
Aachen
Department of Computer Science

Technical Report

A New Intersection Model and
Improved Algorithms
for Tolerance Graphs

George B. Mertzios
Ignasi Sau
Shmuel Zaks

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2009-05

RWTH Aachen · Department of Computer Science · March 2009

1

The publications of the Department of Computer Science of RWTH Aachen University are in
general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

2

A New Intersection Model and Improved Algorithms for
Tolerance Graphs

George B. Mertzios�, Ignasi Sau��, and Shmuel Zaks� � �

Abstract. Tolerance graphs model interval relations in such a way that intervals can tolerate
a certain degree of overlap without being in conflict. This class of graphs, which generalizes in
a natural way both interval and permutation graphs, has attracted many research efforts since
their introduction in [10], as it finds many important applications in constraint-based temporal
reasoning, resource allocation, and scheduling problems, among others. In this article we propose
the first non-trivial intersection model for general tolerance graphs, given by three-dimensional
parallelepipeds, which extends the widely known intersection model of parallelograms in the plane
that characterizes the class of bounded tolerance graphs. Apart from being important on its own,
this new representation also enables us to improve the time complexity of three problems on
tolerance graphs. Namely, we present optimal O(n log n) algorithms for computing a minimum
coloring and a maximum clique, and an O(n2) algorithm for computing a maximum weight
independent set in a tolerance graph with n vertices, thus improving the best known running
times O(n2) and O(n3) for these problems, respectively.

Keywords: Tolerance graphs, parallelogram graphs, intersection model, minimum coloring, max-
imum clique, maximum weight independent set.

1 Introduction

A graph G = (V,E) on n vertices is a tolerance graph if there is a set I = {Ii | i = 1, . . . , n} of
closed intervals on the real line and a set T = {ti | i = 1, . . . , n} of positive real numbers, called
tolerances, such that for any two vertices vi, vj ∈ V , vivj ∈ E if and only if |Ii∩Ij| ≥ min{ti, tj},
where |I| denotes the length of the interval I. These sets of intervals and tolerances form
a tolerance representation of G. If G has a tolerance representation such that ti ≤ |Ii| for
i = 1, . . . , n, then G is called a bounded tolerance graph and its representation is a bounded
tolerance representation.

Tolerance graphs were introduced in [10], mainly motivated by the need to solve scheduling
problems in which resources that would be normally used exclusively, like rooms or vehicles,
can tolerate some sharing among users. Since then, tolerance graphs have been widely studied
in the literature [1,2,5,11,12,15,19,22], as they naturally generalize both interval graphs (when
all tolerances are equal) and permutation graphs (when |Ii| = ti for i = 1, . . . , n) [10]. For more
details, see [13].

Notation. All the graphs considered in this paper are finite, simple, and undirected. Given
a graph G = (V,E), we denote by n the cardinality of V . An edge between vertices u and
v is denoted by uv, and in this case vertices u and v are said to be adjacent. G denotes the
complement of G, i.e. G = (V,E), where uv ∈ E if and only if uv /∈ E. Given a subset of vertices
S ⊆ V , the graph G[S] denotes the graph induced by the vertices in S, i.e. G[S] = (S,F), where
for any two vertices u, v ∈ S, uv ∈ F if and only if uv ∈ E. A subset S ⊆ V is an independent
set in G if the graph G[S] has no edges. For a subset K ⊆ V , the induced subgraph G[K] is a
complete subgraph of G, or a clique, if each two of its vertices are adjacent (equivalently, K is
� Department of Computer Science, RWTH Aachen University, Germany. Email: mertzios@cs.rwth-aachen.de

�� Mascotte joint Project of INRIA/CNRS/UNSA, Sophia-Antipolis, France; and Graph Theory and Combina-
torics Group, Applied Maths. IV Dept. of UPC, Barcelona, Spain. Email: ignasi.sau@sophia.inria.fr

� � � Department of Computer Science, Technion, Haifa, Israel. Email: zaks@cs.technion.ac.il

an independent set in G). The maximum cardinality of a clique in G is denoted by ω(G) and is
termed the clique number of G. A proper coloring of G is an assignment of different colors to
adjacent vertices, which results in a partition of V into independent sets. The minimum number
of colors for which there exists a proper coloring is denoted by χ(G) and is termed the chromatic
number of G. A partition of V into χ(G) independent sets is a minimum coloring of G.

Motivation and previous work. Besides generalizing interval and permutation graphs in
a natural way, the class of tolerance graphs has other important subclasses and superclasses.
Let us briefly survey some of them.

Given a class of graphs G, a graph G is a probe graph of G if its vertices can be partitioned
into a set P of probes and an independent set N of nonprobes, such that G can be extended
to a graph of G by adding edges between certain nonprobes. Probe interval graphs, which are
a superclass of interval graphs, have proved to be useful in the Human Genome Project [23].
Tolerance graphs are also a superclass of interval probe graphs [12].

A graph is perfect if the chromatic number of every induced subgraph equals the clique
number of that subgraph. Perfect graphs include many important families of graphs, and serve
to unify results relating colorings and cliques in those families. For instance, in all perfect graphs,
the graph coloring problem, maximum clique problem, and maximum independent set problem
can all be solved in polynomial time using the Ellipsoid method [14]. Since tolerance graphs were
shown to be perfect [11], there exist polynomial time algorithms for these problems. However,
these algorithms are not very efficient and therefore, as it happens for most known subclasses of
perfect graphs, it makes sense to devise specific fast algorithms for these problems on tolerance
graphs.

A comparability graph is a graph which can be transitively oriented. A co-comparability
graph is a graph whose complement is a comparability graph. Bounded tolerance graphs
are co-comparability graphs [10], and therefore all known polynomial time algorithms for co-
comparability graphs apply to bounded tolerance graphs. This is one of the main reasons why for
many problems the existing algorithms have better running time in bounded tolerance graphs
than in general tolerance graphs.

A graph G = (V,E) is the intersection graph of a family F = {S1, . . . , Sn} of distinct
nonempty subsets of a set S if there exists a bijection μ : V → F such that for any two
distinct vertices u, v ∈ V , uv ∈ E if and only if μ(u) ∩ μ(v) �= ∅. In that case, we say that F
is an intersection model of G. It is easy to see that each graph has a trivial intersection model
based on adjacency relations [21]. Some intersection models provide a natural and intuitive un-
derstanding of the structure of a class of graphs, and turn out to be very helpful to find efficient
algorithms to solve optimization problems [21]. Therefore, it is of great importance to establish
non-trivial intersection models for families of graphs. A graph G on n vertices is a parallelogram
graph if we can fix two parallel lines L1 and L2, and for each vertex vi ∈ V (G) we can assign
a parallelogram P i with parallel sides along L1 and L2 so that G is the intersection graph of
{P i | i = 1, . . . , n}. It was proved in [1, 20] that a graph is a bounded tolerance graph if and
only if it is a parallelogram graph. This characterization provides a useful way to think about
bounded tolerance graphs. However, this intersection model cannot cope with general tolerance
graphs, in which the tolerance of an interval can be greater than its length.

Our contribution. In this article we present the first non-trivial intersection model for
general tolerance graphs, which generalizes the widely known parallelogram representation of
bounded tolerance graphs. The main idea is to exploit the third dimension to capture the in-
formation given by unbounded tolerances, and as a result parallelograms are replaced with
parallelepipeds. The proposed intersection model is very intuitive and can be efficiently con-

4

structed from a tolerance representation (actually, we show that it can be constructed in linear
time).

Apart from being important on its own, this new representation proves to be a powerful tool
for designing efficient algorithms for general tolerance graphs. Indeed, using our intersection
model we improve the best existing running times of three problems on tolerance graphs. We
present algorithms to find a minimum coloring and a maximum clique in O(n log n) time, which
is optimal (as discussed in Section 3.4). The best existing algorithm was O(n2) [12,13]. We also
present an algorithm to find a maximum weight independent set in O(n2) time, whereas the
best known algorithm was O(n3) [13]. We note that [22] proposes an O(n2 log n) algorithm to
find a maximum cardinality independent set on a general tolerance graph, and that [13] refers
to an algorithm transmitted by personal communication with running time O(n2 log n) to find
a maximum weight independent set on a general tolerance graph; to the best of our knowledge,
this algorithm has not been published.

It is important to note that the complexity of recognizing bounded and general tolerance
graphs is a challenging open problem [3,13,22], and this is the reason why we assume throughout
this paper that along with the input tolerance graph we are also given a tolerance representation
of it. The only “positive” result in the literature concerning recognition of tolerance graphs is a
linear time algorithm for the recognition of bipartite tolerance graphs [3].

Nevertheless, it was shown in [15] that every tolerance graph has a polynomial sized tolerance
representation, and hence tolerance graphs recognition is in the class NP. There exist other
graph classes closely related to tolerance graphs. If in the definition of tolerance graphs we
replace the operation “min” between tolerances with “+”, we obtain the class of sum-tolerance
graphs [17], and if we replace it with “max” we obtain the class of max-tolerance graphs. Max-
tolerance graphs recognition is known to be NP-hard [18].

Organization of the paper. We provide the new intersection model of general tolerance
graphs in Section 2. In Section 3 we present a canonical representation of tolerance graphs,
and then show how it can be used in order to obtain optimal O(n log n) algorithms for finding
a minimum coloring and a maximum clique in a tolerance graph. In Section 4 we present an
O(n2) algorithm for finding a maximum weight independent set. Finally, Section 5 is devoted
to conclusions and open problems.

2 A New Intersection Model for Tolerance Graphs

One of the most natural representations of bounded tolerance graphs is given by parallelograms
between two parallel lines in the Euclidean plane [1, 13, 20]. In this section we extend this
representation to a three-dimensional representation of general tolerance graphs.

Given a tolerance graph G = (V,E) along with a tolerance representation of it, recall that
vertex vi ∈ V corresponds to an interval Ii = [ai, bi] on the real line with a tolerance ti ≥ 0.
W.l.o.g. we may assume that ti > 0 for every vertex vi [13].

Definition 1. Given a tolerance representation of a tolerance graph G = (V,E), vertex vi is
bounded if ti ≤ |Ii|. Otherwise, vi is unbounded. VB and VU are the sets of bounded and
unbounded vertices in V , respectively. Clearly V = VB ∪ VU .

We can also assume w.l.o.g. that ti = ∞ for any unbounded vertex vi, since if vi is un-
bounded, then the intersection of any other interval with Ii is strictly smaller than ti. Let L1

and L2 be two parallel lines at distance 1 in the Euclidean plane.

5

L1

L2

1

ti

ai

bici

di

ti

φi

P i
P j

aj = dj

cj = bj

φj

P k

|Ij |

tj

|Ik||Ii|

ck = bk

ak = dk

tk = ∞

φk

Fig. 1. Parallelograms P i and P j correspond to bounded vertices vi and vj , respectively, whereas P k corresponds
to an unbounded vertex vk.

Definition 2. Given an interval Ii = [ai, bi] with tolerance ti, P i is the parallelogram defined
by the points ci, bi in L1 and ai, di in L2, where ci = min {bi, ai + ti} and di = max {ai, bi − ti}.
The slope φi of P i is φi = arctan

(
1

ci−ai

)
.

An example is depicted in Figure 1, where P i and P j correspond to bounded vertices vi and
vj , and P k corresponds to an unbounded vertex vk. Observe that when vertex vi is bounded, the

values ci and di coincide with the tolerance points defined in [7,13,16], and φi = arctan
(

1
ti

)
. On

the other hand, when vertex vi is unbounded, the values ci and di coincide with the endpoints
bi and ai of Ii, respectively, and φi = arctan

(
1
|Ii|

)
. Observe also that in both cases ti = bi − ai

and ti = ∞, parallelogram P i is reduced to a line segment (c.f. P j and P k in Figure 1). Since
ti > 0 for every vertex vi, it follows that 0 < φi < π

2 . Furthermore, we can assume w.l.o.g. that
all points ai, bi, ci, di and all slopes φi are distinct [7, 13,16].

Observation 1 Let vi ∈ VU , vj ∈ VB. Then |Ii| < tj if and only if φi > φj .

We are ready to give the main definition of this article.

Definition 3. Let G = (V,E) be a tolerance graph with a tolerance representation
{Ii = [ai, bi], ti | i = 1, . . . , n}. For every i = 1 . . . , n, Pi is the parallelepiped in R3 defined as
follows:

(a) If ti ≤ bi − ai (that is, vi is bounded), then Pi = {(x, y, z) ∈ R3 | (x, y) ∈ P i, 0 ≤ z ≤ φi}.
(b) If ti > bi − ai (vi is unbounded), then Pi = {(x, y, z) ∈ R3 | (x, y) ∈ P i, z = φi}.
The set of parallelepipeds {Pi | i = 1, . . . , n} is a parallelepiped representation of G.

Observe that for each interval Ii, the parallelogram P i of Definition 2 (see also Figure 1)
coincides with the projection of the parallelepiped Pi on the plane z = 0. An example of the
construction of these parallelepipeds is given in Figure 2, where a set of eight intervals with
their associated tolerances is given in Figure 2(a). The corresponding tolerance graph G is
depicted in Figure 2(b), while the parallelepiped representation is illustrated in Figure 2(c). In
the case ti < bi − ai, the parallelepiped Pi is three-dimensional, c.f. P1, P3, and P5, while in
the border case ti = bi − ai it degenerates to a two-dimensional rectangle, c.f. P7. In these two
cases, each Pi corresponds to a bounded vertex vi. In the remaining case ti = ∞ (that is, vi is
unbounded), the parallelepiped Pi degenerates to a one-dimensional line segment above plane
z = 0, c.f. P2, P4, P6, and P8.

We prove now that these parallelepipeds form a three-dimensional intersection model for the
class of tolerance graphs (namely, that every tolerance graph G can be viewed as the intersection
graph of the corresponding parallelepipeds Pi).

6

I = [1,17] t = 51 1

I = [4,26] t = 2 2

I = [21,37] t = 103 3

I = [32,36] t =4 4

I = [41,60] t = 65 5

I = [43,68] t = 6 6

I = [49,52] t = 37 7

I = [61,66] t = 8 8


 



(a)

1v 2v 3v 4v 5v 6v

7v

8v G

(b)



P

1 6 12 17 21 27 32 37 41 43 4947 52 54 61 66 684

P

P
P

P

P

P

P
1

1

2

2

3
3

4

4

5

6

5

8

7
7

6

8

1

L1

L2 x

yz















(c)

Fig. 2. The intersection model for tolerance graphs: (a) a set of intervals Ii = [ai, bi] and tolerances ti, i = 1, . . . , 8,
(b) the corresponding tolerance graph G and (c) a parallelepiped representation of G.

Theorem 1. Let G = (V,E) be a tolerance graph with a tolerance representation
{Ii = [ai, bi], ti | i = 1, . . . , n}. Then for every i �= j, vivj ∈ E if and only if Pi ∩ Pj �= ∅.
Proof. We distinguish three cases according to whether vertices vi and vj are bounded or
unbounded:

(a) Both vertices are bounded, that is ti ≤ bi − ai and tj ≤ bj − aj . It follows from [13] that
vivj ∈ E(G) if and only if P i ∩P j �= ∅. However, due to the definition of the parallelepipeds
Pi and Pj , in this case Pi ∩ Pj �= ∅ if and only if P i ∩ P j �= ∅ (c.f. P1 and P3, or P5 and P7,
in Figure 2).

(b) Both vertices are unbounded, that is ti = tj = ∞. Since no two unbounded vertices are
adjacent, vivj /∈ E(G). On the other hand, the line segments Pi and Pj lie on the disjoint
planes z = φi and z = φj of R3, respectively, since we assumed that the slopes φi and φj

are distinct. Thus, Pi ∩ Pj = ∅ (c.f. P2 and P4).
(c) One vertex is unbounded (that is, ti = ∞) and the other is bounded (that is, tj ≤ bj − aj).

If P i ∩ P j = ∅, then vivj /∈ E and Pi ∩ Pj = ∅ (c.f. P1 and P6). Suppose that P i ∩ P j �= ∅.
We distinguish two cases:
(i) φi < φj . It is easy to check that |Ii ∩ Ij | ≥ tj and thus vivj ∈ E. Since P i ∩ P j �= ∅ and

φi < φj , then necessarily the line segment Pi intersects with the parallelepiped Pj on the
plane z = φi, and thus Pi ∩ Pj �= ∅ (c.f. P1 and P2).

(ii) φi > φj . Clearly |Ii ∩ Ij| < ti = ∞. Furthermore, since φi > φj, Observation 1 implies
that |Ii ∩ Ij| ≤ |Ij | < ti. It follows that |Ii ∩ Ij| < min{ti, tj}, and thus vivj /∈ E. On
the other hand, z = φi for all points (x, y, z) ∈ Pi, while z ≤ φj < φi for all points
(x, y, z) ∈ Pj , and therefore Pi ∩ Pj = ∅ (c.f. P3 and P4). �

7

Clearly, for each vi ∈ V the parallelepiped Pi can be constructed in constant time. Therefore,

Lemma 1. Given a tolerance representation of a tolerance graph G with n vertices, a paral-
lelepiped representation of G can be constructed in O(n) time.

3 Coloring and Clique Algorithms in O(n log n)

In this section we present optimal O(n log n) algorithms for constructing a minimum coloring
and a maximum clique in a tolerance graph G = (V,E) with n vertices, given a parallelepiped
representation of G. These algorithms improve the best known running time O(n2) of these
problems on tolerance graphs [12,13]. First, we introduce a canonical representation of tolerance
graphs in Section 3.1, and then we use it to obtain the algorithms for the minimum coloring
and the maximum clique problems in Section 3.2. Finally, we discuss the optimality of both
algorithms in Section 3.4.

3.1 A canonical representation of tolerance graphs

We associate with every vertex vi of G the point pi = (xi, yi) in the Euclidean plane, where
xi = bi and yi = π

2 − φi. Since all endpoints of the parallelograms P i and all slopes φi are
distinct, all coordinates of the points pi are distinct as well. Similarly to [12, 13], we state the
following two definitions.

Definition 4. An unbounded vertex vi ∈ VU of a tolerance graph G is called inevitable (for a
certain parallelepiped representation), if replacing Pi with {(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi}
creates a new edge in G. Otherwise, vi is called evitable.

Definition 5. Let vi ∈ VU be an inevitable unbounded vertex of a tolerance graph G (for a
certain parallelepiped representation). A vertex vj is called a hovering vertex of vi if aj < ai,
bi < bj , and φi > φj .

It is now easy to see that, by Definition 5, if vj is a hovering vertex of vi, then vivj /∈ E.
Note that, in contrast to [12], in Definition 4, an isolated vertex vi might be also inevitable
unbounded, while in Definition 5, a hovering vertex might be also unbounded. Definitions 4 and
5 imply the following lemma:

Lemma 2. Let vi ∈ VU be an inevitable unbounded vertex of the tolerance graph G (for a
certain parallelepiped representation). Then, there exists a hovering vertex vj of vi.

Proof. Since vi is an inevitable unbounded vertex, replacing Pi with {(x, y, z) | (x, y) ∈ Pi, 0 ≤
z ≤ φi} creates a new edge in G; let vivj be such an edge. Then, clearly P i ∩ P j �= ∅. We will
prove that vj is a hovering vertex of vi. Otherwise, φi < φj , aj > ai, or bi > bj . Suppose first
that φi < φj . If vj ∈ VU , then vi remains not connected to vj after the replacement of Pi with
{(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi}, since φi < φj , which is a contradiction. If vj ∈ VB , then vi

is connected to vj also before the replacement of Pi, since φi < φj and P i ∩ P j �= ∅, which is
again a contradiction. Thus, φi > φj . Suppose now that aj > ai or bi > bj . Then, since φi > φj,
we obtain for both cases that P i ∩P j = ∅, which is a contradiction. Thus, aj < ai, bi < bj, and
φi > φj, i.e. vj is a hovering vertex of vi by Definition 5. �

Definition 6. A parallelepiped representation of a tolerance graph G is called canonical if every
unbounded vertex is inevitable.

8

For example, in the tolerance graph depicted in Figure 2, v4 and v8 are inevitable unbounded
vertices, v3 and v6 are hovering vertices of v4 and v8, respectively, while v2 and v6 are evitable
unbounded vertices. Therefore, this representation is not canonical for the graph G. However,
if we replace Pi with {(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi} for i = 2, 6, we get a canonical repre-
sentation for G.

In the following, we present an algorithm that constructs a canonical representation of a
given tolerance graph G.

Definition 7. Let α = (xα, yα) and β = (xβ, yβ) be two points in the plane. Then α dominates
β if xα > xβ and yα > yβ. Given a set A of points, the point γ ∈ A is called an extreme point
of A if there is no point δ ∈ A that dominates γ. Ex(A) is the set of the extreme points of A.

Given a tolerance graph G = (V,E) with the set V = {v1, v2, . . . , vn} of vertices (and its
parallelepiped representation), we can assume w.l.o.g. that ai < aj whenever i < j. Recall that
with every vertex vi we associated the point pi = (xi, yi), where xi = bi and yi = π

2 − φi,
respectively. We define for every i = 1, 2, . . . , n the set Ai = {p1, p2, . . . , pi} of the points
associated with the first i vertices of G.

Lemma 3. Let vi ∈ VU be an unbounded vertex of a tolerance graph G. Then:

(a) If pi ∈ Ex(Ai) then vi is evitable.
(b) If pi /∈ Ex(Ai) and point pj dominates pi for some bounded vertex vj ∈ VB with j < i then

vi is inevitable and vj is a hovering vertex of vi.

Proof. (a) Assume, to the contrary, that vi is inevitable. By Lemma 2 there is a hovering vertex
vj of vi. But then, xi = bi < bj = xj and yi = π

2 − φi < π
2 − φj = yj, while aj < ai, i.e. j < i.

Therefore pj ∈ Ai and pj dominates pi, which is a contradiction, since pi ∈ Ex(Ai).
(b) Suppose that pj dominates pi, for some vertex vj ∈ VB with j < i. The ordering of

the vertices implies aj < ai, while xi < xj and yi < yj imply bi < bj and φi > φj. Thus vi is
inevitable and vj is a hovering vertex of vi. �

The following theorem shows that, given a parallelepiped representation of a tolerance graph
G, we can construct in O(n log n) a canonical representation of G. This result is crucial for the
time complexity analysis of the algorithms of Section 3.2.

Theorem 2. Every parallelepiped representation of a tolerance graph G with n vertices can be
transformed by Algorithm 1 to a canonical representation of G in O(n log n) time.

Proof. We describe and analyze Algorithm 1 that generates a canonical representation of G.
First, we sort the vertices v1, v2, . . . , vn of G such that ai < aj whenever i < j. Then, we process
sequentially all vertices vi of G. The bounded and the inevitable unbounded vertices will not be
changed, while the evitable unbounded vertices will be replaced with bounded ones. At step i
we update the set Ex(Ai) of the extreme points of Ai (note that the set Ai remains unchanged
during the algorithm). For two points pi1 , pi2 of Ex(Ai), xi1 > xi2 if and only if yi1 < yi2. We
store the elements of Ex(Ai) in a list P , in which the points pj are sorted increasingly according
to their x values (or, equivalently, decreasingly according to their y values). Due to Lemma 3(a),
and since during the algorithm the evitable unbounded vertices of G are replaced with bounded
ones, after the process of vertex vi, all points in the list P correspond to bounded vertices of G
in the current parallelepiped representation.

We distinguish now the following cases:

9

Algorithm 1 Construction of a canonical representation of a tolerance graph G
Input: A parallelepiped representation R of a given tolerance graph G with n vertices
Output: A canonical representation R′ of G

Sort the vertices of G, such that ai < aj whenever i < j
�0 ← min{xi : 1 ≤ i ≤ n}; r0 ← max{xi : 1 ≤ i ≤ n}
ps ← (�0 − 1, π

2
); pt ← (r0 + 1, 0)

P ← (ps, pt); R′ ← R
for i = 1 to n do

Find the point pj having the smallest xj with xj > xi

if yj < yi then {no point of P dominates pi}
Find the point pk having the greatest xk with xk < xi

Find the point p� having the greatest y� with y� < yi

if xk ≥ x� then
Replace points p�, p�+1 . . . , pk with point pi in the list P

else
Insert point pi between points pk and p� in the list P

if vi ∈ VU then {vi is an evitable unbounded vertex}
Replace Pi with {(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi} in R′

else {yj > yi; pj dominates pi}
if vi ∈ VU then {vi is an inevitable unbounded vertex}

vj is a hovering vertex of vi

return R′

Case 1. vi is bounded. If there exists a point of P that dominates pi then pi /∈ Ex(Ai). Thus,
we do not change P , and we continue to the process of vi+1. If no point of P dominates pi then
pi ∈ Ex(Ai). Thus, we add pi to P and we remove from P all points that are dominated by pi.

Case 2. vi is unbounded. If there exists a point pj ∈ P that dominates pi then pi /∈ Ex(Ai),
while Lemma 3(b) implies that vi is inevitable and vj is a hovering vertex of vi. Thus, similarly
to Case 1, we do not change P , and we continue to the process of vi+1. If no point of P
dominates pi then pi ∈ Ex(Ai). Thus, we add the point pi to P and remove from P all points
that are dominated by pi. In this case, vi is evitable by Lemma 3(a). Hence, we replace Pi with
{(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi} in the current parallelepiped representation of G and we
consider from now on vi as a bounded vertex.

It follows that after the process of each vertex vi (either bounded or unbounded) the list P
stores the points of Ex(Ai). Furthermore, at every iteration of the algorithm, all points of the
list P correspond to bounded vertices in the current parallelepiped representation of G.

The processing of vertex vi is done by executing three binary searches in the list P as follows.
Let 	0 = min{xi | 1 ≤ i ≤ n} and r0 = max{xi | 1 ≤ i ≤ n}. For convenience, we add two
dummy points ps = (0 − 1, π

2) and pt = (r0 + 1, 0). First, we find the point pj ∈ P with the
smallest value xj, such that xj > xi (see Figure 3). Note that pi ∈ Ex(Ai) if and only if yj < yi.
If yj > yi then pj dominates pi (see Figure 3(a)). Thus, if vi ∈ VU , Lemma 3(b) implies that vi

is an inevitable unbounded vertex and vj is a hovering vertex of vi. In the opposite case yj < yi,
we have to add pi to P . In order to remove from P all points that are dominated by pi, we
execute binary search two more times. In particular, we find the points pk and p� of P with
the greatest values xk and y�, respectively, such that xk < xi and y� < yi (see Figure 3(b)).
If there are some points of P that are dominated by pi, then pk and p� have the greatest and
smallest values xk and x� among them, respectively, and xk ≥ x�. In this case, we replace all
points p�, p�+1, . . . , pk with the point pi in the list P . Otherwise, if no point of P is dominated
by pi, then xk < x�. In this case, we remove no point from P and we insert pi between pk and
p� in P .

Finally, after processing all vertices vi of G, we return a canonical representation of the
given tolerance graph G, in which every vertex that remains unbounded has a hovering vertex

10

x

y

pi

pj

pt

ps

(a)

x

y

pi

pjpk

p�

pt

ps

(b)

Fig. 3. The cases where the associated point pi to the currently processed vertex vi is (a) dominated by the point
pj in Ai and (b) an extreme point of the set Ai.

assigned to it. Since the processing of every vertex can be done in O(log n) time by executing
three binary searches, and since the sorting of the vertices can be done in O(n log n) time, the
running time of Algorithm 1 is O(n log n). �

3.2 Minimum coloring

In the next theorem we present an optimal O(n log n) algorithm for computing a minimum
coloring of a tolerance graph G with n vertices, given a parallelepiped representation of G. The
informal description of the algorithm is identical to the one in [12], which has running time
O(n2); the difference is in the fact that we use our new representation, in order to improve the
time complexity.

Algorithm 2 Minimum coloring of a tolerance graph G
Input: A parallelepiped representation of a given tolerance graph G
Output: A minimum coloring of G

Construct a canonical representation of G by Algorithm 1, where a hovering vertex is associated with every
inevitable unbounded vertex
Color G[VB] by the algorithm of [6]
for every inevitable unbounded vertex vi ∈ VU do

Assign to vi the same color as its hovering vertex in G[VB]

Theorem 3. A minimum coloring of a tolerance graph G with n vertices can be computed in
O(n log n) time.

Proof. We present Algorithm 2 that computes a minimum coloring of G. Given a parallelepiped
representation of G, we construct a canonical representation of G in O(n log n) time by Algo-
rithm 1. VB and VU are the sets of bounded and inevitable unbounded vertices of G in the latter
representation, respectively. In particular, Algorithm 1 associates a hovering vertex vj ∈ VB with
every inevitable unbounded vertex vi ∈ VU . We find a minimum proper coloring of the bounded
tolerance graph G[VB] in O(n log n) time using the algorithm of [6]. Finally, we associate with
every inevitable unbounded vertex vi ∈ VU the same color as that of its hovering vertex vj ∈ VB

in the coloring of G[VB].
Consider an arbitrary inevitable unbounded vertex vi ∈ VU and its hovering vertex vj ∈ VB.

Following Definition 5, P i ∩P j �= ∅ and φi > φj. Consider a vertex vk of G, such that vivk ∈ E.
It follows that vk ∈ VB , since no two unbounded vertices are adjacent in G. Furthermore, since

11

vivk ∈ E, it follows that P i ∩ P k �= ∅ and φk > φi. Then P j ∩ P k �= ∅, and thus Pj ∩ Pk �= ∅,
i.e. vjvk ∈ E, since both vj and vk are bounded vertices. It follows that vk does not have the
same color as vj in the proper coloring of G[VB], and thus the resulting coloring of G is proper.
Finally, since both colorings of G[VB] and of G have the same number of colors, it follows that
this proper coloring of G is minimum. Since the coloring of G[VB] can be done in O(n log n)
time and the coloring of all inevitable unbounded vertices vi ∈ VU can be done in O(n) time,
Algorithm 2 returns a minimum proper coloring G in O(n log n) time. �

3.3 Maximum clique

In the next theorem we prove that a maximum clique of a tolerance graph G with n vertices
can be computed in optimal O(n log n) time, given a parallelepiped representation of G. This
theorem follows from Theorem 2 and from the clique algorithm presented in [6], and it improves
the best known O(n2) running time mentioned in [12].

Theorem 4. A maximum clique of a tolerance graph G with n vertices can be computed in
O(n log n) time.

Proof. We compute first a canonical representation of G in O(n log n) time by Algorithm 1.
The proof of Theorem 3 implies that χ(G) = χ(G[VB]), where χ(H) denotes the chromaric
number of a given graph H. Since tolerance graphs are perfect graphs [11], ω(G) = χ(G) and
ω(G[VB]) = χ(G[VB]), where ω(H) denotes the clique number of a given graph H. It follows
that ω(G) = ω(G[VB]). We compute now a maximum clique Q of the bounded tolerance graph
G[VB] in O(n log n) time. This can be done by the algorithm presented in [6] that computes a
maximum clique in a trapezoid graph, since bounded tolerance graphs are trapezoid graphs [13].
Since ω(G) = ω(G[VB]), Q is a maximum clique of G as well. �

3.4 Optimality of the running time

In this section we use permutation graphs [13]. Given a sequence S = a1, a2, . . . , an of numbers, a
subsequence of S is a sequence S′ = ai1, ai2 , . . . , aik , where aij ∈ S for every j ∈ {1, 2, . . . , k}, and
1 ≤ i1 < i2 < . . . < ik ≤ n. S′ is called an increasing subsequence of S, if ai1 < ai2 < . . . < aik .
Clearly, increasing subsequences in a permutation graph G correspond to independent sets of
G, while increasing subsequences in the complement G of G correspond to cliques of G, where
G is also a permutation graph. Since Ω(n log n) is a lower time bound for computing the length
of a longest increasing subsequence in a permutation [6, 8], the same lower time bound holds
for computing a maximum clique and a maximum independent set in a permutation graph G.
Furthermore, since permutation graphs are perfect graphs [9], the chromatic number χ(G) of
a permutation graph G equals the clique number ω(G) of G. Thus, Ω(n log n) is a lower time
bound for computing the chromatic number of a permutation graph. Finally, since the class
of permutation graphs is a subclass of tolerance graphs [13], the same lower bounds hold for
tolerance graphs. It follows that the algorithms in Theorems 3 and 4 for computing a minimum
coloring and a maximum clique in tolerance graphs are optimal.

4 Weighted Independent Set Algorithm in O(n2)

In this section we present an algorithm for computing a maximum weight independent set in a
tolerance graph G = (V,E) with n vertices in O(n2) time, given a parallelepiped representation
of G, and a weight w(vi) > 0 for every vertex vi of G. The proposed algorithm improves
the running time O(n3) of the one presented in [13]. In the following, consider as above the

12

partition of the vertex set V into the sets VB and VU of bounded and unbounded vertices of G,
respectively.

Similarly to [13], we add two isolated bounded vertices vs and vt to G with weights w(vs) =
w(vt) = 0, such that the corresponding parallelepipeds Ps and Pt lie completely to the left and
to the right of all other parallelepipeds of G, respectively. Since both vs and vt are bounded
vertices, we augment the set VB by the vertices vs and vt. In particular, we define the set of
vertices V ′

B = VB ∪ {vs, vt} and the tolerance graph G′ = (V ′, E), where V ′ = V ′
B ∪ VU . Since

G′[V ′
B] is a bounded tolerance graph, it is a co-comparability graph as well [11,13]. A transitive

orientation of the comparability graph G′[V ′
B] can be obtained by directing each edge according

to the upper left endpoints of the parallelograms P i. Formally, let (V ′
B ,≺) be the partial order

defined on the bounded vertices V ′
B, such that vi ≺ vj if and only if vivj /∈ E and ci < cj.

Recall that a chain of elements in a partial order is a set of mutually comparable elements in
this order [4].

Observation 2 ([13]) The independent sets of G[VB] are in one-to-one correspondence with
the chains in the partial order (V ′

B ,≺) from vs to vt.

For the sequel, recall that for every unbounded vertex vk ∈ VU the parallelepiped Pk degen-
erates to a line segment, while the upper endpoints bk and ck of the parallelogram P k coincide,
i.e. bk = ck.

Definition 8. For every vi, vj ∈ V ′
B with vi ≺ vj, Li(j) = {vk ∈ VU | bi < ck < cj , vivk /∈ E}

and its weight w(Li(j)) =
∑

v∈Li(j)
w(v).

Definition 9. For every vj ∈ V ′
B, Rj = {vk ∈ VU | cj < ck < bj, vjvk /∈ E} and its weight

w(Rj) =
∑

v∈Rj
w(v).

For every pair of bounded vertices vi, vj ∈ V ′
B with vi ≺ vj , the set Li(j) consists of those

unbounded vertices vk ∈ VU , for which vivk /∈ E and whose upper endpoint bk = ck of P k lies
between P i and P j . Furthermore, vjvk /∈ E for every vertex vk ∈ Li(j). Indeed, in the case
where P k ∩P j �= ∅, it holds φk > φj, since bk = ck < cj , and thus Pk ∩Pj = ∅. Similarly, the set
Rj consists of those unbounded vertices vk ∈ VU , for which vjvk /∈ E and whose upper endpoint
bk = ck of P k lies between the upper endpoints cj and bj of P j . Furthermore, vivk /∈ E for every
vertex vk ∈ Rj as well. Indeed, since vjvk /∈ E, it follows that φk > φj, and thus, P i ∩ P k = ∅
and Pi ∩ Pk = ∅. In particular, in the example of Figure 4, L1(2) = {v3, v5} and R2 = {v6}. In
this figure, the line segments that correspond to the unbounded vertices v4 and v7, respectively,
are drawn with dotted lines to illustrate the fact that v4v1 ∈ E and v7v2 ∈ E.

L1

L2

c1 b1 c2 b2c3 c4 c5 c6 c7

a1 d1
a2 d2

P 1 P 2

Fig. 4. The parallelograms P i, i = 1, 2, . . . , 7 of a tolerance graph with the sets VB = {v1, v2} and VU =
{v3, v4, . . . , v7} of bounded and unbounded vertices, respectively. In this graph, L1(2) = {v3, v5}, R2 = {v6} and
S(v1, v2) = {v3, v5, v6}.

Definition 10 ([13]). For every vi, vj ∈ V ′
B with vi ≺ vj , S(vi, vj) = {vk ∈ VU | vivk, vjvk /∈

E, bi < ck < bj}.

13

Algorithm 3 Maximum weight independent set of a tolerance graph G
Input: A parallelepiped representation of a given tolerance graph G
Output: The value of a maximum weight independent set of G

Add the dummy bounded vertices vs, vt to G, such that Ps and Pt lie completely to the left and to the right
of all other parallelepipeds of G, respectively
V ′

B ← VB ∪ {vs, vt}
Construct the partial ordering (V ′

B,≺) of the bounded vertices V ′
B

Sort the bounded vertices V ′
B , such that ci < cj whenever i < j

for j = 1 to |V ′
B | do

W (vj)← 0
Compute the value w(Rj)

for i = 1 to |V ′
B| do

for every vj ∈ V ′
B with vi ≺ vj do

Update the value w(Li(j))
if W (vj) < (w(vj) + w(Rj)) + W (vi) + w(Li(j)) then

W (vj)← (w(vj) + w(Rj)) + W (vi) + w(Li(j))
return W (vt)

Observation 3 For every pair of bounded vertices vi, vj ∈ V ′
B with vi ≺ vj ,

S(vi, vj) = Li(j) ∪ Rj (1)

Furthermore, Li(j) ⊆ Li() for every triple {vi, vj , v�} of bounded vertices, where vi ≺ vj , vi ≺ v�

and cj < c�.

In particular, in the example of Figure 4, S(v1, v2) = L1(2) ∪ R2 = {v3, v5, v6}.

Lemma 4 ([13]). Given a tolerance graph G with a set of positive weights for the vertices of G,
any maximum weight independent set of G consists of a chain of bounded vertices vx1 ≺ vx2 ≺
. . . ≺ vxk

together with the union of the sets ∪{S(vxi , vxi+1) | i = 0, 1, . . . , k}, where vx0 = vs

and vxk+1
= vt.

Now, using Lemma 4 and Observation 3, we can present Algorithm 3, which improves the
running time O(n3) of the one presented in [13].

Theorem 5. A maximum weight independent set of a tolerance graph G with n vertices can be
computed using Algorithm 3 in O(n2) time.

Proof. We present Algorithm 3 that computes the value of a maximum weight independent set
of G. A slight modification of Algorithm 3 returns a maximum weight independent set of G,
instead of its value. First, we construct the partial order (V ′

B ,≺) defined on the bounded vertices
V ′

B = VB ∪{vs, vt}, such that vi ≺ vj whenever vivj /∈ E and ci < cj . This can be done in O(n2)
time. Then, we sort the bounded vertices of V ′

B, such that ci < cj whenever i < j. This can be
done in O(n log n) time. As a preprocessing step, we compute for every bounded vertex vj ∈ V ′

B

the set Rj and its weight w(Rj) in linear O(n) time by visiting at most all unbounded vertices
vk ∈ VU . Thus, all values w(Rj) are computed in O(n2) time.

We associate with each bounded vertex vj ∈ V ′
B a cumulative weight W (vj) defined as

follows:

W (vs) = 0 (2)
W (vj) = (w(vj) + w(Rj)) + max

vi≺vj

{W (vi) + w(Li(j))}, for every vj ∈ V ′
B \ {vs}

14

The cumulative weight W (vj) of an arbitrary bounded vertex vj ∈ V ′
B equals the maximum

weight of an independent set S of vertices vk (both bounded and unbounded), for which bk ≤ bj

and vj ∈ S. Initially all values W (vj) are set to zero.
In the main part of Algorithm 3, we process sequentially all bounded vertices vi ∈ V ′

B . For
every such vertex vi, we update sequentially the cumulative weights W (vj) for all bounded
vertices vj ∈ V ′

B with vi ≺ vj by comparing the current value of W (vj) with the value
(w(vj) + w(Rj)) + W (vi) + w(Li(j)), and by storing the greatest of them in W (vj). After all
bounded vertices of V ′

B have been processed, the value of the maximum weight independent set
of G is stored in W (vt), due to Lemma 4 and Observation 3.

While processing the bounded vertex vi, we compute the values w(Li(j)) sequentially for ev-
ery j, where vi ≺ vj, as follows. Let vj1 , vj2 be two bounded vertices that are visited consecutively
by the algorithm, during the process of vertex vi. Then, due to Observation 3, we compute the
value w(Li(j2)) by adding to the previous value w(Li(j1)) the weights of all unbounded vertices
vk ∈ VU , whose upper endpoints ck lie between cj1 and cj2.

Since we visit all bounded and all unbounded vertices of the graph at most once during the
process of vi, this can be done in O(n) time. Thus, since there are in total at most n+2 bounded
vertices vi ∈ V ′

B , Algorithm 3 returns the value of the maximum weight independent set of G in
O(n2) time. Finally, observe that, storing at every step of Algorithm 3 the independent sets that
correspond to the values W (vi), and removing at the end the vertices vs and vt, the algorithm
returns at the same time a maximum weight independent set of G, instead of its value. �

5 Conclusions and Further Research

In this article we proposed the first non-trivial intersection model for general tolerance graphs,
given by parallelepipeds in the three-dimensional space. This representation generalizes the par-
allelogram representation of bounded tolerance graphs. Using this representation, we presented
improved algorithms for computing a minimum coloring, a maximum clique, and a maximum
weight independent set on a tolerance graph. The running times of the first two algorithms are
optimal. It can be expected that this representation will prove useful in improving the running
time of other algorithms for the class of tolerance graphs.

As mentioned in Section 1, the complexity of the recognition problem for tolerance and
bounded tolerance graphs is possibly the main open problem in this class of graphs. Even when
the input graph is known to be a tolerance graph, it is not known how to obtain a tolerance
representation for it [22]. Moreover, given a tolerance graph, it is not known how to decide in
polynomial time whether it is a bounded tolerance graph [22].

References

1. K. P. Bogart, P. C. Fishburn, G. Isaak, and L. Langley. Proper and unit tolerance graphs. Discrete Applied
Mathematics, 60(1-3):99–117, 1995.

2. A. H. Busch. A characterization of triangle-free tolerance graphs. Discrete Applied Mathematics, 154(3):471–
477, 2006.

3. A. H. Busch and G. Isaak. Recognizing bipartite tolerance graphs in linear time. In 33rd International
Workshop on Graph-Theoretic Concepts in Computer Science (WG), pages 12–20, 2007.

4. R. Diestel. Graph Theory. Springer-Verlag, Berlin, 3rd edition, 2005.
5. S. Felsner. Tolerance graphs and orders. Journal of Graph Theory, 28:129–140, 1998.
6. S. Felsner, R. Müller, and L. Wernisch. Trapezoid graphs and generalizations, geometry and algorithms.

Discrete Applied Mathematics, 74:13–32, 1997.
7. P. Fishburn and W. Trotter. Split semiorders. Discrete Mathematics, 195:111–126, 1999.
8. M. Fredman. On computing the length of longest increasing subsequences. Discrete Mathematics, 11:29–35,

1975.

15

9. M. Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol. 57).
North-Holland Publishing Co., 2004.

10. M. Golumbic and C. Monma. A generalization of interval graphs with tolerances. In Proceedings of the
13th Southeastern Conference on Combinatorics, Graph Theory and Computing, Congressus Numerantium
35, pages 321–331, 1982.

11. M. Golumbic, C. Monma, and W. Trotter. Tolerance graphs. Discrete Applied Mathematics, 9(2):157–170,
1984.

12. M. Golumbic and A. Siani. Coloring algorithms for tolerance graphs: Reasoning and scheduling with interval
constraints. In Joint International Conferences on Artificial Intelligence, Automated Reasoning, and Symbolic
Computation (AISC/Calculemus), pages 196–207, 2002.

13. M. Golumbic and A. Trenk. Tolerance Graphs. Cambridge Studies in Advanced Mathematics, 2004.
14. M. Grötshcel, L. Lovász, and A. Schrijver. The Ellipsoid Method and its Consequences in Combinatorial

Optimization. Combinatorica, 1:169–197, 1981.
15. R. B. Hayward and R. Shamir. A note on tolerance graph recognition. Discrete Applied Mathematics,

143(1-3):307–311, 2004.
16. G. Isaak, K. Nyman, and A. Trenk. A hierarchy of classes of bounded bitolerance orders. Ars Combinatoria,

69, 2003.
17. M. Jacobson and F. McMorris. Sum-tolerance proper interval graphs are precisely sum-tolerance unit interval

graphs. Journal of Combinatorics, Information and System Science, 16:25–28, 1991.
18. M. Kaufmann, J. Kratochv́ıl, K. A. Lehmann, and A. R. Subramanian. Max-tolerance graphs as intersection

graphs: cliques, cycles, and recognition. In 17th annual ACM-SIAM symposium on Discrete Algorithms
(SODA), pages 832–841, 2006.

19. J. M. Keil and P. Belleville. Dominating the complements of bounded tolerance graphs and the complements
of trapezoid graphs. Discrete Applied Mathematics, 140(1-3):73–89, 2004.

20. L. Langley. Interval tolerance orders and dimension. PhD thesis, Dartmouth College, June 1993.
21. T. McKee and F. McMorris. Topics in Intersection Graph Theory. Society for Industrial and Applied

Mathematics (SIAM), 1999.
22. G. Narasimhan and R. Manber. Stability and chromatic number of tolerance graphs. Discrete Applied

Mathematics, 36:47–56, 1992.
23. P. Zhang, E. A. Schon, S. G. Fischer, E. Cayanis, J. Weiss, S. Kistler, and P. E. Bourne. An algorithm based

on graph theory for the assembly of contigs in physical mapping of DNA. CABIOS, 10:309–317, 1994.

16

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years. A complete
list of reports dating back to 1987 is available from http://aib.informatik.rwth-aachen.de/.
To obtain copies consult the above URL or send your request to: Informatik-Bibliothek,
RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2003-01 ∗ Jahresbericht 2002
2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting
2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations
2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs
2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard
2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates
2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-
wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:
Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003
2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic
2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting
2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming
2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming
2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming
2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination
2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information
2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity
2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules
2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004
2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer
School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-
proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for
the Steiner Tree Problem

17

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing
Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-
tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-
ploring a Root-Cause Methodology to Prevent Distributed Denial-of-
Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With
Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General
Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts
2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture
2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-
tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting
Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization
2005-15 Uwe Naumann: The Complexity of Derivative Computation
2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)
2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)
2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,
Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-
Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented
LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-
dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-
bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-
gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit
BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-
ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-
ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:
Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering
with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005
2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems
2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

18

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static
Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,
Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint
Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-
and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-
terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-
Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic
Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,
Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid
MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:
Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:
Replaying Play in and Play out: Synthesis of Design Models from Sce-
narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling
Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,
Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli
Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI
Work Group “Requirements Management Tools for Product Line Engi-
neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical
sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for
Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-
ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006
2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-
ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-
Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A
System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal
2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking
2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications
2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches

19

2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic
Justification of the Combining Calculus under the Uniform Scheduler
Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical
Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke
2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code
2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-
grams

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,
Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modular,
Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent programs
2007-16 Sadeq Ali Makram, Mesut Güneç, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Balanc-
ing for Wireless Mesh Networks

2007-17 René Thiemann: The DP Framework for Proving Termination of Term
Rewriting

2007-18 Uwe Naumann: Call Tree Reversal is NP-Complete
2007-19 Jan Riehme, Andrea Walther, Jörg Stiller, Uwe Naumann: Adjoints for

Time-Dependent Optimal Control
2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:

Three-Valued Abstraction for Probabilistic Systems
2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-

sitional Modeling and Minimization of Time-Inhomogeneous Markov
Chains

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,
and Berthold Vöcking: Uncoordinated Two-Sided Markets

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007
2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing
2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René :Thiemann, Harald Zankl: Maximal Termination
2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler
2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations
2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message
Passing Programs

2008-07 Alexander Nyßen, Horst Lichter:: The MeDUSA Reference Manual, Sec-
ond Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on
Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-
endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-
Length Jobs in Polynomial Time

20

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable
Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-
straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl
Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-
proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers
2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves
2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study
2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving
2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems
2009-03 Alexander Nyßen: Model-Based Construction of Embedded & Real-Time

Software - A Methodology for Small Devices

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

21

