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Abstract. Kneis, Langer, and Rossmanith [3] proposed an algorithm that solves
the maximum independent set problem for graphs with n vertices in O∗(1.2132n).
This bound is obtained by precisely analyzing all cases that the algorithm may
encounter during execution. Since the number of cases exceeds several millions,
a computer aided proof is used to generate and evaluate all cases. In this paper,
we present a program that fullfills this task and give a detailed description of the
principles underlying our method. Moreover, we prove that the set of generated
cases includes all relevant cases.

1 Motivation

The Maximum Independent Set problem (Mis) is well known to be NP-hard.
Over the past years, several exact algorithms were developed for this problem.
Tarjan and Trojanowski [7] presented a method to solve it in time O∗(1.261n).
This was improved by Jian [4] to O∗(1.235) and by Robson [6] to O∗(1.228)n). In
2006, Fomin, Grandoni and Kratsch [2] devised a new algorithm with a runtime
bounded by O∗(1.2201n).

Recently, Kneis, Langer, and Rossmanith [3] developed an intuitive algorithm
that solves Mis in time O∗(1.2132n). To prove this new runtime bound, however,
a computer aided case distinction was applied. The number of these cases, how-
ever, is extremely large and hence demands for an efficient generation method
are justified. In this paper we present an implementation of this proof and give
a detailed documentation.

Throughout this paper we will try to convey an intuitive understanding of
our method and subsequently analyze all involved steps in detail. Finally we will
give a formal proof that our method generates the cases relevant for [3].

2 Definitions

Since this report is intended to complement the proof in [3], we will only shortly
repeat the relevant definitions here.

Definition 1 ([3]). Let H = (VI ∪ VO, E) be graph, such that VI ∩ VO = ∅, and

let v ∈ VI such that VI = N i[v], VO = N i+1(v) and deg(u) = 1 for u ∈ VO.

Moreover, let deg(v) ≥ deg(u) for all u ∈ VI ∪ VO. We call (H, v) graphlet of

radius i. We call VI the inner vertices of (H, v) and the set of edges between VI

and VO the anonymous edges.



Definition 2. Let (G, v) be a graphlet. The k-th orbit Ok is defined by Ok =
{u ∈ V (G) | d(u, v) = k} where d(·, ·) is the distance.

Definition 3. Let (G, v) be a graphlet. (G, v) has extent n ∈ N if and only if

On 6= ∅ and On+1 = ∅.

Definition 4. Let (G, v) and (G′, v′) be graphlets with vertex sets VI , VO and

V ′
I
, V ′

O
respectively. A bijective mapping π : V (G) → V (G′) is a graphlet iso-

morphism if and only if π is an isomorphism w.r.t. G and G′ and additionally

π(v) = v′, π(VI) = V ′
I

and π(VO) = V ′
O
. If such a mapping exists, we write

(G, v) ∼= (G′, v′).

Terms surrounded by < and > refer to command line parameters used when
invoking scripts or programs; identifiers surrounded by [ and ] refer to program
names.

3 Generation

Throughout this section we will give a rough overview of our graphlet generation
method. Afterwards, we will investigate the steps occurring in the generation
algorithm in more detail.

In the first subsection we will specify some properties of the relevant cases. We
exploit these properties in order to generate the relevant cases more efficiently.
In the subsequent subsections we will discuss the relevant parameters used to
setup the generation process.

3.1 Relevant cases

By the proof given in [3] we know that all cases the algorithm considers for
branching are fully reduced. Moreover, Theorem 3 from this paper allows us to
restrict the relevant cases to graphlets with the following properties:

– d(u) ≥ 3 holds for all u ∈ V (G), since vertices of degree smaller or equal 2
are removed by the domination- and folding-rule.

– There is no u ∈ O1, such that u has no neighbor in O2, since in this case v

would dominate u.

– There is no u ∈ V (G), such that d(u) > d(v), since the algorithm always
branches on a vertex of maximum degree and we assume that v is the vertex
on which the algorithm branches.

– d(v) = 4.

– (G, v) has radius 2.

– Since Kneis, Langer, and Rossmanith showed that, for a case where |O2| ≥
8, the algorithm’s performance is sufficient, the generated cases comply to
|O2| ≤ 7.

Therefore our objective boils down to: Generate all graphlets (G, v) with
radius 2 and d(v) = 4, where d(u) ∈ {3, 4} for all vertices u ∈ V (G), |O2| ≤ 7
and all vertices in O1 have at least one neighbor in O2.



3.2 Parameters

The behaviour and output of the generation algorithm are modified by three
mandatory parameters <minDegree>, <maxDegree>, and <extent>. Because
of the restrictions above the <extent> is already fixed at 2 and therefore hard-
coded in the program.

The <minDegree> and <maxDegree> specify the minimum and maximum
degree that any vertex in the generated cases may have. The algorithm by Kneis,
Langer, and Rossmanith branches on graphlets which do not have vertices of
degree 1 or 2. Therefore <minDegree> is set to 3. Since cases with d(v) ≥ 5 where
investigated manually, we only need to generate graphlets with a <maxDegree>

of 4.

3.3 Process overview

Listing 1.1 visualizes the steps used to generate the relevant cases. We describe
the applied steps in a succinct manner. Afterwards, however, we give detailed
information on the effect and implementation of the steps.

Listing 1.1. Process overview in pseudo-code.

1 gene r a t eS ta r s ( minDegree , maxDegree )
2 makeIntraOrbit1Edges ( minDegree , maxDegree )
3 p i ckRepr e s en ta t i v e s ( )

5 appendTrees ( minDegree , maxDegree )
6 f o ldLeaves (maxDegree )
7 p i ckRepr e s en ta t i v e s ( )

9 makeIntraOrbit2Edges ( minDegree , maxDegree )
10 p i ckRepr e s en ta t i v e s ( )

12 appendAnonymousEdges( minDegree , maxDegree )

1. We initially invoke generateStars(minDegree, maxDegree). This generates
a set S of star-shaped graphlets. These are all graphlets (G, v) with extent
1, where d(v) ∈ {minDegree, . . . , maxDegree} and that do not contain any
edges between vertices in O1 (cf. Figure 2).

2. The invocation of makeIntraOrbit1Edges(minDegree, maxDegree) gener-
ates all relevant graphlets by connecting vertices in the first orbit of the
graphlets in S from the previous step.

3. Afterwards, the pickRepresentatives() step is applied for the first time. In
this step we determine the isomorphy classes in the set of graphlets generated
so far. Then we choose one representative from each class and continue to
work on these representatives only, thus reducing the number of graphlets
processed further.

4. The call to appendTrees(minDegree, maxDegree) generates graphlets by
appending new vertices to the vertices on the highest orbit of each graphlet
generated so far. This step generates all possible graphlets of extent two,
where each vertex in O2 has exactly one neighbor in O1 and no further in-
cident edges. Moreover, minDegree ≤ deg(u) ≤ maxDegree for all u ∈ O1

still holds after this step.



5. In the next step, the foldLeaves(maxDegree), the new vertices from step 4
are merged with each other in all possible ways. Doing so, we generate all
graphlets of extent two such that G[O2] contains no edges and without any
anonymous edges. This step provides a very inexpensive method of pruning
the search-tree (cf. Section 3.4).

6. The invocation of makeIntraOrbit2Edges(minDegree, maxDegree) has the
same effect as makeIntraOrbit1Edges(minDegree, maxDegree), but on O2

instead of O1. Hence, this step generates all graphlets of extent two without
anonymous edges.

7. Finally, we add all possible valid combinations of anonymous edges, by calling
appendAnonymousEdges(minDegree, maxDegree).

Depending on the used parameters, the memory consumption of the procedure
easily exceeds the resources of a conventional computer. Therefore, we made
extensive use of disk storage: Between each two steps the intermediate results
are stored on the hard-drive. This of course is a major performance penalty, but
the obtained runtimes for our scenario were more than acceptable. Listing 1.2
shows the actual script that is used to coordinate the generation of the relevant
cases. The steps described above are implemented as autonomous programs which
work on sets of graphlets stored on the disk.

Listing 1.2. The script coordinating the generation process.

1 . / s i n i t −m=$1 −M=$1 −o=stage1 / i n i t
2 . / sedge − i=s tage1 −o=stage2 −M=$1

4 cd s tage2 /
5 for N in ∗ ; do

6 . . / shash − i=$N −o=. ./ s tage3 /
7 done
8 cd . .

10 cd s tage3 /
11 for N in ∗ ; do

12 . . / s f i n d i s o − i=$N −r=$N . r −t=10000
13 . . / s c l e an − i=$N −r=$N . r −o=. ./ s tage4 /$N
14 done
15 cd . .

17 . / smerge − i=s tage4 / −o=stage5 / s e t

19 . / sexpand − i=s tage5 / s e t −o=stage6 / s e t −m=$2 −M=$1

21 . / s f o l d − i=s tage6 / s e t −o=stage7 /

23 cd s tage7 /
24 for N in ∗ ; do

25 . . / shash − i=$N −o=. ./ s tage8 /
26 done
27 cd . .

29 cd s tage8 /
30 for N in ∗ ; do

31 . . / s f i n d i s o − i=$N −r=$N . r −t=1000
32 . . / s c l e an − i=$N −r=$N . r −o=. ./ s tage9 /$N
33 done
34 cd . .

36 . / sedge − i=s tage9 −o=stage10 −M=$1

38 cd s tage10 /



39 for N in ∗ ; do

40 . . / shash − i=$N −o=. ./ s tage11 /
41 done
42 cd . .

44 cd s tage11 /
45 for N in ∗ ; do

46 . . / s f i n d i s o − i=$N −r=$N . r −t=10000
47 . . / s c l e an − i=$N −r=$N . r −o=. ./ s tage12 /$N
48 done
49 cd . .

51 . / smerge − i=s tage12 / −o=stage13 / s e t

53 . / sanon − i=s tage13 / s e t −o=output/$1−$1 . $2−$1 . $3−$1 −m=$3 −M=$1

Furthermore, the pickRepresentatives() function is split into three pro-
grams (shash,sfindiso,sclean). Note that checking for isomorphisms is abso-
lutely necessary to restrict the number of generated graphlets. Since an exhaus-
tive check is very expensive, we only compare graphlets with the same hash value
(see Section 4). This step improves the performance of the generation process
dramatically.

3.4 Process sequence

As depicted in Section 3.3, the process consists of several autonomous programs.
The programs’ usage and implementations are elaborated throughout the next
pages. This part of the report is intended to serve as a guideline to understand
the programs’ implementations, as well as a manual on how to use them.

generateStars(minDegree, maxDegree) [sinit] The invocation of sinit re-
quires certain parameters (cf. Listing 1.3). For every <m> ≤ n ≤ <M> an n-
Star graphlet is generated and stored in the file <o>, where an n-Star is de-
fined as a grahplet (G, v), G = ({v} ∪ O1, E) with O1 = {u1, . . . , un} and
E = {{v, u1}, . . . , {v, un}}.

Listing 1.3. Invocation syntax for sinit.

Invocat i on : s i n i t [OPTIONS]
Generates a s e t o f i n i t i a l graphs f o r the generat i on p r oc e s s .

−m, −−mindegree S p e c i f i e s the minimum degree o f the anchor
ver tex .

−M, −−maxdegree S p e c i f i e s the maximum degree o f the anchor
ver tex .

−o , −−output S e l e c t s the output f i l e ( d e f a u l t s to ’ i n i t . out ’ )

makeIntraOrbit{1,2}Edges(minDegree, maxDegree) [sedge] The invocation
of sedge requires three parameters, as described in Listing 1.5.

Let S be the set of graphlets with extent i. For any (G, v) ∈ S, all x, y ∈ Oi

are — by construction — not adjacent, cf. Listings 1.1 and 1.2. Our goal is now to
add all possible sets of edges inside Oi to these graphes (see Figure 1). Note that
the extent i of a given graphlet is determined automatically by the algorithm.

For this purpose we compute a list L of pairs of vertices whose degree is
strictly less than the degree of the anchor vertex. These are exactly the pairs of



vertices which we may connect without violating the maximal degree restrictions:

L = {{x, y} | d(x) < d(v) ∧ d(y) < d(v)}

The algorithm’s behaviour is a simple (exhaustive) search for all possibilities,
as depicted in Listing 1.4. In Line 7, however, we need to update the candidate
list L, since adding edges might disqualify certain pairs.

Fig. 1. Constructing edges in O1 of a 3-star.

Listing 1.4. Sedge pseudo-code.

1 For a l l (G, v ) in the input f i l e do {
2 L = computeCandidates ( )
3 addEdges ( (G, v ) , L)
4 }

6 addEdges ( (G, v ) , L) {
7 updateList (L)

9 i f ( isEmpty (L) ) {
10 writeToDisk (G, v )
11 return .
12 }

14 {x , y} = f i r s tE l ementOf (L)
15 L ’ = L − {x , y}

17 /∗ Rea l i ze the edge ∗/
18 (G’ , v ) = (G, v ) where E [G’ ] = E[G] + {x , y}
19 addEdges ( (G’ , v ) , L ’ )

21 /∗ Do not r e a l i z e the edge ∗/
22 addEdges ( (G, v ) , L ’ )
23 }

Listing 1.5. Invocation syntax for sedge.

Invocat i on : sedge [OPTIONS]
Connects the o r b i t a l v e r t i c e s o f a s e t o f graphs .

−i , −−input The graph c o l l e c t i o n to f o l d .
−o , −−output A f i l e to s to r e the connected graphs .
−M, −−maxdegree The maximum degree o f each ver tex .

appendTrees(minDegree, maxDegree) [sexpand] Calling sexpand requires four
parameters. They are described in Listing 1.7.

Given a set of graphlets S with extent 1 this step constructs a new set S′

of graphlets with extent 2 as follows: for each graphlet (G, v) ∈ S, consider
its outermost orbit O1 = {v1, . . . , vn}. For every such vertex vi ∈ O1 we then
calculate the set

n(vi) := {a ∈ N | <m> ≤ a ≤ min{<M>, d(v)}}



If, for example, n(vi) = {2, 3, 4}, the vertex vi can have 2, 3 or 4 neighbors in
O2 without d(vi) being smaller than <m>, or too high.

Using the graphlet (G, v) and some choice ai ∈ n(vi) for all 1 ≤ i ≤ n

we create a new graphlet (G′, v) by attaching ai new vertices to the vertex vi.
Consider a graphlet (G, v) such that V (G) = {v}. The expansions results for
< m >= 3 and < M >= 5 are illustrated in Figure 2.

Fig. 2. Expanding a single vertex for n(v) = {3, 4, 5}.

Every possibility to choose the ai from the n(vi) yields a graphlet. The set of
the graphlets obtained by using all possible choices for the ai are added to the
set S′. S′ is used as input for the next step.

For implementation details refer to the pseudo code in Listing 1.6.

Listing 1.6. Sexpand pseudo-code.

1 For a l l (G, v ) in the input f i l e do {
2 Let O = outerMostOrbit (G, v )
3 expand ( (G, v ) , O)
4 }

6 expand ( (G, v ) , O) {
7 i f ( isEmpty (O) ) {
8 writeToDisk (G, v )
9 return .

10 }

12 u = f i r s tE l ementOf (O)
13 for a l l i i n n(u) do {
14 (G’ , v ) = appendFreshVert ices ( i , u , (G, v ) )
15 expand ( (G’ , v ) , O − u)
16 }
17 }

In line 14 the new graphlet (G′, v) is obtained for some vertex u and some
choice i ∈ n(u) by

V (G′) = V (G) ∪̇ {v1, . . . , v|n(u)|} and E(G′) = E(G) ∪ {{u, v1}, . . . , {u, v|n(u)|}}

Listing 1.7. Invocation syntax for sexpand.

Invocat i on : sexpand [OPTIONS ]
Expands a s e t o f graphs by appending new v e r t i c e s to the outermost
o r b i t .

−i , −−input The graph c o l l e c t i o n to expand .
−o , −−output The de s i r ed output− f i l e .
−m, −−mindegree The minimum degree o f a ver tex .
−M, −−maxdegree The maximum degree o f a ver tex .



foldLeaves(maxDegree) [sfold] The invocation of sfold requires two param-
eters, as depicted in Listing 1.9.

Let S be a set of graphlets of extent k + 1 ∈ N generated by the sexpand

program. Obviously there is no graphlet in S such that two vertices in Ok have
a common neighbor in Ok+1 since for all u ∈ Ok+1 it holds d(u) = 1. We then
start to fold the vertices in the outermost orbit with each other.

Definition 5. Let u, v ∈ Ok+1, u 6= v and N(u) ∩ N(v) = ∅. We fold u, v by

introducing a new vertex z and connecting it to all neighbors of u, v. Afterwards

we delete u, v from the graphlet.

For each graphlet (G, v) ∈ S we start an exhaustive search on all possible
ways to fold vertices in Ok+1. Refer to the following figure for an example.

u v w x

Fig. 3. The graphlets obtained by folding vertices u, v, w, x in the highest orbit in all possible
ways (isomorphic graphs are omitted).

Listing 1.8. sfold pseudo-code.

1 For a l l (G, v ) in the input f i l e do {
2 P = pai r sOfVer t ice s InOutermostOrb i t ( )
3 f o l dV e r t i c e s ( (G, v ) , P)
4 }

6 f o l dV e r t i c e s ( (G, v ) , P) {
7 updatePair s (P)

9 i f ( isEmpty (P) ) {
10 writeToDisk (G, v )
11 return .
12 }

14 {x , y} = f i r s tE l ementOf (P)
15 P ’ = P − {x , y}

17 /∗ Do not f o l d the v e r t i c e s ∗/
18 f o l dV e r t i c e s ( (G, v ) , P ’ )

20 /∗ Vert i ce s f o l d a b l e ? ∗/
21 i f ( a r eD i s j unc t i v e (N(x ) , N(y ) ) ) {
22 (G’ , v ) = f o l d ( (G, v ) , x , y )
23 f o l dV e r t i c e s ( (G’ , v ) , P ’ )
24 }
25 }

Note that the graphlet (G′, v) in Line 22 is obtained by performing the fol-
lowing steps:

1. Add a new vertex u and remove the vertices x, y: V (G′) = (V (G) ∪̇ {u}) \
{x, y}.

2. Connect u to all neighbors of x, y: {x, z} ∈ E(G)∨ {y, z} ∈ E(G) ⇒ {u, z} ∈
E(G′).



The call to updatePairs(P) has two purposes. First it removes vertex pairs
which cannot be folded anymore because either their neighborhoods now overlap
or because of the removed vertices.

Second it creates new pairs for a new vertex — in case we applied folding in
the previous round — and adds them to P .

Listing 1.9. Invocation syntax for sfold.

Invocat i on : s f o l d − i=input −o=output
Folds the o r b i t a l v e r t i c e s o f a s e t o f graphs .

−i , −−input The graph c o l l e c t i o n to f o l d .
−o , −−output A f i l e to s to r e the f o l d ed graphs .

pickRepresentatives() [shash,sfindiso,sclean] The objective of these three
programs is to pick representative graphlets from the present isomorphy classes.
As a first step the shash program splits the present files into several new files.
The file that a graphlet is saved to depends on its hash value (cf. Section 4).

Afterwards, exploiting that (G, v) ∼= (G′, v′) ⇒ h(G, v) = h(G′, v′), the
sfindiso program searches for isomorphic graphlets, one file at a time, using
a straightforward isomorphism checking algorithm. Finally the sclean program
removes all members of an isomorphism class except for one representative.

Listing 1.10. Invocation syntax for shash.
Invocat i on : shash [OPTIONS]
Sp l i t s a s e t accord ing to the hash value o f each graph .

−i , −−input The input f i l e .
−o , −−output A f i l e to s to r e the hash f i l e s .

Listing 1.11. Invocation syntax for sfindiso.

Invocat i on : s f i n d i s o [OPTIONS]
Locates pa i r s o f i somorphic graphs and wr i t e s t h e i r index i n to a f i l e .

−i , −−input The graph c o l l e c t i o n to sear ch .
−r , −−r epor t A f i l e to r epor t the l o ca t ed isomorphisms to .
−T, −−time A g l oba l time l im i t . After t h i s time has passed ,

the too l s tops l ook ing for i somorphic graphs .
−t , −−s t ep s The number o f non−d e t e rm i n i s t i c s t ep s the

isomorphism checking algor i thm i s l im i t ed to for

each pa i r o f graphs .
−o , −−o f f s e t The index o f the f i r s t graph to check .

Listing 1.12. Invocation syntax for sclean.
Invocat i on : s c l e an [OPTIONS ]
Locates pa i r s o f i somorphic graphs and wr i t e s t h e i r index i n to a
f i l e .

−i , −−input The graph c o l l e c t i o n to c l ean .
−r , −−r epor t The r epor t f i l e from the isomorphism−t r a cke r .
−o , −−output The de s i r ed output− f i l e .

4 Hashing function

Throughout the generation process, we confine the number of considered cases to
a necessary minimum by considering only representatives of isomorphism classes.



In this scenario we are able to exploit additional information about the graphlet-
isomorphisms to speed up the isomorphism checking. The checking procedure,
however, is still computational expensive. Therefore we introduce the following
means to reduce the number of required isomorphism checks.

Let S be a set of cases. We decompose S into several sets S1, S2, . . . For
each graphlet (G, v) ∈ S we use a serial version of Berkowitz’ algorithm [1]
to determine the coefficients of the characteristic polynomial of G’s adjacency
matrix. Graphlets are distributed into the sets Si according to the coefficients in
their respective characteristic polynomial1.

Let (G, v), (G′, v′) be graphlets. If they are isomorphic, then G ∼= G′ also
holds. Therefore their adjacency matrices are permutations of each other. Thus
they must have the same characteristic polynomial.

Altogether, two isomorphic graphlets will be contained in the same set Si.
Therefore it suffices to perform pairwise isomorphy checks on graphlets from the
same set.

Also, in case the implementation of Berkowitz’ algorithm was incorrect, we
would not miss any relevant cases.

5 Completeness

Theorem 1. Let S be the set of graphlets generated by our algorithm for an

radius of 2, a minimum degree of 3 and a maximum degree of 4. Then for every

relevant case (G, v), relevant to algorithm, there is a case (G′, v′) ∈ S, such that

(G, v) ∼= (G′, v′).

In this section we prove that an arbitrary graphlet with extent 2 is generated
by our algorithm (for given <minDegree>,<maxDegree>). Recall the generation
process’ overview in Listing 1.1.

To improve the proof’s readability, we will not distinct between isomorphic
graphlets anymore. If (G, v) ∼= (G′, v′) we treat them as equal.

Proof. Let (G, v) be a graphlet with extent 2, d(v) = 4 and V (G) = {v}∪O1∪O2

with O1 = {u1, . . . , u4}, O2 = {w1, . . . , wn} where n ≤ 7. Furthermore d(x) ∈
{3, 4} for all x ∈ V (G) and there is no ui ∈ O1 that has no neighbor in O2. We
will prove that (G, v) is generated by our algorithm.

Let T1 = (G[{v}∪O1], v) without edges in O1. In Line 1 the call to generateStars
generates only the 4-star graphlet. Since d(v) = 4 we know that T1 is generated
in the first line.

Consider Line 2 and assume that T1 has been generated so far. Let T2 =
(G[{v} ∪ O1], v) be the graphlet induced by the first orbit O1 and the anchor
vertex v. Since (G, v) is a relevant case the edges in E[G] ∩

(

O1

2

)

are also added
in one path of the exhaustive search tree employed by makeIntraOrbit1Edges.
Therefore T2 is generated by the second line.

Since, during the proof, we do not distinguish between isomorphic graphlets
the pickRepresentatives-calls are not interesting.

Consider Line 5. Let, for some ui ∈ O1, e(ui) be the number of ui’s neighbors
in O2 w.r.t. (G, v). Let T3 = (G′, v) where V (G′) = {v} ∪ O1 ∪ {x1, . . . , xm}

1 Due to limitations in the file system, we were forced to reduce the quality of this separation,
thus obtaining a smaller number of files.



where m =
∑4

i=1 e(ui). Moreover E(G′) = {{v, u1}, . . . , {v, u4}} and every ui

is connected to e(ui) unique vertices in {x1, . . . , xm}. Hence for all xi it holds
d(xi) = 1. So T3 equals T2 with new vertices of degree 1 attached to O1.

Since the call to appendTrees performs an exhaustive search, at least one
of the leafs in the search tree provides T3 (under the assumption that T2 was
obtained by the previous steps).

Consider Line 6 and assume T3 was generated by now. Let T4 = (G, v)
but without anonymous edges and without edges in the second orbit. Since
foldLeaves performs an exhaustive search on all possibilities to fold vertices,
we only need to show that T3 can be folded into T4.

Let x ∈ O2(T4) and y1, . . . , yk its neighbors in O1. The yi have e(yi) neighbors
with degree 1. For each yi, yi+1 we take one of their unused neighbors ni, ni+1

in O2 and fold them together. This is always possible since N [ni] ∩ N [ni+1] =
{yi} ∩ {yi+1} = ∅. We obtain a new vertex z that is connected to yi, yi+1. We
can now fold z, yi+2, etc. Afterwards all yi have been folded into a single new
vertex which resembles x in T4. We employ the same strategy for the remaining
vertices in O2(T4)\{x}. After we have done this, T3 = T4. Moreover, the number
of available vertices for folding is always sufficient, since the number of edges
between O1 and O2 are not changed during folding.

Thus, under the assumption that T3 is generated by the previous steps, we
will obtain T4 in Line 6.

Let T5 = (G, v) without any anonymous edges. By the same argument as
regarding the second line, T5 is generated under the assumption that T4 was
generated before.

In the last step, we perform an exhaustive search on the possibilities to add
anonymous edges. Assuming that T5 was generated by the previous steps, at
least one leaf in the search tree will provide (G, v).

Thus, neglecting isomorphisms, (G, v) will be generated by the algorithm.
Therefore the algorithm generates all relevant cases.

Since the completeness is crucial for the validity of Kneis, Langer, and Ross-
manith’s work [3], Reidl & Sánchez Villaamil [5] devised a more readable — and
therefore slower — program, used to verify that the presented algorithm gen-
erates all relevant cases. For information on their implementation refer to the
respective technical report [5].
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2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical

Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke
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