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Abstract. We study the following problem: given a continuous-time Markov
chain (CTMC) C, and a linear real-time property provided as a deterministic
timed automaton (DTA) A, what is the probability of the set of paths of C that
are accepted by A (C satisfies A)? It is shown that this set of paths is measur-
able and computing its probability can be reduced to computing the reachability
probability in a piecewise deterministic Markov process (PDP). The reachability
probability is characterized as the least solution of a system of integral equations
and is shown to be approximated by solving a system of partial differential equa-
tions. For the special case of single-clock DTA, the system of integral equations
can be transformed into a system of linear equations where the coefficients are
solutions of ordinary differential equations.

1 Introduction

Continuous-time Markov chains (CTMCs) are one of the most important models in
performance and dependability analysis. They are exploited in a broad range of ap-
plications, and constitute the underlying semantical model of a plethora of modeling
formalisms for real-time probabilistic systems such as Markovian queueing networks,
stochastic Petri nets, stochastic variants of process algebras, and, more recently, calculi
for system biology. CTMC model checking has been focused on the temporal logic CSL
(Continuous Stochastic Logic [ASSB00,BHHK03]), a variant of timed CTL where the
CTL path quantifiers are replaced by a probabilistic operator. CSL model checking pro-
ceeds — like CTL model checking — by a recursive descent over the parse tree of the
formula. One of the key ingredients is that reachability probabilities for time-bounded
until-formulae can be approximated arbitrarily closely by a reduction to transient anal-
ysis in CTMCs. This results in a polynomial-time algorithm that has been realized in
model checkers such as PRISM and MRMC.

This paper concerns the problem of verifying CTMCs versus linear real-time spec-
ifications, which are based on timed automata. Concretely speaking, we explore the
following problem: given a CTMC C, and a linear real-time property provided as a
deterministic timed automaton [AD94] (DTA) A, what is the probability of the set of
paths of C which are accepted by A (C |= A)? We consider two kinds of acceptance
conditions: the reachability condition and the Muller acceptance condition. The former
accepts (finite) paths which reach some final state and the latter accepts (infinite) paths
that infinitely often visit some set of final states. We set off to show that this problem is
well-defined in the sense that the path set is measurable. Computing its probability can
then be reduced to computing the reachability probability in a piecewise deterministic
Markov process (PDP) [Dav93], a model that is used in, e.g., stochastic control theory
and financial mathematics. This result relies on a product construction of CTMC C
and DTA A, denoted C ⊗ A, yielding deterministic Markov timed automata (DMTA),
a variant of DTA in which, besides the usual ingredients of timed automata, like guards
and clock resets, the location residence time is exponentially distributed. We show that



the probability of C |= A coincides with the reachability probability of accepting paths
in C ⊗ A. The underlying PDP of a DMTA is obtained by a slight adaptation of the
standard region construction. The desired reachability probability is characterized as the
least solution of a system of integral equations that is obtained from the PDP. Finally,
this probability is shown to be approximated by solving a system of partial differential
equations (PDEs). For single-clock DTA, we show that the system of integral equations
can be transformed into a system of linear equations, where the coefficients are solutions
of some ordinary differential equations (ODEs), which can either have an analytical so-
lution (for small state space) or an arbitrarily closely approximated solution efficiently.

Related work is model checking of asCSL [BCH+07] and CSLTA [DHS09]. asCSL al-
lows to impose a time constraint on action sequences described by regular expressions;
its model-checking algorithm is based on a deterministic Rabin automaton construc-
tion. In CSLTA, time constraints (of until modalities) are specified by single-clock DTA.
In [DHS09], C ⊗ A is interpreted as a Markov renewal processes and model checking
CSLTA is reduced to computing reachability probabilities in a DTMC whose transition
probabilities are given by subordinate CTMCs. This technique cannot be generalized
to multiple clocks. Our approach does not restrict the number of clocks and supports
more specifications than CSLTA. For the single-clock case, our approach produces the
same result as [DHS09], but yields a conceptually simpler formulation whose correctness
can be derived from the simplification of the system of integral equations obtained in
the general case. Moreover, measurability has not been addressed in [DHS09]. Other re-
lated work [BBB+07,BBB+08,BBBM08] provides a quantitative interpretation to timed
automata where delays and discrete choices are interpreted probabilistically. In this ap-
proach, delays of unbounded clocks are governed by exponential distributions like in
CTMCs. Decidability results have been obtained for almost-sure properties [BBB+08]
and quantitative verification [BBBM08] for (a subclass of) single-clock timed automata.

2 Preliminaries

Given a set H , let Pr : F(H) → [0, 1] be a probability measure on the measurable
space (H,F(H)), where F(H) is a σ-algebra over H . Let Distr(H) denote the set of
probability measures on this measurable space.

2.1 Continuous-time Markov chains

Definition 1 (CTMC). A (labeled) continuous-time Markov chain (CTMC) is a tuple
C = (S,AP, L, α,P, E) where S is a finite set of states; AP is a finite set of atomic
propositions; L : S → 2AP is the labeling function; α ∈ Distr(S) is the initial
distribution; P : S × S → [0, 1] is a stochastic transition probability matrix; and
E : S → R>0 is the exit rate function.

The probability to exit state s as well as to take the transition s → s′ in t time units is∫ t

0 E(s)·e−E(s)τdτ and P(s, s′)·
∫ t

0 E(s)·e−E(s)τdτ , respectively. A state s is absorbing if
P(s, s) = 1. The embedded discrete-time Markov chain (DTMC) of CTMC C is obtained
by deleting the exit rate function E, i.e., emb(C) = (S,AP, L, α,P).

Definition 2 (Timed paths). Let C be a CTMC. PathsCn := S×(R>0 × S)
n

is the set
of paths of length n in C; the set of finite paths in C is defined by PathsC⋆ =

⋃
n∈N

PathsCn
and PathsCω := (S × R>0)

ω
is the set of infinite paths in C. PathsC = PathsC⋆ ∪ PathsCω

denotes the set of all paths in C.

We denote a path ρ ∈ PathsC(s0) (ρ ∈ Paths(s0) for short) as the sequence ρ =

s0
t0−−→ s1

t1−−→ s2 · · · starting in state s0 such that for n 6 |ρ| (|ρ| is the number of
transitions in ρ if ρ is finite); ρ[n] := sn is the n-th state of ρ and ρ〈n〉 := tn is the time
spent in state sn. Let ρ@t be the state occupied in ρ at time t ∈ R>0, i.e. ρ@t := ρ[n]
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where n is the smallest index such that
∑n

i=0 ρ〈i〉 > t. We assume w.l.o.g. that the time
to stay in any state is strictly greater than 0.

The definition of a Borel space on paths through CTMCs follows [Var85,BHHK03].
A CTMC C with initial state s0 yields a probability measure PrC on paths as follows: Let
s0, · · ·, sk ∈ S with P(si, si+1) > 0 for 0 6 i < k and I0, · · ·, Ik−1 nonempty intervals in
R>0, C(s0, I0, · · ·, Ik−1, sk) denotes the cylinder set consisting of all paths ρ ∈ Paths(s0)
such that ρ[i] = si (i 6 k), and ρ〈i〉 ∈ Ii (i < k). F(Paths(s0)) is the smallest σ-
algebra on Paths(s0) which contains all sets C(s0, I0, · · ·, Ik−1, sk) for all state sequences
(s0, · · ·, sk) ∈ Sk+1 with P(si, si+1) > 0 (0 6 i < k) and I0, · · ·, Ik−1 range over all
sequences of nonempty intervals in R>0. The probability measure PrC on F(Paths(s0))
is the unique measure defined by induction on k by PrC(C(s0)) = α(s0) and for k > 0:

PrC
(
C(s0, I0, · · ·, Ik−1, sk)

)
= PrC

(
C(s0, I0, · · ·, Ik−2, sk−1)

)

·

∫

Ik−1

P(sk−1, sk)E(sk−1)·e
−E(sk−1)τdτ. (1)

Example 1. An example CTMC is illustrated in Fig. 4(b) (page 13), where AP =
{a, b, c} and s0 is the initial state, i.e., α(s0) = 1 and α(s) = 0 for any s 6= s0. The
exit rates and transition probabilities are as shown.

2.2 Deterministic timed automata

Let X = {x1, . . ., xn} be a set of variables in R. An X -valuation is a function η : X → R

assigning to each variable x a value η(x). Let V(X ) denote the set of all valuations
over X . A constraint over X , denoted by g, is a subset of Rn. Let B(X ) denote the
set of constraints over X . An X -valuation η satisfies constraint g, denoted as η |= g if
(η(x1), . . . , η(xn)) ∈ g.

Occasionally we use a special case of nonnegative variables, called clocks. We write ~0
for the valuation that assigns 0 to all clocks. For a subset X ⊆ X , the reset of X , denoted
η[X := 0], is the valuation η′ such that ∀x ∈ X. η′(x) := 0 and ∀x /∈ X. η′(x) := η(x). For
δ ∈ R>0, η+δ is the valuation η′′ such that ∀x ∈ X . η′′(x) := η(x)+δ, which implies that
all clocks proceed at the same speed, or equivalently, ∀xi ∈ X . ẋi = 1. A clock constraint
on X is an expression of the form x ⊲⊳ c, or x − y ⊲⊳ c, or the conjunction of any clock
constraints, where x, y ∈ X , ⊲⊳ ∈ {<,6, >,>} and c ∈ N.

Definition 3 (DTA). A deterministic timed automaton is a tuple
A = (Σ,X , Q, q0, QF,→) where

– Σ is a finite alphabet;
– X is a finite set of clocks;
– Q is a nonempty finite set of locations;
– q0 ∈ Q is the initial location;

– → ∈ Q × Σ × B(X ) × 2X × Q is an edge relation satisfying: q a,g,X−−−−→ q′ and

q a,g′,X′

−−−−−→ q′′ with g 6= g′ implies g ∩ g′ = ∅; and
– QF is the Y acceptance condition, where

– ◮ if Y= reachability, then QF := QF ⊆ Q is a set of accepting locations;
– ◮ if Y= Muller, then QF := QF ⊆ 2Q is the acceptance family.

We refer to q a,g,X−−−−→ q′ as an edge, where a ∈ Σ is the input symbol, the guard g
is a clock constraint on the clocks of A, X ⊆ X is a set of clocks to be reset and q′ is
the successor location. The intuition is that the DTA A can move from location q to
location q′ when the input symbol is a and the guard g holds, while the clocks in X
should be reset when entering q′. Note that we don’t consider diagonal constraints like
x − y ⊲⊳ c in DTA. However, it is known that this does not harm the expressiveness of
a TA [BPDG98].
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We will denote DTA♦ and DTAω for the DTA with reachability and Muller accep-
tance conditions, respectively; while with DTA we denote the general case covering both
DTA♦ and DTAω. As a convention, we assume each location q ∈ QF in DTA♦ is a sink.

An (infinite) timed path in A is of the form θ = q0
a0,t0−−−−→ q1

a1,t1−−−−→ · · · , satisfying that
η0 = ~0, and for all j > 0, it holds that tj > 0, ηj + tj |= gj and ηj+1 = (ηj + tj)[Xj := 0],
where ηj is the clock evaluation on entering qj . Let inf(θ) denote the set of states q ∈ Q
such that q = qi for infinitely many i > 0. Furthermore, all the definitions on paths in
CTMCs can be adapted.

Definition 4 (DTA accepting paths). An infinite path θ is accepted by a DTA♦ if
there exists some i > 0 such that θ[i] ∈ QF ; θ is accepted by a DTA

ω if inf(θ) ∈ QF .

Example 2 (DTA♦ and DTAω). An example DTA♦ is shown in Fig. 4(c) (page 13)
over the alphabet {a, b}. The reachability acceptance condition is characterized by the
accepting location set QF = {q1}. The unique initial location is q0 and the guards x < 1
and 1 < x < 2 are disjoint on the edges labeled with a and emanating from q0. This
guarantees the determinism.

We then consider the DTA
ω in Fig. 1 over Σ = {a, b, c}. The unique initial location

is q0 and the Muller acceptance family is QF =
{
{q0, q2}

}
. Since QF is a singleton, we

can indicate it in the figure by the double-lined states. Any accepting path should cycle
between the states q0 and q1 for finitely many times, and between states q0 and q2 for
infinitely many times. The determinism is guaranteed of the similar reason.

q0 q2q1

a, x < 1, ∅

b, {x}

a, 1 < x < 2, {x}

c, {x}

Fig. 1. DTA with Muller acceptance conditions (DTA
ω)

Remark 1 (Muller not Büchi). According to [AD94], the expressive power of (deter-
ministic) timed Muller automata (D)TMA and (deterministic) timed Büchi automata
(D)TBA has the following relation:

TMA = TBA > DTMA > DTBA.

Also notice that DTMA are closed under all Boolean operators (union, intersection and
complement), while DTBA are not closed under complement. These two points justify
our choice of DTMA (or DTAω) instead of DTBA.

Remark 2 (Successor location). Due to the determinism, we can replace the transition
relation →∈ Q×Σ×B(X )×2X×Q by a function succ : Q×Σ×B(X ) 7→ 2X×Q. Namely,
given a location q, an action a and a guard g, there is at most one successor location
q′. Note that the set of reset clocks is irrelevant to the successor location. Therefore, if
only the successor location is of interest, then we can thus simplify the function succ to
s̃ucc : Q × Σ × B(X ) 7→ Q, i.e., q′ = s̃ucc(q, a, g).
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2.3 Piecewise-Deterministic Markov Processes

The model PDP was introduced by Davis in 1984 [Dav84]. We abbreviate it as PDP

instead of literally PDMP, following the convention by Davis [Dav93]. A PDP consti-
tutes a general framework that can model virtually any stochastic system without diffu-
sions [Dav93] and for which powerful analysis and control techniques exist [LL85,LY91,CD88].
A PDP is a stochastic process of hybrid type, i.e., the stochastic process concerns both
a discrete location and a continuous variable. The class of PDPs was recognized as a
very wide class holding many types of stochastic hybrid system. This makes PDP a
useful model for an enormous variety of applied problems in engineering, operations re-
search, management science and economics; examples include queueing systems, stochas-
tic scheduling, fault detection in systems engineering, etc.

Given a set H , let Pr : F(H) → [0, 1] be a probability measure on the measurable
space (H,F(H)), where F(H) is a σ-algebra over H . Let Distr(H) denote the set of
probability measures on this measurable space.

Definition 5 (PDP [Dav93]). A piecewise-deterministic (Markov) process is a tuple
Z = (Z,X , Inv , φ, Λ, µ) with:

– Z is a finite set of locations;
– X is a finite set of variables;
– Inv : Z → B(X ) is an invariant function;
– φ : Z × V(X ) × R → V(X ) is a flow function1;
– Λ : S → R>0 is an exit rate function;

– µ : S̊ ∪ ∂S → Distr(S) is the transition probability function, where:

S := {ξ := (z, η) | z ∈ Z, η |= Inv(z)} is the state space of the PDP Z, S̊ is the interior

of S and ∂S =
⋃

z∈Z{z}×∂Inv(z) is the boundary of S with ∂Inv(z) = Inv(z)\ ˚Inv(z) as

the boundary of Inv(z), ˚Inv(z) the interior of Inv(z) and Inv(z) the closure of Inv(z).
Functions Λ and µ satisfy the following conditions:

– ∀ξ ∈ S. ∃ǫ(ξ) > 0. function t 7→ Λ(ξ ⊕ t) is integrable on [0, ǫ(ξ)[, where ξ ⊕ t =(
z, φ(z, η, t)

)
, for ξ = (z, η);

– Function ξ 7→ µ(ξ, A)2 is measurable for any A ∈ F(S), where F(S) is a σ-algebra
generated by the countable union

⋃
z∈Z{z}×Az with Az being a subset of F(Inv(z))

and µ(ξ, {ξ}) = 0.

We will explain the behavior of a PDP by the aid of Fig. 2. A PDP consists of a finite
set of locations each with a location invariant over a set of variables. A state consists of
a location and a valuation of the variables. A PDP is only allowed to stay in location z
when the constraint Inv(z) is satisfied. If e.g., Inv(z) is x2

1 − 2x2 6 1.5∧x3 > 2, then its

interior ˚Inv(z) is x2
1 − 2x2 < 1.5 ∧ x3 > 2 and its closure Inv(z) is x2

1−2x2 6 1.5∧x3 > 2,
and the boundary ∂Inv(z) is x2

1 − 2x2 = 1.5∧x3 = 2. In Fig. 2, there are three locations
z0, z1, z2 and the gray zones are the valid valuations for respective locations. A state is a
black dot. A boundary state is a white dot. When a new state ξ = (z, η) is entered and
Inv(z) is valid, i.e., ξ ∈ S, the PDP can (i) either delay to state ξ′ = (z, η′) ∈ S ∪ ∂S

according to both the flow function φ and the time delay t (in this case ξ′ = ξ ⊕ t); (ii)
or take a Markovian jump to state ξ′′ = (z′′, η′′) ∈ S with probability µ(ξ, {ξ′′}). Note
that the residence time of a location is exponentially distributed. When the variable
valuation satisfies the boundary (i.e., ξ ∈ ∂S), the PDP is forced to take a boundary
jump and leave the current location z with probability µ(ξ, {ξ′′}) to state ξ′′.

The flow function φ defines the time-dependent behavior in a single location, in
particular, how the variable valuations change when time elapses. State ξ ⊕ t is the

1 The flow function is the solution of a system of ODEs with a Lipschitz continuous vector
field.

2 µ(ξ, A) is a shorthand for (µ(ξ))(A).
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z0

z1

z2

ξ ξ ⊕ tdelay, φ

delay, determined by φ

forced boundary jump

locations

time

Markovian jump with prob. µ(ξ, {ξ′})

ξ′ ξ′ ⊕ ♭(ξ)

ξ′′

Fig. 2. The behavior of a PDP

timed successor of state ξ (on the same location) given that t time units have passed.
The PDP is piecewise-deterministic because in each location (one piece) the behavior
is deterministically determined by φ. The process is Markovian as the current state
contains all the information to predict the future progress of the process.

The embedded discrete-time Markov process (DTMP) emb(Z) of the PDP Z has
the same state space S as Z. The (one-jump) transition probability from a state ξ to a
set A ⊆ S of states (on different locations as ξ), denoted µ̂(ξ, A), is given by [Dav93]:

µ̂(ξ, A) =

∫ ♭(ξ)

0

(Q1A)(ξ ⊕ t)·Λ (ξ ⊕ t) e−
R

t
0

Λ(ξ⊕τ)dτ dt (2)

+ (Q1A)(ξ ⊕ ♭(ξ)) · e−
R ♭(ξ)
0 Λ(ξ⊕τ)dτ , (3)

where ♭(ξ) = inf{t > 0 | ξ ⊕ t ∈ ∂S} is the minimal time to hit the boundary if such
time exists; ♭(ξ) = ∞ otherwise. (Q1A)(ξ) =

∫
S
1A(ξ′)µ(ξ, dξ′) is the accumulative (one-

jump) transition probability from ξ to A and 1A(ξ) is the characteristic function such
that 1A(ξ) = 1 when ξ ∈ A and 1A(ξ) = 0 otherwise. Term (2) specifies the probability
to delay to state ξ ⊕ t (on the same location) and take a Markovian jump from ξ ⊕ t to
A. Note the delay t can take a value from [0, ♭(ξ)). Term (3) is the probability to stay
in the same location for ♭(ξ) time units and then it is forced to take a boundary jump
from ξ ⊕ ♭(ξ) to A since Inv(z) is invalid.

z0

x < 2

ẋ = 1

1

3

z1

x ∈ R

ẋ = 1

z2

x ∈ R

ẋ = 1

2

3

Fig. 3. An example PDP Z

Example 3. Fig. 3 depicts a 3-location PDP Z with one variable x, where Inv(z0)
is x < 2 and Inv(z1), Inv(z2) are both x ∈ [0,∞). Solving ẋ = 1 gives the flow
function φ(zi, η(x), t) = η(x) + t for i = 0, 1, 2. The state space of Z is {(z0, η) |
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0 < η(x) < 2} ∪ {(z1, R)} ∪ {(z2, R)}. Let exit rate Λ(ξ) = 5 for any ξ ∈ S. For
η |= Inv(z0), let µ

(
(z0, η), {(z1, η)}

)
:= 1

3 , µ
(
(z0, η), {(z2, η)}

)
:= 2

3 and the bound-

ary measure µ
(
(z0, 2), {(z1, 2)}

)
:= 1. Given state ξ0 = (z0, 0) and the set of states

A = (z1, R), the time for ξ0 to hit the boundary is ♭(ξ0) = 2. Then (Q1A)(ξ0 ⊕ t) = 1
3 if

t < 2, and (Q1A)(ξ0 ⊕ t) = 1 if t = 2. In emb(Z), the transition probability from state
ξ0 to A is:

µ̂(ξ0, A) =

∫ 2

0

1

3
·5·e−

R

t
0

5 dτ dt + 1·e−
R 2
0

5 dτ =
1

3
+

2

3
e−10. �

3 Model checking DTA specifications

In this section, we deal with model checking linear real-time properties specified by DTA.
The aim of model checking is to compute the probability of the set of paths in CTMC C
accepted by a DTA A. We prove that this can be reduced to computing the reachability
probability in the product of C and A (Theorem 2). To simplify the notations, we assume
w.l.o.g. that a CTMC has only one initial state s0, i.e., α(s0) = 1, and α(s) = 0 for
s 6= s0.

Definition 6 (CTMC paths accepted by a DTA). Given a
CTMC C = (S,AP, L, s0,P, E) and a DTA A = (2AP,X , Q, q0, QF,→), a CTMC path

σ = s0
t0−−→ s1

t1−−→ s2 · · · is accepted by A if the DTA path

q0
L(s0),t0−−−−−−→ s̃ucc

(
q0, L(s0), g0

)
︸ ︷︷ ︸

q1

L(s1),t1−−−−−−→ s̃ucc
(
q1, L(s1), g1

)
︸ ︷︷ ︸

q2

· · ·

is accepted by A, where η0 = ~0, gi is the unique guard (if it exists) such that ηi + ti |= gi

and ηi+1 = (ηi + ti)[Xi := 0].

The model checking problem on CTMC C against DTA A is to compute the prob-
ability of the set of paths in C that can be accepted by A. Formally, let

PathsC(A) := { ρ ∈ PathsC | ρ is accepted by DTA A }.

Prior to computing the probability of this set, we first prove its measurability:

Theorem 1. For any CTMC C and DTA A, PathsC(A) is measurable.

Proof. We first deal with the case that A only contains strict inequality. Since PathsC(A)
is a set of finite paths, PathsC(A) =

⋃
n∈N

PathsCn(A), where PathsCn(A) is the set of ac-

cepting paths by A of length n. For any path ρ := s0
t0−−→ s1 · · · sn−1

tn−1−−−−→ sn ∈ PathsCn(A),

we can associate ρ with a path θ := q0
L(s0),t0−−−−−−→ q1 · · ·qn−1

L(sn−1),tn−1−−−−−−−−−→ qn of A induced
by the location sequence:

q0
L(s0),g0,X0−−−−−−−−→ q1 · · · qn−1

L(sn−1),gn−1,Xn−1−−−−−−−−−−−−−−→ qn,

such that qn ∈ QF and there exist {ηi}16i<n with 1) η0 = ~0; 2) (ηi + ti) |= gi; and 3)
ηi+1 = (ηi + ti)[Xi := 0], where ηi is the clock valuation on entering qi.

To prove the measurability of PathsCn(A), it suffices to show that for each path

ρ := s0
t0−−→ · · ·

tn−1−−−−→ sn ∈ PathsCn(A), there exists a cylinder set C(s0, I0, . . ., In−1, sn)
(Cρ for short) that contains ρ and that each path in Cρ is accepted by A. The interval
Ii is constructed according to ti as Ii = [t−i , t+i ] such that

– If ti ∈ Q, then t−i = t+i := ti;
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– else if ti ∈ R \ Q, then let t−i , t+i ∈ Q such that
– t−i 6 ti 6 t+i and ⌊t−i ⌋ = ⌊ti⌋ and ⌈t+i ⌉ = ⌈ti⌉;

– t+i − t−i <
∆

2 · n
, where (with {·} denoting the fractional part)

∆ = min06j<n, x∈X

{
{ηj(x) + tj}, 1 − {ηj(x) + tj}

∣∣ {ηj(x) + tj} 6= 0
}

3.

To show that ρ′ := s0
t′0−−→ · · ·

t′n−1−−−−→ sn ∈ Cρ is accepted by A, let η′
0 := ~0 and

η′
i+1 := (η′

i + t′i)[Xi := 0]. We will show that η′
i + t′i |= gi. To this end, it suffices to

observe that η′
0 = η0, and for any i > 0 and any clock variable x,

∣∣η′
i(x) − ηi(x)

∣∣ 6
i−1∑

j=0

∣∣t′j − tj
∣∣ 6

i−1∑

j=0

t+j − t−j 6 n · (t+j − t−j ) 6
∆

2
.

We claim that since DTA A is open, it must be the case that η′
i + t′i |= gi. To see this,

suppose gi is of the form x > K for some integer K. We have that |η′
i(x) − ηi(x)| 6 ∆

2

and |t′i − ti| < ∆
2 , therefore |(η′

i(x) + t′i) − (ηi(x) + ti)| < ∆. Note that ηi(x) + ti > K,
and thus ηi(x) + ti − {ηi(x) + ti} = ⌈ηi(x) + ti⌉ ≥ K. Hence ηi(x) + ti − ∆ ≥ K since
∆ 6 {ηi(x) + ti}. It follows that η′

i(x) + t′i > K. A similar argument applies to the case
x < K and can be extended to any constraint gi. Thus, η′

i + t′i |= gi.
It follows that Cρ is a cylinder set of C and each path in this cylinder set is accepted

by A, namely, ρ ∈ Cρ and Cρ ⊆ PathsCn(A) with |ρ| = n. Together with the fact that

PathsCn(A) ⊆
⋃

ρ∈PathsC
n(A) Cρ, we have:

PathsCn(A) =
⋃

ρ∈PathsC
n(A)

Cρ and PathsC(A) =
⋃

n∈N

⋃

ρ∈PathsC
n(A)

Cρ.

We note that each interval in the cylinder set Cρ has rational bounds, thus Cρ is

measurable. It follows that PathsC(A) is a union of countably many cylinder sets, and
hence is measurable.

We then deal with A with equalities of the form x = n for n ∈ N. We show the
measurability by induction on the number of equalities appearing in A. We have shown
the base case (DTA with only strict inequalities). Now suppose there exists a transition

ι = q
a,g,X
−→ q′ where g contains x = n. We first consider a DTA Aι obtained from A by

deleting the transitions from q other than ι. We then consider three DTA Āι, A
>
ι and

A<
ι where Āι is obtained from Aι by replacing x = n by true; A>

ι is obtained from Aι

by replacing x = n by x > n and A<
ι is obtained from Aι by replacing x = n by x < n.

It is not difficult to see that

PathsC(Aι) = PathsC(Āι) \ (PathsC(A>
ι ) ∪ PathsC(A<

ι )).

Note that this holds since A is deterministic. By induction hypothesis, PathsC(Āι),
PathsC(A>

ι ) and PathsC(A<
ι ) are measurable. Hence PathsC(Aι) is measurable. Fur-

thermore, we note that

PathsC(A) =
⋃

ι=q
a,g,X
−→ q′

PathsC(Aι),

therefore PathsC(A) is measurable as well.
For arbitrary A with time constraints of the form x ⊲⊳ n where ⊲⊳∈ {≥,≤}, we

consider two DTA A= and A⊲⊳. Clearly PathsC(A) = PathsC(A=)∪PathsC(A⊲̄⊳), where
⊲̄⊳ => if ⊲⊳=≥; < otherwise. Clearly PathsC(A) is measurable. �

3 Note that we are considering open timed automata. Hence for any i with ηi + ti |= gi, it must
be the case that {ηi(x) + ti} 6= 0.
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3.1 Product of CTMC and DTA

As the traditional way of verifying the automata specifications, a product between the
model and the automaton is built first and the (adapted) property can then be checked
on the product model. Our approach is carried out in the same fashion. In this section,
we focus on building the product (and some more transformations on the product) and
in Section 4 and 5, the probability measure ProbC(A) will be computed.

We will first exploit the product of a CTMC and a DTA, which is what we call a
deterministic Markovian timed automaton:

Definition 7 (DMTA). A deterministic Markovian timed automaton is a tuple M =
(Loc,X , ℓ0, LocF, E, ), where

– Loc is a finite set of locations;
– X is a finite set of clocks;
– ℓ0 ∈ Loc is the initial location;
– LocF is the acceptance condition with LocF := LocF ⊆ Loc the reachability condition

and LocF := LocF ⊆ 2Loc the Muller condition;
– E : Loc → R>0 is the exit rate function; and
–  ⊆ Loc×B(X )×2X×Distr(Loc) is an edge relation satisfying (ℓ, g, X, ζ), (ℓ, g′, X ′, ζ′)

∈ with g 6= g′ implies g ∩ g′ = ∅.

The set of clocks X and the related concepts, e.g., clock valuation, clock constraints

are defined as for DTA. We refer to ℓ
g,X

///o/o/o ζ for distribution ζ ∈ Distr(Loc) as an edge

and refer to ℓ
�

g,X

ζ(ℓ′)

// ℓ′ as a transition of this edge. The intuition is that when entering

location ℓ, the DMTA chooses a residence time which is governed by the exponential
distribution, i.e., the probability to leave ℓ within t time units is 1 − e−E(ℓ)t. When it

decides to jump, at most one edge, say ℓ
g,X

///o/o/o ζ , due to the determinism, is enabled

and the probability to jump to ℓ′ is given by ζ(ℓ′). The DMTA is deterministic as it has
a unique initial location and disjoint guards for all edges emanating from any location.
Similar as in DTAs, DMTA♦ and DMTAω are defined in an obvious way and DMTA

refers to both cases.

Definition 8 (Paths in DMTAs). Given a DMTA M, an (infinite) symbolic path
is of the form:

ℓ0
�

g0,X0

p0

// ℓ1
�

g1,X1

p1

// ℓ2 · · ·

where pi = ζi(ℓi+1) is the transition probability of ℓi
�

gi,Xi

ζi(ℓi+1)
// ℓi+1 .

An infinite path in M (induced from the symbolic path) is of the form

τ = ℓ0
t0−−→ ℓ1

t1−−→ ℓ2 · · · and has the property that η0 = ~0, (ηi + ti) |= gi, and ηi+1 =
(ηi + ti)[Xi := 0] where i > 0 and ηi is the clock valuation of X in M on entering
location ℓi.

The path τ is accepted by a DMTA♦ if there exists n > 0, such that τ [n] ∈ LocF .
It is accepted by DMTAω iff inf(τ) ∈ LocF , i.e., ∃LF ∈ LocF such that inf(τ) = LF .

All definitions on paths in CTMCs can be carried over to DMTA paths.

DMTA Semantics. First we characterize the one-jump probability ℓ
�

g,X

P(ℓ,ℓ′)

// ℓ′ within

time interval I starting at clock valuation η, denoted pη(ℓ, ℓ′, I), as follows:

pη(ℓ, ℓ′, I) =

∫

I

E(ℓ) · e−E(ℓ)τ

︸ ︷︷ ︸
(i) density to leave ℓ at τ

· 1g(η + τ)︸ ︷︷ ︸
(ii) η+τ |=g?

· P(ℓ, ℓ′)︸ ︷︷ ︸
(iii) probabilistic jump

dτ (4)
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Actually, (i) characterizes the delay τ at location ℓ which is exponentially distributed
with rate E(ℓ); (ii) is the characteristic function, where 1g(η + τ) = 1, if η + τ |= g; 0,
otherwise. It compares the current valuation η + τ with g and rules out the paths that
cannot lead to ℓ′; and (iii) indicates the probabilistic jump. Note that (i) and (iii) are
features from CTMCs while (ii) is from DTA. The characteristic function is Riemann
integrable as it is bounded and its support is an interval, therefore pη(ℓ, ℓ′, I) is well-
defined.

Based on the one-jump probability, we can now consider the probability of a set of
paths. Given DMTA M, C(ℓ0, I0, . . ., In−1, ℓn) is the cylinder set where (ℓ0, . . ., ℓn) ∈
Locn+1 and Ii ⊆ R>0. It denotes a set of paths τ in M such that τ [i] = ℓi and τ〈i〉 ∈ Ii.
Let PrMη0

(C(ℓ0, I0, . . ., In−1, ℓn)) denote the probability of C(ℓ0, I0, . . ., In−1, ℓn) such
that the initial clock valuation in location ℓ0 is η0. We define
PrMη0

(C(ℓ0, I0, . . ., In−1, ℓn)) := PM
0 (η0), where PM

i (η) for 0 6 i 6 n is defined as:

PM
n (η) = 1 and for 0 6 i < n, we note that there exists a transition from ℓi to ℓi+1 with

ℓi
�

gi,Xi

pi

// ℓi+1 (0 6 i < n) and thus we define

PM
i (η) =

∫

Ii

E(ℓi)·e
−E(ℓi)τ ·1gi

(η + τ)·pi︸ ︷︷ ︸
(⋆)

· PM
i+1(η

′)︸ ︷︷ ︸
(⋆⋆)

dτ, (5)

where η′ := (η + τ)[Xi := 0]. Intuitively, PM
i (ηi) is the probability of the suffix cylinder

set starting from ℓi and ηi to ℓn. It is recursively computed by the product of the
probability of taking a transition from ℓi to ℓi+1 within time interval Ii (cf. (⋆) and (4))
and the probability of the suffix cylinder set from ℓi+1 and ηi+1 on (cf. (⋆⋆)). For the
same reason as pη(ℓ, ℓ′, I) was well-defined, PM

i (η) is well-defined.

Example 4 (DMTA♦ and DMTAω). The DMTA♦ in Fig. 4(a) has initial location ℓ0

with two edges, with guards x < 1 and 1 < x < 2. We use the small black dots to indicate
distributions. Assume t time units elapsed. If t < 1, then the upper edge is enabled and
the probability to go to ℓ1 within time t is p~0(ℓ0, ℓ1, t) = (1−e−r0t)·1, where E(ℓ0) = r0;
no clock is reset. It is similar for 1 < t < 2, except that x will be reset. LocF = {q3}.
It is obvious to see the determinism in this automaton. The DMTAω in Fig. 5(c) has
Muller acceptance family LocF =

{
{ℓ1, ℓ2, ℓ3}, {ℓ4, ℓ5, ℓ6}

}
.

3.2 Product DMTAs

Given a CTMC C and a DTA A, the product C ⊗ A is a DMTA defined by:

Definition 9 (Product of CTMC and DTA). Let C = (S,AP, L, s0,P, E) be a
CTMC and A = (2AP,X , Q, q0, QF,→) be a DTA. We define
C ⊗ A = (Loc,X , ℓ0, LocF, E, ) as the product DMTA, where

– Loc := S × Q; ℓ0 := 〈s0, q0〉; E(〈s, q〉) := E(s);
– LocF = LocF := S × QF , if QF = QF ; (reachability condition)

LocF = LocF :=
⋃

F∈QF
S × F , if QF = QF ; (Muller condition)

–  is defined as the smallest relation defined by the rule:

P(s, s′) > 0 ∧ q L(s),g,X−−−−−−→ q′

〈s, q〉
g,X

///o/o/o ζ

, such that ζ(〈s′, q′〉) = P(s, s′).

Example 5 (Product DMTA♦). Let CTMC C and DTA♦ A be in Fig. 4(b) and 4(c),
the product DMTA♦ C⊗A is as in Fig. 4(a). Since QF = {q1} in A, the set of accepting
locations in DMTA♦ is LocF = {〈s2, q1〉} = {ℓ3}.
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ℓ0=〈s0, q0〉 ℓ1=〈s1, q0〉

x<1, ∅ 1

ℓ2=〈s2, q0〉

11<x<2,{x}

x<1,∅

0.2

r0 r1

r2

ℓ4=〈s3, q0〉 r3

ℓ3=〈s2, q1〉

r21<x<2,{x}

x>1,∅ 1

0.3

0.5

(a) DMTA
♦ M = C ⊗ A

s0 s1

1

0.5

s2

s3

0.2

0.3

1

1

{a} {a}

{b}

{c}r3

r2

r1r0

(b) CTMC C

q0 q1

a, x < 1, ∅

a, 1 < x < 2, {x}

b, x > 1, ∅

(c) DTA
♦ A

ℓ0, 06x<1 ℓ0, 16x<2

ℓ1, 06x<1 ℓ1, 16x<2

1 1

v0, r0 v1, r0

v2, r1 v3, r1

0.5

δ

reset, 0.5

ℓ2, 06x<1 ℓ2, 16x<2

ℓ3, 16x<2

ℓ2, x > 2

ℓ3, x > 2

1

v4, 0 v5, r2

v7, 0

δ

δ

1
v8, 0

reset,0.20.2

δ

v6, r2

(d) Reachable region graph

Fig. 4. Example product DMTA
♦ of CTMC C and DTA

♦ A

Example 6 (Product DMTAω). For the CTMC C in Fig. 5(a) and the DTAω Aω in
Fig. 5(b) with acceptance family QF =

{
{q1, q2}, {q3, q4}

}
, the product DMTA

ω C⊗Aω

is shown in Fig. 5(c). LocF =
{
{〈si, q1〉, 〈sj , q2〉}, {〈s

′
i, q3〉, 〈s

′
j , q4〉}

}
, for any si, s

′
i, sj , s

′
j ∈

S, in particular, LocF =
{
{ℓ1, ℓ2, ℓ3}, {ℓ4, ℓ5, ℓ6}

}
.

Remark 3. It is easy to see from the construction that C ⊗ A is indeed a DMTA. The
determinism of the DTA A guarantees that the induced product is also deterministic.
In C ⊗ A, from each location there is at most one “action” possible, viz. L(s). We can
thus omit actions from the product DMTA.

For DTA♦ A with the set of accepting locations LocF , we denote
PathsC⊗A(♦LocF ) := { τ ∈ PathsC⊗A | τ is accepted by C⊗A } as the set of accepted
paths in C⊗A. Recall that PathsC(A) is the set of paths in CTMC C that are accepted
by DTA A. For any n-ary tuple J , let J⇂i denote the i-th entry in J , for 1 6 i 6 n. For
a (C⊗A)-path τ = 〈s0, q0〉

t0−−→〈s1, q1〉
t1−−→ · · · , let τ⇂1 := s0

t0−−→ s1
t1−−→ · · · , and for any

set Π of (C⊗A)-paths, let Π⇂1 =
⋃

τ∈Π τ⇂1.

Lemma 1. For any CTMC C and DTA♦ A, PathsC(A) = PathsC⊗A(♦LocF )⇂1.

Proof. (=⇒) It is to prove that for any path ρ ∈ PathsC(A), there exists a path τ ∈
PathsC⊗A(♦LocF ) such that τ⇂1 = ρ.

We assume w.l.o.g. that ρ = s0
t0−−→ s1 · · · sn−1

tn−1−−−−→ sn ∈ PathsC is accepted by A,
i.e., sn ∈ QF and for 0 6 i < n, η0 |= ~0 and ηi + ti |= gi and ηi+1 = (ηi + ti)[Xi := 0],
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s1

s2s0

1

0.3

0.4

s3

0.6

0.7

1

r0, {b}
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r1, {c}

(a) CTMC C
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c, x < 2, {x}

a, x > 1, ∅c, x > 1, ∅

a, x > 2, {x}

(b) DTA
ω Aω

ℓ0 = 〈s0, q0〉

ℓ1 = 〈s1, q3〉

ℓ2 = 〈s3, q3〉

ℓ3 = 〈s2, q4〉

ℓ4 = 〈s1, q1〉

ℓ5 = 〈s3, q1〉

ℓ6 = 〈s2, q2〉
x<1, {x} 1<x<2, ∅

0.4

0.6

0.4

0.6

0.3

0.7

x > 1, ∅

0.3

0.7

x > 2, {x}

r0

r1

r3

r2

r1

r3

r2

x > 1, ∅

1

x > 1, ∅

1

x < 2, {x}

1

x < 2, {x}

1

(c) DMTA
ω C ⊗ Aω

Fig. 5. Example product DMTA
ω of CTMC C and DTA

ω Aω

where ηi is the time valuation on entering state si. We can then construct a path θ ∈

PathsA from ρ such that θ = q0
L(s0),t0−−−−−−→ q1 · · · qn−1

L(sn−1),tn−1−−−−−−−−−→ qn, where si and qi

have the same entering clock valuation. From ρ and θ, we can construct the path

τ = 〈s0, q0〉
t0−−→〈s1, q1〉 · · · 〈sn−1, qn−1〉

tn−1−−−−→〈sn, qn〉,

where 〈sn, qn〉 ∈ LocF . It follows from the definition of an accepting path in a DTA
ω

that τ ∈ PathsC⊗A(♦LocF ) and τ⇂1 = ρ.

(⇐=) It is to prove that for any path τ ∈ PathsC⊗A(♦LocF ), τ⇂1 ∈ PathsC(A).
We assume w.l.o.g. that path

τ = 〈s0, q0〉
t0−−→ · · ·

tn−1−−−−→〈sn, qn〉 ∈ PathsC⊗A(♦LocF ),

it holds that 〈sn, qn〉 ∈ LocF and for 0 6 i < n, η0 |= ~0 and ηi + ti |= gi and ηi+1 =
(ηi + ti)[Xi := 0], where ηi is the time valuation on entering state 〈si, qi〉. It then directly
follows that qn ∈ QF and τ⇂1 ∈ PathsC(A), given ηi the entering clock valuation of state
si. �

The following theorem establishes the link between CTMC C and DMTA♦ C ⊗ A.

Theorem 2. For any CTMC C and DTA♦ A,

PrC
(
PathsC(A)

)
= PrC⊗A

~0

(
PathsC⊗A(♦LocF )

)
.

Proof. According to Theorem 1, PathsC(A) can be rewritten as the combination of
cylinder sets of the form C(s0, I0, . . . , In−1, sn) which are all accepted by DTA A4.
By Lemma 1, namely by path lifting, we can establish exactly the same combination
of cylinder sets C(ℓ0, I0, . . . , In−1, ℓ0) for PathsC⊗A(♦LocF ), where si = ℓi⇂1. It then

4 Note that this means each path in the cylinder set is accepted by A.
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suffices to show that for each cylinder set C(s0, I0, . . . , In−1, sn) which is accepted by A,
PrC and PrC⊗A yield the same probabilities. Note that a cylinder set C is accepted by
a DTA A, if each path that C generates can be accepted by A.

For the measure PrC , according to Eq. 1 (page 5),

PrC
(
C(s0, I0, . . . , In−1, sn)

)
=

∏

06i<n

∫

Ii

P(si, si+1) · E(si) · e
−E(si)τdτ.

For the measure PrC⊗A
~0

, according to Section 3.1, it is given by PC⊗A
0 (~0) where

PC⊗A
n (η) = 1 for any clock valuation η and

PC⊗A
i (ηi) =

∫

Ii

1gi
(ηi + τi)·pi·E(ℓi)·e

−E(ℓi)τi · PC⊗A
i+1 (ηi+1) dτi,

where ηi+1 = (ηi + τi)[Xi := 0] and 1gi
(ηi + τi) = 1, if ηi + τi |= gi; 0, otherwise.

We will show, by induction, that PC⊗A
i (ηi) is a constant, i.e., is independent of ηi, if

the cylinder set C(ℓ0, I0, . . . , In−1, ℓn) is accepted by C ⊗ A. Firstly let us note that for
C(ℓ0, I0, . . . , In−1, ℓn), there must exist some sequence of transitions

ℓ0
�

g0,X0

p0

// ℓ1 · · · ℓn−1
�

gn−1,Xn−1

pn−1

// ℓn

with η0 = ~0 and ∀ti ∈ Ii with 0 6 i < n, ηi + ti |= gi and ηi+1 := (ηi + ti)[Xi := 0].
Moreover, according to Def. 9, we have:

pi = P(si, si+1) and E(ℓi) = E(si). (6)

We apply a backward induction on n down to 0. The base case is trivial since PC⊗A
n (η) =

1. By I.H., PC⊗A
i+1 (η) is a constant. For the induction step, consider i < n. For any τi ∈ Ii,

since ηi + τi |= gi, 1gi
(ηi + τi) = 1, it follows that

PC⊗A
i (ηi) =

∫

Ii

1gi
(ηi + τi)·pi·E(ℓi)·e

−E(ℓi)τi · PC⊗A
i+1 (ηi+1) dτi

I.H.
=

∫

Ii

pi·E(ℓi)·e
−E(ℓi)τidτi · P

C⊗A
i+1 (ηi+1)

Eq.(6)
=

∫

Ii

P(si, si+1)·E(si)·e
−E(si)τidτi · PC⊗A

i+1 (ηi+1).

Clearly, this is a constant. It is thus easy to see that

PrC⊗A
~0

(
C(ℓ0, I0, . . . , In−1, ℓn)

)
:= PC⊗A

0 (~0) =
∏

06i<n

∫

Ii

P(si, si+1)·E(si)·e
−E(si)τdτ,

which completes the proof. �

3.3 Region Construction for DMTA

In the remainder of this section, we focus on how to compute the probability measure

PrC⊗A
~0

(
PathsC⊗A(♦LocF )

)
in an effective way. Since the state space

{
(ℓ, η) | ℓ ∈

Loc, η ∈ V(X )
}

of C ⊗ A is uncountable, we start with adopting the standard region
construction [AD94] to DMTA♦ to discretize the state space into a finite one. As we
will see in Section 3.4, this allows us to obtain a piecewise-deterministic Markov process
from a DMTA♦ in a natural way.

As usual, a region is a constraint. For regions Θ, Θ′ ∈ B(X ), Θ′ is the successor
region of Θ if for all η |= Θ there exists δ ∈ R>0 such that η + δ |= Θ′ and for all δ′ < δ,
η + δ′ |= Θ ∨ Θ′. A region Θ satisfies a guard g (denoted Θ |= g) iff ∀η |= Θ. η |= g. A
reset operation on region Θ is defined as Θ[X := 0] :=

{
η[X := 0] | η |= Θ

}
.
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Definition 10 (Region graph of DMTA♦). Given DMTA♦ M = (Loc,X , ℓ0, LocF , E, 
), the region graph is G(M) = (V, v0, VF , Λ, →֒), where

– V := Loc × B(X ) is a finite set of vertices, consisting of a location ℓ in M and a
region Θ;

– v0 ∈ V is the initial vertex if (ℓ0,~0) ∈ v0;
– VF :=

{
v | v⇂1 ∈ LocF

}
is the set of accepting vertices;

– →֒ ⊆ V ×
((

[0, 1] × 2X
)
∪ {δ}

)
× V is the transition (edge) relation, such that:

– ◮ v
δ
→֒ v′ is a delay transition if v⇂1 = v′⇂1 and v′⇂2 is a successor region of v⇂2;

– ◮ v
p,X
→֒ v′ is a Markovian transition if there exists some transition v⇂1

�

g,X

p
// v′⇂1

in M such that v⇂2 |= g and v⇂2[X := 0] |= v′⇂2; and
– Λ : V → R>0 is the exit rate function where Λ(v) := E(v⇂1) if there exists a Marko-

vian transition from v, Λ(v) := 0 otherwise.

Note that in the obtained region graph, Markovian transitions emanating from any
boundary region do not contribute to the reachability probability as the time to hit the
boundary is always zero (i.e., ♭(v, η) = 0 in (8), page 18). Therefore, we can remove all
the Markovian transitions emanating from boundary regions and then collapse each of
them with its unique non-boundary (direct) successor. In the sequel, by slightly abusing
the notation we still denote this collapsed region graph as G(M).

Remark 4 (Exit rates). The exit rate Λ(v) is set to 0 if there is only delay transition
from v. The probability to take the delay transition within time t is e−Λ(v)t = 1 and the
probability to take Markovian transitions is 0.

Example 7. For the DMTA♦ C⊗A in Fig. 6(a), the reachable part (forward reachable
from the initial vertex and backward reachable from the accepting vertices) of the col-
lapsed region graph G(C⊗A) is shown in Fig. 6(b). The accepting vertices are sinks.

ℓ0=〈s0, q0〉 ℓ1=〈s1, q1〉

x2 > 1, {x1}, 1

x1 < 2, {x2}, 1

r0 r1

(a) DMTA
♦ M = C ⊗A

v0, 0 v2, r0v1, r0

v3, 0

1, {x1}

δ δ

1, {x1}

v4, 0

ℓ0

06x1=x2<1

ℓ0

16x1=x2<2

ℓ0

x1>2, x2>2

ℓ1
06x1<1
16x2<2
x2>x1+1

ℓ1
06x1<1
x2>2

x2>x1+2

(b) Reachable region graph G(C ⊗ A)

Fig. 6. Example of a region graph

Notice that DMTA♦ and DMTAω have the same locations and edge relations. The
only difference is their acceptance condition. This guarantees that their obtained region
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graphs are the same except for the definition and interpretation of the final set VF . We
will present how VF is derived in the region graph for DMTAω in Section 5.

3.4 From Region Graph to PDP

We can now define the underlying PDP of a DMTA♦ by using the region graph G(M).
Actually, a region graph is a PDP.

Definition 11 (PDP for DMTA♦). For DMTA♦ M = (Loc,X , ℓ0, LocF , E, ) and
region graph G(M) = (V, v0, VF , Λ, →֒), let PDP Z(M) = (V,X , Inv , φ, Λ, µ) where for
any v ∈ V ,

– Inv(v) := v⇂2 and the state space S :=
{
(v, η) | v ∈ V, η ∈ Inv(v)

}
;

– φ(v, η, t) := η + t for η |= Inv(v);
– Λ(v, η) := Λ(v) is the exit rate of state (v, η);

– [boundary jump] for each delay transition v
δ
→֒ v′ in G(M) we have µ(ξ, {ξ′}) := 1,

where ξ = (v, η), ξ′ = (v′, η) and η |= ∂Inv(v);

– [Markovian jump] for each Markovian transition v
p,X
→֒ v′ in G(M) we have µ(ξ, {ξ′}) :=

p, where ξ = (v, η), η |= Inv(v) and ξ′ = (v′, η[X := 0]).

From now on we write Λ(v) instead of Λ(v, η) as they coincide.

4 Model Checking DTA♦ Specifications

With the model and problem transformation presented in the last section, we are now
ready to model check CTMC against DTA♦ specifications. We first consider the general
case, i.e., DTA♦ with arbitrary number of clocks and then the special case of single clock
DTA♦ specifications is investigated.

4.1 General DTA♦ Specifications

Recall that the aim of model checking is to compute the probability of the set of paths
in CTMC C accepted by a DTA♦ A. For the general case, we have proven that this is
reducible to computing the reachability probability in the product C ⊗ A (Theorem 2,
page 14), which can be further reduced to computing the reachability probability in a
corresponding PDP (Theorem 3 below), which will be established in Section 4.1. The
characterization by a system of integral equations is usually difficult to solve. Therefore
we propose an approach to approximate the reachability probabilities in Section 4.1.

Characterizing Reachability Probabilities. Computing PrC⊗A
~0

(
PathsC⊗A(♦LocF )

)
is

now reduced to computing the (time-unbounded) reachability probability in the PDP

Z(C ⊗A) — basically the region graph of C ⊗A — given the initial state (v0,~0) and the
set of goal states {(v, η) | v ∈ VF , η ∈ Inv(v)}

(
(VF , ·) for short

)
. Reachability probabili-

ties of untimed events in a PDP Z can be computed in the embedded DTMP emb(Z).
Note that the set of locations of Z and emb(Z) are equal. In the sequel, let D denote
emb(Z).

For each vertex v ∈ V , we define recursively ProbD
(
(v, η), (VF , ·)

) (
or shortly ProbDv (η)

)

as the probability to reach the goal states (VF , ·) in D from state (v, η).

– for the delay transition v
δ
→֒ v′,

ProbD
v,δ(η) = e−Λ(v)♭(v,η) · ProbD

v′

(
η + ♭(v, η)

)
. (7)

Recall that ♭(v, η) is the minimal time for (v, η) to hit the boundary ∂Inv(v).
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– for the Markovian transition v
p,X
→֒ v′,

ProbD
v,v′(η) =

∫ ♭(v,η)

0

p·Λ(v)·e−Λ(v)τ ·ProbD
v′

(
(η + τ)[X := 0]

)
dτ. (8)

Overall, for each vertex v ∈ V , we obtain:

ProbD
v (η) =

{
ProbD

v,δ(η) +
∑

v
p,X
→֒ v′

ProbD
v,v′(η), if v /∈ VF

1, otherwise
. (9)

Note that here the notation η is slightly abused. It represents a vector of clock variables
(see Example 8). Eq. (7) and (8) are derived based on (3) and (2), respectively. In par-
ticular, the multi-step reachability probability is computed using a sequence of one-step
transition probabilities.

Hence we obtain a system of integral equations (9). One can read (9) either in the
form f(ξ) =

∫
Dom(ξ) K(ξ, ξ′)f(dξ′), where K is the kernel and Dom(ξ) is the domain of

integration depending on the continuous state space S; or in the operator form f(ξ) =
(Jf)(ξ), where J is the integration operator. Generally, (9) does not necessarily have a
unique solution. It turns out that the reachability probability ProbD

v0
(~0) coincides with

the least fixpoint of the operator J (denoted by lfpJ ) i.e., ProbD
v0

(~0) = (lfpJ )(v0,~0).
Formally, we have:

Theorem 3. For any CTMC C and DTA♦ A, PrC⊗A
~0

(
PathsC⊗A(♦LocF )

)
is the least

solution of ProbDv0
(·), where D is the embedded DTMP of C ⊗ A.

Proof. We can express the set of all finite paths in C ⊗ A ending in some accepting
location ℓn ∈ LocF for n ∈ N as the union over all location sequences i.e.,

ΠC⊗A =
⋃

n∈N

⋃

(ℓ0,...,ℓn)∈Locn+1

C(ℓ0, I0, . . . , In−1, ℓn)

= PathsC⊗A(♦LocF ) ∪ PathsC⊗A(♦LocF ).

where C(ℓ0, I0, . . . , In−1, ℓn) is a cylinder set, Ii = [0,∞[ and PathsC⊗A(♦LocF )⇂1 are
the set of paths which are not accepted by the DTA A. Notice that we can easily extend
the measure PrC⊗A

~0
to ΠC⊗A such that

PrC⊗A
~0

(
ΠC⊗A

)
= PrC⊗A

~0

(
PathsC⊗A(♦LocF )

)
.

This means that in order to prove the theorem we need to show that

PrC⊗A
~0

(
ΠC⊗A

)
= ProbD

v0
(~̂0), (10)

where ProbD
v0

(~̂0) is the short form of ProbD
(
(v0, ~̂0), (VF , ·)

)
, i.e., the reachability prob-

ability from state (v0, ~̂0) to (VF , ·). Note that for better readability, we indicate clock
valuations in D by adding a “̂ ”.

Eq. (10) is to be shown on cylinder sets. Note that each cylinder set C(ℓ0, I0, . . . ,
In−1, ℓn) ⊆ ΠC⊗A (Cn for short) induces a region graph G(Cn) = (V, v0, VF , Λ, →֒),
where its underlying PDP and embedded DTMP is Z(Cn) and D(Cn), respectively. To
prove Eq. (10), it suffices to show that for each Cn,

PrC⊗A
~0

(Cn) = ProbD(Cn)
v0

(~̂0),

since ΠC⊗A =
⋃

n∈N

⋃
(ℓ0,...,ℓn)∈Locn+1 Cn and D =

⋃
n∈N

⋃
(ℓ0,...,ℓn)∈Locn+1 D(Cn).

We will prove it by induction on the length n of the cylinder set Cn ⊆ ΠC⊗A.
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– By B.C. of n = 0, i.e. C0 = C(ℓi) and ℓi ∈ LocF , it holds that PrC⊗A
ηi

(C0) = 1; while
in the embedded DTMP D(C0), since the initial vertex of G(C0) is v0 = (ℓi, Θ0),
where ηi ∈ Θ0 and v0 is consequently the initial location of Z(C0) as well as D(C0)

which is accepting, ProbD(C0)
v0

(η̂i) = 1. Note ℓi ∈ Loc is not necessarily the initial
location ℓ0.

– By I.H., we have that for n = k − 1, PrC⊗A
ηi+1

(Ck−1) = ProbD(Ck−1)
vi+1

(η̂i+1), where
Ck−1 = C(ℓi+1, Ii+1, . . . , Ii+k−1, ℓi+k) and ℓi+k ∈ LocF . Note ℓi+1 ∈ Loc is not
necessarily the initial location ℓ0.

– For n = k, let Ck = C(ℓi, Ii, ℓi+1, Ii+1, . . . , Ii+k−1, ℓi+k). As a result, there exists a

transition ℓi
�

gi,Xi

pi

// ℓi+1 where ηi +τi |= gi for every τi ∈ ]t1, t2[. t1, t2 ∈ Q>0∪{∞}

can be obtained from gi, such that τj ∈ ]t1, t2[ iff ηi + τj |= gi. According to the
semantics of MTA we have

PrC⊗A
ηi

(Ck) =

∫ t2

t1

pi·E(ℓi)·e
−E(ℓi)τi · PrC⊗A

ηi+1
(Ck−1) dτi, (11)

where ηi+1 = (ηi + τi)[Xi := 0].

· · · · · ·
vi
0=(ℓi,Θ0)
♭(vi

0,η̂
i

0)61

vi
m−1=(ℓi,Θm−1)

♭(vi

m−1,η̂
i

m−1)=1

δ δ vi
m=(ℓi,Θm)
♭(vi

m,η̂i

m)=1

vi
m′=(ℓi,Θm′)

♭(vi

m′ ,η̂i

m′)=1

δ δδ

vi+1
m =(ℓi+1,Θm)

♭(vi+1
m ,η̂i+1

m )61

pi

vi+1
m′ =(ℓi+1,Θm′)
♭(vi+1

m′ ,η̂i+1

m′ )61

pi

Now we deal with the inductive step for D(Ck). Let us assume that Ck induces

the region graph G(Ck) whose subgraph corresponding to transition ℓi
�

gi,Xi

pi

// ℓi+1

is depicted in the figure above. For simplicity we consider that location ℓi induces
the vertices {vi

j = (ℓi, Θj) | 0 6 j 6 m′} and location ℓi+1 induces the vertices

{vi+1
j = (ℓi+1, Θj) | m 6 j 6 m′}, respectively. Note that for Markovian transitions,

the regions stay the same. We denote η̂i
j (resp. η̂i+1

j ) as the entering clock valuation

on vertex vi
j (resp. η̂i+1

j ), for j the indices of the regions. For any η̂ ∈
⋃m−1

j=0 Θj ∪⋃
j>m′ Θj , η̂ 6|= gi; or more specifically,

t1 =

m−1∑

j=0

♭(vi
j , η̂

i
j) and t2 =

m′∑

j=0

♭(vi
j , η̂

i
j).

Recall that η̂i (in the I.H.) is the clock valuation to first hit a region with ℓi

and η̂i. Given the fact that from vi
0 the process can only execute a delay transition

before time t1, it holds that

Prob
D(Ck)

vi
0

(η̂i) = e−t1Λ(vi) · Prob
D(Ck)
vi

m
(η̂i

m)

Prob
D(Ck)
vi

m
(η̂i

m) = Prob
D(Ck)
vi

m,δ
(η̂i

m) + Prob
D(Ck)

vi
m,vi+1

m
(η̂i+1).

Therefore, we get by substitution of variables:

ProbD
vi
0
(η̂i) = e−t1Λ(vi)·Prob

D(Ck)
vi

m,δ
(η̂i

m) + e−t1Λ(vi)·Prob
D(Ck)

vi
m,vi+1

m
(η̂i+1)

= e−t1Λ(vi)·Prob
D(Ck)

vi
m,δ

(η̂i
m)

+ e−t1Λ(vi)·

∫ ♭(vi
m,η̂i

m)

0

piΛ(vi)e
−Λ(vi)τ ·Prob

D(Ck−1)

vi+1
m

(
(η̂i

m + τ)[Xi := 0]
)
dτ

= e−t1Λ(vi)·Prob
D(Ck)
vi

m,δ
(η̂i

m)

+

∫ t1+♭(vi
m,η̂i

m)

t1

piΛ(vi)e
−Λ(vi)τ ·Prob

D(Ck−1)

vi+1
m

(
(η̂i

m + τ − t1)[Xi := 0]
)
dτ.
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Evaluating each term Prob
D(Ck)
vi

m,δ
(η̂i

m) we get the following sum of integrals:

Prob
D(Ck)

vi
0

(η̂i) =

m′−m∑

j=0

∫ t1+
Pj

h=0 ♭(vi
m+h,η̂i

m+h)

t1+
Pj−1

h=0 ♭(vi
m+h

,η̂i
m+h

)

piΛ(vi)e
−Λ(vi)τ

· Prob
D(Ck−1)

vi+1
m+j

(
(η̂i

m+j+τ−t1−

j−1∑

h=0

♭(vi
m+h, η̂i

m+h))[Xi:=0]
)
dτ.

Now we define the function FD(Ck−1)(t) : [t1, t2] → [0, 1], such that when t ∈ [t1 +∑j−1
h=0 ♭(vi

m+h, η̂i
m+h), t1 +

∑j
h=0 ♭(vi

m+h, η̂i
m+h)] for j 6 m′ − m then FD(Ck−1)(t) =

Prob
D(Ck−1)

vi+1
m+j

(
(η̂i

m+j + t− t1 −
∑j−1

h=0 ♭(vi
m+h, η̂i

m+h))[Xi := 0]
)
. Using FD(Ck−1)(t) we

can rewrite Prob
D(Ck)

vi
0

(η̂i) to an equivalent form as:

Prob
D(Ck)

vi
0

(η̂i) =
m′−m∑

j=0

∫ t1+
Pj

h=0 ♭(vi
m+h,η̂i

m+h)

t1+
Pj−1

h=0 ♭(vi
m+h

,η̂i
m+h

)

piΛ(vi)e
−Λ(vi)τFD(Ck−1)(τ)dτ

=

∫ t2

t1

piΛ(vi)e
−Λ(vi)τFD(Ck−1)(τ)dτ.

By the I.H. we now have that for every
t ∈ [t1 +

∑j−1
h=0 ♭(vi

m+h, η̂i
m+h), t1 +

∑j
h=0 ♭(vi

m+h, η̂i
m+h)] for j 6 m′ − m we have

that:

PrC⊗A
ηi+1

(Ck−1) = Prob
D(Ck−1)

vi+1
m+j

(
(η̂i

m+j+t−t1−

j−1∑

h=0

♭(vi
m+h, η̂i

m+h))[Xi:=0]
)

= FD(Ck−1)(t),

where ηi+1 = (ηi + t)[Xi := 0] and η̂i
m+j = η̂i + t1+

∑j−1
h=0 ♭(vi

m+h, η̂i
m+h). This shows

that PrC⊗A
ηi

(Ck) = ProbD(Ck)
vi

(η̂i) which proves the theorem. �

Remark 5. Clock valuations η and η′ in region Θ may induce different reachability prob-
abilities. The reason is that η and η′ may have different periods of time to hit the
boundary, thus the probability for η and η′ to either delay or take a Markovian transi-
tion may differ. This is in contrast with the traditional timed automata theory as well
as probabilistic timed automata [KNSS02], where η and η′ are not distinguished.

Example 8. For the region graph in Fig. 6(b), the system of integral equations for v1 in
location ℓ0 is as follows for 1 6 x1 = x2 < 2:

ProbD
v1

(x1, x2) = ProbD
v1,δ(x1, x2) + ProbD

v1,v3
(x1, x2),

where
ProbD

v1,δ(x1, x2) = e−(2−x1)r0 ·ProbD
v2

(2, 2)

and

ProbD
v1,v3

(x1, x2) =

∫ 2−x1

0

r0·e
−r0τ ·ProbD

v3
(0, x2 + τ) dτ

where ProbD
v3

(0, x2 + τ) = 1. The integral equations for v2 can be derived similarly.

Approximating Reachability Probabilities. Finally, we discuss how to obtain a solution
of (9). The integral equations (9) are Volterra equations of the second type [AW95]. For
a general reference on solutions to Volterra equations, cf., e.g. [Cor91]. As an alternative
option to solve (9), we proceed to give a general formulation of PrC

(
PathsC(A)

)
using

a system of partial differential equations (PDEs). Let the augmented DTA♦ A[tf ] be
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obtained from A by adding a new clock variable y which is never reset and a clock
constraint y < tf on all edges entering the accepting locations in LocF , where tf is a
finite (and usually very large) integer. The purpose of this augmentation is to ensure
that the value of all clocks reaching LocF is bounded. It is clear that PathsC(A[tf ]) ⊆

PathsC(A). More precisely, PathsC(A[tf ]) coincides with those paths which can reach the

accepting states of A within the time bound tf . Note that limtf→∞ PrC(PathsC(A[tf ])) =

PrC(PathsC(A)). We can approximate PrC(PathsC(A)) by solving the PDEs with a large
tf as follows:

Proposition 1. Given a CTMC C, an augmented DTA♦ A[tf ] and the underlying

PDP Z(C ⊗ A[tf ]) = (V,X , Inv , φ, Λ, µ), PrC
(
PathsC(A[tf ])

)
= ~v0(0,~0)

(
which is the

probability to reach the final states in Z starting from initial state (v0,~0X∪{y}
5)
)

is the
unique solution of the following system of PDEs:

∂~v(y, η)

∂y
+

|X |∑

i=1

∂~v(y, η)

∂η(i)
+ Λ(v)·

∑

v
p,X
→֒ v′

p·(~v′ (y, η[X := 0]) − ~v(y, η)) = 0,

where v ∈ V \ VF , η |= Inv(v), η(i) is the i’th clock variable and y ∈ [0, tf). For every

η |= ∂Inv(v) and transition v
δ
→֒ v′, the boundary conditions take the form: ~v(y, η) =

~v′(y, η). For every vertex v ∈ VF , η |= Inv(v) and y ∈ [0, tf), we have the following
PDE:

∂~v(y, η)

∂y
+

|X |∑

i=1

∂~v(y, η)

∂η(i)
+ 1 = 0.

The final boundary conditions are that for every vertex v ∈ V and η |= Inv(v)∪∂Inv (v),
~v(tf , η) = 0.

Proof. For any set of clocks X (n clocks) of the PDP Z = (Z,X , Inv , φ, Λ, µ) we define
a system of ODEs:

dη(y)

dy
= ~1, η(y0) = η0 ∈ Rn

>0, (12)

which describe the evolution of clock values η(y) at time y given the initial value η0 of all
clocks at time y0. Notice that contrary to our DTA notation, Eq. (12) describes a system

of ODEs where η(y) is a vector of clock valuations at time y and dη(i)(y)
dy

gives the timed

evolution of clock η(i). Given a continuous differentiable functional f : Z ×Rn
>0 → R>0,

for every z ∈ Z let:

df(z, η(y))

dy
=

n∑

i=1

∂f(z, η(y))

∂η(i)
·
dη(i)(y)

dy

Eq.(12)
=

n∑

i=1

∂f(z, η(y))

∂η(i)
.

For notation simplicity we define the vector field from Eq. (13) as the operator Ξ which

acts on functional f(z, η(y)) i.e., Ξf(z, η(y)) =
∑n

i=1
∂f(z,η(y))

∂η(i) . We also define the equiv-

alent notation Ξf(ξ) for the state ξ = (z, η(y)) and any y ∈ R>0.

We define the value of PrC
(
PathsC(A)

)
as the expectation ~(0, ξ0) on PDP Z as

follows:

~(0, ξ0) = E

[∫ tf

0

1Z(Xτ )dτ | X0 = ξ0

]
= E(0,ξ0)

[∫ tf

0

1Z(Xτ )dτ

]
,

where the initial starting time is 0 the starting state is ξ0 = (z0,~0), Xτ is the un-
derlying stochastic process of Z defined on the state space S and 1Z(Xτ ) = 1 when

5 denoting the valuation η with η(x) = 0 for x ∈ X ∪ {y}.
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Xτ ∈ {(z, η(τ)) | z ∈ VF , η(τ) ∈ Inv(z)}, 1Z(Xτ ) = 0, otherwise. Notice that we
can also define the expectation in Eq. (13) for any starting time y < tf and state ξ as

E(y,ξ)

[∫ tf
y

1Z(Xτ )dτ
]
.

We can obtain the expectation ~(0, ξ0) by following the construction in [Dav93]. For

this we form the new state space Ŝ = ([0, tf ] × S) ∪ {∆} where ∆ is the sink state

and the boundary is ∂Ŝ := ([0, tf ] × ∂S) ∪ ({tf} × S). We define the following functions:

Λ̂(y, ξ) = Λ(ξ), µ̂((y, ξ), {y} × A) = µ(ξ, A) and µ̂((tf , ξ), {∆}) = 1 for y ∈ [0, tf [, A ⊆ S

and ξ ∈ S.
Given the construction we obtain an equivalent form for the expectation (13) i.e.,:

~(0, ξ0) = E(0,ξ0)

[∫ ∞

0

~̂1Z(τ, Xτ )dτ

]
, (13)

where ~̂1Z : Ŝ → {0, 1}, ~̂1Z(τ, Xτ ) = 1 when Xτ ∈ {(z, η(τ)) | z ∈ VF , η(τ) ∈ Inv(z)}

and τ ∈ [0, tf [, ~̂1Z(τ, Xτ ) = 0, otherwise. We also define ~̂1Z(∆) to be zero. Notice that
we introduce the sink state ∆ in order to ensure that limy→∞ E(0,ξ)~(y, Xy) = 0, which
is a crucial condition in order to obtain a unique value for the expectation ~(0, ξ0).

For the expectation (13) [Dav93] defines the following integro-differential equations
(for any y ∈ [0, tf [):

U~(y, ξ)=Ξ~(y, ξ) + Λ̂(y, ξ) ·

∫

S

(~(y, ξ′) − ~(y, ξ)) µ̂((y, ξ), (y, dξ′)), ξ ∈ S (14)

~(y, ξ)=

∫

S

~(y, ξ′)µ̂((y, ξ), (y, dξ′)), ξ ∈ ∂S (15)

U~(y, ξ) + ~̂1Z(y, ξ) = 0, ξ ∈ S (16)

Equation (14) denotes the generator of the stochastic process Xy and Eq. (15) states
the boundary conditions for Eq. (16). We can rewrite the integro-differential equations
(14),(15) and (16) into a system of PDEs with boundary conditions given the fact that
the measure µ̂ is not uniform. For each vertex v /∈ VF , η ∈ Inv(v) and y ∈ [0, tf [ of
the region graph G we write the PDE as follows (here we define ~v(y, η) := ~(y, ξ) for
ξ = (v, η)):

∂~v(y, η)

∂y
+
∑

i

∂~v(y, η)

∂η(i)
+ Λ(v)

∑

v
p,X
→֒ v′

p · (~v′(y, η[X := 0]) − ~v(y, η)) = 0,

Notice that for any edge v
p,X
→֒ v′ in the region graph G, µ̂((y, (v, η)), (y, (v′, η′))) = p.

For every η ∈ ∂Inv(v) and transition v
δ
→֒ v′ the boundary conditions take the form:

~v(y, η) = ~v′(y, η). For every vertex v ∈ VF , η ∈ Inv(v) and y ∈ [0, tf [ we get:

∂~v(y, η)

∂y
+
∑

i

∂~v(y, η)

∂η(i)
+ 1 = 0

Notice that all final states are made absorbing. The final boundary conditions are that
for every vertex v ∈ Z and η ∈ Inv(v) ∪ ∂Inv(v), ~v(tf , η)=0. �

4.2 Single-Clock DTA♦ Specifications

For single-clock DTA♦ specifications, we can simplify the system of integral equations
obtained in the previous section to a system of linear equations where the coefficients
are a solution of a system of ODEs that can be calculated efficiently.

Given a DMTA♦ M, we denote the set of constants appearing in the clock constraints
of M as {c0, . . . , cm} with c0 = 0. We assume the following order: 0 = c0 < c1 < · · · < cm.
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Let ∆ci = ci+1 − ci for 0 6 i < m. Note that for one clock DMTA♦, the regions in the
region graph G(M) can be represented by the following intervals: [c0, c1), . . . , [cm,∞).
We partition the region graph G(M) = (V, v0, VF , Λ, →֒), or G for short, into a set of
subgraphs Gi = (Vi, VFi, Λi, {Mi, Fi, Bi}), where 0 6 i 6 m and Λi(v) = Λ(v), if v ∈ Vi,
0 otherwise. These subgraphs are obtained by partitioning V , VF and →֒ as follows:

– V =
⋃

06i6m{Vi}, where Vi = {(ℓ, Θ) ∈ V | Θ ⊆ [ci, ci+1)};
– VF =

⋃
06i6m{VFi}, where v ∈ VFi iff v ∈ Vi ∩ VF ;

– →֒=
⋃

06i6m{Mi ∪ Fi ∪ Bi}, where
- Mi is the set of Markovian transitions (without reset) between vertices inside
Gi;
- Fi is the set of delay transitions from the vertices in Gi to that in Gi+1

(Forward);
- Bi is the set of Markovian transitions (with reset) from Gi to G0 (Backward).

It is easy to see that Mi, Fi, and Bi are pairwise disjoint.

Since the initial vertex of G0 is v0 and the initial vertices of Gi for 0 < i 6 m are implicitly
given by Fi−1, we omit them in the definition.

Example 9. Given the region graph in Fig. 7, the vertices are partitioned as indicated by
the ovals. The Mi edges are unlabeled while the Fi and Bi edges are labeled with δ and
“reset”, respectively. The VF vertices (double circles) may appear in any Gi. Actually, if
v = (ℓ, [ci, ci+1)) ∈ VF , then v′ = (ℓ, [cj , cj+1)) ∈ VF for i < j 6 m. This is true because
VF = {(ℓ, true) | ℓ ∈ LocF }. It implies that for each final vertex not in the last region,
there is a delay transition from it to the next region, see e.g. the final vertex in Gi+1 in
Fig. 7. The exit rate functions and the probabilities on Markovian edges are omitted in
the graph.

Given a subgraph Gi (06i6m) of G with ki states, let the probability vector ~Ui(x) =

[u1
i (x), . . . , uki

i (x)]
⊤
∈ Rki×1 where uj

i (x) is the probability to go from vertex vj
i ∈ Vi to

some vertex in VF (in G) at time x. Starting from (7)-(9), we provide a set of integral

equations for ~Ui(x) which we later on reduce to a system of linear equations. Distinguish
two cases:

Case 0 6 i < m: ~Ui(x) is given by:

~Ui(x) =

∫ ∆ci−x

0

Mi(τ)~Ui(x + τ)dτ +

∫ ∆ci−x

0

Bi(τ)dτ · ~U0(0)+Di(∆ci − x) ·Fi
~Ui+1(0),

(17)
where x ∈ [0, ∆ci] and

– Di(x) ∈ Rki×ki is the delay probability matrix, where for any 0 6 j 6 ki, Di(x)[j, j] =

e−E(vj
i )x (the off-diagonal elements are zero);

– Mi(x) = Di(x)·Ei·Pi ∈ Rki×ki is the probability density matrix for the Markovian
transitions inside Gi, where Pi and Ei are the transition probability matrix and exit
rate matrix for vertices inside Gi, respectively;

– Bi(x) ∈ Rki×k0 is the probability density matrix for the reset edges Bi, where
Bi(x)[j, j′] indicates the probability density function to take the Markovian jump
with reset from the j-th vertex in Gi to the j′-th vertex in G0; and

– Fi ∈ Rki×ki+1 is the incidence matrix for delay edges Fi. More specifically, Fi[j, j
′] =

1 indicates that there is a delay transition from the j-th vertex in Gi to the j′-th
vertex in Gi+1; 0 otherwise.

Let us explain these equations. The third summand of (17) is obtained from (7)
where Di(∆ci − x) indicates the probability to delay until the “end” of region i, and

Fi
~Ui+1(0) denotes the probability to continue in Gi+1 (at relative time 0). Similarly, the

first and second summands are obtained from (8); the former reflects the case where
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clock x is not reset, while the latter considers the reset of x (thus, implying a return to
G0).

Case i = m: ~Um(x) is simplified as follows:

~Um(x) =

∫ ∞

0

M̂m(τ)~Um(x + τ)dτ +~1F +

∫ ∞

0

Bm(τ)dτ · ~U0(0) (18)

where M̂m(τ)[v, ·] = Mm(τ)[v, ·] for v /∈ VF , 0 otherwise. ~1F is a vector such that
~1F [v] = 1 if v ∈ VF , 0 otherwise. We note that ~1F stems from the second clause of (9),

and M̂m is obtained by setting the corresponding elements of Mm to 0. Also note that
as the last subgraph Gm involves infinite regions, it has no delay transitions.

...

δ

δ

reset

......

δ
δ

δ

...

δ

δ

G0 Gi Gi+1 Gm

δ

δ

Fig. 7. Partitioning the region graph

Before solving the system of integral equations (17)-(18), we first make the following
observations:

(i) Due to the fact that inside Gi there are only Markovian jumps with neither resets
nor delay transitions, Gi with (Vi, Λi, Mi) forms a CTMC Ci, say. For each Gi we define
an augmented CTMC Ca

i with state space Vi ∪ V0, such that all V0-vertices are made
absorbing in Ca

i . The edges connecting Vi to V0 are kept and all the edges inside C0 are
removed. The augmented CTMC is used to calculate the probability to start from a
vertex in Gi and take a reset edge within a certain period of time.

(ii) Given any CTMC C with k states and rate matrix P · E, the matrix Π(x) is
given by:

Π(x) =

∫ x

0

M(τ)Π(x − τ)dτ + D(x). (19)

Intuitively, Π(t)[j, j′] indicates the probability to start from vertex j and reach j′ at
time t.

The following proposition states the close relationship between Π(x) and the tran-
sient probability vector:

Proposition 2. Given a CTMC C with initial distribution α, rate matrix P·E and
Π(t), ~℘(t) satisfies the following two equations:

~℘(t) = α ·Π(t), (20)

d~℘(t)

dt
= ~℘(t) ·Q, (21)

where Q = P·E− E is the infinitesimal generator.
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Proof. The transition probability matrix Π(t) for a CTMC C with state space S is
denoted by the following system of integral equations:

Π(t) =

∫ t

0

M(τ)Π(t − τ)dτ + D(t), (22)

where M(τ) = P·E·D(τ). Now we define for the CTMC C a stochastic process X(t).
The probability Pr(X(t + ∆t) = sj) to be in state sj at time t + ∆t can be defined as:

Pr(X(t + ∆t) = sj) =
∑

si∈S

Pr(X(t) = si) · Pr(X(t + ∆t) = sj |X(t) = si)

We can define Pr(X(t + ∆t) = sj) in the vector form as follows:

~℘(t + ∆t) = ~℘(t)Φ(t, t + ∆t),

where ~℘(t) = [Pr(X(t) = s1), . . . , Pr(X(t) = sn)] and Φ(t, t+∆t)[i, j] = Pr(X(t+∆t) =
sj |X(t) = si).

As the stochastic process X(t) is time-homogeneous we have that

Pr(X(t + ∆t) = sj |X(t) = si) = Pr(X(∆t) = sj |X(0) = si),

which means that Φ(t, t + ∆t) = Φ(0, ∆t). As Pr(X(∆t) = sj|X(0) = si) denotes the
transition probability to go from state si to state sj at time ∆t we have that Φ(0, ∆t) =
Π(∆t), which results in the equation:

~℘(t + ∆t) = ~℘(t)Π(∆t). (23)

Now we transform Eq. (23) as follows:

~℘(t + ∆t) = ~℘(t)Π(∆t)

=⇒ ~℘(t + ∆t) − ~℘(t) = ~℘(t)Π(∆t) − ~℘(t)

=⇒ ~℘(t + ∆t) − ~℘(t) = ~℘(t)(Π(∆t) − I)

=⇒
d~℘(t)

dt
= lim

∆t→0

~℘(t + ∆t) − ~℘(t)

∆t
= ~℘(t) lim

∆t→0

Π(∆t) − I

∆t
.

Now it is to compute lim∆t→0
Π(∆t)−I

∆t
. For this we rewrite the right hand limit as:

lim
∆t→0

1

∆t

∫ ∆t

0

M(τ)Π(∆t − τ)dτ + lim
∆t→0

1

∆t
(D(∆t) − I) .

The lim∆t→0
1

∆t

∫∆t

0 M(τ)Π(∆t − τ)dτ is of the type 0
0 , which means we have to use

l’Hospital rule:

d(∆t)

d∆t
= 1,

d

d∆t

(∫ ∆t

0

M(τ)Π(∆t − τ)dτ

)
= M(∆t)Π(0) +

∫ ∆t

0

M(τ)
∂

∂∆t
Π(∆t − τ)dτ.

Notice that Π(0) = I and we obtain:

lim
∆t→0

1

∆t

∫ ∆t

0

M(τ)Π(∆t − τ)dτ

= lim
∆t→0

(
M(∆t)Π(0) +

∫ ∆t

0

M(τ)
∂

∂∆t
Π(∆t − τ)dτ

)
= M(0)Π(0) = P·E.
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The lim∆t→0
1

∆t (D(∆t) − I) is of the type 0
0 , which means the use of l’Hospital rule:

d(∆t)

d∆t
= 1

d

d∆t
(D(∆t) − I) = −ED(∆t)

Therefore, we obtain lim∆t→0
1

∆t
(D(∆t) − I) = −E and

lim
∆t→0

Π(∆t) − I

∆t
= P·E− E = Q,

where Q is the infinitesimal generator of the CTMC C. As a result we obtain:

d~℘(t)

dt
= ~℘(t) lim

∆t→0

Π(∆t) − I

∆t
= ~℘(t)Q.

Combining with Eq. (23) we get:

~℘(t) =α · Π(t),

d~℘(t)

dt
=~℘(t) · Q. �

~℘(t) is the transient probability vector with ℘s(t) indicating the probability to be
in state s at time t given the initial probability distribution α. Eq. (21) is the cele-
brated forward Chapman-Kolmogorov equations. According to this proposition, solving
the integral equation Π(t) boils down to selecting the appropriate initial distribution
vector α and solving the system of ODEs (21), which can be done very efficiently using
uniformization.

Prior to exposing how to solve the system of integral equations by solving a system
of linear equations, we define Π̄a

i ∈ Rki×k0 for an augmented CTMC Ca
i to be part of

Πa
i , where Π̄a

i only keeps the probabilities starting from Vi and ending in V0. Actually,

Πa
i (x) =

(
Πi(x) Π̄a

i (x)
0 I

)
,

where 0 ∈ Rk0×ki is the zero matrix and I ∈ Rk0×k0 is the identity matrix.

Theorem 4. For subgraph Gi of G with ki states, it holds for 0 6 i < m that:

~Ui(0) = Πi(∆ci) · Fi
~Ui+1(0) + Π̄a

i (∆ci) · ~U0(0), (24)

where Πi(∆ci) and Π̄a
i (∆ci) are for CTMC Ci and the augmented CTMC Ca

i , respec-
tively. For case i = m,

~Um(0) = P̂i · ~Um(0) +~1F + B̂m · ~U0(0), (25)

where P̂i(v, v′) = Pi(v, v′) if v /∈ VF ; 0 otherwise and B̂m =
∫∞

0 Bm(τ)dτ .

Proof. We first deal with the case i < m. If in Gi, there exists some backward edge,
namely, for some j, j′, Bi(x)[j, j′] 6= 0, then we shall consider the augmented CTMC

Ca
i with ka

i = ki + k0 states. In view of this, the augmented integral equation ~Ua
i (x) is

defined as:

~Ua
i (x) =

∫ ∆ci−x

0

Ma
i (τ)~Ua

i (x + τ)dτ + Da
i (∆ci − x) ·Fa

i
~̂
Ui(0)

where ~Ua
i (x) =

(
~Ui(x)
~U ′

i(x)

)
∈ Rka

i ×1, ~U ′
i(x) ∈ Rk0×1 is the vector representing reachability

probability for the augmented states in Gi, Fa
i =

(
F′

i B′
i

)
∈ Rka

i ×(ki+1+k0) such that
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F′
i =

(
Fi

0

)
∈ Rka

i ×ki+1 is the incidence matrix for delay edges and B′
i =

(
0
I

)
∈ Rka

i ×k0 ,

~̂
Ui(0) =

(
~Ui+1(0)
~U0(0)

)
∈ R(ki+1+k0)×1.

First, we prove the following equation:

~Ua
i (x) = Πa

i (∆ci − x) · Fa
i
~̂
Ui(0),

where

Πa
i (x) =

∫ x

0

Ma
i (τ)Πa

i (x − τ)dτ + Da
i (x). (26)

We consider the iterations of the solution of the following system of integral equations:
set ci,x = ∆ci − x.

~U
a,(0)
i (x) = ~0

~U
a,(j+1)
i (x) =

∫ ci,x

0

Ma
i (τ)~U

a,(j)
i (x+τ)dτ + Da

i (ci,x) · Fa
i
~̂
Ui(0).

and

Π
a,(0)
i (ci,x) = 0

Π
a,(j+1)
i (ci,x) =

∫ ci,x

0

Ma
i (τ)Π

a,(j)
i (ci,x−τ)dτ + Da

i (ci,x).

By induction on j, we prove the following relation:

~U
a,(j)
i (x) = Π

a,(j)
i (ci,x) ·Fa

i
~̂
Ui(0).

– Base case: ~U
a,(0)
i (x) = ~0 and Π

a,(0)
i (ci,x) = 0.

– Induction hypothesis: ~U
a,(j)
i (x) = Π

a,(j)
i (ci,x) ·Fa

i
~̂
Ui(0).

– Induction step j → j + 1:

~U
a,(j+1)
i (x) =

∫ ci,x

0

Ma
i (τ)~U

a,(j)
i (x + τ)dτ + Da

i (ci,x) · Fa
i
~̂
Ui(0).

By induction hypothesis we have

~U
a,(j+1)
i (x) =

∫ ci,x

0

Ma
i (τ)~U

a,(j)
i (x + τ)dτ + Da

i (ci,x) ·Fa
i
~̂
Ui(0)

=

∫ ci,x

0

Ma
i (τ)Π

a,(j)
i (ci,x−τ) · Fa

i
~̂
Ui(0)dτ + Da

i (ci,x) ·Fa
i
~̂
Ui(0)

=

(∫ ci,x

0

Ma
i (τ)Π

a,(j)
i (ci,x − τ)dτ + Da

i (ci,x)

)
· Fa

i
~̂
Ui(0)

= Π
a,(j+1)
i (ci,x) ·Fi

~̂
Ui(0).

Clearly, Πa
i (ci,x) = limj→∞ Π

a,(j+1)
i (ci,x) and ~Ua

i (x) = limj→∞
~U

a,(j+1)
i (x).

Let x = 0 and we obtain

~Ua
i (0) = Πa

i (ci,0) ·F
a
i
~̂
Ui(0).
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We can also write the above relation for x = 0 as:

 

~Ui(0)
~U ′

i(0)

!

= Π
a

i (∆ci)
`

F′
i B′

i

´

 

~Ui+1(0)
~U0(0)

!

=

„

Πi(∆ci) Π̄a

i (∆ci)

0 I

«„

Fi 0

0 I

«

 

~Ui+1(0)
~U0(0)

!

=

„

Πi(∆ci)Fi Π̄a

i (∆ci)

0 I

«

 

~Ui+1(0)
~U0(0)

!

=

 

Πi(∆ci)Fi
~Ui+1(0) + Π̄a

i (∆ci)~U0(0)
~U0(0)

!

.

As a result we can represent ~Ui(0) in the following matrix form

~Ui(0) = Πi(∆ci)Fi
~Ui+1(0) + Π̄a

i (∆ci)~U0(0)

by noting that Πi is formed by the first ki rows and columns of matrix Πa
i and Π̄a

i is
formed by the first ki rows and the last ka

i − ki columns of Πa
i .

For i = m, i.e., the last graph Gm, the region size is infinite, therefore delay transitions
do not exist. The vector ~Um(x + τ) in

∫∞

0 M̂m(τ)~Um(x + τ)dτ does not depend on
entering time x, therefore we can take it out of the integral. As a result we obtain∫∞

0 M̂m(τ)dτ · ~Um(0). More than that
∫∞

0 M̂m(τ)dτ boils down to P̂m and
∫∞

0 Bm(τ)dτ

to B̂m. Also we add the vector ~1F to ensure that the probability to start from a state
in VF is one (see (9)). �

Since the coefficients of the linear equations are all known, solving the system of
linear equations yields ~U0(0), which contains the probability Probv0(0) of reaching VF

from initial vertex v0.

Now we explain how (24) is derived from (17). The term Πi(∆ci)·Fi
~Ui+1(0) is for the

delay transitions, where Fi specifies how the delay transitions are connected between Gi

and Gi+1. The term Π̄a
i (∆ci) · ~U0(0) is for Markovian transitions with reset. Π̄a

i (∆ci) in
the augmented CTMC Ca

i specifies the probabilities to take first transitions inside Gi and
then a one-step Markovian transition back to G0. Eq. (25) is derived from (18). Since it
is the last region and time goes to infinity, the time to enter the region is irrelevant (thus

set to 0). Thus
∫∞

0 M̂i(τ)dτ boils down to P̂i. In fact, the Markovian jump probability

inside Gm can be taken from the embedded DTMC of Cm, which is P̂i.

Example 10. For the single-clock DMTA♦ in Fig. 4(a) (page 13), we show how to com-
pute the reachability probability Prob((v0, 0), (v5, ·)) on the region graph G (cf. Fig. 4(d)),
which has been partitioned into subgraphs G0, G1 and G2 as in Fig. 8.

The matrices for G0 are given as

M0(x) =




0 1·r0·e
−r0x 0

0.5·r1·e
−r1x 0 0

0 0 0


 F0 =




1 0 0 0
0 0 0 0
0 0 1 0




The matrices for G1 are given as

M1(x) =




0 r0·e
−r0x 0 0

0 0 0 0
0 0 0 r2·e

−r2x

0 0 0 0


 F1 =




0 0
0 0
1 0
0 1


 B1 =




0 0 0
1 0 1
0 0 0
0 0 0



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ℓ2, x > 2
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δ

δ

1
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reset,0.20.2

δ
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G0 G1 G2

Fig. 8. Partition the region graph in Fig. 4(d)

Ma
1(x) =




0 r0·e
−r0x 0 0 0 0 0

0 0 0 0 0.5·r1·e
−r1x 0 0.2·r1·e

−r1x

0 0 0 r2·e
−r2x 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




The matrices for G2 are given as

M̂2(x) =

(
0 r2·e

−r2x

0 0

)
P̂2 =

(
0 1
0 0

)

To obtain the system of linear equations, we need:

Π0(1) =




p00 p02 p04

p20 p22 p24

p40 p42 p44


 Π1(1) =




p11 p13 p15 p17

p31 p33 p35 p37

p51 p53 p55 p57

p71 p73 p75 p77


 Π̄a

1(1) =




p̄10 p̄12 p̄14

p̄30 p̄32 p̄32

p̄50 p̄52 p̄54

p̄70 p̄72 p̄74




All elements in these Π-matrices can be computed by the transient probability in
the corresponding CTMCs C0, C1 and Ca

1 (cf. Fig. 9).
The obtained system of linear equations by applying Theorem 4 is:




u0

u2

u4


 =




p00 p02 p04

p20 p22 p24

p40 p42 p44


 ·




1 0 0 0
0 0 0 0
0 0 1 0


 ·




u1

u3

u5

u7







u1

u3

u5

u7


 =




p11 p13 p15 p17

p31 p33 p35 p37

p51 p53 p55 p57

p71 p73 p75 p77


 ·




0 0
0 0
1 0
0 1


 ·

(
u6

u8

)
+




p̄10 p̄12 p̄14

p̄30 p̄32 p̄32

p̄50 p̄52 p̄54

p̄70 p̄72 p̄74


 ·




u0

u1

u3




(
u6

u8

)
=

(
0 1
0 0

)
·

(
u6

u8

)
+

(
0
1

)

This can be solved easily.
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Fig. 9. Derived CTMCs

Remark 6. We note that for two-clock DTA♦ which yield two-clock DMTA♦, the ap-
proach given in this section fails in general. In the single-clock case, the reset guarantees
to jump to G0(0) and delay to Gi+1(0) when it is in Gi. However, in the two-clock case,
after a delay or reset generally only one clock has a fixed value while the value of the
other one is not determined.

The time-complexity of computing the reachability probability in the single-clock
DTA♦ case is O(m · |S|

2
· |Loc|

2
· λ · ∆c + m3 · |S|

3
· |Loc|

3
), where m is the number of

constants appearing in the DTA♦, |S| is the number of states in the CTMC, |Loc| is the
number of locations in the DTA♦, λ is the maximal exit rate in the CTMC and ∆c =
max0≤i<m{ci+1 − ci}. The first term m · |S|

2
· |Loc|

2
·λ ·∆c is due to the uniformization

technique for computing transient distribution; and the second term m3 · |S|
3
· |Loc|

3

is the time complexity for solving a system of linear equations with O(m · |S| · |Loc|)
variables.

5 Model Checking DTAω Specifications

We now deal with DTAω specifications. Given the product Mω = (Loc,X , ℓ0, LocF , E, 
), we first define the region graph Gω(Mω) (or simply Gω) as (V, v0, V

ω
F , Λ, →֒) without

specifying how the accepting set V ω
F is defined. This will become clear later. The elements

V , v0, Λ and →֒ are defined in the same way as in Def. 10 (page 16).
The Muller acceptance conditions QF in the DTAω consider the infinite paths that

visit the locations in F ∈ QF infinitely often. For this sake, BSCCs in the region graph
Gω that consist of set of vertices corresponding to LF ∈ LocF are of most importance.
Note that it is not sufficient to consider the BSCCs in the DMTAω. The reason will
become clear in Remark 7. Let v ∈ B denote that vertex v is in the BSCC B. We define
accepting BSCCs as follows:

Definition 12 (aBSCC). Given a product C ⊗ Aω = (Loc,X , ℓ0, LocF , E, ) and its
region graph Gω, a BSCC B in Gω is accepting if there exists LF ∈ LocF such that for
any v ∈ B, v⇂1 ∈ LF . Let aB denote the set of accepting BSCCs in Gω.

Based on aB, we can now define the set of accepting vertices of Gω as V ω
F = {v ∈ B |

B ∈ aB}. Note that it is not an acceptance family but a set of accepting vertices.

Example 11. For the DMTAω in Fig. 5(c) with LocF =
{
{ℓ1, ℓ2, ℓ3}, {ℓ4, ℓ5, ℓ6}

}
, the

region graph is as in Fig. 10. There is one accepting BSCC, which has been labeled with
gray. This BSCC corresponds to the set {ℓ4, ℓ5, ℓ6} ∈ LocF in the DMTA

ω. There is
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no BSCC corresponding to the set {ℓ1, ℓ2, ℓ3} because in the region graph v12 and v14

are sink vertices connecting to the SCC. In other words, the probabilities will leak when
x > 2 on either ℓ1 or ℓ2. This is determined by the guards on the DTAω.
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v0, r0

v1, 0 v2, 0
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v15, 0

v16, r2

1

Fig. 10. Region graph of the product DMTA
ω in Fig. 5(c)

We remark on two points: 1) the probability of staying in an aBSCC is 1, consid-
ering both the delay and Markovian transitions. That is to say, there are no outgoing
transitions from which probabilities can “leak”; 2) any two aBSCCs are disjoint, such
that the probabilities to reach two BSCCs can be added. These two points are later
important for the computation of the reachability probability.

Let ProbC(Aω) be the probability of the set of infinite paths in C that can be accepted
by Aω . The following theorem computes ProbC(Aω) on the region graph:

Theorem 5. For any CTMC C, DTAω Aω, and the region graph Gω = (V, v0, V
ω
F , Λ, →֒

) of the product, it holds that:

ProbC(Aω) = ProbGω

(v0,♦V ω
F ).

Proof. We show the theorem by the following three steps:

1. ProbC(Aω) = ProbC⊗A(LocF ), where ProbC⊗A(LocF ) denotes the probability of
accepting paths of DMTA C ⊗ A w.r.t. Muller accepting conditions;

2. ProbC⊗A(LocF ) = ProbGω

(v0, LocF );

3. ProbGω

(v0, LocF) = ProbGω

(v0,♦V ω
F ).

For the first step, we note that PathsC(Aω) =
⋂

16i6k Paths i where

Paths i =
⋂

n>0

⋃

m>n

⋃

s0,...,sn,sn+1...,sm

C(s0, I0, . . . , In−1, sn, . . . , Im−1, sm), where

– {sn+1, . . . , sm} = LFi
;

– C(s0, I0, . . . , In−1, sn, . . . , Im−1, sm) is the cylinder set such that each timed path

of the cylinder set of the form s0
t0−−→ · · ·

tn−1−−−−→ sn · · ·
tm−1−−−−→ sm is a prefix of an

accepting path of A.
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Similar to Lemma 1, one can easily see that each path of CTMC C can be lifted to a
unique path of DMTAω C ⊗ Aω . Following the same argument as in Theorem 2, one
can obtain that for each cylinder set of the form C(s0, I0, . . . , In−1, sn, . . . , Im−1, sm), C

and C ⊗ Aω give rise to the same probability. Hence ProbC(Aω) = ProbC⊗Aω

(LocF ).
For the second step, we need to define a timed path of Gω, which is of the form

v0
t0−−→ v1

t2−−→ · · · such that given the initial valuation η0, one can construct a sequence
{ηi} such that

– ηi+1 = (ηi + ti)[Xi := 0] if ηi + ti |= Inv(vi) (namely, the transition from vi to vi+1

is via a Markovian transition); and
– ηi+1 = ηi + ti if ηi + ti ∈ ∂Inv(vi) (namely, the transition from vi to vi+1 is via a

forced boundary jump).

A path of Gω is accepted if the discrete part of the path, namely v0v1 · · · meets the
Muller condition.

Following the standard region construction, one can lift a timed path of DMTAω

C⊗Aω to a unique timed path of the corresponding region graph Gω . Moreover, following
the same argument of Theorem 3, one can show that C ⊗ Aω and Gω give rise to the
same probability to the accepted paths.

For the third step, we note that according to the ergodicity of PDP (region graph),
for each path of Gω, with probability 1 the states visited infinitely often constitute a
BSCC. It follows that

ProbGω

(v0, LocF) =
∑

B∈aB

Prob{ρ | inf(ρ) = B}.

We note that for each note v in an accepting BSCC, Prob{PathsG
ω

(v)} = 1. Hence

ProbG
ω

(v0, LocF) = ProbGω

(v0,♦V ω
F ).

�

Actually, the region graph Gω can be simplified to Gω
abs to compute ProbC(Aω). Gω

abs

is obtained by making (i) all vertices in V ω
F and (ii) all vertices that cannot reach V ω

F

absorbing. (i) is justified by the fact that for these v ∈ V ω
F , ProbG(v,♦V ω

F ) = 1; while

(ii) is because ProbG(v′,♦V ω
F ) = 0, for v′ cannot reach V ω

F . It is obvious to see that

ProbGω

(v0,♦V ω
F ) = ProbGω

abs(v0,♦V ω
F ).

ℓ0, 06x<1

ℓ4, 06x<1

v0, r0

v1, r1 v2, r3

ℓ5, 06x<1

ℓ0, 16x<2

0.60.4

δ

v9, r0

1 1

1

Fig. 11. The transformed region graph Gω

abs

Example 12. The transformed region graph Gω
abs of that in Fig. 10 is shown in Fig. 11.

We omit all the vertices that cannot be reached from v0 in Gω
abs. In this new model,

V ω
F = {v1, v2}. We now can perform the approach for computing timed-unbounded

reachability probabilities in Section 4 such that Eq. (7)-(9) can be applied. We have:
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ProbGω
abs(v0,♦V ω

F ) = ProbGω
abs(v0,♦ atv1)+ProbGω

abs(v0,♦ atv2). Note that ProbGω
abs(vi,♦V ω

F ) =

1 for i = 1, 2 and 0 for i = 9. For the delay transition v0
δ
→֒ v9,

Probv0,δ(0) = e−r0·1·Probv9(1) = e−r0·1·0 = 0.

For the Markovian transition v0

0.4,{x}
→֒ v1,

Probv0,v1(0) =

∫ 1

0

0.4·r0·e
−r0·τ ·Probv1(τ)dτ =

∫ 1

0

0.4·r0·e
−r0·τdτ.

A similar reasoning applies to v0

0.6,{x}
→֒ v2. In the end, we have

ProbC(Aω) =

∫ 1

0

(0.4 + 0.6)·r0·e
−r0·τdτ =

∫ 1

0

r0·e
−r0·τdτ = 1 − e−r0 .

Remark 7 (Why not BSCCs in the product?). There are two BSCCs in the product
DMTAω: one formed by {ℓ1, ℓ2, ℓ3} and the other by {ℓ4, ℓ5, ℓ6}. As turned out in the
example that only the latter forms a BSCC in the region graph while the former does
not. This is because the guards on the transitions also play a role on whether a path
can be accepted. The impact of guards, however, is not immediately clear in the product
DMTAω, but is implicitly consumed in the region graph. This justifies finding BSCCs
in the region graph instead of in the product.

Theorem 5 implies that computing the probability of a set of infinite paths (LHS)
can be reduced to computing the probability of a set of finite paths (RHS). The latter
has been solved in Section 4 with the characterization of a system of integral equations
and also the approximation by a system of PDEs. The case of a single clock DTA

ω, due
to this reduction, can also be solved as a system of ODEs (as in Section 4.2).

6 Conclusion

We addressed the quantitative verification of a CTMC C against a DTA♦ A (DTAω Aω).
As a key result, we showed that the set of the accepting paths in C by DTA is measurable
and the probability of C |= A can be reduced to computing reachability probabilities in
the embedded DTMP of a PDP. The probabilities can be characterized by a system of
Volterra integral equations of the second type and can be approximated by a system of
PDEs. For single-clock DTA♦, this reduces to solving a system of linear equations whose
coefficients are a system of ODEs. The probability of C |= Aω is reducible to computing
the reachability probabilities to the accepting BSCCs in the region graph and the thus
obtained PDP.
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1992-19-06 M. Chakravarty, M. Köhler: Equational Constraints, Residuation, and

the Parallel JUMP-Machine
1992-19-07 J. Seward: Polymorphic Strictness Analysis using Frontiers (Draft Ver-

sion)
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1997-03 Andreas Winter, Andy Schürr: Modules and Updatable Graph Views for
PROgrammed Graph REwriting Systems

1997-04 Markus Mohnen, Stefan Tobies: Implementing Context Patterns in the
Glasgow Haskell Compiler

1997-05 ∗ S.Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-
tische Spezifikation inkrementeller Integrationswerkzeuge

1997-06 Matthias Nicola, Matthias Jarke: Design and Evaluation of Wireless
Health Care Information Systems in Developing Countries

1997-07 Petra Hofstedt: Taskparallele Skelette für irregulär strukturierte Prob-
leme in deklarativen Sprachen

1997-08 Dorothea Blostein, Andy Schürr: Computing with Graphs and Graph
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gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit
BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-
ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-
ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:
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mann: Adaptive Channel Assignment to Support QoS and Load Balanc-
ing for Wireless Mesh Networks
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