
Aachen
Department of Computer Science

Technical Report

Dependency Triples for Improving

Termination Analysis of Logic

Programs with Cut

Thomas Ströder, Peter Schneider-Kamp, Jürgen Giesl

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2010-12

RWTH Aachen · Department of Computer Science · Nov. 2010 (revised version)

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Dependency Triples for Improving Termination

Analysis of Logic Programs with Cut⋆

Thomas Ströder1, Peter Schneider-Kamp2, and Jürgen Giesl1

1 LuFG Informatik 2, RWTH Aachen University, Germany
{stroeder,giesl}@informatik.rwth-aachen.de

2 IMADA, University of Southern Denmark, Denmark
petersk@imada.sdu.dk

Abstract. In very recent work, we introduced a non-termination pre-
serving transformation from logic programs with cut to definite logic
programs. While that approach allows us to prove termination of a large
class of logic programs with cut automatically, in several cases the trans-
formation results in a non-terminating definite logic program.

In this paper we extend the transformation such that logic programs
with cut are no longer transformed into definite logic programs, but into
dependency triple problems. By the implementation of our new method
and extensive experiments, we empirically evaluate the practical benefit
of our contributions.

1 Introduction

Automated termination analysis for logic programs has been widely studied, see,
e.g., ([3–5, 13, 15, 16, 19]). Still, virtually all existing techniques only prove uni-
versal termination of definite logic programs, which do not use the cut “!”.3

But most realistic Prolog programs make use of the cut or related operators
such as negation as failure (“\+”) or if then else (“−> ... ; ...”), which can be
expressed using cuts. In [18] we introduced a non-termination preserving auto-
mated transformation from logic programs with cut to definite logic programs.
The transformation consists of two stages. The first stage is based on construct-
ing a so-called termination graph from a given logic program with cut. The
second stage is the generation of a definite logic program from this termination
graph. In this paper, we improve the second stage of the transformation. In-
stead of generating a definite logic program from the termination graph, we now

⋆ Supported by the DFG grant GI 274/5-3, the DFG Research Training Group 1298
(AlgoSyn), and the Danish Natural Science Research Council.

3 An exception is [12], which presents a transformation of “safely-typed” logic pro-
grams to term rewrite systems. However, the resulting rewrite systems are quite
complex and since there is no implementation of [12], it is unclear whether they can
indeed be handled by existing termination tools from term rewriting. Moreover, [12]
does not allow programs with arbitrary cuts (e.g., it does not operate on programs
like the one in Ex. 1).

generate a dependency triple problem. The goal is to improve the power of the
approach, i.e., to succeed also in many cases where the transformation of [18]
yields a non-terminating definite logic program.

Dependency triples were introduced in [14] and improved further to the so-
called dependency triple framework in [17]. The idea was to adapt the successful
dependency pair framework [2, 8–10] from term rewriting to (definite) logic pro-
gramming. This resulted in a completely modular method for termination anal-
ysis of logic programs which even allowed to combine “direct” and “transforma-
tional” methods within the proof of one and the same program. The experiments
in [17] showed that this leads to the most powerful approach for automated ter-
mination analysis of definite logic programs so far. Our aim is to benefit from
this work by providing an immediate translation from logic programs with cut
(resp. from their termination graphs) to dependency triple problems.

This paper is structured as follows. After a short section on preliminaries, we
recapitulate the construction of termination graphs in Sect. 3 and we demon-
strate their transformation into definite logic programs in Sect. 4. Then, in Sect. 5
we illustrate the idea of dependency triples and introduce a novel transforma-
tion of termination graphs into dependency triple problems. We show that this
new transformation has significant practical advantages in Sect. 6 and, finally,
conclude in Sect. 7.

2 Preliminaries

See e.g. [1] for the basics of logic programming. We distinguish between individ-
ual cuts to make their scope explicit. Thus, we use a signature Σ containing all
predicate and function symbols as well as all labeled versions of the cut operator
{!m/0 | m ∈ N}. For simplicity we just consider terms T (Σ,V) and no atoms,
i.e., we do not distinguish between predicate and function symbols.4 A query
is a sequence of terms from T (Σ,V). Let Goal(Σ,V) be the set of all queries,
where � is the empty query. A clause is a pair H ← B where the head H is
from T (Σ,V) and the body B is a query. A logic program P (possibly with cut)
is a finite sequence of clauses. Slice(P, t) are all clauses for t’s predicate, i.e.,
Slice(P, p(t1, ..., tn)) = {c | c = “p(s1, ..., sn)← B” ∈ P}.

A substitution σ is a function V → T (Σ,V) and we often denote its appli-
cation to a term t by tσ instead of σ(t). As usual, Dom(σ) = {X | Xσ 6= X}
and Range(σ) = {Xσ | X ∈ Dom(σ)}. The restriction of σ to V ′ ⊆ V is
σ|V′(X) = σ(X) if X ∈ V ′, and σ|V′(X) = X otherwise. A substitution σ is the
most general unifier (mgu) of s and t iff sσ = tσ and, whenever sγ = tγ for some
other unifier γ, there exists a δ such that Xγ = Xσδ for all X ∈ V(s)∪V(t). If
s and t have no mgu, we write s 6∼ t.

Let Q be a query A1, . . . , Am, let c be a clause H ← B1, . . . , Bk. Then Q′ is
a resolvent of Q and c using θ (denoted Q ⊢c,θ Q′) if θ is the mgu of A1 and H,
and Q′ = (B1, . . . , Bk, A2, . . . , Am)θ.

4 To ease the presentation, in the paper we exclude terms with cuts !m as proper
subterms.

4

A derivation of a program P and Q is a possibly infinite sequence Q0, Q1, . . .
of queries with Q0 = Q where for all i, we have Qi ⊢ci+1,θi+1

Qi+1 for some
substitution θi+1 and some fresh variant ci+1 of a clause from P. For a derivation
Q0, . . . , Qn as above, we also write Q0 ⊢

n
P,θ1...θn

Qn or Q0 ⊢
n
P Qn, and we also

write Qi ⊢P Qi+1 for Qi ⊢ci+1,θi+1
Qi+1. The query Q terminates for P if all

derivations of P and Q are finite, i.e., if ⊢P is terminating for Q. Answer(P, Q)
is the set of all substitutions δ such that Q ⊢n

P,δ � for some n ∈ N.
Finally, to denote the term resulting from replacing all occurrences of a func-

tion symbol f in a term t by another function symbol g, we write t[f/g].

3 Termination Graphs

To illustrate the concepts and the contributions of this paper, we use the fol-
lowing leading example. While this example has been designed for this purpose,
as demonstrated in Sect. 6, our contributions also have a considerable effect for
termination analysis of “general” logic programs with cut.

Example 1. The following clauses define a (simplified) variant of the logic pro-
gram Stroeder09/giesl97.pl from the Termination Problem Data Base [22]
that is used in the annual international Termination Competition [21]. This ex-
ample formulates a functional program from [7, 23] with nested recursion as a
logic program. Here, the predicate p is used to compute the predecessor of a
natural number while eq is used to unify two terms.

f(0, Y)← !, eq(Y, 0). (1)

f(X,Y)← p(X,P), f(P,U), f(U, Y). (2)

p(0, 0). (3)

p(s(X),X). (4)

eq(X,X). (5)

Note that when ignoring cuts, this logic program is not terminating for the set
of queries {f(t1, t2) | t1 is ground}. To see this, consider the following derivation:
f(0, A) ⊢ p(0, P), f(P,U), f(U,A) ⊢{P/0} f(0, U), f(U,A) ⊢ eq(U, 0), f(U,A) ⊢{U/0}

f(0, A). Clearly, this leads to an infinite (looping) derivation.
Fig. 1 recapitulates the formulation of the operational semantics of logic

programming with cut that we introduced in [18]. A formal proof on the cor-
respondence of our inference rules to the semantics of the Prolog ISO standard
[6] can be found in [20]. The formulation with our inference rules is particularly
suitable for an extension to classes of queries in Fig. 2, and for synthesizing
cut-free programs in Sect. 4 or dependency triples in Sect. 5. Our semantics is
given by seven inference rules. They operate on states that do not just represent
the current goal, but also the backtrack information that is needed to describe
the effect of cuts. The backtrack information is given by a sequence of goals
(separated by “|”) which are optionally labeled by the program clause i that has
to be applied to the goal next and by a number m that determines how cuts will

5

� | S

S
(Suc)

?m | S

S
(Fail)

!m, Q | S | ?m | S
′

Q | ?m | S
′ (Cut)

where
S con-
tains
no ?m

!m, Q | S

Q
(Cut)

where
S con-
tains
no ?m

t, Q | S

(t, Q)
i1
m | . . . | (t, Q)

ik
m | ?m | S

(Case) where t is neither a cut nor a variable, m is
greater than all previous marks, and Slice(P, t) =
{ci1

, . . . , cik
} with i1 < . . . < ik

(t, Q)
i
m | S

B
′
iσ, Qσ | S

(Eval)
where ci = Hi ← Bi,
mgu(t, Hi)=σ,
B′

i = Bi[! / !m].

(t, Q)
i
m | S

S
(Backtrack) where ci = Hi ← Bi

and t 6∼ Hi.

Fig. 1. Operational Semantics by Concrete Inference Rules

be labeled when evaluating this goal later on. Moreover, our states also contain
explicit marks ?m to mark the end of the scope of a cut !m.

For the query f(0, A) in Ex. 1, we obtain the following derivation with the
rules of Fig. 1: f(0, A) ⊢Case f(0, A)11 | f(0, A)21 | ?1 ⊢Eval !1, eq(A, 0) | f(0, A)21 |
?1 ⊢Cut eq(A, 0) | ?1 ⊢Case eq(A, 0)52 | ?2 | ?1 ⊢Eval � | ?2 | ?1 ⊢Suc ?2 |
?1 ⊢Fail ?1 ⊢Fail ε. Thus, when considering cuts, our logic program terminates
for the query f(0, A), and, indeed, it terminates for all queries from the set
{f(t1, t2) | t1 is ground}. For further details on the intuition behind the inference
rules, we refer to [18].

To show termination for infinite sets of queries (e.g., {f(t1, t2) | t1 is ground}),
we need to represent classes of queries by abstract states. To this end, in [18] we
introduced abstract terms and a set A of abstract variables, where each T ∈ A
represents a fixed but arbitrary term. N consists of all “ordinary” variables in
logic programming. Then, as abstract terms we consider all terms from the set
T (Σ,V) where V = N ⊎A. Concrete terms are terms from T (Σ,N), i.e., terms
containing no abstract variables. For any set V ′ ⊆ V, let V ′(t) be the variables
from V ′ occurring in the term t. To determine by which terms an abstract variable
may be instantiated, we add a knowledge base KB = (G,U) to each state, where
G ⊆ A and U ⊆ T (Σ,V)× T (Σ,V). Instantiations γ that respect KB may only
instantiate the variables in G by ground terms. And (s, s′) ∈ U means that we
are restricted to instantiations γ where sγ 6∼ s′γ, i.e., s and s′ may not become
unifiable when instantiating them with γ. We call a substitution γ that respects
the information in KB a concretization w.r.t. KB .

Fig. 2 shows the abstract inference rules introduced in [18]. They work on
classes of queries represented by abstract terms with a knowledge base. Except
for Backtrack and Eval, the adaption of the concrete inference rules to cor-
responding abstract inference rules is straightforward.

For Backtrack and Eval we must consider that the set of queries repre-
sented by an abstract state may contain both queries where the concrete Eval
rule and where the concrete Backtrack rule is applicable. Thus, the abstract
Eval rule has two successors corresponding to these two cases. As abstract
variables not known to represent ground terms may share variables, we have
to replace all variables by fresh abstract variables in Eval’s left successor state
which corresponds to the application of the concrete Eval rule. For the backtrack

6

� | S;KB

S;KB
(Suc)

?m | S;KB

S;KB
(Fail)

!m, Q | S | ?m | S
′
;KB

Q | ?m | S
′
;KB

(Cut) where S
contains no
?m

!m, Q | S;KB

Q;KB
(Cut)

where S
contains no
?m

t, Q | S;KB

(t, Q)
i1
m | . . . | (t, Q)

ik
m | ?m | S;KB

(Case)
where t is neither a cut nor a variable,
m is greater than all previous marks, and
Slice(P, t) = {ci1

, . . . , cik
} with i1 < . . . < ik

(t, Q)
i
m | S;KB

S;KB
(Backtrack)

where ci = Hi ← Bi and there is no concretization γ
w.r.t. KB such that tγ ∼ Hi.

(t, Q)
i
m | S; (G,U)

B
′
iσ, Qσ | Sσ|G ; (G′

,Uσ|G) S; (G,U ∪ {(t, Hi)})
(Eval)

where ci = Hi ← Bi and mgu(t, Hi) = σ. W.l.o.g., for all X ∈ V, V(σ(X)) only contains fresh ab-
stract variables not occurring in t, Q, S,G, or U . Moreover, G′ = A(Range(σ|G)) and B′

i = Bi[!/!m].

S; (G,U)

S
′
; (G′

,U ′
)
(Instance)

if there is a µ such that S = S′µ, µ|N is a variable renaming,
V(Tµ) ⊆ G for all T ∈ G′, and U ′µ ⊆ U .

S | S′
;KB

S;KB S
′
;KB

(Parallel) if AC(S) ∩ AM(S′) = ∅

The active cuts AC(S) are all m where !m is in S or (t, q)i
m is in S and ci’s body has a cut. The

active marks AM(S) are all m where S = S′ | ?m | S
′′ and S′ 6= ε 6= S′′.

t, Q; (G,U)

t; (G,U) Qµ; (G′
,Uµ)

(Split)
where µ replaces all (abstract and non-abstract)
variables from V \ G by fresh abstract variables
and G′ = G ∪ ApproxGnd(t, µ).

Here, we assume that we have a groundness analysis function GroundP : Σ × 2N → 2N, see, e.g.,

[11]. Then we have ApproxGnd(p(t1, . . . , tn), µ) = {A(tjµ) | j ∈ GroundP(p, {i | V(ti) ⊆ G})}.

Fig. 2. Abstract Inference Rules

possibilities and the knowledge base, however, we may only use an answer substi-
tution σ|G restricted to abstract variables known to represent ground terms. The
reason is that, due to backtracking, any substitutions of non-abstract variables
may become canceled. For the abstract variables T ∈ G, their instantiation with
the answer substitution of the abstract Eval rule corresponds to a case analysis
over the shape of the ground terms that T is representing. Thus, in case of a
successful unification we know that these terms must have a certain shape and
we can keep this information also after backtracking. Fig. 3 shows how the rules
of Fig. 2 can be applied to the initial state f(T1, T2) with the knowledge base
({T1}, ∅), which represents the set of queries {f(t1, t2) | t1 is ground}. In Fig. 3
we applied the Eval rule to Node b, for example. Its left successor corresponds
to the case where T1 represents the ground term 0 and, thus, the goal f(T1, T2)
unifies with the head of the first clause of the program. Here we can replace
all occurrences of T1 by 0, as (due to T1 ∈ G) 0 is the term represented by T1.
In contrast, as T2 /∈ G, the replacement of T2 with the fresh variable T3 is not
performed in the second backtracking goal f(0, T2)

2
1. The right successor of Node

b corresponds to all cases where the unification with the head of Clause (1) fails.

7

f(T1, T2); ({T1}, ∅) a

f(T1, T2)11 | f(T1, T2)21 | ?1; ({T1}, ∅) b

Case

!1, eq(T3, 0) |

f(0, T2)21 |
?1; (∅, ∅)

Eval
T1/0, T2/T3

f(T1, T2)21 | ?1; ({T1}, {(f(T1, T2), f(0, Y))})

Eval

eq(T3, 0) | ?1; (∅, ∅)

Cut
p(T4, P), f(P, U), f(U, T5) |
?1; ({T4}, {(f(T4, T2), f(0, Y))})

Eval

T1/T4, T2/T5

?1; (∅, ∅)

Eval

eq(T3, 0)52 | ?2 | ?1; (∅, ∅)

Case

(p(T4, P), f(P, U), f(U, T5))33 |

(p(T4, P), f(P, U), f(U, T5))43 | ?3 | ?1;
({T4}, {(f(T4, T2), f(0, Y))})

c

Case

ε; (∅, ∅)

Fail

� | ?2 | ?1; (∅, ∅)

d Eval

T3/0

?2 | ?1; (∅, ∅)

Eval

(p(T4, P), f(P, U), f(U, T5))43 | ?3 | ?1;
({T4}, {(f(T4, T2), f(0, Y))})

Backtrack

?2 | ?1; (∅, ∅)

Suc

?1; (∅, ∅)

Fail

f(T6, U), f(U, T5) | ?3 | ?1; ({T6}, ∅)e

Eval

T4/s(T6)

?3 | ?1; (∅, ∅)

Eval

?1; (∅, ∅)

Fail

ε; (∅, ∅)

Fail

?1; (∅, ∅)

Fail

ε; (∅, ∅)

Fail
ε; (∅, ∅)

Fail

f(T6, U); ({T6}, ∅) f

Split

Instance

f(T7, T8) | ?3 | ?1; ({T7}, ∅) g

Split

U/T7, T5/T8

f(T7, T8); ({T7}, ∅) h

Parallel

Instance

?3 | ?1; (∅, ∅)

Parallel

?1; (∅, ∅)

Fail

ε; (∅, ∅)

Fail

Fig. 3. Termination Graph for Ex. 1.

While the abstract Eval rule is already sufficient for a sound simulation of all
concrete derivations, the abstract Backtrack rule is virtually always needed for
a successful termination analysis, since otherwise, the application of the abstract
inference rules would almost always yield an infinite tree. To apply the abstract
Backtrack rule to an abstract state, we have to ensure that this state does
not represent any queries where the concrete Eval rule would be applicable. In
Fig. 3 we applied the Backtrack rule to Node c, for example. This is crucial
for the success of the termination proof. As we know from the application of the
Eval rule to Node b, we are in the case where the first argument T4 does not
unify with 0. Hence, Clause (3) is not applicable to the first goal p(T4, P) and

8

thus, we can safely apply the Backtrack rule to c.

With the first seven rules, we would obtain infinite trees for non-terminating
programs. Even for terminating programs we may obtain infinite trees as there
is no bound on the size of the terms represented by abstract variables. For a
finite analysis we have to refer back to already existing states. This is done by
the Instance rule. The intuition for this rule is that we can refer back to a state
representing a superset of queries compared to the current state. This can be
ensured by finding a matcher µ which matches the more general state to the more
specific state. This rule can also be used to generalize states instead of referring
back to existing states. This is needed in case of “repeatedly growing” terms
which would otherwise never lead to a state where we can find an already existing
instance. Considering our example graph in Fig. 3, we applied the Instance rule
to refer Node f back to Node a with the matching substitution {T1/T6, T2/U}.

Still, this is not enough to always obtain a finite termination graph. On the
one hand, the evaluation of a program may yield growing backtracking sequences
which never lead to a state with an already existing instance. On the other hand,
the number of terms in a query may also grow and cause the same problem. For
the first situation we need the Parallel rule which can separate the backtrack-
ing sequence into two states. The second problem is solved by the Split rule
which splits off the first term of a single query. Both rules may lose precision,
but are often needed for a finite analysis. To reduce the loss of precision, we
approximate the answer substitutions of evaluations for the first successors of
Split nodes using a groundness analysis. This analysis determines whether some
variables will be instantiated by ground terms in every successful derivation of
Split’s left child. Then in the right child, these variables can be added to G and
all other variables are replaced by fresh abstract variables (this is necessary due
to sharing). In Fig. 3 we applied the Parallel rule to Node g. In this way, we
created its child h which is an instance of the earlier Node a. The Split rule
is used to separate the goal f(T6, U) from the remainder of the state in Node
e. The resulting child f is again an instance of a. For e’s second child g, the
groundness analysis found out that the variable U in the goal f(U, T5) must be
instantiated with a ground term T7 during the evaluation of node f. Therefore,
T7 is added to the set G in Node g. This groundness information is important for
the success of the termination proof. Otherwise, the state g would also represent
non-terminating queries and hence, the termination proof would fail.

Using these rules, for Ex. 1 we obtain the termination graph depicted in
Fig. 3. A termination graph is a finite graph where no rule is applicable to its
leaves and where there is no cycle which only uses the Instance rule. Note that
by applying an adequate strategy, we can obtain a termination graph for any
logic program automatically [18, Thm. 2]. To ease presentation, in the graph of
Fig. 3, we always removed those abstract variables from the knowledge base that
do not occur in any goal of the respective state. A termination graph without
leaves that start with variables is called proper. (Our termination proof fails if
the graph contains leaves starting with abstract variables, since they stand for
any possible query.) Again, we refer to [18] for further details and explanations.

9

4 Transformation into Definite Logic Programs

We now explain the second stage of the transformation from [18], i.e., the trans-
formation of termination graphs into definite logic programs. For more details
and formal definitions see [18].

Termination graphs have the property that each derivation of the original
program corresponds to a path through the termination graph. Thus, infinite
derivations of the original program correspond to an infinite traversal of cy-
cles in the graph. The basic idea of the transformation is to generate (cut-free)
clauses for each cycle in the graph. Then termination of the (definite) logic pro-
gram consisting of these clauses implies termination of the original program. To
simulate the traversal of cycles, we generate clauses for paths starting at the child
of an Instance or Split node or at the root node and ending in a Suc or In-
stance node or in a left child of an Instance or Split node while not traversing
other Instance nodes or left children of Instance or Split nodes. The formal
definition of paths for which we generate clauses is given below. Here, for a
termination graph G, let Instance(G) denote all nodes of G to which the rule
Instance has been applied (i.e., f and h). The sets Split(G) and Suc(G) are
defined analogously. For any node n, let Succ(i, n) denote the i-th child of n.

Definition 1 (Clause Path [18]). A path π = n1 . . . nk in G is a clause path
iff k > 1 and

– n1 ∈ Succ(1, Instance(G) ∪ Split(G)) or n1 is the root of G,
– nk ∈ Suc(G) ∪ Instance(G) ∪ Succ(1, Instance(G) ∪ Split(G)),
– for all 1 ≤ j < k, we have nj 6∈ Instance(G),5 and
– for all 1 < j < k, we have nj 6∈ Succ(1, Instance(G) ∪ Split(G)).

In the graph of Fig. 3 we find two clause paths ending in Instance nodes.
One path is from the root node a to the Instance node f and one from the
root node a to the Instance node h. We introduce a fresh predicate symbol pn

for each node n, where these predicates have all distinct variables occurring in
the node n as arguments.

For an Instance node, however, we use the same predicate as for its child
while applying the matching substitution used for the instantiation. Hence,
for the nodes a, f, h in Fig. 3, we obtain the terms pa(T1, T2), pa(T6, U),
and pa(T7, T8). To generate clauses for every clause path, we have to consider
the substitutions along the paths and successively apply them to the heads of
the new clauses. Thus, for the clause path from a to f, we obtain the clause
pa(s(T6), T5)← pa(T6, U).

However, for cycles traversing right children of Split nodes, the newly gen-
erated clause should contain an additional intermediate body atom. This is due
to the fact that the derivation along such a path is only possible if the goal cor-
responding to the left child of the respective Split node is successfully evaluated

5 Note that nk ∈ Succ(1, Instance(G)) is possible although nk−1 /∈ Instance(G),
since nk may have more than one parent node in G.

10

first. Hence, we obtain the clause pa(s(T6), T8) ← pa(T6, T7), pa(T7, T8) for the
path from a to h. To capture the evaluation of left children of Split nodes,
we also generate clauses corresponding to evaluations of left Split children, i.e.,
paths in the graph from such nodes to Suc nodes, possibly traversing cycles
first. Thus, the path from a to the only Suc node d is also a clause path. To
transform it into a new clause, we have to apply the substitutions between the
respective Split node and the end of the path. For Suc nodes, we do not intro-
duce new predicates. Hence, we obtain the fact pa(0, 0) for the path from a to d.
Thus, the resulting definite logic program for the termination graph from Fig. 3
is the following. Note that here, T5, T6, T7, T8 are considered as normal variables.

pa(0, 0). (6)

pa(s(T6), T5)← pa(T6, U). (7)

pa(s(T6), T8)← pa(T6, T7), pa(T7, T8). (8)

Below we give the formal definition for the clauses and queries generated
for clause paths. To ease the presentation, we assume that for any path π, we
do not traverse a Backtrack, Fail, or Suc node or the right successor of an
Eval node after traversing the left successor of an Eval node. The more general
case can be found in [18] and also in the extended definitions and proofs in the
appendix.

Definition 2 (Logic Programs from Termination Graph [18]). Let G be a
termination graph whose root n is (f(T1, . . . , Tm), ({Ti1 , . . . , Tik

}, ∅)). We define
PG =

⋃

π clause path in G Clause(π) and QG = {pn(t1, . . . , tm) | ti1 , . . . , tik
are

ground}. For a path π = n1 . . . nk, let Clause(π) = Ren(n1)σπ ← Iπ, Ren(nk).
For n ∈ Suc(G), Ren(n) is � and for n ∈ Instance(G), it is Ren(Succ(1, n))µ
where µ is the substitution associated with the Instance node n. Otherwise,
Ren(n) is pn(V(n)) where V(S;KB) = V(S).

Finally, σπ and Iπ are defined as follows. Here for a path π = n1 . . . nj, the
substitutions µ and σ are the labels on the outgoing edge of nj−1 ∈ Split(G)
and nj−1 ∈ Eval(G), respectively.

σn1...nj =

8

>

>

>

<

>

>

>

:

id if j = 1

σn1...nj−1 µ if nj−1 ∈ Split(G), nj = Succ(2, nj−1)

σn1...nj−1 σ if nj−1 ∈ Eval(G), nj = Succ(1, nj−1)

σn1...nj−1 otherwise

Inj ...nk =

8

>

<

>

:

� if j = k

Ren(Succ(1, nj))σnj ...nk , Inj+1...nk if nj ∈ Split(G), nj+1 = Succ(2, nj)

Inj+1...nk otherwise

Unfortunately, in our example, the generated program (6)-(8) is not (universally)
terminating for all queries of the form pa(t1, t2) where t1 is a ground term. To
see this, consider the query pa(s(s(0)), Z). We obtain the following derivation.

pa(s(s(0)), Z) ⊢(8) pa(s(0), T7), pa(T7, Z) ⊢(7) pa(0, U), pa(T7, Z) ⊢(6) pa(T7, Z)

11

The last goal has infinitely many successful derivations. The reason why the
transformation fails is that in the generated logic program, we cannot distin-
guish between the evaluation of intermediate goals and the traversal of cycles
of the termination graph, since we only have one evaluation mechanism. We of-
ten encounter such problems when the original program has clauses whose body
contains at least two atoms q1(. . .), q2(. . .), where both predicates q1 and q2 have
recursive clauses and where the call of q2 depends on the result of q1. This is a
very natural situation occurring in many practical programs (cf. our experiments
in Sect. 6). It is also the case in our example for the second clause (2) (here we
have the special case where both q1 and q2 are equal).

5 Transformation into Dependency Triple Problems

To solve the problem illustrated in the last section, we modify the second stage
of the transformation to construct dependency triple problems [17] instead of
definite logic programs. The advantage of dependency triple problems is that
they support two different kinds of evaluation which suit our needs to handle
the evaluation of intermediate goals and the traversal of cycles differently.

The basic structure in the dependency triple framework is very similar to
a clause in logic programming. Indeed, a dependency triple (DT) [14] is just
a clause H ← I,B where H and B are atoms and I is a sequence of atoms.
Intuitively, such a DT states that a call that is an instance of H can be followed
by a call that is an instance of B if the corresponding instance of I can be proven.

Here, a “derivation” is defined in terms of a chain. Let D be a set of DTs,
P be the program under consideration, and Q be the class of queries to be
analyzed.6 A (possibly infinite) sequence (H0 ← I0, B0), (H1 ← I1, B1), . . . of
variants from D is a (D,Q,P)-chain iff there are substitutions θi, σi and an
A ∈ Q such that θ0 = mgu(A,H0) and for all i, we have σi ∈ Answer(P, Iiθi)
and θi+1 = mgu(Biθiσi,Hi+1). Such a tuple (D,Q,P) is called a dependency
triple problem and it is terminating iff there is no infinite (D,Q,P)-chain.

As an example, consider the DT problem (D,Q,P) with D = {d1} where
d1 = p(s(X), Y) ← eq(X,Z), p(Z, Y), Q = {p(t1, t2) | t1 is ground}, and P =
{eq(X,X)}. Now, “d1 d1” is a (D,Q,P) chain. To see this, assume that A =
p(s(s(0)), 0). Then θ0 = {X/s(0), Y/0}, σ0 = {Z/s(0)}, and θ1 = {X/0, Y/0}.

In this section we show how to synthesize a DT problem from a termination
graph built for a logic program with cut such that termination of the DT problem
implies termination of the original program w.r.t. the set of queries for which the
termination graph was constructed. This approach is far more powerful than first
constructing the cut-free logic program as in Sect. 4 and then transforming it into
a DT problem. Indeed, the latter approach would fail for our leading example (as
the cut-free program (6)-(8) is not terminating), whereas the termination proof
succeeds when generating DT problems directly from the termination graph.

Like in the transformation into definite logic programs from [18], we have to
prove that there is no derivation of the original program which corresponds to a

6 For simplicity, we use a set of initial queries instead of a general call set as in [17].

12

path traversing the cycles in the termination graph infinitely often.

To this end, we build a set D of DTs for paths in the graph corresponding to
cycles and a set P of program clauses for paths corresponding to the evaluation
of intermediate goals. For the component Q of the resulting DT problem, we use
a set of queries based on the root node.

We now illustrate how to use this idea to prove termination of Ex. 1 by
building a DT problem for the termination graph from Fig. 3. We again represent
each node by a fresh predicate symbol with the different variables occurring in
the node as arguments. However, as before, for an Instance node we take the
predicate symbol of its child instead where we apply the matching substitution
used for the respective instantiation and we do not introduce any predicates for
Suc nodes. But in contrast to Sect. 4 and [18], we use different predicates for
DTs and program clauses. In this way, we can distinguish between atoms used
to represent the traversal of cycles and atoms used as intermediate goals.

To this end, instead of clause paths we now define triple paths (that are used
to build the component D of the resulting DT problem) and program paths (that
are used for the component P of the DT problem). Triple paths lead from the
root node or the successor of an Instance node to the beginning of a cycle, i.e.,
to an Instance node or the successor of an Instance node where we do not
traverse other Instance nodes or their children. Compared to the clause paths
of Def. 1, triple paths do not start or stop in left successors of Split nodes, but
in contrast they may traverse them. Since finite computations are irrelevant for
building infinite chains, triple paths do not stop in Suc nodes either.

Thus, we have two triple paths from the root node a to the Instance nodes
f and h. We also have to consider intermediate goals, but this time we use a
predicate symbol pa for the intermediate goal and a different predicate symbol
qa for the DTs. Hence, we obtain qa(s(T6), T5)← qa(T6, U) and qa(s(T6), T8)←
pa(T6, T7), qa(T7, T8).

Concerning the evaluation for left successors of Split nodes, we build pro-
gram clauses for the component P of the DT problem. The clauses result from
program paths in the termination graph. These are paths starting in a left suc-
cessor of a Split node and ending in a Suc node. However, in addition to the
condition that we do not traverse Instance nodes or their successors, such a
path may also not traverse another left successor of a Split node as we are
only interested in completely successful evaluations. Thus, the right successor of
a Split node must be reached. As the evaluation for left successors of Split
nodes may also traverse cycles before it reaches a fact, we also have to consider
paths starting in the left successor of a Split node or the successor of an In-
stance node and ending in an Instance node, a successor of an Instance
node, or a Suc node. Compared to the clause paths of Def. 1, the only dif-
ference is that program paths do not stop in left successors of Split nodes.
Hence, we have two program paths from the root node a to the only Suc node
d and to the Instance node h. We also have to consider intermediate goals
for the constructed clauses. Thus, we result in the fact pa(0, 0) and the clause
pa(s(T6), T8)← pa(T6, T7), pa(T7, T8).

13

So we obtain the DT problem (DG,QG,PG) for the termination graph G
from Fig. 3 where DG contains the DTs

qa(s(T6), T5)← qa(T6, U).

qa(s(T6), T8)← pa(T6, T7), qa(T7, T8).

and PG consists of the following clauses.

pa(0, 0).

pa(s(T6), T8)← pa(T6, T7), pa(T7, T8).

Hence, there are three differences compared to the program (6)-(8) we obtain
following Def. 2: (i) we do not obtain the fact qa(0, 0) for the dependency triples;
(ii) we do not obtain the clause pa(s(T6), T5) ← pa(T6, U); and (iii) we use pa

instead of qa in the intermediate goal of the second dependency triple. The latter
two differences are essential for success on this example as a ground “input” for
pa on the first argument guarantees a ground “output” on the second argument.
Note that this is not the case for the program according to Def. 2.

In our example, QG contains all queries qa(t1, t2) where t1 is ground. Then
this DT problem is easily shown to be terminating by our automated termination
prover AProVE (or virtually any other tool for termination analysis of definite
logic programs by proving termination of DG ∪ PG for the set of queries QG).

Now we formally define how to obtain a DT problem from a termination
graph. To this end, we first need the notions of triple and program paths to
characterize those paths in the termination graph from which we generate the
DTs and clauses for the DT problem.

Definition 3 (Triple Path, Program Path). A path π = n1 . . . nk in G is a
triple path iff k > 1 and the following conditions are satisfied:

– n1 ∈ Succ(1, Instance(G)) or n1 is the root of G,
– nk ∈ Instance(G) ∪ Succ(1, Instance(G)),
– for all 1 ≤ j < k, we have nj /∈ Instance(G), and
– for all 1 < j < k, we have nj /∈ Succ(1, Instance(G)).

A path π = n1 . . . nk in G is a program path iff k > 1 and the following condi-
tions are satisfied:

– n1 ∈ Succ(1, Instance(G) ∪ Split(G)),
– nk ∈ Suc(G) ∪ Instance(G) ∪ Succ(1, Instance(G)),
– for all 1 ≤ j < k, we have nj /∈ Instance(G),
– for all 1 < j < k, we have nj /∈ Succ(1, Instance(G)), and
– for all 1 < j ≤ k, we have nj /∈ Succ(1,Split(G)).

Now, we define the DT problem (DG,QG,PG) for a termination graph G. The
set DG contains clauses for all triple paths, the queries QG contain all instances
represented by the root node, and PG contains clauses for all program paths.

Definition 4 (DT Problem from Termination Graph). Let G be a termi-
nation graph whose root is (f(T1, . . . , Tm), ({Ti1 , . . . , Tik

}, ∅)). The DT problem

14

(DG,QG,PG) is defined by DG =
⋃

π triple path in G Triple(π), QG = {qn(t1, . . . ,
tm) | ti1 , . . . , tik

are ground} where qn is the fresh predicate chosen for the root
node by Rent, and PG =

⋃

π program path in G Clause(π).
For a path π = n1 . . . nk, we define Clause(π) = Ren(n1)σπ ← Iπ,Ren(nk)

and Triple(π) = Rent(n1)σπ ← Iπ,Rent(nk). Here, Ren and Rent are defined
as in Def. 2 but Rent uses qn instead of pn for any node n.

We now state the central theorem of this paper where we prove that ter-
mination of the resulting DT problem implies termination of the original logic
program with cut for the set of queries represented by the root state of the
termination graph. For the proof we refer to the appendix.

Theorem 1 (Correctness). If G is a proper termination graph for a logic
program P such that (DG,QG,PG) is terminating, then all concrete states rep-
resented by G’s root node have only finite derivations w.r.t. the inference rules
of Fig. 1.

6 Implementation and Experiments

We implemented the new transformation in our fully automated termination
prover AProVE and tested it on all 402 examples for logic programs from the
Termination Problem Data Base (TPDB) [22] used for the annual international
Termination Competition [21]. We compared the implementation of the new
transformation (AProVE DT) with the implementation of the previous transfor-
mation into definite logic programs from [18] (AProVE Cut), and with a direct
transformation into term rewrite systems ignoring cuts (AProVE Direct) from
[16]. We ran the different versions of AProVE on a 2.67 GHz Intel Core i7 and,
as in the international Termination Competition, we used a timeout of 60 seconds
for each example. For all versions we give the number of examples which could be
proved terminating (denoted “Successes”), the number of examples where ter-
mination could not be shown (“Failures”), the number of examples for which the
timeout of 60 seconds was reached (“Timeouts”), and the total runtime (“Total”)
in seconds. For those examples where termination could be proved, we indicate
how many of them contain cuts. For the details of this empirical evaluation and
to run the three versions of AProVE on arbitrary examples via a web interface,
we refer to http://aprove.informatik.rwth-aachen.de/eval/cutTriples/.

AProVE Direct AProVE Cut AProVE DT

Successes 243 259 315

– with cut 10 78 82

– without cut 233 181 233

Failures 144 129 77

Timeouts 15 14 10

Total 2485.7 3288.0 2311.6

Table 1. Experimental results on the Termination Problem Data Base

15

As shown in Table 1, the new transformation significantly increases the num-
ber of examples that can be proved terminating. In particular, we obtain 56 ad-
ditional proofs of termination compared to the technique of [18]. And indeed, for
all examples where AProVE Cut succeeds, AProVE DT succeeds, too. Note that
while [18] is very successful on examples with cut, its performance is significantly
worse than that of AProVE Direct on the other examples of the TPDB.

While we conjecture that our new improved transformation is always more
powerful than the transformation from [18], a formal proof of this conjecture is
not straightforward. The reason is that the clause paths of [18] differ from the
triple and program paths in our new transformation. Hence we cannot compare
the transformed problems directly.

In addition to being more powerful, the new version using dependency triples
is also more efficient than any of the two other versions, resulting in fewer time-
outs and a total runtime that is less than the one of the direct version and
only 70% of the version corresponding to [18]. However, AProVE DT sometimes
spends more time on failing examples, as the new transformation may result in
DT problems where the termination proof fails later than for the logic programs
resulting from [18].

7 Conclusion

We have shown that the termination graphs introduced by [18] can be used
to obtain a transformation from logic programs with cut to dependency triple
problems. Our experiments show that this new approach is both considerably
more powerful and more efficient than a translation to definite logic programs
as in [18]. As the dependency triple framework allows a modular and flexible
combination of arbitrary termination techniques from logic programming and
even term rewriting, the new transformation to dependency triples can be used
as a frontend to any termination tool for logic programs (by taking the union of
DG and PG in the resulting DT problem (DG,QG,PG)) or term rewriting (by
using the transformation of [17]).

References

1. K. R. Apt. From Logic Programming to Prolog. Prentice Hall, London, 1997.
2. T. Arts and J. Giesl. Termination of Term Rewriting using Dependency Pairs.

Theoretical Computer Science, 236(1,2):133–178, 2000.
3. M. Bruynooghe, M. Codish, J. P. Gallagher, S. Genaim, and W. Vanhoof. Termina-

tion Analysis of Logic Programs through Combination of Type-Based Norms. ACM

Transactions on Programming Languages and Systems, 29(2):Article 10, 2007.
4. M. Codish, V. Lagoon, and P. J. Stuckey. Testing for Termination with Mono-

tonicity Constraints. In ICLP ’05, volume 3668 of LNCS, pages 326–340, 2005.
5. D. De Schreye and S. Decorte. Termination of Logic Programs: The Never-Ending

Story. Journal of Logic Programming, 19,20:199–260, 1994.
6. P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard. Springer, New

York, 1996.

16

7. J. Giesl. Termination of Nested and Mutually Recursive Algorithms. Journal of

Automated Reasoning, 19:1–29, 1997.
8. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The Dependency Pair Framework:

Combining Techniques for Automated Termination Proofs. In LPAR ’04, volume
3452 of LNAI, pages 301–331, 2005.

9. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and Im-
proving Dependency Pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

10. N. Hirokawa and A. Middeldorp. Automating the Dependency Pair Method. In-

formation and Computation, 199(1,2):172–199, 2005.
11. J. M. Howe and A. King. Efficient Groundness Analysis in Prolog. Theory and

Practice of Logic Programming, 3(1):95–124, 2003.
12. M. Marchiori. Proving Existential Termination of Normal Logic Programs. In

AMAST ’96, volume 1101 of LNCS, pages 375–390, 1996.
13. F. Mesnard and A. Serebrenik. Recurrence with Affine Level Mappings is P-Time

Decidable for CLP(R). Theory and Practice of Logic Programming, 8(1):111–119,
2007.

14. M. T. Nguyen, J. Giesl, P. Schneider-Kamp, and D. De Schreye. Termination
Analysis of Logic Programs based on Dependency Graphs. In LOPSTR ’07, volume
4915 of LNCS, pages 8–22, 2008.

15. M. T. Nguyen, D. De Schreye, J. Giesl, and P. Schneider-Kamp. Polytool: Polyno-
mial Interpretations as a Basis for Termination Analysis of Logic Programs. Theory

and Practice of Logic Programming, 2010. To appear.
16. P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann. Automated Ter-

mination Proofs for Logic Programs by Term Rewriting. ACM Transactions on

Computational Logic, 10(1), 2009.
17. P. Schneider-Kamp, J. Giesl, and M. T. Nguyen. The Dependency Triple Frame-

work for Termination of Logic Programs. In LOPSTR ’09, volume 6037 of LNCS,
pages 37–51, 2010.

18. P. Schneider-Kamp, J. Giesl, T. Ströder, A. Serebrenik, and R. Thiemann. Auto-
mated Termination Analysis for Logic Programs with Cut. In ICLP ’10, Theory

and Practice of Logic Programming, 10(4-6):365–381, 2010. Extended version with
experimental details appeared as Technical Report AIB-2010-10, RWTH Aachen.
Available from http://aib.informatik.rwth-aachen.de/.

19. A. Serebrenik and D. De Schreye. On Termination of Meta-Programs. Theory and

Practice of Logic Programming, 5(3):355–390, 2005.
20. T. Ströder. Towards Termination Analysis of Real Prolog Programs. Diploma The-

sis, RWTH Aachen, 2010. http://aprove.informatik.rwth-aachen.de/eval/

cutTriples/.
21. The Termination Competition. http://www.termination-portal.org/wiki/

Termination_Competition.
22. The Termination Problem Data Base 7.0 (December 11, 2009). http://termcomp.

uibk.ac.at/status/downloads/.
23. C. Walther. On Proving the Termination of Algorithms by Machine. Artificial

Intelligence, 71(1):101–157, 1994.

17

A Proving the Correctness of the Transformation

For proving the correctness of our new transformation, we use the full definition
of DT problems built from a termination graph as opposed to the simplified
version we presented in the paper. Here, we must additionally consider the case
that some substitutions along a path must be disregarded due to backtracking.
We excluded such cases in the paper to ease presentation. To see the problem
arising from such a situation, consider the following example.

Example 2. Consider the following simple Prolog program P

p(X)← q(X). (9)

p(b). (10)

q(a). (11)

and the set of queries Q = {p(t) | p(t) ∈ T (Σ,N)}. We can obtain the following
path as part of a termination graph for P and Q.

p(T1); (∅, ∅)

(p(T1))
9
1 | (p(T1))

10
1 ; (∅, ∅)

Case

q(T2) | (p(T1))
10
1 ; (∅, ∅)

Eval T1/T2

. . .
Eval

� | (p(T1))
10
1 ; (∅, ∅)

EvalT2/a

. . .

Eval

(p(T1))
10
1 ; (∅, ∅)

Success

�; (∅, ∅)

Eval

T1/b

ε; (∅, ∅)

Eval

ε; (∅, ∅)

Success

If we successively apply all substitutions along this path, the resulting sub-
stitution is [T1/a]. This is not what we want since the answer substitution for
the complete path is [T1/b]. The problem is that we first reach a Suc node for
the answer substitution [T1/a] before we reach the second Suc node for the an-
swer substitution [T1/b]. To detect the latter, we make use of a scope value d.
Starting at the Suc node with a scope value of ∞ we update this value along

18

the Eval edge to the scope of the Eval node while gathering the substitution
[T1/b]. Thus, for the next Eval edge we only gather substitutions for ground
terms as the current scope value is not less than the one for the Eval node. So
here, we only gather id . By the same reasoning we only gather id along the next
edge for the first Eval node. Altogether, we obtain the intended substitution
[T1/b].

The formal definition of DT problems built for termination graphs is, thus,
given as follows.

Definition 5 (DT Problem from Termination Graph). Let G be a termi-
nation graph whose root n is (f(T1, . . . , Tm), ({Ti1 , . . . , Tik

}, ∅)). The DT prob-
lem DTP(G) for a termination graph G = (V,E) constructed from a program P
and set of queries Q is defined as (DG,QG,PG) where DG =

⋃

π triple path in G Triple(π),
QG = {qn(t1, . . . , tm) | ti1 , . . . , tik

are ground} with qn the fresh predicate chosen
for the root node by Rent, and PG =

⋃

π clause path in G Clause(π).
For a path π = n1 . . . nk, we define Clause(π) = Ren(n1)σπ ← Iπ,Ren(nk)

and Triple(π) = Rent(n1)σπ ← Iπ,Rent(nk). Here, Ren and Rent are defined
as in Def. 2 but Rent uses qn for a node n instead of pn. Furthermore, σπ,d and
Iπ are defined as follows (where the substitutions µ, σ, σ|G and the index m are
from the corresponding node nj−1):

σn1...nj ,d =















































id if j = 1

σn1...nj−1,dµ if nj−1 ∈ Split(G), nj = Succ(2, nj−1)

σn1...nj−1,mσ if nj−1 ∈ Eval(G),

nj = Succ(1, nj−1), d > m

σn1...nj−1,dσ|G if nj−1 ∈ Eval(G)

nj = Succ(1, nj−1), d ≤ m

σn1...nj−1,d otherwise

Inj ...nk
=



















� if j = k

Ren(Succ(1, nj))σnj ...nk,0, Inj+1...nk
if nj ∈ Split(G),

nj+1 = Succ(2, nj)

Inj+1...nk
otherwise

We also state the formal definition of a concretization, which is a substitu-
tion of the abstract variables respecting the information from a knowledge base
(G,U).

Definition 6 (Concretization). A substitution γ is a concretization w.r.t.
(G,U) iff Dom(γ) = A, V(Range(γ)) ⊆ N , V(Range(γ|G)) = ∅, and sγ 6∼ s′γ
for all (s, s′) ∈ U . The set of concretizations of an abstract state (S;KB) is
CON (S;KB) = {Sγ | γ is a concretization w.r.t. KB}.

19

The following lemmata show how the DTs and clauses of DTP(G) can be
used to simulate derivations of concrete states using the concrete inference rules
from Fig. 1 described by the root state of the graph. Before we state the lemmata,
we introduce the notions of a state prefix and extension respectively which will
be used in the following proofs.

Definition 7 (State Prefix, State Extension). Let S be a state with S =
S1 | · · · | Sk where ∀i ∈ {1, . . . , k} : Si is a single state element. Let S′ be
another state. S is a state prefix of S′ iff there is a bijection f : N → N and
S′ = S′1 | · · · | S

′
k | S

′′ for some state S′′ where we have for all i ∈ {1, . . . , k}:

– Si =?m implies S′i =?f(m)

– Si = � implies Si = S′i
– Si = Q implies S′i = Q′, Q′′ for a sequence of terms Q′′ where Q′ =

Q[!i/!f(i)∀i ∈ N]
– Si = (Q)n

m implies S′i = (Q′, Q′′)n
f(m) for a sequence of terms Q′′ where

Q′ = Q[!i/!f(i)∀i ∈ N]

For two states S and S′, S′ is a state extension of S iff S is a state prefix of S′.

Example 3. Consider the state S = t1, t2 | (t3)
i
m. The state t1 is a state prefix

of S while the state t1, t2 | (t3)
i
m | (t4)

i′

m′ is a state extension of S.

The notions of a state prefix and extension respectively are useful to describe
the connection between a termination graph and the concrete derivations it
represents. Due to the splitting of backtracking sequences and goals with the
rules Parallel and Split, the concrete derivation may contain states which
are not represented by only one abstract state, but by several different abstract
states instead. Still, we have to take this difference into account when we prove
the correctness of our transformation.

Thus, for the simulation of concrete derivations by abstract derivations, we
need to follow not only linear paths, but tree paths in a termination graph. This
is also due to the splitting of goals by the Split rule and to the splitting of
backtracking sequences we encounter at Parallel nodes. The following defini-
tion therefore gives us a structure for describing the way of a concrete derivation
through a termination graph.

Definition 8 (Tree Path). For termination graph G = (V,E) we call a (pos-
sibly infinite) word π = (n0, v0, p0), (n1, v1, p1), (n2, v2, p2), . . . over the set N×
V × (N ∪ {none}) a tree path w.r.t. G iff the following conditions are satisfied
for all i, j ∈ N:

– p0 = none,
– ni = nj =⇒ i = j,
– pi = none =⇒ i = 0,
– pi ∈ {n0, n1, n2, . . . } if i > 0,
– ni = pj =⇒ (vi, vj) ∈ E and
– pi < ni

20

– there are indices i0, . . . , imi
∈ {n0, n1, n2, . . . } with imi

= 0, i0 = i and
pir−1

= nir
for all r ∈ {1, . . . ,mi}.

We call (ni, vi, pi) a leaf of π iff there is no (nj , vj , pj) ∈ π with pj = ni. For
(ni, vi, pi) and (nj , vj , pj) we call (ni, vi, pi) an ancestor of (nj , vj , pj) iff there
are indices i0, . . . , imi

∈ {n0, n1, n2, . . . } with imi
= i, i0 = j and pir−1

= nir

for all r ∈ {1, . . . ,mi}.

To really follow a complete concrete derivation we would have to fork on
Parallel nodes, but as we will be interested in the relevant parts of the concrete
derivations for the reached states only, we may skip the failing branches due to
backtracking. Thus, the only nodes where we have to fork our tree path are
Split nodes.

Lemma 1 (Success Tree for Concrete Derivations in Termination Graph).
Let Sγ ∈ CON (S;KB) with S;KB = n ∈ V for a termination graph G = (V,E)
and there is a concrete derivation with l steps from Sγ to a state S′′. Then there
is a node n′ ∈ V , a concretization γ′ and a variable renaming ρ on N with
n′ = S′;KB ′, S′γ′ ∈ CON (S′;KB ′), S′γ′ρ is a state prefix of S′′ and there is a
tree path π = (0, v0, p0), . . . , (k, vk, pk) w.r.t. G with the following properties:

– v0 = n
– for all i ∈ {0, . . . , k} there are concretizations γi and variable renamings ρi

on N such that the concrete derivation reaches a state extension of Siγiρi

in li ≤ l steps where vi = Si;KB i and Siγi ∈ CON (Si;KB i)
– for all leaves (i, vi, pi) of π with i 6= k we have vi ∈ Suc(G)
– for all (i, vi, pi) with more than one successor in π, we have vi ∈ Split(G)
– for all (i, vi, pi) with vi ∈ Split(G) and only one successor (j, vj , i) in π, we

have vj = Succ(1, vi)
– vk = n′

Proof. We perform the proof by induction over the lexicographic combination
of first the length l of the concrete derivation and second the edge relation of
G′. Here, G′ is like G except that it only contains outgoing edges of Instance-,
Parallel-, and Split-nodes. Note that this induction relation is indeed well-
founded as G′ is an acyclic and finite graph. The reason is that when travers-
ing nodes (S;KB) in G′ the number of terms in S cannot increase. Since this
number is strictly decreased in Parallel- and Split-nodes any infinite path
in G′ must in the end only traverse Instance-nodes. This is in contradiction
to the definition of termination graph which disallows cycles consisting only of
Instance-nodes.

We first show that the lemma holds for nodes S;KB where one of the abstract
rules Instance, Parallel, or Split have been applied. Here, whenever we have
to define the concretization γ′ and the variable renaming ρ and if these are not
specified then γ′ = γ and ρ = id.

– If we applied the Instance rule to n, we have Succ(1, n) = S′;KB ′ with
S = S′µ. From the soundness proof for Instance we know that there is a

21

concretization γ′′ such that S′γ′′ ∈ CON (S′;KB ′) and Sγ = S′γ′′µ|N . As
µ|N is a variable renaming we conclude that the concrete derivation from Sγ
to a state extension of S′′ can be completely simulated by a corresponding
concrete derivation from S′γ′′ to a state extension of S′′′ of length l where
the only difference is the application of µ|N . To be more precise, if Si is
the i-th state in the concrete derivation from Sγ to a state extension of S′′

then there also is an i-th state S′i in the concrete derivation from S′γ′′ to
a state extension of S′′′ and S′iµ|N = Si. Hence, we can use the induction
hypothesis for the latter concrete derivation to obtain a tree path π′ with
root S′;KB ′. To obtain π from π′ we first modify all variable renamings by
additionally adding µ|N (ρi = ρ′iµ|N). Then we add the node S;KB as new
root and start the path with the edge from S;KB to S′,KB ′.

– If we applied the Parallel rule to n, we reach two states S1;KB and S2;KB
where S = S1 | S2. There are two cases depending on whether the concrete
derivation reaches a state extension of S2γ. If the concrete derivation reaches
such a state, we use Succ(2, n) instead of n and insert the path from n to
Succ(2, n) before the tree path we obtain by the induction hypothesis for
Succ(2, n). If the concrete derivation does not reach such a state, we know
from the soundness proof of Parallel that a state prefix of S′′ must be
reachable from S1γ and as we clearly have that S1 is a state prefix of S, we
use Succ(1, n) instead of n and insert the path from n to Succ(1, n) before
the tree path we obtain for Succ(1, n) by the induction hypothesis.

– If we applied the Split rule to n, we know that S = t,Q, Succ(1, n) = t;KB
and Succ(2, n) = Qµ;KB ′.
If the concrete derivation reaches a state extension of Qγµ′ for some answer
substitution µ′, we know from the soundness proof of Split that there is
a concretization γ′ w.r.t. KB ′ such that Qγµ′ = Qµγ′. Additionally, we
know that the concrete derivation reaches a state extension of � from tγ. As
this concrete derivation is shorter than the one of (t,Q)γ we obtain a node
n′′ ∈ Suc(G) and a tree path π′ for Succ(1, n) by the induction hypothesis.
Also, we obtain a node n′′′ and a tree path π′′ for Succ(2, n) by the induction
hypothesis for the concrete derivation of (Qµ)γ′ to a state extension of S′′.
Using γ′ and id for Succ(2, n), we obtain the node n′ = n′′′ and the desired
tree path π by using n as the root with π′ as its left and π′′ as its right
subtree path.
If the concrete derivation does not reach a state extension of Qγµ′ for any
answer substitution µ′, we know by the soundness proof of Split that a
state prefix of S′′ must be reachable from tγ within l steps. Hence, we can
apply the induction hypothesis and add (S;KB) as a new root with only one
edge to (t;KB).

For l = 0 we know that Sγ = S′′ ∈ CON (S;KB). Thus, for γ0 = γ, ρ0 = id
and n′ = n we obtain π = (0, n, none) as the desired tree path. So, let l > 0.
We now perform a case analysis over the first concrete inference rule applied
in the concrete derivation where we can assume that none of the abstract rules
Instance, Parallel, or Split have been applied to the abstract state.

22

– For Case we have S = t,Q | Sr and the concrete derivation starts with
Sγ ⊢ (t,Q)i1

j γ | · · · | (t,Q)im
j γ | Srγ. In the abstract setting it remains

to analyze an application of the Case rule to n where we reach the state
n′′ = (t,Q)i1

j | · · · | (t,Q)im
j | Sr;KB . By the induction hypothesis we obtain

a node n′′′ and a tree path π′ with the properties in Lemma 1 for n′′. We
obtain the desired node n′ = n′′′ and the tree path π by inserting the path
from n to n′′ before π′.

– For Suc we have S = � | Sr and the concrete derivation reaches the state
Srγ. So the only applicable remaining abstract inference rule for n is Suc.
Then we reach the state Sr;KB . By the induction hypothesis we obtain a
node n′ and a tree path π′ with the properties in Lemma 1 for Sr;KB . Thus,
we obtain the desired node n′ and the tree path π by inserting the path from
n to Sr;KB before π′.

– For Fail and Cut the proof is analogous to the case where the Suc rule is
the first rule in the concrete derivation.

– For Eval we have S = (t,Q)i
j | Sr and the concrete derivation reaches

the state B′iσ
′′, Qγσ′′ | Srγ as defined in the Eval rule. We know that the

only remaining applicable abstract inference rule for n is Eval. Then we
have Succ(1, n) = B′iσ,Qσ | Srσ|G ;KB ′. From the soundness proof of Eval
we know that there is a concretization γ′′ w.r.t. KB ′ with B′iσγ′′, Qσγ′′ |
Srσ|Gγ

′′ = B′iσ
′′, Qγσ′′ | Srγ. By the induction hypothesis we obtain a

node n′ and a tree path π′ with the properties in Lemma 1 for B′iσ,Qσ |
Srσ|G ;KB ′. Thus, we obtain the desired node n′ and the tree path π by
inserting the path from n to B′iσ,Qσ | Srσ|G ;KB ′ before π′ using γ′′ and id
for B′iσ,Qσ | Srσ|G ;KB ′.

– For Backtrack we have S = (t,Q)i
j | Sr and the concrete derivation reaches

the state Srγ. Thus, the only remaining applicable abstract inference rules
for n are Eval and Backtrack.
If we applied the Eval rule we have Succ(2, n) = Sr;KB ′ as defined in Eval
where we know by the soundness proof of Eval that γ is a concretization
w.r.t. KB ′. By the induction hypothesis we obtain a node n′ and a tree path
π′ with the properties in Lemma 1 for Sr;KB ′. Thus, we obtain the desired
node n′ and the tree path π by inserting the path from n to Sr;KB ′ before
π′ using γ and id for Sr;KB ′.
If we applied the Backtrack rule we have Succ(1, n) = Sr;KB ′ and, hence,
the same case for Succ(1, n) here as for Succ(2, n) in the case of Eval.

Lemma 2 (Single Concretization). Given a path π = n1 . . . nk with nj /∈
Instance(G) for all j ∈ {1, . . . , k−1} and a concrete derivation such that there
are variable renamings ρ1, . . . , ρk and concretizations γ1, . . . , γk w.r.t. KB1, . . . ,KBk

where ni = Si;KB i for all i ∈ {1, . . . , k} and the concrete derivation goes from
a state extension of S1γ1ρ1 to a state extension of Skγkρk by reaching state ex-
tensions of all Siγiρi, then there is a variable renaming ρ and a concretization
γ w.r.t. all knowledge bases KB i such that Siγiρi = Siγρ.

Proof. We perform the proof by induction over the length k of the path π.

23

For k = 1 we have n1 = nk and only one variable renaming and concretization
γ1ρ1 = γρ. Hence, the lemma trivially holds.

For k > 1 we can assume the lemma holds for paths of length at most k− 1.
By inspection of all abstract inference rules other than Instance we know that
only fresh abstract variables are introduced by these rules. We perform a case
analysis over n1 and n2.

– If n1 ∈ Split(G) and n2 = Succ(2, n1), i.e., we traverse the right child of
a Split node, we have n1 = t,Q;KB and n2 = Qµ;KB ′ as defined in the
Split rule. By the induction hypothesis we obtain a variable renaming ρ and
a concretization γ′ w.r.t. KB j for all j ∈ {2, . . . , k} such that Sjγjρj = Sjγ

′ρ.
In particular, we have Qµγ2ρ2 = Qµγ′ρ. By [18, Lemma 5] and the fact
that the concrete derivation reaches a state extension of Qµγ2ρ2 from a
state extension of (t,Q)γ1ρ1 with some answer substitution µ′, we obtain
γ1ρ1µ

′ = µγ2ρ2 with γ1|A(t)∪A(Q)∪A(KB) = γ2|A(t)∪A(Q)∪A(KB) and ρ1 = ρ2.
Since only fresh abstract variables are introduced along π, we have for all
abstract variables T ∈ (A(t) ∪ A(Q) ∪ A(KB)) \ (A(Qµ) ∪ A(KB ′)) that
T /∈ A(Sj) ∪ A(KB j). Hence, we can define the concretization γ by Tγ =
Tγ1 for T ∈ (A(t) ∪ A(Q) ∪ A(KB)) \ (A(Qµ) ∪ A(KB ′)) and Tγ = Tγ′

otherwise. Then we obviously have Siγρ = Siγiρi for all i ∈ {1, . . . , k} and
Sjγρ = Sjγ

′ρ for all j ∈ {2, . . . , k}. As γ is equally defined to γ′ for all
variables occurring in the knowledge bases KB j , we clearly have that γ is
a concretization w.r.t. KB j . Moreover, as γ is equally defined to γ1 for all
variables occurring in KB1, it is also a concretization w.r.t. KB1.

– If n1 ∈ Eval(G) and n2 = Succ(1, n1), i.e., we traverse the left child of an
Eval node, we have n1 = (t,Q)c

m | S;KB and n2 = B′cσ,Qσ | Sσ|G ;KB ′ as
defined in the Eval rule. By the induction hypothesis we obtain a variable
renaming ρ and a concretization γ′ w.r.t. KB j for all j ∈ {2, . . . , k} such
that Sjγjρj = Sjγ

′ρ. In particular, we have B′cσγ2ρ2, Qσγ2ρ2 | Sσ|Gγ2ρ2 =
B′cσγ′ρ,Qσγ′ρ | Sσ|Gγ′ρ. By [18, Lemma 2] and the fact that the con-
crete derivation reaches a state extension of B′cσγ2ρ2, Qσγ2ρ2 | Sσ|Gγ2ρ2

from a state extension of (t,Q)c
mγ1ρ1 | Sγ1ρ1 with answer substitution σ′,

we obtain γ1ρ1σ
′ = σγ2ρ2 with γ1|A(t)∪A(Q)∪A(S)∪A(KB) =

γ2|A(t)∪A(Q)∪A(S)∪A(KB) and ρ1 = ρ2. Since only fresh abstract variables
are introduced along π, we have for all abstract variables T ∈ (A(t) ∪
A(Q) ∪A(S) ∪A(KB)) \ (A(B′cσ) ∪A(Qσ) ∪A(Sσ|G) ∪A(KB ′)) that T /∈
A(Sj)∪A(KB j). Hence, we can define the concretization γ by Tγ = Tγ1 for
T ∈ (A(t)∪A(Q)∪A(S)∪A(KB))\ (A(B′cσ)∪A(Qσ)∪A(Sσ|G)∪A(KB ′))
and Tγ = Tγ′ otherwise. Then we obviously have Siγρ = Siγiρi for all
i ∈ {1, . . . , k} and Sjγρ = Sjγ

′ρ for all j ∈ {2, . . . , k}. As γ is equally de-
fined to γ′ for all variables occurring in the knowledge bases KB j , we clearly
have that γ is a concretization w.r.t. KB j . Moreover, as γ is equally defined
to γ1 for all variables occurring in KB1, it is also a concretization w.r.t. KB1.

– For all other cases we know that γ1ρ1 = γ2ρ2. Hence, the lemma follows by
the induction hypothesis.

24

Lemma 3 (Answer Substitutions are Instances of Path Substitutions).
Given a path π = n1 . . . nk with nj /∈ Instance(G) for all j ∈ {1, . . . , k−1} and a
concrete derivation such that there is a variable renaming ρ and a concretization
γ w.r.t. KB1, . . . ,KBk where ni = Si;KB i for all i ∈ {1, . . . , k} and the concrete
derivation goes from a state extension of S1γρ to a state extension of Skγρ with
answer substitution δ by reaching state extensions of all Siγρ, then σπ,∞γρ = γρδ
and Skγρδ = Skγρ.

Proof. We perform the proof by induction over the length k of the path π.
For k = 1 we have n1 = nk and the empty answer substitution δ = id =

σn1,∞. Hence, the lemma trivially holds.
For k > 1 we can assume the lemma holds for paths of length at most k− 1.

We perform a case analysis over n1 and n2.

– If n1 ∈ Split(G) and n2 = Succ(2, n1), i.e., we traverse the right child of a
Split node, we have n1 = t,Q;KB and n2 = Qµ;KB ′ as defined in the Split
rule. By the induction hypothesis we obtain σn2...nk,∞γρ = γρδ′′ where δ′′

is the answer substitution of the concrete derivation from a state extension
of Qµγρ to a state extension of Skγρ and Skγρδ′′ = Skγρ. For the answer
substitution µ′ of the concrete derivation from a state extension of (t,Q)γρ
to a state extension of Qµγρ we know by [18, Lemma 5] that γρµ′ = µγρ.
Therefore, we have γρδ = γρµ′δ′′ = µγρδ′′ = µσn2...nk,∞γρ = σπ,∞γρ.
Furthermore, we know that µ is idempotent as all variables in the range of
µ are fresh. As we applied µ to S2 already and we know by inspection of
the abstract inference rules other than Instance that only fresh variables
are introduced along π, we obtain Skµ = Sk. Hence, we have Skγρδ =
Skγρµ′δ′′ = Skµγρδ′′ = Skγρδ′′ = Skγρ.

– If n1 ∈ Eval(G) and n2 = Succ(1, n1), i.e., we traverse the left child
of an Eval node, we have n1 = (t,Q)c

m | S;KB and n2 = B′cσ,Qσ |
Sσ|G ;KB ′ as defined in the Eval rule. By the induction hypothesis we ob-
tain σn2...nk,∞γρ = γρδ′′ where δ′′ is the answer substitution of the concrete
derivation from a state extension of B′cσγρ,Qσγρ | Sσ|Gγρ to a state ex-
tension of Skγρ and Skγρδ′′ = Skγρ. For the answer substitution σ′ of the
concrete derivation from a state extension of (t,Q)c

mγρ | Sγρ to a state ex-
tension of B′cσγρ,Qσγρ | Sσ|Gγρ we know by [18, Lemma 2] that γρσ′ = σγρ
and γρ = σ|Gγρ. Furthermore, we know that σ is idempotent as the range
of σ contains only fresh variables. Now there are two cases depending on
whether σπ,∞ starts with σ or σ|G . In the first case we know by definition
of σπ,∞ that we do not have a node nj ∈ Eval(G) with j ∈ {2, . . . , k − 1}
with a scope less or equal than m. Since the scopes are ascendingly ordered,
we know that the concrete derivation did not backtrack the substitution
σ′. Hence, we obtain γρδ = γρσ′δ′′ = σγρδ′′ = σσn2...nk,∞γρ = σπ,∞γρ.
Additionally, we already applied σ to S2. As we know by inspection of all
abstract inference rules other than Instance that only fresh variables are
introduced along π, we obtain Skσ = Sk by σ being idempotent. Hence,
we have Skγρδ = Skγρσ′δ′′ = Skσγρδ′′ = Skγρδ′′ = Skγρ. In the second
case we know by definition of σπ,∞ that we do have a node nj ∈ Eval(G)

25

with j ∈ {2, . . . , k − 1} with a scope less or equal than m. Since the scopes
are ascendingly ordered, we know that the concrete derivation did backtrack
the substitution σ′ and we have the same answer substitution δ′′ for the
complete concrete derivation. This amounts to γρδ = γρδ′′ = σGγρδ′′ =
σGσn2...nk,∞γρ = σπ,∞γρ. Moreover, we obtain Skγρδ = Skγρδ′′ = Skγρ.

– For all other cases we know that the concrete derivation has the empty
answer substitution from the state extension of S1γρ to the state extension
of S2γρ. By the induction hypothesis we obtain σn2...nk,∞γρ = γρδ′′ where δ′′

is the answer substitution of the concrete derivation from a state extension
of S2γρ to a state extension of Skγρ and Skγρδ′′ = Skγρ. Then we have
γρδ = γρδ′′ = σn2...nk,∞γρ = σπ,∞γρ and Skγρδ = Skγρδ′′ = Skγρ.

Now, using the preceding results, we can simulate the evaluation of interme-
diate goals with the clauses from PG. We use the connection between concrete
and abstract derivations by tree paths and the connection between the answer
substitutions of successful evaluations and the substitutions we generated from
a path in a termination graph.

Lemma 4 (Simulation of Intermediate Goals Using PG). Let S;KB ∈
Succ(1, Instance(G) ∪ Split(G)).

If there is a variable renaming ρ on N and a concretization γ w.r.t. KB such
that there is a concrete derivation from Sγρ to a state extension of �, then we
have Ren(S;KB)γρ ⊢∗PG

�.

Proof. From Lemma 1 we know that there is a tree path πtree = (0, v0, none),
(1, v1, p1), . . . , (k, vk, pk) with the following properties:

– v0 = S;KB
– for all i ∈ {0, . . . , k} there are concretizations γi and variable renamings ρi on
N such that the concrete derivation reaches a scope variant of a state exten-
sion of Siγiρi in li ≤ l steps where vi = Si;KB i and Siγi ∈ CON (Si;KB i)

– for all (i, vi, pi) with more than one successor in πtree , we have vi ∈ Split(G)
– for all (i, vi, pi) with vi ∈ Split(G) and only one successor (j, vj , i) in πtree ,

we have vj = Succ(1, vi)
– for all leaves (i, vi, pi) of πtree we have vi ∈ Suc(G)

The last property follows from the fact that the concrete derivation reaches a
state extension of �.

We perform the proof by induction over the length k of the tree path πtree

which is at least 1.
For k = 1 we have πtree = (0, S;KB , none) and S;KB ∈ Suc(G). Thus, we

have Ren(S;KB) = � ⊢∗PG
�. For k > 1 we can assume the lemma holds for

tree paths of length at most k − 1.
Consider the rightmost path π through the tree path πtree . As the concrete

derivation reaches a state extension of �, π must be a sequence of clause paths
w.r.t. G. If this sequence has the length 1, we obtain Ren(S;KB)σπ,∞ ← Iπ ∈
PG and by Lemma 2 we can w.l.o.g. assume that all concretizations and vari-
able renamings used in π are equal to γ and ρ. By Lemma 3 we know that

26

Ren(S;KB)σπ,∞ unifies with Ren(S;KB)γρ by γρδ where δ is the answer sub-
stitution of the concrete derivation from Sγρ to a state extension of �. Thus,
we obtain Ren(S;KB)γρ ⊢∗PG

Iπγρδ. As we have for all intermediate goals in Iπ

some subtree paths in π such that the concrete derivation reaches a state exten-
sion of � from the respective intermediate goal in Iπγρ, we can use the induction
hypothesis and obtain Iπγρ ⊢∗PG

�. Now, since δ is the answer substitution for
the complete concrete derivation, we obtain Iπγρδ ⊢∗PG

� by Lemma 3. Now let
the length of the sequence be greater than 1. For the first clause path in the
sequence to a node vi we obtain Ren(S;KB)γρ ⊢∗PG

Ren(vi)γρ by the identical
argument as for the sequence of length 1. The remaining tree path from (i, vi, pi)
is shorter than k and, therefore, we obtain Ren(vi)γρ ⊢∗PG

� by the induction
hypothesis.

As we can simulate intermediate goals with PG, we can simulate the evalua-
tion along triple paths with the DTs in DTP(G).

Lemma 5 (Simulation of Concrete Derivations Using DTP(G)). Given
a concrete derivation and a corresponding tree path πtree w.r.t. G with the prop-
erties from Lemma 1 and a rightmost path π = n0 . . . nk in πtree where for i < k,
ni 6∈ Instance(G), we have Rent(n0)γ0ρ0 ⊢Triple(π) ◦ ⊢

∗
PG

Rent(nk)γkρk where
the γj and ρj are the concretizations and variable renamings respectively used in
πtree .

Proof. We perform the proof by induction over k, which is the length of π minus
one.

For k = 0 we have n0 = nk and, therefore, Triple(π) = Rent(n0) ←
Rent(n0). Thus, obviously we have Rent(n0)γ0ρ0 ⊢Triple(π)

Rent(n0)γ0ρ0. For k > 0, we can assume the lemma holds for paths of length
at most k. By Lemma 2 we can w.l.o.g. assume that γ0 = . . . = γk = γ and
ρ0 = . . . = ρk = ρ.

We now perform a case analysis based on nk and nk−1.

If nk−1 ∈ Split(G) and nk = Succ(2, nk−1), i.e., we traverse the right
child of a Split node, we know by the induction hypothesis that Rent(n0)γρ
⊢Triple(n1...nk−1)◦⊢∗PG

Rent(nk−1)γρ. From the [18, Lemma 5] we know that

γρµ′ = µγρ where Ren(Succ(1, nk−1))γρ ⊢∗PG
� with answer substitution µ′.

The latter follows from Lemma 4 and the fact that the concrete derivation must
reach a state extension of � from Succ(1, nk−1)γρ. By Lemma 3, we also know
that Rent(n0)γρ unifies with the head of Triple(π) by γρδ where δ is the answer
substitution for the complete concrete derivation and that we do not have to
apply δ to Rent(nk) completely. Furthermore, we obtain the same derivation for
Ren(Succ(1, nk−1))γρδ as for Ren(Succ(1, nk−1))γρ, but with the empty answer

27

substitution by Lemma 3. Thus, we obtain:

Rent(n0)γρ

⊢Triple(π) ◦ ⊢
∗
PG

Ren(Succ(1, nk−1))γρδ,Rent(nk)µ−1γρµ′

⊢∗PG
Rent(nk)µ−1γρµ′

= Rent(nk)µ−1µγρ

= Rent(nk)γρ

If nk−1 ∈ Eval(G) and nk = Succ(1, nk−1), i.e., we traverse the left child of
an Eval node, we know by the induction hypothesis that Rent(n0)γρ
⊢Triple(n1...nk−1) ◦ ⊢

∗
PG

Rent(nk−1)γρ. From [18, Lemma 2] we know that Qγρσ′

= Qσγρ and Sγρ = Sσ|Gγρ. By Lemma 3, we also know that Rent(n0)γρ uni-
fies with the head of Triple(π) by γρδ where δ is the answer substitution for the
complete concrete derivation and that we do not have to apply δ to Rent(nk)
completely. Let nk−1 = (t,Q)i

m | S; (G,U). Then, we obtain:

Rent(n0)γρ

⊢Triple(π) ◦ ⊢
∗
PG

Rent(Qγρσ′ | Sγρ; (G,U))

= Rent(Qσγρ | Sσ|Gγρ; (G′,Uσ|G))

= Rent(nk)γρ

If nk−1 ∈ Eval(G) and nk = Succ(2, nk−1) or nk−1 ∈ Backtrack(G) ∪
Suc(G)∪Fail(G), i.e., we backtrack by removing the first element of the back-
tracking sequence, we know by Lemma 3 that Rent(n0)γρ unifies with the head
of Triple(π) by γρδ where δ is the answer substitution for the complete con-
crete derivation and that we do not have to apply δ to Rent(nk) completely.
We perform a case analysis based on the existence of a Case node introducing
m in n1 . . . nk−1. If such a Case node does not exist in our path, there is also
no Split node in our path. Thus, Iπ = �. By Lemma 3, we also know that
Rent(n0)γρ unifies with the head of Triple(π) by γρδ where δ is the answer sub-
stitution for the complete concrete derivation and that we do not have to apply
δ to Rent(nk). Thus, we obtain Rent(n0)γρ ⊢Triple(π) Rent(nk)γρ. If there is
such a Case node in our path, i.e., there is a j such that nj ∈ Case(G) and

Succ(1, nj) = (t′, Q′)i′

m | S′;KB j , we know by the induction hypothesis that
Rent(n0)γρ ⊢Triple(n1...nj) ◦ ⊢

∗
PG

Rent(nj)γρ. For the remaining path π′ we
have Iπ′ = � and γρ being an instance of σπ′,∞ by Lemma 3. Thus, we obtain
Rent(n0)γρ ⊢Triple(π) ◦ ⊢

∗
PG

Rent(nk)γρ.

Finally, if nk−1 is in none of the above sets, we have σπ,∞ = σn1...nk−1,∞ and
Iπ = In1...nk−1

. Again, from the induction hypothesis we know that Rent(n0)γρ
⊢Triple(n1...nk−1) ◦ ⊢

∗
PG

Rent(nk−1)γρ. From the definition of the abstract rules
used, we know that V(sk) ⊆ V(sk−1) as they do not apply any substitutions and,
thus, Rent(n0)γρ ⊢Triple(π) ◦ ⊢

∗
PG

Rent(nk)γρ.

Combining these results yields our central theorem.

28

Proof. Assume (DG,QG,PG) is terminating, but there is a concretization Sγ ∈
CON (S;KB) from root(G) = n0 = S;KB that has an infinite concrete deriva-
tion. Then, according to Lemma 1 there is an infinite tree path πtree where the
rightmost path π = n0, n1, n2, . . . in πtree is an infinite sequence of triple paths
π0, π1, π2, . . . and there are indices l0, l1, l2, . . . such that πm = nlm ,

Now, according to Lemma 5 we know that for all m ∈ N there are concretiza-
tions γm and variable renamings ρm such that Rent(nlm)γlmρm ⊢Triple(πm) ◦ ⊢

∗
PG

Rent(nlm+1
)γlm+1

ρm+1.
Thus, Rent(nl0)γl0ρ0 ∈ QG starts an infinite (DG,QG,PG)-chain

(Rent(nl0)σπ0,∅ ← Iπ0
,Rent(nl1)),

(Rent(nl1)σπ1,∅ ← Iπ1
,Rent(nl2)),

. . .
which contradicts our initial assumption and, hence, proves the theorem.

29

30

Aachener Informatik-Berichte

This list contains all technical reports published during the past five
years. A complete list of reports dating back to 1987 is available from
http://aib.informatik.rwth-aachen.de/. To obtain copies consult the
above URL or send your request to: Informatik-Bibliothek, RWTH
Aachen, Ahornstr. 55, 52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004
2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer
School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-
proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for
the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing
Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-
tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-
ploring a Root-Cause Methodology to Prevent Distributed Denial-of-
Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With
Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General
Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts
2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture
2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-
tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting
Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization
2005-15 Uwe Naumann: The Complexity of Derivative Computation
2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)
2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)
2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,
Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-
Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

31

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented
LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-
dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-
bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-
gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit
BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-
ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-
ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:
Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering
with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005
2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems
2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler
2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation
2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint
Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-
and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-
terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-
Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic
Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,
Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid
MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:
Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:
Replaying Play in and Play out: Synthesis of Design Models from Sce-
narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling
Equalities and Disequalities

32

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,
Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli
Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI
Work Group “Requirements Management Tools for Product Line Engi-
neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical
sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for
Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-
ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006
2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-
ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-
Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A
System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal
2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking
2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications
2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches
2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler
Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical
Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke
2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code
2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-
grams

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,
Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modular,
Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent programs
2007-16 Sadeq Ali Makram, Mesut Güneç, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Balanc-
ing for Wireless Mesh Networks

2007-17 René Thiemann: The DP Framework for Proving Termination of Term
Rewriting

33

2007-18 Uwe Naumann: Call Tree Reversal is NP-Complete
2007-19 Jan Riehme, Andrea Walther, Jörg Stiller, Uwe Naumann: Adjoints for

Time-Dependent Optimal Control
2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:

Three-Valued Abstraction for Probabilistic Systems
2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-

sitional Modeling and Minimization of Time-Inhomogeneous Markov
Chains

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,
and Berthold Vöcking: Uncoordinated Two-Sided Markets

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007
2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing
2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, Harald Zankl: Maximal Termination
2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler
2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations
2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message
Passing Programs

2008-07 Alexander Nyßen, Horst Lichter: The MeDUSA Reference Manual, Sec-
ond Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on
Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-
endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-
Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable
Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-
straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl
Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-
proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers
2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves
2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study
2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving
2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems

34

2008-19 Dirk Wilking: Empirical Studies for the Application of Agile Methods to
Embedded Systems

2009-02 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:
Quantitative Model Checking of Continuous-Time Markov Chains
Against Timed Automata Specifications

2009-03 Alexander Nyßen: Model-Based Construction of Embedded
Real-Time Software - A Methodology for Small Devices

2009-04 Daniel Klünder: Entwurf eingebetteter Software mit abstrakten Zus-
tandsmaschinen und Business Object Notation

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model
and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-
erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing
Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-
dependent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm
Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the
Correctness of the Upper Bound of a Maximum Independent Set Algo-
rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The
Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in
Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset Games
2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)
2009-15 Joost-Pieter Katoen, Daniel Klink, Martin Neuhäußer: Compositional

Abstraction for Stochastic Systems
2009-16 George B. Mertzios, Derek G. Corneil: Vertex Splitting and the Recog-

nition of Trapezoid Graphs
2009-17 Carsten Kern: Learning Communicating and Nondeterministic Au-

tomata
2009-18 Paul Hänsch, Michaela Slaats, Wolfgang Thomas: Parametrized Regular

Infinite Games and Higher-Order Pushdown Strategies
2010-02 Daniel Neider, Christof Löding: Learning Visibly One-Counter Au-

tomata in Polynomial Time
2010-03 Holger Krahn: MontiCore: Agile Entwicklung von domänenspezifischen

Sprachen im Software-Engineering
2010-04 René Wörzberger: Management dynamischer Geschäftsprozesse auf Ba-

sis statischer Prozessmanagementsysteme
2010-07 George B. Mertzios: A New Intersection Model for Multitolerance

Graphs, Hierarchy, and Efficient Algorithms

35

2010-08 Carsten Otto, Marc Brockschmidt, Christian von Essen, Jürgen Giesl:
Automated Termination Analysis of Java Bytecode by Term Rewriting

2010-09 George B. Mertzios, Shmuel Zaks: The Structure of the Intersection of
Tolerance and Cocomparability Graphs

2010-10 Peter Schneider-Kamp, Jürgen Giesl, Thomas Ströder, Alexander Sere-
brenik, René Thiemann: Automated Termination Analysis for Logic Pro-
grams with Cut

2010-11 Martin Zimmermann: Parametric LTL Games

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

36

