
Aachen
Department of Computer Science

Technical Report

Implementation of an Automated

Proof for an Algorithm Solving the

Maximum Independent Set Problem

Michael Nett

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2009-09

RWTH Aachen · Department of Computer Science · May 2009

The publications of the Department of Computer Science of RWTH Aachen

University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Implementation of an Automated Proof for an

Algorithm Solving the Maximum Independent Set

Problem

Michael Nett

Dept. of Computer Science
RWTH Aachen University, Germany

michael.nett@rwth-aachen.de

Abstract. Kneis, Langer, and Rossmanith [3] proposed an algorithm that solves
the maximum independent set problem for graphs with n vertices in O∗(1.2132n).
This bound is obtained by precisely analyzing all cases that the algorithm may
encounter during execution. Since the number of cases exceeds several millions,
a computer aided proof is used to generate and evaluate all cases. In this paper,
we present a program that fullfills this task and give a detailed description of the
principles underlying our method. Moreover, we prove that the set of generated
cases includes all relevant cases.

1 Motivation

The Maximum Independent Set problem (Mis) is well known to be NP-hard.
Over the past years, several exact algorithms were developed for this problem.
Tarjan and Trojanowski [7] presented a method to solve it in time O∗(1.261n).
This was improved by Jian [4] to O∗(1.235) and by Robson [6] to O∗(1.228)n). In
2006, Fomin, Grandoni and Kratsch [2] devised a new algorithm with a runtime
bounded by O∗(1.2201n).

Recently, Kneis, Langer, and Rossmanith [3] developed an intuitive algorithm
that solves Mis in time O∗(1.2132n). To prove this new runtime bound, however,
a computer aided case distinction was applied. The number of these cases, how-
ever, is extremely large and hence demands for an efficient generation method
are justified. In this paper we present an implementation of this proof and give
a detailed documentation.

Throughout this paper we will try to convey an intuitive understanding of
our method and subsequently analyze all involved steps in detail. Finally we will
give a formal proof that our method generates the cases relevant for [3].

2 Definitions

Since this report is intended to complement the proof in [3], we will only shortly
repeat the relevant definitions here.

Definition 1 ([3]). Let H = (VI ∪ VO, E) be graph, such that VI ∩ VO = ∅, and

let v ∈ VI such that VI = N i[v], VO = N i+1(v) and deg(u) = 1 for u ∈ VO.

Moreover, let deg(v) ≥ deg(u) for all u ∈ VI ∪ VO. We call (H, v) graphlet of

radius i. We call VI the inner vertices of (H, v) and the set of edges between VI

and VO the anonymous edges.

Definition 2. Let (G, v) be a graphlet. The k-th orbit Ok is defined by Ok =
{u ∈ V (G) | d(u, v) = k} where d(·, ·) is the distance.

Definition 3. Let (G, v) be a graphlet. (G, v) has extent n ∈ N if and only if

On 6= ∅ and On+1 = ∅.

Definition 4. Let (G, v) and (G′, v′) be graphlets with vertex sets VI , VO and

V ′
I
, V ′

O
respectively. A bijective mapping π : V (G) → V (G′) is a graphlet iso-

morphism if and only if π is an isomorphism w.r.t. G and G′ and additionally

π(v) = v′, π(VI) = V ′
I

and π(VO) = V ′
O
. If such a mapping exists, we write

(G, v) ∼= (G′, v′).

Terms surrounded by < and > refer to command line parameters used when
invoking scripts or programs; identifiers surrounded by [and] refer to program
names.

3 Generation

Throughout this section we will give a rough overview of our graphlet generation
method. Afterwards, we will investigate the steps occurring in the generation
algorithm in more detail.

In the first subsection we will specify some properties of the relevant cases. We
exploit these properties in order to generate the relevant cases more efficiently.
In the subsequent subsections we will discuss the relevant parameters used to
setup the generation process.

3.1 Relevant cases

By the proof given in [3] we know that all cases the algorithm considers for
branching are fully reduced. Moreover, Theorem 3 from this paper allows us to
restrict the relevant cases to graphlets with the following properties:

– d(u) ≥ 3 holds for all u ∈ V (G), since vertices of degree smaller or equal 2
are removed by the domination- and folding-rule.

– There is no u ∈ O1, such that u has no neighbor in O2, since in this case v

would dominate u.

– There is no u ∈ V (G), such that d(u) > d(v), since the algorithm always
branches on a vertex of maximum degree and we assume that v is the vertex
on which the algorithm branches.

– d(v) = 4.

– (G, v) has radius 2.

– Since Kneis, Langer, and Rossmanith showed that, for a case where |O2| ≥
8, the algorithm’s performance is sufficient, the generated cases comply to
|O2| ≤ 7.

Therefore our objective boils down to: Generate all graphlets (G, v) with
radius 2 and d(v) = 4, where d(u) ∈ {3, 4} for all vertices u ∈ V (G), |O2| ≤ 7
and all vertices in O1 have at least one neighbor in O2.

3.2 Parameters

The behaviour and output of the generation algorithm are modified by three
mandatory parameters <minDegree>, <maxDegree>, and <extent>. Because
of the restrictions above the <extent> is already fixed at 2 and therefore hard-
coded in the program.

The <minDegree> and <maxDegree> specify the minimum and maximum
degree that any vertex in the generated cases may have. The algorithm by Kneis,
Langer, and Rossmanith branches on graphlets which do not have vertices of
degree 1 or 2. Therefore <minDegree> is set to 3. Since cases with d(v) ≥ 5 where
investigated manually, we only need to generate graphlets with a <maxDegree>

of 4.

3.3 Process overview

Listing 1.1 visualizes the steps used to generate the relevant cases. We describe
the applied steps in a succinct manner. Afterwards, however, we give detailed
information on the effect and implementation of the steps.

Listing 1.1. Process overview in pseudo-code.

1 gene r a t eS ta r s (minDegree , maxDegree)
2 makeIntraOrbit1Edges (minDegree , maxDegree)
3 p i ckRepr e s en ta t i v e s ()

5 appendTrees (minDegree , maxDegree)
6 f o ldLeaves (maxDegree)
7 p i ckRepr e s en ta t i v e s ()

9 makeIntraOrbit2Edges (minDegree , maxDegree)
10 p i ckRepr e s en ta t i v e s ()

12 appendAnonymousEdges(minDegree , maxDegree)

1. We initially invoke generateStars(minDegree, maxDegree). This generates
a set S of star-shaped graphlets. These are all graphlets (G, v) with extent
1, where d(v) ∈ {minDegree, . . . , maxDegree} and that do not contain any
edges between vertices in O1 (cf. Figure 2).

2. The invocation of makeIntraOrbit1Edges(minDegree, maxDegree) gener-
ates all relevant graphlets by connecting vertices in the first orbit of the
graphlets in S from the previous step.

3. Afterwards, the pickRepresentatives() step is applied for the first time. In
this step we determine the isomorphy classes in the set of graphlets generated
so far. Then we choose one representative from each class and continue to
work on these representatives only, thus reducing the number of graphlets
processed further.

4. The call to appendTrees(minDegree, maxDegree) generates graphlets by
appending new vertices to the vertices on the highest orbit of each graphlet
generated so far. This step generates all possible graphlets of extent two,
where each vertex in O2 has exactly one neighbor in O1 and no further in-
cident edges. Moreover, minDegree ≤ deg(u) ≤ maxDegree for all u ∈ O1

still holds after this step.

5. In the next step, the foldLeaves(maxDegree), the new vertices from step 4
are merged with each other in all possible ways. Doing so, we generate all
graphlets of extent two such that G[O2] contains no edges and without any
anonymous edges. This step provides a very inexpensive method of pruning
the search-tree (cf. Section 3.4).

6. The invocation of makeIntraOrbit2Edges(minDegree, maxDegree) has the
same effect as makeIntraOrbit1Edges(minDegree, maxDegree), but on O2

instead of O1. Hence, this step generates all graphlets of extent two without
anonymous edges.

7. Finally, we add all possible valid combinations of anonymous edges, by calling
appendAnonymousEdges(minDegree, maxDegree).

Depending on the used parameters, the memory consumption of the procedure
easily exceeds the resources of a conventional computer. Therefore, we made
extensive use of disk storage: Between each two steps the intermediate results
are stored on the hard-drive. This of course is a major performance penalty, but
the obtained runtimes for our scenario were more than acceptable. Listing 1.2
shows the actual script that is used to coordinate the generation of the relevant
cases. The steps described above are implemented as autonomous programs which
work on sets of graphlets stored on the disk.

Listing 1.2. The script coordinating the generation process.

1 . / s i n i t −m=$1 −M=$1 −o=stage1 / i n i t
2 . / sedge − i=s tage1 −o=stage2 −M=$1

4 cd s tage2 /
5 for N in ∗ ; do

6 . . / shash − i=$N −o=. ./ s tage3 /
7 done
8 cd . .

10 cd s tage3 /
11 for N in ∗ ; do

12 . . / s f i n d i s o − i=$N −r=$N . r −t=10000
13 . . / s c l e an − i=$N −r=$N . r −o=. ./ s tage4 /$N
14 done
15 cd . .

17 . / smerge − i=s tage4 / −o=stage5 / s e t

19 . / sexpand − i=s tage5 / s e t −o=stage6 / s e t −m=$2 −M=$1

21 . / s f o l d − i=s tage6 / s e t −o=stage7 /

23 cd s tage7 /
24 for N in ∗ ; do

25 . . / shash − i=$N −o=. ./ s tage8 /
26 done
27 cd . .

29 cd s tage8 /
30 for N in ∗ ; do

31 . . / s f i n d i s o − i=$N −r=$N . r −t=1000
32 . . / s c l e an − i=$N −r=$N . r −o=. ./ s tage9 /$N
33 done
34 cd . .

36 . / sedge − i=s tage9 −o=stage10 −M=$1

38 cd s tage10 /

39 for N in ∗ ; do

40 . . / shash − i=$N −o=. ./ s tage11 /
41 done
42 cd . .

44 cd s tage11 /
45 for N in ∗ ; do

46 . . / s f i n d i s o − i=$N −r=$N . r −t=10000
47 . . / s c l e an − i=$N −r=$N . r −o=. ./ s tage12 /$N
48 done
49 cd . .

51 . / smerge − i=s tage12 / −o=stage13 / s e t

53 . / sanon − i=s tage13 / s e t −o=output/$1−$1 . $2−$1 . $3−$1 −m=$3 −M=$1

Furthermore, the pickRepresentatives() function is split into three pro-
grams (shash,sfindiso,sclean). Note that checking for isomorphisms is abso-
lutely necessary to restrict the number of generated graphlets. Since an exhaus-
tive check is very expensive, we only compare graphlets with the same hash value
(see Section 4). This step improves the performance of the generation process
dramatically.

3.4 Process sequence

As depicted in Section 3.3, the process consists of several autonomous programs.
The programs’ usage and implementations are elaborated throughout the next
pages. This part of the report is intended to serve as a guideline to understand
the programs’ implementations, as well as a manual on how to use them.

generateStars(minDegree, maxDegree) [sinit] The invocation of sinit re-
quires certain parameters (cf. Listing 1.3). For every <m> ≤ n ≤ <M> an n-
Star graphlet is generated and stored in the file <o>, where an n-Star is de-
fined as a grahplet (G, v), G = ({v} ∪ O1, E) with O1 = {u1, . . . , un} and
E = {{v, u1}, . . . , {v, un}}.

Listing 1.3. Invocation syntax for sinit.

Invocat i on : s i n i t [OPTIONS]
Generates a s e t o f i n i t i a l graphs f o r the generat i on p r oc e s s .

−m, −−mindegree S p e c i f i e s the minimum degree o f the anchor
ver tex .

−M, −−maxdegree S p e c i f i e s the maximum degree o f the anchor
ver tex .

−o , −−output S e l e c t s the output f i l e (d e f a u l t s to ’ i n i t . out ’)

makeIntraOrbit{1,2}Edges(minDegree, maxDegree) [sedge] The invocation
of sedge requires three parameters, as described in Listing 1.5.

Let S be the set of graphlets with extent i. For any (G, v) ∈ S, all x, y ∈ Oi

are — by construction — not adjacent, cf. Listings 1.1 and 1.2. Our goal is now to
add all possible sets of edges inside Oi to these graphes (see Figure 1). Note that
the extent i of a given graphlet is determined automatically by the algorithm.

For this purpose we compute a list L of pairs of vertices whose degree is
strictly less than the degree of the anchor vertex. These are exactly the pairs of

vertices which we may connect without violating the maximal degree restrictions:

L = {{x, y} | d(x) < d(v) ∧ d(y) < d(v)}

The algorithm’s behaviour is a simple (exhaustive) search for all possibilities,
as depicted in Listing 1.4. In Line 7, however, we need to update the candidate
list L, since adding edges might disqualify certain pairs.

Fig. 1. Constructing edges in O1 of a 3-star.

Listing 1.4. Sedge pseudo-code.

1 For a l l (G, v) in the input f i l e do {
2 L = computeCandidates ()
3 addEdges ((G, v) , L)
4 }

6 addEdges ((G, v) , L) {
7 updateList (L)

9 i f (isEmpty (L)) {
10 writeToDisk (G, v)
11 return .
12 }

14 {x , y} = f i r s tE l ementOf (L)
15 L ’ = L − {x , y}

17 /∗ Rea l i ze the edge ∗/
18 (G’ , v) = (G, v) where E [G’] = E[G] + {x , y}
19 addEdges ((G’ , v) , L ’)

21 /∗ Do not r e a l i z e the edge ∗/
22 addEdges ((G, v) , L ’)
23 }

Listing 1.5. Invocation syntax for sedge.

Invocat i on : sedge [OPTIONS]
Connects the o r b i t a l v e r t i c e s o f a s e t o f graphs .

−i , −−input The graph c o l l e c t i o n to f o l d .
−o , −−output A f i l e to s to r e the connected graphs .
−M, −−maxdegree The maximum degree o f each ver tex .

appendTrees(minDegree, maxDegree) [sexpand] Calling sexpand requires four
parameters. They are described in Listing 1.7.

Given a set of graphlets S with extent 1 this step constructs a new set S′

of graphlets with extent 2 as follows: for each graphlet (G, v) ∈ S, consider
its outermost orbit O1 = {v1, . . . , vn}. For every such vertex vi ∈ O1 we then
calculate the set

n(vi) := {a ∈ N | <m> ≤ a ≤ min{<M>, d(v)}}

If, for example, n(vi) = {2, 3, 4}, the vertex vi can have 2, 3 or 4 neighbors in
O2 without d(vi) being smaller than <m>, or too high.

Using the graphlet (G, v) and some choice ai ∈ n(vi) for all 1 ≤ i ≤ n

we create a new graphlet (G′, v) by attaching ai new vertices to the vertex vi.
Consider a graphlet (G, v) such that V (G) = {v}. The expansions results for
< m >= 3 and < M >= 5 are illustrated in Figure 2.

Fig. 2. Expanding a single vertex for n(v) = {3, 4, 5}.

Every possibility to choose the ai from the n(vi) yields a graphlet. The set of
the graphlets obtained by using all possible choices for the ai are added to the
set S′. S′ is used as input for the next step.

For implementation details refer to the pseudo code in Listing 1.6.

Listing 1.6. Sexpand pseudo-code.

1 For a l l (G, v) in the input f i l e do {
2 Let O = outerMostOrbit (G, v)
3 expand ((G, v) , O)
4 }

6 expand ((G, v) , O) {
7 i f (isEmpty (O)) {
8 writeToDisk (G, v)
9 return .

10 }

12 u = f i r s tE l ementOf (O)
13 for a l l i i n n(u) do {
14 (G’ , v) = appendFreshVert ices (i , u , (G, v))
15 expand ((G’ , v) , O − u)
16 }
17 }

In line 14 the new graphlet (G′, v) is obtained for some vertex u and some
choice i ∈ n(u) by

V (G′) = V (G) ∪̇ {v1, . . . , v|n(u)|} and E(G′) = E(G) ∪ {{u, v1}, . . . , {u, v|n(u)|}}

Listing 1.7. Invocation syntax for sexpand.

Invocat i on : sexpand [OPTIONS]
Expands a s e t o f graphs by appending new v e r t i c e s to the outermost
o r b i t .

−i , −−input The graph c o l l e c t i o n to expand .
−o , −−output The de s i r ed output− f i l e .
−m, −−mindegree The minimum degree o f a ver tex .
−M, −−maxdegree The maximum degree o f a ver tex .

foldLeaves(maxDegree) [sfold] The invocation of sfold requires two param-
eters, as depicted in Listing 1.9.

Let S be a set of graphlets of extent k + 1 ∈ N generated by the sexpand

program. Obviously there is no graphlet in S such that two vertices in Ok have
a common neighbor in Ok+1 since for all u ∈ Ok+1 it holds d(u) = 1. We then
start to fold the vertices in the outermost orbit with each other.

Definition 5. Let u, v ∈ Ok+1, u 6= v and N(u) ∩ N(v) = ∅. We fold u, v by

introducing a new vertex z and connecting it to all neighbors of u, v. Afterwards

we delete u, v from the graphlet.

For each graphlet (G, v) ∈ S we start an exhaustive search on all possible
ways to fold vertices in Ok+1. Refer to the following figure for an example.

u v w x

Fig. 3. The graphlets obtained by folding vertices u, v, w, x in the highest orbit in all possible
ways (isomorphic graphs are omitted).

Listing 1.8. sfold pseudo-code.

1 For a l l (G, v) in the input f i l e do {
2 P = pai r sOfVer t ice s InOutermostOrb i t ()
3 f o l dV e r t i c e s ((G, v) , P)
4 }

6 f o l dV e r t i c e s ((G, v) , P) {
7 updatePair s (P)

9 i f (isEmpty (P)) {
10 writeToDisk (G, v)
11 return .
12 }

14 {x , y} = f i r s tE l ementOf (P)
15 P ’ = P − {x , y}

17 /∗ Do not f o l d the v e r t i c e s ∗/
18 f o l dV e r t i c e s ((G, v) , P ’)

20 /∗ Vert i ce s f o l d a b l e ? ∗/
21 i f (a r eD i s j unc t i v e (N(x) , N(y))) {
22 (G’ , v) = f o l d ((G, v) , x , y)
23 f o l dV e r t i c e s ((G’ , v) , P ’)
24 }
25 }

Note that the graphlet (G′, v) in Line 22 is obtained by performing the fol-
lowing steps:

1. Add a new vertex u and remove the vertices x, y: V (G′) = (V (G) ∪̇ {u}) \
{x, y}.

2. Connect u to all neighbors of x, y: {x, z} ∈ E(G)∨ {y, z} ∈ E(G) ⇒ {u, z} ∈
E(G′).

The call to updatePairs(P) has two purposes. First it removes vertex pairs
which cannot be folded anymore because either their neighborhoods now overlap
or because of the removed vertices.

Second it creates new pairs for a new vertex — in case we applied folding in
the previous round — and adds them to P .

Listing 1.9. Invocation syntax for sfold.

Invocat i on : s f o l d − i=input −o=output
Folds the o r b i t a l v e r t i c e s o f a s e t o f graphs .

−i , −−input The graph c o l l e c t i o n to f o l d .
−o , −−output A f i l e to s to r e the f o l d ed graphs .

pickRepresentatives() [shash,sfindiso,sclean] The objective of these three
programs is to pick representative graphlets from the present isomorphy classes.
As a first step the shash program splits the present files into several new files.
The file that a graphlet is saved to depends on its hash value (cf. Section 4).

Afterwards, exploiting that (G, v) ∼= (G′, v′) ⇒ h(G, v) = h(G′, v′), the
sfindiso program searches for isomorphic graphlets, one file at a time, using
a straightforward isomorphism checking algorithm. Finally the sclean program
removes all members of an isomorphism class except for one representative.

Listing 1.10. Invocation syntax for shash.
Invocat i on : shash [OPTIONS]
Sp l i t s a s e t accord ing to the hash value o f each graph .

−i , −−input The input f i l e .
−o , −−output A f i l e to s to r e the hash f i l e s .

Listing 1.11. Invocation syntax for sfindiso.

Invocat i on : s f i n d i s o [OPTIONS]
Locates pa i r s o f i somorphic graphs and wr i t e s t h e i r index i n to a f i l e .

−i , −−input The graph c o l l e c t i o n to sear ch .
−r , −−r epor t A f i l e to r epor t the l o ca t ed isomorphisms to .
−T, −−time A g l oba l time l im i t . After t h i s time has passed ,

the too l s tops l ook ing for i somorphic graphs .
−t , −−s t ep s The number o f non−d e t e rm i n i s t i c s t ep s the

isomorphism checking algor i thm i s l im i t ed to for

each pa i r o f graphs .
−o , −−o f f s e t The index o f the f i r s t graph to check .

Listing 1.12. Invocation syntax for sclean.
Invocat i on : s c l e an [OPTIONS]
Locates pa i r s o f i somorphic graphs and wr i t e s t h e i r index i n to a
f i l e .

−i , −−input The graph c o l l e c t i o n to c l ean .
−r , −−r epor t The r epor t f i l e from the isomorphism−t r a cke r .
−o , −−output The de s i r ed output− f i l e .

4 Hashing function

Throughout the generation process, we confine the number of considered cases to
a necessary minimum by considering only representatives of isomorphism classes.

In this scenario we are able to exploit additional information about the graphlet-
isomorphisms to speed up the isomorphism checking. The checking procedure,
however, is still computational expensive. Therefore we introduce the following
means to reduce the number of required isomorphism checks.

Let S be a set of cases. We decompose S into several sets S1, S2, . . . For
each graphlet (G, v) ∈ S we use a serial version of Berkowitz’ algorithm [1]
to determine the coefficients of the characteristic polynomial of G’s adjacency
matrix. Graphlets are distributed into the sets Si according to the coefficients in
their respective characteristic polynomial1.

Let (G, v), (G′, v′) be graphlets. If they are isomorphic, then G ∼= G′ also
holds. Therefore their adjacency matrices are permutations of each other. Thus
they must have the same characteristic polynomial.

Altogether, two isomorphic graphlets will be contained in the same set Si.
Therefore it suffices to perform pairwise isomorphy checks on graphlets from the
same set.

Also, in case the implementation of Berkowitz’ algorithm was incorrect, we
would not miss any relevant cases.

5 Completeness

Theorem 1. Let S be the set of graphlets generated by our algorithm for an

radius of 2, a minimum degree of 3 and a maximum degree of 4. Then for every

relevant case (G, v), relevant to algorithm, there is a case (G′, v′) ∈ S, such that

(G, v) ∼= (G′, v′).

In this section we prove that an arbitrary graphlet with extent 2 is generated
by our algorithm (for given <minDegree>,<maxDegree>). Recall the generation
process’ overview in Listing 1.1.

To improve the proof’s readability, we will not distinct between isomorphic
graphlets anymore. If (G, v) ∼= (G′, v′) we treat them as equal.

Proof. Let (G, v) be a graphlet with extent 2, d(v) = 4 and V (G) = {v}∪O1∪O2

with O1 = {u1, . . . , u4}, O2 = {w1, . . . , wn} where n ≤ 7. Furthermore d(x) ∈
{3, 4} for all x ∈ V (G) and there is no ui ∈ O1 that has no neighbor in O2. We
will prove that (G, v) is generated by our algorithm.

Let T1 = (G[{v}∪O1], v) without edges in O1. In Line 1 the call to generateStars
generates only the 4-star graphlet. Since d(v) = 4 we know that T1 is generated
in the first line.

Consider Line 2 and assume that T1 has been generated so far. Let T2 =
(G[{v} ∪ O1], v) be the graphlet induced by the first orbit O1 and the anchor
vertex v. Since (G, v) is a relevant case the edges in E[G] ∩

(

O1

2

)

are also added
in one path of the exhaustive search tree employed by makeIntraOrbit1Edges.
Therefore T2 is generated by the second line.

Since, during the proof, we do not distinguish between isomorphic graphlets
the pickRepresentatives-calls are not interesting.

Consider Line 5. Let, for some ui ∈ O1, e(ui) be the number of ui’s neighbors
in O2 w.r.t. (G, v). Let T3 = (G′, v) where V (G′) = {v} ∪ O1 ∪ {x1, . . . , xm}

1 Due to limitations in the file system, we were forced to reduce the quality of this separation,
thus obtaining a smaller number of files.

where m =
∑4

i=1 e(ui). Moreover E(G′) = {{v, u1}, . . . , {v, u4}} and every ui

is connected to e(ui) unique vertices in {x1, . . . , xm}. Hence for all xi it holds
d(xi) = 1. So T3 equals T2 with new vertices of degree 1 attached to O1.

Since the call to appendTrees performs an exhaustive search, at least one
of the leafs in the search tree provides T3 (under the assumption that T2 was
obtained by the previous steps).

Consider Line 6 and assume T3 was generated by now. Let T4 = (G, v)
but without anonymous edges and without edges in the second orbit. Since
foldLeaves performs an exhaustive search on all possibilities to fold vertices,
we only need to show that T3 can be folded into T4.

Let x ∈ O2(T4) and y1, . . . , yk its neighbors in O1. The yi have e(yi) neighbors
with degree 1. For each yi, yi+1 we take one of their unused neighbors ni, ni+1

in O2 and fold them together. This is always possible since N [ni] ∩ N [ni+1] =
{yi} ∩ {yi+1} = ∅. We obtain a new vertex z that is connected to yi, yi+1. We
can now fold z, yi+2, etc. Afterwards all yi have been folded into a single new
vertex which resembles x in T4. We employ the same strategy for the remaining
vertices in O2(T4)\{x}. After we have done this, T3 = T4. Moreover, the number
of available vertices for folding is always sufficient, since the number of edges
between O1 and O2 are not changed during folding.

Thus, under the assumption that T3 is generated by the previous steps, we
will obtain T4 in Line 6.

Let T5 = (G, v) without any anonymous edges. By the same argument as
regarding the second line, T5 is generated under the assumption that T4 was
generated before.

In the last step, we perform an exhaustive search on the possibilities to add
anonymous edges. Assuming that T5 was generated by the previous steps, at
least one leaf in the search tree will provide (G, v).

Thus, neglecting isomorphisms, (G, v) will be generated by the algorithm.
Therefore the algorithm generates all relevant cases.

Since the completeness is crucial for the validity of Kneis, Langer, and Ross-
manith’s work [3], Reidl & Sánchez Villaamil [5] devised a more readable — and
therefore slower — program, used to verify that the presented algorithm gen-
erates all relevant cases. For information on their implementation refer to the
respective technical report [5].

References

1. S. J. Berkowitz. On computing the determinant in small parallel time using a small number
of processors. Information Processing Letters, 18:147–150, 1984.

2. F. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: A simple O(20.288n) in-
dependent set algorithm. In Proceedings of the 17th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 18–25, 2006.

3. P. Rossmanith J. Kneis, A. Langer. A fine-grained analysis of a simple independent set
algorithm, 2009. submitted for publication.

4. T. Jian. An O(20.304n) algorithm for solving Maximum Independent Set problem. IEEE
Transactions on Computers, 35(9):847–851, 1986.

5. F. Reidl and F. Sánchez Villaamil. Automatic verification of the correctness of
the upper bound of a maximum independent set algorithm, 2009. Available at
http://www.tcs.rwth-aachen.de/independentset/.

6. J. M. Robson. Algorithms for maximum independent sets. Journal of Algorithms, 7:425–440,
1986.

7. R. E. Tarjan and A. E. Trojanowski. Finding a Maximum Independent Set. SIAM Journal
on Computing, 6(3):537–550, 1977.

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years.

A complete list of reports dating back to 1987 is available from http://aib.

informatik.rwth-aachen.de/. To obtain copies consult the above URL or

send your request to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55,

52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling

Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,

Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli

Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI

Work Group “Requirements Management Tools for Product Line Engi-

neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical

sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for

Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-

ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-

ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A

System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal

2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking

2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications

2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches

2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler

Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical

Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke

2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code

2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-

grams

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,

Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modular,

Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent programs

2007-16 Sadeq Ali Makram, Mesut Güneç, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Balanc-

ing for Wireless Mesh Networks

2007-17 René Thiemann: The DP Framework for Proving Termination of Term

Rewriting

2007-18 Uwe Naumann: Call Tree Reversal is NP-Complete

2007-19 Jan Riehme, Andrea Walther, Jörg Stiller, Uwe Naumann: Adjoints for

Time-Dependent Optimal Control

2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:

Three-Valued Abstraction for Probabilistic Systems

2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-

sitional Modeling and Minimization of Time-Inhomogeneous Markov

Chains

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,

and Berthold Vöcking: Uncoordinated Two-Sided Markets

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007

2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, Harald Zankl: Maximal Termination

2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler

2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations

2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message

Passing Programs

2008-07 Alexander Nyßen, Horst Lichter: The MeDUSA Reference Manual, Sec-

ond Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on

Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-

endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-

Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable

Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-

straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl

Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-

proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers

2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves

2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study

2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving

2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems

2009-03 Alexander Nyßen: Model-Based Construction of Embedded

Real-Time Software - A Methodology for Small Devices

2009-04 Daniel Klünder: Entwurf eingebetteter Software mit abstrakten Zus-

tandsmaschinen und Business Object Notation

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-

erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-

dependent Set on Sparse Graphs

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The

Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in

Continuous-Time Markov Decision Processes

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

