
Aachen
Department of Computer Science

Technical Report

Learning Visibly One-Counter

Automata in Polynomial Time

Daniel Neider and Christof Löding

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2010-02

RWTH Aachen · Department of Computer Science · January 2010

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Learning Visibly One-Counter Automata in

Polynomial Time

Daniel Neider and Christof Löding

Chair for Computer Science 7, RWTH Aachen University, Germany

Abstract. Visibly one-counter automata are a restricted kind of one-counter
automata: The input symbols are typed such that the type determines the in-
struction that is executed on the counter when the input symbol is read. We
present an Angluin-like algorithm for actively learning visibly one-counter au-
tomata that runs in polynomial time in characteristic parameters of the target
language and in the size of the information provided by the teacher.

1 Introduction

The aim of this paper is to develop a learning algorithm for the class of visibly
one-counter automata, which form a subclass of classical one-counter automata
that can manipulate the counter by the instructions increment and decrement,
and additionally can check the counter for zero. Visibly one-counter automata
use the same instructions but are more restrictive because the instruction to be
executed is determined by the input symbol. More precisely, visibly one-counter
automata work over a typed alphabet, where each symbol is associated with
either increment, decrement, or no operation. The zero tests are implicit in the
sense that the automaton can only accept if the counter value reaches zero at
the end of the word and never goes below zero during the execution.

In the same way as traditional one-counter automata can be seen as pushdown
automata with only one stack symbol, visibly one-counter automata are derived
from visibly pushdown automata, which also work over a typed alphabet where
each symbol is associated to the instruction push, pop, or no stack operation
[2]. This restricted class of pushdown automata naturally appears in several
contexts such as the verification of recursive programs [1], and in the processing
and transformation of XML documents (e.g. [9] and [10]). For the latter task,
it is very common to use tree automata (see [13]) because XML documents can
naturally be modeled as trees, where each pair of opening and closing tag induces
a subtree. But when transferring XML documents, they arrive as a stream, i.e.
as a word, and to process them online one has to use a formalism operating on
words instead of trees. Here it turns out that visibly pushdown automata are
the counter part of finite tree automata, in the sense that one can transform one
model into the other when switching between words and trees.

In the terminology of visibly pushdown automata, Segoufin and Vianu [15]
studied the problem of deciding for certain classes of XML documents (definable
by DTDs) whether they can be accepted by a restricted type of visibly pushdown
automata. These restricted automata are only allowed to store the opening tags
on the stack (and no additional information). Since such a restriction implies
that the visibly pushdown automaton can only use the stack to test whether
the input document is well-formed, this problem corresponds to the question
whether the given class of XML documents can be accepted by a finite automaton

under the assumption that the automaton only gets well-formed documents as
input. In [15] a partial result was obtained and later extended in [14], but the
problem in its full generality remains open. A modified version of the problem was
solved in [4], where the automaton model was further restricted to visibly one-
counter automata. In this version, the problem becomes decidable, i.e. given a
visibly pushdown automaton, it is decidable whether it is equivalent to a visibly
one-counter automaton. However, the upper bound for the complexity of the
procedure obtained in [4] is very discouraging (several exponentials).

In such situations, where no algorithms are known or the complexity of known
algorithms is very high, learning can offer a useful alternative to develop either
semi-algorithms or algorithms that quickly identify small solutions if they exist.
Such techniques are for example applied in verification, e.g. for compositional
verification [12] to avoid the construction of large intermediate systems, or in the
verification of FIFO systems [16] to obtain heuristics for undecidable problems.

Motivated by this, we study the problem of learning visibly one-counter au-
tomata. Our approach is inspired by work of Fahmy and Roos [7]. In their paper
they show how real time one-counter automata, i.e. one-counter automata with-
out ε-transitions, can be learned efficiently in an Angluin [3] learning setting.
Their method is based on a paper of Fahmy and Biermann [6], who describe
a general method for learning real-time automata that have access to certain
types of external memory like a counter, a stack, etc. They observe that it is
always possible to construct an automaton whose configuration graph (the tran-
sition graph over the cross product of the state space and the memory) and the
graph induced by the Nerode equivalence of the given language—the so-called
behavior graph—are isomorphic. Moreover, the configuration graph (and hence
the behavior graph) shows a repeating regular pattern, which is caused by the
automaton’s finite state space. Thus, a proper decomposition of a sufficiently
large part of the behavior graph into a finite state machine and a data structure
yields an automaton accepting the target language. The behavior graph itself is
learned using a slightly modified version of Angluin’s algorithm [3].

However, despite the close relationship between visibly and real-time one-
counter automata, this method cannot directly be applied to our setting: One
can show that there is a language acceptable by a visibly one-counter automaton
whose behavior graph is not isomorphic to any configuration graph of a visibly
one-counter automaton for this language. Nonetheless, the idea of learning a
part of the behavior graph, identifying its repeating pattern and building an
automaton from this information is used in a similar way in this paper.

We obtain an algorithm that identifies a visibly one-counter automaton for
the target language with a time complexity that is polynomial in characteristic
parameters of the language. The algorithm uses the classical membership and
equivalence queries known from Angluin’s algorithm [3], as well as a modified
equivalence query that asks for the correctness of the conjecture on specific sub-
sets of the target language. The latter query type is used to ensure that an initial
part of the behavior graph has been learned with enough precision.

This paper is organized as follows: Section 2 introduces basic definitions and
notations and, moreover, presents several results on visibly one-counter automata
that are used later. In Section 3 we present the learning algorithm itself, followed
by a complexity analysis. In Section 4 we conclude and give some perspectives.

2

2 Definitions and Notation

An alphabet Σ is a finite set of symbols. A word is a finite sequence w = a1 . . . an
of symbols ai ∈ Σ for i = 1, . . . , n. The empty word is denoted by ε. The
concatenation of two words u = a1 . . . an and v = b1 . . . bm is the word u · v =
uv = a1 . . . anb1 . . . bm. A word u is a prefix of w if there is a word v with w = uv.
The set of all prefixes of w is denoted by pref(w). A set R is prefix closed if for
every wa ∈ R also w ∈ R holds. Analogous, a set S is suffix closed if for every
aw ∈ S also w ∈ S holds.

The set of all finite words over Σ is denoted by Σ∗. A subset L ⊆ Σ∗ is called
a language.

Visibly One-Counter Automata. A visibly one-counter automaton is defined
over a pushdown alphabet Σ̃ = (Σc, Σr, Σint), which is a tuple of three disjoint
alphabets: Σc is a set of calls, Σr is a set of returns and Σint is a set of internal
actions. For any pushdown alphabet Σ̃ let Σ = Σc ∪Σr ∪Σint. The intuition is
that a visibly one-counter automaton has to increment its counter on reading a
call and decrement its counter on reading a return. An internal action leaves the
counter unchanged. With this intuition we can define the sign χ(a) of a symbol
a ∈ Σ as χ(a) = 1 if a ∈ Σc, χ(a) = −1 if a ∈ Σr and χ(a) = 0 if a ∈ Σint.

Definition 1 ([4]). A visibly one-counter automaton with threshold m (m-
VCA) over a pushdown alphabet Σ̃ is a tuple A = (Q,Σ, q0, δ0, . . . , δm, F) where
Q is a finite, nonempty set of states, Σ is the input alphabet induced by Σ̃, q0 ∈ Q
is an initial state, δi : Q×Σ → Q is a transition function for every i = 0, . . . ,m
and F ⊆ Q is a set of final states.

A configuration of A is a pair (q, k) where q ∈ Q is a state and k ∈ N

is a counter value. There is an a-transition from (q, k) to (q′, k′), denoted by
(q, k)

a
−→A (q′, k′), if k′ = k+χ(a) ≥ 0 and δk(q, a) = q′ if k < m and δm(q, a) = q′

if k ≥ m. Note that a return cannot be processed if the counter is zero.
A run of A on a word w = a1 . . . an ∈ Σ

∗ is a sequence (q0, k0), . . . , (qn, kn)
of configurations such that (qi−1, ki−1)

ai−→A (qi, ki) holds for i = 1, . . . , n. We
also write (q0, k0)

w
−→A (qn, kn). A word w is accepted by A if there is a run

(q0, 0)
w
−→A (q′, 0) where q0 is the initial state and q′ ∈ F . The language L(A)

of an m-VCA A is the set of all words accepted by A. A language L ⊆ Σ∗ is
said to be m-VCA-acceptable if there is an m-VCA A with L = L(A). Moreover,
we call L VCA-acceptable or a visibly one-counter language if there is an m ∈ N

such that L is m-VCA-acceptable.
During a run of a VCA on a word w ∈ Σ∗ the VCA has no control over

its counter. Instead the counter value is solely determined by the prefix u of w
read so far. This allows to define the counter value of a word w = a1 . . . an as
cv(w) =

∑n
i=1 χ(ai) and cv(ε) = 0. Moreover, we say that w has height h if h is

the maximal counter value of any prefix of w. In the subsequent sections we use
the following sets:

– Σ∗≥0 = {w ∈ Σ∗ | ∀u ∈ pref(w) : cv(u) ≥ 0} is the set of all words processable
by VCAs

– Σ∗0,t = {w ∈ Σ∗ | ∀u ∈ pref(w) : 0 ≤ cv(u) ≤ t} is the set of all words
processable by VCAs whose heights do not exceed a fixed value t

3

Behavior Graphs. When developing a learning algorithm for a language class,
it is very useful to have canonical representations for the languages in this class.
For the class of regular languages, such a canonical representation is the Nerode
right-congruence, or equivalently the canonical deterministic automaton for the
language, which can be derived from the Nerode congruence (see [8]). For a VCA
language L we introduce a similar canonical object, the behavior graph of L,
which basically corresponds to the canonical automaton. This object is infinite,
in general, but it has a periodic structure and can thus be represented by a finite
object. Such a finite representation is what our learning algorithm constructs.

Definition 2. Let L be a visibly one-counter language. The refined Nerode con-
gruence ∼L⊆ Σ

∗
≥0 × Σ

∗
≥0 is defined as follows: Two words u, v ∈ Σ∗≥0 are L-

equivalent, denoted by u ∼L v, if and only if cv(u) = cv(v) and uw ∈ L⇔ vw ∈ L
for all w ∈ Σ∗. The equivalence class of a word w is defined as [[w]]L = {u ∈
Σ∗≥0 | u ∼L w}.

The refined Nerode congruence is a refinement of the standard Nerode con-
gruence, which additionally takes the counter values of words into account. In
fact, because VCAs accept with counter value zero, only one equivalence class of
the standard Nerode congruence is refined: The one that contains all words that
cannot be extended to a word in L. Note that ∼L is a right congruence in the
sense that u ∼L v implies ua ∼L va for a ∈ Σ if ua, va ∈ Σ∗≥0.

By definition, all words of an equivalence class have the same counter value.
Therefore, we define the counter value of an equivalence class as cv([[w]]L) =
cv(w).

Using the congruence ∼L one can construct an infinite state machine accept-
ing the language L in the obvious way.

Definition 3. Let L be a visibly one-counter language and ∼L the refined Nerode
congruence. The behavior graph of L is a tuple BGL = (QL, Σ, q

L
0 , δL, FL) where

QL = {[[w]]L | w ∈ Σ
∗
≥0} is the set of states, qL0 = [[ε]]L is the initial state,

δ([[w]]L, a) = [[wa]]L for [[w]]L, [[wa]]L ∈ QL and a ∈ Σ is the transition function
and FL = {[[w]]L | w ∈ L} is the set of final states.

Runs, acceptance and the language L(BGL) of a behavior graph are defined
in the usual way. A straight-forward induction shows L(BGL) = L. Note that
the definition of behavior graphs is sound and results in a deterministic infinite
state machine since ∼L is a right congruence. Figure 1 shows an example of a
behavior graph.

Our learning algorithm is based on the observation that behavior graphs of
visibly one-counter languages have a special repeating structure: They start with
an “initial part” which is followed by a “repeating part” that repeats ad infinitum.
This decomposition of the above example language is depicted in Figure 1.

To formalize this observation, we state that the number of equivalence classes
on each level of the behavior graph, i.e. on the set of equivalence classes of the
same counter value, is bounded by a constant K ∈ N: Each m-VCA accepting
L can only use its states to distinguish non-equivalent words with the same
counter value above m. The minimal value of K is called the width of BGL.
This fact allows to enumerate the equivalence classes on a level i ∈ N using

4

Initial part Repeating parts

[[ε]]
L

[[ccarr]]
L

a [[ccar]]
L

[[cca]]
L

[[ccca]]
L

[[c]]
L

[[cc]]
L

[[ccc]]
L

. . .

. . .c c c c

aa

rrr r

Counter value

Fig. 1. Behavior graph of the visibly one-counter language L = {cnarnam | n ≥ 2, m ≥ 0} over
Σc = {c}, Σr = {r} and Σint = {a}. The final state is double framed.

a mapping νi : {[[w]]L ∈ QL | cv(w) = i} → {1, . . . ,K}. Additionally, since
{[[w]]L ∈ QL | cv(w) = i} forms a partition of QL, we can easily merge the
mappings νi into a single mapping ν : QL → {1, . . . ,K}.

With these enumerations the behavior graph can be coded as a sequence of
(partial) mappings τi. Each τi encodes the edges of the equivalence classes on
level i, i.e. on the vertex set {[[w]]L ∈ QL | cv(w) = i}, as follows: It assigns to
each pair (j, a) of an equivalence class number and input symbol the number of
the equivalence class that is reached from class number j on level i on reading a.

Formally, the mappings τi : {1, . . . ,K} × Σ → {1, . . . ,K} for i ∈ N are de-
fined by τi(j, a) = j′ if there is an equivalence class [[u]]L on the i-th level with
νi([[u]]L) = j and νi+χ(a)([[ua]]L) = j′. The mappings τi(j, a) are undefined in any
other case.

The behavior graph can then be completely encoded by the infinite word
α = τ0τ1τ2 . . ., which is called a description of BGL. Since a visibly one-counter
language uniquely determines its behavior graph, we also call α a description of
L. Note that there may be many descriptions since ν can be chosen arbitrary.
In our algorithm we use the fact that it is always possible to find a description
which is ultimately periodic, as described in the following theorem.

Theorem 1 ([4]). Let L ⊆ Σ∗ be a visibly one-counter language, BGL =
(QL, Σ, q

L
0 , δL, FL) the behavior graph of L and K the width of BGL. Then

there is an enumeration ν : QL → {1, . . . ,K} such that the corresponding de-
scription α of L is an ultimately periodic word with offset m and period k, i.e.
α = τ0 . . . τm−1 (τm . . . τm+k−1)ω.

There are many different offsets and periods for an ultimately periodic de-
scription but for each such offset and period the description is unique up to
renumbering of the equivalence classes. Since we are interested in small descrip-
tions, we choose one such that the sum of the offset and the period is minimal
(if there exist different descriptions leading to the same sum, then we choose
the one with the minimal period). From now on we choose m and k with these
properties and refer to the corresponding ultimately periodic description of BGL
as the characteristic description.

Constructing VCAs. Using an ultimately periodic description of BGL, it is
possible to construct a VCA accepting L. This is formalized in the following
lemma.

5

Lemma 1 ([4]). Let L be a visibly one-counter language and K the width of
BGL. For an ultimately periodic description α = τ0 . . . τm−1 (τm . . . τm+k−1)ω of
BGL with offset m and period k, one can construct an m-VCA Aα with K · k
states such that L(Aα) = L.

The construction used to prove Lemma 1 originally is taken from [4]. The
idea is to construct a VCA that simulates a run of BGL on an input. Since BGL
has a repeating pattern and, thus, can be represented by finite information, a
VCA can keep track of the exact state BGL is currently in.

Proof (of Lemma 1). The construction from [4] is shown in Definition 4. It takes
an ultimately periodic description α of L, the parametersm and k and produces a
VCA Aα with L(Aα) = L. Moreover, both the size of Aα and the time necessary
for its construction are polynomial in the parameters K, k and m. Note that for
our purpose the original construction is slightly modified.

Definition 4 ([4]). Let L be a visibly one-counter language and K the width of
BGL. For an ultimately periodic description α = τ0 . . . τm−1 (τm . . . τm+k−1)ω of
BGL with offset m and period k resulting from its respective enumeration ν, we
define the m-VCA Aα = (Q,Σ, q0, δ0, . . . , δm, F) as

– Q = {1, . . . ,K} × {0, . . . , k − 1},
– q0 = (ν([[ε]]L), k − 1) and
– F = {ν([[u]]L) | u ∈ L} × {0, . . . , k − 1}.
– The transitions functions δ0, . . . , δm are defined by:
• For every j < m, i ∈ {1, . . . ,K} and 0 ≤ r < k. If j = m− 1 and a ∈ Σc

let
δm−1((i, r), a) = (τm−1(i, a), 0)

and if j < m− 1 or a 6∈ Σc let

δj((i, r), a) = (τj(i, a), k − 1) .

• For every a ∈ Σ, i ∈ {1, . . . ,K} and 0 ≤ r < k let

δm((i, r), a) = (τm+r(i, a), (r + χ(a)) mod k) .

Intuitively the simulation of BGL works as follows: The VCA Aα can dis-
tinguish whether it is in the initial part of BGL (using its threshold) or in the
periodic part (using a modulo-k-counter to keep track of the level within the
period). Since the periodic part repeats again and again, the knowledge about
BGL up to level m + k − 1 is sufficient. Technically Aα’s states consist of two
components. The first component stores the number of the current equivalence
class. The second component keeps track of the current position within the pe-
riod if Aα is simulating BGL in its periodic part. The transitions are defined
according to α.

As claimed in Lemma 1, the size of Aα, i.e. the number of states, is K · k
and, thus, polynomial in the size of the prefix τ0 . . . τm+k−1 of α. ⊓⊔

Note that each VCA for L needs at least K states because it has to separate
different equivalence classes on the same level. The construction from Definition 4
does not meet this bound exactly but only misses it by the factor k, i.e. the length
of the period.

6

Unfortunately, an overhead is not avoidable in general. Unlike the technique
used in [7], it is in general not enough to associate a VCA-state to each state of
the behavior graph in a sound manner to obtain a VCA for the target language.
To prove this formally, we need to introduce the so-called configuration graph.
For a VCA A = (Q,Σ, q0, δ0, . . . , δm, F) the states of this infinite graph are
configurations of the form (q, i) ∈ Q× N (meaning that A is in state q and has
counter value i) and the edges are defined by the transition functions δ0, . . . , δm.
Moreover, if we set (q0, 0) as the initial state and mark the state set F × {0}
as final, then the configuration graph of A is an infinite state acceptor for L(A)
in the same way as BGL(A). For example, Figure 2(b) shows the configuration
graph of the VCA depicted in Figure 2(a).

q0

q1 q2

q3 q4

c1

c2

r1

c1 r1

r2

c2 r2

(a) A 1-VCA A accepting L

(q0, 0)

(q1, 1) (q1, 2) (q1, 3) . . .

(q2, 0) (q2, 1) (q2, 2) . . .

(q3, 1) (q3, 2) (q3, 3) . . .

(q4, 0) (q4, 1) (q4, 2) . . .

c1

c2

c1

r1

c1

r1

c1

r1

r1 r1 r1

c2

r2

c2

r2

c2

r2

r2 r2 r2

(b) The configuration graph of A (cf. Figure 2(a))

[[ε]]
L

[[c1]]
L

[[c1c1]]
L

[[c1c1c1]]
L

. . .

[[c1r1]]
L

[[c1c1r1]]
L

[[c1c1c1r1]]
L

. . .

[[c2]]
L

[[c2c2]]
L

[[c2c2c2]]
L

. . .

[[c2c2r2]]
L

[[c2c2c2r2]]
L

. . .

c1

c2

c1

r1

c1

r1

c1

r1

r1
r1 r1

c2

r2

c2

r2

c2

r2

r2
r2 r2

(c) The behavior graph of L

Fig. 2. The behavior graph BGL, an 1-VCA A and A’s configuration graph for the language
L = {cn1 r

n
1 | n > 0} ∪ {cn2 r

n
2 | n > 0}

7

As mentioned above, the following lemma shows that the behavior graph of
a VCA-acceptable language cannot easily be decomposed into an appropriate
VCA. This implies that a certain overhead in the number of states of a VCA
cannot be avoided.

Lemma 2. For every m ∈ N there exists an m-VCA-acceptable language L for
which the configuration graph of any m-VCA A recognizing L is not isomorphic
to the behavior graph BGL.

Proof (of Lemma 2). For reasons of convenience (and for a better undertsanding)
we prove a special case of Lemma 2 where we fix the value of m to m = 1.
However, during the proof it will become clear how our arguments can easily be
shifted to arbitrary values of m.

Consider the language L = {cn1 r
n
1 | n > 0}∪{cn2 r

n
2 | n > 0} over the alphabet

Σc = {c1, c2}, Σr = {r1, r2} and Σint = ∅. Figure 2 shows a 1-VCA accepting L,
A’s configuration graph and the behavior graph of L.

Let us first informally introduce the idea of the proof. We observe that all
words w = cn1 r

n
1 and w′ = cn2r

n
2 are L-equivalent for every n > 0 while cl1 6∼L c

l
2

and cn1r
l
1 6∼L c

n
2r
l
2 holds for every n > 0 and 0 ≤ l < n. That means that during

the run of a 1-VCA on words w and w′ starting with c1 and c2 respectively the
automaton has to be in different states. Additionally, to produce a configuration
graph isomorphic to the behavior graph of L, the last states of each run have
to be the same. To achive this, the automaton has to know when it has read
cn1r
n−1
1 or cn2r

n−1
2 , i.e. when the counter has reached the value 1, and then switch

to the same state while reading the last return symbol. Since the behavior graph
has infinitely many states, the automaton cannot store this information only in
its states and has to access its counter. However, any 1-VCA can only check
if the counter is 0 or greater than 0, which makes it impossible to produce a
configuration graph isomorphic to the behavior graph of L.

We now prove the lemma formally. Therefore, let us assume that the 1-VCA
A = (Q,Σ, q0, δ0, δ1, F) recognizes L and has a configuration graph isomorphic
to the behavior graph BGL. Moreover, let n = |Q| be the number of states of A.
We consider the words w = ck1r

k
1 and w′ = ck2r

k
2 where k > n2 and their runs

(q0, 0)
c1−→ (q1, 1)

c1−→ . . .
r1−→ (q2k−1, 1)

r1−→ (q, 0)

and
(q0, 0)

c2−→ (q′1, 1)
c2−→ . . .

r2−→ (q′2k−1, 1)
r2−→ (q, 0)

respectively. Because δ1(q2k−1, r1) = δ1(q′2k−1, r2) = q, the pair (q2k−1, q
′
2k−1)

can only occur once after reading ck1 and ck2 . To see this, assume ql = q2k−1 and
q′l = q′2k−1 for some l ∈ {k, . . . , 2k − 2}. We know that after reading both ck1r

l+1
1

and ck2r
l+1
2 , A is in state q with counter value k− l−1. That means that ck1r

l+1
1 is

equivalent to ck2r
l+1
2 , which is a contradiction to the above observation. By using

the same argument, the pair (q2k−2, q
′
2k−2) can also only occur once after reading

ck1 and ck2 . This argumentation can be done repetitively and shows that each pair
(qi, q

′
i) can only occur once after reading ck1 and ck2 for each i ∈ {k, . . . , 2k − 1}.

It is clear that there are n2 pairwise different pairs of states of A, but we
showed that there have to be at least 2k− k = k > n2 pairwise different pairs of
states, which yields a contradiction.

8

To extend the proof to arbitrary values of m > 1, consider the language

Lm = {cn+m−1
1 rn1 r

m−1 | n > 0} ∪ {cn+m−1
2 rn2 r

m−1 | n > 0}

with a new return symbol r ∈ Σr. It is easy to see that Lm is m-VCA-acceptable.
However, using the same arguments as above one can show that there is no m-
VCA accepting L that has an isomorphic configuration graph. ⊓⊔

Finding Witnesses for Non-Equivalence. Later on, our learning algorithm
needs to decide whether two words are L-equivalent or not. In order to prove
that two words are not L-equivalent, it has to find a witness for this fact. In the
case of regular languages, one can bound the length of such witnesses. For visibly
one-counter languages there exists a similar result, which bounds the height of
the witnesses. This is formalized in the next lemma, which intuitively states that
for every pair of non L-equivalent words u 6∼L v on the same level, their non-
equivalence can be witnessed by a word w without exceeding the counter value
s+ cv(u) for a constant s defined below.

Lemma 3. Let L be a visibly one-counter language, K the width of BGL and
α the characteristic description of L with offset m and period k. Moreover, let
s = m+ (K · k)4. Then, for each non-equivalent pair u 6∼L v with cv(u) = cv(v)
there exists a witness w such that uw ∈ L⇔ vw 6∈ L and uw, vw ∈ Σ∗0,s+cv(u).

The proof uses a pumping applied to Aα for the characteristic description α
of BGL. The main difference to pumping on finite automata is that we have to
ensure that the resulting word still has counter value 0. Thus, we have to remove
two parts of the word, one increasing the counter value and the other one de-
creasing the counter value again. For this reason we do not obtain a quadratic
upper bound in the number of states as for finite automata but a power of 4
instead (two times quadratic). Note that in the definition of s the part K · k
corresponds to the number of states of Aα.

Proof (of Lemma 3). Let K be the width of BGL and α the characteristic de-
scription of L with offset m and period k. Choose u 6∼L v with cv(u) = cv(v)
and let w the “smallest” witness (the witness with the smallest height), i.e. for
every other witness w′ there is a prefix x ∈ pref(w′) such that cv(ux) > cv(uy)
for all prefixes y ∈ pref(w). Without loss of generality we assume that uw ∈ L
and vw 6∈ L.

We show Lemma 3 by contradiction and assume that the smallest witness
w exceeds the height s + cv(u) = m + (K · k)4 + cv(u), i.e. there is a prefix
x ∈ pref(w) such that cv(ux) = cv(vx) > s+ cv(u). Using a pumping argument,
we then deduce that there exists a smaller witness w′ 6= w, which contradicts our
assumption (that w is the smallest witness).

To prove the lemma, we use the m-VCA Aα as constructed in Definition 4.
We are interested in the part of the run of Aα on the words uw and vw, where the
automaton exceeds the counter valuem+cv(u) after reading u and v respectively.
At this point we can be sure that Aα can only use its states to distinguish non-
equivalent words with the same counter value.

9

Let w = a1 . . . an and consider the situations where Aα exceeds the counter
value i, m + cv(u) ≤ i < m + (K · k)4 + cv(u), for the first time after reading
u, say cv(ua1 . . . al) = i for some 1 ≤ l < n and al+1 ∈ Σc. Each such situation
uniquely determines a position l′, l < l′ ≤ n, in w where Aα reaches the counter
value i again after reading al′ , i.e. cv(ua1 . . . al′) = i and al′ ∈ Σr. Note that
such an l′ exists because cv(uw) = 0. Let p1 be the state that Aα assumes after
reading ua1 . . . al and p2 the state assumed after reading ua1 . . . al′ . Analogously,
let p3 be the state reached after reading va1 . . . al and p4 the state reached after
reading va1 . . . al′ .

Since there is an x ∈ pref(w) with cv(ux) > m+ (K ·k)4 + cv(u), there are at
least (K ·k)4 + 1 such situations, which means that there are at least (K ·k)4 + 1
4-tuples of states. Now recall that Aα has K · k states. Thus, by pigeonhole
principle there has to be one 4-tuple of states that occurs at least twice, say q1,
q2, q3 and q4. This situation is depicted in Figure 3.

Counter
value

s+ cv(u)

cv(u)

0

m

k

qu qv

q1 q3 q2 q4

q1 q2 q3 q4

Fig. 3. Sketch of the situation, where the VCA Aα processes a non-minimal witness from the
states reached after reading u and v respectively

We can break down the witness w into parts: Let w = w1w2w3w4w5 such
that and the run of Aα on uw and vw respectively is of the form

(q0, 0)
u
−→ (qu, cv(u))

w1−→ (q1,m)
w2−→ (q1, k)

w3−→ (q2, k)
w4−→ (q2,m)

w5−→ (q′u, 0)

and

(q0, 0)
v
−→ (qv, cv(v))

w1−→ (q3,m)
w2−→ (q3, k)

w3−→ (q4, k)
w4−→ (q4,m)

w5−→ (q′v, 0)

for some suitable m,n ∈ N (see Figure 3). Then, the following facts hold:

1. | cv(w2)| = | cv(w4)|,
2. cv(w2) > 0 and cv(w4) < 0,
3. cv(w3) = 0

Now, we apply a pumping argument and easily deduce that w1w
i
2w3w

i
4w5 is

also a witness for the non-equivalence of u and v for any i ∈ N. In particular,
the word w′ = w1w3w5 is such a witness, but has a smaller height than w. This
contradicts our assumption. ⊓⊔

10

3 Learning Visibly One-Counter Automata

The results from the previous section show that it is enough to identify a regular
description of BGL for constructing a VCA for L. Such a regular description
τ0 . . . τm−1 (τm . . . τm+k−1)ω naturally corresponds to an initial segment of BGL,
namely the part that is described by τ0 . . . τm−1τm . . . τm+k−1.

Roughly speaking, our learning algorithm proceeds as follows: It learns an
initial segment of BGL and tries to identify a repeating structure inside this
initial segment. If such a repeating structure is found, then a periodic description
is constructed by iterating the repeating part. From this periodic description a
VCA is constructed and given as hypothesis to the teacher. To make this idea
precise we introduce the following notations:

– The restriction of ∼L up to level t is denoted by ∼L|t, i.e.

∼L|t = ∼L ∩
(

Σ∗0,t ×Σ
∗
0,t

)

.

– The initial segment of BGL induced by ∼L|t, denoted by BGL|t .

Note that BGL|t does not contain equivalence classes of words whose heights
exceed t: In Figure 1, BGL|0 contains the equivalence class [[ε]]L, BGL|1 contains
[[ε]]L and [[c]]L, and BGL|2 contains [[ε]]L, [[c]]L, [[cc]]L, [[cca]]L, [[ccar]]L and [[ccarr]]L.

3.1 The Learning Framework

Our learning algorithm is based on a popular learning framework, usually called
active learning, introduced by Angluin [3]: A learner, who has initially no knowl-
edge about a target language L ⊆ Σ∗ over a fixed (and known) alphabet Σ,
learns the language by actively querying a teacher. The teacher, often called
minimally adequate, has to answer two different types of queries: Membership
and equivalence queries.

On membership queries the learner provides a word w ∈ Σ∗ and the teacher
has to decide whether w belongs to L. The answer is “yes” or “no” depending
on whether w ∈ L or not.

On equivalence queries the learner provides a conjecture A and the teacher
has to check whether A is an equivalent description of the language L. If this is
true, the teacher answers “yes”. Otherwise the teacher has to provide a counter-
example w with w ∈ L(A) ⇔ w 6∈ L as a witness that L and the language
recognized by the conjecture A are different.

The fact that the learning of an infinite object is reduced to the learning of a
certain finite subpart of this object—in our case BGL|t for some t ∈ N—requires
to guarantee that the subpart is eventually learned completely. Using only mem-
bership and equivalence queries as in Angluin’s original setting, however, does
not have this property. In fact, one can show that there are example-languages
where a teacher provides counter-examples containing information about equiv-
alence classes for increasing values of t, but which never allow to learn BGL|t
completely for any value of t.

To ensure a complete learning of the required subpart, we use an additional
type of query (described e.g. in [11]) called a partial equivalence query. This query
checks whether a conjecture is compatible with the target language on a finite

11

set of inputs. Formally, it takes a conjecture A and a natural number t ∈ N and
checks whether for all w ∈ Σ∗0,t the condition w ∈ L⇔ w ∈ L(A) holds.

If the conjecture is partially equivalent in the above sense, then the teacher
returns “yes”. Otherwise, the teacher returns a counter-example w ∈ Σ∗0,t such
that w ∈ L⇔ w 6∈ L(A) is satisfied. Note that each counter-example has counter
value cv(w) = 0.

3.2 Data Structure

The data, which is gathered during the learning process, is organized in sev-
eral two-dimensional tables. These tables are similar to the data structure used
in Angluin’s original algorithm [3] but additionally take the counter value of
equivalence classes into account.

Let us note that, in principle, we could also work with a classical observation
table without taking the counter values into account. But then we would have
a lot of combinations of representatives and samples that do not match because
their combination results in a word that does not have counter value 0. Thus, a
stratified observation table as defined below is more suitable for our setting.

Definition 5. A stratified observation table up to level t for a visibly one-
counter language L is a tuple O = ((Ri)i=0,...,t, (Si)i=0,...,t, T) consisting of

– nonempty, finite sets Ri ⊆ {w ∈ Σ
∗
0,t | cv(w) = i} of representatives

– nonempty, finite sets Si ⊆ Σ
∗ of samples

for i = 0, . . . , t and a mapping T : (Dc ∪Dr ∪Dint)→ {0, 1} where

Dint =
t
⋃

i=0

(Ri ∪Ri ·Σint) ·Si, Dc =
t−1
⋃

i=0

Ri ·Σc ·Si+1 and Dr =
t
⋃

i=1

Ri ·Σr ·Si−1

such that

– for all u ∈ Ri and v ∈ Si the condition uv ∈ Σ∗0,t and cv(uv) = 0 holds,
– for all w ∈ (Dint ∪Dc ∪Dr) the condition T (w) = 1⇔ w ∈ L holds,
– the set of all representatives R :=

⋃t
i=0Ri is prefix closed and the set of all

samples S :=
⋃t
i=0 Si is suffix closed.

The first requirement states that only valid data is stored in the table and
that this data is stored properly. The second requirement states that the data
stored is compatible with the target language. Both requirements are naturally
fulfilled by the learning algorithm.

Intuitively a stratified observation table organizes approximations of the
equivalence classes of ∼L|t separately for each level. Each set Ri contains repre-
sentatives with counter value i for the equivalence classes of the i-th level. The
set Si contains samples to distinguish the representatives of the i-th level.

The actual information of a stratified observation table is stored in the map-
ping T . One can think of T as three different tables for each level where the rows
are labeled with representatives and the columns are labeled with samples: The
first table of level i stores information about the representatives of the current
level and their internal action successors, while the second table stores infor-
mation about call successors. Finally, the third table stores information about

12

return successors. However, note that there are no call successors for represen-
tatives of level t (since we only want to learn the behavior graph up to level t)
and no return successors for representatives on level 0 (since such words cannot
be processed by a VCA). A stratified observation table induces an equivalence
on the set R ◦Σ := R ·Σ \ (R0 ·Σr ∪Rt ·Σc) in a similar manner as the refined
Nerode congruence.

Definition 6. Let O be a stratified observation table for L up to level t. Two
words u, v ∈ R ∪ R ◦ Σ are O-equivalent, denoted by u ∼O v, if and only if
cv(u) = cv(v) and T (uw) = T (vw) for all w ∈ S

cv(u). For u ∈ R ∪ R ◦ Σ we
define its O-equivalence class as [[u]]O = {v ∈ R ∪R ◦Σ | u ∼O v}. The number
of O-equivalence classes is denoted by index(∼O).

Note that two L-equivalent words are always O-equivalent and, thus, a strat-
ified observation table stores an approximation of the refined Nerode congruence
up to a fixed level t. However, the definition of stratified observation tables does
not guarantee that the equivalence ∼O is in fact a congruence. We therefore
impose two requirements (known from Angluin’s learning) that a stratified ob-
servation table shall fulfill:

– A stratified observation table is closed if and only if the condition

∀u ∈ Ri ∀a ∈ Σ : [[ua]]O ∩Ri+χ(a) 6= ∅

holds for all i = 0, . . . , t except for i = 0 and a ∈ Σr as well as i = t and
a ∈ Σc.

– A stratified observation table is consistent if and only if the condition

∀u, v ∈ Ri ∀a ∈ Σ : u ∼O v ⇒ ua ∼O va

holds for all i = 0, . . . , t except for i = 0 and a ∈ Σr as well as i = t and
a ∈ Σc.

Is O closed and consistent, one can construct the behavior graph BGO anal-
ogous to Definition 3 using ∼O. BGO can be seen as a finite state machine
working on Σ∗0,t. The language L(BGO) ⊆ Σ∗0,t is the language accepted by this
machine. As in Angluin’s original algorithm, a straight-forward induction shows
the following property.

Lemma 4. Let O be a closed and consistent stratified observation table up to
level t for a visibly one-counter language L and BGO its behavior graph. Then
BGO is compatible with the data stored in O, i.e. for i ∈ {0, . . . , t} and u ∈ Ri,
v ∈ Si the condition uv ∈ L(BGO)⇔ uv ∈ L is satisfied.

Our final goal is to identify periodic descriptions of BGL. For this purpose
we have to ensure that we know the initial part of BGL exactly. This is covered
by the following lemma.

Lemma 5. Let L be a visibly one-counter language, s = m + (K · k)4 as in
Lemma 3 and O a stratified observation table for L up to level t > s such that
w ∈ L(BGO) ⇔ w ∈ L holds for w ∈ Σ∗0,t. Then the restrictions of BGO and
BGL on the levels 0, . . . , t− s are isomorphic.

13

Proof (of Lemma 5). To prove Lemma 5, we define a bijective mapping ϕ that
maps any equivalence class [[u]]L for u ∈ Σ∗0,t−s to the state q of BGO that is
reached after reading u. It is now left to show that ϕ is an isomorphism, i.e.
u ∼L v if and only if ϕ(u) = ϕ(v).

The direction from left to right follows directly from the fact that u ∼L v
always implies u ∼O v. For the other direction consider two words u 6∼L v with
cv(u) = cv(v) and assume that BGO reaches the same state, say q, after reading
u and v respectively (if cv(u) 6= cv(v), then BGO is obviously in different states
after reading u and v). Since u 6∼L v, we know from Lemma 3 that there is a
witness w such that uw ∈ L ⇔ vw 6∈ L and uw, vw ∈ Σ∗0,t (since cv(u) + s ≤
t− s + s = t). Thus, BGO cannot assume the same state q after reading u and
v respectively because w ∈ L(BGO)⇔ w ∈ L holds for any w ∈ Σ∗0,t. ⊓⊔

3.3 The Learning Algorithm

Given a teacher for a visibly one-counter language L, the key idea of our algo-
rithm is to compute a periodic description τ0 . . . τm−1(τm . . . τm+k−1)ω of BGL
(for the parameters m and k as introduced in Section 2), which is completely
characterized by the finite word τ0 . . . τm+k−1 and the parameters m and k.

For this purpose, we use Angluin’s learning to approximate BGL|t up to
language equivalence on Σ∗0,t (see Lemma 4). For t big enough, Lemma 5 tells
us that BGO and BGL are isomorphic up to a certain level. Hence, we can
use BGO to compute candidates for periodic descriptions of BGL. Since we do
not know m and k in advance, we try all possible pairs of values that fit into
BGO. For the obtained candidate descriptions we build a VCA according to
Definition 4 and give it as conjecture to the teacher. Either we find the correct
periodic description, or we have to increase t and reiterate through the process.
Termination is guaranteed because Lemma 5 implies that our algorithm is able
to identify the periodic description as soon as t > m+ 2k+ s (this becomes clear
later in the detailed description).

The rough structure of the algorithm is shown in Algorithm 1. In the remain-
der of this section we describe steps 2 to 6 of Algorithm 1 in detail.

Algorithm 1: The learning algorithm for visibly one-counter automata

Initialize an empty stratified observation table O up to level t = 0.1

repeat

Learn BGL|t using membership and partial equivalence queries.2

Identify all periodic descriptions β of BGL|t .3

Construct a conjecture VCA Aβ for each periodic description.4

Conduct equivalence queries on the conjectures.5

If a VCA accepting L is found, then stop and output this VCA.6

Otherwise choose one counter-example and add it to O. Thereby t increases.
until a VCA recognizing L is found.

Learning the Initial Part of the Behavior Graph. Our procedure to learn
the initial part of the behavior graph is an adaptation of Angluin’s learning
algorithm for regular languages [3]. Analogous to Angluin’s algorithm, we use

14

a stratified observation table O to store the data gathered during the learning
process. Our goal is to extend the table until BGL|t has been learned with enough
precision, i.e. the behavior graphs BGO and BGL|t have the same acceptance
behavior on words from Σ∗0,t.

The procedure starts with an initially empty stratified observation table O =
(R0, S0, T) up to level t = 0 where R0 = S0 = {ε}. The values T (u) are obtained
by asking membership queries for all u ∈ R0 ·Σint · S0.

Let us assume that we are given a stratified observation table O up to a level
t ≥ 0. It may happen that O is not closed or not consistent. If it is not closed,
then there is a representative u ∈ Ri, i ∈ {0, . . . , t}, and an a ∈ Σ such that the
equivalence class [[ua]]O is not present in the table, i.e. [[ua]]O ∩ Ri+χ(a) = ∅. In
this case we add ua as representative of the new equivalence class to Ri+χ(a) and
extend T by asking membership queries.

Is the table not consistent, we proceed in a similar manner: Since there are
u ∼O v, w ∈ Scv(u)+χ(a) and a ∈ Σ such that T (uaw) 6= T (vaw), we add aw to
S

cv(u) and extend O.

Both operations are repeated until the table is closed and consistent. Then
we construct BGO and ask a partial equivalence query on BGO with parameter
t. The teacher replies “yes” if the acceptance behavior of BGO is compatible with
the target language on Σ∗0,t. Otherwise, the teacher returns a counter-example
w ∈ Σ∗0,t with w ∈ L(BGO) ⇔ w 6∈ L, which is processed as follows: For every
decomposition w = uv, we add the prefix u as new representative to R

cv(u), the
suffix v as new sample to S

cv(u) and update T . Similar to Angluin’s algorithm
one can show that this process terminates in polynomial time.

Lemma 6. Let O be a stratified observation table up to level t for a visibly one-
counter language L with width K. Then, O can be not closed or not consistent
at most K · t times. Moreover, there can be at most K · t wrong conjectures on
partial equivalence queries.

The proof of Lemma 6 is straight forward and uses similar arguments as in
Angluin’s original paper [3].

Proof (of Lemma 6). Since u ∼L v implies u ∼O v and the total number of
∼L|t-equivalence classes index(∼L|t) is bounded by K · t—there are at most K
equivalence classes on each of the t levels—the value of index(∼O) is bounded by
K · t, too. Because index(∼O) increases every time the table is extended (either
because it is not closed or consistent, or because a counter-example is added),
the value index(∼L|t) is eventually reached. Then, the table is both closed and
consistent, and BGO and BGL|t have the same behavior on the set Σ∗0,t. ⊓⊔

Identifying the Behavior Graph’s Repeating Structure. As described
above, once we have gathered enough information in our table O such that BGO
is language equivalent to BGL|t (on Σ∗0,t), we know that the lower parts of BGO
and BGL|t are in fact isomorphic. Hence, for t big enough we have learned BGL|t
with enough precision to identify a periodic description of BGL. We now describe
how to determine candidates for such periodic descriptions that can be used to
construct conjecture VCAs for an equivalence query. The underlying technique
is inspired by the algorithm of Fahmy and Roos [7].

15

The idea is simple: For each reasonable combination of m and k we construct
descriptions τ0 . . . τm−1τm . . . τm+k−1 of the initial part of BGO up to levelm+k−
1 ≤ t and then construct Aβ for β = τ0 . . . τm−1(τm . . . τm+k−1)ω (see Lemma 1).
To determine the τi we need a numbering of the equivalence classes on each level.
Let us pick an arbitrary numbering νi that maps the equivalence classes on level
i ∈ {0, . . . ,m + k − 1} injectively to {1, . . . ,K} (recall that K is the width of
BGL). This numbering uniquely determines τ0 . . . τm−1τm . . . τm+k−2. The only
problem arises in the definition of τm+k−1(j, a) for a ∈ Σc. This corresponds to
the definition on how to reenter the periodic part when exiting it at the top.

The naive solution would be to try all possibilities, which are of course expo-
nentially many. We show that we can restrict to at most one such definition and
that it is possible to identify it in polynomial time. For this purpose we simply
identify an isomorphism from the subgraph of BGO induced by the levels m to
m+ k− 1, and the subgraph of BGO induced by the levels m+ k to m+ 2k− 1.
Note that if there is indeed a periodic description of BGL with offset m and
period k, and if BGO agrees with BGL up to level m + 2k − 1, then such an
isomorphism exists. Since we are working with deterministic edge-labeled graphs,
we can determine an isomorphism in polynomial time if it exists.

One possibility to do so is a parallel breadth-first search (PBFS), as illustrated
in Figure 4. The PBFS works as follows: We start by picking some equivalence
class [[w]]O on level m, and a possible image of [[w]]O under the isomorphism on
level m+k, say [[w′]]O. Then we perform two breadth-first traversals “in parallel”
(the precise mechanism of this parallelism is unimportant): Both traversals are
synchronized in a way that the same action, i.e. following an outgoing or incoming
a-labeled transition, is performed in each step of both breadth-first searches. The
idea is that an isomorphism is detected if exactly the same actions of one traversal
can be repeated by the other and vice versa.

0

m

m+ k

m+ 2k

t

BGO

[[w]]O

[[w′]]O C
o
u

n
te

r
va

lu
e

Fig. 4. Schematic view on a parallel breadth-first search

Each single breadth-first search is a standard queue based breadth-first traver-
sal. On visiting an equivalence class [[u]]O on level i, we assign a “traversal num-
ber” to this equivalence class. This traversal number is the smallest not yet used
number on the i-th level. Since both searches are synchronized, in every step the
same traversal number is assigned by each individual breadth-first search. So an

16

isomorphism is computed incrementally by mapping an equivalence class with
number l on level i to the equivalence class also numbered with l on level i+ k.

If the construction of the isomorphism fails for this choice of [[w′]]O, we have
to restart with another candidate. The choice of [[w]]O and [[w′]]O completely
determines the isomorphism on the part that is reachable from these two equiv-
alence classes since we are working with deterministic graphs. That means that
we either obtain a witness for the fact that [[w]]O cannot be mapped to [[w′]]O by
an isomorphism, or we construct a partial isomorphism on the reachable parts.
Then we restart in the same way on a part that has not yet been covered. In the
worst case we have to launch such a breadth-first search for each pair of nodes on
level m and m+ k. This implies that we can identify an isomorphism in polyno-
mial time if one exists. This isomorphism now uniquely determines τm+k−1 (for
the numbering that we had fixed above).

Equivalence Queries and Processing Counter-Examples. For every peri-
odic description β identified, the VCA Aβ is constructed and used on an equiv-
alence query. If no periodic description was identified, we use BGO itself as a
t-VCA on an equivalence query. This can be done by using the states of BGO,
defining the transitions according to ∼O and adding a sink state that rejects all
words with counter value greater t.

Clearly, if the teacher replies “yes” on one of these equivalence queries, we
have found a VCA accepting L and return it. Otherwise the teacher returns
counter-examples w ∈ L ⇔ w 6∈ L(Aβ). If there exists a counter-example that
has height bigger than t, we pick one such counter-example w and for each
decomposition w = uv we add the prefix u to R

cv(u) and v to S
cv(u) (preserving

the prefix closedness of R and the suffix closedness of S) and update the table
using membership queries. As a result, the level of the table needs to be increased
to the height of the counter example w. This is easily done as follows: Every time
a representative with counter value t′ greater than the table’s current level t has
to be added, new empty sets Rt′ and St′ are created and the representative and
sample are added. Additionally membership queries are performed to update T .

If none of these counter examples has height bigger than t, (i.e. our conjectures
do not even work correctly on Σ∗0,t) then we proceed as in the case that no periodic
descriptions were identified: We use BGO itself as a t-VCA on an equivalence
query. Since BGO works correctly on Σ∗0,t, the teacher returns a counter-example
of height bigger than t and we proceed as above.

After processing a counter-example the level of the stratified observation table
has increased to level t′. Now we repeat to learn BGL|t′ , compute the periodic
descriptions and construct the conjectures until we eventually learn a sufficiently
large part of BGL.

The whole procedure eventually terminates because Lemma 5 ensures, that
BGO is isomorphic to BGL up to level m + 2k once it is language equivalent
on Σ∗0,t and its height t has exceeded m + 2k + s. Hence, the procedure for
identifying periodic descriptions finds the characteristic descriptions and, thus,
builds a correct conjecture.

17

3.4 Complexity of the Learning Algorithm

We first observe the correctness of our learning algorithm: The loop condition of
Algorithm 1 ensures directly that the algorithm computes a VCA recognizing L
if it terminates.

However, the time complexity of learning algorithms operating in an active
learning framework generally depends on two different aspects: The “complexity”
of the target language and the “complexity” of the teacher’s answers on queries.

For visibly one-counter languages it is not obvious how to measure the lan-
guage’s complexity. A straight forward approach for this is is to use the number
of states and the threshold of a—not necessarily unique—“minimal” VCA ac-
cepting L. This requires a reasonable definition of minimality, which aggregates
both the number of states and the threshold. Instead, we focus on characteristic
parameters of the uniquely defined behavior graph BGL: Its width K as well as
the offset m and the period k of its characteristic description. These parameters
describe the size of Aα for the characteristic description α of BGL. In general,
there can be smaller VCAs for L, but note that each VCA for L needs at least
K states because it has to distinguish different equivalence classes that are on
the same level. The offset also influences the size of the automaton because the
number of different transition functions depends on it.

The complexity of the teacher’s answers can be defined more naturally as the
length l of (the longest) counter-examples as in Angluin’s original work [3].

Theorem 2. Let L be a VCA-acceptable language over a pushdown alphabet Σ̃,
whose characteristic description has offset m and period k, and let K be the width
of the behavior graph BGL. Given a teacher for L, which answers membership,
partial equivalence and equivalence queries, a VCA recognizing L can be computed
in polynomial time in the characteristic parameters of the language L. Is l the
length of the longest counter-example returned on (partial) equivalence queries,
the algorithm asks O(K2l6) membership queries, O(l3) equivalence queries and
O(Kl2) partial equivalence queries.

The main argument is that, after the algorithm terminates, the table has
polynomial size (a height of m + 2k + s is already sufficient). Moreover, all
operations on the observation table can be performed in polynomial time with
respect to its size. Thus, the algorithm runs in polynomial time. The next proof
provides a precise runtime estimation.

Proof (of Theorem 2). We first observe that the level of O increases if and only
if a counter-example to an equivalence query is added. Thus, the level of O is de-
termined by the height of the counter-examples and the level after termination is
exactly the maximal height of a counter-example. The number of loops performed
by Algorithm 1 is therefore bounded by l since the height of a counter-example
can be at most l2 .

In each loop of the algorithm, BGL|t for a level t ≤ l is learned. During the
learning the table may not be closed. Lemma 6 shows that this can happen at
most K ·t ≤ K ·l times. Every time the table is not closed, one new representative
is added to the table. Thus, at most K · l representatives are added while O was
not closed. Using the same argumentation, at most K · l samples are added

18

while the table was not consistent. Moreover, every time a counter-example was
returned on a partial equivalence query, l representatives and l sample are added.

Subsequent to the learning of BGL|t , periodic descriptions are computed and
an equivalence query is conducted for each of them. If no VCA accepting L
is found, then a counter-example is processed. Thereby l representatives and l
samples are added.

The loop of Algorithm 1 is executed at most l times and, hence, the table
contains a total of O(Kl3) representatives and samples after termination. There-
fore, the size of the table is O(K2l6), which also corresponds to the number of
membership queries conducted. The number of partial equivalence queries can
be bounded by O(Kl2) since there are at most K · l partial equivalence queries
in each loop.

To estimate the number of equivalence queries, we use the PBFS described
above to identify periodic descriptions. We observe that there are at most l2

pairs of candidates for offsets and periods in each loop. Each of them may yield
a periodic description β for which the VCA Aβ is constructed and an equivalence
query is conducted. Thus, O(l3) equivalence queries are conducted.

To prove the claimed polynomial runtime, it is left to show that all operations,
i.e. checking whether O is closed and consistent, constructing BGO, computing
the periodic descriptions β as well as the construction of the conjectures Aβ, can
be done in polynomial time.

The effective runtime mainly depends on the specific implementations so that
we refrain from doing a detailed runtime analysis here. However, it is not hard to
verify that checking whether O is closed and consistent, the construction of BGO
and the VCAs Aβ can be done in polynomial time in the size of O if implemented
reasonable.

As already mentioned the identification of the periodic descriptions can be
done in polynomial time, too, since it basically can be reduced to finding an
isomorphism in deterministic edge-labeled graphs. Using a parallel breadth-first
search (see Figure 4), we can state this more precise: To compute a periodic
description, one has to execute a parallel breadth-first search for every pair of
equivalence classes [[w]]O on level m and [[w′]]O on level m+k in the worst case. In
each of these K2 searches all equivalence classes from level m to level m+ 2k− 1
of BGO have to be considered at most once. Thus, a parallel breadth-first search
runs in time O(K3k). ⊓⊔

4 Conclusion

We have presented an algorithm for actively learning a visibly one-counter au-
tomaton for a target language from a teacher. The complexity of the algorithm
is polynomial in the characteristic parameters of the language (the width, offset
and period of the behavior graph), and uses membership, equivalence, and par-
tial equivalence queries, where the latter type of query asks for the correctness
of the conjecture on certain subsets of the given target language.

As mentioned in the introduction, this study was originally motivated by the
problem of learning visibly pushdown automata that can store the input symbols
(of type push) on the stack. Thus, we are interested in developing a learning

19

algorithm for this extended class of visibly pushdown automata. The method
introduced by Fahmy and Biermann [6] works for general real-time automata
with some external memory, but as in the case of one-counter automata, the
restriction imposed by the typed input alphabet of visibly pushdown automata
makes the problem different.

One should mention here that learning for the full class of visibly pushdown
automata can be reduced to learning finite tree automata because there is a tight
relationship between these two models. Since the theory of finite word automata
smoothly extends to finite tree automata, Angluin’s algorithm can be adapted
to this setting (see [5] for an adaption of Angluin’s algorithm to tree automata).

References

1. R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and returns.
In Proceedings of TACAS 04, volume 2988 of LNCS, pages 467–481. Springer, 2004.

2. R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of STOC 04:,
pages 202–211. ACM, 2004.

3. D. Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,
75(2):87–106, 1987.

4. V. Bárány, C. Löding, and O. Serre. Regularity problems for visibly pushdown languages.
In Proceedings of STACS’06, volume 3884 of LNCS, pages 420–431. Springer, 2006.

5. F. Drewes and J. Högberg. Learning a regular tree language from a teacher. In Proceeding

of DLT’03, volume 2710 of LNCS, pages 279–291. Springer, 2003.
6. A.F. Fahmy and A.W. Biermann. Synthesis of real time acceptors. J. Symb. Comput.,

15(5-6):807–842, 1993.
7. A.F. Fahmy and R.S. Roos. Efficient learning of real time one-counter automata. In

Proceedings of ALT 95, volume 997 of LNCS, pages 25–40. Springer, 1995.
8. J.E. Hopcroft and J.D. Ullman. Formal Languages and their Relation to Automata.

Addison-Wesley, 1969.
9. C. Koch and S. Scherzinger. Attribute grammars for scalable query processing on XML

streams. VLDB J., 16(3):317–342, 2007.
10. V. Kumar, P. Madhusudan, and M. Viswanathan. Visibly pushdown automata for stream-

ing XML. In Proceedings of WWW 07, pages 1053–1062. ACM, 2007.
11. W. Maass and G. Turán. Lower bound methods and separation results for on-line learning

models. Mach. Learn., 9(2-3):107–145, 1992.
12. W. Nam, P. Madhusudan, and R. Alur. Automatic symbolic compositional verification by

learning assumptions. Formal Methods in System Design, 32(3):207–234, 2008.
13. T. Schwentick. Automata for XML - a survey. J. Comp. Syst. Sci., 73(3):289–315, 2007.
14. L. Segoufin and C. Sirangelo. Constant-Memory Validation of Streaming XML Documents

Against DTDs. LNCS, 4353:299–313, 2006.
15. L. Segoufin and V. Vianu. Validating streaming XML documents. In Proceedings of

PODS 02, pages 53–64. ACM, 2002.
16. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Actively learning to verify safety for

FIFO automata. 3328:494–505, 2004.

20

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years.

A complete list of reports dating back to 1987 is available from

http://aib.informatik.rwth-aachen.de/.

To obtain copies consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email:

biblio@informatik.rwth-aachen.de

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

21

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling

Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,

Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli

Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI

Work Group “Requirements Management Tools for Product Line Engi-

neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical

sensors from mice for new input devices

22

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for

Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-

ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-

ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A

System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal

2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking

2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications

2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches

2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler

Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical

Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke

2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code

2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-

grams

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,

Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: AModular,

Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent programs

2007-16 Sadeq Ali Makram, Mesut Güneç, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Balanc-

ing for Wireless Mesh Networks

2007-17 René Thiemann: The DP Framework for Proving Termination of Term

Rewriting

2007-18 Uwe Naumann: Call Tree Reversal is NP-Complete

2007-19 Jan Riehme, Andrea Walther, Jörg Stiller, Uwe Naumann: Adjoints for

Time-Dependent Optimal Control

2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:

Three-Valued Abstraction for Probabilistic Systems

2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-

sitional Modeling and Minimization of Time-Inhomogeneous Markov

Chains

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,

and Berthold Vöcking: Uncoordinated Two-Sided Markets

23

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007

2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, Harald Zankl: Maximal Termination

2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler

2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations

2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message

Passing Programs

2008-07 Alexander Nyßen, Horst Lichter: The MeDUSA Reference Manual, Sec-

ond Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on

Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-

endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-

Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable

Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-

straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl

Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-

proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers

2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves

2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study

2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving

2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems

2008-19 Dirk Wilking: Empirical Studies for the Application of Agile Methods to

Embedded Systems

2009-02 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Quantitative Model Checking of Continuous-Time Markov Chains

Against Timed Automata Specifications

2009-03 Alexander Nyßen: Model-Based Construction of Embedded

Real-Time Software - A Methodology for Small Devices

2009-04 Daniel Klünder: Entwurf eingebetteter Software mit abstrakten Zus-

tandsmaschinen und Business Object Notation

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-

erance and Bounded Tolerance Graphs is NP-complete

24

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-

dependent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm

Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the

Correctness of the Upper Bound of a Maximum Independent Set Algo-

rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The

Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in

Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset Games

2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)

2009-15 Joost-Pieter Katoen, Daniel Klink, Martin Neuhäußer: Compositional

Abstraction for Stochastic Systems

2009-16 George B. Mertzios, Derek G. Corneil: Vertex Splitting and the Recog-

nition of Trapezoid Graphs

2009-17 Carsten Kern: Learning Communicating and Nondeterministic Au-

tomata

2009-18 Paul Hänsch, Michaela Slaats, Wolfgang Thomas: Parametrized Regular

Infinite Games and Higher-Order Pushdown Strategies

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

25

