
Aachen
Department of Computer Science

Technical Report

The Recognition of Tolerance and
Bounded Tolerance Graphs is NP-complete

George B. Mertzios
Ignasi Sau
Shmuel Zaks

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2009-06

RWTH Aachen · Department of Computer Science · April 2009

1

The publications of the Department of Computer Science of RWTH Aachen University are in
general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

2

The Recognition of Tolerance and
Bounded Tolerance Graphs is NP-complete

George B. Mertzios∗, Ignasi Sau†, and Shmuel Zaks‡

Abstract. Tolerance graphs model interval relations in such a way that intervals can tolerate
a certain degree of overlap without being in conflict. This class of graphs has been extensively
studied, due to both its interesting structure and its numerous applications (in bioinformatics,
constrained-based temporal reasoning, resource allocation, and scheduling problems, among
others). Several efficient algorithms for optimization problems that are NP-hard in general
graphs have been designed for tolerance graphs. In spite of this, the recognition of tolerance
graphs -namely, the problem of deciding whether a given graph is a tolerance graph- as well
as the recognition of their main subclass of bounded tolerance graphs, are probably the most
fundamental open problems in this context (cf. the book on tolerance graphs [14]) since their
introduction almost three decades ago [11]. In this article we resolve this problem, by proving
that both recognition problems are NP-complete, even in the case where the input graph is a
trapezoid graph. For our reduction we extend the notion of an acyclic orientation of permutation
and trapezoid graphs. Our main tool is a new algorithm (which uses an approach similar to [6])
that transforms a given trapezoid graph into a permutation graph, while preserving this new
acyclic orientation property.

Keywords: Tolerance graphs, bounded tolerance graphs, recognition, NP-complete, trapezoid
graphs, permutation graphs.

1 Introduction

1.1 Tolerance graphs and related graph classes

A simple undirected graph G = (V,E) on n vertices is a tolerance graph if there exists a
collection I = {Ii | i = 1, 2, . . . , n} of closed intervals on the real line and a set t = {ti | i =
1, 2, . . . , n} of positive numbers, such that for any two vertices vi, vj ∈ V , vivj ∈ E if and only
if |Ii ∩ Ij| ≥ min{ti, tj}. The pair 〈I, t〉 is called a tolerance representation of G. If G has a
tolerance representation 〈I, t〉, such that ti ≤ |Ii| for every i = 1, 2, . . . , n, then G is called a
bounded tolerance graph and 〈I, t〉 a bounded tolerance representation of G.

Tolerance graphs were introduced in [11], in order to generalize some of the well known
applications of interval graphs. The main motivation was in the context of resource allocation
and scheduling problems, in which resources, such as rooms and vehicles, can tolerate sharing
among users [14]. If we replace in the definition of tolerance graphs the operator min by the
operator max, we obtain the class of max-tolerance graphs. Both tolerance and max-tolerance
graphs find in a natural way applications in biology and bioinformatics, as in the comparison
of DNA sequences from different organisms or individuals [18], by making use of a software
tool like BLAST [1]. Tolerance graphs find numerous other applications in constrained-based
temporal reasoning, data transmission through networks to efficiently scheduling aircraft and
crews, as well as contributing to genetic analysis and studies of the brain [13, 14]. This class
of graphs has attracted many research efforts [2, 4, 8, 12–14, 16, 19, 23, 24], as it generalizes in a

∗Department of Computer Science, RWTH Aachen University, Germany. Email:
mertzios@cs.rwth-aachen.de

†Mascotte joint Project of INRIA/CNRS/UNSA, Sophia-Antipolis, France; and Graph Theory and Combi-
natorics Group, Applied Maths. IV Dept. of UPC, Barcelona, Spain. Email: ignasi.sau@sophia.inria.fr

‡Department of Computer Science, Technion, Haifa, Israel. Email: zaks@cs.technion.ac.il

natural way both interval graphs (when all tolerances are equal) and permutation graphs (when
ti = |Ii| for every i = 1, 2, . . . , n) [11]. For a detailed survey on tolerance graphs we refer to [14].

A graph is perfect if the chromatic number of every induced subgraph equals the clique
number of that subgraph. Several difficult combinatorial problems can be solved efficiently,
i.e. in polynomial time, on the class of perfect graphs, such as minimum coloring, maximum
clique, and independent set [15]. Thus, since the class of tolerance graphs is a subclass of perfect
graphs [12], there exist polynomial algorithms for these problems on tolerance and bounded
tolerance graphs as well. In spite of this, faster algorithms have been designed for tolerance and
bounded tolerance graphs, which exploit their special structure [13,14,23,24].

A comparability graph is a graph which can be transitively oriented. A co-comparability
graph is a graph whose complement is a comparability graph. A trapezoid (resp. parallelo-
gram and permutation) graph is the intersection graph of trapezoids (resp. parallelograms and
line segments) between two parallel lines L1 and L2 [10]. Such a representation with trape-
zoids (resp. parallelograms and line segments) is called a trapezoid (resp. parallelogram and
permutation) representation of this graph. A graph is bounded tolerance if and only if it is
a parallelogram graph [2]. Permutation graphs are a strict subset of parallelogram graphs [3].
Furthermore, parallelogram graphs are a strict subset of trapezoid graphs [26], and both are
subsets of co-comparability graphs [10, 14]. On the contrary, tolerance graphs are not even co-
comparability graphs [10, 14]. Recently, we have presented in [23] a natural intersection model
for general tolerance graphs, given by parallelepipeds in the three-dimensional space. This rep-
resentation generalizes the parallelogram representation of bounded tolerance graphs, and has
been used to improve the time complexity of minimum coloring, maximum clique, and weighted
independent set on tolerance graphs [23].

Although tolerance and bounded tolerance graphs have been studied extensively, the recog-
nition problems for both these classes are probably the most fundamental open problems since
their introduction [5,10,14]. Therefore, all existing algorithms assume that, along with the input
tolerance graph, a tolerance representation of it is given. The only result about the complexity
of recognizing tolerance and bounded tolerance graphs is that they have a polynomial sized
tolerance representation, hence the problems of tolerance and bounded tolerance graph recogni-
tion are in the class NP [16]. However, the recognition of max-tolerance graphs is known to be
NP-hard [18]. On the contrary, a linear time recognition algorithm of bipartite tolerance graphs
has been recently presented [5]. Furthermore, the class of bounded bitolerance graphs, which is
equivalent to that of trapezoid graphs [20], can be also recognized in polynomial time [6,21,22].

1.2 Our contribution

In this article, we resolve the problems of recognizing both tolerance and bounded tolerance
graphs. In particular, we prove that both problems are NP-complete, by providing a reduction
from the monotone-Not-All-Equal-3-SAT (monotone-NAE-3-SAT) problem. Consider a boolean
formula φ in conjunctive normal form with three literals in every clause (3-CNF), which is mono-
tone, i.e. no variable is negated. The formula φ is called NAE-satisfiable if there exists a truth
assignment of the variables of φ, such that every clause has at least one true variable and one
false variable. Given a monotone 3-CNF formula φ, we construct a trapezoid graph Hφ, which
is parallelogram, i.e. bounded tolerance, if and only if φ is NAE-satisfiable. Moreover, we prove
that the constructed graph Hφ is tolerance if and only if it is bounded tolerance. Thus, since
the recognition of tolerance and of bounded tolerance graphs are in the class NP [16], it follows
that these problems are both NP-complete. Actually, our results imply that the recognition
problems remain NP-complete even if the given graph is trapezoid, since the constructed graph
Hφ is trapezoid.

4

For our reduction we extend the notion of an acyclic orientation of permutation and trapezoid
graphs. Our main tool is a new algorithm (which uses an approach similar to [6]) that transforms
a given trapezoid graph into a permutation graph, while preserving this new acyclic orientation
property. The constructed permutation graph does not depend on any particular trapezoid
representation of the input graph G, and this is one of the main advantages of this algorithm.

Organization of the paper. We first present in Section 2 several properties of permutation
and trapezoid graphs, as well as the algorithm Split-U , which constructs a permutation graph
from a trapezoid graph. In Section 3 we present the reduction of the monotone-NAE-3-SAT
problem to the recognition of bounded tolerance graphs. In Section 4 we prove that this reduction
can be extended to the recognition of general tolerance graphs. Finally, we discuss the presented
results and further research directions in Section 5.

2 Trapezoid graphs and representations

In this section we first introduce (in Section 2.1) the notion of an acyclic representation of per-
mutation and of trapezoid graphs. This is followed (in Section 2.2) by some structural properties
of trapezoid graphs, which will be used in the sequel for the splitting algorithm Split-U . Given
a trapezoid graph G and a vertex subset U of G with certain properties, this algorithm con-
structs a permutation graph G#(U) with 2|U | vertices, which is independent on any particular
trapezoid representation of the input graph G.

Notation. We consider in this article simple undirected and directed graphs with no loops
or multiple edges. In an undirected graph G, the edge between vertices u and v is denoted by uv,
and in this case u and v are said to be adjacent in G. If the graph G is directed, we denote by uv
the arc from u to v. Given a graph G = (V,E) and a subset S ⊆ V , G[S] denotes the induced
subgraph of G on the vertices in S, and we use E[S] to denote E(G[S]). Whenever we deal
with a trapezoid (resp. permutation and bounded tolerance, i.e. parallelogram) graph, we will
consider w.l.o.g. a trapezoid (resp. permutation and parallelogram) representation, in which all
endpoints of the trapezoids (resp. line segments and parallelograms) are distinct [9,14,17]. Given
a permutation graph P along with a permutation representation R, we may not distinguish in
the following between a vertex of P and the corresponding line segment in R, whenever it is
clear from the context. Furthermore, with a slight abuse of notation, we will refer to the line
segments of a permutation representation just as lines.

2.1 Acyclic permutation and trapezoid representations

Let P = (V,E) be a permutation graph and R be a permutation representation of P . For a
vertex u ∈ V , denote by θR(u) the angle of the line of u with L2 in R. The class of permutation
graphs is the intersection of comparability and co-comparability graphs [10]. Thus, given a
permutation representation R of P , we can define two partial orders (V,<R) and (V,	R) on
the vertices of P [10]. Namely, for two vertices u and v of G, u <R v if and only if uv ∈ E and
θR(u) < θR(v), while u 	R v if and only if uv /∈ E and u lies to the left of v in R. The partial
order (V,<R) implies a transitive orientation ΦR of P , such that uv ∈ ΦR whenever u <R v.

Let G = (V,E) be a trapezoid graph, and R be a trapezoid representation of G, where for
any vertex u ∈ V , the trapezoid corresponding to u in R is denoted by Tu. Since trapezoid
graphs are also co-comparability graphs [10], we can similarly define the partial order (V,	R)
on the vertices of G, such that u 	R v if and only if uv /∈ E and Tu lies completely to the left
of Tv in R. In this case, we may denote also Tu 	R Tv, instead of u 	R v.

In a given trapezoid representation R of a trapezoid graph G, we denote by l(Tu) and
r(Tu) the left and the right line of Tu in R, respectively. Similarly to the case of permutation

5

graphs, we use the relation 	R for the lines l(Tu) and r(Tu), e.g. l(Tu) 	R r(Tv) means that
the line l(Tu) lies to the left of the line r(Tv) in R. Moreover, if the trapezoids of all vertices
of a subset S ⊆ V lie completely to the left (resp. right) of the trapezoid Tu in R, we write
R(S) 	R Tu (resp. Tu 	R R(S)). Note that there are several trapezoid representations of a
particular trapezoid graph G. Given one such representation R, we can obtain another one R′ by
vertical axis flipping of R, i.e. R′ is the mirror image of R along an imaginary line perpendicular
to L1 and L2. Moreover, we can obtain another representation R′′ of G by horizontal axis flipping
of R, i.e. R′′ is the mirror image of R along an imaginary line parallel to L1 and L2. We will
use extensively these two basic operations throughout the article.

Definition 1. Let P be a permutation graph with 2n vertices {u1
1, u

2
1, u

1
2, u

2
2, . . . , u

1
n, u2

n}. Let R
be a permutation representation and ΦR be the corresponding transitive orientation of P . The
simple directed graph FR is obtained by merging u1

i and u2
i into a single vertex ui, for every

i = 1, 2, . . . , n, where the arc directions of FR are implied by the corresponding directions in ΦR.
Then,

1. R is an acyclic permutation representation with respect to {u1
i , u

2
i }n

i=1
∗, if FR has no directed

cycle,
2. P is an acyclic permutation graph with respect to {u1

i , u
2
i }n

i=1, if P has an acyclic repre-
sentation R with respect to {u1

i , u
2
i }n

i=1.

In Figure 1 we show an example of a permutation graph P with six vertices in Figure 1(a),
a permutation representation R of P in Figure 1(b), the transitive orientation ΦR of P in
Figure 1(c), and the corresponding simple directed graph FR in Figure 1(d). In the figure, the
pairs {u1

i , u
2
i }3

i=1 are grouped inside ellipses. In this example, R is not an acyclic permutation
representation with respect to {u1

i , u
2
i }3

i=1, since FR has a directed cycle of length two. However,
note that, by exchanging the lines u1

1 and u1
2 in R, the resulting permutation representation R′

is acyclic with respect to {u1
i , u

2
i }3

i=1, and thus P is acyclic with respect to {u1
i , u

2
i }3

i=1.

u1
1

u2
1

u1
2

u2
2

u1
3

u2
3

P :

(a)

L1

L2

u1
1 u2

1u1
2 u2

2u1
3u2

3

R :

θR(u1
2)

(b)

u1
1

u2
1

u1
2

u2
2

u1
3

u2
3

ΦR :

(c)

u1

u2 u3

FR :

(d)

Fig. 1. (a) A permutation graph P , (b) a permutation representation R of P , (c) the transitive orientation ΦR

of P , and (d) the corresponding simple directed graph FR.

Definition 2. Let G be a trapezoid graph with n vertices and R be a trapezoid representation
of G. Let P be the permutation graph with 2n vertices corresponding to the left and right lines
of the trapezoids in R, RP be the permutation representation of P induced by R, and {u1

i , u
2
i }

be the vertices of P that correspond to the same vertex ui of G, i = 1, 2, . . . , n. Then,

1. R is an acyclic trapezoid representation, if RP is an acyclic permutation representation with
respect to {u1

i , u
2
i }n

i=1,

2. G is an acyclic trapezoid graph, if it has an acyclic representation R.

∗To simplify the presentation, we use throughout the paper {u1
i , u

2
i }ni=1 to denote the set of n unordered pairs

{u1
1, u

2
1}, {u1

2, u
2
2}, . . . , {u1

n, u2
n}.

6

The following lemma follows easily from Definitions 1 and 2.

Lemma 1. Any parallelogram graph is an acyclic trapezoid graph.

Proof. Let G be a parallelogram graph with n vertices {u1, u2, . . . , un} and R be a par-
allelogram representation of G. That is, R is a trapezoid representation of G, such that
the left and right lines l(Tui) and r(Tui) of the trapezoid Tui , i = 1, 2, . . . , n, are paral-
lel in R, i.e. θR(l(Tui)) = θR(r(Tui)). Let P be the permutation graph with 2n vertices
{u1

1, u
2
1, u

1
2, u

2
2, . . . , u

1
n, u2

n} corresponding to the left and right lines of the trapezoids of G in
R, i.e. the vertices u1

i and u2
i correspond to l(Tui) and r(Tui), i = 1, 2, . . . , n, respectively. Let

RP be the permutation representation of P induced by R, and ΦRP
be the corresponding tran-

sitive orientation of the permutation graph P . Recall that, for two intersecting lines a, b in RP ,
it holds ab ∈ ΦRP

whenever θR(a) < θR(b). It follows that for any i = 1, 2, . . . , n, the pair
{u1

i , u
2
i } of vertices in P has incoming edges from (resp. outgoing edges to) vertices of other

pairs {u1
j , u

2
j} in ΦRP

, which have smaller (resp. greater) angle with the line L2 in RP . Thus, the
simple directed graph FRP

defined in Definition 1 has no directed cycles, and therefore RP is
an acyclic permutation representation with respect to {u1

i , u
2
i }n

i=1, i.e. R is an acyclic trapezoid
representation of G by Definition 2.
�

2.2 Structural properties of trapezoid graphs

In the following, we state some definitions concerning an arbitrary simple undirected graph
G = (V,E), which are useful for our analysis. Although these definitions apply to any graph,
we will use them only for trapezoid graphs. Similar definitions, for the restricted case where the
graph G is connected, were studied in [6]. For u ∈ V and U ⊆ V , N(u) = {v ∈ V | uv ∈ E}
is the set of adjacent vertices of u in G, N [u] = N(u) ∪ {u}, and N(U) =

⋃
u∈U N(u) \ U . If

N(U) ⊆ N(W) for two vertex subsets U and W , then U is said to be neighborhood dominated
by W . Clearly, the relationship of neighborhood domination is transitive.

Let C1, C2, . . . , Cω, ω ≥ 1, be the connected components of G \ N [u] and Vi = V (Ci),
i = 1, 2, . . . , ω. For simplicity of the presentation, we will identify in the sequel the component Ci

and its vertex set Vi, i = 1, 2, . . . , ω. For i = 1, 2, . . . , ω, the neighborhood domination closure of
Vi with respect to u is the set Du(Vi) = {Vp | N(Vp) ⊆ N(Vi), p = 1, 2, . . . , ω} of connected com-
ponents of G \ N [u]. A component Vi is called a master component of u if |Du(Vi)| ≥ |Du(Vj)|
for all j = 1, 2, . . . , ω. The closure complement of the neighborhood domination closure Du(Vi)
is the set D∗

u(Vi) = {V1, V2, . . . , Vω} \ Du(Vi). Finally, for a subset S ⊆ {V1, V2, . . . , Vω}, a com-
ponent Vj of S is called maximal, if there is no component Vk ∈ S, such that N(Vj) � N(Vk).

For example, consider the trapezoid graph G with vertex set {u, u1, u2, u3, v1, v2, v3, v4},
which is given by the trapezoid representation R of Figure 2. The connected components of
G \ N [u] = {v1, v2, v3, v4} are V1 = {v1}, V2 = {v2}, V3 = {v3}, and V4 = {v4}. Then, N(V1) =
{u1}, N(V2) = {u1, u3}, N(V3) = {u2, u3}, and N(V4) = {u3}. Hence, Du(V1) = {V1}, Du(V2) =
{V1, V2, V4}, Du(V3) = {V3, V4}, and Du(V4) = {V4}; thus, V2 is the only master component of
u. Furthermore, D∗

u(V1) = {V2, V3, V4}, D∗
u(V2) = {V3}, D∗

u(V3) = {V1, V2} and D∗
u(V4) =

{V1, V2, V3}.
Lemma 2. Let G be a simple graph, u be a vertex of G, and let V1, V2, . . . , Vω, ω ≥ 1, be the
connected components of G \ N [u]. If Vi is a master component of u, such that D∗

u(Vi)
= ∅, then
D∗

u(Vj)
= ∅ for every component Vj of G \ N [u].

Proof. Since Vi is a master component, and since D∗
u(Vi)
= ∅, it follows that |Du(Vj)| ≤

|Du(Vi)| < ω, for every connected component Vj ∈ {V1, V2, . . . , Vω}. Therefore, |Du(Vj)| < ω,
and thus, D∗

u(Vj)
= ∅ as well.
�

7

L1

L2

Tv1

Tv2

Tv3 Tv4

Tu

Tu2Tu1
Tu3

R :

Fig. 2. A trapezoid representation R of a trapezoid graph G.

In the following we investigate several properties of trapezoid graphs, in order to derive the
vertex-splitting algorithm Split-U in Section 2.3.

Remark 1. Similar properties of trapezoid graphs have been studied in [6], leading to another
vertex-splitting algorithm, called Split-All. However, the algorithm proposed in [6] is incorrect,
since it is based on an incorrect property†, as was also verified by [7]. In the sequel of this
section, we present new definitions and properties. In the cases where a silimarity arises with
those of [6], we refer to it specifically.

The following lemma, which has been stated in Observation 3.1(4) in [6] (withought a proof),
will be used in our analysis below. For the sake of completeness, we present here the proof.

Lemma 3. Let R be a trapezoid representation of a trapezoid graph G, and Vi be a master
component of a vertex u of G, such that R(Vi)	RTu. Then, Tu	RR(Vj) for every component
Vj ∈ D∗

u(Vi).

Proof. Suppose otherwise that R(Vj)	RTu, for some Vj ∈ D∗
u(Vi). Consider first the case where

R(Vj)	RR(Vi)	RTu. Then, since Vi lies between Vj and Tu in R, all trapezoids that intersect Tu

and Vj , must intersect also Vi. Thus, N(Vj) ⊆ N(Vi), i.e. Vj ∈ Du(Vi), which is a contradiction,
since Vj ∈ D∗

u(Vi). Consider now the case where R(Vi)	RR(Vj)	RTu. Then, we obtain similarly
that N(Vi) ⊆ N(Vj), and thus, Du(Vi) ⊆ Du(Vj). Since Vj ∈ Du(Vj) \ Du(Vi), it follows that
|Du(Vi)| < |Du(Vj)|. This is a contradiction to the assumption that Vi is a master component
of u. Thus, Tu	RR(Vj) for any Vj ∈ D∗

u(Vi).
�

In the following two definitions, we partition the neighbors of a vertex in a trapezoid graph
G into four possibly empty sets. In the first definition, these sets depend only on the graph G
itself, while in the second one, they depend on a particular trapezoid representation of G.

Definition 3. Let G be a trapezoid graph, and u be a vertex of G. Let Vi be a master component
of u, such that D∗

u(Vi)
= ∅, and Vj be a maximal component of D∗
u(Vi). Then, the vertices of

N(u) are partitioned into four possibly empty sets:

1. N0(u, Vi, Vj): vertices not adjacent to either Vi or Vj.

2. N1(u, Vi, Vj): vertices adjacent to Vi but not to Vj.
3. N2(u, Vi, Vj): vertices adjacent to Vj but not to Vi.
4. N12(u, Vi, Vj): vertices adjacent to both Vi and Vj.

†In Observation 3.1(5) of [6], it is claimed that for an arbitrary trapezoid representation R of a connected
trapezoid graph G, where Vi is a master component of u, such that D∗

u(Vi) �= ∅ and R(Vi)�R Tu, it holds
R(Du(Vi))�R Tu �R R(D∗

u(Vi)). However, the first part of the latter inequality is not true. For instance, in
the trapezoid graph G of Figure 2, V2 is a master component of u, where D∗

u(V2) = {V3}�= ∅ and R(V2)�R Tu.
However, V4 = {v4} ∈ Du(V2) and Tu �RTv4 , and thus, R(Du(V2)) ��R Tu.

8

Definition 4. Let G be a trapezoid graph, R be a representation of G, and u be a vertex of
G. Denote by D1(u,R) and D2(u,R) the sets of trapezoids of R that lie completely to the left
and to the right of Tu in R, respectively. Then, the vertices of N(u) are partitioned into four
possibly empty sets:

1. N0(u,R): vertices not adjacent to either D1(u,R) or D2(u,R).
2. N1(u,R): vertices adjacent to D1(u,R) but not to D2(u,R).

3. N2(u,R): vertices adjacent to D2(u,R) but not to D1(u,R).
4. N12(u,R): vertices adjacent to both D1(u,R) and D2(u,R).

The following lemma connects Definitions 3 and 4. The intuition behind this lemma is that
the sets defined in Definition 3 include those neighbors of u, whose trapezoids intersect some
trapezoids that lie to the left and/or to the right of Tu in a trapezoid representation of G.

Lemma 4. Let G be a trapezoid graph, R be a representation of G, and u be a vertex of G. Let
Vi be a master component of u, such that D∗

u(Vi)
= ∅, and let Vj be a maximal component of
D∗

u(Vi). If R(Vi)	RTu, then NX(u, Vi, Vj) = NX(u,R) for every X ∈ {0, 1, 2, 12}.

Proof. Since D∗
u(Vi)
= ∅ and R(Vi)	RTu, it follows by Lemma 3 that Tu	RR(Vj),

i.e. Vj ∈ D2(u,R). Suppose that a component V�
= Vj is the leftmost one of D2(u,R) in R,
i.e. Tu	RR(V�)	RR(Vj). Since V� lies between Tu and Vj in R, all trapezoids that inter-
sect Tu and Vj, must also intersect V�, and thus, N(Vj) ⊆ N(V�). It follows that V� ∈ D∗

u(Vi),
i.e. V� /∈ Du(Vi), since otherwise Vj ∈ Du(Vi), which is a contradiction. Furthermore, since Vj

is a maximal component of D∗
u(Vi), and since N(Vj) ⊆ N(V�), it follows that N(Vj) = N(V�),

i.e. NX(u, Vi, Vj) = NX(u, Vi, V�) for every X ∈ {0, 1, 2, 12}.
Suppose that a component Vk
= Vi is the rightmost one of D1(u,R) in R,

i.e. R(Vi)	RR(Vk)	RTu. Then, Vk ∈ Du(Vi), since otherwise Tu	RR(Vk) by Lemma 3, which
is a contradiction. Thus, N(Vk) ⊆ N(Vi). Furthermore, since Vk lies between Vj and Tu in R, all
trapezoids that intersect Tu and Vj, must also intersect Vk, and thus, N(Vi) ⊆ N(Vk). There-
fore, N(Vi) = N(Vk), i.e. NX(u, Vi, V�) = NX(u, Vk, V�) for every X ∈ {0, 1, 2, 12}, and thus,
NX(u, Vi, Vj) = NX(u, Vk, V�) for every X ∈ {0, 1, 2, 12}.

Consider now a vertex v ∈ N(u), and recall that Vk (resp. V�) is the rightmost (resp. leftmost)
component of D1(u,R) (resp. D2(u,R)) in R. Thus, if Tv intersects at least one component of
D1(u,R) (resp. D2(u,R)), then Tv intersects also with Vk (resp. V�). On the other hand, if Tv does
not intersect any component of D1(u,R) (resp. D2(u,R)), then Tv clearly does not intersect Vk

(resp. V�), since Vk ⊆ D1(u,R) (resp. Vj ⊆ D2(u,R)). It follows that NX(u, Vk, V�) = NX(u,R),
and thus, NX(u, Vi, Vj) = NX(u,R) for every X ∈ {0, 1, 2, 12}. This proves the lemma.
�

Note that, given a trapezoid representation R of G, we may assume in Lemma 4 w.l.o.g. that
R(Vi)	RTu, by possibly performing a vertical axis flipping of R. Thus, we can state now the
following definition of the sets Du and D∗

u, regardless of the choice the components Vi and Vj

of u.

Definition 5. Let G be a trapezoid graph, u be a vertex of G, and Vi be an arbitrarily chosen
master component of u. Then, δu = Vi and

1. if D∗
u(Vi) = ∅, then δ∗u = ∅.

2. if D∗
u(Vi)
= ∅, then δ∗u = Vj , for an arbitrarily chosen maximal component Vj ∈ D∗

u(Vi).

Definition 6. Let G be a trapezoid graph and u be a vertex of G. The vertices of N(u) are
partitioned into four possibly empty sets:

9

1. N0(u): vertices not adjacent to either δu or δ∗u.
2. N1(u): vertices adjacent to δu but not to δ∗u.
3. N2(u): vertices adjacent to δ∗u but not to δu.
4. N12(u): vertices adjacent to both δu and δ∗u.

Suppose that δ∗u
= ∅, and let Vi be the master component of u and Vj be the maximal
component of D∗

u(Vi), which correspond to δu and δ∗u, cf. Definition 5. Then, given a trapezoid
representation R of G, we may assume in Lemma 4 w.l.o.g. that R(Vi)	RTu, by possibly
performing a vertical axis flipping of R. Thus, since NX(u) = NX(u, Vi, Vj) for every X ∈
{0, 1, 2, 12}, Corollary 1 follows from Lemma 4.

Corollary 1. Let G be a trapezoid graph, R be a representation of G, and u be a vertex of G,
where δ∗u
= ∅. Let Vi be the master component of u that corresponds to δu. If R(Vi)	RTu, then
NX(u) = NX(u,R) for every X ∈ {0, 1, 2, 12}.

In the following, we state two auxiliary lemmas that will be used in the proof of Theorem 1.

Lemma 5. Let G be a trapezoid graph and u be a vertex of G. Then, N2(u) ∪ N12(u) = ∅ if
and only if δ∗u = ∅.
Proof. Suppose first that δ∗u = ∅. Then, clearly there exists no vertex v ∈ N(u) adjacent to δ∗u,
and thus, N2(u) ∪ N12(u) = ∅. Conversely, suppose that N2(u) ∪ N12(u) = ∅, and assume that
δ∗u
= ∅. Let δu = Vi and δ∗u = Vj, where Vi is a master component of u and Vj is a maximal
component of D∗

u(Vi). If N(Vj) = ∅, then clearly N(Vj) ⊆ N(Vi), and thus, Vj ∈ Du(Vi), which
is a contradiction. Thus, N(Vj)
= ∅, i.e. some vertices of N(u) are adjacent to some vertices of
Vj . Since δ∗u = Vj, it follows by Definition 6 that N2(u) ∪ N12(u)
= ∅, which is a contradiction.
Thus, δ∗u = ∅.
�
Lemma 6. Let G be a trapezoid graph and u be a vertex of G. If δ∗u
= ∅, then N1(u)∪N12(u)
=
∅.
Proof. Suppose that δ∗u
= ∅. Let Vi be the master component that corresponds to δu, and Vj

be the maximal component of D∗
u(Vi) that corresponds to δ∗u. Assume that N1(u)∪N12(u) = ∅,

i.e. no neighbor of u is adjacent to any vertex v ∈ Vi. It follows that N(Vi) = ∅. On the other
hand, since δ∗u
= ∅, we obtain by Lemma 5 that N2(u) ∪ N12(u)
= ∅. That is, some neighbors
of u are adjacent to some vertices of Vj , i.e. N(Vj)
= ∅. Therefore, N(Vi) = ∅ � N(Vj), and
thus, Du(Vi) � Du(Vj), i.e. |Du(Vi)| < |Du(Vj)|. This is a contradiction, since Vi is a master
component of u. Thus, N1(u) ∪ N12(u)
= ∅.
�

2.3 A splitting algorithm

We define now the splitting of a vertex u of a trapezoid graph G, where δ∗u
= ∅. Intuitively, if
the graph G was given along with a specific trapezoid representation R, this would have meant
that we replace the trapezoid Tu in R by its two lines l(Tu) and r(Tu).

Definition 7. Let G be a trapezoid graph and u be a vertex of G, where δ∗u
= ∅. The graph
G#(u) obtained by the vertex splitting of u is defined as follows:

1. V (G#(u)) = V (G) \ {u} ∪ {u1, u2}, where u1 and u2 are the two new vertices,
2. E(G#(u)) = E[V (G)\{u}]∪{u1x | x ∈ N1(u)}∪{u2x | x ∈ N2(u)}∪{u1x, u2x | x ∈ N12(u)}.
The vertices u1 and u2 are the derivatives of vertex u.

10

Algorithm 1 Split-U
Input: A trapezoid graph G and a vertex subset U = {u1, u2, . . . , uk}, such that δ∗ui

�= ∅ for all i = 1, 2, . . . , k
Output: The permutation graph G#(U)

U ← V (G) \ U ; H0 ← G

for i = 1 to k do
Hi ← H#

i−1(ui) {Hi is obtained by the vertex splitting of ui in Hi−1}
G#(U)← Hk[V (Hk) \ U] {remove from Hk all unsplitted vertices}
return G#(U)

We state now the notion of a standard trapezoid representation with respect to a particular
vertex, which will be used in the proof of Theorem 1.

Definition 8. Let G be a trapezoid graph and u be a vertex of G, where δ∗u
= ∅. A trapezoid
representation R of G is standard with respect to u, if the following properties are satisfied:

1. l(Tu) 	R R(N0(u) ∪ N2(u)).
2. R(N0(u) ∪ N1(u)) 	R r(Tu).

Now, given a trapezoid graph G and a vertex subset U = {u1, u2, . . . , uk}, such that δ∗ui

= ∅

for every i = 1, 2, . . . , k, Algorithm Split-U returns a graph G#(U) by splitting every vertex of
U exactly once. At every step, Algorithm Split-U splits a vertex of U , and finally, it removes
all vertices of the set V (G) \ U , which have not been split.

Remark 2. As mentioned in Remark 1, a similar algorithm, called Split-All, was presented in [6].
We would like to emphasize here the following four differences between the two algorithms. First,
that Split-All gets as input a sibling-free graph G (two vertices u, v of a graph G are called
siblings, if N [u] = N [v]; G is called sibling-free if G has no pair of sibling vertices), while our
Algorithm Split-U gets as an input any graph (though, we will use it only for trapezoid graphs),
which may contain pairs of sibling vertices. Second, Split-All splits all the vertices of the input
graph, while Split-U splits only a subset of them, which satisfy a special property. Third, the
order of vertices that are split by Split-All depends on a certain property (inclusion-minimal
neighbor set), while Split-U splits the vertices in an arbitrary order. Last, the main difference
between these two algorithms is that they perform a different vertex splitting operation at every
step, since Definitions 5 and 6 do not comply with the corresponding Definitions 4.1 and 4.2
of [6].

Theorem 1. Let G be a trapezoid graph and U = {u1, u2, . . . , uk} be a vertex subset of G, such
that δ∗ui

= ∅ for every i = 1, 2, . . . , k. Then, the graph G#(U) obtained by Algorithm Split-U , is
a permutation graph with 2k vertices. Furthermore, if G is acyclic, then G#(U) is acyclic with
respect to {u1

i , u
2
i }k

i=1, where u1
i and u2

i are the derivatives of ui, i = 1, 2, . . . , k.

Proof. Let R be a trapezoid representation of G. In order to prove that the graph G#(U)
constructed by Algorithm Split-All is a permutation graph, we will construct from R a permu-
tation representation R#(U) of G#(U). To this end, we will construct sequentially, for every
i = 1, 2, . . . , k, a standard trapezoid representation of Hi−1 with respect to ui, in which all
derivatives u1

j , u
2
j , 1 ≤ j ≤ i − 1, are represented by trivial trapezoids, i.e. lines.

Let u = u1. If R is not a standard representation with respect to u, we construct first from
R a trapezoid representation R′ of G that satisfies the first condition of Definition 8. Then, we
construct from R′ a trapezoid representation R′′ of G that satisfies also the second condition of
Definition 8, i.e. R′′ is a standard trapezoid representation R′ of G with respect to u.

11

Let Vi be the master component of u that corresponds to δu. By possibly performing a vertical
axis flipping of R, we may assume w.l.o.g. that R(Vi) 	R Tu. Furthermore, the sets N0(u),
N1(u), N2(u), and N12(u) coincide by Lemma 1 with the sets N0(u,R), N1(u,R), N2(u,R), and
N12(u,R), respectively. Recall that, by Definition 4, D1(u,R) and D2(u,R) denote the sets of
trapezoids of R that lie completely to the left and to the right of Tu in R, respectively.

Let px and qx the endpoints on L1 and L2, respectively, of the left line l(Tx) of an arbitrary
trapezoid Tx in R. Suppose that N0(u) ∪ N2(u)
= ∅. Let pv and qw be the leftmost endpoints
on L1 and L2, respectively, of the trapezoids of N0(u) ∪ N2(u), and suppose that pv < pu and
qw < qu. Note that, possibly, v = w. Then, all vertices x, for which Tx has an endpoint between
pv and pu on L1 (resp. between qw and qu on L2) are adjacent to u. Indeed, suppose otherwise
that Tx ∩ Tu = ∅, for such a vertex x. Then, since Tv ∩ Tu
= ∅ (resp. Tw ∩ Tu
= ∅), it follows
that Tx ∩ Tv
= ∅ (resp. Tx ∩ Tw
= ∅). However, since Tx ∩ Tu = ∅ and Tx has an endpoint
to the left of Tu in R, it follows that Tx 	R Tu, i.e. x ∈ D1(u,R), and thus, by Definition 3,
v ∈ N1(u) ∪ N12(u) (resp. w ∈ N1(u) ∪ N12(u)), which is a contradiction.

Consider now a vertex z ∈ N1(u) ∪ N12(u) with l(Tz) 	R l(Tu), where pv < pz < pu. Then,
qz < qw. Indeed, suppose otherwise that qw < qz (recall that all endpoints are assumed to be
distinct). Then, since z ∈ N1(u)∪N12(u), there exists a vertex x ∈ D1(u,R), i.e. with Tx 	R Tu,
such that Tz ∩ Tx
= ∅. Since v,w ∈ N0(u)∪N2(u), it follows that Tv ∩ Tx = ∅ and Tw ∩ Tx = ∅,
and thus, Tx 	R Tv and Tx 	R Tw. Therefore, since pv < pz and qw < qz, we obtain that
Tx 	R Tz, and thus, Tz ∩ Tx = ∅, which is a contradiction. It follows that qz < qw. Moreover,
z is adjacent to all vertices x in G, whose trapezoid Tx has an endpoint on L1 between pv and
pz, including pv. Indeed, otherwise, Tx 	R Tz, and thus, Tx 	R Tu, since l(Tz) 	R l(Tu). This
is however a contradiction, since x ∈ N(u), as we have proved above. Similarly, if qw < qz < qu,
then pz < pv and z is adjacent to all vertices x in G, whose trapezoid Tx has an endpoint on
L2 between qw and qz, including qw.

We construct now from R a new trapezoid representation R′ of G as follows. First, for all
vertices z ∈ N1(u) ∪ N12(u) with l(Tz) 	R l(Tu), for which pv < pz < pu (and thus qz < qw),
we move the endpoint pz of l(Tz) directly before pv on L1. In the sequel, for all vertices z′ ∈
N1(u) ∪ N12(u) with l(Tz′) 	R l(Tu), for which qw < qz′ < qu (and thus pz < pv), we move
the endpoint qz′ of l(Tz′) directly before qw on L2. During the movement of all these lines l(Tz)
(resp. l(Tz′)), we keep the same relative positions of their endpoints pz on L1 (resp. qz′ on L2)
as in R, and thus we introduce no new line intersection among the lines of the trapezoids of G.
Since all these vertices z (resp. z′) are adjacent to all vertices x of G, whose trapezoid Tx has an
endpoint on L1 (resp. L2) between pv and pz, including pv (resp. between qw and qz, including
qw), these movements do not remove any adjacency from, and do not add any new adjacency
to G.

Finally, we move both endpoints pu and qu of l(Tu) directly before pv and qw on L1 and
L2, respectively. Since u is adjacent to all vertices x, for which Tx has an endpoint between pv

and pu on L1, or between qw and qu on L2 in R, the resulting representation R′ is a trapezoid
representation of G, in which the first condition of Definition 8 is satisfied. Since we moved all
lines l(Tz) and l(Tz′) to the left of Tv and Tw, R′ has no additional line intersections than R.
Moreover, note that for any line intersection of two lines a and b in R′, the relative position of
the endpoints of a and b on L1 and L2 remains the same as in R. In the case where pv > pu

(resp. qw > qu) we replace in the above construction pv by pu (resp. qw by qu), while in the case
where N0(u) ∪ N2(u) = ∅, we define R′ = R. An example of the construction of R′ is given in
Figure 3. In this example, v ∈ N0(u), w ∈ N2(u), z1, z

′ ∈ N1(u) and z2 ∈ N12(u).
If R′ is not a standard trapezoid representation with respect to u, then we move r(Tu) to

the right (similarly to the above), obtaining thus a trapezoid representation R′′ of G, in which
the second condition of Definition 8 is satisfied. Since during the construction of R′′ from R′

12

pu

qu

pv

qwqz1 qz2

pz1pz2

Tu

D∗
u

L2

L1

Du

R :

qz′

pz′

(a)

pu

qu

pv

qwqz1 qz2

pz1pz2

L2

L1

D∗
u

TuR′ :
Du

qz′

pz′

(b)

Fig. 3. The movement of the left line l(Tu) of the trapezoid Tu, in order to construct a standard trapezoid
representation with respect to u.

only the line r(Tu), and other lines that lie completely to the right of r(Tu), are moved to
the right, the first condition of Definition 8 is satisfied for R′′ as well. Thus, R′′ is a standard
representation of G with respect to u. Similarly to R′, R′′ has no additional line intersections
than R. Moreover, for any line intersection of two lines a and b in R′′, the relative position of
the endpoints of a and b on L1 and L2 remains the same as in R.

Since R′′ is standard with respect to u, the left line l(Tu) of Tu in R′′ intersects exactly with
those trapezoids Tz, for which z ∈ N1(u) ∪ N12(u). On the other hand, the right line r(Tu) of
Tu in R′′ intersects exactly with those trapezoids Tz, for which z ∈ N2(u)∪N12(u). Thus, if we
replace in R′′ the trapezoid Tu by the two trivial trapezoids (lines) l(Tu) and r(Tu), we obtain
a trapezoid representation R#(u) of the graph G#(u) defined in Definition 7.

Consider now a vertex v ∈ {u2, u3, . . . , uk}. Due to the assumption, δ∗v
= ∅ in G, before the
vertex splitting of u, and thus, N2(v) ∪ N12(v)
= ∅ and N1(v) ∪ N12(v)
= ∅ in G by Lemmas 5
and 6. We will prove that δ∗v
= ∅ in the trapezoid graph G#(u) as well, after the vertex splitting
of u. Due to Lemma 5, it suffices to show that N2(v) ∪ N12(v)
= ∅ in G#(u). Let Vi be the
master component of v in G that corresponds to δv , before the vertex splitting of u. We may
assume w.l.o.g. that R′′(Vi) 	R′′ Tv, by possibly performing a vertical axis flipping of R′′.
By Corollary 1, N1(v) ∪ N12(v) = N1(v,R′′) ∪ N12(v,R′′) and N2(v) ∪ N12(v) = N2(v,R′′) ∪
N12(v,R′′), i.e. these are the sets of neighbors of v in G, whose trapezoids intersect with the
trapezoids of D1(v,R′′) and D2(v,R′′) in R′′, respectively. Since N1(v,R′′)∪N12(v,R′′)
= ∅ and
N2(v,R′′)∪N12(v,R′′)
= ∅ in G, and since R#(u) is obtained from R′′ by replacing the trapezoid
Tu with the lines l(Tu) and r(Tu), it follows easily that N1(v,R#(u)) ∪ N12(v,R#(u))
= ∅ and
N2(v,R#(u)) ∪ N12(v,R#(u))
= ∅ as well. Let Vk be the master component of v in G#(u)
that corresponds to δv , after the vertex splitting of u. If Vk lies to the left (resp. right) of
Tv in R#(u), then N2(v) ∪ N12(v) in G#(u) equals to N2(v,R#(u)) ∪ N12(v,R#(u)) (resp. to
N1(v,R#(u)) ∪ N12(v,R#(u)), by performing a vertical axis flipping of R#(u)). Therefore,
N2(v) ∪ N12(v)
= ∅, and thus, δ∗v
= ∅ in G#(u), after the vertex splitting of u.

Applying iteratively the above construction for u = ui, i = 2, 3, . . . , k, i.e. by splitting
sequentially all vertices of U exactly once, we obtain after k vertex splittings, and after removing
from the resulting graph the vertices of U = V (G) \ U , a trapezoid representation R#(U) of

13

the graph G#(U) returned by Algorithm Split-U . Since every trapezoid Tu, u ∈ U , has been
replaced by two trivial trapezoids, i.e. lines, in R#(U), it follows that G#(U) is a permutation
graph with 2k vertices, and R#(U) is a permutation representation of G#(U).

Finally, suppose that R is an acyclic trapezoid representation of G. According to Definition 2,
let P be the permutation graph with 2n vertices corresponding to the left and right lines of
the trapezoids in R, RP be the permutation representation of P induced by R, and {u1

i , u
2
i }

be the vertices of P that correspond to the same vertex ui of G, i = 1, 2, . . . , n. Since R
is an acyclic trapezoid representation of G, it follows by Definition 2 that RP is an acyclic
permutation representation with respect to {u1

i , u
2
i }n

i=1. That is, the simple directed graph FRP

obtained (according to Definition 1) by merging u1
i and u2

i in P into a single vertex ui, for every
i = 1, 2, . . . , n, has no directed cycle.

Since, during the construction of R#(U), the trapezoid representation obtained after every
vertex splitting has no additional line intersections than the previous one, it follows that R#(U)
has no additional line intersections than R. Moreover, for any line intersection of two lines a and
b in R#(U), the relative position of the endpoints of a and b on L1 and L2 remains the same as
in R. Thus, the simple directed graph FR#(U) obtained (according to Definition 1) by merging
u1

i and u2
i in G#(U) into a single vertex ui, for every i = 1, 2, . . . , k, is a subdigraph of FRP

.
Therefore, since FRP

has no directed cycle, FR#(U) has no directed cycle as well, i.e. G#(U) is
an acyclic permutation graph with respect to {u1

i , u
2
i }k

i=1. This completes the theorem.
�

3 The recognition of bounded tolerance graphs

In this section we provide a reduction from the monotone-Not-All-Equal-3-SAT (monotone-
NAE-3-SAT) problem to the problem of recognizing whether a given graph is a bounded tol-
erance graph. A boolean formula φ is called monotone if no variable in φ is negated. Given
a monotone boolean formula φ in conjunctive normal form with three literals in each clause
(3-CNF), φ is NAE-satisfiable if there is a truth assignment of φ, such that every clause con-
tains at least one true literal and at least one false one. The problem of deciding whether a
given monotone 3-CNF formula φ is NAE-satisfiable is known to be NP-complete (see [27] for
the NP-completeness of NAE-3-SAT‡). We can assume w.l.o.g. that each clause has three dis-
tinct literals, i.e. variables. Given a monotone 3-CNF formula φ, we construct in polynomial
time a trapezoid graph Hφ, such that Hφ is a bounded tolerance graph if and only if φ is
NAE-satisfiable. To this end, we construct first a permutation graph Pφ and a trapezoid graph
Gφ.

3.1 The permutation graph Pφ

Consider a monotone 3-CNF formula φ = α1 ∧ α2 ∧ . . . ∧ αk with k clauses and n
boolean variables x1, x2, . . . , xn, such that αi = (xri,1 ∨ xri,2 ∨ xri,3) for i = 1, 2, . . . , k, where
1 ≤ ri,1 < ri,2 < ri,3 ≤ n. We construct the permutation graph Pφ, along with a permutation
representation RP of Pφ, as follows. Let L1 and L2 be two parallel lines and let θ(�) denote the
angle of the line � with L2 in RP . For every clause αi, i = 1, 2, . . . , k, we correspond to each of
the literals, i.e. variables, xri,1 , xri,2 , and xri,3 a pair of intersecting lines with endpoints on L1

and L2. Namely, we correspond to the variable xri,1 the pair {ai, ci}, to xri,2 the pair {ei, bi}
and to xri,3 the pair {di, fi}, respectively, such that θ(ai) > θ(ci), θ(ei) > θ(bi), θ(di) > θ(fi),
and such that the lines ai, ci lie completely to the left of ei, bi in RP , and ei, bi lie completely
to the left of di, fi in RP , as it is illustrated in Figure 4. Denote the lines that correspond to

‡To reduce NAE-3-SAT to monotone-NAE-3-SAT, replace each variable x with two variables x0 and x1

(depending on whether x appears negated or not), add variables x2, x3, x4, and add the clauses (x0 ∨ x1 ∨ x2),
(x0 ∨ x1 ∨ x3), (x0 ∨ x1 ∨ x4), and (x2 ∨ x3 ∨ x4).

14

the variable xri,j , j = 1, 2, 3, by �1
i,j and �2

i,j, respectively, such that θ(�1
i,j) > θ(�2

i,j). That is,
(�1

i,1, �
2
i,1) = (ai, ci), (�1

i,2, �
2
i,2) = (ei, bi), and (�1

i,3, �
2
i,3) = (di, fi). Note that no line of a pair

{�1
i,j, �

2
i,j} intersects with a line of another pair {�1

i′,j′, �
2
i′,j′}.

L1

L2

�1i,1 = ai �2i,1 = ci �1i,2 = ei �2i,2 = bi �1i,3 = di �2i,3 = fi

xri,1 xri,2 xri,3

θ(ai)

Fig. 4. The six lines of the permutation graph Pφ, which correspond to the clause αi = (xri,1 ∨ xri,2 ∨ xri,3) of
the boolean formula φ.

Denote by Sp, p = 1, 2, . . . , n, the set of pairs {�1
i,j, �

2
i,j} that correspond to the variable

xp, i.e. ri,j = p. We order the pairs {�1
i,j, �

2
i,j} such that any pair of Sp1 lies completely to the

left of any pair of Sp2, whenever p1 < p2, while the pairs that belong to the same set Sp are
ordered arbitrarily. For two consecutive pairs {�1

i,j, �
2
i,j} and {�1

i′,j′ , �
2
i′,j′} in Sp, where {�1

i,j , �
2
i,j}

lies to the left of {�1
i′,j′ , �

2
i′,j′}, we add a pair {ui′,j′

i,j , vi′,j′
i,j } of parallel lines that intersect both

�1
i,j and �1

i′,j′, but no other line. Note that θ(�1
i,j) > θ(ui′,j′

i,j) and θ(�1
i′,j′) > θ(ui′,j′

i,j), while

θ(ui′,j′
i,j) = θ(vi′,j′

i,j). This completes the construction. Denote the resulting permutation graph
by Pφ, and the corresponding permutation representation of Pφ by RP . Observe that Pφ has n
connected components, which are called blocks, one for each variable x1, x2, . . . , xn.

An example of the construction of Pφ and RP from φ with k = 3 clauses and n = 4 variables
is illustrated in Figure 5. In this figure, the lines ui′,j′

i,j and vi′,j′
i,j are drawn in bold.

The formula φ has 3k literals, and thus the permutation graph Pφ has 6k lines �1
i,j, �

2
i,j

in RP , one pair for each literal. Furthermore, two lines ui′,j′
i,j , vi′,j′

i,j correspond to each pair of
consecutive pairs {�1

i,j , �
2
i,j} and {�1

i′,j′, �
2
i′,j′} in RP , except for the case where these pairs of lines

belong to different variables, i.e. when ri,j
= ri′,j′. Therefore, since φ has n variables, there are
2(3k − n) = 6k − 2n lines ui′,j′

i,j , vi′,j′
i,j in RP . Thus, RP has in total 12k − 2n lines, i.e. Pφ has

12k − 2n vertices. In the example of Figure 5, k = 3, n = 4, and thus, Pφ has 28 vertices.

a1 d1 d3a3 a2 d2e3 b3c1 f1c2 b2 f2 f3c3 e2

x1 x2 x3 x4

b1e1

RP :

Fig. 5. The permutation representation RP of the permutation graph Pφ for φ = α1 ∧α2 ∧α3 = (x1 ∨ x2 ∨ x3)∧
(x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4).

Let m = 6k−n, where 2m is the number of vertices in Pφ. We group the lines of RP , i.e. the
vertices of Pφ, into pairs {u1

i , u
2
i }m

i=1, as follows. For every clause αi, i = 1, 2, . . . , k, we group the
lines ai, bi, ci, di, ei, fi into the three pairs {ai, bi}, {ci, di}, and {ei, fi}. The remaining lines are

15

grouped naturally according to the construction; namely, every two lines {ui′,j′
i,j , vi′,j′

i,j } constitute
a pair.

Lemma 7. If the permutation graph Pφ is acyclic with respect to {u1
i , u

2
i }m

i=1 then the formula
φ is NAE-satisfiable.

Proof. Suppose that Pφ is acyclic with respect to {u1
i , u

2
i }m

i=1, and let R0 be an acyclic permu-
tation representation of Pφ with respect to {u1

i , u
2
i }m

i=1. Then, in particular, R0 is acyclic with
respect to {ai, bi}, {ci, di}, {ei, fi}, for every i = 1, 2, . . . , k. We will construct a truth assign-
ment of the variables x1, x2, . . . , xn that NAE-satisfies φ, as follows. For every i = 1, 2, . . . , k,
we define xri,1 = 1 if and only if θ(ci) < θ(ai) in R0, xri,2 = 1 if and only if θ(bi) < θ(ei) in R0,
and xri,3 = 1 if and only if θ(f i) < θ(di) in R0 (cf. Figure 6).

Note that this assignment is consistent; that is, all variables xri,j that correspond to the
same xk are assigned the same value. Indeed, the existence of the lines ui′,j′

i,j , vi′,j′
i,j (cf. the bold

lines in Figure 6(a)) forces all pairs of crossing lines {�1
i,j, �

2
i,j} in the same block to correspond

to either 0 or 1 in the assignment.
Now, we show that in each clause αi, i = 1, 2, . . . , k, there exists at least one true and at

least one false variable. For an arbitrary index i = 1, 2, . . . , k, let Pi be the subgraph induced
by the vertices ai, bi, ci, di, ei, fi in Pφ, and Ri be the permutation representation of Pi, which
is induced by R0. According to Definition 1, we construct the simple directed graph FRi by
merging into a single vertex each of the pairs {ai, bi}, {ci, di} and {ei, fi} of vertices of Pi. The
arc directions of FRi are implied by the corresponding directions in ΦRi (or equivalently, in
ΦR0). Then, since R0 is acyclic with respect to {ai, bi} ∪ {ci, di} ∪ {ei, fi}, so is Ri. Thus, it
follows by Definition 1 that FRi has no directed cycle. Therefore, the edges ciai, biei, and fidi

of Pφ have such directions in ΦR0 that it does not hold simultaneously ciai, biei, fidi ∈ ΦR0 , or
aici, eibi, difi ∈ ΦR0. That is, it does not hold simultaneously θ(ci) < θ(ai), θ(bi) < θ(ei), and
θ(f i) < θ(di), or θ(ai) < θ(ci), θ(ei) < θ(bi), and θ(di) < θ(f i) in R0, respectively. Then, by the
definition of the above truth assignment, it follows that it does not hold simultaneously xri,1 =
xri,2 = xri,3 = 1, or xri,1 = xri,2 = xri,3 = 0, and therefore, the clause αi = (xri,1 ∨ xri,2 ∨ xri,3)
is NAE-satisfied. Finally, since this holds for every i = 1, 2, . . . , k, φ is NAE-satisfiable.
�

For the formula φ of Figure 5, an example of an acyclic permutation representation R0 of
Pφ with respect to {u1

i , u
2
i }m

i=1, along with the corresponding transitive orientation ΦR0 of Pφ,
is illustrated in Figure 6. This transitive orientation corresponds to the NAE-satisfying truth
assignment (x1, x2, x3, x4) = (1, 1, 0, 0) of φ. Similarly to Figure 5, the lines ui′,j′

i,j and vi′,j′
i,j are

drawn in bold in Figure 6(a). Furthermore, for better visibility, the vertices that correspond to
these lines are grouped in shadowed ellipses in Figure 6(b), while the arcs incident to them are
drawn dashed.

3.2 The trapezoid graphs Gφ and Hφ

Let {u1
i , u

2
i }m

i=1 be the pairs of vertices in the constructed permutation graph Pφ and RP be
its permutation representation. We construct now from Pφ the trapezoid graph Gφ with m
vertices {u1, u2, . . . , um}, as follows. We replace in the permutation representation RP for every
i = 1, 2, . . . ,m the lines u1

i and u2
i by the trapezoid Tui , which has u1

i and u2
i as its left and

right lines, respectively. Let RG be the resulting trapezoid representation of Gφ.
Finally, we construct from Gφ the trapezoid graph Hφ with 7m vertices, by adding to

every trapezoid Tui , i = 1, 2, . . . ,m, six parallelograms Tui,1, Tui,2 , . . . , Tui,6 in the trapezoid
representation RG, as follows. Let ε be the smallest distance in RG between two different
endpoints on L1, or on L2. The right (resp. left) line of Tu1,1 lies to the right (resp. left) of u1

1,

16

and it is parallel to it at distance ε
2 . The right (resp. left) line of Tu1,2 lies to the left of u1

1, and
it is parallel to it at distance ε

4 (resp. 3ε
4). Moreover, the right (resp. left) line of Tu1,3 lies to

the left of u1
1, and it is parallel to it at distance 3ε

8 (resp. 7ε
8). Similarly, the left (resp. right)

line of Tu1,4 lies to the left (resp. right) of u2
1, and it is parallel to it at distance ε

2 . The left
(resp. right) line of Tu1,5 lies to the right of u2

1, and it is parallel to it at distance ε
4 (resp. 3ε

4).
Finally, the right (resp. left) line of Tu1,6 lies to the right of u2

1, and it is parallel to it at distance
3ε
8 (resp. 7ε

8), as illustrated in Figure 7.
After adding the parallelograms Tu1,1 , Tu1,2 , . . . , Tu1,6 to a trapezoid Tu1 , we update the small-

est distance ε between two different endpoints on L1, or on L2 in the resulting representation,
and we continue the construction iteratively for all i = 2, . . . ,m. Denote by Hφ the resulting
trapezoid graph with 7m vertices, and by RH the corresponding trapezoid representation. Note
that in RH , between the endpoints of the parallelograms Tui,1 , Tui,2, and Tui,3 (resp. Tui,4 , Tui,5,
and Tui,6) on L1 and L2, there are no other endpoints of Hφ, except those of u1

i (resp. u2
i),

for every i = 1, 2, . . . ,m. Furthermore, note that RH is standard with respect to ui, for every
i = 1, 2, . . . ,m. The following auxiliary lemma will be used in the proof of Theorem 2.

Lemma 8. In the trapezoid graph Hφ, δ∗ui

= ∅ for every i = 1, 2, . . . ,m.

Proof. Let i ∈ {1, 2, . . . ,m}. Recall that, by Definition 4, D1(ui, RH) (resp. D2(ui, RH)) denotes
the set of trapezoids of Hφ that lie completely to the left (resp. to the right) of Tui in RH . In
particular, Tui,2 , Tui,3 ∈ D1(ui, RH) and Tui,5 , Tui,6 ∈ D2(ui, RH). By the construction of RH , it
is easy to see that Tui,2 ∪ Tui,3 (resp. Tui,5 ∪ Tui,6) is the rightmost (resp. leftmost) connected
component of D1(ui, RH) (resp. D2(ui, RH)). Thus, N(Vk) ⊆ N({ui,2, ui,3}) (resp. N(V�) ⊆
N({ui,5, ui,6})), for every connected component Vk (resp. V�) of D1(ui, RH) (resp. D2(ui, RH)).
Let Vp be the master component of ui, such that Dui = Vp. Then, either Vp = {ui,2, ui,3}, or

a1 d1 d3a3 a2 d2e3 b3c1 f1c2 b2 f2 f3c3 e2b1e1

x1 = 1 x2 = 1 x3 = 0 x4 = 0

R0 :

(a)

d1 e1 f1c1

a1

b1

x2 = 1
x1 = 1

x3 = 0

x2 = 1
x3 = 0 x2 = 1x1 = 1

α1 α2 α3

x4 = 0

x4 = 0

a2

b2

c2

d2 e2 f2 c3

d3 e3 f3

a3

b3

ΦR0 :

(b)

Fig. 6. The NAE-satisfying truth assignment (x1, x2, x3, x4) = (1, 1, 0, 0) of the formula φ of Figure 5: (a) an
acyclic permutation representation R0 of Pφ and (b) the corresponding transitive orientation ΦR0 of Pφ.

17

L1

L2

u2
iu1

i

Tui

Tui,2 Tui,1Tui,3 Tui,4 Tui,5 Tui,6

Fig. 7. The addition of the six parallelograms Tui,1 , Tui,2 , . . . , Tui,6 to the trapezoid Tui , i = 1, 2, . . . , m, in the
construction of the trapezoid graph Hφ from Gφ.

Vp = {ui,5, ui,6}. In the case where Vp = {ui,2, ui,3}, we have ui,4 ∈ N({ui,5, ui,6}) � N(Vp), and
thus {ui,5, ui,6} ∈ δ∗ui

. In the case where Vp = {ui,5, ui,6}, we have ui,1 ∈ N({ui,2, ui,3}) � N(Vp),
and thus, {ui,2, ui,3} ∈ δ∗ui

. This proves the lemma.
�
Theorem 2. The formula φ is NAE-satisfiable if and only if the trapezoid graph Hφ is a
bounded tolerance graph.

Proof. Since a graph is a bounded tolerance graph if and only if it is a parallelogram graph [2], it
suffices to prove that φ is NAE-satisfiable if and only if the trapezoid graph Hφ is a parallelogram
graph.

(⇐) Suppose that Hφ is a parallelogram graph, and let U = {u1, u2, . . . , um}. Then, Hφ is an
acyclic trapezoid graph by Lemma 1. Consider the permutation graph H#

φ (U) with 2m vertices,
which is obtained by Algorithm Split-U on Hφ. Starting with the trapezoid representation RH

of Hφ, we obtain by the construction of Theorem 1 a permutation representation R#
H(U) of

H#
φ (U). Note that, since RH is a standard trapezoid representation of Hφ with respect to

every ui, i = 1, 2, . . . ,m, the line u1
i (resp. u2

i) of Tui is not moved during the construction of
R#

H(U) from RH , for every i = 1, 2, . . . ,m. Therefore, H#
φ (U) = Pφ. On the other hand, since by

Lemma 8 δ∗ui

= ∅ for every vertex ui ∈ U , and since Hφ is an acyclic trapezoid graph, Theorem 1

implies that H#
φ (U) = Pφ is an acyclic permutation graph with respect to {u1

i , u
2
i }m

i=1. Thus, φ
is NAE-satisfiable by Lemma 7.

(⇒) Conversely, suppose that φ has a NAE-satisfying truth assignment τ . We will construct
first a permutation representation R0 of Pφ, and then two trapezoid representations R′

0 and R′′
0

of Gφ and Hφ, respectively, as follows. Similarly to the representation RP , the representation
R0 has n blocks, i.e. connected components, one for each variable x1, x2, . . . , xn. R0 is obtained
from RP by performing a horizontal axis flipping of every block, which corresponds to a variable
xp = 0 in the truth assignment τ . Every other block, which corresponds to a variable xp = 1 in
the assignment τ , remains the same in R0, as in RP . Thus, θ(�1

i,j) > θ(�2
i,j) if xri,j = 1 in τ , and

θ(�1
i,j) < θ(�2

i,j) if xri,j = 0 in τ , for every pair {�1
i,j , �

2
i,j} of lines in R0 (which correspond to the

literal xri,j of the clause αi in φ). An example of the construction of this representation R0 of
Pφ for the truth assignment τ = (1, 1, 0, 0) is illustrated in Figure 6(a).

Since τ is a NAE-satisfying truth assignment of φ, at least one literal is true and at least one
is false in τ in every clause αi, i = 1, 2, . . . , k. Thus, there are six possible truth assignments for
every clause, namely (1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 1), (0, 1, 0), and (1, 0, 0). For the first three
ones, we can assign appropriate angles to the lines ai, bi, ci, di, ei, and fi in the representation
R0, such that the relative positions of all endpoints in L1 and L2 remain unchanged, and such
that ai is parallel to bi, ci is parallel to di, and ei is parallel to fi, as illustrated in Figure 8.
The last three truth assignments of αi are the complement of the first three ones. Thus, by

18

performing a horizontal axis flipping of the blocks in Figure 8, to which the lines ai, bi, ci, di,
ei, and fi belong, it is easy to see that for these assignments, we can also assign appropriate
angles to these lines in the representation R0, such that the relative positions of all endpoints
in L1 and L2 remain unchanged, and such that ai is parallel to bi, ci is parallel to di, and ei is
parallel to fi.

L1

L2

ai ci ei bi fi di

xri,1 = 1 xri,2 = 1 xri,3 = 0

(a)

L1

L2

eibi fidi

xri,2 = 0 xri,3 = 1

ai ci

xri,1 = 1

(b)

L1

L2

ei bi fidi

xri,3 = 1

aici

xri,1 = 0 xri,2 = 1

(c)

Fig. 8. The relative positions of the lines ai, bi, ci, di, ei, and fi for the truth assignments (a) (1, 1, 0), (b) (1, 0, 1),
and (c) (0, 1, 1) of the clause αi.

Recall that for every two consecutive pairs {�1
i,j , �

2
i,j} and {�1

i′,j′, �
2
i′,j′} of lines in RP

(resp. R0), which belong to the same block, i.e. where ri,j = ri′,j′, there are two parallel lines
ui′,j′

i,j , vi′,j′
i,j that intersect both �1

i,j and �1
i′,j′ . Thus, after assigning the appropriate angles to the

lines {�1
i,j , �

2
i,j}, i = 1, 2, . . . , k, j = 1, 2, 3, we can clearly assign the appropriate angles to the

lines ui′,j′
i,j , vi′,j′

i,j , such that the relative positions of all endpoints in L1 and L2 remain unchanged,

and such that ui′,j′
i,j remains parallel to vi′,j′

i,j . Summarizing, the lines u1
i and u2

i are parallel in
R0, for every i = 1, 2, . . . ,m.

We construct now the trapezoid representation R′
0 of Gφ from the permutation representa-

tion R0, by replacing for every i = 1, 2, . . . ,m the lines u1
i and u2

i by the trapezoid Tui , which has
u1

i and u2
i as its left and right lines, respectively. Since R0 is obtained by performing horizontal

axis flipping of some blocks of RP , and then changing the angles of the lines, while respecting
the relative positions of the endpoints, R′

0 is indeed another trapezoid representation of Gφ

than RG. Since u1
i is now parallel to u2

i for every i = 1, 2, . . . ,m, it follows clearly that R′
0 is a

parallelogram representation, and thus, Gφ is a parallelogram graph.
Finally, we construct the trapezoid representation R′′

0 of Hφ from R′
0, similarly to the con-

struction of RH from RG. Namely, we add for every trapezoid Tui , i = 1, 2, . . . ,m, six paral-
lelograms Tui,1 , Tui,2 , . . . , Tui,6 , resulting in a trapezoid graph with 7m vertices. Since in R′′

0 the
parallelograms Tui,1 , Tui,2 , and Tui,3 (resp. Tui,4 , Tui,5 , and Tui,6) are sufficiently close to the left
line u1

i (resp. right line u2
i) of Tui , i = 1, 2, . . . ,m, and since between the endpoints of the par-

allelograms Tui,1 , Tui,2 , and Tui,3 (resp. Tui,4 , Tui,5 , and Tui,6) on L1 and L2, there are no other
endpoints, it follows that R′′

0 is indeed another trapezoid representation of Hφ than RH . Finally,
since R′

0 is a parallelogram representation, and since Tui,1 , Tui,2 , . . . , Tui,6 , i = 1, 2, . . . ,m, are
all parallelograms, R′′

0 is also a parallelogram representation, and thus, Hφ is a parallelogram
graph.
�

19

Therefore, since monotone-NAE-3-SAT is NP-complete, the problem of recognizing bounded
tolerance graphs is NP-hard. Moreover, since the recognition of bounded tolerance graphs lies
in NP [16], we can summarize our results as follows.

Theorem 3. Given a graph G, it is NP-complete to decide whether it is a bounded tolerance
graph.

4 The recognition of tolerance graphs

In this section we show that the reduction from the monotone-NAE-3-SAT problem to the
problem of recognizing bounded tolerance graphs presented in Section 3, can be extended to the
problem of recognizing general tolerance graphs. In particular, we prove that a given monotone
3-CNF formula φ is NAE-satisfiable if and only if the graph Hφ constructed in Section 3.2 is a
tolerance graph.

We show that the reduction from the monotone-NAE-3-SAT problem to the problem of
recognizing bounded tolerance graphs presented in Section 3, can be extended to the problem
of recognizing general tolerance graphs. In particular, we prove that a given monotone 3-CNF
formula φ is NAE-satisfiable if and only if the graph Hφ constructed in Section 3.2 is a tolerance
graph.

4.1 Structural properties of tolerance graphs

In the following we assume w.l.o.g. that any tolerance graph has a tolerance representation,
in which all tolerances are distinct and no two different intervals share an endpoint [12, 13].
We state now similarly to [13,14] some definitions and lemmas concerning tolerance graphs. In
a certain tolerance representation 〈I, t〉 of a tolerance graph G = (V,E), a vertex v is called
bounded if tv ≤ |Iv|; otherwise, v is called unbounded. An unbounded vertex v of G is called
inevitable (for a certain tolerance representation), if v is not an isolated vertex, and if setting
tv = |Iv| creates a new edge in the representation, that is, the representation is no longer a
tolerance representation of G. A tolerance representation of G is called inevitable unbounded, if
every unbounded vertex in this representation is inevitable. For an inevitable unbounded vertex
v of G (for a certain tolerance representation), a vertex u is called a hovering vertex of v, if
uv /∈ E and Iv ⊆ Iu. The next lemma follows easily from the above definitions.

Lemma 9. There exists a hovering vertex u for every inevitable unbounded vertex v of the
tolerance graph G (for a certain tolerance representation).

Proof. Since v is an inevitable unbounded vertex, setting tv = |Iv| creates a new edge in G;
let uv be such an edge. Then, clearly Iu ∩ Iv
= ∅. Since initially uv /∈ E, it follows that
|Iu ∩ Iv| < min{tu, tv} ≤ tu. Furthermore, since setting tv = |Iv| creates a new edge in G, we
obtain that min{tu, |Iv|} ≤ |Iu ∩ Iv| < tu, and thus, |Iu ∩ Iv| = |Iv|, i.e. Iv ⊆ Iu. Therefore, since
uv /∈ E and Iv ⊆ Iu, it follows that u is a hovering vertex of v.
�
Lemma 10 ([13]). Every tolerance representation can be transformed into an inevitable one
in O(n2) time.

Lemma 11. Let v be an inevitable unbounded vertex of a tolerance graph G and u be a hovering
vertex of v, in a certain tolerance representation of G. Then, N(v) ⊆ N(u) in G.

Proof. Since v is an inevitable unbounded vertex, N(v) = ∅. Let w ∈ N(v) be a neighbor of v
in G. Since u is a hovering vertex of v, it follows that uv /∈ E, and thus, w
= u. Furthermore,
since vw ∈ E, and since v is unbounded, we obtain that min{tv, tw} ≤ |Iv ∩ Iw| ≤ |Iv | < tv,
and thus, tw ≤ |Iv ∩ Iw|. Then, since Iv ⊆ Iu, it follows that |Iv ∩ Iw| ≤ |Iu ∩ Iw|, and thus,
tw ≤ |Iu ∩ Iw|, i.e. w ∈ N(u). Therefore, N(v) ⊆ N(u) in G.
�

20

4.2 The reduction

Consider now a monotone 3-CNF formula φ and the trapezoid graph Hφ constructed from φ in
Section 3.2.

Lemma 12. In the trapezoid graph Hφ, there are no two vertices u and v, such that uv /∈ E(Hφ)
and N(v) ⊆ N(u) in Hφ.

Proof. The proof is done by investigating all cases for a pair of non-adjacent vertices u, v.
First, observe that, by the construction of Hφ from Gφ, we have N [ui,2] = N [ui,3], N [ui,1] =
N [ui,2] ∪ {ui}, N [ui,5] = N [ui,6], and N [ui,4] = N [ui,5] ∪ {ui}.

Consider first two vertices ui and uk in Hφ, for some i, k = 1, 2, . . . ,m and i
= k. Then, by
the construction of Hφ from Gφ, and since ui and uk are non-adjacent, ui,1 ∈ N(ui) \ N(uk)
and uk,1 ∈ N(uk) \ N(ui). Consider next the vertices ui and uk,j, for some i, k = 1, 2, . . . ,m
and j = 1, 2, . . . , 6. If i = k, then j ∈ {2, 3, 5, 6}, since ui,1, ui,4 ∈ N(ui). In the case where
j ∈ {2, 3}, we have ui,4 ∈ N(ui) \N(uk,j) and uk,5−j ∈ N(uk,j) \N(ui), while in the case where
j ∈ {5, 6}, we have ui,1 ∈ N(ui) \ N(uk,j) and uk,11−j ∈ N(uk,j) \ N(ui). Suppose that i
= k.
Then, it follows by the construction of Hφ from Gφ that ui,1 ∈ N(ui) \ N(uk,j). Furthermore,
if j ∈ {1, 2, 3} (resp. j ∈ {4, 5, 6}), then uk,j′ ∈ N(uk,j) \N(ui) for any index j′ ∈ {1, 2, 3} \ {j}
(resp. j′ ∈ {4, 5, 6} \ {j}).

Consider finally the vertices ui,� and uk,j, for some i, k = 1, 2, . . . ,m and �, j = 1, 2, . . . , 6.
If i = k, then w.l.o.g. � ∈ {1, 2, 3} and j ∈ {4, 5, 6}, since ui,� and uk,j are non-adjacent. In this
case, ui,�′ ∈ N(ui,�) \N(uk,j) and uk,j′ ∈ N(uk,j) \N(ui,�), for all indices �′ ∈ {1, 2, 3} \ {�} and
j′ ∈ {4, 5, 6} \ {j}. Suppose that i
= k. If j ∈ {1, 2, 3} (resp. j ∈ {4, 5, 6}), let j′ be any index
of {1, 2, 3} \ {j} (resp. {4, 5, 6} \ {j}). Similarly, if � ∈ {1, 2, 3} (resp. � ∈ {4, 5, 6}), let �′ be any
index of {1, 2, 3} \ {�} (resp. {4, 5, 6} \ {�}). Then, it follows by the construction of Hφ from Gφ

that ui,�′ ∈ N(ui,�) \ N(uk,j) and uk,j′ ∈ N(uk,j) \ N(ui,�).
Therefore, for all possible choices of non-adjacent vertices u, v in the trapezoid graph Hφ,

we have N(u) \ N(v)
= ∅ and N(v) \ N(u)
= ∅, which proves the lemma.
�
Lemma 13. If Hφ is a tolerance graph then it is a bounded tolerance graph.

Proof. Suppose that Hφ is a tolerance graph, and consider a tolerance representation R of Hφ.
Due to Lemma 10, we may assume w.l.o.g. that R is an inevitable unbounded representation. If
R has no unbounded vertices, then we are done. Otherwise, there exists at least one inevitable
unbounded vertex v in R, which has a hovering vertex u by Lemma 9, where uv /∈ E(Hφ).
Then, N(v) ⊆ N(u) in Hφ by Lemma 11, which contradicts Lemma 12. Thus, there exists no
unbounded vertex in R, i.e. Hφ is a bounded tolerance graph.
�
Theorem 4. The formula φ is NAE-satisfiable if and only if Hφ is a tolerance graph.

Proof. Suppose that φ is NAE-satisfiable. Then, by Theorem 2, Hφ is a bounded tolerance graph,
and thus, Hφ is a tolerance graph. Suppose conversely that Hφ is a tolerance graph. Then, by
Lemma 13, Hφ is a bounded tolerance graph. Thus, φ is NAE-satisfiable by Theorem 2.
�

Therefore, since monotone-NAE-3-SAT is NP-complete, the problem of recognizing tolerance
graphs is NP-hard. Moreover, since the recognition of tolerance graphs lies in NP [16], and since
Hφ is a trapezoid graph, we can summarize we can summarize our results in this section as
follows.

Theorem 5. Given a graph G, it is NP-complete to decide whether it is a tolerance graph. The
problem remains NP-complete even if the given graph G is known to be a trapezoid graph.

21

5 Concluding remarks

In this article we proved that both tolerance and bounded tolerance graph recognition prob-
lems are NP-complete, by providing a reduction from the monotone-NAE-3-SAT problem, thus
answering a longstanding open question. Furthermore, our reduction implies that, given a trape-
zoid graph, it is NP-complete to decide whether this graph is a tolerance graph, or bounded
tolerance, i.e. parallelogram graph. A unit interval representation is an interval representation
in which all intervals have the same length. A proper interval representation is one in which
no interval is properly contained in another. These terms can apply to both interval graphs
and tolerance graphs. It is known that the subclasses of unit and proper interval graphs are
equal [25], but the corresponding tolerance subclasses are different [2]. The recognition of unit
and of proper tolerance graphs, as well as of any other subclass of tolerance graphs, except
bounded tolerance and bounded bitolerance graphs (i.e. trapezoid graphs), remain interesting
open problems [14].

References

1. S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic local alignment search tool. Journal of
molecular biology, 215(3):403–410, 1990.

2. K. P. Bogart, P. C. Fishburnb, G. Isaak, and L. Langley. Proper and unit tolerance graphs. Discrete Applied
Mathematics, 60(1-3):99–117, 1995.

3. A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph classes: a survey. Society for Industrial and Applied
Mathematics, 1999.

4. A. H. Busch. A characterization of triangle-free tolerance graphs. Discrete Applied Mathematics, 154(3):471–
477, 2006.

5. A. H. Busch and G. Isaak. Recognizing bipartite tolerance graphs in linear time. In Proceedings of the 33rd
International Workshop on Graph-Theoretic Concepts in Computer Science (WG), pages 12–20, 2007.

6. F. Cheah and D. Corneil. On the structure of trapezoid graphs. Discrete Applied Mathematics, 66(2):109–133,
1996.

7. F. Cheah and D. Corneil, 2009. Personal communication.
8. S. Felsner. Tolerance graphs and orders. Journal of Graph Theory, 28:129–140, 1998.
9. P. Fishburn and W. Trotter. Split semiorders. Discrete Mathematics, 195:111–126, 1999.

10. M. Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol. 57).
North-Holland Publishing Co., 2004.

11. M. Golumbic and C. Monma. A generalization of interval graphs with tolerances. In Proceedings of the
13th Southeastern Conference on Combinatorics, Graph Theory and Computing, Congressus Numerantium
35, pages 321–331, 1982.

12. M. Golumbic, C. Monma, and W. Trotter. Tolerance graphs. Discrete Applied Mathematics, 9(2):157–170,
1984.

13. M. Golumbic and A. Siani. Coloring algorithms for tolerance graphs: Reasoning and scheduling with interval
constraints. In Proceedings of the Joint International Conferences on Artificial Intelligence, Automated
Reasoning, and Symbolic Computation (AISC/Calculemus), pages 196–207, 2002.

14. M. Golumbic and A. Trenk. Tolerance Graphs. Cambridge Studies in Advanced Mathematics, 2004.
15. M. Grötshcel, L. Lovász, and A. Schrijver. The Ellipsoid Method and its Consequences in Combinatorial

Optimization. Combinatorica, 1:169–197, 1981.
16. R. B. Hayward and R. Shamir. A note on tolerance graph recognition. Discrete Applied Mathematics,

143(1-3):307–311, 2004.
17. G. Isaak, K. Nyman, and A. Trenk. A hierarchy of classes of bounded bitolerance orders. Ars Combinatoria,

69, 2003.
18. M. Kaufmann, J. Kratochv́ıl, K. A. Lehmann, and A. R. Subramanian. Max-tolerance graphs as intersection

graphs: cliques, cycles, and recognition. In Proceedings of the 17th annual ACM-SIAM symposium on Discrete
Algorithms (SODA), pages 832–841, 2006.

19. J. M. Keil and P. Belleville. Dominating the complements of bounded tolerance graphs and the complements
of trapezoid graphs. Discrete Applied Mathematics, 140(1-3):73–89, 2004.

20. L. Langley. Interval tolerance orders and dimension. PhD thesis, Dartmouth College, 1993.
21. L. Langley. A recognition algorithm for orders of interval dimension two. Discrete Applied Mathematics,

60(1-3):257–266, 1995.

22

22. T.-H. Ma and J. P. Spinrad. On the 2-chain subgraph cover and related problems. Journal of Algorithms,
17(2):251–268, 1994.

23. G. B. Mertzios, I. Sau, and S. Zaks. A New Intersection Model and Improved Algorithms for Tolerance
Graphs. Technical report, RWTH Aachen University, March 2009.

24. G. Narasimhan and R. Manber. Stability and chromatic number of tolerance graphs. Discrete Applied
Mathematics, 36:47–56, 1992.

25. F. Roberts. Indifference graphs. Proof Techniques in Graph Theory, Academic Press, New York, 139-146,
1969.

26. S. P. Ryan. Trapezoid order classification. Order, 15:341–354, 1998.
27. T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th annual ACM symposium

on Theory of computing (STOC), pages 216–226, 1978.

23

24

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years. A complete
list of reports dating back to 1987 is available from http://aib.informatik.rwth-aachen.de/.
To obtain copies consult the above URL or send your request to: Informatik-Bibliothek,
RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003
2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic
2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting
2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming
2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming
2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming
2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination
2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information
2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity
2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules
2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004
2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer
School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-
proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for
the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing
Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-
tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-
ploring a Root-Cause Methodology to Prevent Distributed Denial-of-
Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With
Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General
Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts
2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

25

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-
ficient Reductions for Wait-Free Termination Detection in Faulty Dis-
tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting
Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization
2005-15 Uwe Naumann: The Complexity of Derivative Computation
2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)
2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)
2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,
Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-
Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented
LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-
dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-
bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-
gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit
BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-
ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-
ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:
Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering
with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005
2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems
2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler
2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation
2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint
Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-
and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-
terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-
Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic
Model Checking

26

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,
Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid
MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:
Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:
Replaying Play in and Play out: Synthesis of Design Models from Sce-
narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling
Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,
Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli
Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI
Work Group “Requirements Management Tools for Product Line Engi-
neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical
sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for
Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-
ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006
2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-
ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-
Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A
System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal
2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking
2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications
2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches
2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler
Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical
Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke
2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code
2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-
grams

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,
Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modular,
Open-Source Tool for Automatic Differentiation of Fortran Codes

27

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent programs
2007-16 Sadeq Ali Makram, Mesut Güneç, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Balanc-
ing for Wireless Mesh Networks

2007-17 René Thiemann: The DP Framework for Proving Termination of Term
Rewriting

2007-18 Uwe Naumann: Call Tree Reversal is NP-Complete
2007-19 Jan Riehme, Andrea Walther, Jörg Stiller, Uwe Naumann: Adjoints for

Time-Dependent Optimal Control
2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:

Three-Valued Abstraction for Probabilistic Systems
2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-

sitional Modeling and Minimization of Time-Inhomogeneous Markov
Chains

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,
and Berthold Vöcking: Uncoordinated Two-Sided Markets

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007
2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing
2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, Harald Zankl: Maximal Termination
2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler
2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations
2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message
Passing Programs

2008-07 Alexander Nyßen, Horst Lichter: The MeDUSA Reference Manual, Sec-
ond Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on
Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-
endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-
Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable
Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-
straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl
Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-
proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers
2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves
2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study
2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving

28

2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-
tems

2009-03 Alexander Nyßen: Model-Based Construction of Embedded
Real-Time Software - A Methodology for Small Devices

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model
and Improved Algorithms for Tolerance Graphs

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing
Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-
dependent Set on Sparse Graphs

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

29

