which bases on a virtualization of the SUD is to reduce theeddpncies to the real hard-
ware environment and the system’s context to increase t@lb$BUD’s software quality
by enabling the usage of well established software engimgenethodologies like test
automation and continuous integration. Thus, an increaséficiency for evaluating the
system’s quality is possible by using automatable softiests.

3.2.2 Formal Specification of the System’s Context

For using the customer’s requirements as part of the sadtdewrelopment process to spec-
ify the SUD’s system’s context as shown in Figure 3.1, a fdmepresentation in form
of a so-called formal language is necessary. Nowadayse theguages which help to
address selected issues of a chosen domain are called D&ttargdo so-called General
Purpose Language&PL) which do not cover a specific domain but rather provide more
widely applicable concepts. A DSL consists of a set of spewibrds which are called
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thealphabetof the language or which are more commonly knowrk@gwvords Further-
more, these keywords must be composed in a formally speevigdvhich is defined in
a so-called language’s grammar to create valid sentences wieet the grammar.

The main advantage of grammar’s compliant sentences iaftyatools which use them
for further data processing can safely assume that thegedvinput data is valid if and
only if the sentence is compliant to the grammar. Thus, theesd of a given sentence
can safely be evaluated if it is formally correct; this fectalledsyntactical correctness

However, syntactical correctness is necessary but notmurtii.e. any sentence which is
compliant to a given grammar must not be automatically megnl. Therefore, further
concepts like the Object Constraint Langua@€() which is part of the Unified Model-
ing Language YML) can be used to specify constraints for parts of a sentencethar
way to evaluate the semantic validity of a sentence is toop@rfa post-processing step
after evaluating the sentence’s syntactical correctnassglthe so-called parsing step.
Therefore, all atomic pieces of a sentence are evaluatad aspecific program which is
often part of theparser.

To create a suitable DSL, the domain has to be carefully aedlipy a domain expert first.
This analysis yields meaningful atomic pieces of the donveith potential attributes
which describe varying parts. Moreover, relations betwibese pieces are defined and
further specified. The resulting artifact is for example alUblass diagram which re-
flects identified elements from the analyzed domain. Therdmagtself is the base to
derive necessary non-terminals and terminals for the gr@mmn Chapter 4, an analy-
sis for the domain for sensor- and actuator-based auton®msyaiems on the example
of autonomously driving vehicles is carried out which yexdda grammar to describe the
system’s context.

The resulting grammar is not only the base to define the syst@ntext for autonomous
vehicles. Itis also the Single Point of TrutBROT) to generate the required input data for
the different layers of a sensor- and actuator-based syaseshown in Figure 3.1 on the
left hand side of the general system architecture for semsat actuator-based systems.
Therefore, further algorithms which are described in gredetail in Chapter 6 evaluate
the given grammar’s instances to provide the required idptd.

3.2.3 Specification of Customer’s Acceptance Criteria

As already mentioned unit tests are nowadays an estabimsbt#tdology [130] to define
an executable specification for an expected algorithm’stsen Therefore, the consid-
ered algorithm is structurally analyzed to derive necestest cases; however, during the
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actual test process the algorithm is regarded as a blackTdexanalysis is necessary to
identify the required test data which is fed into the aldoritto compare the algorithm’s

results with the expected output data. Moreover, usingicoots integration systems
like [38] the test execution can be automated to report eetyubn the software’s quality

unattendedly.

Inspired by the aforementioned methodology this concegdt bk applied to the final step

of the V-model for automating the acceptance tests. Thegefioe necessary input data is
generated from the detailed and formal specification of yiseesn’s context either to feed

data into the sensor models or into a model for an entire dataepsing layer as shown in

Figure 3.1. Contrary to the structural analysis which is Beagy to specify appropriate

unit tests for an algorithm as sketched above, the custovaérages the resulting system
mainly by validating its behavior according to the custosewn acceptance criteria.

Additionally to the formally specified system’s context whiis derived from the cus-
tomer’s requirements, the customer’s acceptance criteuist be gathered to define ap-
propriate acceptance tests; recent requirements managtks like the Voléere Require-
ments Specification [167] enforce to define so-caliedriteria to support the evaluation
of the requirement’s fulfillment. Adapting this concepthe tarea of sensor- and actuator-
based autonomous systems the final evaluation consistsasfumeg various aspects of
the system’s behavior in its intended context. On the exarmphutonomous vehicles,
these criteria include minimum and maximum distances tiostary and dynamic obsta-
cles, timings, and legally correct behavior in differemtigtions. During the 2007 DARPA
Urban Challenge competition, a specific document was redg@9¢which describes very
detailed the evaluation criteria which were applied mayusl the DARPA judges during
the competition.

These criteria which measure the system’s performance inténded system’s context
can also be realized alike the evaluation of an algorithmgusnit tests. Therefore, com-
parable to the system’s evaluation in reality the systemt to@supervised continuously
and any applicable evaluation criteria must be appliedicoatisly to the SUD regarding
its system’s context.

3.2.4 Decoupling the SUD’s Evaluation from the Real Hardware
Environment and System’s Context

To realize an evaluation for a sensor- and actuator-bass#dmyas shown in Figure 3.2,
its system’s context is necessary. As mentioned beforg sifstem’s context is derived
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from the customer’s requirements specification which isjied using a DSL. Thus, a
formal, repeatable, and consistent representation of d&issdlirroundings is available.

Evaluate SUD
regarding to its
current system's
context.

Construct current Step system's

context.

system's context
from DSL.

Continue evaluation?

Create report.

Create sensors' or
layers' models to
provide input data.
Setup testbed
for SUD.

Figure 3.2: Activity diagram showing the required steps valgate automatically a
sensor- and actuator-based autonomous system: Firstedeftthand side the steps for
setting up the test environment are shown. Afterwards, térative evaluation of the
SUD’s behavior is depicted by the gray steps which are coatisly executed until the
evaluation is finished due to fulfilling all customer’s actae criteria for the specified
test or due to violating a certain criterion. Finally, a suamining report is created.

Increment time. Step SUD.

To feed appropriate input data into the SUD, a model of itseenwhich simulates a
specific sensor’'s measurement principle or at least aneatistn from its sensors by using
a so-called layer's model is necessary. The latter reptesenentire layer encapsulating
all available sensors by providing already pre-processed @hich reflects an abstract
representation of the SUD’s surroundings. Thus, the SUd&rface to its surroundings
is specified.

As the next step, the so-called testbed is setup for the SWB.t&stbed is a run-time
environment for controlling the scheduling for the SUD atisdsiystem’s context to ensure
a repeatable and consistent execution for all SUD’s commuisnand its surroundings,
supervising the entire communication, and providing aewsivide time source.

Following, the actual evaluation loop is executed. Theesfthe initial SUD’s state re-
lated to its system’s context is evaluated. Then, the systata time is incremented to
calculate the next states for ¢ + 1 for the SUD on one hand and its system’s context on
the other hand. Within this time step, the SUD may calculata malues for the actuat-
ing variables or process incoming data using its situatgsessment module for example.
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After modifying the SUD, its execution is suspended to gateethe data for the SUD’s
surroundings for the current time step based on the SUD’a\beh Therefore, specific
models which are using the system’s context to calculatepaovide the necessary data
for the different layers of the SUD are required. Finallg tlurrent situation is evaluated
to start over again.

The aforementioned evaluation reflects not only a pureliualized way to evaluate a
software system for sensor- and actuator-based autonasystesns but it also resembles
the way the real system may be tested: First, the surrous@ing a given situation must
be prepared; then, the SUD must be set up followed by anlieitedluation of the current
test setup. Then, the SUD is executed with the given paramt&ieoperate in the pre-
pared system’s context and situation while it is continlypsspervised by a test team for
example. Afterwards, a final report for the test is createghd¢, this real test scheme for
a sensor- and actuator-based autonomous system was tHateefop purely virtualized
evaluation.

Compared to methodologies like Software-in-the-Lo&iL and Model-in-the-Loop
(MiL), this methodology bases on the SPOT principle realized Byh to specify the
system’s context. Thus, instances from this DSL are useldeasrily source to generate
automatically all necessary and specific input data to diesdoop for the various lay-
ers of the data processing chain. Furthermore, the DSL anddhcepts outlined in the
following chapters are embedded into a common frameworkdeige a seamless integra-
tion of the validation concepts for acceptance tests wiiemselves are inspired by unit
tests. Finally, due to the integration into a framework, tfiethodology is self-contained
in general and, thus, scales with the number of users. Tieem be used interactively on
one hand to evaluate an SUD, but it can also be unattendewignated on the other hand
by any existing Continuous Integration Systeti) as described for example in Section
8.2.5.

3.2.4.1 Interceptable and Component-based Applications

An SUD may consist of several only loosely coupled indepahdemponents to tackle
the customer’s desired systems usingdhede and conqueprinciple. Furthermore, to
support the scheduler for the SUD and its surroundings agides in the following, all
components must be structured similarly in a software gechiral sense. Therefore, the
data processing part of a component which is a part of theptatzessing chain can be
identified from the component’s software architecture inexgefined way, and thus, the
component can be intercepted easily.
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Moreover, to support a consistent setup of the testbedlfmdEpendently running SUD’s
components, centralized configuration data must be deplwyall components nonethe-
less whether they are running on only one computing node strilalitedly on several
computing nodes. Furthermore, only those data which isqpdeitly meant for a specific
component should be deployed to avoid side-effects or dkgperes on other unrelated
configuration data.

3.2.4.2 Non-Reactive and Supervisable Communication

Comparable to a consistent internal structure of all runr8tfP’s components, their
communication must be precisely specified and typed as wefigpect incoming data
at run-time to avoid misleading behavior inside a compon€&ntthermore, to avoid in-
terfering SUD’s components or evaluating components cthice point-to-point commu-
nication between a priori known communication partnerstmos be used for the core
data processing components. Instead, a fast and bus-likenaaication which allows
non-reactive inspection both for monitoring components fam evaluating components
shall be chosen.

However, bus-like communication may cause packet dropsechy an increasing com-
munication load. Assuming components which communicatk wihigh frequency for
updating their previously sent data with new informatioacket drops may be neglected
if they appear rarely and thus do not reduce the data’s guadlall awaiting components.
However, this issue depends on the final applications’ fpamtng on the intended hard-
ware platform. Real-time aspects for data processing antbexye depend on an actual
implementation. Therefore, these aspects are discussxttion 8.1.

Furthermore, not only the actual data processing steparasicSUD’s component must be
interceptable but also its incoming and outgoing commuigndo enforce a deterministic

scheduling. However, bus-like communication is undirédte principle and hence, a

software abstraction must be seamlessly integrated inBdd)’'s components to intercept
and control all communication.

3.2.4.3 Scheduler for SUD and its System’s Context

As indicated by Figure 3.2 the evaluation of a running SUDd@dts predefined system’s
context needs a reliable scheduler. The main task for thedsidér is to control all SUD’s

components and all components which are used for evaluaii@msure a determinis-
tic execution order. Furthermore, the scheduler seleascomponent which needs to
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be executed and performs one single and constant exectipr\s for the main data
processing part of the selected component.

Moreover, the scheduler must ensure that a component wishlécted for execution
does not run forever; therefore, the selected componera Ipasdefined maximum exe-
cution timetexecmax. Whenever one component misses this predefined deadlinetine e
evaluation is canceled because the scheduler cannotfidémei reason for the failing
component. This behavior is a fail-safe behavior becausanitels the evaluation at the
earliest possible timé,; which does not cause further failures or misleading bemavio
Furthermore, it may be possible to deduce the failure reasomany non-reactively cap-
tured data during the evaluation.

The strategy to select a component for execution is insyettie Round-robinschedul-
ing method which implements a First-In-First-O&FO) queue to select the next avail-
able component. Thus, a constant run-time frequency fdr eamponent together with
the aforementioned execution deadliRgcmax €nsures that all executable components
will be selected in a deterministic order with a maximum exem time.

3.2.5 Structure for the Following Chapters

The resulting methodology consists of three parts: Forpatigication of the system’s
context, definition of metrics for evaluating an SUD'’s bebainside its system’s context,
and an appropriate software framework which not only suigptbe aforementioned both
concepts but also supports the software development.itsieliice, this methodology is
elaborated in the following chapters.

Therefore, a thorough domain analysis which is describé&@hiapter 4 is carried out for
the system’s context of sensor- and actuator-based systethe example of autonomous
vehicles. Afterwards, a software framework to support #netbpment of distributed real-
time applications is designed and outlined in greater tet&hapter 5. This framework
is intended to found the basis for interactive and unattérsgstem simulations by using
a DSL which describes the system’s context as outlined in @h&p The actual SUD’s
evaluation is described in greater detail in Chapter 7. Tlisvace solution is applied
exemplarily on an autonomous vehicle whose results areidesan Chapter 8.
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4 Modeling the System’s Context

In this chapter, a DSL and its implementation for Java and @+#fdeling the system’s
context mainly for AGVs is outlined. Therefore, the mathén@ basis is discussed first.
Afterwards, an analysis of the AGV'’s surroundings is carroeit to derive a DSL for
modeling stationary and dynamic elements. Finally, the '®8hplementation and its
drawbacks for Java and C++ are discussed.

4.1 General Considerations and Design Drivers

According to [24], a model is a simplified representatiomirsometimes complex rela-
tions, actions, or behaviors of a real system and is intetmledrve specific and domain-
dependent purposes. The important remark is that the medmh iabstraction of the

original system by defining a set of assumptions to satisydésired purpose; thus, the
model is only similar and not the same as the original systesing a model, informa-

tion from the original system should be deduced or predistshould be derived to allow
further inspections for the system.

For modeling in the domain of automotive software developid ATLAB and Simulink
[154] are today’s first choice by many developers. Usingeéhesls for specifying a
system, even stepwise interpretable models at early staghe software development
process could be defined. However, these models are ratpglicable for large models
describing elements in the system’s context along withigisal appearance. Furthermore,
for designing stationary and dynamic elements with an astaut behavior that could
be event-based itself, MATLAB is rather inappropriate hesgato its limited concept of
referencing variables for example.

Below, the most important design drivers for a domain spelafiguage for modeling an
AGV’s system’s context are listed:

» Scenario-based modelinghe topmost modeling element is a scenario defining a
concrete setup for the system'’s context as well as a goalredoded by the system
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itself within the modeled context. For example: “Scenafimrrect handling of 4-
way stops.”

» Separation of modelingStationary and dynamic elements of the system’s context
should be modeled separately for allowing flexible reuse.

« Mathematical relations as common ba§eenarios describe complex relations be-
tween different elements from the system’s context likatpss and rotations, tim-
ings, and velocities. All these attributes arise from csiesit and unique mathemati-
cal relations between element’s attributes from the systeamtext. Therefore, for
using models from the system’s context in the software dgrmknt to generate
input data for example, they must rely on a mathematical.base

Next, mathematical considerations for modeling threeedfigional elements of the reality
are given. Afterwards, a domain specific language to definB@W's system’s context
is introduced by analyzing the AGV'’s surroundings.

4.2 Mathematical Considerations

Before the surroundings of stationary and dynamic elementde modeled, their math-
ematical representation and valid manipulations must fieet® In this section, manipu-
lations for rigid bodies which are used in the surroundimgpresentation to simplify the
modeling and computation are discussed. Further infoomdtr the concepts which are
outlined briefly in the following can be found at [30].

First, every rigid body has a unique representation in theleho Since the model it-
self is derived from the reality, its assumed modeling spad&® with Cartesian coor-
dinates from the orthonormal basis as shown in Equation A.1igid body’s elemen-
tary representatio®s in R? consists of a translatioR,. relative to the coordinate sys-
tem’s origin and a direction vectaPs,, describing its rotation around all three axes:
Pg = (Ps,,Pg,) = ((x5.ys,28), (dx,. dy,,dz,)), Where P itself denotes a fixed
and immutable point over time in the rigid body itself, fora@xple its center of mass.

1\ /o
R = (ex,ev,ez)=| [o].|1].[o]| | =B (4.1)
0o/ \o

For modifying the bodyPz without changing the body’s shape, translations, rotation
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and reflections are the only allowed manipulations respegdtiz’s orthonormal basis.
Since manipulations applied to the body; in modeled surroundings must always be
continuous, it is evident that reflections however are namnjtéed.

4.2.1 Manipulations inR?

A translation applied toPs is an addition of an arbitrary translation vectgs =
(Z4p+ Yins 21,) 10 Pp.. The rotation ofPs is defined as an application of a given an-
gle ¢ € [—2m;2x| around the X-, Y- or Z-axes from the orthonormal basis spettiéis
rotation matricesiy, , Ry,, or Ry, as shown in Equation 4.2. It can be easily shown that
det(Ry, ) = det(Rp,. ) = det(Ry,) = 1 holds for anyd. Furthermore, all column vectors
from the rotationsy, , Ry, , and Ry, found an orthonormal basis themselves.

1 0 0
Ro, = [0 cos(fx) —sin(fx) |,
0 sin(fy) cos(fx)
cos(fy) 0 —sin(fy)
Ry, = 0o 1 0 :
sin(fy) 0 cos(fy)
cos(fz) —sin(fz) 0
Ry, = [|sin(fz) cos(6z) 0. (4.2)
0 0 1

For performing a rotatiod around an arbitrary axis denoted by= (wy,wy,wyz), the
problem can be formulated as a rotation around a known axi§ &, Z. In Equation 4.3,
the rotation is reduced to the rotation around the X-axis.
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Ry, = R'-Ry-R=Ry, ., (4.3)
with
’LUT
Ro=|5=Guan) |
(8 x w)T

C + Tx?u TrwYw — Szw Txwzyw + SYw
= TxwYw + Sz C + Tyfv TYwzw — Sty |,
Towzw — SYuw  TYwzw + STy C+ T2

Q(Iw,yw72w>

with
C = co8(0(z0yu.20))

S = Sin(e(zw,yw,zw))7
T = (1-0).

If «/ andex are parallel, w.l.o.gey can be used for defining the aforementioned equations.
For simplifying rotations, Eulerian angles can be used seply for X-, Y-, and Z-axes
using rotation matrice$,, , Ry, , andR,,, respectively. All these matrices can simply
be multiplied regarding the order of rotation.

To express a rotation and translation in one single matorydgeneous coordinates are
necessary. Transforming the aforementioned matrices ectdng into homogeneous co-
ordinates is trivial as shown in Equation 4.4. Furthermoneppings like perspective
projections as shown in Equation 4.5 are easily possible.

a1y Tl TE1)  te
r,1) Te1 7B le T( : T( : T( : y
1,2 2,2 3,2
ra2) Te2) Teo | and |, L ()
ra3) T3 33 Ll
r1,3) (23 7(33) i, 0 0 0 1
1 0 00 10 00 Dz 1 0 0 0 Pa
0100 0100 p,| 0100 P |4s)
0000 0010 D, 0000 v |
0001 00 %1 1 00 51 1
—_———— ~ ~ ~ ~ .
orthogonal projection perspective transformation perspective projection
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Figure 4.1: Three-dimensional coordinate system withtiata around all three axes.
The triangles with the different gray-tones are additigndfawn helping to identify the
rotations.

The Cartesian coordinate system used for modeling is shovaigure 4.1 based on a
right-hand-coordinate system. It is also the basé{esperia as described in Chapter 5.

4.2.2 Quaternions

As already mentioned before, rotations can be expressad usiation matrices around
X-, Y-, and Z-axes representing Eulerian angles. Howeves, representation can be
erroneous when one axis aligns with another during rotaiinging the loss of one degree
of freedom as shown in Equation 4.6. In literature, this Fobis known assimbal lock
[96].

R = Ry, Ryy - Ry, (4.6)
cos(f) —sin(d) 0 1 0 0 cos(¢) —sin(¢r) 0
= sin(f) cos(d) O 0 cos(¢p) —sin(¢) sin(¢))  cos(vp) 0
0 0 1 0 sin(¢) cos(¢) 0 0 1
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For avoiding the Gimbal lock problem,cquaterniong € H can be used. Quaternions are

so-called hyper-complex numbers= a + bi + c¢j + dk with > = j2 = k? = ijk = —1.

They provide the homomorphis(®O(3), || . ||) by interpreting a quaternion as a rotation
0 0

¢ around an arbitrary axis a& ¢ = (cos($), sin(5)w). To compute a rotation ii?, the

guaternion multiplication as shown in Equation 4.7 is used.

P= 477 (4.7)
with
= quaternion multiplication

conjugate of qg = (cos(g), —sm(g)w)

<
Il

Using quaternions as an alternate representation foigontatthe Gimbal lock problem
cannot arise since rotations around several axes are sgpras concatenated quaternion
multiplications. For expressing a rotation of paifdround an arbitrary rotation axisby

6 in R3, the quaternion correspondence as shown in Equation 4lgsafp3, 96, 108].

0 0

Ry gy P Q(ijw) P @(5,16) (4.8)
0 0. 0 0.
= (008(5) + 81n(§)w) -p(cos(ﬁ) — 81n(§)w)
0. . 0 .0 .0 .
= (COS(§), sm(§)wx,sm(§)wy, sm(EwZ) -
0 Y, .0 .0
(COS(i), — sm(§)wgc, — sm(§)wy, — sm(§)wz)

1—2(y*+2%) —2vz+2zy 2uy + 2xz
= 2wz +2ry 1-222+2%) —2ux+2yz |-p=p"
—2uy + 2uz r +2yz 1 —2(z? +y?)
with

0 0 0 0
v =cos(3), & =sin(g)we, y = sin(Z)wy, 2 =sin(;)w.

4.2.3 The WGS84 Coordinate System

For locating positions on Earth, two-dimensional World Getic System 1984¢GS84
coordinates are widely used today [109]. Even the well-km@#S service bases on these
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coordinates. This coordinate system considers the Eartimsature on its surface. The
aforementioned Cartesian coordinate system however assaupianar surface without a
curvature on its surface.

Figure 4.2: Cartesian coordinate system based on WGS84 adigenotes the the equa-
torial diameterp denotes the North/South diameter. The triplg ¢, \) which consists
of the radius and a spherical coordinate in WGS84 denotes rdicate on the Earth’s
surface pointing to the origi® of a Cartesian coordinate systeim The normal vector
for this coordinate system is described by the aforemeatidriple.

In Figure 4.2 the geometric model of the Earth is shown winereienotes the equatorial
diameterp denotes the North/South one, and its réftg}é describes the Earth’ flattening.
Using the WGS84 model, = 6,378, 137m andb = 6, 356, 752.314m apply.

For mapping a Cartesian coordinate system on a curved surfdabe spherical coordi-
nate systeniR?, ¢, ), the following model can be assumed. I(ebe the perpendicular
point of planel located orthogonally td? representing the plane’s normal vector. Addi-
tionally, the Cartesian coordinate system itself can beedtaround its Z-axis usingy,.
For getting a correspondence to spherical coordinétes; 0 is mapped to a Cartesian
coordinate system, whose Y-axis directs from South to North

For mapping spherical coordinates onto the required Carteiordinate system using
O = (R, ¢, \) as origin, a projection of the Earth’s surface is necessahe simplest
projection is a cylindrical projection using a cylinder wpeed around the Earth at the
equator. However, the major disadvantage is the increasipgecision towards the poles.
More precise is th@oly-conic projectioras shown in Figure 4.3. Hereby, several cones,
which are tangent to Earth at different latitudes, are chasstead of a cylinder. The
main advantage is the precise mapping of the Earth’s suaiaze[49].
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Figure 4.3: Poly-conic projection of the Earth (based or})[49

4.3 Domain Analysis: Surroundings of Autonomous
Ground Vehicles

The surroundings of AGVs depend obviously on the range olieamns and vary from
simple driver assistance functions up to autonomous dyivim the following, the use
case for autonomous driving is analyzed.

First, the surroundings can be subdivided into private ardip areas. The difference in
classification is the restricted access to the latter, tbation of the AGV'’s control, and

legal aspects for operating such a vehicle. Second, thewsutings’ elements can be
classified into stationary and dynamic elements.

4.3.1 Traits of Private Areas

Private areas are clearly separated from public accesthefomore, the area of operation
for AGVs is either entirely known or also restricted from palaccess. Therefore, risks
for life and health are restricted to the private area’sqamgl only who can be instructed
properly to reduce the risk of accidents.

Moreover, the current state of all AGVs is known by a centmaitool center at any time
which might be a real person or an institution as well. Thbs tenter is able to track
and stop any AGV in dangerous situations. Harbor faciliabegactories are main areas
for the operation of automatically or fully autonomouslyeogting vehicles [76, 149].

Furthermore, rules for operating these AGVs to minimizertble of accidents are avail-
able by the carrier and restrict the absolute liability te private area’s personnel and
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material. These rules can be supervised by government twmeesosnformance to laws.

Another important property is the possibility to measureghrformance of AGVs. There-
fore, it is possible to modify the surroundings or vehicl&shnology to improve their
performance and reliability over time. Moreover, it is pbksto upgrade the entire fleet
or parts of the fleet if newer technology is available.

Finally, the surroundings in private areas consists of derable elements with a prede-
fined behavior at any time. Thus, the environment can be wetleted using a formal
specification.

4.3.2 Traits of Public Areas

Contrary to private areas are restrictions and unpredetaises of public areas. The
main and important difference is the access for everyonds iBhthe reason why the
potential state space for an AGV is unbounded and thus difficyredict and control.

Furthermore, controlling AGVs is either decentralized lg vehicles themselves or only
centrally supervised by a control station. Moreover, thfitr consisting of vehicles con-
trolled by human drivers and AGVs at the same time is hardBrpretable or predictable
for computer algorithms. The main reason is that AGVs canmadte “eye-contact” with
a human driver to obtain information about the driver’s fatintentions. Therefore, a
description of the current state may be incomplete on ond had may be unpredictable
on the other hand. The complexity of this context cannot lmeptetely modeled using a
formal specification.

4.3.3 Surroundings’ Elements

There are different elements in the surroundings of an AGhEteonsidered in a descrip-
tion. These elements subdivide into a ground, as well asstaly and dynamic elements
with a corresponding visual representation in the real dvoRurthermore, there are el-
ements without a visual representation like the right-afwule at intersections. These
elements are described in the following sections.

4.3.3.1 Ground

The surrounding’s ground is an important element becausésf@e ground-based and
change their position and rotation directly depending egitound’s shape. Furthermore,
the ground may be used by a perception system to compute hinge/e current position
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in the real world. Furthermore, the ground’s property infice the vehicle’s movements
due to its adherence. Some algorithms also use the groumafacteristics to detect the
own road or lane [20, 99].

4.3.3.2 Stationary Elements

The main aspect of stationary elements is their immobilioreover, their absolute
position in the real world is known or can be easily determiriexamples for stationary
elements are houses, trees, or traffic signs. Stationamyeels are not only necessary to
detect for collision avoidance but may also be used for Semelously Localization And
Mapping SLAM) algorithms [42] to navigate an AGV through unknown areaemeh
satellite based localization can not be used like in bugdiar factories.

4.3.3.3 Dynamic Elements

Dynamic elements are all objects changing their positich raation over time. These
elements may interact with AGVs to cause a proper reactioxantples for dynamic
elements are other cars, pedestrians, or bicyclists. Bedidese objects are most com-
plicated to detect since all today’s sensors detect onlyotws or shapes with a certain
quality. Furthermore, object classifiers to map contourshapes base either on assump-
tions or rule sets. For example, a contour-based sensohvidgointing in a vehicle’s
driving direction would classify a large and moving contaufront of the own vehicle
as another car or truck. Spots or smaller contours next toedauld be a pedestrian.
Furthermore, a currently non-moving object on the sidewallid be classified as a sta-
tionary object like a tree until it starts moving. Today, hanmmexperience in a machine
processable representation for improving this classifingiroblem is missing.

4.3.3.4 Logical Elements

Logical elements describe either elements like roads,slanespeed limits which are
relevant to the sensor- and actuator-based autonomousrsystontext. Furthermore,
they describe relations between other logical elementsrandbe used to specify traffic
regulations. This information is provided before or durthg sensor- and actuator-based
autonomous system’s run-time and may change over time.
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4.4 Modeling the Surroundings of Autonomous Ground
Vehicles

Based on the aforementioned overview of the AGVs’ surrouyglia DSL is developed
in the following. Moreover, as demanded by the design cat@entioned above, the DSL
is split into one for modeling stationary and one for modglidynamic elements which
are described separately.

4.4.1 Modeling of Stationary Elements

In this section the DSL which is used to provide and exchaong®adilly consistent data
for the stationary system’s context is described. The ogerof this part of the AGV'’s
surroundings is depicted in a UML class diagram in Figure 4.4

’—| Header I‘—l CoordinateSystem | CD

| WGS84CoordinateSystem |

|Polygon | | Cylinder | | ComplexModell

0..

| Perimeter I—‘I Zone

LaneModel <]

PointModel
FunctionModel

/\

| TrafficLight | | TrafficSign |

| Clothoid | | Arc |

Figure 4.4: UML class diagram describing the system'’s cdistetationary elements. For
the sake of clarity only multiplicities other than 1 are destb The complete DSL which
is derived from this UML class diagram including all attries can be found in Section
A.

In that figure, the stationary system’s context is shown. Tdw element is named
Scenari o and consists of a header, a ground, and optional one or mgayslaThe
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Header describes meta data about the concrete model itself likaioredate, version,
and its relation to the reality using a WGS84 referenced orighe origin itself is the log-
ical point(0; 0; 0) creating a three-dimensional Cartesian coordinate sysaiedd/\orld
Coordinate System\(CS9 for all other modeled elements. Using Cartesian coord&ate
re-modeling of real environments using aerial images igyepsssible. Aerial images as
well as height maps describing the elevation of a regionasided byGr ound.

The classG ound consists furthermore of a description of the stationaryaurdings
called Sur r oundi ngs. This class contains at least one shape of the Bgleygon,
Cyl i nder, or Conpl exModel . While the former both are evident, the latter type al-
lows the reuse of existing complex 3D models created by o@D modeling programs
like Blender [127] provided in the well-known Wavefront foam All these elements
are positioned and rotated three-dimensionally in the iadigtive to the defined origin.
Thus, modeling of realistic environments is possible.

On top of Gr ound, several.ayer s may be specified. A layer is a logical element allow-
ing to define an order fdRoads andZones with a predefined height. Thus, a layer itself
contains a height and a name. Moreover, using layers thati@fiof bridges is possible.
Layers themselves contalRoads and optionaZones.

A road is the container element for one or mar@nes. A Lane is the concrete de-
scription of a drivable path. Thus, several attributes aeessary. The most important
is LaneMbdel . This class describes the underlying mathematical moaehfolane’s
shape. The easiest shape is the definition using absoluitspelated to the model’s ori-
gin; this model is calledPoi nt Model . BesidesAr ¢ can be used to define a circle with
a predefined radius.

A more complex definition are clothoids as shown in Figure[4HBL]. Clothoids are

the base for the design of roads for German highways for elaniphe advantage of
clothoids is the linear change of curvatures for allowingreosth driving dynamic due
to continuous changes between curves along the path. Howlegentegrals themselves
cannot be solved directly but must be approximated numricBheir definition and a

third order approximation which was used in [111] can be $eé&ys. 4.9 and 4.10.

z\ [T [cos(t?)
0) - [ ) »

c(x) = do(z—x0)® + Kz — 20)* + tan(o) (z — z0) + o (4.10)
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y

X
Figure 4.5: Fresnel integral together with an approxinmatising a 3rd order polyno-
mial with d,, = 0.0215 andx = 0.215 which are estimated values to approximate the
beginning of the Fresnel integral. For road segments whéckhall modeled with a 3rd
order polynomial instead of clothoids, a segment-wise @dpration using several 3rd
order polynomials with different lengths and coefficients mecessary. An algorithm for
a segment-wise approximation of the Fresnel integralsasguted in [111].

Besides the lane’s shape, additional information regardimdogical connections to
either other lanes or zones are defined udGopnect ors. Furthermore, several
Traf fi cContr ol s can be assigned to a lane. Traffic controls are for exampéefi t

light, a stop sign, or speed limits. These controls are Vaidhe entire lane they are
assigned with.

Additionally, Lanes can be connected #onnes. A zone defines a region without prede-
fined drivable areas like lanes inside roads and is for exampharking-lot, defined by its
Per i net er . Within this zone, several speci@pot s can be defined.

In a concrete instance of this model for stationary elemeatitglements are named and
identifiable using hierarchical identifiers starting at br Example, an addressable way-
point of a point-shaped lane that might be identified by 243chn be found on layer 2,
road 3 and lane 1. Using this consistent nomenclature, atabte routes can be defined
easily by listing consecutive points.

4.4.2 Modeling of Dynamic Elements

After defining the stationary, immutable surroundings, alyic elements can be added
which is described in this section. Modeling of dynamic edems according to the model
shown in Figure 4.6 can be used to extend the stationary wsutiogs with dynamic
objects to define aituation Therefore, a situation is always technically associatild w
exact one model of the stationary surroundings usingiitsuat i onHeader .
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Situation

AN
1tuationrieader cenario CD

Behavior

|Polyg0n| |Rectangle| |ComplexModel| |ExternalDriver| |PointIDDriver

Immediately

| OnEnteringPolygon I—-Dl StartType | | StopType |

| ConstantVelocity I—
| ConstantAcceleration I_

Figure 4.6: Class diagram describing the system’s contdyt'amic elements. For the
sake of clarity only multiplicities other than 1 are denoted

As shown in Figure 4.6, the dynamic system’s context consifat least on€bj ect .
Every object has an associated appearance, which is edbedlon polygons or modeled
by usingConpl exModel s. Here, the latter are the same as already mentioned iro8ecti
4.4.1. Furthermore, every object has an initial positioth @nation, a name, and a unique
identifier as well.

Besides its shape, a behavior must be assigned to an objeefite dts role in a con-
crete situation, which can biext er nal Dri ver or Poi nt | DDri ver. The former
indicates that this dynamic object is controlled extesnblf humans or by a high-level
trajectory planner. The latter behavior instead can be bgede simulator as outlined in
the following.

ThePoi nt | DDr i ver indicates that the associated object is controlled by aoritign

to generate its position data during a simulation. An objatit this behavior simply fol-
lows a predefined list of identifiable way-points from thdistaary surroundings using an
associated drivindger of i | e like constant velocity or constant acceleration. Morepver
Start Type andSt opType for Poi nt | DDr i ver s can be defined. The former de-
scribes the event for starting an object. This includes aneniate start at = 0, a start
when any other object starts moving to model situationstatsections for example, or
a start, when any other object enters a specific polygon argittlygering an event. The
St opType defines the object’s behavior, when it has reached its fingdpeant. This
includes no further action or a restart of its associateterou

44



Automating Acceptance Tests on the Example of Autonomoinsciées

4.5 Scenario-based Modeling

For simplifying the creation and exchange of scenario ddwa,Compressed Scenario
Data Format$CNX was designed to defirsenariosvhich combine the stationary and
dynamic elements as described above for modeling différaffiic situations. The SCNX
collects all necessary data describing completely a smeaad combining of several
files into one single, compressed file. Furthermore, the ¥aweformat for describing
complex objects like houses, trees, or vehicles using ttii@ensional models, which
consists itself of several separated files for the shapmaterial, and textures, was com-
bined into one single Compressed Object Data For@&tJ file, which can be easily
embedded into SCNX files. Using an SCNX file, consistent sce+tmsed modeling can
be achieved.

After defining meta-models for surroundings’ models, alsown as abstract syntax and
referred to as DSL in the following, its realization is disead in the next sections. First,
its realization for Java usiniylontiCore[74, 93] is presented. Then, the realization for
C++ to be used for time-critical applications on ECUs is shown.

4.5.1 Scenario-based Modeling Using MontiCore

The framework MontiCore is developed at the Software EngingeGroup at RWTH
Aachen University and Technische Universitat Braunschyigigupporting the agile de-
sign, evolution, and implementation of DSLs or even GPLsnMgoore offers traditional
grammar-based as well as today’s meta-modeling conceptiefming the abstract and
concrete syntax for a language in one single representalioerefore, it provides a lan-
guage similar to the Extended Backus-Naur FOEBNF) which is used to generate a
suitable lexer based on Another Tool for Language Recogn{fd\TLR [116] and a
parser as well as classes for constructing an Abstract $@raph ASQG to be used for
processing instances of a concrete grammar using modeectaiijented concepts like
visitors [64]. MontiCore itself is realized using the progmaing language Java.

MontiCore was chosen to quickly implement and evolve conead@lements of the mod-
eling language. Furthermore, a graphical editor for théastary and dynamic AGV’s
surroundings was developed [145] using the Eclipse Rich Chémtform [153] which
also bases on Java. In Listing 4.1, an excerpt from the grarfonanodeling stationary
elements is shown. The complete grammar as well as the grafondgynamic elements
can be found in Section A.
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Road = "Road" "Roadl D' Roadl D: Nunber (" RoadNane" RoadNane: —
Al phaNum ? Lanes: Lane+ ";";

Lane = "Lane" "Lanel D' Lanel D: Nunber
5 LaneModel : LaneModel ";";

LaneModel = LaneAttri bute: LaneAttri bute
Connect or s: Connect or *
TrafficControl s: Traf fi cControl

10 (Poi nt Model | Functi onModel);
Poi nt Model = "Poi nt Model " | DVertex2+ ";";
Functi onModel = "FunctionMdel" (Cdothoid | Arc) ";";

15
Cl ot hoi d = Functi onModel : " C ot hoi d"
"dk" dk: Nunmber

"Kk" k: Number
"Start" Start:|DVertex2
20 "End" End: | DVertex2

"Rot Z" Rot ati on: Nunber ;

Listing 4.1: Excerpt from MontiCore grammar for stationawyreundings.

The grammar shown in Listing 4.1 is abbreviated but showsesomne elements for mod-
eling the stationary surroundings. In line 2, the definitadra road is given. Besides its
identifier and optional name, lanes are associated and defitiee 4. The mathematical
basis for these lanes is essential and defined in produatiehaneMbdel inline 7 et
seqq. Since clothoids are already exemplary introducececti& 4.4.1, in line 16 et
seqq. its approximation is defined.

From this grammar, nodes for the ASG, reflecting the gransy&tructure and named
according to the production rule, are generated togethtr aviexer and parser for pro-
cessing instances of this language using Java. Theseskgs@stantiated automatically
during the parsing process and connected to a graph forefuutage. Right after the
parsing process, a validation visitor traverses the ASG@liecking several semantic con-
straints like indices of the surroundings’ elements mushlzevalid interval, whether the
image’s dimensions are positive, or mapping from numedoaktants to an enumeration
class.
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4.5.2 Scenario-based Modeling Using C++

After implementing the grammar for modeling the stationangl dynamic surroundings
with MontiCore, its use for C++ is discussed in the followingn&& MontiCore generates
a lexer and parser only for Java, an alternate approach raugtdsen to directly use the
grammar with C++ for the development of embedded softwar&@ids.

For example, Yet Another Compiler-CompileYACQ can be used to define the gram-
mar in Backus-Naur FornBNF) for automatically generating a parser for C. The parser
processes tokens provided by a lexer which itself must bpl&apeither by the devel-
oper [88] or provided by the lexical analyz&rHX) [97]. Furthermore, support for ASG
classes is missing at all. Thus, its use in an object-oriesystem is rather improper.

For using a language processing framework that is compatitth C++,Spirit was cho-
sen [23]. As part of the Boost project, a peer-reviewed, ptatfindependent, and widely
used collection of libraries for C++, the parser frameworkeasy suitable.

Like MontiCore, Spirit generates a lexer and parser from an EBpecification of the
grammar. Hereby, the grammar itself is provided using C++ptata concepts [165] and
implemented as a regular class, and thus, the lexer and paesgenerated completely at
compile-timeusing the regular compiler without the need for any othek. tdthile Spirit
itself relies heavily on template concepts, only modern Cetgilers like GNU’s G++
3.1, Microsoft Visual C++ 7.1, or Intel C++ 7.1 can be used to pienthe grammar’s
input files. The main advantage of a compile-time generateerland parser is the auto-
matically assured consistency between the grammar, tigedaye processing framework,
and the source code using instances of the given grammaoigiray additional language
processing steps in the software build process.

ROAD

= str_p("ROAD') >> NEW.I NE >>
str_p("ROADI D') >> TAB >> NUMBER >> NEW.I NE >>
I (str_p("ROADNAME') >> TAB >> ALPHANUM >> NEWLI NE) >>
5 +(LANE >> NEWLI NE) >> str_p("ENDROAD");
LANE = str_p("LANE") >> NEW.I NE >>

str_p("LANEID') >> TAB >> NUMBER >> NEW.I NE >>
LANEMODEL >> NEWLI NE >> str_p(" ENDLANE"):
10
LANEMODEL = LANEATTRI BUTE >>
« ( CONNECTOR)  >>
« ( TRAFFI CCONTROL) >>
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15 .

20

25

30

35

48

(PO NTMODEL | FUNCTI ONMODEL) ;

PO NTMODEL = str_p("PO NTMODEL") >> NEW.I NE >>
+(1 DVERTEX2 >> NEWLINE) >> str_p(" ENDPO NTMODEL

"),

FUNCTI ONMODEL = str_p (" FUNCTI ONMODEL") >> NEW.I NE >>
(CLOTHO D | ARC) >> NEW.I NE >> str_p(" -
ENDFUNCTI ONMODEL" ) ;

CLOTHO D = TYPEFUNCTI ONMCDEL >> NEWLI NE >>
str_p("DK") >> TAB >> NUMBER >> NEW.I NE >>
str_p("K") >> TAB >> NUMBER >> NEWLI NE >>
str_p("START") >> NEW.I NE >> | DVERTEX2 >> NEW.I NE -
>>
str_p("END') >> NEW.I NE >> | DVERTEX2 >> NEW.I NE >>
str_p("ROTZ") >> TAB >> NUMBER;

rule <Scanner T, parser_context<>, parser_tag<—

SCNG ammar Tokenl denti fi er:: ROAD | D> > ROAD,

rule <Scanner T, parser_context<>, parser_tag<—

SCNGr ammar Tokenl denti fier:: LANE | D> > LANE;

rule <Scanner T, parser_context<>, parser_tag<-

SCNGr ammar Tokenl denti fi er:: LANEMODEL | D> > LANEMODEL;
rule <Scanner T, parser_context<>, parser_tag<—

SCNGr ammar Tokenl denti fi er:: PO NTMODEL | D> > PO NTMODEL;
rule <Scanner T, parser_context<>, parser_tag<—

SCNGr ammar Tokenl denti fi er:: FUNCTI ONMODEL | D> > FUNCTI ONMODEL;
rule <Scanner T, parser_context<>, parser_tag<—

SCNGr ammar Tokenl denti fi er:: TYPEFUNCTI ONMODEL_| D> > —
TYPEFUNCTI ONMODEL ;

rule <Scanner T, parser_context<>, parser_tag<-

SCNGr ammar Tokenl denti fier:: CLOTHO D | D> > CLOTHO D;

rule <Scanner T, parser_context<>, parser_tag<—
SCNG ammar Tokenl denti fier:: START I D> > const& start() const {
return START;

Listing 4.2: Excerpt from Spirit grammar for stationary sumdings.
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Comparable to Listing 4.1, a similar excerpt from the gramfoamodeling stationary
elements realized using Spirit is shown in Listing 4.2. irelR et seqq., the definition of a
road is provided which is split into several non-termin&ighile MontiCore uses ANTLR
as underlying lexer for processing the grammar’s tokengykeds likeROAD are parsed
using so-calledexeme parserghich is indicated byt r _p. Furthermore, several tokens
representing an input stream are divided>y

Another difference is the definition of quantifiers likefor zero to many occurrences or
+ for one to many occurrences. In MontiCore, quantifiers araddfright behind the ter-
minal or non-terminal. In Spirit, quantifiers are definedront of the regarding terminal
or non-terminal. Furthermore, the quantifier for none or ooeurrence is defined as

in Spirit as contrary t& in MontiCore. Moreover, in Spirit every non-terminal must be
marked by the templateul e as shown in line 28 for example.

The following lines are analog to the grammar implementadguslontiCore. The gram-
mar itself is implemented as a regular class in C++, everyteaminal and terminal is

represented as a class’ attribute in line 29 et seqq. Fjnalline 37 et seqq., a method
calledst art () defines the start production rule from the grammar.

For parsing instances from a grammatr, the language procgssplementation presented
here supports two different concepts. First, an obseraseth concept was implemented
calling registered listeners whenever a successful maitch foken could be applied to
an input stream of tokens. Furthermore, the internal AbsBgntax TreeAST) concept
from Spirit was enhanced for its integration irfttesperia to create an ASG which is as
easy to use as the one generated by MontiCore for processhagraar’'s instance in an
intuitional manner.

A class diagram showing the inheritance for the C++ implertgm of the grammar
for modeling the stationary surroundings is depicted byuFegd.7. The super-class
G ammar is implemented using thiacade design patterto encapsulate the concrete
handling of grammar’s instances which allows to suppofed#nt versions of the Spirit
framework which are not fully backward compatible.

Furthermore, this class is avbserverimplementing the aforementioned first concept
for calling registered listeners about successfully madctokens using the interface
ParserTokenListenerThis interface provides the methedi d next Token( const

Par ser Token&); for notifying the listener about a successfully matched
Par ser Token which contains the value of the matched token as well as &rcall
supplied data field calle®ar ser TokenExt endedDat a. For example, this field
can be used to pass further information about the succhsshaltched token to the
application like a numerical constant identifying the tokiself.
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<<interface>>
- G ~ AN
ParserTokenListener rammar ;< cD

<<interface>>

ParserErrorListener

ParserTokenHandler |

<<interface>>
ASTNodeVisitor

A

ParserNewlineHandler I—

ParserErrorHandler I—

SpiritG

| SCNScenarioVisitor | | boost::spirit::grammar |

V
SCNGrammar
| Scenario |

Figure 4.7: Class diagram describing the language proae&sithe stationary surround-
ings using Spirit. For the sake of clarity, all methods andiattes are omitted. An
implementation-independent interface is realized in th&tract clas$s ammar . This
class provides an observer for successfully parsed token fhe grammar which calls
a user-supplied listener; analogously realized is an @bs&rhich reports parsing errors.
These observers are used to construct an AST from a giveantestaccording to the
grammar’s structure. This AST can be easily traversed bysigaplied visitors to query
information from a given instance or to transform the datacstire.

Using Par ser Er r or Ext endedDat a, a similar implementation is provided for
error handling.  The interfacéParserErrorListener provides the methodvoi d
error Token( Parser Error &) ; for notifying the caller about a failed match us-
ing the clasdPar ser Er r or . This class provides, besides the textual context in which
the match failed, information about the line to ease findimg ¢rroneous input. Like
Par ser Token, additional information supplied by the caller can be agted with
Par ser Error. Internally, the information about line numbers is realiagsing a
specialized listenePar ser Newl i neHandl er simply counting successfully matched
NEWLI NE tokens.

For generating an ASG similar to the one generated by Mon¢i@ar providing an in-
terface to access attributes and associated elements lfi@grammar in an intuitional
manner, Spirit provides a specialized parser cglladse ast to create an AST. The
access to keywords from the grammar as well as values likaeahee of a defined road
is realized using an iterator concept. In Spirit, an iterdtaverses the internally cre-
ated AST from the input grammar. Therefore, the grammar roostain information
about the structure of the AST to be built namely root nodeleaves. A root node is
marked ag oot _node_d, while leaves are simply marked ksaf _node_d. When-
ever the parser successfully matches tokens from the ity@atns which are enclosed by
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root _node_d, the newly created node becomes the new root node of thent U8l
created from the previously successfully matched input.

However, for preserving the readability of the grammar,th@oconcept was used uti-
lizing some predicates from the iterator when usinglteaf node_d directive. The
predicates are listed in the following:

» Keywords.Keywords from the grammar always have the identifier “0” andur-
ther children.

» Values.Values from the grammar like Boad’s name have an identifier not equal
to “0” and no further children.

 Hierarchical elementsElements mapping the grammar’s structure have an identi-
fier not equal to “0” and children as well.

Using these predicates, an intermediate generic AST foergéing the desired hierarchi-
cal key/value data structure is constructed automaticdtlyr reading a DSL’s instance
using the recursive descent parser as shown in Listing A8 iftermediate AST reduces
the dependency to Spirit by using only the lexer and parsen fthe Spirit framework
and allowing the concrete mapping to the final data strudtute independent from the
underlying language processing framework.

void generateASE const iter t & t, ASGNode *parent) {
ASTNode *child = NULL; string key;
for(unsigned intj = 0; j < it->children.size(); j++)
s {
string data((it->children.begin() + j)->value.begin(), (-
it->children.begin() + j)->value.end());
if ( (data!="") &&
((it->children.begin()+j)->value.id().to_long() == 0) &&
((it->children.begin()+j)->children.size() == 0) )
10 { /I Keyword found.
child = new ASTNode( parent);
chi | d- >set Key(key = data);
par ent - >addChi | d(chi | d);
} else if ( (data !'="") &&
15 ((it->children.begin()+j)->value.id().to _long() > 0) &&
((it->children. begin()+j)->children.size() == 0) )
{ // Value found.
if ( (child == NULL) || (child->getValue<string>() !="-

")) o
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child = new ASTNode( parent);
20 par ent - >addChi | d(chi | d) ;
}
chi | d- >set Key(key);
chi | d- >set Val ue(dat a) ;
} else if ( ((it->children.begin()+j)->value.id().to_| ong-
() >0) &&
25 ((it->children.begin() + j)->children.size() > 0) )
{ /I Hierarchical element found.
ASTNode *mul ti pl eChil dren = new ASTNode( parent);
gener at eAST(it->children.begin()+j, nultipleChildren, -

dept h) ;
mul ti pl eChil dren->set Key(key);
30 par ent - >addChi | d(nul ti pl eChi | dren);

Listing 4.3: Generating an intermediate AST using pre-pssed data from Spirit.

Using the tree generated by this code, a visitor traversakyfitinis tree mapping the hier-
archical key/value pairs to an ASG similar to the one gereray MontiCore. Hereby, all
values are transformed to the necessary primitive datatjfedoubl e orunsi gned

I nt . The same concept was analogously applied for the DSL wigipresents the sur-
roundings’ dynamic elements.

To summarize the development of a DSL and the processing afistances, the lexer
and parser framework MontiCore is very applicable to singglile rapid and agile devel-
opment of languages. However, due to a missing native stifigro€++, its integration
would not be seamless and cause further processing stepg the software construction
process. Therefore, an alternative concept which diréethes on C++ was necessary and
finally chosen by the framework Spirit which was adapted tantoee user-friendly and
thus less error-prone.
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5 The Framework Hesperia

In the following, the frameworkH{esperia is presented.Hesperia is a framework for
processing continuous input streams written entirely anelysin C++ [17]. The DSL
as mentioned in Section 4.4 for modeling the system’s congegimulation component
which is described separately in Chapter 6, and a non-reagisualization component
also described separately in Chapter 7 are core elementssdfaimework. In the fol-
lowing, general considerations and design drivers areudgsd first. Next, its software
architecture is outlined and the core libraries as well fecsed applications are described
in detail.

5.1 General Considerations and Design Drivers

In this section, the major design drivers for the framewnfdsperia are listed. Mainly,
they are based on [64, 123].

» Usability. The main focus during the design of the framew@tksperia was on
usability. Usability includes both application developrhasingHesperia and de-
velopment inHesperia itself. While the former is related to the design tdriiaces
exported to the application developer, the latter appbebe design of all internal
structures of{esperia. Thereforé{esperia was designed using an object-oriented
programming language with intense use of mature desigarpativhere applicable
[129, 130].

 Reliability and robustnessAnother important aspect is reliability regarding the
methods exported by interfaces to any caller as well asnateigorithms for data
processing. Whenever an exported method from the Applic&i@gramming In-
terface API) is invoked by a caller, its semantic must be evident and isterd.

1The name Hesperia” is deduced from a town in California, where the t€arOLO was accommodated
during the 2007 DARPA Urban Challenge [122]. Concepts kattie software framework which was
used in the CarOLO project were extended and significantfyraved which led to a complete new
implementation written from scratch: The software framdwk esperia.
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Furthermore, any exported method must either complete ¢headded computa-
tion silently or fail avoiding any side-effects at the eesli point possible with a
reasonable return code or an exception.

» PerformanceDue to its application for ECUs on real hardware and in reaksys
surroundings which may require real-time data procesgiegformance in data
processing and for inter-node communication is an impodagign consideration
for Hesperia. Thus, efficient memory management for incoming datwell as
concurrent handling of data structures in the processiaghdbefore passing them
to user applications are necessary.

» Platform independencef-or allowing the use of{esperia on different platforms,
independence from a specific Operating Syst&§) (or hardware platform is also
a main interest. This includes endianess as well as 32-8i6drbit systems. Fur-
thermore, an abstraction from specific functions providgdiOS must be chosen,
especially for concurrency including threads, mutexes, @nditions, as well as
data input/output operations and the overall valid sysieme which is important
for carrying out system simulations as outlined in greagtailin Chapter 6.

* Third party libraries independencel.ike the independence from a concrete plat-
form, applications realized with the framewotkesperia should not depend on
specific libraries where possible. This design criteriommgortant because the
libraries for computationally intense tasks like image @tmx processing using a
hybrid approach based on a Central Processing @#t{) combined with a Graph-
ical Processing UnitGPU) may change caused by changing design decisions due
to enhancements and bug-fixes. For avoiding a preliminasigia for a specific li-
brary, only interfaces are specified to be fulfilled at legsaiy library which could
be chosen for a specific task.

 Evolvability and reusabilityTo support future applications or other system contexts
with new or modified requirements, the software framewoikusth be applied eas-
ily. Furthermore, missing parts should be added easily disvitbout accidentally
breaking existing concepts or implementations.

In the following, the software architecture of the framelkfesperia is described.

5.2 Software Architecture

In this section, the software architecturel@ésperia is outlined. Therefore, a high-level
point of view on all components is introduced at first, whikter on, the two main li-

54



Automating Acceptance Tests on the Example of Autonomoinsciées

braries are described explicitly in greater detail in a paekdiagram.

Applications
libvehiclecontext
% supercomponent % simpledriver

A

% proxy % recorder % rec2video @ % libcontext

/

A
v v

Framework Hesperia
% libcore r 9% libhesperia eﬂ
A

A N

A4

% BerkeleyDB % Boost % OpenCV % 71P % OpenGL % Qt

Y Y y

Operating System

Figure 5.1: Package structure of the framewstk&speria. The framework consists of
two major libraries1 i bcor e andl i bhesperi a. The former library encapsulates the
interfaces for a specific operating system by providing@lated programming concepts
for I/O access or threading. Furthermore, this library \grépraries from third parties
and provides interfaces instead to higher layers. Thusrdpharty library can be easily
exchanged if necessary. The latter librdnybhesper i a provides concepts which allow
a simplified development for distributed data processingliegtions. Therefore, this
library provides classes which transparently realize datdhange; moreover, this library
contains the DSL which was specified in Section 4.4.

In Figure 5.1, an overview of all components in a system udimg framework
‘Hesperia are depicted. On the lowermost layer, the OS is sholheframework can be
used both on a Portable Operating System Interface for Bri&X-compliant platform
[1] or on Microsoft Windows platforms. For getting real-gmapabilities}{esperia relies
on the operating system'’s supplied process handling. Tdrergher t - pr eenpt patch
applied to the Linux kernel 2.6.27-3-rt [107] provided irethinux distribution Ubuntu
8.10 was used.

The next layer lists all libraries used liyesperia. Besides the aforementioned POSIX-
compliance /Hesperia can be used on Microsoft Windows platforms usingBthest li-
braries for C++; these libraries can be used on POSIX-comiptiatforms as well. For
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example, a transaction- and thread-safe key/value data-st provided using the Berke-
leyDB. For processing images and matrices, currently thenOpeibrary is used [25].
For accessing compressed scenario data files as descriBedtion 4.5, a portable zip
library is included. Finally, for processing data for vimation as well as simulation,
libraries from OpenGL are used.

On top of the libraries lays the framewdHkesperia. The framework consists of two core
components, namelyi bcor e andl i bhesperi a. While the former library encapsu-
lates access to the OS and all aforementioned librariedatte one providesonceps

for all higher layers. Both libraries are described in gredegtail in the next sections.
Using these libraries, several applications are providedupport the development of
software for sensor- and actuator-based autonomous sysiesirespecially AGVs which
were also realized with the software framewtksperia. These applications are outlined
in the following sections.

core I hesperia I
1 1 1 [ 1 [1 1 [ 1
base data | io | exceptions base decorator math | scenario situation
wrapper I data I dmcep I
— — m == —
BerkeleyDB | Boost OpenCV | can | dmcp | environment | connection | | discoverer
1 [1 ] 1 1 [
graph | POSIX | parser image player | | recorder io I
1 1 1 1
Zip scenario situation camera CAN |
sensor |
_I _I threeD I
1 [
camera nmea
loaders models

Figure 5.2: Packages of the framewcHesperia: The left hand side is realized in
| i bcor e which encapsulates the access to the operating system dholdgarty li-
braries as already mentioned. The right hand side is reblizéi bhesperi a. Be-
sides high-level concepts for transparent communicatwrekample, basic data struc-
tures which support the development of sensors-basedcapphs which operate in the
R? are provided. Furthermore, device-independent visu#izaoncepts which are out-
lined in Section 5.4.5 are integrated.

As shown in Figure 5.2, both libraries consist of severakpges.| i bcor e provides
rudimentary services in its packagease, dat a, i o, andexcepti ons, as well as

all interfaces to necessary libraries in packag@pper . The libraryl i bhesperi a
however uses$ i bcor e for both to integrate the DSL for the stationary and dynamic
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context description and to provide concepts to higher kylearthermore, all serializable
and therefore exchangeable data structures between aficzmnts are defined in this
library.

5.3 Encapsulating the Operating System and Required
Third Party Libraries: |i bcore

The libraryl i bcor e consists of several packages which are described in thewfoll
ing. First, the packager apper is described for ensuring library independence. Next,
rudimentary concepts using the interfaces provided by #ogggen apper realized in
the packagebase, dat a, andi o building the conceptual base for bhesperi a are
described.

5.3.1 Packagew apper

The main goal of packaga apper is to encapsulate any library to be used in higher lev-
els. On the example @onpr essi onFact or y for providing access to zip compressed
data, this package is described.

DisposalService > Disposable cD |

|

1

! <

: MutezFactory [ CompressionFactory > DecompressedData

| JA

1 1

1 \/ 1

|

= = 1 Mutex ZipCompressionFactory > ZipDecompressedData

Figure 5.3: CompressionFactory for providing access to cesged data.

As shown in Figure 5.3Conpr essi onFact ory is realized as ambstract, single-
ton factoryexporting one method with the following signatubeconpr essedDat ax*

get Content s(std::istream&) ;. This method reads as many bytes as available
from the given input stream using the STL allowing input fréles, memory, or any in-
put source compliant to STL input streams like wrapped ngtwonnections. It creates
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the meta data structui@econpr essedDat a describing the contents of a successfully
decompressed input stream. This data structure providsisd available entries as well
as a method for getting an STL input stream for every entryhefdecompressed zip
archive. For realizing a thread-safe singleton implenmt@ntathe access to the method
Conpr essi onFact ory& getl nstance(); must be mutually excluded using a
Mut ex. However, a mutex itself is also library-dependent wrappEderefore, the ab-
stract factory for creating the appropriate mutexes musiseel.

From this abstract factory the concrete factoryZi pConpressi onFactory
providing Zi pDeconpressedData is derived for wrapping the zip library.
Zi pDeconpr essedDat a actually decompresses the zip archive by reading the given
input stream using the methods provided by the wrapped laiprly. If the given input
stream could not be used for decompressing the data, tlod &stilable entries is simply
empty. Internally, all successfully decompressed entes stored in memory using
stringstreans to provide the standard interface basedstm: : i ost r eam for
further data processing.

Both factories,Mut exFact oy as well asConpr essi onFact ory or rather their
library-dependent concrete factories also implement liséract interfac®i sposabl e.
This interface does not export any further method but singeglares all deriving
classes to be convertible to this type. Using this interfameperiodically and at
program’s exit runningDi sposal Servi ce removes any instances from the type
Di sposabl e when they are no longer needed to release previously adguiesory.
Using Conpr essi onFact ory and Deconpr essedDat a, applications on higher
levels do not need to care about a specific library for decesging data. Instead, they
simply use an interface asserting the availability for txguired functionality.

In the following, all factories provided by the packageapper are described. The
actually selected libraries for wrapping are specified irader file using a system-wide
consistent enumeration scheme.

« CompressionFactorylhis factory was already described.

» ConcurrencyFactoryThis factory creates a thread by invoking the methaod d
run(); from the interfaceRunnabl e. Furthermore, a statically available sleep
method for suspending the execution for a given amount o tsrexported. This
factory wraps the library Boost and regular POSIX calls ad.wel

» ConditionFactory.This factory creates &ondi t i on for suspending the concur-
rent execution of several threads until the condition foleétiwg thread is met. This
factory wraps the library Boost and regular POSIX calls ad.wel
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* ImageFactory. Using this factory, images are created either by readinghpati
stream, by creating an empty image specifying the formatthedmage’s dimen-
sions, or by creating the necessary meta information feradly existing images in
memory. This factory wraps the library OpenCV.

» KeyValueDatabaseFactoryl his factory creates either a wrapped transaction- and
thread-safe BerkeleyDB or simply a wrapmadd: : map for storing and retrieving
key/value-pairs.

» MatrixFactory. This factory creates an empty NxM matrix by providing theadat
structureMat r i x. This data structure defines besides the element-wisesatwes
the matrix’ contents the addition, multiplication, andispose operations. Further-
more, a template method is provided to get access to the nyenmymresenting the
raw matrix for using operators which are missing in the etgmbinterface. Obvi-
ously, this exported method violates the demand for libradgpendence, but any
application relying on this method can safely query theesysif the necessary li-
brary is wrapped and throw an exception otherwise. Thiofgiatraps the library
OpenCV as well.

» SharedMemoryFactorylJsing this factory, a memory segment between indepen-
dent processes can be created and shared 8kismgedMenor y for achieving fast
inter-process communication. On construction, additioremory at the beginning
of the memory segment is used to create a semaphore to enstwa exclusion for
concurrent processes. This factory wraps also the libragsBand regular POSIX
calls.

» TCPFactory. This factory can be used to create either a connection to &t ex
ing server by returning aCPConnect i on or to setup a socket accepting con-
nections using & CPAccept or for a specific port. Both objects can be used
to transfer data bidirectionally. While the former instaradeeady encapsulates
an established connection which is ready to use, the lalfigcbimplements an
observer for incoming connections. Using this object, tAkkec must register a
TCPAccept or Li st ener for getting notified about new connections encapsu-
lated in an instance oFCPConnect i on. For sending data, simply the exported
methodvoi d send(const std::string&; can be used. For receiving
data, aSt ri ngLi st ener must be registered at a concréd@PConnect i on as
explained in the following. This factory wraps the librarydsb and regular POSIX
calls as well.

» TimeFactory. This factory creates di ne instance containing the current time.
This factory is necessary for simulation purposes and wadgusthe library Boost
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and regular POSIX calls.

» UDPFactory. Like TCPFact ory, this factory creates either a sender for data
transfers or a receiver using User Datagram Protod@R). Depending on the
address supplied for the receiver, either a regular UDP etaskcreated or the
created UDP socket is joined to a UDP multi-cast group. Téa&ure is used in
| i bhesperi a for realizing so-called conferences. The sender and receiv-
jects alsousst d: : stri ng for sending and &t ri ngLi st ener for receiving
data. This factory wraps the library Boost and regular POZilsas well.

All the factories listed above use the same concept for iiga@bncrete data structures
as already described on the example @mpr essi onFact ory. Furthermore, all
factories implement the interfad® sposabl e as well.

The smallest datum for sending and receiving data s$d::string.
Thus, |ibcore provides a StringCbserver exporting the methodvoi d
set StringListener(StringLi stenerx); for registering or unregistering
a concrete instance implementing the interf&te i ngLi st ener. Using this in-
terface exporting the methodoi d next String(const std::string&); a
component can receive new data for further processing. Guongpboth concepts, a
StringPi pel i ne decouples the receiver and the consumer of newly received da
This pipeline is used transparently for any applicationna UDP receiver to separate
the thread responsible for handling the library-dependeogiving method from the
thread responsible for further processing the received idatigher layers. Therefore, a
simple thread-safe FIFO queue usingGandi t i on to notify the waiting consumer was
implemented.

Another wrapper providing no factory is the packagueer ser producing a lexer and
parser for the DSL which is used to model the system’s corgexautlined in Section
4.4. Due to the special handling of a compile-time grammadh Wie production of an
intermediate AST as described in Section 4.5.2, the grararoancrete instantiation is
directly implemented irh i bhesperi a. As already described before, the generic han-
dling of tokens produced by the parser is implementdd ibcor e. However, the visitor

for generating the data structure itself is implementeldiibhesperi a.

5.3.2 Basic Concepts

In the following, selected basic concepts provided bycor e are described. Some of
them are elaborated In bhesperi a.
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5.3.2.1 Application Template

Besides wrapping libraries,i bcor e provides several basic concepts being extended in
| i bhesperi a. As described in greater detail in Section 5.4, a runningjiegmn in the
frameworkHesperia belongs to exactly one group cattedferenceSeveral applications
from the same type are distinguished using identifier. Feurtiore, every application can
be configured to run at a fixed frequency. All these parameserde passed to an appli-
cation using command-line arguments. These arguments@egsed by the application
skeleton clasébst r act Cl DMbdul e which is part of packagease. Furthermore, the
application template provides a method for querying itsenirrunning state. Using this
method, the application can be terminated safely by rewigst@ signal handler to catch
signals by the OS to the application lilgk GTERMfor POSIX-compliant systems. The
application templates are the main entry for system sinmuratas described in Chapter
6.

5.3.2.2 Reliable Concurrency

Modern operating systems offer the possibility to execatespof an application in par-
allel. For using this concurrency in higher layers and inriesmtributed applications,
the concepSer vi ce is provided to encapsulate the entire management of thréanys
class that needs to be executed concurrently simply ddrvesSer vi ce overriding the
methodvoi d run() ;. This concept is enhanced for real-time computing by thescla
Real t i meSer vi ce. Any service of this type simply derives from this class owkr
ingvoi d next TinmeSlice();. Internally,Real ti neSer vi ce is a wrapper class
which encapsulates the technical implementation for aip@perating system. More-
over, any application which uses real-time services musxeeuted using a privileged
user account to allow the correct setup. Otherwise, an ¢xceigs thrown.

5.3.2.3 Thread-Safe Data Storage

Beyond the basic application template and concurrencyitiasil basic storage concepts
for data structures are provided, namely FIFO queues, InaBirst Out LIFO) stacks,
and simple key/value data-stores. All these data-stoeebath thread-safe and capable
of using conditions to notify changes.

The data structure meant to be used with these data-stoesitsai ner . This class is
an envelope data structure around a pair consisting of aarasnd consistent numeri-
cal identifier allowing type definition and an arbitrary aotfjemplementing the interface
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Seri al i zabl eDat a. A Cont ai ner itself is serializable tst d: : ost r eamand
deserializable fronst d: : i stream Thus, it can be transferred using concepts pro-
vided by the STL. For tracking a datum, the sent and receiweestamps are recorded
for a transporteont ai ner .

5.3.2.4 Query-able Data Serialization

The actual serialization of instances implementing therfateSer i al i zabl eDat a

is inspired by [125]. However, the main disadvantage prieseim that work is the dese-
rialization’s dependency on the serialization order whechaused by separate methods
for serializing and deserializing the data. In the Boostdlipr this problem is avoided
by using the non-standard serialization and deseriatimaiperato&. However, when-
ever a data structure changes due to further developmentimes older versions of the
framework might get incompatible.

| Container I%I SerializableData |<]— -1 | CRC32 cD |
! A\

v v Vv
| DeserializerIH SerializationFactory Hl Sem’alizerl
K A
| |
] ]

| QueryableNetstringsDeserializer | | QueryableNetstringsSerializer |

Figure 5.4: Template-based query-able serialization: ddta to be serialized is real-
ized by Qbj ect Dat a. This class derives from the interfaSeri al i zabl eDat a
which itself provides serialization and deserializatioathods which are called by the
envelope data structur€nt ai ner. These methods are realized using the support-
ing classesSeri al i zer and Deseri al i zer which encapsulate the handling of
hardware-dependent endianess for example.

For avoiding both problems, a so-calleEmmplate-based query-able serializatimas de-
veloped as shown in Figure 5.4. The main idea behind thiseqris the storage of a da-
tum to be serialized together with a per attribute identiitéhen an objeddbj ect Dat a
should be serialized, it uses ti&eri al i zati onFact ory to get an appropriate
Serializer. This instance actually serializes the data into a portétmat re-
garding the platform-dependent endianess using typerdiepévoi d wri t e( const

ui nt 32&, T); methods. The first parameter is an identifier for every olg@ttribute.
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For avoiding to supply this parameter manually by the caiteshould be computed al-
ready at compile time since the object’s attributes and thieler do not change at run-
time.

#define STRI NGLI TERAL1(a) CharlList<a, Null Type>
#define STRI NGLI TERAL2(a, b) Charlist<a, CharList<b, Null Type—
> >

#define STRI NGLI TERAL3(a, b, c) CharlList<a, CharlList<b, -
Char Li st<c, Null Type> > >

namespacecore {
namespacebase {

const uint32_t CRC32POLYNOM AL = 0x04C11DB7,

10

class Nul | Type {

public:
enum { value = -1 };
enum { hasNext = false };
15 typedef Null Type tail;

i

template <char x, typename xs>
class CharlList {
20 public:
enum { value = x };
typedef xs tail;

1
25 template <char x>
class CharLi st <x, Null Type> {
public:
enum { value = x };
typedef Nul |l Type tail;
30 };

template<char ¢, uint32_ t result >
class CRC32_COWPUTI NG {
public:
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35 enum { RESULT = result ~ (c » CRC32POLYNOM AL) };

template <char ¢, int32_t res, typename T>
class CRC32_RECURSI VE {
40 public:
enum { RES = CRC32_COWPUTI NG<c, res>::RESULT };
enum { RESULT = RES + CRC32_RECURSI VE<T: : val ue, RES, -
typename T::tail>:: RESULT };

15
a5 template <char ¢, int32_t res>
class CRC32_RECURSI VE<c, res, Null Type> {
public:
enum { RESULT = CRC32_COWPUTI NG<c, res>::RESULT };
IE

50
template <typename T>
class CRC32 {
public:
enum { RESULT = CRC32_RECURSI VE<T: :val ue, 0, typename-
T.:tail>:RESULT };
55 }s

Listing 5.1: Compile-time computation of identifiers for isdization.

This computation is shown in Listing 5.1. The computatioselit is invoked us-

ing the serializations. wri t e( CRC32< STRI NGLI TERAL3('v', 'a', 'I")
>:: RESULT, mval ue);. The first argument to the method uses the compile-
time computation by substitutingSTRI NGLI TERAL3('v', "a’, '|’) by

the nested character listharList<'v', CharList< a, CharList<|’,
Nul | Type> > > in the pre-processor stage. The structure of this nestadctiea list
is defined by the classes in lines 11 et seqq., 19 et seqq.,@et s£qq. The macros
defined at the beginning in line 2 et seqq. are only for coramnise of these structuring
classes. The resulting nested templates are passed as lateepgrameter to the class
CRC32 in line 52 et seqq. The result of the computation performecbatpile-time is
stored in the class’ enum as the constant va&lR€32: : RESULT.
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The computation itself is delegated to the class in line 38qy. by separating the first
element of the nested character list as first template paeantiee initial result o) and

the nested character list without the head element. In thascthe first enum computes
the Cyclic Redundancy CheckCRC sum using the template class in line 33 et seqq.
For computing this sum, the CRC-32 polynomial is used due tceitsisvity regarding
modifications on the input data and thus defined in line 9. ®Esalt is added to the
result from a recursive call to the same template classgubmfirst element of the tail as
first parameter, the currently computed result, and thentigiiout its first element. The
computation ends if thBul | Type is reached and therefore, the template class in line 46
et seqq. is applied to return the CRC-32 sum for the last charddseng these template
classes, the computation of identifiers at compile-timessjble to allow the serialization

of pairs consisting of human readable identifiers and values

For deserialization, the obje€bj ect Dat a gets theDeser i al i zer by querying the
Seri al i zati onFact ory as well. At construction of thBeseri al i zer , the input
stream is parsed to build a simple hash-map containing teequsly identifier/value
pairs. Every time,(bj ect Dat a wants to deserialize one of its attributes, it simply
gueries theDeseri al i zer using the identifier of the attribute computed already at
compile-time.

ostream& ACl ass:: operator<<(ostream &ut) const {
SerializationFactory sf;
Serializer & = sf.getSerializer(out);

s.write(CRC32 < HESPERI A CORE_STRI NGLI TERAL5("d’, 'a', 't
', 'a’,’'1") > RESULT,
get MyFirstData());

s.wite(CRC32 < HESPERI A CORE_STRI NGLI TERAL5('d’, 'a', 't -
', 'a,’2") > :RESULT,

10 get MySecondDat a() ) ;
return out;

i stream& ACl ass:: operator>>(i stream & n) {
15 SerializationFactory sf;
Deserializer & = sf.getDeserializer(in);

uint32_t mySecondbData = 0;
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d. read(CRC32 < HESPERI A CORE_STRI NGLI TERAL5('d", 'a', 't’ —
a', '2') >::RESULT,
20 mySecondDat a) ;
set MySecondDat a( mySecondDat a) ;

uint32_ t nmyFirstData = O;
d. read(CRC32 < HESPERI A CORE_STRI NGLI TERAL5('d’, 'a’, 't’ —
, ‘a, 1) > :RESULT,
25 nyFi r st Dat a) ;
set MyFi r st Dat a( nyFi r st Dat a) ;
return in;

Listing 5.2: Compile-time computation of identifiers for isdization.

A sample usage of th8er i al i zat i onFact ory and the compile-time computation
of indices is shown in Listing 5.2. The first method writes tattributes into a given
output data stream. Both attributes have a unique identificiwis computed at compile
time from the given human readable name. The second metheriegla given input
stream to retrieve both attributes in an arbitrary ordengisiuman readable names again
which are mapped to unique identifiers at compile-time. Thuiil-safe usage of data
serialization and deserialization can be provided by tlisveoe frameworkHesperia.

5.3.2.5 Generic Directed Graph

For data structures representing nodes connected usiectetiredged, i bcor e pro-
vides a wrapper for a generic directed graph around the BaagttQ_ibrary [144]. Alike
the wrapper for the parser classes, this class can be useduiva factory as shown in
Figure 5.5.

The main class for creating and operating on a grafdh isect edG aph. This class
constructs a directed graph from any object implementirgy itherfaceVer t ex as
node and from any object implementing the interf&ciye as connection between the
graph’s nodes. The most important methods provide®ibyect edG aph arevoi d
updat eEdge(const Vertex =*vl1, const Vertex *v2, const Edge

*e); and vector<const Vertex*> get ShortestPath(const Vertex
&1, const Vertex &v2);. The former method constructs or updates the graph
by either inserting an edge e between the nadeandv 2 or updating an existing edge.
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AN
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Figure 5.5: Generic directed graph based on the Boost Grdghrlyi[144]. This provided
concept encapsulates the underlying library and providemtegrated interface to the
user-supplied applications on higher layers. Thus, thetcoction and handling of graphs
and their algorithms are simplified.

The latter method tries to find the shortest path betweenitiea ¢wo vertices. Therefore,
Di r ect edG aph uses an A-algorithm provided by the wrapped Boost Graph Library
itself [14] evaluating the edges’ weights. Thus, the compiterfaces provided by the
wrapped library could be reduced to an essential subsetle&stt necessary objects and
methods. Therefore, they could completely be hidden froghtevel applications to
avoid errors due to misuse without restricting the perfaoroeaof the wrapped library
itself.

5.3.2.6 Convenient Data Exchange

Another basic concept provided by bcor e is realized by the package. This package
simply implements th&t r i ngLi st ener concept from packager apper inthe class
Cont ai ner Conf er ence. This class uses a UDP receiver for joining a UDP multi-cast
session and registering itself assar i ngLi st ener at theUDPRecei ver. Using a
UDP multi-cast session, this class automatically receavgpacket sent to this multi-cast
group without creating a technical dependency between aonwation partners. When-
ever anewst d: : stri ng is received, this class tries to pars€ant ai ner from this
buffer. Since this class implements the interf&nt ai ner Cbser ver, higher lay-
ers can register @nt ai ner Li st ener to get notified about incominGont ai ner s.
Thus, any application can transparently receive compléx stauctures without bother-
ing to deserialize the data or to setup a communication. Raffet instantiation, the
application starts receiving messages. Furthermore,tés ficomingCont ai ners, a
thread-safe data-structure as already described in 8&£8d2.3 can be used easily. Thus,
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different filtering concepts like FIFO-, LIFO-, or key/vadata-store can be realized ei-
ther for only one specific type or for allincoming data. Ferthore, the data-stores can be
reused and registered several times to combine severahingstreams ofont ai ner s

if necessary.

All these concepts are the base forohesper i a which realizes further concepts allow-
ing the simplified creation of distributed applicationsngsa mature and stable API.

5.4 Providing Extensible and Re-Usable High-Level
Concepts:| | bhesperi a

On top ofl i bcor e, the componenti bhesperi a is provided as the core component
for the frameworkHesperia. Its main concepts are described in the following.

5.4.1 Concept:ClientConference

The main concept for communication implemented inbhesperi a is realized us-

ing UDP multi-cast and calle@lientConference A client conference is created using
a unique identifier. Every application can simply join anséixig ClientConference by
setting the obligatory command-line parameter d appropriately.

All data exchanged in a ClientConference is wrappe@ont ai ner s as mentioned in
Section 5.3.2.6. For receiving @nt ai ner of a special type, the application must
simply decide the manner for getting the data. As descrilaglice | i bcor e provides
rudimentary and thread-safe data-stores. An applicatioplg registers a data-store sep-
arately for differentCont ai ner s or uses the same data-store for all data. As soon as
new data of the desired type is sent within the UDP multi-gastp, it is automatically
received byl i bcor e using aSt ri ngPi pel i ne and placed into the registered data-
stores for further processing. Using t8er i ngPi pel i ne, data receiving and process-
ing is decoupled and the processing thread cannot blocletieaing thread.

5.4.2 Concept:Dynamic Module Configuration

For configuring the application, a central and thus consistenfiguration concept called
Dynamic Module Configuratiowas implemented. This concept uses a Dynamic Module
Configuration Protocol@MCP) inspired by the well-known Dynamic Host Configura-
tion Protocol DHCP) for configuration clients in networks. As soon as an apfibceis
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started, it sendBMCP_DI SCOVER messages to a specific port of the desired ClientCon-
ference using UDP multi-cast.

For deploying configurations for a specific ClientConferemcgpecial component called
super conponent must be running. This component listens Y ICP_DI SCOVER
requests and replies using tBMCP_RESPONSE message containing information about
the super conponent itself. These information contain the IP address as well as a
listening Transmission Control Protocal@P) port. Using these parameters the new
application establishes a dedicated connection to themgsuper conponent .

The newly created TCP connection is used to provide the ajait specific configura-
tion using a simple key/value text file, wherein all keys carhiierarchically ordered or
annotated using an application specific identifier. Theiappbn-dependent configura-
tion is generated using one single configuration as showisiimg 5.3.

# GLOBAL CONFI GURATI ON

#

gl obal . scenario = file://../../Scenarios/CanpusNord. schx

s # CONFI GURATI ON FOR PLAYER
#
pl ayer.input = file:///dev/stdin
pl ayer. aut oRewi nd = 0
pl ayer.renmoteControl = 0
10 pl ayer. si zeOf Cache = 1000
pl ayer.tineScale = 1.0

# CONFI GURATI ON FOR PROXY
#

s proxy: 1.irt.insdata.server = 192.168. 0. 45
proxy:1.irt.insdata.port = 2345
proxy: 2.jaus.controller.server = 192.168. 0. 100
proxy: 2.jaus.controller.port = 3794

Listing 5.3: Centralized configuration concept.

This configuration is read completely by teeper conponent at start up. Whenever
an application sends@MCP_DI SCOVER message, the application’s name is transferred.
This name is the first part of all keys in the configuration fadled section delimiter. It is
followed by an optional numerical identifier for distinghisg several running instances
from the same type. Next, the key which can be hierarchisailyctured itself is specified
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followed by the actual value. Using the newly created cotioed¢ogether with applica-
tion specific subsets of one single configuration file progtibig only one source, different
configurations can be both maintained centrally and depléyespecific applications on
demand.

5.4.3 Concept: Enhanced Data Structures

As already shown in Figure 5.2j bhesper i a offers an enhanced object-oriented set
of data structures which are serializable to be exchang®eeelea independent processes
which might be running on different nodes in a network. Theat structures will be
explained in the following.
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* hesperi a: : data: : can. This package contains a Controller Area Network

(CAN) message. It can be used to encapsulate raw data read fromittenwio a
CAN bus.

hesperi a:: data::dntp. Inside this package, all messages for joining an
application in a ClientConference using a dedicateger conponent are pro-
vided. Furthermore, statistical data about all runningliappons can be collected
by thesuper conponent itself as described in Section 5.5.

hesperi a:: dat a: : envi ronnent. This package consists of all necessary
basic data structures to model elements from the surrogadind to apply ma-
nipulations to them. As already described in Section 4.2ryevigid body in the
modeled environment is represented by a three-dimenspmsdion and orienta-
tion. This representation is realizedfosi t i on. The most important derivative
is Poi nt ShapedQbj ect enriching the latter data structure by information about
velocity and acceleration. For modeling the own AGV in thersundings for ex-
ample, this data structure is simply derivedagoSt at e for convenient purposes
only. For mapping objects detected by sensors, eithdPdhet ShapedObj ect

or anCbst acl e enriching the latter one by the detected object’s shape ean b
used. Besides these mappings, data structures contaihimgcaksary operations
for Cartesian coordinates, WGS84 coordinates, matricesgaatgrnion represen-
tations are provided.

hesperi a: : dat a: : i mage. This package contains all meta information about
an image like dimension or color depth. This data is intenmelde used for ex-
changing images between several processes using a sharemyrsegment.

* hesperia::data::player, hesperia::data::recorder. These
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packages contain command messages to control either thleaplaor the non-
reactive recording of data from a running system.

hesperi a: : dat a: : scenari 0. This package contains a tree-like data struc-
ture describing the surroundings’ model as described ini@ed.4.1. Combined
with the Conpr essi onFact ory realized inl i bcor e, an intuitional and con-
venient access to all attributes of the surroundings’ msdetovided.

hesperi a: : data: : situation. Complementary to the previous package,
this one contains all information about the dynamic syssetontext as described
in Section 4.4.1.

hesperi a: : dat a: : sensor . In this package, data structures for wrapping sen-
sor’s raw data like laser scanner data [143] or selectivesages from the National
Marine Electronics AssociatiolNMEA) 0183 format describing GPS data [110]
like the GPS Recommended Minimum Specific GPS/Transmit DaRRMQ are
provided.

Besides these packages, a data description language wasetet simplify the creation
of new data structures. The language is shown in Listing Bdlwas defined using
MontiCore as well.

10

15

20

grammar Dat aDescri pti onLanguage {

Dat aDescriptionFile = (DataStructures: DataStructure) +;
Dat aStructure =
Ful I Qual i fi edPackageNane: Ful | Qual i fi edPackageNane
Nanme: | DENT
(":" SuperDataStructure: Super Dat aSt ruct ure) ?
"{" Attributes:Attributes "}";
Ful | Qual i fi edPackageNanme = (PackageNane "::")x*;
Super Dat aStructure =
Ful I Qual i fi edPackageNane: Ful | Qual i fi edPackageNane
Nane: | DENT;

PackageNane = Nane: | DENT,;

Attributes = TypeDecl arati on*;
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TypeDecl arati on =
TypeNane: | DENT
isList:"*"?
Narme: | DENT ;" ;

2 }

Listing 5.4: Data description language.

The main purpose behind this language is to simplify thergsgrone and time-consuming
process of correctly creating new data types. Due to theigedvconcepts for serial-
ization, even a small amount of attributes which should beharged between several
applications requires several portions of source codewisisimilar for any data struc-
ture. Thus, a small application based on MontiCore was @Nzhich allows an easy
definition of new data structure as shown in Listing 5.5.

envi ronment : : Poi nt 2 {
doubl e x;
doubl e y;

}

s environment:: Point3 : environment:: Point2 {

doubl e z;

}

envi ronment : : Poi nt Set {
Poi nt 3* i st Of Poi nts;

0}

Listing 5.5: Example for the data description language.

The application which processes these instances of thengaamreates appropriate
header and source files for C++. Furthermore, the requirdérgeind setter-methods
are generated as well as the serialization and deseriahzaethods. For lists, methods
to add new items and to retrieve the entire list are generdedeover, methods to allow
a copy of the data structure are derived automatically.

5.4.4 Concept: Integration of Modeling DSL

As already mentioned in Section 4.4.1, the DSL for modeliregdtationary and dynamic
elements of the surroundings is directly integrated irohesperi a. Thus, it is very
convenient to access modeled elements both in the frameatgetkand in applications
if desired. In the following, the processing of the languaggdel i bhesperi a is
outlined.
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For using the DSL, a lexer and parser for processing insgaotéhe grammar are nec-
essary. As already described in Section 4.5.2, Spirit waameed to allow convenient
use by creating the data structure providedhi®speri a: : dat a: : scenari o and
hesperi a:: dat a:: situati on. The main ideas behind the language processing
are outlined on the example of the stationary modeling.

Using the aforementionedConpressi onFactory, a data structure called
SCNXAr chi ve created bySCNXFact or y encapsulates the handling of SCNX archives.
The data structure exports methods for accessing simplyatsed and mapped grammar
as already described in Section 4.5.2 and allows accese tdetimed aerial and height
images in the archive using themageFact ory as outlined before. Furthermore, all
associated complex models using 3D modeling tools are &egbtw the caller including
their meta data and the content of the OBJX archive as well.alliginall situations
associated with a stationary model can be retrieved froexdhia structure.

5.4.5 Concept: Device-Independent Data Visualization

For providing an intuitional understanding of the complexrsundings, a visualization
for the data structures describing attributes and relati@tween elements of the modeled
stationary and dynamic surroundings is necessary. Butadsitenforcing only one type
of visualization, a device-independent data visualizeisoprovided byl i bhesperi a.

The main principle is shown in Figure 5.6 on the example ferdtationary surroundings.
Instead of mapping the existing data structures to a datetste dedicated for representa-
tion only by producing redundant data, the existing treeegated by the DSL processing
framework can simply be reused. Therefore, the generagedgrtraversed using the in-
terfaceScenar i oVi si t or. This interface is implemented [8cenar i oRender er,

the device-independent and data-dependent renderer. clEsis implements theoi d

vi sit(Scenari oNode&); method and delegates every call to type-dependent meth-
ods likevoi d vi si t (Pol ygong&) ; using type conversion at run-time.

Furthermore,Scenar i oRender er has an associateRender er providing a set
of pure virtual methods to be meant for primitive drawing @iens like voi d
set Poi nt Wdt h(const float&); or void drawLi ne(const Poi nt 3&,
const Point3&) ;. These methods are called by the type-dependent visitirtg-me
ods during tree traversal. From this abstract clResider er 2D andRender er 3D are
derived. The former one is also an abstract class mappirigrak-dimensional drawing
operations into two-dimensional ones, while the concresevothg methods are still left
unimplemented. The latter one is an implementation of drgyerimitives using OpenGL
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Scenario
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Scenario Visitor ScenarioNode

| ScenarioRenderer Renderer
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| Renderer3D | | Renderer,QDl

| SurroundingsViewer2DRenderer |

Figure 5.6: Device-independent data visualization: Antadehich should be visualized
uses the interfacBender er which provides rudimentary drawing primitives for draw-
ing points or lines irR?3 for example. This interface is implemented by a concretdeémp
mentation for the OpenGL context which is also provided byphesperi a. For gen-
erating a 2D view on a given data, some methods from the ateRender er are com-
bined by flattening the coordinates which is realized in the abstract cRessder er 2D.
Thus, a concrete realization which uses this class simpbfements the reduced set of
drawing primitives which is outlined in Section 7.2.

as a platform-independent industrial standard; this nerde used both for visualization
as outlined in Chapter 7 and for simulation purposes as destin Section 6.4.

SinceRender er 2Dis still an abstract class which misses its concrete dedgegeEndent
implementation, the use of both is described in detail in @rap for a non-reactive
monitoring application. This application is meant to vikzmthe stationary surroundings
with their dynamic elements.

Using the concept described here, a concrete visualizasorg a device-independent
data representation can be realized. Furthermore, thitnexisee-like data structures for
the surroundings’ scenario and situations can be simplyecuThus, no additional data
structure for visual representation depending on a spscge graph library like [114] is
necessary.
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5.5 Applications’ Life Cycle Management:
super conponent

The special support applicati@uper conponent is responsible for managing a con-
crete ClientConference. A running system which uses a Clierig@emce for commu-
nication consists of several user-contributed applicatior tools which are part of the
software framewori{esperia. All these applications must connect at their-sato the
supervisingsuper conponent which manages a centrally provided system configura-
tion. An application-dependent subset of this configuratiata is deployed automatically
to a connecting client application using the newly estalelisTCP connection initiated
by the client.

Furthermore, this component receives periodically Remit i neSt at i sti csfrom ev-
ery client application participating in a ClientConferencknis data structure contains
information about the time consumed for computation redeiio the defined client’s indi-
vidual frequency. Theuper conponent assembles aRunt i neSt ati sti csintoa
periodically sentbdul eSt at i sti cs. These information can be used to evaluate the
system’s performance for example.

Furthermoresuper conponent is notified whenever any client application leaves the
ClientConference either regularly by a return code sent byieaeing client at exit or
technically, when a client application exits unexpectetdhpugh the invalid TCP connec-
tion to the lost client application. These information canused to track any problems in
a running system consisting of several independent apiglicafor example.

5.6 Supporting Components

Besides the applicatioauper conponent , several small other tools are part of the
frameworkHesperia. These are outlined briefly in the following.

5.6.1 Component:pr oxy

This component must be used to translate data structuregéetsystems provided by
different independent suppliers. Therefore, it joins a@{@onference to broadcast data
received by a system provided by a third party or it sends thediasystem received from
the ClientConference. Due to the concept ClientConferencey epplication running
on top of the framework{esperia automatically and transparently communicates avit
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third party system. This application is used in the caseystaccommunicate with the
AGYV as described in Chapter 8.

5.6.2 Component:r ecor der

As expected, this component non-reactively records e@ent ai ner broadcasted in a
running ClientConference to a file. Therefore, it simply regyis itself as FIFO-receiver
for every broadcaste@ont ai ner and uses an in-memory cache running concurrently
for decoupling disk I/O operations. The resulting file camszall receivedCont ai ner s
serialized in chronological order. For writing the filet d: : f st r eamcan easily be
used with the framework{esperia. Moreover, this tool can be controlled remotely to
suspend or resume a running recording session WRemgr der Command sent to the
ContainerConference.

5.6.3 Component:pl ayer

As counterpart to ecor der, pl ayer replays previously recorded ClientConferences
by using a given recorded file or simply by reading fretndi n. Furthermorepl ayer

can be configured to scale the time between two broadc&stetai ner s to perform a
faster or slower playback either infinitely or only once. tlie r ecor der, pl ayer

can be controlled remotely to suspend, to resume, to rewondp play stepwisely
recorded data usinBl ayer Conmmand. Moreover, the input data is cached before re-
played to provide a continuous playback strear@mit ai ner s to avoid interfering the
delay between two records when accessing data on the disk.

5.6.4 Componentrr ec2vi deo

Like pl ayer, rec2vi deo simply reads a previously recorded ClientConference. But
contrary to the former, this component uses the three-dioaal data representation
to compute single images to be rendered afterwards intoeowite for demonstration
purposes. Therefore, it adjusts the playback of previorestprdedCont ai ner s to 25
frames/second using a simulated clock to control the remgléor the next frame of the
current system'’s state.
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6 Simulation of the System’s Context

In this chapter;Hesperia's use for the simulation of the system’s contextescdbed.
First, general considerations and design drivers arenaatlio be regarded for the simula-
tion of the system’s context for sensor- and actuator-basgkonomous systems. Next,
an overview of the component for the simulation of the sy&erontext realized in

| i bcont ext in the frameworkHesperia is described. In the following, several major
aspects of the simulation of system’s context’s are preseimicluding the computation
of the position, rotation, velocity, and acceleration of hGV as well as of dynamic
elements from the surroundings. Furthermore, the geoerafisensor specific low-level
data like cameras and laser scanners as well as high-leteebatracting the surround-
ings is presented.

6.1 General Considerations and Design Drivers

As shown in Figure 6.1, the main design principle for sensmd actuator-based au-
tonomous systems as well as an AGV is a data flow-orientedjdesalizing the well-
known pipes and filters design pattern reacting on stimainfthe system’s context. Thus,
incoming data is processed in an encapsulated manner facérg relevant features and
producing a set of enriched or modified information for thetrstages.

Considering this data flow, the component which realizes thdyztion of synthetic data
based on environmental information by using the DSL foriGtary and dynamic ele-
ments is callegimulation of the system’s contexhich is indicated as théirtualization
Layerin Figure 6.1. This layer is responsible for the simulatiéa ounning SUD which
Is processing continuously incoming data by a discretimator the valid overall system
time. Hence, this layer must control and increment the systeack and manage all
involved applications of the SUD to use the controlled tirhthair specific schedule.

Therefore, the adaption of the virtualization layer forag@mous vehicles consists of the
generic time controlling and SUD management which is redlin| i bcont ext and
the context-dependent models like the computation of tis#tipa, rotation, acceleration,
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System's Context

Sensor- and Actuator-based Autonomous System

(Support Layer
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Perception Layer Decision Layer Action Layer

@ > % planner [ > % simpledriver

Virtualization Layer
% libcontext (9% libvehiclecontext
Framework Hesperia Framework Hesperia
% libcore ﬁ libhesperia % libcore ﬁ% libhesperia
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Operating System (e.g. Linux) | Operating System (e.g. FreeBSD) |

Computer 1 Computer 2

Figure 6.1: Integration of the system simulation within fremeworkHesperia: Using
concepts and algorithms frofiiesperia, the application which realizes the sensor- and
actuator-based system is on top7@€speria. For closing the loop between the action
layer and the perception layer to enable interactive andtem@ed simulations, the vir-
tualization layer withl i bcont ext andl i bvehi cl econt ext is used. While the
former is necessary to realize the run-time discretizafiorihe SUD by providing time
control and scheduling, the latter provides models likeltisgcle model for the specific
use for autonomous vehicles for example. Thus, the frame#@speria provides an
application-independent virtualization layer to reak¥stem simulations.

and velocity for the AGV for the next time slice based on agiweodel. This is realized in
| i bvehi cl econt ext and is therefore a specific customization for the virtuaidra

layer. Moreover, not only the AGV must be simulated but alsmponents from its
system’s context which serve as the surroundings’ modett@gte specific input data.

Furthermore, the simulation of system’s context must usainface from the system
to provide all environmental informatiotiependingon the input stage for the pipes and
filters processing chain where the synthetic data enteis/gtem. While on higher layers
like the decision layer abstract objects with discretenmiation are identifiable at every
time slice, on lower layers like the perception layer inpatadis gathered from sensors
detecting the surroundings. To avoid modifications of th®S3&r providing the required
input data, the simulation of the system’s context must agepynthetic input data from
the current system’s context’s situation and feed it to tipegp and filters chain in the
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same format like a real sensor would do.

Regarding these information and the aforementioned majsigdeprinciple of sensor-
and actuator-based autonomous systems, the followingdigains some general consid-
erations and design drivers for the simulation of the systeontext.

» Decoupling from the real timeTo provide both interactive as well as unattended
simulations of the system’s context, which can be suspendegsumed using all
available computing power, the simulation of the systeristext must decouple
the system time which is valid for the system and the systeargext from the
real time. Therefore, not only the simulation of the systenontext but also the
components being used together with the simulation of tlséesys context must
use thevirtual time base On a real system, the virtual time base is equal to the real
time. Thus, the simulated system would run as fast as pesdépending on the
calculated largest time step which fulfills each requiredjérency from all SUD’s
applications.

* No visualization. Often, simulations are equalized with intuitional visaations.
In the following, the terms simulation and visualizatiorsdebe different things
and arenot used interchangeably. The simulation is responsible fotrobling the
system time, the scheduling, and the computation of theiozecof the system’s
context. Contrary to the simulation, the visualization ctetgs a simulation by
visualizing the enormous data in an intuitional manner. sTihe visualization is
a front-end from a simulation application but independenitf the simulation and
can be reused in further contexts as described in Chapter 7.

* Providing stage dependent datAs already outlined before, the type and amount
of synthetic input data depends on the layer of the pipes #edsfidata process-
ing chain where it enters the system. Therefore, highlyildetaaw data must be
provided at the lowest level which is the perception layeska®wvn in Figure 6.1,
while only selected information from the system’s contexan abstract represen-
tation may already be sufficient on higher layers like thasiec layer to generate
desired actions in the system.

» Extensibility.As shown in Figure 6.1 as well, the actually required simataton-
text like vehicle models for AGVs is independent from the gj@&n system simu-
lation. While the latter is responsible for the time controtaverall scheduling,
the former provides models which describe relations andasgor the system or
its contexts. Thus, the system simulation shall be indepeinffom the actually
required models for parts of the SUD or its context and mustesd realize only
the required concepts for carrying out system simulations.
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Before selected parts from the simulation of the system’dectrare presented which
realize the aforementioned design considerations usmfrdmeworkHesperia , further
considerations related to the management of an SUD andsitisrass context are outlined.
Furthermore, the control of the system-widely used timassubsed.

6.2 Controlling an SUD and the Time

According to [178], systems can be in general classified Digcrete Event System
SpecificationDiscrete Time SpecificatipandDifferential Equation System Specification
which also defines the required simulation technique to led.u€haracteristics of these
systems are outlined in the following:

 Discrete event system specification (DE8&)rting at an initial system state, these
systems are specified by a set of ordered timed events whitlataca transition
to the next valid system state. The required simulator isvemtebased processor
which supervises the event processing and the state toassji15].

* Discrete time system specification (DT38gse systems have a discrete time base
and thus, subsequent system states can be calculated goestlits of the previous
time step. The necessary simulator for this class is a reeusBnulator to calculate
the difference equations. Its mathematical modelist 1) = a * s(t) + b x x(t).

« Differential equation system specification (DE€®ntrary to the aforementioned
systems, these ones have a not only continuous time but atgngous states.
Therefore in general, the required simulator is a numenntagrator for calculating
the differential equations whose mathematical model imddfas; = a« g+ b x.

To complete the aforementioned list there are some otheraiion types to mention. For
exampleMonte Carlo SimulationfL05] which are static simulations &ystem Dynamics
[55] which is mainly used to describe and to analyze compiestesns like economic
relations.

Considering the methodology for automating the acceptasts tor sensor- and actuator-
based systems as outlined in Chapter 3, the entire SUD mustilied to supervise its
control flow and communication during an acceptance testrétbre, the independently
operating applications must be executed in a determirgstier according to their specific
execution frequency.

When the frequency for each application is constant for thieeerun-time and known a
priori, a deterministic execution order can be calculatedhe case of equal frequencies,
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a manually specified execution order is defined to presemadterministic execution
order. Furthermore, the maximum allowed time step for tuifil the required execution
order of all SUD’s applications can be derived as well. TBUSTSS is described.

Using these preconditions, the simulation consists mahtyo major parts: An SUD’s
scheduling, communication, and time control simulatiomiremment which is defined
as Sscheg @and the system’s context simulation applications calfeg which is domain

specific for the SUD. For an AGV, an exemplary applicatiomfi®.,, might be a synthetic
sensor’'s raw data provider as outlined in Section 6.4.6. istirlg 6.1, the scheduling
algorithm is defined.

function get Maxi nunDel taT(list SUDsApplications, list —
Syst enCont ext Appl i cati ons)
del taT : = 1000/ SUDsAppl i cati on. head() . get Frequency()

for each app in SUDsApplications:
5 deltaT : = great est CoomonDi vi sor (del taT, 1000/ app. —
get Frequency())
for each scapp in SystentCont ext Applications:
deltaT : = great est CoomonDi vi sor (del taT, 1000/ scapp. —
get Frequency())

return deltaT
10
function needsExecution(T, app)
return ((T \% (1000/ app. get Frequency())) == 0)

procedure Schedul er(list SUDsApplications, list —
Syst enCont ext Appl i cati ons)
15 T:=0
del taT : = get Maxi munDel t aT( SUDsAppl i cations, -—
Syst enCont ext Appl i cati ons)

if t >0 then
while true
20 for each app in SUDsApplications:
if needsExecution(T, app) then app.step((1.0/app. —
get Frequency()))

for each scapp in SystentCont ext Applications:
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if needsExecution(T, scapp) then scapp.step((1.0/app. —
get Frequency()))

25

T:=T + deltaT

Listing 6.1: Pseudo-code for the general scheduling sitiwna

As shown in Listing 6.1, the overall valid system tiriies incremented step-wisely in line
26 using the maximum possible constant time g¥@pwhich is computed in milliseconds
in line 16. This constant time step is derived from the joisetof all applications from

the SUD and the applications from the system’s cont&x4,\ using the function specified
in line 1 et seqq. Thus, a fixed step-continuous clock is piedito the SUD and all

applications from the system’s context. This clock is irelegent from the real system
time and therefore can be incremented as fast as possibéefuibtion assumes that no
frequencies are provided which are zero; moreover, thdtmeguwonstant minimal time

step is at least 1 if no common greatest divisor greater theanlbe calculated for the
SUD and all applications from the system’s context.

Following, the currently valid system timE is used to determine all applications from
the SUD which must be executed with the constant time stephwkishown in line 20 et
seqq. Therefore, its required frequency is used to cakewldiether it must be executed
at the currently valid system time using the function whgkpecified in line 11 et seqq.;
if an execution is required the application performs a stewérd using its individual
time step. Thus, a predefined deterministic execution datehe SUD’s applications is
preserved. The same algorithm is applied analogously &agiplications of the system’s
context.

Thus, the outlined schedul&scheq realizes a simulator for the aforementioned DTSS
which is used for controlling the SUD and the applicationg®Bystem’s context. Due
to the architectural encapsulation of the schedflgf.qwhich only manages the system
time and the overall scheduling, and the system’s corigyt different simulation algo-
rithms can be realized to provide the required data from yiséesn’s context. Thus, a
simulation which uses a numerical integrator can be retyutaggered fromSscheq for
example.

In the following, the implementation withik/esperia for the outlined concept8f:heqiS
presented in greater detalil.
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6.3 Controlling Applications: | i bcont ext

In this section| i bcont ext for realizing simulations of the system’s context is ougtin
This library provides a system’s context-independent &tian for any application real-
ized with the frameworkHesperia without the necessity of modifying the application
itself according to the general scheduling and controllilggprithm as outlined in Section
6.2. The general algorithm for the simulation providedlbybcont ext and realized
with the frameworkHesperia is outlined in the following:

1. Initialize system’s contexEirst, the entire communication in the system as well as
the time must be replaced by a controllable instance reispsct

2. Setup supervision for the control flow of the system undér kes supervising the
control flow of the application as well as to validate its catgtion, the system
under test must be controllable as well.

3. Initialize virtualized clock Setup the desired system'’s time. Furthermore, compute
the maximum possible time increment fulfilling all requeksteequencies by all
systems under test as well as all system'’s parts.

4. Do step for the system’s partS8ompute the next values in the system'’s parts like a
virtualized sensor’s raw data provider or any high-levehdaovider according to
their required frequencies.

5. Do step for the systems under teStep forward for all systems under test regard-
ing to the required frequencies. Moreover, enable comnatioia for the currently
activated system under test until it completes one comgutycle.

6. Evaluate.If required, validate the computed and sent data from theesysunder
test.

7. Increment virtualized system’s timéncrement the clock by the computed maxi-

mum possible time step and start over.

In the following, the architecture which realizes this algon is described in detail.

6.3.1 Interface for Controlling Time and Communication

As shown in Figure 6.2, the general inheritance for any appbn realized with the frame-
work Hesperia is depicted on the left hand side. The super-classvéyy application
is Abst ract Modul e, which is further specialized intbnt er r upt i bl eModul e.
This abstract class realizes a concept for controlling g@ieation’s control flow which
is described later. Besides a parser for arguments passead dppdication using the
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SuperComponent CD
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AbstractModule M
-------------------------------------
ESystem under test. E
Interruptible Module
AbstractCIDModule :
1 % { ControlledContainerConferenceFactory I&
ClientModule E
3 I ContainerConferenceFactory I

I ConferenceClientModule H ContainerConference ]<}—{ ControlledContainerConferenceForSystemUnderTest

. I UDPMulticastContainerConference I

ControlledTimeFactory }
TimeFactory

ApplicationModule I T [?imc 1 ControlledTime

Figure 6.2: Control of time and communication: On the leftdhaide, the SUD is shown
which is realized inAppl i cat i onMbdul e by the user. For controlling the overall
system time and communication, the cl&&snt i neCont r ol overrides the regular
implementation ofCont ai ner Conf er enceFact ory by providing a pure software
solution which manages the sending and receivinGait ai ner s between several ap-
plications. The same concept is applied to ThereFact or y which is intercepted by a
specialized variant which allows the controlled increnagioh of the system-wide time.

command line Abst r act Cl DModul e provides information about the desired multi-
cast group for realizing a ContainerConference. Theé ent Modul e, which derives
from the latter class, implements the concept for realianBQMCP client to retrieve
configuration data from auper conponent . Finally, this class is further special-
ized into Conf er enceC i ent Modul e to join a Cont ai ner Conf er ence using
theCont ai ner Conf er enceFact or y. The actual application itself derives from the
latter class and implements the necessary methods set Up() ; ,voi d body();,
andvoi d tear Down(); resulting in the regular application’s state machine.

Also deriving from Abst ract Modul e, Runti neControl is the core class for
realizing simulations of the system’s context. This clakallssubstituting the con-
text for all implemented components, thus, it consistshiemmnore of a selected im-
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plementation of asuper conponent for providing configuration data to any appli-
cation which is executed under supervisionRnt i neControl . Moreover, this
class has access tGont rol | edCont ai ner Conf er enceFactory as well as
Cont r ol | edTi meFact or y which are both used to replace the regular ones.

For replacing th&Cont ai ner Conf er ence which represents a UDP multi-cast group,
Cont ai ner Conf er enceFact ory is derived toContr ol | edCont ai ner Con-

f erenceFact ory which returns a specializeGont ai ner Conf er ence for con-
trolling the communication to the requesting component el as the communication
initiated by that component. The use of Gent r ol | edCont ai ner Conf er ence-

For Syst enUnder Test is described later; an instance of this class is returned to a
component upon request.

Comparable to Control | edCont ai ner Conf er enceFactory, the Con-
trol |l edTi meFactory is derived fromTi neFactory and is used to control
the current valid time system-widely by returning the coléd time upon request.
Since a component uses the enhanced clasgeSt anp for realizing time compu-
tations, it transparently uses the substituted factoryabgseTi neSt anp itself uses
Ti meFact ory.

6.3.2 Supervising an Application’s Control Flow and Communication

With both factories, the software architecture for substig the interfaces for realizing
communication or to request the current time is defined. rTi&ge is shown in Figure
6.3.

Starting atRunt i meCont r ol , aRunt i neEnvi r onnment is passed to this class de-
scribing theConf er enced i ent Modul es to be executed for the system under test
and allSyst enCont ext Conponent s describing either unavailable parts of the sys-
tem, for example an application realizing a sensor datafusr even an application
computing sensor’s raw data. At least one element of botkstypust be provided to start
a simulation of the system’s context. Both the abstract @ass r act Cl Dvbdul e and

the interfaceSy st enCont ext Conponent derive from the interfac®er i odi ¢ pro-
viding the method | oat get Frequency() const ;. Thus, for every application
as well as for any system’s part, different but constant nne tfrequencies can be de-
fined. By default, 1Hz is used for applications if nothing idided. Depending on these
frequenciesRunt i meEnvi r onment computes the greatest possible time step to use
for correctly fulfilling every requested frequency. Thisé step is used to continuously
increment the virtualized system time.
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Figure 6.3: Run-time control for the SUD: On the left hand stde SUD is shown which
implements automatically the interfadent er r upt i bl eMbdul e and Peri odi c.
While the former is required to register a special objectechBr eakpoi nt to in-
tercept regularly the running application, the latter icessary to calculate and re-
alize a system-wide scheduling which is implementedRoynt i neEnvi r onnment .
This class controls and schedules the required compondrm@guencies; further-
more, it supervises the sending and receivingCont ai ner s by using the class
Cont r ol | edCont ai ner Conf er enceFactory.

The methodvoi d step(const core::w apper::Tinme&); provided by the
interface Runner is used to actually perform a step either in the simulation of
the system’s context or in the system under test realized lnyass derived from
Conf erenced i ent Modul e. The call to this method implemented by the system
under test as well as all system’s parts is initiatedRayt i meCont r ol providing the
absolute current valid virtualized system’s time. Thugrgclass implementing the inter-
faceRunner is called with its desired frequency for a constant time sigepimply com-
puting the difference using the time from the previous aadl the current time at method’s
call. For scheduling all systems under test andSglét enCont ext Conponent s,
Runt i meCont r ol realizes aime-triggered, completing computation-schedulesn-
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sidering the desired frequencies. Thus, whenever eithapphcation from the system
under test or &yst enCont ext Conponent must be executed for a given tinte
Runt i meCont r ol executes the instance exclusively until it completes itamatation.
The scheduling is outlined in detail in Section 6.3.2.3.

6.3.2.1 Supervising an Application’s Control Flow

To supervise an application’s control flow which derivesrir@onf er enced i ent -
Modul e, the concepBreakpointis used. Since everonf er enceC i ent Modul e
derives also froml nt err upti bl eModul e, the methodvoi d set Br eakpoi nt -
(Breakpoint*); is available. The method takes an instance of an ob-
ject implementing the interfaceBr eakpoi nt and thus providing the method
voi d reached();. This method is called whenever the application calls
Modul eSt at e: : MODULE_STATE get Mbdul eSt ate() ;. Since every data pro-
cessing application is intended to run infinitely dependimgthe return value of the
latter method which is called periodically in the main la®gondition, the application
is interrupted either before or right after one loop’s itena. Whether the application
Is interrupted before or after completing one loop’s cyadpehds on the type of main
loop: If a head controlled loop is used, the interruptiondsworing right before a loop’s
iteration, while a foot controlled loop causes an interiuptright after completing a
loop’s iteration.

The interfaceBr eakpoi nt is realized by the cladfunModul eBr eakpoi nt , which

blocks the callee’s thread to this method until a conditionthis object is turn-
ing true caused by another thread. Thus, an application® e@p can be held
until the next time step for this system under test is avklab The instance of
RunModul eBr eakpoi nt belongs to exactly on€onf er enced i ent Modul e and

thus is part ofConf er enceC i ent Modul eRunner .

The object ConferenceC ient Modul eRunner implements the inter-
face Runner and realizes a stepwise execution using the aforementioned
RunModul eBr eakpoi nt . Thus, RuntinmeControl can easily call the
method void step(core::w apper::Tine&); for an instance of
Conf er enced i ent Modul eRunner wrapping the real object of the system under
test while waiting for the next call to the methodi d r eached(); . For separating

the Runt i neCont r ol 's thread from the a system under test’s thread, the wrapped
application is run concurrently usirger vi ce. Thus, even in a case of an unforeseen
thrown exception in the system under threRdnt i neCont r ol can safely catch the
exception and generate proper reports.
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6.3.2.2 Supervising an Application’s Communication

For controlling the communication to a system under teshitiated by such a compo-
nent, several aspects must be considered. Sloce ai ner Conf er enceFact ory
creates a suitabléont ai ner Conf er ence for encapsulating a UDP multi-cast group
for exchangingCont ai ner s and thus, no direct connections to any other specific appli-
cation must be opened by the application which avoids dotependencies between all
running applications. However,@ont ai ner sent to aCont ai ner Conf er ence is
available for any joined application in that UDP multi-cgsbup. Moreover, to supervise
not only a system under test’s control flow as described bdfat also its specific com-
munication, the application is only allowed to send datamihés scheduled to compute
its main loop for the next time step. For realizing this bebgwvall communication is
routed by theCont r ol | edCont ai ner Conf er enceFact ory to send data to any
system under test or to distribute s€aint ai ner s to other systems under tests as well
asSyst entCont ext Conponent s.

Since theCont ai ner Conf er enceFact ory expects an application’s specific data
for joining a UDP multi-cast group, which is provided #bst ract Cl Dvbdul e,
the application’s specifi€Cont ai ner Conf er ence is directly created in the con-
structor of Conf er enced i ent Modul e within | i bhesperi a. Therefore, only
one instance of a class implementing the interf@@t ai ner Conf er ence is cre-
ated for an application. The wrapp€onf er enceC i ent Modul eRunner takes
advantage of this application’s property by requesting aipplication’s specific in-
stance ofCont ai ner Conf er ence inside its constructor. This instance is cast
into Cont rol | edCont ai ner Conf er enceFor Syst enlnder Test containing
further information to supervise the wrapped applicatianrectly. If the cast fails,
the user implementing a simulation for the system’s conthkatnot call the method
voi d setup(const enum Runti neControl :: RUNTI ME_CONTROL&) ;

prior to the actualRunti neControl’s void run(Runti meEnvironnent &,
const uint32_t & ineQut); method to enforceRunti neControl to re-
place any existingCont ai ner Conf er enceFact ory with Cont r ol | edCon-

t ai ner Conf erenceFact ory. Moreover, this misuse is checked by
Runt i meCont r ol as well.

The classCont r ol | edCont ai ner Conf er enceFor Syst enlnder Test consists

of an instance ofBl ockabl eCont ai ner Recei ver as well as an instance of
Cont ai ner Del i ver er realizing the communication from and to the system under
test, respectively. The former is necessary to se@dre ai ner from the system under
test to other systems under test as well as t&alit enCont ext Conponent s, while
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the latter is responsible for distributingGant ai ner to the system under test.

As already mentioned in Section 5.3.2.6, a system undergestves the data using a
FIFO-, a LIFO-, or a key/value-data-store. This is realibgdegistering the current in-
stance ofConf er enceC i ent Modul e as aCont ai ner Li st ener at the instance

of Cont ai ner Conf er ence. Thus, running an application as a system under test su-
pervised byrRunt i meCont r ol , no changes to the application are necessary at all to use
aCont rol | edCont ai ner Conf er ence for receivingCont ai ners.

Since the Cont ai ner Conf erenceFactory does not have any con-
trol over a ContainerConferences life cycle because the applica-
tion can simply destroy the instance, the communication trobled by
Cont r ol | edCont ai ner Conf erenceFactory must be decoupled from any
returned instance to a system under test. Hence, eéVeny r ol | edCont ai ner -
Conf erenceFor Syst enlnder Test  consists of an own instance of
Cont ai ner Del i ver er which itselfimplements the interfac@®nt ai ner Coser ver.
This instance is used by tl@nt r ol | edCont ai ner Conf er enceFact ory to dis-
tribute aCont ai ner to a system under test. Therefore, the system under test¥isp
instance ofCont r ol | edCont ai ner Conf er enceFor Syst enlnder Test which
inherits from Cont ai ner Conf er ence, registers itself aont ai ner Li st ener

at theCont ai ner Del i ver er. Hence, as soon as ai@ont ai ner is sent to the
system under test using th€ont r ol | edCont ai ner Conf er enceFactory, it
gets delivered to any datastore registered for filtering gy &pplication since the
Cont ai ner Conf er ence delivers theCont ai ner to theCont ai ner Li st ener
which was registered at itself. Since thabnt ai ner Li st ener is directly regis-
tered in the constructor o€onf er enced i ent Modul e which registers itself as
Cont ai ner Li st ener, anyCont ai ner is finally delivered to the application itself
according to its filter setup using a FIFO-, LIFO-, or keyhe&ldata-store.

Whenever the application destroys its instanceQoint ai ner Conf er ence and
thus the Control | edCont ai ner Conf er enceFor Syst ennder Test, ei-
ther regularly or by throwing an exception, the instanceedsters itself as
Cont ai nerLi stener at ContainerDeliverer in its destructor. The
Cont ai ner Del i verer now simply discards anyCont ai ner sent to this sys-
tem under test. Hence, problems caused by an unexpectedntherception do
not affect theCont r ol | edCont ai ner Conf er enceFact ory and moreover no
other supervised application &yst emCont ext Conrponent . Thus, the concept of
Cont ai ner Del i ver er ensures that @ont ai ner sent at timef is delivered in the
same time step synchronously without any delay. Furthezmdwe to the thread-safe
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implementation of the FIFO-, LIFO-, and key/value-datarst the delivering thread
cannot be blocked.

For implementing sending facilities for a system under ,tedt is necessary
to restrict their communication to the time step when it geistivated by
RuntimeControl. As mentioned before, every system under test has ex-
actly one Cont ai ner Conf erence which is used to send data. Since
Cont r ol | edCont ai ner Conf er enceFor Syst emUnder Test derives directly
from Cont ai ner Conf er ence, this feature can be controlled by that instance.
For blocking an application from sending containers whensitnot activated, an
application-dependent instance dl ockabl eCont ai ner Recei ver is used.
This class implements the interfaéont ai ner Li st ener to provide the method
voi d next Cont ai ner (Cont ai ner & ; to the system under test, which calls
it implicitly whenever the methodvoi d send( Cont ai ner & const; from
Cont ai ner Conf er ence is called.

Furthermore,Bl ockabl eCont ai ner Recei ver has an instance of an object im-
plementing the interfaceCont ai ner Li stener as well. This instance is the
Cont r ol | edCont ai ner Conf er enceFact ory, which finally distributes the
Cont ai ner s sent from the system under test to all systems under testergyl at
Runt i meEnvi ronnment and to allSyst entCont ext Conponent s.

For restricting an application to send its data only whereis@ctivated, the aforemen-
tioned concept oBr eakpoi nt is simply reused. Whenever an application calls the
methodvoi d reached(); of the implementing clasRunMbdul eBr eakpoi nt,
the instanc®l ockabl eCont ai ner Recei ver islocked to avoid sending data. Thus,
every thread spawned by the system under test which triestbdata using the single in-
stance ofCont ai ner Conf er ence is blocked from returning until sending is allowed.
For releasing all blocked threads and thus allowing sendgain, right before returning
the callee’s thread tgoi d reached(); of the interfaceBr eakpoi nt, the lock is
removed fromBl ockabl eCont ai ner Recei ver and the system under test can send
Cont ai ner s until the break-point is reached again.

The decoupling of acceptingont ai ners sent by an application and distribut-
ing the Cont ai ner s realized byBl ockabl eCont ai ner Recei ver, blocking the
Cont r ol | edCont ai ner Conf er enceFact ory in processingCont ai ner s sent
by systems under test due to malfunctions in their impleatemt can be simply
avoided. Even in the case of an unexpected thrown exceptjotihd system under
test, theCont r ol | edCont ai ner Conf er enceFact ory is still unaffected since
the life-cycle of everyBl ockabl eCont ai ner Recei ver’s instance is controlled
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entirely by Cont r ol | edCont ai ner Conf er enceFact ory and the system under
test simply calls the methodoi d next Cont ai ner ( Cont ai ner &) ; of the inter-
face Cont ai ner Li st ener implemented byBl ockabl eCont ai ner Recei ver.
If the application gets destroyed, the instance of the déssckabl eCont ai ner -
Recei ver is not affected.

6.3.2.3 Scheduling Applications andyst enCont ext Conponent s

A sequence chart as an example for controlling a system ueders shown in Figure
6.4. On the topmost row of that figure, the minimum amount afessary applications
to run a simulation of the system’s context are shown. Forsties of clarity, commu-
nication related instances likéont r ol | edCont ai ner Conf er enceFact ory or
Cont ai ner Del i ver er are left apart.

The first instance, denoted by its super-cl&sst entCont ext Conponent real-
izes a specific part of the system context's simulation. Nextthat instance,
the overall valid system’s clock is shown. The third compuné the actual
Runt i meCont r ol which controls all other components, performs a step in ff& s
tem’s context usingSyst enCont ext Conponent s or the actual system under test
using Conf er enceC i ent Modul eRunner s respectively, and increments the time.
This instance communicates only indirectly with benf er enceC i ent Modul e us-
ing an instance oConf er enced i ent Modul eRunner, which is shown as fourth
object. Followed by the instance &unModul eBr eakpoi nt, this object is actu-
ally controlling theConf er enced i ent Modul e’s control flow as already described
above. An instance d3l ockabl eCont ai ner Recei ver is responsible from block-
ing or releasing the communication of the system under tEstally, the instance of
Conf er enced i ent Modul e realizing the system under test is shown.

In that figure, a snapshot of a currently running simulatiérih@ system under test
and the system’s context is shown. Therefore, all initelan calls are left apart.
Starting at the system under test on the rightmost side df ftpare, this instance
is callingvoi d reached(); inside its call toMbdul eSt at e: : MODULE_STATE
get Modul eSt at e() ; indicating the completion of one computing cycle. The netur
ing of this call is blocked byRunMbdul eBr eakpoi nt to interrupt the system under
test and to execute other tasks. Instead, the control flawngtoRunt i meCont r ol
which increments th€l ock using the computed maximum possible time step.

Afterwards, the simulation of the system’s context and thystesn under test
starts its next cycle for the new time. ThuBunti meControl checks if the
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Figure 6.4: Sequence chart showing the messages sent betargeolling and controlled
objects: The controlled system time is encapsulated inrts&ince of the classl ock

while the lifelines of the UML sequence chart represent tttaally consumed real time
which is required for managing the scheduling of the SUD¢ds munication, and the

system time.
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Syst entCont ext Conponent needs to be executed and actually executes it
when necessary. Since all calls to aSyst enCont ext Conponent are syn-
chronous, the control flow returns right after completing tbomputation of the
Syst enCont ext Conponent .

Following the Syst entCont ext Conponent s, Runti neControl checks if the
Conf erenced i ent Modul e wrapped into Conf er enced i ent Modul eRun-
ner needs to be executed. When the system under test must beezkéouthe cur-
rent time as shown in the examplBunt i meContr ol callsvoi d step(const
core::wapper::Tinme&); providing the current valid system’s time to
Conf er enced i ent Modul eRunner .

Before returning the call void conti nueExecution(); passed to
RunModul eBr eakpoi nt, the latter instance releases the blocked communication
letting any blockedvoi d send( Cont ai ner &) ; calls finish the requested sending
operation using the actual system’s time and return to ttadiees as shown in the figure.
Furthermore, the blocked call ti d reached(); is released again to continue the
computation inConf er enced i ent Modul e. Moreover, the system under test can
send furtheCont ai ner s without being blocked.

Conf erenced i ent Modul eRunner is waiting for the next call tovoid
reached(); by checking periodically the state dRunModul eBr eakpoi nt .

If the system under test should not return within the reguireme out,
Conf erenced i ent Modul eRunner throws an exception which is caught by
Runti meControl . Thus notifying Runti meCont r ol of a malfunctioning sys-
tem under test, this class can safely release all blocke@dsrand communications to
end its execution and to report this error to its outer scope.

Otherwise,RunMbdul eBr eakpoi nt gets notified about the next completed comput-
ing cycle by a calltoroi d reached() ; initiated byConf er enceC i ent Modul e.
Followed by a call to voi d set Next Contai ner Al l owed(fal se); to

Bl ockabl eRecei ver, the further sending o€ont ai ner s is delayed to the next
computing cycle and the periodic checking@inf er enceC i ent Modul eRunner
returns the control flow t&Runt i meCont r ol . This instance in turn increments the
Cl ock and starts over the next cycle in the simulation for the systecontext and
system under test.
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6.3.3 Remarks

The virtualized system time is constant for one completdecpoth in a system un-
der test as well as in argyst enCont ext Conponent s, because the overall system
time is incremented right after a step in the system’s cdrftdlowed by a step in all
system’s under test. Thus, the communication happenslgctnano time i.e. any
Cont ai ner sent from a system under test toCant ai ner Conf er ence or from

a Syst entCont ext Conponent to all systems under test consume no time between
sending and receiving when abstracting away from currésidgked concurrently send-
ing threads in the system under test. On one hand, the ordenbdlata is deterministic for
a running system simulation of single-threaded applic&tithis is an advantage because
the evaluation of such a system is reliable and repeatalol¢h&other hand, an evaluation
of the SUD’s reactions on an increasing system load [146}ipassible. However, since
all communication is routed usir@nt r ol | edCont ai ner Conf er enceFact orvy,
that class could artificially delay any distribut€dnt ai ner according to an identified
latency model like evaluated in Section 8.1.2.2 as well gdement load- and payload-
dependent behavior for a UDP multi-cast conference by dngppr reordering some
Cont ai ner s and thus realizing a noise model for the communication.

Additionally, Runt i meCont r ol can evaluate whether an application can fulfill the re-
quired frequency. Thus, it simply measures the time reduioe completing one cycle
between releasing the application’s thread fromBheak poi nt until it reaches it again.
Extrapolating the consumed time regarding the desiredireqy, an estimation about the
required computing power can be made which is obviously maetiependent.

Following, the actually needed simulation time which is s@med during one step in
the Conf er enceC i ent Mbdul e is equal to the real consumed system time. This
means that a controlle@onf er enceC i ent Modul e actually delays its current avail-
able time slice by using a call likeoi d sl eep(const uint32_t&);. However,
Runt i meCont r ol will cancel the current execution due to missing the preeefimaxi-
mum execution time. Thus, ai§onf er enceC i ent Modul e which needs to actively
delay its execution should rather map the desired waitimg to several sequential calls
to its main loop considering its defined frequency.
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6.4 Providing an SUD-dependent System Context:
| i bvehi cl econt ext

In this section, algorithms are outlined for providing ateys's context which depends
on an SUD and its actions and reactions. These algorithméearsed to generate in-
put data which is fed into the data processing chain of a seasd actuator-based au-
tonomous system. The main purpose for the algorithms isgp@tithe development and
the unattended system simulations for AGVs; however, sdrtfeealgorithms which are
discussed in the following are not limited to AGVs only butyrze applied within other
contexts as well.

The algorithms are implemented in the librdriybvehi cl econt ext. On one hand,
this library can be used to realize unattended system stionlay reusing components
froml i bcont ext as already outlined in Figure 6.1; on the other hand, the sinaey
and thus the same components can be used unmodified to pnot@dEctive simulations
which can be used by a developer during the software developm

6.4.1 Unattended System Simulations usinigi bvehi cl econt ext

As mentioned beford,i bvehi cl econt ext bundles all SUD-related algorithms. For
AGVs, these algorithms include a model for a position previth imitate the system’s
behavior of an IMU which is described in greater detalil in actfon 6.4.3. Besides the
position, velocity, or acceleration for the AGV, furthertaiéed information of its sur-
roundings for example other vehicles or obstacles are reduiAs already outlined in
Section 2.3 for example, several different sensors whichgiee the AGV's surround-
ings are necessary. Therefota,bvehi cl econt ext provides sensor models for a
color monocular camera which is described in Section 6 Buthermore, a model of an
actively scanning sensor on the example of a single layer E=anner is included. This
model is described in Section 6.4.6. Both models provideadied low-level input data
because all data gathered from the sensors is raw data whishla processed to get
information from the AGV'’s system’s context. To provide anadigh-level data produc-
ing model instead, a simple sensor data fusion which praoeetours to abstract from
perceived objects is included. This model is described oiiGe 6.4.7.

All aforementioned algorithms are scheduled®sgst enfFeedbackConponent s from
| i bcont ext. Thus, they can easily be used in an arbitrary combinationnat-
tended system simulations. However, these system simontafibstract from the real
time as outlined in Section 3.2.4; moreover, due to the trdano be executed with-
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out being supervised by developers to realize unattendstérsysimulations, they can-
not be directly used in an interactive manner. Thereforeaxaension to the concept of
| i bvehi cl econt ext is necessary which is described in Section 6.4.2.

6.4.2 Interactive System Simulations usindgji bvehi cl econt ext

As mentioned beforel i bvehi cl econt ext is intended to be used together with
| i bcont ext to carry out unattended system simulations. However, duhe actual
software development, interactive simulations to evaaatalgorithm’s behavior directly
by the developer is often necessary. Therefore, an extensithis library must be pro-
vided.

Besides the aforementioned algorithms to model variouscéspéan AGV, a wrapping
application calledvehi cl econt ext is included which allows direct and interactive
execution during the development. To realize this intéraatxecution, the purely vir-
tualized system time, which is necessary for unattendettisysimulations which are
executed under the supervision and contrdl bbcont ext as outlined in Section 6.3,
must be mapped to the real system time. This is necessargiwotake combined usage of
| i bvehi cl econt ext which depends ohi bcont ext and other applications which
are not under the control &fi bcont ext . To achieve this mapping for the simulation
time onto the real time, the consumed tirggsumedfOr carrying out one step in the config-
ured system’s context by calling I8/ st enCont ext Conponent s must be subtracted
from the calculated nominal constant duration of one tineesthich bases on all defined
frequencies as outlined in Section 6.2. THusbvehi cl econt ext can easily be used
alongside with other independently running application.

Furthermore,vehi cl econt ext can be executed several times for one specific
ClientConference. Thus, different instancesl afovehi cl econt ext wrapped by
vehi cl econt ext can be executed in parallel each with different configuretio
Hence, interactive system simulations can be distribusgolguseveral independent com-
puting nodes to spread the overall computation load.

6.4.3 Position Provider: Bicycle Model

In the following, the model used for modeling and simulatangehicle is provided. First,
its geometrical relations are explained, followed by itsitations.

In Figure 6.5, the so-calledicycle modelnd its geometrical relations are shown. Its
name bases on the assumption that the wheels on the frorarakibe wheels on the rear
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Figure 6.5: Geometry of the bicycle model (based on [126]).

axle are united comparable to a bicycle. Furthermore, th@fog assumptions are met
[78, 104, 124]:

The bicycle model is a two-dimensional representationrvirty dynamics.

The vehicle’s center of mass is located on ground level.r&fbee, vehicle rolling
and pitching are not considered causing dynamic wheel loads

The wheels are united per axle in the vehicle’s centeregitfodinal axis.

Furthermore, no longitudinal acceleration and thus atamiselocity is applied at
the moment of observation.

The cornering forces to the wheels are linearized.
Wheel's casters and righting moments are not considered.

Also, the wheel’s tangential forces are not considered.

After defining the assumptions met about the bicycle modgéta linearized geometrical

model, all symbols and relations for the vehicle’s dynamé&described in the following.
They are based on the principle of linear momentum and timeipte of angular momen-

tum.
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describes the center of mass assumed to be located at ground
level.

are the centers of the front and rear axles, respectively.

is the total distance betweéry., andCry4.

arel’s partial distances betweer,, andCr4 or C'r 4, respec-
tively.

describe the vehicle’s own coordinate system according to
[40].

is the vehicle’s rotation related to the world’s coordinayes-
tem.

is the steering angle at front wheel.

describes the vehicle’s attitude angle.

are the slip angles of the front and rear wheels, respegtivel

is the vehicle’s velocity.

are the velocities for the front and rear wheels, respdgtive

are the cornering forces for the front and rear wheels, rspe
tively.

Is the ideal velocity pole for a slip angle free drive.

is the velocity pole considering a slip angle during a drive.

The following symbols are not shown in Figure 6.5.

Jz

Clapa)FW

Clara)RW

describes the vehicle’s mass.

is the vehicle’s moment of inertia.

Is the yaw rate.

is the front wheel’s skew stiffness fory 4.
is the rear wheel’s skew stiffness faf 4.

In the following, geometrical relations between the idigedi values are defined.

98



Automating Acceptance Tests on the Example of Autonomoinsciées

lLpat) — vsi
arpy = §— arctan( F’“ﬁ co:(sﬁl)n(ﬁ)) (6.1)
=~ . 5 — ﬂ — lFAg.
apa<4 v
. o l N
QRA = — arctan(v Slr;(fgs(mRAw) (6.2)
~ o —f+ lRAﬂ
apa<4d (%
B = W — arctan(%). (6.3)

The next equations describe the dynamic relations as asgiate representation.

X = A-X+b-u (6.4)
y = ¢ -x+d-u.

In Equation 6.4, the state space model which describes thandig driving behavior
according to [136] is showrA describes the system’s state mathixjenotes the system’s
input matrix andc describes the system’s output matrik.is used to describe the feed
forward matrix. The vectox describes the system’s current state vector.aig system'’s
input which reflects the steering angle in this case.

B
_ (5 6.5
< () 65

_ Sap)tena) ClapplrA—Claplra 4 Clapa)
X = mv m1212 5 DX - mv ‘U
Clag)RA=Clap »)lFA _ ClagnlratCaplra Clapa)lra ’

JZ JZv JZ

In Equation 6.5, the input vector for the system and the Sjadee representation for the
aforementioned geometrical relation for the driving dyi@are shown. As already men-
tioned, 3 describes the vehicle’s attitude angle andescribes the yaw rate. Using the
aforementioned model and equations, the vehicle’s statbeaumerically approximated
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according to [136] which is shown in Equation 6.6.

X(tger1y) = P(AL) - x(tk) + D(AL) - u(ty) (6.6)
y(ts) = ¢ x(t) +d - ulty)
&
X(tgin) = Z (Aﬁt) - X(t,) Z(% - (At)B) - u(ty)

k=
y(ty) = ¢’ -x(ty) +d-ulty).

The accuracy of the numerical approximation depends oblyan the number of chosen
summands for the individual sums. Regarding the initially assumptions, the resulting
matrices from these sums are constant because they defdgrhadhne constant time step
At, the chosen accuracy which defines the upper lishior the sum’s index: and the
current values of the state and input matrix. Thus, theseengal approximated matrices
must be updated whenever the velocitghanges.

However, due to the simplifications which are met by theseiraptions, the bicycle

model for describing a vehicle’s driving dynamic is only idalor lateral accelerations
less thar0).47; [104]. For getting more precise results especially in limaitges for the

vehicle dynamics, the linearized bicycle model must be fiedlusing non-linear equa-
tions describing the forces which are applied to the wheelte front and rear axles [6].
Due to the intended application as outlined in Chapter 8,ntfuse accurate model is not
regarded but the described bicycle model for the positi@viger is chosen to show the
applicability of the concepts described in this thesis.

. [vcos(y—p)
Tpos = <v sin(ih — ﬁ)) : (6.7)

To update the position data for the simulation, the changinpe vehicle’s position is
calculated as shown in Equation 6.7. Using a given initiaifpan =, this changing can
be integrated to provide absolute position information.
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6.4.4 Monocular Camera Provider

The first raw data provider realized in the simulation of th&tem’s context is a monocu-
lar camera provider. Its software architecture is shownguie 6.6.

Sce}arlo D |

ScenarioNode Scenario Visitor

A

ScenarioRenderer

? > SharedImage

Scenario3DRenderer < camgen

|

SharedMemory

EgoState < State3DRenderer <

Figure 6.6: Software architecture for the monocular campevaider. This provider imple-
ments a simple monocular camera sensor model by using tledisdesystem’s context
which is described bycenar i o to render an OpenGL context. From this context, an
image dump is provided for user-supplied image procesdmgrithms using a shared
memory segment.

The realization of the monocular camera provider is quitgygausing some concepts
provided byl i bcor e andl i bhesperi a. Its main principle is to use the current state
of the system’s context for rendering into a predefined fi€ékdew for the virtual monoc-
ular camera. Since th&cenar i o3DRender er can simply be used for generating an
OpenGL render-able scene, thieat e3DRender er renders dynamic elements from the
system’s context like the position and orientation of the\Aiself. These information
are necessary because the virtual monocular camera is tediurn the AGV itself for
example. Therefore, OpenGL's scene view camera is placedenthe AGV is currently
located and is translated to its virtual mounting position.

The OpenGL’s scene view camera is used to grab the actual afighe scene into a
Shar edMenory segment. This shared memory is used to share the image'dédata
tween independent processes without serializing and sgrile data using sockets for
examples. However, shared memory can only be used amonggsex: on the same
computer. Regarding the pipes and filters data processing ofentioned above, it is
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assumed that basic feature detection is implemented omthpwter to which the camera
is attached to.

For informing other processes about the shared memory segiie data structure
Shar edl mage is used. This datum contains information about the image®dsions
and color depth as well as the name of the shared memory tdhwkher process should
attach to read the image. This data structure containingnage’s meta-information is
simply sent to the ClientConference.

Since the virtual monocular camera would grab the imageasis$ possible, the mutual
exclusion concept of shared memory segment can simply leElysine feature detection

process to control the image acquisition. Therefore, thtufe detecting process simply
locks the shared memory and thus prevents the virtual méamocamera to grab new

images while detecting features in the current frame isistbmplete.

6.4.5 Stereo Camera Provider

Based on the aforementioned monocular camera provider pdesgtereo camera provider
can by realized easily. Therefore, two virtual monoculaneeas are set up to operate
as a combined stereo camera system. Thus, the renderingtlaiydor the OpenGL
scene is split up into two independent rendering cycles. tRerexample of an AGYV,
the first pass reads the current position and orientatiomefvehicle to determine its
absolute position in its system’s context. Afterwards, fir monocular camera of the
stereo camera pair is positioned according to its specifiednting position relative to
the AGV’s current position and the scene is rendered inBhar edMenory segment
which is twice the size of the size of one single monocularerxanimage. Followed by
the second pass, the second monocular camera is positibkedad its current view
into the OpenGL scene is rendered into the second half dllae edMenor y segment.
Finally, the two combined images are broadcasted usiBigaa edl mage in an analog
manner comparable to the monocular camera provider.

6.4.6 Single Layer Laser Scanner Provider

In the following, the raw data generation for a single layaselr scanner using a GPU
is described. Due to the use of a GPU and as shown in Figurea6céncept using

the three-dimensional representation for the scenarietoebdered with OpenGL like
the aforementioned camera provider is necessary to prathteefor a single layer laser
scanner as described in the following.
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| ScenarioRenderer |

ﬁl ContouredObject
| Scenario3DRenderer Ié—@l
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Figure 6.7: Software architecture for the single layeridasanner provider. Comparable
to the aforementioned sensor model for a camera, this proaido bases on the specified
system’s context described I8cenar i o for rendering an OpenGL context. However,
contrary the aforementioned camera provider, this comgaxiodified by a special shader
program which is executed on a GPU which generates distarficemation. In a pre-
processing stage, this context is evaluated by an imaggznglalgorithm to retrieve
these distances to providing them to user-supplied agjaitsion higher layers.

6.4.6.1 GPU-based Generation of Synthetic Data

The main idea behind the raw data generation for a single lager scanner is the use of
projective textures on a modern GPU. The principle behingegtive textures is depicted
in Figure 6.8. In the figure on the left hand side, a red linehisa in the upper half of
a cube, while the picture on the right hand side shows the siamé the lower half of
the cube after moving it down; both lines are projected iht $cene. The projector is
indicated by the dark lines.

Their basis ar@rojectorsfor projecting a predefined texture into the rendered scéne.
texture is placed right in front of the projector using thensformatioril’ as shown in
Equation 6.8.P, is the projection matrix antl, describes the view matrix;, ' describes
the inverse of the camera matrix to get back into the worldsrdinate system to get
finally the texture coordinates for projection.
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(a) Projector shining in the upper half of the (b) Projector shining in the lower half of the
cube. cube.

Figure 6.8: Principle of projective textures using a prtge¢based on [18, 50]): A special
texture is defined used as a foil which is placed directly amfrof the camera’s position
from which the scene should be rendered. Using the equatiecifeed in Equation 6.8,
the content of this texture is projected into the scene. Foulating a single layer laser
scanner, this texture contains a single line as shown irfiuse which is projected into
the scene.

3 00 3
0 1014 B
T = Oéli 'PP"/P"/el (68)
2 2
0001

Using this transformation, several independent projectan be defined in the scene.
After defining the principles behind projective texturds algorithm for computing dis-
tances from a projected texture is outlined in Figure 6.Wibnsists of an image synthe-
sis followed by an image analysis problem. The former is mdnkith dark gray, while
the latter is marked with light gray.

6.4.6.2 Algorithm for Computing Synthetic Raw Data

First, the shader programs are loaded into the GPU. Thegegms are used to implement
the actual projection for a texture on one hand, and to déteriime distances of the

scene’s vertices to the viewing position on the other hare grogram is split into one

associated with theertex Processasind one associated with tReagment ProcessorAn
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Figure 6.9: Outline for algorithm to compute distances ggirojected textures.

overview of the OpenGL processing pipeline can be found@t [9

The former program encodes a vertex’' depth value into a geaviexture. The latter
program reads the actual pixel's color representing iteadie to the viewing position,
computes the z-buffer value using the actual valid nearfandlipping-planes, and sets
the pixel in the resulting image according to the z-buffdugaas the pixel's R-channel,
the real distance’s integral value as the pixel's B-charerad, the fractional value as the
pixel's G-channel after texture projection.

After initializing the GPU with the vertex- and pixel-shadgetwo variables of the frag-
ment shader containing the current values for the near- andipping-planes are con-
nected to the CPU program. Next, the texture to be projected baudefined. As already
shown in Figure 6.8, this texture contains Hoan lineto be projected into the scene since
the fragment shader modifies the resulting image only if a ba was found marked by
the texture pixel’'s value in the R-channel which is set to 255.

Next, the repeatedly executed distance computation losarged. The first step is to up-
date the current OpenGL scene by manipulating its elementsding to the current state
of the system’s context. Following, the current valid valer the near- and far-clipping-
planes are transferred to the fragment shader using thepsty connected variables and
the shader program is activated on the GPU for the currederarg cycle. The phase for
the image syntheses is completed by positioning the cansang quaternions to the cur-
rent position and rotation retrieved from the recently nem@EgoSt at e for rendering
the actual scene’s elements.

After the rendering is completed, the image analysis ph&sésswvith reading the com-
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puted image from the GPU. The resulting image produced b@#id is shown in Figure
6.10a, where in the upper half all surroundings’ elementehvare not irradiated by the
projector are simply colored in blue. In the center of thegmare the resulting pixels
computed by the shader program. For the sake of clarityghdting pixels are magnified
below the image.

2 ]

(a) Resulting image read from GPU after apply- (b) Viewing angles and distances:
ing the shader program: In the image above, Due to the discretization, only the
the resulting scene which is read back from raysr, andr, can be calculated;
the GPU is shown; the lower part magni- however, the nominal rayy is re-
fies the relevant part from the image which  quired which must be calculated.
contains the distances encoded by the shader
program.

Figure 6.10: Visualization for the output of the sensor nidde a single layer laser
scanner. This sensor model is realized in an applicatiochwhses a shader program on
the GPU for calculating the distances.

For illustration, sensor’s raw data for producing distanice a single layer laser scanner
with a FOV of § containing 91 rays from-7 to 7, whose mathematical model is depicted
in Figure 6.10b should be realized. The mounting posificaf the scanner is located in
the center of the image. The arbitrary li6edenotes distances to the viewing position for
the surroundings irradiated by the scanner. Therefors,lithe contains all intersection
points from the single layer scanning plane with the surdougs.

Due to the discretization in the resulting image, only thetatices, andd,, to the view-

ing plane denoted by the X-axis could be computed for the ineay raysr, andr, for
example. However, the nominal ray reflecting one of the scanner’s rays must be com-
puted. The distances returned to the viewing plane denagtet] landd,, are encoded

in the resulting image’s pixels. The pixel's R-channel cantgy the depth value for a
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scene’s vertex is used to compute the world coordinateséogiven x- and y-position in
the image coordinate system using Equation 6.9.

2(?1:13) _ 1
C=(P-at| 1 (6.9)
1

The product ofP - M denotes the projection in world coordinates and the tripley, =)
contains the image’s x- and y-position and also the compdegth value as z. The
quadruplgz, ¢, w, h) contains information about the image’s width and height el as
the offset of the image’s logical origifd, 0) regarding to the screen’s origin. Using this

equation, the positions, andp,, can be computed directly.

However, sincey, could not be measured directly, an interpolation for therddshom-

inal ray ny is necessary. Therefore, all angles along the viewing plengy the points’
distance to the viewing plane and its lateral distance te#msor’'s mounting positiofi

are computed using,) = arctan( <I’ —). All computed angles, are stored with their
corresponding distancg,) in a map. Due to the dependency on the depth value from the
near- and far-clipping-planes used for computing the woddrdinates causing aliasing
effects, the vertex’s real distance is encoded in the @x&'and G-channel. This value

is finally used to optimize the computed and interpolatethdise for the nominal ray,

as shown in Figure 6.11.

To compute the correct distances for the nominal rays, theimased the find the both
best matching rays denoted by andr,, around the nominal ray, minimizing the dif-
ference between the anglés \) and (9, ;). The computed difference for both pairs
is furthermore used to weight the interpolated distaséceasingd, andd, as shown in
Equation 6.10.

[
A =gl

1o=pll,

dy =
BT

dx + (6.10)
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- -

(a) Computed distances using the z-buffer depth(b) Optimized distances using the actual dis-
value scaled regarding to near- and far-plane. tances from w-buffer.

Figure 6.11: Aliasing effect when solely using the z-buffiemonstrated at a curved
target: On the left hand side, the rays from the laser scaredritting the target with only
discrete distances which provides inaccurate distandais.i§ caused by the decreasing
accuracy for increasing distances to the ray-emittings®({82]. On the right hand side,
the z-buffer combined with the w-buffer is used to optimize talculated distances which
reduces the aliasing effect.

6.4.6.3 Example

In Figure 6.12a, a situation in the modeled surroundingbasve. On the right hand side

in Figure 6.12b, the results for a single layer laser scamitr a FOV of 7 mounted
1.55m above the ground on the center of the vehicle’s roditmpat 8m in front of the
vehicle are shown. The computed distances with correcearagk plotted in blue with an
Xonits graph. In red with a + on its graph, the interpolatedahces to match the sensor’s
nominal angles are plotted. In the plot, the elevation oftlael can be seen easily between
¢ = —0.65rad andp = —0.1rad. Furthermore, the red graph describing interpolated
distances matches well the blue graph containing compugtdndes and angles. Even
at the wall of the house, the interpolation for nominal raysdoices reasonable results
between the actually computed distances.

6.4.7 Sensor-fusion Provider

For providing pre-processed data like output from a sefiison, a mid-level data
provider for generatingbst acl es is described in the following. It is called mid-level
data provider because it does not produce raw data for sew$a@ specific type but
can be used for results of a sensor-fusion fusing severatleaa/producing sensors. The
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(a) Situation with activated single layer laser scanner.
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(b) Plot of interpolated distances for nominal angles andmated angles for
measured distances: The graph marked wighows the computed angles
while the graph marked witk depicts the reconstructed nominal angles.

Figure 6.12: Visualization of computed distances.

(bst acl e data structure derives directly frofoi nt ShapedCbj ect and can be used
to describe arbitrarily shaped objects from the systenrdecd detected by different sen-
sors like radar or laser scanners. This datum consists o$igigrg rotation if applicable,
acceleration, and velocity and moreover, a polygon useddscribing its outer shape.
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6.4.7.1 Generation of Synthetic Data

Mostly, the outer shape is only a contour because sensarsalgrcannot detect the rear
side from objects. Since later processing stages couldressue contour is part of an
arbitrarily shaped polygon and simply connect the opericastat the beginning and end
of the contour, the polygon as a subset of contours is used.

Scenario

CD

| PointShapedObject |

| PolygonVisitor Ie_@l
EgoState

Figure 6.13: Software architecture for the sensor-fusiavider. Comparable to both
aforementioned sensor providers, this one also bases @ #rear i 0 specification. For
generating an abstract representation from the SUD’s sndiags, a visitor is defined
which traverses the scenario’s AST to gather informatiomfpolygons. These polygons
are used to calculate intersections with a specified vieareg which represents an ideal
sensor.

Like all previously described providers, the productiompod-processed data is operating
on theScenari o using aPol ygonVi si t or for extracting all polygonal shaped ob-
jects as shown in Figure 6.13. Furthermore, it use€th@St at e for localization in the
world.

6.4.7.2 Algorithm for Computing Synthetic Raw Data

The purpose of the following algorithm is to generate corgdar theCbst acl e data
structure. First, the sensor’'s FOV is defined by specifyiegesal coordinates in the
vehicle’s coordinate system. Next, for every update onBEyeSt at e, the local FOV
is translated to the current position and rotation in theldvasing the data provided by
EgoSt at e.

For every polygorp; in the list extracted by th€ol ygonVi si t or, the overlapping
areas with the FOV polygon are computed. Therefore, foryesdgee;,.,, of the FOV’s
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polygon the intersection point,, with every edge op; is computed. Since these inter-
section points are on the outer line of the FOV, these poiatsrig to the overlapping
polygon by definition and are added to the polygon ktfor the polygonp;. Next, all
verticesu; are tested if they lie inside the FOV. If they are inside thé/HBey are also
added toP;.

Y A

=

Figure 6.14: Overlapping polygons with visibility linesstdting in a contour line between
i1 andvy: The dark gray trianglé, v, i, shows the invisible area within the sensor’'s FOV
from point S for the polygonu,, vs, vs, v4, v5. Because the lin€i, crosses this invisible
area, the point, is not part of the outer contour.

Now, the overlapping polygon described by the vertitesvas found. Next, the vertices
must be reduced by the vertices which cannot be seen by teersemounting positiory.
Therefore, for every vertex; from the polygonr’;, the line Sv; describing the visibility
line from S to v; is tested for intersection points with any other edge frBm If no
intersection point could be found, the vertexcan be seen directly from the sensor’s
mounting position; otherwise, this vertex is removed fréth Finally, all vertices in
P; are sorted with ascending viewing angles regarding theossmaounting position to
ensure the correct detection order. In Figure 6.14, theiqusly outlined algorithm is
depicted.

6.4.7.3 Example

In Figure 6.15a, results of the algorithm are shown for a FO&803. As shown in Figure
6.15b while hiding the surroundings, only the measuredatisjeontour line is shown.
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/

|

(a) Visualization of polygonal obstacles. (b) Visualization of polygonal obstacles with
hidden surroundings.

Figure 6.15: Visualization for the output of the sensolidngrovider.

6.4.8 Dynamic Context Provider

As outlined in Section 4.4, the stationary system contexuigmented by dynamic ob-
jects as defined in a situation which also uses a DSL. On thengeaof AGVSs, this
dynamic context can be used to model different traffic sitbuste.g. with other vehicles
on intersections.

In Figure 6.16, the general architecture for the dynamidedrprovider is shown. Com-
parable to the aforementioned providers, this one alsothe&enar i o data structure
which can have one or more situations definefliih uat i on. In the latter data structure,
the type, shape, and behavior of a dynamic object accorditigetDSL as outlined in Sec-
tion 4.4.2 are defined. To control a dynamic object,Roent | DDr i ver is used which
realizes the dynamic object’s driving on an a priori definedte consisting of several
consecutive way-points provided Bgenari o.

Every instance of #oi nt | DDr i ver is managed byynam cCont ext Pr ovi der
which supervises depending other objects, updates théquodata, and distributes the
system state of dynamic objects. On one hand, the systeecgtatbe directly used in
user-contributed applications; on the other hand, it catfdbeected” by one of the afore-
mentioned providers like the camera or the single layer lss@nner provider. Therefore,
the abstract data structure for a dynamic object is rendesied) the concepts outlined in
Section 5.4.5. Thus, information from the SUD’s systemistest can be provided either
on low-level using sensors’ raw data or on high-level diseasing the dynamic object’s
data structure.
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Scenario

> - .
| Situation D |

Scenario Visz’torl | PointIDDriver |

A A

| FindNodeByPointID Visitor H dyncon

ScenarioNode

OtherVehicleState I<

Figure 6.16: Software architecture for the dynamic conpeatider. Comparable to the
already presented providers, this provider bases ostlesmar i o specification as well.
Moreover, it uses &i t uat i on to get the specification of the dynamic context. To
create the necessary models for the dynamic context, a eenitrstance of the DSL
Is evaluated and the required objects with their associa¢da@viorPoi nt | DDr i ver

are set up. The data provider computes continuously updatednation using the
O her Vehi cl eSt at e data structure. These objects can either be used diredtlgln
level user-contributed applications by evaluating théhnilautes for example or they can
be rendered into an existing OpenGL scene. In the latteraasparable to the stationary
surroundings, the dynamic objects can be “detected” usiagtorementioned providers.
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/ Monitoring and Unattended
Reporting

In this chapter, a non-reactive visualization environnadlowing interactive inspections

of a running sensor- and actuator-based autonomous systemelhas unattended re-
porting using the framework{esperia are presented. First, some general considerations
and design drivers are discussed. Following, some re@lizaspects for an interactive in-
spection application callddonitor are outlined. Finally, unattended inspections allowing
automated test runs which are used in the next chapter sserniesl.

7.1 General Considerations and Design Drivers

Next, selected design drivers for a running system’s ingpeare outlined.

* Non-reactive inspectiorAny monitoring or reporting application must not interact
with a running system to avoid interferences. This implied ho running applica-
tion takes note of a monitoring or reporting applicationsseence. Furthermore,
no application must send additional data explicitly to sanlapplication.

* Intuitional interface. Obviously, a monitoring application which is intended to be
used by humans must provide an intuitional interface. Magedor the unattended
usage described in Section 7.3, interfaces to be used byt artgmeer must be
unambiguous.

» Transparent usageAny monitoring or reporting application should be used both
with the real running sensor- and actuator-based autonssysiem as well as with
previously recorded data and with data generated by a sysiteutation.

Due to the design and architecture of the framew@dsperia, at least the first and the last
requirement can be realized with ease. Since the entire cocation between applica-
tions implemented using the framewdtiesperia is realized using the concept ClientCon-
ference as outlined in Section 5.4.1, any monitoring or reépg application can simply
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join the same communication group. Thus, every messagesgek in a ClientConfer-
ence is automatically received by a monitoring or reporéipglication.

Moreover, the concept ClientConference can not only be usdiv®systems but also
for replaying previously recorded data using the toolsamlyementioned in Section 5.6.
Additionally, the real system can be transparently sultsiit by a virtualized model as
described in Chapter 6 and Chapter 8. Thus, a monitoring ortireg@pplication realized
with the frameworkK-{esperia can be used to inspect and analyze a running system.

7.2 Interactive Monitoring

As already mentioned in Section 5.4.5, the framewatksperia provides a device-
independent visualization. Thus, both two-dimensionglresentation and three-
dimensional visual feedback can be easily realized usiagctimcepts provided by the
framework. In this section, the visualization for the siatiry surroundings is outlined.

7.2.1 Monitoring Componentnoni t or

In Figure 7.1 the architecture of the non-reactive inteéwadhspection component called
Monitor is shown. Since it is realized using the concepts providedhbyframework
‘Hesperia, all requirements discussed at the beginning simialy be realized.

The component itself derives fro@onf er enceC i ent Modul e and implements the
interfaceDat aSt or eManager . Using this interface, different data-stores as already
outlined in Section 5.3.2.3 can be registered at a runningn@onference. The appli-
cation monitor uses thBl ugl nPr ovi der to query existing plug-ins to be used for
system inspection. Thigl ugl nPr ovi der returns a list of availabl®! ugl ns as well

as one special plug-in callédast er Pl ugl n if desired by the user.

The MasterPlugln can be used to substitute the standard handler called
FI FOwul ti pl exer for handling incomingCont ai ners. By default, every in-
coming container is simply distributed to all running plng- using their implemented
interfaceCont ai ner Li st ener . By activating thavast er Pl ugl n, a buffered mul-
tiplexer allowing suspend, resume, replay, step forwaeh backward, and save to disk
can by applied to a running system.

In Figure 7.2, the application itself is shown. It is reatlzes a Multi Document Inter-
face MDI)-application using the GUI framework Qt [22]. In the windoall available
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DataStoreM |
| DataStoreManager cD

ConferenceClientModule
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Monitor | PlugInProvider [
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ContainerListener <@ PlugIn [&—

i

MasterPlugln €<

Figure 7.1: Architecture of component “Monitor”. The amgaliion consists of several
independent plug-ins which are fed with incomi@gnt ai ner s automatically. Thus,
they can realize arbitrary visualization tasks; furthemadue to the plug-in concept, this
application can be extended easily.

plug-ins reported by th€l ugl nPr ovi der can be selected. Every plug-in can be ex-
ecuted several times if necessary. In the bottom window eéa &8”, the control plug-

in for the Buf f er edFI FOWMUI ti pl exer is shown allowing the user to interrupt the
Cont ai ner s distribution to all running plug-ins while further fillonthe available buffer

in background. Furthermore, the replay of availaBtmt ai ner s in the buffer can be
controlled using self-explanatory buttons. Moreover,ahgent content of the buffer can
be selectively saved to disk in the same format as the coompoee or der would save
the data. Thus, captured interesting situations duringigpection of the running system
can simply be stored for further analysis or playback ugihgyer .

In the center window in part “1”, all currently running plugs are shown. In the up-

per left corner in area “2”, #acket LogVi ewer showing a chronologically ordered,
textual representation of all receiv€dnt ai ner s is activated. On the upper right cor-
ner in area “3”, a surroundings’ visualization componentohitis described in detail in

the following is running. On the bottom left corner in ared,“d viewer for currently
availableShar edl mages which are exchanged between independent processes using
shared memory is shown; these synthetic images are creatbe Gamera Providelas
described in Section 6.4.4. On the bottom right corner it {ir statistical data of the
consumption of their assigned run-time frequency of alhiag applications is shown.
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Figure 7.2: Non-reactive system inspection using compgiaonitor”: On the left hand
side in area “1”, a list of all available plug-ins is shown. the upper left hand side in
part “2”, a trace of all receive€@ont ai ner s is shown while on the upper right hand
side marked with “3”, a freely navigatable 3D visualizatiohthe current scenario is
rendered. On the lower left hand side in area “4”, the vizaaion of the camera provider
producing synthetic images is shown. The lower right hadd 81 part “5” finally plots
statistical information about the applications’ life-tg®. In area “6”, a control bar for
controlling the buffer which stores all captur€nt ai ner s is available which can be
used to suspend or replay the current buffer.

7.2.2 Visualization of Stationary Surroundings

In the following, the use of the aforementioned concept &vick-independent data visu-
alization is outlined for drawing the stationary surrourgli. In Figure 7.3 its architectural
implementation is shown using also the GUI framework Qt.

The main data structure to visualize iScenari o consisting of several
Scenar i oNodes and thus representing an ASG from a parsed SCNX file. Forrgave
ing this ASG, any object of a class implementing the intexfacenar i oVi si t or can
be used. This interface is implemented $yenar i oRender er which traverses all
visualizable elements of the ASG by performing a type casieerfor each node visited
during traversal to call type-dependent visiting methods.

Inside these type-dependent visiting methods, commandséwing the current node’s
visualization using the interfadeender er is used. This interface provides primitive
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| Scenario |%| SCNXArchive & OBIX Archive CD

0..* \
Scenario Visitorl | TriangleSet |

| ScenarioRendererH Rendererl QGraphicsItem

| Renderer3D | | RendererQDl | SurroundingsViewerQWidget |

| SurroundingsViewerRenderer2D |7

Figure 7.3: Device-independent data visualization foti@tary surroundings: A given
scenario is traversed for mapping the render-able infaomdtom the surroundings’ el-
ements to the drawing primitives provided by the interfRe@der er as already men-
tioned in Section 5.4.5. The 2D visualization is implementising a drawing context
from Qt which is also used to develop the “monitor” applioatitself.

drawing instructions likelr awPoi nt , dr awLi ne, ordr awPol yLi ne. Every method
accepts a point or a set of points frddd. Depending on the concrete implementation of
Render er , these input values are visualized using a two-dimensiaeal calledbird’s
eye viewusingRender er 2D or a freely visitable three-dimensional representationgus
Render er 3D. The latter one simply maps these calls to primitive dranapgrations
using OpenGL which itself is embedded either using the OpedBity Toolkit ( GLUT)
providing rudimentary operations for creating a GUI or byrenenhanced windowing
tool-kits like Qt.

The former one which maps the primitive drawing operatianget a two-dimensional
representation is still an abstract class which omits taediawing methods. As shown in
Figure 7.3, this class is derived 8ur r oundi ngsVi ewer Render er 2D implement-
ing these pure virtual methods usi@@r aphi csl t emprovided by Qt. The representa-
tion using this alternative simply omits the z-coordinateaw getting called in the regular
repainting method of the windowing toolkit.

As already mentioned before, an SCNX file can also contain émompodels provided by
3D modeling software. Currently, the Wavefront format isgaped as mentioned before
as compressed OBJX files containing files for describing faoesisting of triangles
and its normals, material information, and images for thelefis textures. For getting
these files into a device-independent representation,léiseTr i angl eSet is used to
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describe a set of triangles and their associated matefiaiss, a complete model consists
of a list of several sets of triangles. These list of triangg¢s is passed tBender er
which simply implements the appropriate methods in onesadutbclasses.

mmmmmmmmmmmmmmmmmm

(a) Simplified two-dimensional visualization (b) Three-dimensional visualization.
(“bird’s eye view").

Figure 7.4: Resulting representation using the concept wtdaendependent visualiza-
tion. The camera on the right hand side is located in the |defércorner of the two-
dimensional image pointing to its upper right corner.

Results for a two-dimensional and a three-dimensional sgimitation are shown in Figure

7.4. In the figure on the left hand side, the mapping of a thlisensional representation

of a complex model describing a three-dimensional surrmgsdis shown. Therefore,

Sur roundi ngsVi ewer Render er 2D simply flattens the triangles of the model to
the ground layer. The figure on the right hand side shows gelization using the same
ASG as input data structure but tRender er 3D as visualization engine. Thus, a freely
visitable representation is realized.

Obviously, a bird’s eye view could by achieved by eitherifgtthe camera pointing along
the z-axis or by computing a perspective projection usin@aviBualization. However,
both solutions require technically a three-dimensionatext for visualization. With the
concept presented before, a pure two-dimensional repgegganusing the same unmodi-
fied input data can be realized.

7.2.3 Visualization of Dynamic Elements
To visualize dynamic elements like the own vehicle, sess@rv data, or virtual objects

for illustrating algorithm’s intermediate steps, an agadmncept as already outlined be-
fore is realized. Its architectural concept is presentdelgare 7.5.
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Figure 7.5: Device-independent data visualization foraigit elements: Comparable
to the stationary visualization, the scenario data is usecktrieve information about
complex model provided by 3D modeling programs. Furtheemall senCont ai ner s
can simply be visualized by a centralized mapping to the ohgwrimitives of interface
Render er which is carried out in the cla$3at aRender er .

Comparable to the concept already mentioned before, a dedependent data visu-
alization is implemented. Therefore, the interfd&Render er encapsulating primitive
drawing operations is simply reused. The data to be visegig retrieved from a running
ClientConference by broadcasti@pnt ai ner s containing serialized objects. Thus, a
Dat aRender er is provided which simply uses a concrete 2D or 3D renderelampnt-
ing the interfacdRender er for mapping &ont ai ner into a visual representation.

For an intuitional representation of some surroundinge€mants like the own ve-
hicle, models produced by a 3D modeling program can be usetierelore, the
Dat aRender er has access to these models using an SCNX archive and mapsdbe mo
into a device-independent list of triangle sets.

Combining both concepts, stationary surroundings enritlyadlynamic elements can be
simply realized by applying th&cenar i oRender er first. Afterwards, the current
state of dynamic elements is drawn using Be¢ aRender er . Furthermore, the strict
separation between drawing primitives realized by a cdacvesualization application
and the concrete representation of an object provided biydheeworkHesperia, further
data structures can be easily visualized without the neethéalifying the visualization
application by simply adding the necessary mapping to pikiendrawing operations.

121



Automating Acceptance Tests on the Example of Autonomoinsciés

7.3 Unattended and Automatic Monitoring of an SUD for
Acceptance Tests

Besides interactive monitoring for directly supporting elepers, reporting of the sys-
tem’s quality is necessary to evaluate its maturity. Folizew automated acceptance
tests as outlined in Chapter 3 an interface is required tauatetepeatedlyand unat-
tendedlythe system’s behavior over time. Moreover, this interfdtalsallow a similar
usage like unit tests for being combined with continuousgrdtion systems. In the fol-
lowing, the software architecture for evaluating a systeweu test which completes the
simulations of the system and the system’s context as alreatlined in Section 6.3 is
presented.

7.3.1 Architecture for the Reporting Interface

In Figure 7.6, the general software architecture for evalgarunning systems un-
der test is shown, which completes Figure 6.3 from Sectidh26. Compara-
ble to the classSyst enfFeedbackConponent which is used to compute val-
ues for the system’s context to feed back information to tiistesn under test,
Syst enReporti ngConponent derives fromSyst enCont ext Conponent .

However, Syst enRepor ti ngConponent does not have an association to an in-
stance ofSendCont ai ner ToSyst enlnder Test preventing them to send any
data to the system under test. Thus, any instance of a ssbictgdementing the
methodvoi d report(const core::wapper::Tine&); gets automatically
all Cont ai ner s sent between any applications from the system under teselasis

all data sent from th&yst enfFeedbackConponent s to the system under test. But
contrary to the aforementioned class, an instanceyasft enReporti ngl nt erface
can only evaluate the incoming data without interferingwite rest of the running simu-
lation of the system under test and &jist enfFeedbackConponent s.

Thus, regardingseparation of concernsSyst enfeedbackConponent s compute
necessary information to operate the system under test thighdesired level of
details, while Syst enReporti ngConponents can evaluate the system under
test by inspecting all sen€ont ai ners. Therefore, not only the required sub-
classes ofSyst enReporti ngConponent can be easily composed and added to
a Runt i meEnvi r onnent, but these subclasses can also be applied after an exe-
cuted simulation during a post-processing stage withoangimg their code. Hereby,
any necessarpyst enReporti ngConponent can be applied to the captured and
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Figure 7.6: Software architecture for reporting composenhich evaluate the sys-
tem’s context. All reporting components derive fr@yst enRepor t i ngConponent
which allows a specified frequent schedulingfwnt i meCont r ol . Furthermore, these
components are automatically receiving all Séont ai ner s for evaluation.

recorded data during the previous simulation run becausaniply evaluates a given
stream ofCont ai ner s. Thus, even after a complex system simulation, additional
time-consuming evaluations are simply possible.

7.3.2 Usage of Reporting Interface

In the following, various scenarios for using the outlinedparting interface
Syst enReporti ngConponent are described. Therefore, subclasses are derived
from this class which implement aspects that can be evaluateependently during a
running system simulation for acceptance tests for example
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7.3.2.1 Evaluating the System: Destination Reached Report

In the following, an exemplary usage of the reporting irdedf is shown. The
goal for the implemented subclass @&yst enReporti ngConponent called
Desti nati onReachedReport is to monitor continuously the current position
of the vehicle and to report finally whether it has reachecdedgiined goal. This reporter
can also be added simply several times to monitor the pasdiagsequence of given
destinations.

SuperComponent

RuntimeControl

RuntimeEnvironment <

1..*

SystemContextComponent |

\V/
ContainerListener [ = = == === T

| ScenarioNode |—| Scenario Visz'torl | SystemReportz’ngComponent| | ControlledContainerConferenceFactory

| FindNodeByPointID Visitor lé' DestinationReachedReport |9| EgoState |

Figure 7.7. Software architecture for reporting whetherigerm destination was suc-
cessfully reached. ThBest i nati onReachedReport er implements the interface
Syst enRepor ti ngConponent to receive automatically all ser@nt ai ner s. Fur-
thermore, it uses the formally specified scenario for ggtiiriormation about available
way-points which can be used as destinations for an AGV.

As shown in Figure 7.7, theDesti nati onReachedReport derives from
Syst enCont ext Conponent to get all data sent between any application from
the system under test an8lyst enfeedbackConponents. Furthermore, this
class uses the DSL for getting information about the digitap consisting of iden-
tifiable way-points describing absolute Cartesian cootdma Using a way-point’'s
identifier passed toDesti nati onReachedReport at construction, the visitor
Fi ndNodeByPoi nt | DVi si t or traverses the ASG constructed from the given in-
stance of the DSL describing the stationary surroundingntb the identifier of the
desired destination. Using this identifier, the associgiesition is retrieved from the
ASG and stored for further usage.
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During a system simulation run, the instanceDefst i nat i onReachedReport is
continuously called. Upon activation, the instance iesahrough its buffer containing
all sent data and inspects @lbnt ai ner s containing information about the current vehi-
cle’s state, e.qg. its position, orientation, and velocltlge current vehicle’s position is used
to compute the distance to the desired destination. As sedineacomputed distance is
less than a given threshold, the instance of the dbess i nat i onReachedReport
returns true after finishing the system simulation.

Thus, besides the software framew@étksperia no further tooling is required to evaluate
an SUD unattendedly and in an automated manner. Therefwee treporters which
realize the metrics based on the customer’s acceptaneeaican simply be specified as
unit tests as shown in Listing 7.1. These unit tests therasatan be executed regularly
using a continuous integration system like CruiseContrg).[38

#include "cxxtest/ TestSuite. h"

class SinpleTestSuite : public CxxTest:: TestSuite {
public:

void test Reachi ngDesti nation() {
[/l 0. Setup system’'s configuration.
stringstream confi g;
config << "gl obal . scenario = file://Scenarios/ —
R chnondFi el dSt ati on. scnx" << endl ;
10
[/l 1. Setup runtime control.
Directlnterface di("225.0.0.100", 100, -
sstrConfiguration.str());
Vehi cl eRunti meControl vrc(di);
vrc. setup(Runti meControl :: TAKE_CONTROL) ;
15
[/l 2. Setup application.
const string START WAYPO NT = "1.4.2.4";
const string DESTI NATI ON_ WAYPO NT = "1.5.1.6";

20 /I Define the actual SUD.
Si mpl eDri ver mnySi npl eDri ver (START _WAYPO NT, -
DESTI NATI ON_WAYPO NT) ;

[/l 3. Define the SUD’'s system’s context.
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const float FREQ = 5;
25 Si npl i fi edBi cycl eMbdel bicycl eControl (FREQ config.str—

()

[l 4. System’s reporting component.
const float THRESHOLD DESTI NATION = 1; // 1m threshold.
Desti nati onReachedReport destinati onReached(config.str
(), DESTI NATI ON_WAYPO NT, THRESHOLD DESTI NATI ON) ;

30

Recor di ngCont ai ner recorder (FREQ "sinpleTestSuite.rec"—
);

[/l 5. Compose the simulation.
Runt i meEnvi ronnent rte;

35 rte.add(mySi npl eDri ver);
rte.add(bi cycl eControl);
rte.add(destinati onReached);
rte.add(recorder);

40 /I 6. Run application under supervision of -
RuntimeControl for maximum 180s.
TS ASSERT(vrc.run(rte, 180) == RuntineControl:: -
APPLI CATI ONS_FI NI SHED) ;

/I 7. Check if the destination was finally reached.
TS _ASSERT(desti nati onReached. —
hasReachedDest i nat i on\Waypoi nt ());
45
I/l And finally clean up.
vrc. t ear Down() ;

b

Listing 7.1: Integration of customer’s acceptance crteising reporters in unit tests.

On the example of a unit test realized with CxxTest[156], gpétnexecutable test specifi-
cation was created which evaluates whether the SUD fulfilscustomer’s requirements
by using the customer’s acceptance criteria as the conisty@pplied metric. In this
case, the SUD is an autonomously driving vehicle and theiocnetaluates if the vehicle
has finally reached its destination.
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First, in line 8 et seqq. the currently valid system configjorais specified. Afterwards,
in line 12 et seqq. the scheduler for the system simulatisseisup. In this case, the
application is directly under control of tHeunt i neCont r ol ; another implementation
provides a command-line interface which allows an intevaavaluation of the SUD if
desired. In line 21, the actual SUD is set up while in the feit lines its system’s
context is specified which consists of the simplified bicyuledel as specified in Section
6.4.3. In line 28 et seqq. a metric which reflects the custenaeceptance criteria is set
up. This criterion is continuously applied to the runningCsfor gathering information.

In line 34 et seqq. thRunt i meEnvi r onnent is composed for defining which compo-
nents must be scheduled. In this example,Rhat i neEnvi r onnment consists of the
SUD, its system’s context, and tBest i nat i onReachedReport which evaluates a
customer’s acceptance criterion.

The system simulation itself is started in line 41 for a maxamnduration of 180s. Thus,
this method call blocks for a maximum duration of 180s. I6thard deadline is missed,
the call returns with a return code which is not equafRPLI CATI ONS_FI NI SHED
and thus, it describes the reason for the failure; this ntetiadl also returns immediately
if an exception occurs. The return code of this method catinly fulfilled when the
system simulation could successfully be executed withérsghecified time limit.

In line 44, the fulfilment of the specified metric is checkedifterwards, the test
case is cleaned up in line 47. The last call is not mandatocause the instance of
Vehi cl eRunt i neCont r ol is automatically cleaned up when it gets destroyed when
leaving the current scope.

For further inspections for example in case of a failed tese¢in line 31 a recording
component which is included ini bcont ext is created. This component is also added
to theRunt i neEnvi r onnent . Thus, it automatically receives all sent data during an
unattended system simulation and all receiZedt ai ner s are stored in a data file. This
data file can be read later on using the applicalibni t or as mentioned in Section 7.2
for a manual step-by-step in-depth analysis.

7.3.2.2 Evaluating the System: Distance to Route Report

Besides the aforementioned implementation for validatirtge vehicle has reached its
intended destination, its distance to a given or the optnmate can be monitored. There-
fore, theSyst enmReporti ngConponent namedDi st anceToRout eReport is
implemented which extends the reporting component meaedidrefore.
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Figure 7.8: Software architecture for st enReporti ngConponent to eval-
uate whether the vehicle’s distance to an optimal route isticoously less than
a given threshold. Therefore, comparable to the aforemeati component,
Di st anceToRout eReport automatically receives all distributégbnt ai ner s and
evaluates the current vehicle’s position and orientatioa pre-calculated given or to the
optimal route using &aneVi si t or which traverses the road network.

In Figure 7.8, the software architecture of tli® st anceToRout eReport is
shown. Comparable to the aforementioned reporting comppitealso derives from
Syst emCont ext Report to receive automatically all distributed data. Moreover, i
relies on the DSL to calculate the optimal route between tivergpoints from the road
network. Therefore, it useslaaneVi si t or which traverses the road network to find
an optimal route between the given points during the inzi#zdion phase of this reporting
component. Alternatively, it can use a user-contributadtedo evaluate the vehicle’s
distance to the poly-line of that given sequence of way-4soin

During a running system simulation, th& st anceToRout eReport continuously
evaluates the currently incoming vehicle’s position anémation to calculate the vehi-
cle’s distance to the regarded route’s segment. As longsdigtance is less than a given
threshold, thédi st anceToRout eReport reports true after finishing the current sys-
tem simulation; however, when the vehicle’s distance isignethan the specified thresh-
old for the first time, this reporter not only returns false biso provides information
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about the vehicle’s position and orientation wheneveratates the specified boundary.

7.3.2.3 Evaluating the System in its Context: Distance to Obicts Report

The both aforementioned reporting components evaluatesysem’s behavior with-
out regarding its system’s context. Therefore, a furthg@orgng component named

Di st anceTo(Obj ect sReport supports the acceptance tests by evaluating the sys-
tem’s distance to any existing object in the system’s cdntex

| SuperComponent | E

|
| RuntimeControl |

RuntimeEnvironment I&

/1. .*

SystemContethomponent|

| Periodic Iq_l Runnerl

v

| ContainerListenerIQ' """" |
1
| SystemReportingComponent| | ControlledContainerConferenceFactory |

DistanceToRouteReport I%I EgoState |

\'4
| OtherVehicleState |

Figure 7.9: The class diagram depicts the software ardhitedor a component which
continuously evaluates the system’s behavior within isteay’s context. Therefore, the
Di st anceToObj ect sReport evaluates the data from the system’s context namely
bst acl e andQt her Vehi cl eSt at e. For both, the Euclidean distance is calculated;
moreover, for the former the polygonal shape is also evatlitd compute the distance
which is compared to a user-specified distance. The distiibdiata is received automati-
cally as mentioned in Section 7.3.

Alike the both already described reporting componebisst anceToCbj ect sRe-
port also derives fromSyst enmReporti ngConponent as shown in Figure 7.9.
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Therefore, it receives automatically all distribut€dnt ai ner s. This data contains
all necessary information for calculating the distancesciwrare compared with the
user-specified threshold. The first information is distidolbyCt her Vehi cl eSt at e
which is used to describe positions of other vehicles asmadtlin Section 6.4.8. Further
information is provided byobst acl e which additionally contains a polygonal descrip-
tion of the object’s shape. For all points of both objects, Buclidean distance is calcu-
lated and compared to the user-specified threshold. Morglovehe polygonal shape of
bst acl e the perpendicular points are computed and compared asonhisider the
distances towards any side of the object as well.

Using this reporter, the system’s behavior with statioramng dynamic elements from
its system’s context can be simply evaluated. Moreover,dility of a sensor data
fusion module producing an abstract representation basesktnsor’s raw data like a
laser scanner or a monocular camera as described in Sectiénahd Section 6.4.4 can
be evaluated as well.

In the case study presented in Section 8.2.5, some of theraéntioned reporting com-
ponents are used to evaluate and ensure the quality of aasefb@mponent on a example
of a real autonomous vehicle.
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8 Case Study and Evaluation

In this chapter, an example for practical use of the tools faachework described in
the previous chapters is presented. First, a benchmarkhéoframeworkHesperia is
presented. Following, its application for an AGV is desedb

8.1 Benchmark for Hesperia

In the following, some benchmarks for outlining the perfame of the framework
Hesperia are shown. Its real-time capabilities and comnatioitc features are of sub-
stantial interest due to the intended application in the afereal-time data processing
applications.

8.1.1 Performance of the Timing

First, the schedulability and timing in the framewdresperia is discussed to illustrate
its real-time capabilities. As already outlined in Chapteth® real-time implementation
depends directly from the OS which is chosen for usttesperia. For carrying out the
following tests, a regular Linux 2.6.27-14-generic kenwéhout real-time extension for
the non-real-time tests was chosen whereas a Linux 2.6r2Ke3nel which includes the
preempt-rt patch set [107] was chosen which allows softiiee capabilities [63]. In
Figure 8.1, the timing on the former Linux kernel without alreme extension is shown.

In Figure 8.1a, a process with a specified frequency of 100tdil be scheduled every
10ms. Furthermore, there is no other system load. For 20@<x)it can be seen that the
process is scheduled for about every 9.971ms with a stamtsiedtion of 0.065ms. In
the worst case, the process is scheduled after 10.24msingpthe specified timing.

On the right hand side in Figure 8.1b, the same process isrstvitiv the same frequency.
However, at this time the process spawns as many other thasadPUs available causing
100% system load. Now, the scheduler of the operating syptefers this process over
others due to its required computation time. Thus, the geescheduling time is at
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(a) Benchmark for the timing for a process with (b) Benchmark for the timing for a process with
a 100Hz thread and no further system load on a 100Hz thread with two other threads caus-
a Linux 2.6.27-14-generic kernel: The speci- ing 100% system load on a Linux 2.6.27-14-
fied frequency of 100Hz could not be fulfilled generic kernel: Due to the increased system
reliably. load which is caused by the two spawned
threads the Linux kernel scheduler prefers
even the 100Hz thread more often.

Figure 8.1: Benchmark for the timing of the framewdttesperia for the Linux kernel
2.6.27-14-generic.
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(a) Benchmark for the timing for a process with (b) Benchmark for the timing for a process with
a 100Hz thread and no further system load a 100Hz thread with two other threads caus-
on a real-time Linux 2.6.27-3-rt kernel: On ing 100% system load on a real-time Linux
a Linux kernel with preempt-rt real-time ex-  2.6.27-3-rt kernel: The same setup as men-
tensions the specified frequency of 100Hz is  tioned before is fulfilled reliably on a Linux
fulfilled with a very low jitter even at no sys- kernel with preempt-rt real-time extensions.
tem load.

Figure 8.2: Benchmark for the timing of the framewdtlesperia for the Linux kernel
2.6.27-3-rt.

9.997ms with a standard deviation of 0.00498ms. Now, thesingast schedule time is at
10.0ms.
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In Figure 8.2, the same process is executed on the same camgystem now running
the Linux 2.6.27-3-rt kernel with preemption patches. Eheatches are available for all
major Linux distributions.

Onthe left hand side in Figure 8.2a, the process is runnitigpat spawning other threads;
thus, the system load is nearly at 0%. The process is sclieduézy 9.9988ms on aver-
age with a standard deviation of 0.00358ms. The worst cdssdsted execution was at
10.01ms.

In Figure 8.2b, the process is spawning other threads caaspstem load of 100%. Now,
the scheduler prefers this process and the average sctiedeleution time is at 9.9998ms.
The standard deviation is about 0.00329ms and the worststaseluled execution was
at 10.01ms.

As aresult, it can be seen that the Linux kernel with preeomgiatches is a good choice if
no commercial real-time operating system is available. édwver, when using the frame-
work Hesperia, a convenient way to realize real-time applicationsimply specifying
the required frequency and implementing a specified alistnathod is provided; any-
thing else is handled transparently for the user-conteitw@pplication by the software
framework. However, it is obvious to obey design patterks &évoiding expensive mem-
ory allocations or locking for critical sections betweeffatent threads when developing
real-time applications [43].

8.1.2 Performance of the Communication

After discussing the schedulability and timing, the comination in the framework
‘Hesperia is evaluated to show that broadcasted UDP packeth e used for a Client-
Conference can be used to realize a fast and convenient wagJ¥eral communicating
applications. As already mentioned in Section 5.4.1, a @llenference is realized as a
UDP multi-cast transferring the atomic typér i ng which itself contains the serialized
data structur€ont ai ner .

8.1.2.1 Local Communication on One Computer

In the following, the atomic typst r i ng of the fixed size of 256 bytes is sent between
different applications and the duration is measured. Fesdltests, the communication
performance of the framewofKesperia on a local computer is evaluated.

First, as shown in Figure 8.3, a packet of 256 bytes is seitit ¥tz from one sender
to one receiver. On the left hand side in Figure 8.3a, thewggeqrocesses are running
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(a) Benchmark for one sender sending data at(b) Benchmark for one sender sending data at
1Hz and one receiver running as user pro- 1Hz and one receiver running as privileged
cesses on the same computer: Some packets processes on the same computer;: When the
are delayed up to 0.6ms. same test is carried out using a privileged

user the average duration is approximately at
0.0936ms without the aforementioned peaks.

Figure 8.3: Benchmark for one sender sending data at 1Hz amdeceiver running on
one computer.

as non-privileged processes. It can be seen, that the &vdragtion is approximately
0.11ms with some peaks at nearly 0.6ms. However, when bottepses are executed as
privileged processes, these peaks seem to disappear aadettage duration is around
0.0936ms. In both cases, no packets are lost.
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(a) Benchmark for one sender sending data at(b) Benchmark for one sender sending data at
100Hz and one receiver running as user pro- 100Hz and one receiver running as privileged
cesses on the same computer. processes on the same computer.

Figure 8.4: Benchmark for one sender sending data at 100Haremckceiver running on
one computer: On average the transmission duration is gjppately at 0.07ms with no
significant differences at all.

The same setup is shown in Figure 8.4. On the left hand sidginé-8.4a, the sender is
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sending at 100Hz constantly 256 bytes to one receiver. Thiegeaverage duration was
about 0.0715ms with a peak at 0.427ms. On the right handtsidle processes are run as
privileged processes. Now, the average transmissionidariatat 0.075ms with a peak at
0.472ms. Thus, no significant difference can be remarkefioth cases, no packets are
lost as well.
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(a) Benchmark for two senders sending data at(b) Benchmark for two senders sending data
1Hz and one receiver running as user pro- at 1Hz and one receiver running as privi-
cesses on the same computer: The average leged processes onthe same computer: In this
duration is around 0.126ms with a worst case case, the average duration is at approximately
duration at approximately 0.438ms. 0.076ms.

Figure 8.5: Benchmark for two senders sending data at 1Hz a@dexeiver running on
one compulter.

In Figure 8.5, the same test using two senders which arersgatliilHz and one receiver
Is shown. On the left hand side in Figure 8.5a, two sendinggeses and one receiving
process running as non-privileged process are shown. Qage/ea UDP packet needs
nearly 0.126ms for transmission, in the worst case up to30m3 On the right hand side
in Figure 8.5b, when all three process are running as pgedeprocesses, the average
duration for transmitting a UDP packet of 256 bytes paylaafdi about 0.0756ms while
the maximum duration is 0.13ms. In every case, no packebgut |

The same setup is shown in Figure 8.6 where also two sendthgramreceiving process
are measured. On the left hand side in Figure 8.6a, two sendsch are sending at
100Hz running as non-privileged processes are shown. Qag&gethe duration is nearly
at 0.0874ms, while the worst case duration is slightly oven¥. On the right hand side,
all three processes are run as privileged processes. Tfamance is nearly the same
as in the previous case: The average duration for transgittst r i ng is 0.0788ms,
while the worst case duration is also slightly greater th&m. Like in all other cases,
no packets were lost as well.
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(a) Benchmark for two sender sending data at(b) Benchmark for two sender sending data at
100Hz and one receiver running as user pro- 100Hz and one receiver running as privileged
cesses on the same computer. processes on the same computer.

Figure 8.6: Benchmark for two senders sending data at 100HDa@ receiver running
on one computer: On higher network traffic on the local nekwd®vice, no significant
difference between privileged and non-privileged proesssn be deduced.

Altogether, the overall results show that the use of UDP &dadransmission is a reason-
able choice even at higher network loads because no packetdost at any benchmark.
Furthermore, even on an increasing network bandwidth’swmption, the worst case

transmission duration is around 0.5ms for only a small arhotipackets. Furthermore,

the transmission duration is reduced when the processexeaceted using a privileged

user account.

8.1.2.2 Communication on Two Computers

In the following, the performance of the framewotkesperia for the communication
between two computers is analyzed. Therefore, both comgpwere synchronized using
either Network Time ProtocoNTP) [103] or Precision Time ProtocoP{TP) [84]. The
results for each protocol, which obviously depend on furtiianing processes which
also use the network for communication, are shown below.

In Figure 8.7, two sending processes running on one compuatéone receiving process
running on another computer are shown. Each process istexkas a non-privileged

process. On the left hand side in Figure 8.7a, both sendersearding at 1Hz. The

average transmission duration is approximately 0.591nhdewhe worst case duration
is at 0.768ms. On the right hand side in Figure 8.7b, bothexsrate running at 100Hz.
In this case, the average transmission duration increaseg78ms, while the worst case
duration is at 4.3ms. In both cases, no packets were lost.
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(a) Benchmark for two senders sending data at(b) Benchmark for two senders sending data at
1Hz and one receiver running as user pro- 100Hz and one receiver running as privileged
cesses on two computers synchronized using processes on two computers synchronized us-
NTP: The average transmission durationisat ing NTP: On a higher network bandwidth’s
approximately 0.591ms while the worst case  consumption the average transmission dura-
transmission duration is around 0.768ms. tion is increasing to 0.778ms while the worst

case transmission duration is at nearly 4.3ms.

Figure 8.7: Benchmark for two senders sending data at 1Hz @@dZ.and one receiver
running on two computers.
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(a) Benchmark for two senders sending data at(b) Benchmark for two senders sending data
1Hz and one receiver running as user pro- at 100Hz and one receiver running as priv-
cesses on two computers synchronized using ileged processes on two computers synchro-
PTP: The average transmission duration is at nized using PTP: On higher bandwidth’s con-
approximately 0.209ms while the worst case  sumption the average transmission duration is
transmission duration is at 0.429ms. at approximately 0.112ms and the worst case

transmission duration is around 2.5ms.

Figure 8.8: Benchmark for two senders sending data at 1Hz @ddZand one receiver
running on two computers.

In Figure 8.8, a setup using one sender and one receiver @acimg on a separate com-
puter is shown. On the left hand side in Figure 8.8a, the saad®nding with 1Hz and
running as a regular non-privileged process. Here, theageetransmission duration is
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for about 0.209ms, while the maximum duration is at 0.42901sthe right hand side in
Figure 8.8b, the same setup with the sender running at 109slzown. In this case, the
average duration is nearly 0.112ms, while the worst cad@glstly less than 2.5ms.
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(a) Benchmark for two senders sending data at(b) Benchmark for two senders sending data at
1Hz and one receiver running as user pro- 1Hz and one receiver running as user pro-
cesses on two computers synchronized using cesses on two computers synchronized using
NTP. PTP.

Figure 8.9: Comparison between NTP and PTP: The plot on thledefl side is translated
to the bottom to allow a more intuitional comparison becabhsemeasured durations on
the left hand side have an additional offset. However, tscuracy is within the NTP’s
specification which is under ideal conditions at least a ipleltof 1x 10~%s according to
[103].

Another important remark about NTP and PTP is shown in Fig®e On the left hand

side in Figure 8.9a, the communication between two compuiging UDP for transporta-
tion of 256 bytes payload, which are synchronized using NsSI$hown. It is very obvious

that the synchronized time is drifting and the transmissioration is increasing. In this
case for 120s the transmission duration increases fromt&48ms to 0.51ms. On the
right hand side in Figure 8.9b, the same setup is shown usiRgi€shown. In this case,
no drift is remarkable and the transmission duration islgeamstant.

Altogether, the results show that even for the communioatietween several computers
the UDP is a reasonable choice. However, depending on theedesse case, the time

synchronization between all participating computers igantant and in time-critical en-

vironments which are limited to local networks, the PTP is@asonable choice to ensure
only a very low drift in the independent clocks.
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8.2 Application for Hesperia on an Autonomous Ground
Vehicle

The frameworkHesperia was tested on an AGV at University of California, Blekén
summer 2009. The description of this test is presented ifolt@ving. First, the vehicle
and its model are presented in detail. Following, the tésisid its modeling is described.
Finally, the development and deployment of a simple algarifor controlling the vehicle
to locate itself on a digital map and navigate safely a roatefuted from this digital map
Is shown.

8.2.1 Ford Escape Hybrid — ByWire XGV

The vehicle used for testing the concepts implemented ifrmeework Hesperia is a
2008 Ford Escape Hybrid Sports Utility Vehicl8UWYV) as shown in Figure 8.10a. For
getting access to the steering wheel, acceleration, akeé Bystem, the vehicle was mod-
ified into a so-called drive-by-wire system which allows ngeop control [157]. The
same platform was also used by team VictorTango in the 200RE¥Urban Challenge
and proved reliability [5].

As shown in Figure 8.10a, a stereo vision camera system aingla fayer laser scanner
are mounted on the AGV'’s roof. Furthermore, besides a Wigelscal Area Network
(W-LAN) antenna, a NovAtel GPS antenna for localization is alsontexlion the highest
position to avoid shadowing. In Figure 8.10b, the AGV'’s kus shown. In the trunk,
two racks are mounted in a shock-proof manner to carry altleh computers and power
systems. The rack on the left hand side carries the TORC Paveskistem providing
6,000 watt, followed by a waveform generator for providingyachronization signal
for the stereo camera system. Finally, the NovAtel SyndlaexhPosition & Attitude
Navigation SPAN IMU HG-1700 is mounted on top the waveform generator fohlyjig
precise localization.

The rack on the right hand side contains five computers fa gedcessing. Four com-
puters mounted in half-2U cases and pair-wisely groupedigecan Intel Core 2 Quad
CPU each along with 4GB RAM and 160GB SATA HDD for logging purpesA Com-
pact Flash CF) card containing the operating system and the actual psesesre used
to avoid malfunctions due to heavy movements and accedesatiThe 2U server on the
rightmost side is a dual Intel Core 2 Quad with 8GB RAM and an 8@SB. This server
is responsible for data acquisition from the IMU like pasitidata, vehicle’s orientation,
and velocity, and for generating the steering and acc&@rabmmands using a given tra-
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(a) Ford Escape Hybrid — ByWire XGV’s sen- (b) Ford Escape Hybrid — ByWire XGV’s trunk:
sors: On the roof there is a stereo vision The incoming data is processed on several com-
system alongside with a single layer laser  puters which are mounted in the rack on the
scanner mounted for perceiving the vehi- right hand side of the trunk. On the left hand
cle’s surroundings in front of the car. side, an IMU for providing highly precise po-

sition data is mounted as well as a waveform
generator to provide a synchronization signal
to trigger the independent cameras of the stereo
vision system.

Figure 8.10: Overview of the Ford Escape Hybrid — ByWire XG§&nsors and trunk.

jectory. Furthermore, this computer runs the non-reactisealization application to be
shown both on the Liquid Crystal Displai@D) mounted under the roof for passengers
on the vehicle’s back seats and on the small display of theacho for the driver and the
fellow passenger.

Based on the general system architecture for sensor- anat@achased autonomous sys-
tems as already shown in Section 2.2, Figure 8.11 depictspbeific system architec-
ture implemented in the 2008 Ford Escape Hybrid — ByWire XGhe Thput message
Vehi cl e St at e is a so-called heartbeat pulse message sent by the ByWire Real T
Controller indicating that it is operating properly. The AGdtalizes itself using the
aforementioned NovAtel SPAN system providing highly psecposition data with an
accuracy of~ +1.8m and orientation data with an accuracy-of+0.02rad using the
messag®osi t i on. Both data is sent over UDP while the former is encapsulatedjus
the JAUS messagdEARTBEAT _PULSE [89] and broadcasted into the vehicle’s sub-net,
the latter is sent using a proprietary data structure usiBg.Uror avoiding additional
message routing caused by thedeManager as required in the JAUS specification, the
XGV directly communicates with the required component lsgrag the JAUS standard.
Thus, freely available implementations like the OpenJA@d&ikgage [113] cannot be used
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Figure 8.11: System architecture implemented in the 2008 Escape Hybrid — By-
Wire XGV. JAUS indicates data which is encapsulated into §&JS protocol, UDP
indicates data which is sent using a proprietary protoaad, @indicates data wrapped
into aCont ai ner data structure; therefore, the applicatmmoxy from the framework
Hesperia is used. Furthermore, the componBtaanerandSimpleDriverare realized as
one combined application using the framewtksperia as well. The applications from
the support layer are described in Section 5.5, 5.6, andnd Base also on the framework
Hesperia.

with the vehicle without modifications.

Beyond, a stereo vision system along with a single layer ss@nner system are used for
perceiving the vehicle’s surroundings. For the demoristiaghown in this chapter, these
systems are not used for the vehicle control. ThereforeigarE 8.11 these connections
are depicted dashed. However, the vehicle model presemt®edtion 8.2.3 provides all
sensor’s raw data for the developers.

Following the perception layer, the decision layer proessall acquired data from the
vehicle. Since the data itself is available in differentedf@armats, thepr oxy application
receives the data and translates it to@oat ai ner data format used iftesperia. In Fig-
ure 8.11, th&Cont ai ner format is indicated byC. After translating the data, the planner
checks if the vehicles has reached the next available way-fsom the initially planned
route. If no more way-points are available, the vehicleapped. Thesi npl eDri ver
which actually contains the planning algorithm uses theesirposition and orientation
data to compute the next necessary steering commands tof® $ke car as described
in Section 8.2.4. Since the vehicle can only be controlledgithe aforementioned JAUS
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messages, ther oxy application translates the computed steering command gl S-
compliant messages again.

On both layers, all received and sent messages from and tgydtem can simply

and non-reactively be visualized using theni t or as described earlier, since all
communication is wrapped int@ont ai ners. Furthermore, all data sent within a
Cont ai ner Conf er ence can simply be stored for further analysis usimgcor der .

8.2.2 Test Site “Richmond Field Station”

The Ford Escape Hybrid — ByWire XGV was tested on the “RichmoiettFStation”, a

research and testing facility located about 6mi northwésh® University of California,

Berkeley. For providing a digital map to the planning alguntof the AGV on one hand,
and to model the system’s context on the other hand, thequrslyi defined DSL was
used.

Figure 8.12: Model of the system’s context for Richmond Figtdtion projected on an
aerial image; image credit: University of California, Berkgel

In Figure 8.12, an aerial image of the Richmond Field Statidth woads of the digital
map is shown. For creating a digital map with an intuitioregresentation for the user,
a clearly identifiable land mark from the northbound orienteage was chosen and set
as WGS84 origin coordinate for the underlying coordinatdesys For the Richmond
Field Station, the coordinate (37°54'56.16"N, 122°208'W) was chosen. Using this
reference point, 76 way-points marked as red in Figure 8dr2wecorded using a highly
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precise GPS system. These coordinates where projected Dastesian coordinate sys-
tem as already described in Section 4.2.3.

Grouping the recorded way-points to skeleton points ofdaheo-lanes roads forming
a loop containing an intersection were created. Furthezntbese lanes where enriched
with virtual lane markings indicating a yellow lane markimgthe middle of the road
forming a double yellow lane marking. The lane marking onrtbeed’s sides are simply
defined as white.

8.2.3 Modeling the Ford Escape Hybrid XGV

In the following, general considerations for the modelifthe AGV Ford Escape Hybrid

XGV are given to provide a reasonable model for the softwakelbpment. Therefore,
both a model of the vehicle’s position and of the sensors togdee the surroundings are
presented.

8.2.3.1 Model of the Vehicle’s Position

As already mentioned in Section 8.2.1, the vehicle’s pasjtorientation, velocities, and
accelerations are provided by a NovAtel GPS receiver coetbinith a NovAtel HG-
1700 IMU. To derive an appropriate model to simulate thisdat matching the reality
by reducing its perfectly computed quality by artificial s@j the vehicle was placed on a
parking spot with a good satellite’s visibility to recorcetposition provided by the IMU
over a long period of nearly one hour while the vehicle wasmnoted at all.
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(a) Absolute position reported by the IMU. (b) Position’s variance.

Figure 8.13: AGV'’s absolute position provided by the IMU ptiene and its variance.
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In Figure 8.13a, the absolute vehicle’s position is plattdkdcan be easily seen that the
absolute position varies between 47.25m and 51.75m in tkedtaction and between
-48.00m and -42.50m in the North direction. Furthermore,gbsition’s variance is be-
tween 0.01m up to 1.65m for an interval of 1s.
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Figure 8.14: Clustered variances for the IMU provided possi

After determining the IMU's variances for the position datas data can be clustered to
determine the frequency of every occurring variance. Thkstered variances are shown
in Figure 8.14. Nearly 24% of the position data varies abddi® during 1s; further 24%
of the data varies up to 0.04m during 1s. Altogether, 70%asteced up to 0.1m and 29%
of the position varies between 0.1m and 0.5m. Only two awtligeater then 1m at 1.03m
and 1.66m were recorded.

Using the data gathered from the IMU, the computed positionthe AGV in the simula-
tion can be modified using the noise described above. Thasldata gets a better relation
to the reality. Further analysis might be carried out to nhaderelations between these
variances but this modeling is out of scope for this example.

8.2.3.2 Model of the Vehicle’s Sensors to Perceive its Systesntontext

Although the algorithm which is described in the following$ection 8.2.4 does not rely
on information from the AGV’s system’s context except for &&ata, the model for its
sensors to perceive its surroundings as shown in Figurei@diitlined. As already men-
tioned, the XGV uses a stereo vision system combined withglesiayer laser scanner
to gather information from its system’s context.

To simulate these sensors, the framewofKesperia provides models in
| i bvehi cl econt ext as described in Section 6.4.5 and in Section 6.4.6. Thus,
besides the position data, sensors’ raw data for the stesemn\system as well as the
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Figure 8.15: Non-reactive visualization of the Ford Esciiybrid — ByWire XGV’s
sensors’ model: In the upper area both raw images from thecstasion system are
shown. Below these images, the chasing camera for the AGViwmikimdicated by the
white vehicle is shown. This camera is continuously follogvihe vehicle’s movements
and thus, from this perspective, the scan line for the silagler laser scanner can be seen
in front the car.

single layer laser scanner can be computed automaticaflyfgport both the interactive
development as well as the unattended system simulatioaroéption algorithms. The
non-reactive visualization of the sensors for perceivivgAGV’s surroundings is shown
in Figure 8.15 using the applicatioroni t or .

8.2.3.3 Performance of the Vehicle’s Models for System Simations

The performance of the selected AGV’s models including th&tmn provider but even
for the providers which perceive the AGV’'s surroundings etegs on various factors.
First, the performance depends on the chosen number ofrsefmgsoa specific sensor
type and the internal sensor model’'s complexity. For exapnthe computation of consec-
utive vehicle’s position data is less complex compared ¢éosimulation of a single layer
laser scanner.

Following, the performance is limited by the complexity bétsystem’s context. Using
the position provider again the system context for computine next vehicle’s position
depends only on the previous vehicle’s state if a planamsaris assumed. When us-
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ing a non-planar surface the computation is getting morenaoice complex apparently.

However, the sensor model for vision-based sensors ingutiie single layer laser scan-
ner algorithm depends from the number and complexity of elgswhich are used in the

OpenGL 3D scene. For example, this complexity depends amuhmber of triangles used

to model a specific object in the scene. All these triangleliding possible textures and

lighting conditions must be rendered for one computatiariecipefore the specific model

of the sensor can be calculated.

Furthermore, the performance also depends on the curremguwiong platform on which
all models are calculated. As mentioned in Section 6.4 .8escomputing-intense algo-
rithms are using not only the CPU but also the GPU to distriltlieecomputation load.
Moreover, the system simulation itself can be decomposeddetributed over several
independent computing nodes as outlined in Section 6.4.2.

All aforementioned considerations must be regarded if ylstesn simulation should be
run interactively during the development. This is due toitttependently running user-
contributed application which is not under the control af #ystem simulation. Contrary
to these interactively running system simulations, theeafeentioned considerations does
not need to be regarded in unattended system simulatioev&tuating an SUD because
not only the system'’s context but also the user-contribapgadications are executed under
the control and supervision of the system simulation asradlin Section 6.3. Thus, the
SUD and its system’s context are independent for the rea &nd work entirely on the
virtual system time. Therefore, the necessary computdiine to perform one single
step Atsim for even computing-intense algorithms may take a long tinméckv means
Atsim > Atea. But also the opposite case when the required models for sgterayand
its system’s context are less complex which is expressedthy < At can be realized
resulting in a system simulation which is running fastenthmareal time.

8.2.4 Velocity and Steering Control Algorithm

In the following, a simple control algorithm implemented &valuation purposes using
the frameworkHesperia is presented which was inspired by [155] but sigmifig mod-
ified to be used for urban environments containing sharpesurJirst, some general
consideration are discussed to outline the main idea behendelocity and steering con-
trol algorithm. Following, variants and their effects offdrent interpolation techniques
applied to a given set of way-points to be followed by the AQ¥ discussed. Finally,
results of the velocity and steering control algorithm aespnted gathered from test runs
in the simulation using thé{esperia framework and from test runs performed by the real
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AGYV itself.

8.2.4.1 General Considerations and Design Criteria

The realized velocity and steering control algorithm igoinsd by human driving. Em-
pirically observed, humans drive by trying to minimize tlageral distance of a virtual
but fixed point in front of the vehicle. This point is on the mdated vehicle’s driving
direction and thus, it is calledraw-bar. This principle is the base for the steering control
algorithm.

The velocity control algorithm bases on the same model Bigisren the inverted effect:

A decreasing distance for the fixed point in front of the vehresults in an increasing ac-
celeration because the vehicle’s orientation is similah®orientation of current route’s

segment and, thus, the vehicle can drive with a higher vigloelowever, when the dis-

tance of this fixed point related to the current route’s sagnsincreasing, the vehicle’s

velocity must be reduced because its orientation is gettinge and more dissimilar to

the segment’s orientation. This controller has the folloyveffects: When the vehicle is
approaching a curve, it reduces its velocity and when itasiley the curve it increases
its velocity again after passing the curve’s apex. In Fidllé, geometrical relations for

both control algorithms are depicted.

As shown in Figure 8.16, the vehicle is simplified to a linemyble model with infinite
tire stiffness [69]. In that figure, the path which the veaishould follow is denoted b¥ .
The vehicle’s rotation in the world is denoted byand the desired steering angle for the
front wheels is namedl The first draw-bar is namédd and second one is nam&d Both
draw-bars has not necessarily the same length. Since isisedethat the AGV should
reduce its velocity before it enters a curve, the latter khba longer than the first draw-
baris as shown in the figure. Both lengths are parameters which cparbenetrized and
are constant for the run-time.

As already mentioned, the idea behind the first drawtpas to determine the distance
between the perpendicular poift on the path and)s. This metric is used by the
controller to compute the necessary steering atigle described in Equation 8.1.

vtan(p) = zg <, tan(d — (A —9)) = %
& 5= (\—1)+ arctan 3;—5). (8.1)
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>
X

Figure 8.16: Geometrical relations for the control algont The control algorithm based
on two independent draw-bars. The first draw-bar calleid used for computing the
distancer, to the planned patl¥, while the latter has a greater distance to the vehicle
and is called, for computing the distance,. The distance: is used to steer the vehicle
depending on the distance, while the distamgcés used to adjust the vehicle’s velocity
by reciprocally proportionally evaluating its value.

The angle) denotes the vehicle’s rotation around the Z-axis axéscribes the vehicle’s
velocity, while A denotes the orientation of the current path’ segment coingithe per-
pendicular point relative to the world. Its differencelescribes the relative delta between
the vehicle’s orientation and the current path’ segmentgdicthe necessary steering an-
gle to steer the vehicle towards the path, the apgban be used computing its tangent
using the current draw-bar’s distance to the path. Its fimgllémentation is shown in
Equation 8.2 wheré describes the controller’s gain.

§ = (A — ) + arctan(k~2), with v > 0. (8.2)
(9
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While the draw-bar poinDg should be minimized by the controller to steer the vehicle
towards the pathP, the distance of the draw-bar point, to its perpendicular point
Py on the path is used to control the vehicle’s velocity. Therefthe resulting velocity
simply reciprocally proportionally depends to its distanthe greater the distance bf,
relative toPy, the lower is the vehicle’s speed. This is evident since areasing distance
describes an increasing curvature of the path. Thus, thieledbwers its velocity while
entering a curve and increases the velocity again whileilgathe curve after passing
its apex. For reducing the vehicle’s velocity right beforeuave, the draw-bar’s length
Iy is greater than the draw-bar’s lengthfor computing the steering angle. The final
implementation is shown in Equation 8.3.

Umax
(Y > v
max HDSPS” max
J— K%
v = Umina ”DT;aP:;” < Umin (83)
Hgn—a;”, otherwise.
Sis

8.2.4.2 Computing and Optimizing a Route

The route is planned using anxAearch in a directed graph providing Euclidean dis-
tances as edges’ weights which guarantees a resulting aptuite regarding the edges’
weights if a route exists. The directed graph is built from skationary surroundings data
structure using daneVi si t or . Thus, this visitor traverses the ASG and examines the
currentScenar i oNode whenever it encounterslaane. Depending on the associated
LaneMbdel , either the start and end point of &nc or Cl ot hoi d are added as ver-
tices to the graph connected by a directed edge containengublidean distance between
both coordinates. Moreover, if the visitor encounteGoanect or , both semantically
connected nodes are either added to the graph or an addligidge is inserted into the
graph.

The graph itself is implemented using tiBoost Graph Librarywrapped and pro-
vided by theHesperia framework. For generating the directed and waiggteph,
only one single methodoi d updat eEdge(const VertexData &1, const
VertexData &2, const EdgeData &e); isprovided. Itsimplementation han-
dles the insert of missing nodes or the update of existingeag already mentioned in
Section 5.3.2.5.

The resulting route consists of a list of vertices descglahbsolute positions in the world.
This route can be further optimized which influences disetlte controller’s behavior
which is discussed in Section 8.2.4.3. The different tydesptimization are related to
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the interpolation of the path segments between two pointh@foute. The effects of
different types of interpolations are shown in Figure 8.17.

16 T T T . L . T
Linear interpolation.——

Interpolation using cubic spline-——

14 Interpolation using Bezier spline-——---- i

12 -

10

Figure 8.17: Effects for linear, cubic splines, and Béziawes: While cubic splines pass
all provided nodes, Bézier curves do not due to its definition.

In that figure, six arbitrary chosen way-points are conreeatgng linear, cubic splines,
and Bézier curves respectively which are described in detgB]. Obviously, linear
interpolation is the simplest possibility to connect tworge pairwisely using a straight
line. Thus, actually no optimization is applied to the route

@) = 120 A £20) = £2(0). (8.4)

The next applicable optimization are cubic splines drawa i&sl line in the figure. Cubic
splines use a third order polynomial pairwisely appliedvwo knots. Cubic splines are
C'- andC?-continuous as shown in Equation 8.4.

Thus, a cubic spline shows continuous behavior in its kriaisthermore, the cubic spline
intersects all given knots by definition as shown in Figur8.Thus, the AGV would
oscillatingly drive on the path optimized using cubic spin
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For avoiding this oscillating behavior, the route is optied using Bézier curves instead.
Bézier curves lay inside the knots’ convex hull and thus do mextessarily continue
through more than the first and the last knot. As shown in [Ei@ut7, the Bézier curve
only intersects the first and the last given way-point.

8.2.4.3 Performance in Simulation

In the following, results of the velocity and steering cahtlgorithm for simulated test
runs running at 20Hz non-real-time are discussed. For pkements, the velocity draw-
bar had a length of 15m while the draw-bar for controlling¢keering angle had a length
of 5m. The position, orientation, velocity, and distancéh® planned route for the steer-
ing draw-bar are plotted. The experiments were carriedardifferent velocities namely
v 1.6%, v~ 237, andv ~ 3.0

The following Figures 8.18, 8.19, and 8.20 show the resoltslifferent given velocities.
All figures named (a) show the planned route with the red lihectvstarted in the north-
ern part of the Richmond Field Station and followed counterklvisely the outer lane
for one round.

The solid blue line shows the driven path using linear ird&gon with the distance to
the planned route plotted in the Z-axis, while the dasheg tma shows the results for
the route optimized using Bézier curves. All figures namedp(b) the distance to the
planned or optimized route for the linear interpolation #melBézier curve respectively.
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(a) Planned route with driven path for~ 1.67".
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Figure 8.18: Performance of the draw-bar controller in tineutation for a velocity of
approximately 1.6m/s.
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Figure 8.19: Performance of the draw-bar controller in tineutation for a velocity of
approximately 2.3m/s.

153



Automating Acceptance Tests on the Example of Autonomoinsciés
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Figure 8.20: Performance of the draw-bar controller in tineutation for a velocity of
approximately 3m/s.
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First of all, the proposed velocity and steering controbaittpm follows the planned route
both for the linear interpolated case and the Bézier curvienigeed route as well. More-
over, it can be easily seen, that the draw-bar steeringaaadtyorithm tends to minimize
the distanceDs Py as expected. However, with increasing velocities, the mari er-
ror provoked by using non-optimized routes increases fron86m to —2.73m. Using
Bézier curves, the maximum error increases frohm92m to —1.01m only and thus is
significantly lower.

In Figure 8.21, the results for the velocity control alglomit are shown. The figure on
the left hand side shows the velocity profile plotted overdheen way. For the linear
interpolated route, the corrections commanded by the wgloontrol algorithm due to
changing distances iy P, are nearly constant in the straight segments of the course.
This is caused by the steering control algorithm which regube error inDg Py towards

a straight line. Only in the curves of the track, the velo@tseduced significantly until the
velocity draw-bar passes the apex; then, the velocity i®ased again, which is shown in
the plot on the right hand side showing the vehicle’s velotative to the planned route
shown as red line.
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Figure 8.21: Performance of the draw-bar velocity congraih the simulation: The ve-
locity of the vehicle is adjusted often due to a continuowsiginging distance, for the
velocity draw-bar.
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Contrary, for the Bézier curve optimized route, the steermgtrol algorithm is continu-
ously correcting the draw-bar’s distanbg Ps due to the curved course. The same applies
for the velocity control algorithm which is continuouslyroecting the velocity depending
on the distancé,, D, of its draw-bar. However, the average velocity for the Béeigwe
optimized route i8s¢zie;,,, = 2.5427, while for the linear interpolated route, the average
velocity is only vinear,,, = 2.3287. The minimum velocities neglecting the initial ones
representing the first acceleration aggyie,,, = 1.684" andvjinear,,,, = 1.7027, respec-
tively; the maximum velocities arésezie;,,,, = 3.614° andviear,,,, = 2.67%. Thus,
with the proposed algorithm and the Bézier optimization, ppreximately 9% higher
average velocity results for the AGV, moreover, the maxinuahocity is also nearly 35%
higher than in the non-optimized variant.

Altogether, the aforementioned plots were derived int@raly using the software frame-
work Hesperia. Thus, the quality of the integrated velocity aedrstg control algorithm
could be evaluated interactively to support its developnaewl for optimization. In the
following, this algorithm was applied to the real vehicle.

8.2.4.4 Performance in Reality

The aforementioned velocity and steering control algarithas evaluated on the AGV
Ford Escape Hybrid XGV with a slightly higher velocity:at= 4.1, with a length ofrm
for the steering draw-bar and a velocity’s draw-bar’s léngft 15m as in the simulation.
Its performance running at 20Hz non-real-time is shown guFe 8.22.
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(a) Performance of the velocity and steering control atgariin reality forv ~
4.172: The red line interconnects the single way-points of thel reetwork and
the black line depicts the optimized route using a BézieweurThe finally
driven blue line is the actual position of the AGV in reality.
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Figure 8.22: Performance of the velocity and steering cbalgorithm in reality.
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In the figure on the left hand side, the red line shows the wagtp of the planned route
connected by straight lines, while the black line shows fhte@zed route using a Bézier
curve. The dashed blue line shows the position of the AG\ffitetative to the planned
and optimized route which follows the initially planned amgtimized route.

As shown in Figure 8.22b, it can be seen that the AGV follovesdptimized route with
a minimum error of—0.001m, an average error df.3m, but with a maximum error of
1.31m to the left hand side and a maximum error-63.27m to the right hand side of
the route optimized using Bézier curves. Despite the maxireumors seem to be that
high, the AGV follows pretty well the initially planned raaiais shown in Figure 8.22b by
the blue curve. Altogether, the algorithm itself could belaga successfully to the real
vehicle using the software framewadtkesperia. It can be further optimized by adjusting
the vehicle’s model which is used in the simulation to get aenecise behavior for the
vehicle in the simulation compared to the reality; howetlegse optimizations are not in
the scope for this thesis whereas the actuattendedsystem simulation and evaluation
are of substantial interest. Therefore, for preservingalgerithm’s quality without test-
ing it over and over again its evaluation shall be automasealr@ady outlined in Section
7.3. This final step is described in the following.

8.2.5 Automating Test Runs

For assuring the algorithm’s quality, the concept of an muatiocc and unattended test drive
shall be applied. Therefore, severaporters are necessary to define which are running
unattendedly, continuously, and automatic during a systenulation for continuously
evaluating the SUD. For the example, the SUD is the aforeloresd steering and velocity
control algorithm and its system’s context is represeniethb simplified bicycle model
as mentioned in Section 6.4.3.

The first reporter isDesti nati onReachedReport. The main goal of the
class is to evaluate whether the vehicle has reached arraailpitdefined destina-
tion point. Therefore, this class uses the visiEirndNodeByPoi nt | DVi si t or

to traverse the ASG describing the stationary surrounditggetrieve the node
containing all data about the given destination identifier.Using this node,
its coordinates are used to compute its distance to the rmturEgoSt at e
provided by Controll edContai ner ConferenceFactory using the
Syst entCont ext Conponent’s Cont ai nerLi stener. If the computed dis-
tance is less than a given and constant threshold specifiezbredtruction of the
Desti nati onReachedReport’s instance, this reporter returns finally true when
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its method bool hasReachedDesti nati onWaypoi nt() const; is called;
otherwise, false will be returned.

The next reporter is used to evaluatsifnpl edr i ver not only chooses but also drives
along the shortest route to given destination point fronvamitart point. Therefore, an
instance of the clagshoosi ngShor t est Rout eReport uses the ASG to retrieve all
Layer s, Roads, Lanes, andLaneMbdel s to construct a graph representing a digital
map. Using this map and the start and destination way-pdimsshortest route is deter-
mined using the A*-algorithm resulting in a list of coordigaa retrieved from the digital
map. Comparable to the previous reporter, an instance afldgs continuously compares
the current valicEgo St at e with the list of coordinates representing the order in which
the route must be driven. Every time the coordinate at thd béthe list is successfully
passed by computing a distance which is less than a givenarstant threshold, it is re-
moved from the list and its successor is used for furtheratans. Finally, this reporter
would return true if all coordinates were passed in the cbmeder with a distance less
than the specified threshold.

Following, the next reporter callelti st anceToRout eReport is used to determine

continuously the distance of the vehicle to the chosen rduterefore, comparable to the
previous reporter, this reporter computes the route betvaegiven start and destination
way-point. Furthermore, it uses two consecutive coorém&tom which the second one
must be in front of the vehicle to compute a straight line. ngsihe current position

provided byEgoSt at e which derives fromPosi t i on describing any point-shaped
object with a position, orientation, velocity, and accatem, its perpendicular to this
straight line is computed. As long as the distance betweeneéhicle’s position and its

perpendicular with respect to the route is less than a gimehcanstant threshold, the
reporter would finally return true indicating that the veaie distance was alright at any
time during the simulation of the system’s context.

As already mentioned in Section 6.3, these reporters ar@lgimegistered at the
Runt i meEnvi r onnment which contains all instances to be scheduled and executed du
ing a simulation run. Since all reporters return a Booleaualt&s their simplest case, the
concept oRunt i meCont r ol andRunt i neEnvi r onnent enabling unattended sim-
ulation runs combined with the concept of the aforementiaeporters can be easily used
with the well-known unit test environments like CxxTest [19@oreover, these unit tests
and the entire software build process were set up for an atezhsoftware build using

a continuous integration systehike CruiseControl [38]. Therefore, every modification
made to the software, and especially to the sourcd ofpl edr i ver, was evaluated to
the test cases specifying virtualized test runs.
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8.2.5.1 Conclusion

According to proposed methodology in Chapter 3, an algorittinith processes continu-
ous input data for a sensor- and actuator-based autonorygsiesrswas specified, devel-
oped, and applied to its real hardware environment. Furtbes, for preserving its quality
for further modifications, extensions, or optimizations #igorithm was embedded into
automated system simulations without any modificationsddiggithe concepts provided
by the frameworki{esperia. Because these system simulations are concesinalyr to
unit tests, they could be automated using recent continmbegration systems. However,
due to the fact that the evaluated algorithm requires coxgahel especially continuous
input data from a complex system’s context which are geadritom the specified DSL
as outlined in Section 4.4.

However, considering instable position information pd®d by the IMU as well as for

velocities which are higher than the evaluateds 4.17, more information from the

surroundings like lane markings or road boundaries likdswhould be used to safely
realize velocities necessary for urban environments. ghpthis is out of scope for this

thesis.

8.3 Further Applications of the Framework Hesperia

In the following, the applicability of the frameworkiesperia as well as some tools re-
alized using the framework are outlined for the developnargystems consisting of
sensors and actuators.

8.3.1 Sensor Data Collection

One of the most commonly used tasks during the developmesystéms using sensors
for perceiving their surroundings is sensor data collectising all mounted sensors. This
task can be supported easily by defining a data structurewdaio be serialized using a
Cont ai ner and which describes the sensor data. Additionally, a commomust be
provided which is continuously reading the sensor’s rava dad filling the data structure.
Depending on the amount and frequency of the sensor’s raay tihet data can be written
directly to disk or broadcasted into a ClientConference tcgloended by ecor der .

For later analysis, this data can be replayed easily usorg t or to inspect the data
visually or for further processing usirg ayer . For the former, a device-independent
data visualization as described in Section 5.4.5 must beiged which can be done
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easily since most sensors either provide points or contat& als raw data; for cameras,
Shar edl mages can be directly used. Using the tools mentioned in Secti@tire data
can be replayed either continuously or stepwisely.

Since synchronous data is inherently important for thik,tah used computers must be
synchronized before recording the data to get correct temgss for the captured data.
Since the frameworl{esperia serves only as communication framework for thik tas
using the internal computer’s clock for time stamping thidame synchronization must
be setup before collecting data. For synchronizing compuising software solutions,
NTP or PTP as already mentioned in Section 8.1.2.2 are alailar example.

8.3.2 Virtual Sensor Data Collection

Comparable to the sensor data collection, the system cmgsat different sensors and

actuators can be virtualized as described in Section 82d&iding the customer’s scenar-
los formally specified using the DSL described in Section}4.4 virtual system context

can be generated wherein the system to be developed canebegdlaced. Using com-

ponents from the system simulation as outlined in Chapter §daerating the required

sensor’'s raw data, the same tools as mentioned before casebdeairecord and replay
the captured data for further inspection or processing.

Depending on the use case, time synchronization can begagedf the virtual sensor
data collection is made interactively or while using selv@rdependent computers, all
computers involved must be synchronized to use the same ssdtem time as already
mentioned in Section 8.1.2.2. Otherwise, if the data cttbeds purely virtually made

using unattended test runs for example, the communicasonedl as the time for the

running system is controlled entirely by bcont ext . Thus, the data collection itself is
independent from the real time.

8.3.3 Application-Dependent Additive Sensor Data Generation

Having previously captured system’s data, this data carabiyeenriched by additional
sensor’s raw data to generate a set of different data cioliexproviding different subsets
of available sensors. Therefore, the previously recorded & replayed usingl ayer
while additional sensor’s raw data is generated using ewgit@al camera or a single
layer laser scanner. The resulting data is recorded agaig uscor der for producing
an enriched data collection. For example, this featurelevaat for evaluating different
sensor’'s mounting positions or sensor variants while ugiegame test drive.
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8.3.4 Evaluation Runs

In the following, the applicability of the frameworkiesperia and the techniques devel-
oped and described before for different use cases of ew@hgdbr the case of automotive
software engineering are shown.

8.3.4.1 Situational Evaluations

The most obvious use case aituational evaluations Using the framework-{esperia,
different situational evaluations for the traffic can belested. The evaluation can be
made on one hand purely virtual in the simulation for the esydt context at different
levels of details providing both low-level sensor’s rawadahd high-level data structures
using an abstract description of the surroundings. Monea@rethe other hand, the eval-
uation can be made risklessly while saving valuable ressuusing virtual sensor’s raw
data while running applications realized with the framewhiesperia on the real sensor-
and actuator-based autonomous system in reality. Thuglearar even system context’s
risky situations can be evaluated repeatedly with idehticaditions.

8.3.4.2 Alternate Sensor Configurations

Comparable to the aforementioned evaluation, identicapeatable situations can be
evaluated for different mounting positions for one or sal/eensors. Furthermore, dif-
ferent types or amounts of sensors can be evaluated to exhlerbest sensor setup for
fulfilling the customer’s requirements for the SUD’s belwavin its intended system’s

context.

8.3.4.3 Sensor- and Actuator-based Autonomous System indh.oop

Completing these evaluation runs regarding different batiidally repeatable system
context situations, planning or control algorithms can\sdeated safely on a real vehicle
at different stages. On one hand, real sensor data can béauskativing decisions to be
realized by the system’s actuators. But instead of usingahkactuators, the system is
modified accordingly by an operator. On the other hand, airsensor’s raw data can be
provided for the algorithms for evaluating the system’sd egauators.
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8.3.5 lllustrating a Sensor- and Actuator-based Autonomous
System’s Performance

Another non unusual task is to illustrate the autonomoutesys performance for doc-
umentation or presentation tasks. This task can be eagiyosted by the framework
Hesperia using the concept of device-independent dataliatian. Since the same con-
cept is also used for realizing the non-reactive data Vigsatbn as described in Section
7.2, itis simply reused byec2vi deo to implement a tool for rendering a sequence of
images from a given autonomous system’s recorded dataeTimages can be rendered
into a video file with a desired quality.
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9 Related Work

In this chapter, related work for this thesis with a focus orrently available frameworks
for developing distributed component-based embeddedvandtis presented. Then, de-
velopment and test environments especially for automatofévare are outlined. For
both aspects, the supplied documentation for a specifitisolwas mainly used.

9.1 Frameworks for Distributed Component-Based
Embedded Automotive Software

In the following section, a brief selection of available gramming frameworks for dis-
tributed component-based embedded software is presériedrtameworks are evaluated
regarding the following aspects:

» Compliance to standardsEach framework should rely on standards for use on
different hardware or different operating systems.

* Provision of usage patterns.Each framework should provide so-called “best-
practice” usage patterns to enforce a similar componeigules source code level.
Furthermore, running applications should be decoupledhtyrloosely coupled to
avoid a priori knowledge about communication dependencies

» Support for non-reactive communication inspectidéach framework should of-
fer possibilities to inspect component communication fedioe monitoring of the
running system or offline playback for previously recordatbdo support the de-
veloper’'s work and to realize system evaluations.

9.1.1 Elektrobit Automotive GmbH: Automotive Data and Time
Triggered Framework

Elektrobit Automotive GmbH provides the Automotive Dataldnme Triggered Frame-
work (ADTF). This framework can be used to create applications congisf software
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components which act as filters which operate on incoming-stamped data streams to
produce output streams. Hereby, every filter defines a sgpefitinput- and output pins.
Every input pin can read data from one specific data typedaaldedi aSanpl e iden-
tified by a definedvedi aType and itsMedi aSubType. For example, let the former
describe a video type, then the subtype denotes whethertdios compressed or uncom-
pressed data. For transmitting data, a filter creates the $ifiecific subclass derived from
| Medi aSanpl e and serializes the data.

For convenience, a Graphical User InterfaG&J() supports the configuration of all de-
sired filter components. Connected input- and output-pims several filter components
represent a directed graph calli@tergraph All filters can be loaded at run-time using
a plug-in concept realized by the ADTF run-time kernel. The-time kernel itself is
responsible for the actual execution and the schedulinggdfen filtergraph. Therefore,
it manages the filter's state machine consisting it , St art for starting the stream
processingst op for stopping the data processing, éftut down. The entire design of
the ADTF is similar to Microsoft Component Object Mod€@M), and its filter chain
concept is inspired by Microsoft DirectShow.

The ADTF itself can be run on x86 hardware and can be used witiragbft Win-
dows, Ubuntu 7.04, and openSUSE 10.3. The framework prevaadeess to different
data sources: CAN, Flexray, Media Oriented Systems Trah$ipl@ST), and Local In-
terconnect NetworkL(N) using hardware provided by third party suppliers, TCP, UDP,
cameras using either Microsoft DirectShow, BlueFox, or @itlanux, and audio streams
[46, 47, 132].

The main communication concept of the ADTF bases on unfdedatata transfer for se-
rialized data structures between components of a filtelgrabus, thd Medi aSanpl e

is the generic type which is used to realize data exchangeeleetcomponents of the fil-
tergraph. Besides, the ADTF provides meta-informationripui data which is read from
the supported hardware like CAN or cameras. However, nodudhta structures which
support for example the description of the system’s cordexdn abstract level which is
necessary for intelligent algorithms to evaluate an SURP&esm’s context are provided.
Obviously, this is not the intended scope of the ADTF becays®vides an application-
independent approach and therefore, a generic data exeapgovided which must be
adapted for a specific use case.

Due to the explicit definition of synchronized streamingmections between several soft-
ware components using the specified input- and output-pim&n-reactive communica-
tion inspection is not possible because the inspecting coent itself is directly part of

the resulting application. Furthermore, the inspectedgaiing components take directly
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notice from the inspecting component. Non-reactive momtpabout the exchanged
data is only provided for gathering statistical informatiabout the throughput of sent
| Medi aSanpl e for example.

9.1.2 AUTOSAR

The AUTOSAR specification is intended to define a standarddétware and system ar-
chitecture for vehicles covering not only technical impétations but also the software
and system development process in general to tackle theasiog number of software-
intense ECUs. AUTOSAR consists of a multi-layer architegtuwrhose lowermost layer

abstracts from the micro-controllers, whereas the secayer labstracts an entire ECU.
On top of the ECU abstraction layer, a services layer provglate management for

the ECU itself. Finally, the Run-time-EnvironmeRTE) integrates all aforementioned
layers and provides rudimentary communication. TherefBtédTOSAR supports syn-

chronous and thus blocking 1:1 client/server communicadi® well as anonymous and
asynchronous 1:n sender-receiver communication.

Furthermore, it realizes a so-called Virtual Functional BUEB) concept abstracting all

communication interconnections between running softvearaponents using the RTE.
The main goal is to allow software and system developmerdudtomotive software com-
ponents regardless to the final implementation [3, 51, 91].

Since the main focus of AUTOSAR is on the software and systemeldpment process
for ECUs in general, it does not provide special support fosse and actuator-based au-
tonomous systems at all or for their development. Thus, ASAR could be used as rudi-
mentary communication and abstraction layer, howevegmapces using AUTOSAR for
systems based on sensors which produce large amounts oatawaré missing.

9.1.3 OpenJAUS

OpenJAUS is an open source implementation of the Joint fecture for Unmanned
Systems JAUS specification initiated by Defense Advanced Research Etojgency
(DARPA [89]. The main goal behind JAUS is to create autonomousesystfor air,
ground, water, and subsurface consisting of componentshwhemselves are provided
by different third party suppliers. Thus, this goal is comgtde to the one of AUTOSAR.

A system designed and realized following the JAUS specifinatonsists of sev-
eral independent subsystems called nodes and controllelNpdeManager. The
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NodeManager is responsible for managing a node, providing informatibow avail-
able services on a specific node and for routing messagee&etfferent subsystems.
Every node can run several different components which e#tbguire data from sensors,
control actuators, or process data. From a specific composeveral instances can be
available at run time. Therefore, every instance must hasgstem-wide unique JAUS
software address consisting of the subsystem identifiendide identifier, the component
identifier, and finally the instance identifier.

The JAUS software addresses are used byNbhe@eManager to route incoming and
outgoingJAUSMessages between running instances. Messages are sent either upon
an instance’s specific request or periodically which isexhl service connection. The
JAUS specification itself does not specify the media to bel imecommunication. Thus,
OpenJAUS currently uses UDP for its communication. Furtiee, the JAUS specifica-
tion defines a set of messages both to query information abourhning system based

on JAUS and to control autonomous systems in general. Inatt necent version, JAUS
provides more than 150 messages ranging from informationtahe current velocity of

an autonomous system to steering commands for controllingrang system.

Besides the OpenJAUS library, the JAUS Toolkit can be usedhasxeension for Na-

tional Instruments LabVIEW [158]. This extension allowssigm and development of
JAUS-compliant applications by easily dragging and drogmiraphical elements wrap-
ping JAUS messages. Thus, the entrance in the developmdAtU&-compliant applica-

tions is simplified.

Despite its proven applicability in the 2007 DARPA Urban Ceage [5] and its standard-
ization by Society of Automotive EngineerSAB), the main problem of JAUS is its main
goal at the same time. Enforcing compatibility with sevendependent third party sup-
pliers means to rely on a formally defined and fixed messageEseé¢nsions to this set
are only possible by defining new messages with new iderstifieplicating the message
to be refined or to define new messages unknown to other JAoRiamt systems per
definition. However, compared to the approach presenteddtiéh 5.4.3 which provides
a DSL to describe and maintain data structures in the saftivameworkHesperia, the
messages used by JAUS must be maintained and extended panual

Furthermore, due to its goal providing a library to be useith Wi and C++, the implemen-
tation provided by OpenJAUS does not use modern objectiatieconcepts but realizes
all messages using only C-style structs repeating identmdé for every message. This
limitation can be avoided using an alternative implemeniabf the JAUS specification
provided by [163]. However, the concept of messages whiehcantrally routed by a
NodeManager per node requires that messages which should be sent tagastaun-
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ning on another node must be sent to the local runhodge Manager first which sends
the message to the remdiedeManager . The remotely runnindNodeManager fi-
nally delivers the message to the required component'angst Thus, additional latency
is caused using this concept.

9.1.4 Orca/Hydro

Orca/Hydro is an open source framework for realizing congodibased software devel-
opment for robotics supporting C++ and Java which providesesalgorithms for de-
veloping experimental robotics platforms. Orca itselfaglon Internet Communications
Engine (CE), a framework for distributed communication for today’sjargorogram-
ming languages [80]. ICE realizes optionally compressiloienmunication using TCP
and UDP and provides Specification Language ISEICE to specify component’s in-
terfaces. Furthermore, Orca uses ICEtseGi d Regi stry to share service names
among independent processeseBox for realizing the component’s state machine, and
| ceSt or mto broadcast published messages between several subscribe

Orca provides a simplified API to its underlying ICE commutima framework. This
wrapper API allows the deployment of a user developed compioaither as a stand-
alone application or as part of the aforementioheéBox. Orca can be used with Linux,
experimentally with Microsoft Windows, and with QNX.

Hydro offers drivers for reading data from a camera usingr@&[25], a Global Po-
sitioning System GPS device or a single layer laser scanner. Furthermore, sdme a
gorithms for deriving disparity maps from stereo vision gea as well as simple path
planning algorithms are provided. Furthermore, a simplerface to the experimental
robotics development suite Player/Stage/Gazebo as Hedan Section 9.2.7 is provided.
Orca/Hydro was experimentally applied to an autonomougieby a team in the 2007
DARPA Urban Challenge [100].

As directly stated by its design goals, Orca itself does novide any architectural usage
patterns besides the ones wrapped from ICE itself. Thusgalth Hydro, a similar
technical approach to the filtergraph from the ADTF is predicdombining components
from both packages. However, ICE causes a similar additiatahcy for routing at run-
time like theNodeManager used by OpenJAUS.
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9.1.5 Evaluation of the Frameworks for Distributed
Component-Based Embedded Automotive Software

In Figure 9.1, a qualitative evaluation of the aforemergiframeworks is provided. In
this table the last three columns reflect one of the criteeationed aboveCompliance
to standardsProvision of usage patterngndSupport for non-reactive communication
inspection Every framework was qualitatively evaluated using thdesbayh, medium
andlow which is denoted by the corresponding amount of black sguare

Framework Compliance  to| Provision of usage| Support for non-
standards patterns reactive communi-
cation inspection
Automotive Data HEE EEE [ ] |

and Time Trig
gered Framework

AUTOSAR (] ]| (| | [
OpenJAUS [ ] | (| | [
Orca/Hydro [ | [ ] | [ |

Figure 9.1: Qualitative evaluation of the frameworks fostdbuted component-based
embedded automotive softwarAutomotive Data and Time Triggered FramewofkJ-
TOSAROpenJAUSandOrca/Hydra

A classification asigh reflects that the considered framework fulfills to a largeepkt
the given requirementnediumdescribes that only some aspects of a given criterion are
fulfilled, while low means that the framework does not fulfill or only limitedlyfiils a
requirement. Further information about every framewogkavided within the respective
section.

9.1.6 Other Robotics and Communication Frameworks

Besides the previously described frameworks which focuseeiirectly on automotive
software engineering or which have been applied to automsmehicles, several other
tool-kits and frameworks addressing different aspectsobotics are available. Some of
them are outlined briefly in the following.

A framework for realizing real-time communication usindfelient communication pat-
terns is Middleware for Robotic and Process Control Applaragi MiRPA). The main
focus of MiRPA is on real-time communication for distributetibedded software. Thus,
it provides synchronous and asynchronous client/servemaanication as well as syn-
chronous publisher/subscriber communication [53].
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Another framework is Carnegie Mellon Robot Navigation TOD(RRARMEN written in

C with Java support. This toolkit is intended to support theedlopment of experimental
robotics platforms running under Linux and consisting ofS;Bonar devices, infrared
devices, and single layer laser scanner devices [34]. lindas to Player/Stage/Gazebo
as described in Section 9.2.7.

Aiming to provide a meta-operating system for any robotizdfprm, Willow Garage
provides Robot Operating SystefR@S [176]. In general, ROS provides communica-
tion facilities, message sets, and data storage for gi&phelistributed processing nodes
comparable to the ADTF for experimental robotics platfarni®r supporting a wide
range of robotics platforms, its strength is the abstradtiom concrete sensors and actu-
ators. This enables the reuse of algorithms for perceiiegdbot’'s surroundings or for
planning and motion control.

In [95], a communication framework is presented which impdats a modified subset
of the JAUS specification. The main focus is on optimizing ¢benmunication within
a node using Inter-Process Communicatit?Q), while the inter-node communication
is realized using TCP. Thus, on one hand the communicatiadeires node could be
improved and monitored using a watchdog supervising runpnocesses. On the other
hand however, this communication framework is neither catibfe to OpenJAUS nor to
the JAUS specification.

Common Object Requesting Broker ArchitectuORBA is a specification for devel-
oping distributed heterogeneous applications. Usingntsrface Definition Language
(IDL) for specifying formally data structures and method sigreg and an Object Re-
guest Broker QRB), general purpose programming languages like C++ or Javasan
the generated interface definitions to call remotely al#labjects. An open source real-
time-capable implementation of CORBA is availableTde ACE ORB133]. Limited to
Microsoft Windows only, Microsoft COM is comparable to CORBA[].

Another approach for communication between distributechmanents is provided by
[101]. This library, realized in C, can be used to generateia transmittable data
structures using UDP multi-cast for C, Java, and Python usidgta definition language.
Although, this library originates from the team MIT’s cabtrtion to the 2007 DARPA
Urban Challenge and thus proved its applicability for auttweosoftware, no ready-to-
use data structures for the context of autonomous groundlestare provided; contrary
to the data definition language provided wittesperia as described in Section 5.4.3, the
data definition language of that library cannot be used terdss inheritable data. Fur-
thermore, this framework transmits data using named chsmw@apped around UDP
multi-cast for one specific data type instead of typed messaghus, the sender and re-
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ceiver must ensure to send only data from one specific typeane named channel to
avoid malfunctions at the receiver.

In [48], some rudimentary data structures for easing intenponent communication are
provided instead of a communication framework. Amongserthdata structures for
describing the time, position, and orientation are prodideurthermore, basic operations
on these data structures like rotations or coordinate ¢eiores are available.

Compared to the data description language as presented tiorS6at.3, some similar
frameworks are available. Google is using their own impletaon called Protocol
Buffers [72]. This toolkit provides a high-level languagedescribe serializable data.
However, to avoid problems caused by evolving data strasfuthe developer must not
change the so-called tag numbers for an attribute or adddurequired fields. The ap-
proach presented in this thesis provides a transparentepome the user to avoid any
misuse. Another similar approach is provided by bdec [13isTool requires a user-
supplied XML specification from which a specific decoder fordny data is generated
automatically. Contrary to the approach outlined here,th@tcannot generate encoders;
moreover, using XML for language specification results iresslcompact description.
Additionally, the data description language as outlinethis thesis is not only applica-
ble and usable with the software framewdresperia. Instead, due to the concept of
modular decorators which traverse the ASG to generateadklsinguage-dependent data
structures, these decorators can simply be extended tbigsdariguage in other contexts.

9.2 Software Development and System Testing

In the following section, a selection of currently avaikablevelopment environments for
automotive software systems is presented. These systenesaluated for the following
aspects:

» Supporting a virtual development proces®r reducing dependencies on real hard-
ware on one hand and to provide identical development emviemts for all devel-
opers on the other hand, the development environment skotuddlize the system
to be developed including all of its necessary componekessiensors and actuators.
Additionally, the context of the system must be availablesfcery developer to test
the system’s reactions on stimuli from the system’s context

» Supporting the integrated development of low-level and-tegkl algorithmsDue
to increasing complexity in embedded systems caused bgrated low-level al-
gorithms for control and high-level algorithms for perdety and assessing the
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system’s context which use complex data structures, thelolement environment
should support the realization of both kinds of algorithms.

* Integration of the development and testing environm8aipporting the aforemen-
tioned integrated development of low-level and high-lesigiorithms in a homo-
geneous manner, the testing and development environmentdshe integrated
allowing both tests of single parts of the system under dgraent and tests of the
entire system without the need for different tools with eliéint interfaces.

9.2.1 Driving Simulator at Deutsches Zentrum fur Luft und
Raumfahrt (DLR)

The Deutsches Zentrum fur Luft und Raumfahrt (DLR) operatesxaod driving simu-
lator allowing to test driver assistance systems and thgpact on the driver. Therefore,
a real car can be mounted inside a cabin which itself gereetheemovements and ac-
celerations depending on the driver’s input. The vehideaisoundings is projected 270°
in front of the car allowing a realistic presentation. Thtiss driving simulator can be
classified as Driver-in-the-Loof{L) simulation.

Contrary to the approach presented in this thesis, the sissteaus is on preparing real
vehicle test drives for driver assistance system in latgest@f the development process.
Therefore, it is rather inapplicable for early stages in steayn development process de-
manding a virtualized interactive and unattended testrenment.

9.2.2 Framework for Simulation of Surrounding Vehicles in Driving
Simulators

In [112], a framework for generating realistic traffic onalroads and highways is pre-
sented. The framework itself consists of a microscopic &tran for all objects around
the own vehicle where a precise simulation is necessaryaaodcalled mesoscopic sim-
ulation for vehicles in a greater distance to the own vehi€leus, a realistic behavior of
vehicles around the own one can be achieved including fatigwnother car, changing
lanes, or overtaking slowly moving vehicles.

The main focus of the framework is on realistic generatiotnadfic flows to be integrated
in existing driving simulators. Compared to the approactcidesd in this thesis, that
framework itself is not applicable for the virtual develogm of sensor-based algorithms
for sensor- and actuator-based autonomous systems.
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9.2.3 The lowa Driving Simulator

A similar system like the hexapod driving simulator at DLRhe lowa Driving Simulator
(IDS). The IDS is a scenario-based driving simulator for grobaded vehicles developed
at the Center for Computer Aided Design at University of lowa, [B48]. Its focus is the
simulation of urban and suburban environments as well dsaNdyg scenarios. Further-
more, for supporting military research, battlefield sintiolais provided. The main focus
of the IDS are different, complex, and potentially dangertraffic situations and their
impact on drivers. Thus, the IDS can be classified as DiL- aihdgimulation as well.

The IDS consists of a three layer architecture. The firstrigyevides visual, auditive,
and haptic feedback for the current traffic situation fordheer using a hydraulic motion
platform. Using this platform, different passenger calzas be mounted. The surround-
ings are visualized using a four channel projection systewering a 190° field of view
in front of the vehicle, and a 60° field of view in the rear of thehicle. Realistic sounds
as well as haptic feedback in the steering wheel and thermyakistem are generated to
suggest a realistic appearance to the driver.

The second layer computes realistic driving behavior oftlie vehicle using non-linear
differential equations for a composite rigid body model.usha realistic motion of the
own car can be achieved. The third layer updates the enveohivased on the own
vehicle’s motions. Besides stationary elements like roaclsiding curbs and traffic signs,
the user can specify up to 40 dynamic objects like other Vehiar bicyclists which follow
the specified traffic rules autonomously.

Technically, IDS uses several independent databasesdprgva specific subset of the
entire simulation, which are connected using a real-tingabe communication. All
databases reflect the layer they provide data for: One dsgatmentains only visual objects
for representation, another database provides preciganation about the road network.
The last database provides information about the scertaeib. i

To define behaviors for dynamic elements, IDS uses Hiereatidoncurrent State Ma-
chines HCSM) for providing modular behavioral elements to be combirmd¢alizing

a complex behavior like passing an object. HCSMs enablelphexiecution of indepen-

dent processes like observing distances and steering thee/éor a passing maneuver.
Furthermore, for creating realistic situations, sevendual elements like directors, bea-
cons, and triggers, which can be associated to surrouricétegeents to invoke special

behaviors or to control other objects like a traffic light available [36].

Contrary to the approach outlined in this thesis, the maindaxf IDS is to support the
research of the driver itself by ensuring repeatable traffimtions. Therefore, a sophisti-
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cated visualization environment combined with actuateadizing a haptic perception for
the test persons was developed. For supporting the develtpoh autonomous ground
vehicles, the IDS is rather inapplicable due to missingrfatees for providing traffic-
dependent sensor raw data. Furthermore, a combinationawitmattended continuous
integration build system seems to be inappropriate. M@gdtie use as a dedicated in-
teractive simulation tool which supports the developedsydwork is impossible on the
other hand.

9.2.4 IPG Automotive GmbH: CarMaker

The software suitédPG CarMakerfrom IPG Automotive GmbH is a simulation environ-
ment based on MATLAB/Simulink for supporting the developinehcontrol systems
for automotive applications ranging from control loopsngssimple vehicle models up
to the limit ranges of driving dynamics. Due to the possipito use real automotive
components integrated in the simulation during developrbesides the aforementioned
software controllers, this suite can be classified as Hild- &iv-system [86].

The simulation suite IPG CarMaker consists of two componeramely “Virtual Vehi-
cle Environment” and the simulation control applicatiomnefformer component consists
of the parts IPGCar describing the virtual car, IPGRoad desqyia three-dimensional
model of the road, IPGDriver which realizes different dripeofiles, and IPGTraffic for
simulating surroundings’ dynamic elements. The latter ponent can be used to setup
and control the simulation process itself by setting patamsefor all models. Further-
more, the execution of simulation runs can be automated gparted as video files for
further analysis.

Comparable to the IDS, IPGCar uses a three-dimensional,inear] composite rigid

body system to compute the data for driving dynamics of aclelsllowing the mapping

of a real vehicle into the simulation. IPGDriver can be usethbdel the driver itself pro-
ducing input values for control algorithms. Hereby, diffet situation-dependent driving
profiles realizing defensive or aggressive driving can ladized.

The component IPGTraffic provides different elements faigieng traffic situations in-
cluding stationary elements like traffic signs or parkeddelels, or dynamic elements like
cars or pedestrians. Using a graphical tool, these elencant®e composed for a sce-
nario setting desired parameters like velocities, timing®vent-based maneuvers. Com-
parable to the aforementioned trigger concept for IDS, IR@BIt realizes event-based
maneuvers for dynamic elements to ensure reproducibility.

IPG CarMaker seems to support the development of embeddecbkalgorithms and
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also driver assistance systems well by providing a tighpting to MATLAB/Simulink,
however, contrary to the approach presented in this thésscombined development
of high-level algorithms for deriving driving decisionsing complex and event-based
data structures, and low-level algorithms implementirajdee detection on sensor’s raw
data is less possible. Furthermore, for generating sensaw’ data, every surroundings’
element must be modeled in MATLAB/Simulink or proprietana#able in the IPG Car-
Maker environment. Furthermore, properties like reflegtior its bounding shape for
any detectable object in the scene must specified expliclyus, freely positionable
stationary or dynamic elements created by popular 3D mieglétiols to setup complex
situations seems to be less supported only [85].

9.2.5 Microsoft Corporation: Robotics Developer Studio

The Robotics Developer Studiprovided by Microsoft is a development environment
to support the development of experimental robotics ptatéo The product features a
Visual Programming Languag&PL), Visual Simulation EnvironmentSE based on
NVidia PhysX to provide realistic motion, and realizes te¥@loped components in the
sense of software services. Furthermore, a scenario ésljioovided to ease the creation
of robotics environments [87].

Despite the contribution to the 2007 DARPA Urban Challengenftbe Princeton Uni-
versity which was realized using the Microsoft Robotics Deper Studio, their simula-
tion component was self-implemented without using the V&H.[ Thus, the Microsoft
Robotics Developer Studio seems to be inapplicable for afiting the development
process for developing automotive software systems fos@erand actuator-based au-
tonomous systems in general and it seems to be rather dpiplica selected areas.

9.2.6 PELOPS

The software suite “Programm zur Entwicklung langsdynahmes, mikroskopischer
Prozesse in systemrelevanter Umgebung”, program for dpewel longitudinally dy-
namic, microscopic processes in system-relevant envieomnrPELOPS provided by
Forschungsgesellschaft Kraftfahrwesen mbH Aachen is alatran environment for traf-
fic flows comparable to the framework mentioned in Sectior29.Beyond, the program
can be directly fed by actuating variables computed by cbaiigorithms developed in
MATLAB/Simulink or using real hardware components. Thusg system can be classi-
fied as SiL- and HiL-simulation [35].
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The vehicle’s surroundings consist of different roads nhediasing mathematical models,
traffic signs, and other vehicles. Furthermore, radar+igve data can be generated using
the current vehicle’s surroundings. In contrast to the aggin presented in this thesis,
three-dimensional models for surroundings’ stationarglymamic elements cannot be
used. Furthermore, generating sensor’s raw data for lzss¥d range detectors is not
possible.

9.2.7 Player/Stage/Gazebo

The Player/Stage/Gazeboroject is an open source project aiming to support the devel
opment of various different robotics platforms comparablthe Microsoft Robotics De-
veloper studio. The component player is the network interf robot devices, while
Stage is a two-dimensional simulation component supppdopulations of several inde-
pendent robots. Gazebo extends the two-dimensional siimilprovided by stage into
the third dimension for outdoor applications. The main giahis project is to simplify
the development of control algorithms for robots perceimeir surroundings using dif-
ferent kinds of sensors. Currently, the component stageigesvunformation about the
surroundings simulating sonar sensors and laser-basgd datectors [67].

This framework is rather suitable because its focus is oemx@ntal robotics platforms
offering actuators which are very different from those pded by a vehicle because many
experimental robots can turn around their z-axis while notimg at all. Contrary to the
approach presented in this thesis, modeling of the vebisl&'roundings is unsupported.

9.2.8 TESIS Gesellschaft fur Technische Simulation und Software:
DYNAware

Comparable to the aforementioned suite provided by IPG, $p8bvides the simulation
suite calledDYNAware[152]. Their component®YNA4andveDYNAare meant to sup-
port both the HiL- and SiL-development processes for eméédmntrol algorithms and
to provide a driving dynamics simulation. Like Player/Sté&gazebo, veDYNA uses so-
phisticated models realized in MATLAB/Simulink to computentinuously the model’s
state. The vehicle model itself is realized using a compaogiid body model.

For providing environmental data, either a standard sttagie road or a double-lane road
can be used. The lane itself can consist of a maximum of 1,@90ents. Furthermore,
16 dynamic and 64 stationary elements can be added to a suiffation. To detect sur-
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roundings’ elements, up to eight sensors can be defineddingvdistances and relative
velocities to stationary and dynamic elements.

To evaluate simulation results, DYNAanimation can be useénder a video file. For us-
ing realistic models in the animation, objects modeled whthVirtual Reality Modeling
LanguageYRML) can be used. However, these models are applied in the postgsing
stage for visualization purposes only and are not used inrtHee simulation.

Contrary to the approach presented here, DYNAware providgsradimentary support
for modeling the vehicle’s surroundings especially duelitméed number of stationary
and dynamic elements. Furthermore, only a limited sensalefqoviding distances and
relative velocities can be applied without generating gaitvided by a camera sensor.
Thus, this suite is rather inapplicable for the developn@ntombined low-level and
high-level algorithms in sensor- and actuator-based aumous systems.

9.2.9 IAV GmbH: Test Environment for Synthetic Environment Data

A test environment for generating synthetic environmedidd is provided by IAV GmbH
[135]. This system aims at generating synthetic data forkamg of active sensors like
radar- or laser-based range detectors by specifying thewsutings and the sensor’s field
of view in a two-dimensional manner. Furthermore, the sespecific noise can be
provided to lower the sensor’s raw data’s quality.

In contrast to the approach described here, only open-kesipiins can be provided like
traditional measuring test drives using the real vehictduiding all mounted sensors
avoiding potentially dangerous traffic situations usinig tippproach. However, on-line
data generation in closed-loop test runs necessary fonavad) an algorithm’s behavior
depending on its interactions with the surroundings is issgue.

9.2.10 TNO PreScan

The software TNO PRE-crash SCenario ANalyzereScan provided by TNO Auto-
motive is meant to support the development of sensor-baseer dissistance systems.
Therefore, this suite is also based on MATLAB/Simulink and b& integrated in HiL
environments.

Using a graphical scenario editor, stationary elements fldads, trees, and buildings,
and dynamic elements like cars, trucks, or pedestriandiéovehicle’s surroundings can
be freely positioned in a scene. Additionally, behavions ba associated with dynamic
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objects to define routes to be driven. Moreover, sensorsigingyinformation about
the perceived surroundings in either sensor’'s raw dataadarrbased range detectors
or cameras, distances for laser-based range detectogsthsipre-defined positions and
orientations of the scene’s elements, or in abstracted-leighl data can be associated
with the own vehicle.

Besides the virtual environment supporting the developroépte-collision systems, a
mobile robotics platform was developed to realize Vehldb-dware-in-the-LoopJeHiL)
simulations for evaluating simulation’s results in thelitga Therefore, the real vehicle
is fixed in a test stand in which the vehicle can safely acatdeand brake. Thus, the
vehicle defines the logical origin for the simulation. Inrit@f the vehicle, several mobile
robotics platforms simulating surroundings’ vehiclesramed regarding to the measured
vehicle’s motions to evaluate the simulation’s results mftgorithms as well as to test
real sensor hardware [68].

The main focus of PreScan and VeHiL is to support the devedoprof pre-collision
systems. Due to the integration in the MATLAB/Simulink emviment as well as the
missing support of generating sensor’s raw data for laaseth range sensors including
not explicitly modeled elements of the surroundings, thigess only limitedly applicable
for the development of sensor- and actuator-based autamsystems.

9.2.11 VIRES Simulationstechnologie GmbH: Virtual Test Drive

The softwareVirtual Test Drive provided by VIRES Simulationstechnologie GmbH
[166] aims to support SiL-, HiL-, ViL-, and DiL-simulationsy providing application-
dependent input data from a test drive within a virtual scdend hese scenarios base on
OpenDRIVE [44] for the description of road networks and esninents [168]. The sys-
tem can be combined with a mock-up cockpit from a vehicle tegrate a human driver.
Furthermore, the system provides a script language whiowslrepeatable situations
within a given scenario.

The software was successfully applied for pre-adjustinglgorithm for lane detection
[169]. Therefore, a scenario was defined for producing wiglata consisting of a se-
guence of frames which were used as input data for the lareetdey algorithm. Fur-
thermore, the model for the surroundings provided by theifipd scenario was used
to get the perfect data from the current situation which waeed for the off-line post-
processing stage. Afterwards, an evaluation for the deddeatures from the lane detect-
ing algorithm was carried out off-line which used the stgpedfect data for comparison.
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As shown by the aforementioned setup, Virtual Test Driveppliaable for the devel-

opment of combined low-level and high-level algorithms engral. Sensor models for
generating input data for sensors-based algorithms baskeoideal model of the sur-
roundings as specified in a scenario; their input data isrgéee by the specified a range
and viewing angle.

The approach presented in this thesis also includes anthlgoior generating synthetic
raw data for a laser scanner based on an arbitrary complex8ies Furthermore, an
on-line evaluation of an SUD is possible to support the aattn of acceptance tests.

9.2.12 Evaluation of Approaches for Software Development and
System Testing

In Figure 9.2, a qualitative comparison of the approacheastimeed before is shown. In
this table the last three columns reflect one of the aforeioeed requirementsSupport-
ing a virtual development procesSupporting the integrated development of low-level
and high-level algorithmsandIntegration of the development and testing environment
Every approach was qualitatively evaluated using the dugle medium andlow which

is denoted by the corresponding amount of black squares.

A classification asigh describes that the regarded approach fulfills to a largenexte

criterion; mediunreflects that only a portion of a considered requirementlfgléd, and

low describes that the approach does not fulfill or only limigedlfills a criteria. Further
information about the approaches is available within tispeetive section.
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Approach Supporting a vir- | Supporting the in- | Integration of the
tual development| tegrated develop- development and
process ment of low-level | testing  environ-

and high-level al-| ment
gorithms

Driving Simulator| H (] | [ |

at DLR

Framework for] B | |

Simulation of

Surrounding  Ve;

hicles in Driving

Simulators

IDS [ ] | (| | [

CarMaker L] ] (] | [ ] |

Robotics  Devel; HE ] ] [

oper Studio

PELOPS [ ] ] (| | (| |

DYNAware [ ] | [ [

Test Environment HE | [ |

for Synthetic Envi+

ronment Data

PreScan L] | ] ] |

Virtual Test Drive | HEE ] ] [ ] |

Figure 9.2: Qualitative evaluation of the approaches fléinsre development and system
testing:Driving simulator at DLR Framework for Simulation of Surrounding Vehicles in
Driving Simulators IDS, CarMaker, Robotics Developer Studi®ELOPS DYNAware
Test Environment for Synthetic Environment D&eeScan andVirtual Test Drive The
approachPlayer/Stage/Gazebis not regarded due to its specific application scope as
mentioned in Section 9.2.7.
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10 Conclusion And Future Work

For evaluating the quality of systems which rely on sensatsactuators to process in-
coming data for interacting with their context, an apprafgitooling and methods are
necessary. However, due to the dependency on the actuaksesestup already at early
stages during the development of the system, which can enfgdiuced by interfaces or
architectural design decisions in a limited manner, an@gogr for the software engineer-
ing is required which supports not only the software develept but which also assists
activities for evaluating the quality.

In this thesis, a methodology for the software engineersnauitiined which supports the
creation, evaluation, and automation of acceptance testthé entire data processing
chain of sensor- and actuator-based autonomous systemesmdiimodology relies on a
formal specification of the system’s context which is dedifcem the customer’s require-
ments. For carrying out an evaluation of the system’s behawiits intended context, the
customer’s acceptance criteria are used to derive vari@igas which are continuously
applied during the run-time of the system for evaluatiorppses. To enable an automa-
tion of the these evaluations, a virtualization of the sysénd its context is necessary to
break the dependency on a real hardware environment fontive data processing chain.
The overall methodology and its application for the V-madelescribed in Chapter 3.

As mentioned before, the methodology relies on a formal ansistent specification

of the system’s context. Therefore, on the example of autmus ground vehicles the
surroundings are analyzed to identify stationary and dyoaements and their relations
and behavior. To rely on a consistent representation, nregtieal relations are identified
which are used to derive a DSL for the stationary and dynammoeandings. Using this

language, consistent and repeatable situations for the &lobe specified in so-called
scenarios. The mathematical relations and the domain sieady the surroundings of
autonomous ground vehicles which are used to derive the D&hé specification of the

system’s context are outlined in Chapter 4.

To use these scenarios as artifacts in the software develugonocess as well as to pro-
vide the appropriate tooling which supports the aforenosedl methodology, a software
framework was designed and implemented with the main fonustributed and commu-
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nicating real-time applications. The software framewasreésigned in an object-oriented
manner to be highly portable and is realized using pure ANSE it was successfully
tested on Microsoft Windows XP, Windows Vista, Windows 7,udtu 8.10, openSUSE
11.2, Debian 5.0, NetBSD 5.0.1, and FreeBSD 7.2 and may be ugkechearly any
POSIX-compatible operating system. Moreover, the framkWdesperia contains sev-
eral tools to support the developer’s regular tasks duimgdevelopment of a sensor-
and actuator-based system. For example, a non-reactigecdpturing tool, a comple-
mentary playback component, a non-reactive visualizagionronment, and an applica-
tion for tracking the life-cycle of all running applicatisrwhich also deploys consistent,
application-dependent, and centrally maintained condiiom data. The main design de-
cisions and concepts of the framewdtlesperia are outlined in Chapter 5.

As outlined in the methodology, the formally specified sgstecontext combined with
the evaluation metrics which are derived from the custosreezteptance criteria are used
to realize evaluation runs for the SUD. Therefore, a deteistic scheduling environment
was designed to evaluate a sensor- and actuator-basedauttos system by decoupling
the currently running system from the real system'’s timetenwer, the scheduling envi-
ronment also supervises and controls the entire commumncaddditionally, for decou-
pling the software engineering’s dependency on the realvane environment, different
algorithms were designed to provide the necessary inpat alagll layers of the data
processing chain during the system simulations. The sdingdenvironment for system
simulations as well as algorithms for virtualizing hardesgaensors like monocular color
cameras, stereo vision systems, or single layer laser scaare described in Chapter 6.

For interactively and non-reactively supervising a setunining applications, a monitor-
ing environment was designed as part of the framewWaesperia. This application can
be used to visualize, inspect, suspend, and replay evemwssety the entire communi-

cation. The application can be easily extended by plug+mskases on the concept of a
so-called device-independent visualization for 2D- andr8presentations which allows
the visualization of user-contributed data structureseit modifying the monitoring en-

vironment at all. For evaluating the SUD as outlined in treefentioned methodology,
system simulations which can be unattendedly executed\aidated by continuous in-

tegration systems can be realized with the framewkdsperia. Therefore, a concept
similar to unit testing was developed; but contrary to uegt$ which are mainly used

for testing discrete algorithms, the formally specifiedegss context combined with the

aforementioned system simulations is used to provide coatis input data to evaluate
continuously the running SUD. Both concepts, the interaathonitoring as well as the

unattended evaluations are described in Chapter 7.
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The concepts developed in this thesis were finally applieant@utonomous vehicle at
University of California, Berkeley. The goal was to develop thquired software system
to navigate the vehicle safely on a given digital map purettually before deploying
the resulting artifacts on the vehicle itself. Therefordjgital map based on consecutive,
highly precise GPS-points was created reflecting a simpleseoon the test site Rich-
mond Field Station. Using an enhanced draw-bar controlrglgo both for steering and
for accelerating and decelerating the vehicle, the softegstem was developed interac-
tively first. Therefore, the customer’s requirements fas gigorithm led to the modeling
of the system’s context of the SUD which included the statigrcontext of the Rich-
mond Field Station. This context was used to calculate theired position data from a
virtualized IMU system for which a model was derived from tkal IMU system.

Following, the software environment was deployed on theckeho perform real vehicle
tests and to validate the results from the interactive satars. Afterwards, these previ-
ously carried out interactive system evaluations were @mgnted using the unattended
system tests as mentioned before to create an executablécgimn of a vehicle test us-
ing the system’s context and the required accuracy. Theseraytests were automated to
be executed and validated automatically whenever any @satogthe source code were
made. Thus, any errors which might negatively influence tivare’s quality can be
identified easily by evaluating the automatically genetaggports for any unattended test
runs to locate the modifications which yield to the unexpeédiehavior of the system.
These reports also include the entire communication wisietutomatically captured dur-
ing the unattended system evaluations. The case studysergesl in Chapter 8.

Thus, not only unit tests for partly ensuring a software’algy can be used for sensor-
and actuator-based CPS. Instead, entire sub-systems emsystay be tested virtually
to validate the system’s quality on the topmost level of themdel to cover the com-
plete data processing chain for getting a report about tegesys quality right before
delivery or if the source code was finally optimized for exé&npMoreover, even in-
terferences with other user-contributed applicationsothiced by modifications to one
application can be identified easily with unattended systenulations; on the example
of autonomous ground vehicle, an optimization to a contlgbdthm which yields in

a more sharp steering in curves might influence negativelgssiple lane detection al-
gorithm. This interference could be identified automalycdlappropriate tests for unat-
tended system simulations were defined. However, the melbggoutlined in this thesis
is intended to complete and not to substitute real systetslbesause the reported quality
of a system depends directly on the a priori met assumptibostaensors, the system’s
surroundings, and the like.
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To continue the outlined work in this thesis, the separasedja of the two grammars—the
MontiCore for Java and the Spirit for C++—could be integratedérive one from the
other to remove the redundancy; another possibility woaddoprovide a C++ variant
of MontiCore to support the DSL-driven development for endeztisystems in a native
manner. Furthermore, due to the template-based realizatibeader files of the Spirit
grammar, the compile-time takes a long time. Here, a filetdancapsulation of the
required Spirit input data would reduce this required cdatjoin time.

Moreover, as already indicated for the system simulationge and latency models for
the data transmission to artificially reorder, delay, orpdamy sent data can be added
to the system simulation. Thus, bandwidth limitations dejdeg on the communication
or system load can be simulated for a running system sinonlatut artificial noise or
quality reducing algorithms cannot only be applied at thwsdr level. Noise models for
all sensors which are provided by the framewsfksperia may be derived and specified
to reduce the quality of the simulated sensors’ raw dataxamgple.

Additionally, the run-time control for the system simutaticould be extended to allow
variable time steps together with the current fixed time stgggementation. Furthermore,
a graphical user interface could be integrated into the taong environment to interac-
tively supervise and interrupt a currently running unateshsystem simulation. More-
over, the current implementation of the system simulationld be extended to support
distributed simulations which are running on several irg@l@nt computing nodes; thus,
even simulations which contain complex elements or whiehexecuted very often by
a continuous integration system due to frequent modifinatto the software repository
could be realized to scale better with an increasing demaodaitended system simula-
tions. Therefore, the virtualized system clock must beithsted to all remotely running
system simulations and all communication must also be dagtall these instances.

For supporting the developers’ work, an analysis of sevestlruns of the SUD for the
same situation could be realized which combines severafded data files. Therefore,
an appropriate visualization using a transparent ovedalrtique for example which vi-
sualizes all test runs at once would assist the developanspect the SUD’s algorithm’s
improvements over time. This technique could also be usefstalize differences be-
tween two versions from the software’s version history.

Furthermore, the DSL outlined in this thesis for describiing stationary surroundings
of an autonomous ground vehicle could be fused with the iagisanguage provided
by OpenDRIVE. Alternatively, an Extensible Style-sheet giaage KSL) transformation
could be applied to instances of OpenDRIVE to transform thenus$ing the data within
Hesperia.
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Besides these technical aspects, both the methodology anfdathework could be in-
tegrated with AUTOSAR to provide an integrated environmienttesting any modeled
functionality purely virtually before deploying it onto EGU Therefore, any function
which is provided as a software component for AUTOSAR résglas an artifact of an
existing tool chain can be wrapped to be used Wisperia. Therefore, the function is
embedded into a wrapping instance@ifnf er enceC i ent Modul e which provides
the required input- and output-interfaces to the systewrgext. Thus, the function can
also be evaluated with the unattended system simulatioosthsed in the methodology.

To complete the formal and consistent specification of thB'S9Qurroundings, a DSL for

describing the required test cases for different layerea@Mmodel or parts of the system
might be created. Moreover, this test case-DSL could be tesddrive appropriate test
cases automatically for interactive or unattended sysésts.t

Another aspect is the automatic training of a priori unknanjput data for intelligent
algorithms for example. Instead of defining lots of real thstes to collect the required
input data, a set of virtual test situations may be defineld ity slight differences in the
initial parameters to provide the required input data. Tvosild significantly reduce the
necessary time for gathering this training data comparedanual setup or even more
compared to real test drives.
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A Grammar for Defining the System’s
Context

A.1 MontiCore Grammar for the Stationary
Surroundings

granmmar Scenari o {

ident Al phaNum"("A ..’Z |'a ..’z )(CA..’Z|'a .. 2| _~

S I I (A I O B © L I

i dent Numnber O+ T-)?2 (LY. 9)(C0 L T9)x) | 0 )~
(.0 .9 ) )2

i dent FQ D O LT9)C0 L9y (1.7 9) &
(0.9 |TO)) (Y L7 9) (0L 79 ) %) 07) <
(1.9 (0L 9 ) )T )

ScenarioFile =
Scenari oHeader // File header.
G ound // Gound | ayer.
Layer+ ";"; // Data |layers containing roads and other —
stuff.

10

Scenar i oHeader =
"Scenari 0" Scenari oNane: Al phaNum // Scenari o’ s nane.
"Version" Version: Al phaNum // Version of the scenario —

gr ammar .
" Dat e" Dat e: Al phaNum // Creation date of the file.
15 "Ori gi nCoor di nat eSyst et

Coor di nat eSyst em Coor di nat eSystem // String type of -
relative coordi nate system

Coor di nat eSystem =
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WES84Coor di nat eSyst em
20 "Rot ati on" Rotation: Nunber; // The scenario’s rotation —
around the coordinate’s origin in RAD (3amis 0).

WES84Coor di nat eSyst em =
Type: "WGS84" [/ WES84 type.
"Origin" Oigin:Vertex2; // Logical (0, 0) is at (OiginX-
, OiginY) in the chosen coordi nates.

25

G ound =
"G ound" G oundName: Al phaNum // Begin of the ground | ayer —

Aeri al | mage: Aeri al I mage?// Aerial inmage for the ground.
Hei ght | mage: Hei ght 1 mage? // 1 mage for the height data.
30 Surroundi ng? ";"; // Surroundings |ike houses or trees.

Aeri al |l mage =
"Aerial l mage" | mage:lnage;// Data for the aerial imge.

s Hei ghtl mage =
"Hei ght Il mage" |nage: |l mage// Data for the hei ght imge.
"G oundHei ght" G oundHei ght: Nunber // Wi ch color is used—
for ground level (0 m?

"M nHei ght " M nHei ght : Nunmber // Wi ch height level in -
mis neant by color 0?
" MaxHei ght " MaxHei ght : Nunber; // \Wich height |evel in-

mis neant by col or 2557

40

| mge =

"I mage" | mageFile: Al phaNum // File nane of the image.
"OriginX'" OiginX Nunmber // Oigin of Xin imge —
coordi nates (relative to upper/left corner).
"OriginY" OiginY:Nunber // Oigin of Y in inage —
coordinates (relative to upper/left corner).

a5 " MPPX" Met er Per Pi xel X: Nunber // lnmage’s resolution per—
min X direction.
" MPPY" Met er Per Pi xel Y: Nunber // lnmage’s resolution per—
min Y direction.
" Rot Z" Rot ati on: Nunber; // Counterclockw se rotati on —

around Z-axis in RAD (3amis 0).
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Surroundi ng =
"Surroundi ng" // Begin of surroundings.
Shapes: Shape+; // List of shapes.

Shape =
"ShapeNane" ShapeNane: Al phaNum // Nane of the shape.
(Polygon | Cylinder | Compl exModel); // Type of the shape-—

Pol ygon =
ShapeType: " Pol ygon" // Either polygon (i.e. rectangular -
boxes, conpl ex polygons)...
"Hei ght" Hei ght: Nunber // Height of the polygon > 0.
"Color" Color:Vertex3 // RGB col or.
Vertex2 // A minimmof two vertices is necessary.
Vert ex2+;

Cylinder =
ShapeType: "Cylinder" // ...or cylinders..
Vertex2 // Center of the cylinder.
"Radi us" Radi us: Nunmber // Radius of the cylinder > 0.
"Hei ght" Hei ght: Nunmber // Height of the cylinder > 0.
"Color" Color:Vertex3; // RGB color.

Conpl exModel =
ShapeType: " Conpl exModel " // ...or conplex nodel to be -
| oaded fromfile.
"Mbdel Fil e" Model Fil e: Al phaNum // File name of the nodel
"Position" Position:Vertex3 // Position of the conplex —
nodel (center of nmass).
"Rotation" Rotation:Vertex3 // Counterclockw se rotation-—
of the conplex nodel in RAD (3amis 0).
"Boundi ngBox" // The boundi ng box defines a rectangular —
outline around the conpl ex nodel.
Vertex2 // First: upper/left.
Vertex2 // Second: upper/right.
Vertex2 // Third: lower/right.
Vertex2; // Fourth: lower/left.
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Vertex2 =
"Vertex2"
"X" X:Nunber // X coordinate.
85 "Y" Y:Number; // Y coordinate.
Vertex3 =
"Vertex3"
"X" X:Nunber // X coordinate.
9 "Y" Y:Nunber // Y coordinate.

"Z" Z:Number; // Z coordi nate.

| DVertex2 =
"I D" ID:Number // Integer nunmber greater than O.
95 Vertex2; // Odinary vertex2.
Layer =

"Layer" Layer Nane: Al phaNum // Begin of |ayer "Layer Nanme—
". Layers contain roads and are stacked to allow bridges.
"Layer| D' Layer| D: Nunber // Integer identifier of this —

| ayer greater than O.

100 "Hei ght" Height: Nunber // Height of this |ayer.
Roads: Road+ // Roads.
Zones: Zonex ":": [/ Zones.
Road =
105 "Road" // Begin of a road.

"Roadl D' Roadl D: Nunber // Integer identifier of this road—
greater than 0.
(" RoadNane" RoadNane: Al phaNum) ? // Nanme of the road.

Lanes: Lane+ ";"; // Each road contains at |east one | ane.

o Lane =
"Lane"
"Lanel D' Lanel D:. Nunber // Integer identifier of this —
| ane greater than O.
LaneModel : LaneModel ":;":// Which | ane nbpdel to be used.

s LaneMbdel =
LaneAttri bute: LaneAttri bute // Lane’s width as well as —
| ane mar ki ngs.

1

[

224



Automating Acceptance Tests on the Example of Autonomoinsciées

Connect ors: Connector* // Connectors descri be how | anes —
are interconnected.

TrafficControl s: TrafficControl+ // Traffic lights, —
traffic signs...

(Poi nt Model | FunctionModel); // Either point- or —
functi onnodel .

TrafficControl =
(TrafficLight | TrafficSign) // Either traffic light or —
traffic sign.
"Nanme" Nanme: Al phaNum // Nanme of the traffic control.
| DVertex2 // ldentifier and position inside the |ayer.
Shape; // Shape of the traffic control.

Traf ficLight =
TrafficControl Type: "TrafficLight"; // Either traffic —
light...

TrafficSign =
TrafficControl Type: "TrafficSign" // ...or traffic sign.
"Val ue" Val ue: Traf fi cSi gnType;

TrafficSi gnType =
Si gnType: "st opl i ne";

LaneAttribute =
("LaneWdth" LaneWdth: Nunber)? // Lane’s wi dth.
(" Left LaneMar ki ng"
Lef t LaneMar ki ng: BoundaryStyle)? // Lane's |left boundary —
styl e.
(" Ri ght LaneMar ki ng"
Ri ght LaneMar ki ng: BoundaryStyle)?; // Lane’s right —
boundary style.

BoundaryStyl e =
Styl e: "doubl e_yellow' | // Lane marKki ngs.
Style:"solid yell ow' |
Style:"solid white" |
Styl e: "broken_white" |
Styl e: "crosswal k";
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150
Connector =
Source: PointID "->" Target:PointID; // Directed —
connecti on between two | ane | Ds.

PointI D =
155 PointID:FQ D; // Layer-ID . Road-ID . Lane-ID . {Point| -
Function}-1D.

Poi nt Model =
"Poi nt Model " // The poi nt nodel consists of nmany
| DVertex2+ ";" // points that are identifiable.

160

Functi onModel =
"Funct i onModel "
(StraightLine | Cdothoid | Arc) ";" // Either straight —
line, clothoid or arc.

s StraightLine =
Functi onModel : "Strai ghtLine" // A straight |ine.
"Start" Start:|DVertex2 // The start point.
"End" End: | DVertex2; // The end point.

170 Clothoid =
Functi onModel : "C ot hoi d" // A cl ot hoi d.
"dk" dk: Nunber // Curvature change.
" k" k: Nunber // Curvature.
"Start" Start:|DVertex2 // The start point.
175 " End" End: | DVertex2 // The end point.

"RotZ" Rotation: Nunber; // Rotation around Z axis.

Arc =
Functi onModel : "Arc" // An arc in polar coordinates using —
r and phi (= x).
180 "Radi us" r:Nunber // Radi us.
" Left Boundary: Nunmber // The definition interval.
Ri ght Boundary: Nunber "]"
"Start" Start:|IDVertex2 // The start point.
"End" End: | DVertex2 // The end point.
185 " Rot Z" Rot ati on: Nunber; // Rotation around Z axi s.
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Zone =
"Zone" // Begin of a zone.

"Zonel D' Zonel D: Nunmber // Integer identifier of this —
zone greater than O.
190 ("ZoneNanme" ZoneNane: Al phaNum ? // Nanme of the zone.

Connect or s: Connector* // Connectors descri be how | anes —
are interconnected.
Perineter: Perineter // Description of the bounding -

pol ygon.
Spots: Spot* ";"; // List of special spots in this zone.

195 Perinmeter =
"Perinmeter" // Begin of a perineter
| DVert ex2
| DVert ex2
| DVertex2+ ";"; // At |least three vertices describe a —
peri nmeter.
200
Spot =
" Spot "
"Spot I D' Spot| D: Nunmber // Integer identifier of this zone—
greater than O.
Vertex2 // Two vertices determ ne orientation
205 Vertex2 ";";

Listing A.1: MontiCore grammar for stationary surroundings

A.2 MontiCore Grammar for the Dynamic Surroundings

grammar Situation {
ident Al phaNum"("A..’Z|’a .."z2’)(CA..’Z|'a .. 2| _-
’|1_’|1.l|1/l|101..’97)*|l;

ident Nunber "(’+ [’-")2( ((C1..'9)(C0..79)«) | "0 )
.0 .. 9 )x)?";

i dent FQ D I Y TN S T T T EE I O
(C0.."9):)]'0) . ((("L.."9)(0.."9)*)]|"0)

(Y. 9) (0L 9 ) )
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SituationFile =
Si tuati onHeader // Fil e header.
Cbject+ ";"; // At |east one object.

10 Situati onHeader =
"Situation" SituationNane: Al phaNum // Nanme of the -
behavi or.
"Ver si on" Ver si on: Al phaNum // Version of the behavior —
gr anmmar .
"Dat e" Dat e: Al phaNum // Creation date of the file.

"Scenari 0" Scenario: Al phaNum // Associ ated scenario for—
thi s behavi or.
15
oj ect =
"Obj ect" bj ect Nane: Al phaNum // Begi n of object "-—
Obj ect Nane".
"ObjectI D' QObject!lD: Nunber // Integer identifier of this—
| ayer greater or equal than O.
Shape: Shape // Shape of this object.

20 " Rot Z" Rot ati on: Nunber // Rotation around Z axis -
whi ch defines the front.
Behavi or: Behavior ";"; // The behavi or of this object.
Shape =
"ShapeNane" ShapeNane: Al phaNum // Name of the shape.
25 (Rectangle | Polygon | Conpl exMbdel); // Type of the —
shape.
Rectangl e =

ShapeType: "Rectangl e" // Either rectangles...
"Hei ght" Hei ght: Nunber // Hei ght of the cylinder > 0.
30 "Color" Color:Vertex3 // RGB col or.
Front: Vertex2 // Front of the rectangle.
"Lengt h" Length: Nunber // Length.
"Wdth" Wdth: Number; // Wdth.
/1l The construction of a rectangle is defined as:
35 11
[ == - - Length------------
/1|
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40

45

50

60

65

Il W
[

/1 d
/1t
/Il h
I

N Length------

/1
/!l X = Front, + = ROTZ.

Pol ygon =
ShapeType: " Pol ygon" //
"Hei ght" Hei ght: Nunber //
"Color" Color:Vertex3 //
Front: Vertex2 // Front of
Vertex2+; // A m ni mum of

Compl exModel

ShapeType: " Conpl exModel " [/

| oaded fromfile.

.or polygons...

Hei ght of the polygon > 0.
RGB col or.

t he pol ygon.

two vertices is necessary.

...or complex nodel to be -

"Model Fi | e" Model Fil e: Al phaNum // File nane of the npdel
Front:Vertex2 // Front of the conpl ex nodel.

"Position" Position:Vertex3 // Position of the conplex -
(center of mmss).

"Rot at i on"

nodel
Rot ati on: Vertex3 // Countercl ockwi se rotation—
in RAD (3amis 0).

"Boundi ngBox" // The boundi ng box defines a rectangular —

of the conpl ex node

outline around the conpl ex nodel .

Vertex2 // First: upper/left.

Vertex2 // Second: upper/right.

Vertex2 // Third: |ower/right.

Vertex2; // Fourth: lower/left.
Vertex2 =

"Vertex2"

"X" X:Nunber // X coordinate.

"Y" Y:Nunmber; // Y coordi nate.
Vertex3 =

"Vertex3"
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"X" X: Number // X coordi nate.
75 "Y" Y: Nunmber // Y coordi nate.
"Z" Z:Number:; // Z coordinate.

Behavi or =
"Behavi or"
80 (External Driver | PointlDDriver);

External Driver =
Behavi or Type: "External Driver"; // External driver -
behavior is realized by an external systeminstead of the-—
si mul ati on.

s PointlDDriver =
Behavi or Type: "Point | DDriver" // PointlD driver.
Start Type: Start Type // Wen should this object get —
started?
St opType: StopType // What happens when this object -
reaches the | ast point?
Profile:Profile // Driving profile.

9 Point|I Ds: PointIDx; // List of points to be reached.

Profile =
(Constant Vel ocity | ConstantAcceleration); // Ether a —
constant velocity or a constant accel erati on.

s ConstantVelocity =
" Const ant Vel oci ty"
"V" V: Nunber; // Velocity in ms.

Const ant Accel eration =
100 "Const ant Accel erati on"
"A" A Nunber; // Acceleration in m s"2.

Start Type =
"Start Type"
105 (Imediately | OnMoving | OnEnteri ngPol ygon) ;
St opType =

" St opType"
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110

115

120

125

130

(Stop | ReturnToStart | WarpToStart);

| medi ately =
"I'mredi ately"; // Start immediately.

OnMovi ng =
"OnMovi ng"
"Object!I D' CbjectlD: Nunmber; // Start when object ID -
starts noving.

OnEnt eri ngPol ygon =
" OnEnt eri ngPol ygon"
"ObjectI D' nhjectlD: Nunber // Start when object ID —
enters the pol ygon defined by at |east four vertices.
Vert ex2
Vert ex2
Vert ex2
Vert ex2+;

Stop = "Stop"; // Stop i Mmedi ately.

ReturnToStart = "ReturnToStart"; // Find a route to the —
start point and return.

WarpToStart = "WarpToStart";// "Warp" to the start point.

PointID = PointIDFQD; // Layer-1D . Road-1D . Lane-ID .
{Poi nt| Function}-ID.

—

Listing A.2: MontiCore grammar for dynamic surroundings.
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M. Jarke, K. Pohl: Establishing Vision in Context: Towards a Model of
Requirements Processes

W. Hans, H. Kuchen, St. Winkler: Full Indexing for Lazy Narrowing
W. Hans, J.J. Ruz, F. Saenz, St. Winkler: A VHDL Specification of a
Shared Memory Parallel Machine for Babel

K. Finke, M. Jarke, P. Szczurko, R. Soltysiak: Quality Management for
Expert Systems in Process Control

M. Jarke, M.A. Jeusfeld, P. Szczurko: Three Aspects of Intelligent Co-
operation in the Quality Cycle
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M. Lefering: Development of Incremental Integration Tools Using For-
mal Specifications

P. Constantopoulos, M. Jarke, J. Mylopoulos, Y. Vassiliou: The Software
Information Base: A Server for Reuse

Rolf Hager, Rudolf Mathar, Jiirgen Mattfeldt: Intelligent Cruise Control
and Reliable Communication of Mobile Stations

Rolf Hager, Peter Hermesmann, Michael Portz: Feasibility of Authenti-
cation Procedures within Advanced Transport Telematics

Claudia Popien, Bernd Meyer, Axel Kuepper: A Formal Approach to
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P. Peters, P. Szczurko: Integrating Models of Quality Management
Methods by an Object-Oriented Repository

Manfred Nagl, Bernhard Westfechtel: A Universal Component for the
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ments
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Applications to Fractal Geometry
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Information Management: The NATURE Approach
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Introduction and table of contents
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P.Peters, M.Jarke: Simulating the impact of information flows in net-
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ning and design of cooperative information systems

G.de Michelis, E.Dubois, M.Jarke, F.Matthes, J.Mylopoulos, K.Pohl,
J.Schmidt, C.Woo, E.Yu: Cooperative information systems: a manifesto
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M.Gebhardt, S.Jacobs: Conflict Management in Design
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Johannes Faassen: Using full parallel Boltzmann Machines for Optimiza-
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Andreas Winter, Andy Schiirr: Modules and Updatable Graph Views
for PROgrammed Graph REwriting Systems

Markus Mohnen, Stefan Tobies: Implementing Context Patterns in the
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S.Gruner: Schemakorrespondenzaxiome unterstiitzen die paargramma-
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Matthias Nicola, Matthias Jarke: Design and Evaluation of Wireless
Health Care Information Systems in Developing Countries

Petra Hofstedt: Taskparallele Skelette fiir irregular strukturierte Prob-
leme in deklarativen Sprachen

Dorothea Blostein, Andy Schiirr: Computing with Graphs and Graph
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Carl-Arndt Krapp, Bernhard Westfechtel: Feedback Handling in Dy-
namic Task Nets

Matthias Nicola, Matthias Jarke: Integrating Replication and Commu-
nication in Performance Models of Distributed Databases

R. Klamma, P. Peters, M. Jarke: Workflow Support for Failure Manage-
ment in Federated Organizations
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George Botorog: High-Level Parallel Programming and the Efficient Im-
plementation of Numerical Algorithms
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Stefan Gruner, Manfred Nagel, Andy Schiirr: Fine-grained and
Structure-Oriented Document Integration Tools are Needed for Devel-
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Stefan Gruner: Einige Anmerkungen zur graphgrammatischen Spezi-
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und Schiirr

O. Kubitz: Mobile Robots in Dynamic Environments

Martin Leucker, Stephan Tobies: Truth - A Verification Platform for
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Matthias Oliver Berger: DECT in the Factory of the Future

M. Arnold, M. Erdmann, M. Glinz, P. Haumer, R. Knoll, B. Paech, K.
Pohl, J. Ryser, R. Studer, K. Weidenhaupt: Survey on the Scenario Use
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Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am
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M. Nicola, M. Jarke: Performance Modeling of Distributed and Repli-
cated Databases

Ansgar Schleicher, Bernhard Westfechtel, Dirk Jager: Modeling Dy-
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W. Appelt, M. Jarke: Interoperable Tools for Cooperation Support using
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Klaus Indermark: Semantik rekursiver Funktionsdefinitionen mit Strik-
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F. Huch: Verifcation of Erlang Programs using Abstract Interpretation
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W. Thomas (Ed.): DLT 99 - Developments in Language Theory Fourth
International Conference

Kai Jakobs, Klaus-Dieter Kleefeld: Informationssysteme fiir die ange-
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Thomas Wilke: CTL+ is exponentially more succinct than CTL

Oliver Matz: Dot-Depth and Monadic Quantifier Alternation over Pic-
tures
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Jens Voge, Marcin Jurdzinski A Discrete Strategy Improvement Algo-
rithm for Solving Parity Games
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Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic
Structure of Technical Document Collections: A Cooperative Systems
Approach

Mareike Schoop: Cooperative Document Management

Mareike Schoop, Christoph Quix (eds.): Proceedings of the Fifth Inter-
national Workshop on the Language-Action Perspective on Communi-
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Markus Mohnen, Pieter Koopman (Eds.): Proceedings of the 12th In-
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Thomas Arts, Thomas Noll: Verifying Generic Erlang Client-Server Im-
plementations
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Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz
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Thierry Cachat: The power of one-letter rational languages

Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model
Checking for the Alternation Free mu-Calculus

Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages
Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-
Order Logic

Martin Grohe, Stefan Wohrle: An Existential Locality Theorem
Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-
tional Workshop on the Language-Action Perspective on Communication
Modelling

Thomas Arts, Jirgen Giesl: A collection of examples for termination of
term rewriting using dependency pairs

Achim Blumensath: Axiomatising Tree-interpretable Structures

Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-
sprachen und Grundlagen der Programmierung

Jahresbericht 2001

Jiirgen Giesl, Aart Middeldorp: Transformation Techniques for Context-
Sensitive Rewrite Systems

Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular
MSC Languages

Jiirgen Giesl, Aart Middeldorp: Innermost Termination of Context-
Sensitive Rewriting

Horst Lichter, Thomas von der Maflen, Thomas Weiler: Modelling Re-
quirements and Architectures for Software Product Lines

Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party
Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic
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Markus Mohnen: An Open Framework for Data-Flow Analysis in Java
Markus Mohnen: Interfaces with Default Implementations in Java
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Martin Leucker: Logics for Mazurkiewicz traces

Jiirgen Giesl, Hans Zantema: Liveness in Rewriting

Jahresbericht 2002

Jiirgen Giesl, René Thiemann: Size-Change Termination for Term
Rewriting

Jirgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations
Jirgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:
Improving Dependency Pairs

Christof Loding, Philipp Rohde: Solving the Sabotage Game is
PSPACE-hard

Franz Josef Och: Statistical Machine Translation: From Single-Word
Models to Alignment Templates

Horst Lichter, Thomas von der Maflen, Alexander Nyfen, Thomas
Weiler: Vergleich von Anséatzen zur Feature Modellierung bei der Soft-
wareproduktlinienentwicklung

Jirgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:
Mechanizing Dependency Pairs

Fachgruppe Informatik: Jahresbericht 2003

Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-
sively equivalent to EMSO logic

Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 — 2nd
International Workshop on Higher-Order Rewriting

Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 — Fifth In-
ternational Workshop on Rule-Based Programming

Herbert Kuchen (ed.): WFLP 04 — 13th International Workshop on
Functional and (Constraint) Logic Programming

Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 — 4th International
Workshop on Reduction Strategies in Rewriting and Programming
Michael Codish, Aart Middeldorp (eds.): WST 04 — 7th International
Workshop on Termination

Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-
piling Recursive Function Definitions with Strictness Information
Joachim Kneis, Daniel Molle, Stefan Richter, Peter Rossmanith: Param-
eterized Power Domination Complexity

Zinaida Benenson, Felix C. Géartner, Dogan Kesdogan: Secure Multi-
Party Computation with Security Modules

Fachgruppe Informatik: Jahresbericht 2004

Maximillian Dornseif, Felix C. Géartner, Thorsten Holz, Martin Mink: An
Offensive Approach to Teaching Information Security: “Aachen Summer
School Applied IT Security”

Jirgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-
proving Termination of Higher-Order Functions

Daniel Moélle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for
the Steiner Tree Problem

Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing
Honeypots
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Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With
Applications To Max-Cut

Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General
Hybrid Adversary Structures

Benedikt Bollig: Automata and Logics for Message Sequence Charts
Simon Fischer, Berthold Vécking: A Counterexample to the Fully Mixed
Nash Equilibrium Conjecture

Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-
ficient Reductions for Wait-Free Termination Detection in Faulty Dis-
tributed Systems

Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting
Failure Detection and Consensus in Omission Failure Environments
Felix C. Freiling, Sukumar Ghosh: Code Stabilization

Uwe Naumann: The Complexity of Derivative Computation

Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-
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Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraproce-
dural Adjoint Code)

Thomas von der Maflen, Klaus Miller, John MacGregor, Eva Geis-
berger, Jorg Dorr, Frank Houdek, Harbhajan Singh, Holger Wufimann,
Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-
Entwicklungsprozess - Abschluflbericht des GI-Arbeitskreises “Features”
Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented
LL-Parsers

Felix C. Freiling, Martin Mink: Bericht iiber den Workshop zur Ausbil-
dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-
bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-
gust 2005 in Koéln organisiert von RWTH Aachen in Kooperation mit
BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.
Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-
ited

Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-
ized Fair Exchange with Secret Shared Coins

Heiner Ackermann, Alantha Newman, Heiko Roglin, Berthold Vécking:
Decision Making Based on Approximate and Smoothed Pareto Curves
Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering
with Motes: Real-World Physical Attacks on Wireless Sensor Networks
Fachgruppe Informatik: Jahresbericht 2005

Michael Weber: Parallel Algorithms for Verification of Large Systems
Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated
by the Differentiation-Enabled NAGWare Fortran Compiler
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Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static
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Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,
Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint
Code by Source Transformation with OpenAD/F

Joachim Kneis, Daniel Molle, Stefan Richter, Peter Rossmanith: Divide-
and-Color

Thomas Colcombet, Christof Loding: Transforming structures by set
interpretations

Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-
Expression-Use Graphs

Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic
Model Checking

Mesut Giines, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,
Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid
MCG-Mesh Testbed

Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:
Model Checking Software for Microcontrollers

Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:
Replaying Play in and Play out: Synthesis of Design Models from Sce-
narios by Learning

Wong Karianto, Christof Léding: Unranked Tree Automata with Sibling
Equalities and Disequalities

Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,
Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli
Kolagari, Thomas von der Maflien, Andreas Wolfram: Report of the
GI Work Group “Requirements Management Tools for Product Line
Engineering”

Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical
sensors from mice for new input devices

Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for
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Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-
ing Interfaces for Searching and Navigating Continuous Audio Timelines
Fachgruppe Informatik: Jahresbericht 2006

Carsten Fuhs, Jirgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,
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Jirgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-
Kamp: Proving Termination by Bounded Increase

Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A
System to Support Collaborative Jazz Improvisation

Uwe Naumann: On Optimal DAG Reversal

Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-
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Design of Embedded Software Applications
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Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-
bedded Software: An empirical evaluation of different approaches
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Justification of the Combining Calculus under the Uniform Scheduler
Assumption

Martin Neuh&ufer, Joost-Pieter Katoen: Bisimulation and Logical
Preservation for Continuous-Time Markov Decision Processes

Klaus Wehrle (editor): 6. Fachgesprach Sensornetzwerke

Uwe Naumann: An L-Attributed Grammar for Adjoint Code

Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:
Second-Order Adjoints by Source Code Manipulation of Numerical Pro-
grams

Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,
Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modu-
lar, Open-Source Tool for Automatic Differentiation of Fortran Codes
Volker Stolz: Temporal assertions for sequential and concurrent pro-
grams

Sadeq Ali Makram, Mesut Giineg, Martin Wenig, Alexander Zimmer-
mann: Adaptive Channel Assignment to Support QoS and Load Bal-
ancing for Wireless Mesh Networks

René Thiemann: The DP Framework for Proving Termination of Term
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Uwe Naumann: Call Tree Reversal is NP-Complete

Jan Riehme, Andrea Walther, Jorg Stiller, Uwe Naumann: Adjoints for
Time-Dependent Optimal Control

Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:
Three-Valued Abstraction for Probabilistic Systems

Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Com-
positional Modeling and Minimization of Time-Inhomogeneous Markov
Chains
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and Berthold Vocking: Uncoordinated Two-Sided Markets
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Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing
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Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the
AD-Enabled NAGWare Fortran Compiler

Frank G. Radmacher: An Automata Theoretic Approach to the Theory
of Rational Tree Relations
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