
Aachen
Department of Computer Science

Technical Report

Quantitative Model Checking of

Continuous-Time Markov Chains

Against Timed Automata

Specifications

Taolue Chen, Tingting Han, Joost-Pieter Katoen, and Alexandru

Mereacre

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2009-02

RWTH Aachen · Department of Computer Science · August 2009



The publications of the Department of Computer Science of RWTH Aachen University
are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/



Quantitative Model Checking of Continuous-Time

Markov Chains Against Timed Automata

Specifications

Taolue Chen1, Tingting Han2,3, Joost-Pieter Katoen2,3, and Alexandru Mereacre2

1 Design and Analysis of Communication Systems, University of Twente, The Netherlands
2 Software Modelling and Verification, RWTH Aachen University, Germany

3 Formal Methods and Tools, University of Twente, The Netherlands

Abstract. We study the following problem: given a continuous-time Markov
chain (CTMC) C, and a linear real-time property provided as a deterministic
timed automaton (DTA) A, what is the probability of the set of paths of C that
are accepted by A (C satisfies A)? It is shown that this set of paths is measur-
able and computing its probability can be reduced to computing the reachability
probability in a piecewise deterministic Markov process (PDP). The reachability
probability is characterized as the least solution of a system of integral equations
and is shown to be approximated by solving a system of partial differential equa-
tions. For the special case of single-clock DTA, the system of integral equations
can be transformed into a system of linear equations where the coefficients are
solutions of ordinary differential equations.

1 Introduction

Continuous-time Markov chains (CTMCs) are one of the most important models in
performance and dependability analysis. They are exploited in a broad range of ap-
plications, and constitute the underlying semantical model of a plethora of modeling
formalisms for real-time probabilistic systems such as Markovian queueing networks,
stochastic Petri nets, stochastic variants of process algebras, and, more recently, calculi
for system biology. CTMC model checking has been focused on the temporal logic CSL
(Continuous Stochastic Logic [ASSB00,BHHK03]), a variant of timed CTL where the
CTL path quantifiers are replaced by a probabilistic operator. CSL model checking pro-
ceeds — like CTL model checking — by a recursive descent over the parse tree of the
formula. One of the key ingredients is that reachability probabilities for time-bounded
until-formulae can be approximated arbitrarily closely by a reduction to transient anal-
ysis in CTMCs. This results in a polynomial-time algorithm that has been realized in
model checkers such as PRISM and MRMC.

This paper concerns the problem of verifying CTMCs versus linear real-time spec-
ifications, which are based on timed automata. Concretely speaking, we explore the
following problem: given a CTMC C, and a linear real-time property provided as a
deterministic timed automaton [AD94] (DTA) A, what is the probability of the set of
paths of C which are accepted by A (C |= A)? We consider two kinds of acceptance
conditions: the reachability condition and the Muller acceptance condition. The former
accepts (finite) paths which reach some final state and the latter accepts (infinite) paths
that infinitely often visit some set of final states. We set off to show that this problem is
well-defined in the sense that the path set is measurable. Computing its probability can
then be reduced to computing the reachability probability in a piecewise deterministic
Markov process (PDP) [Dav93], a model that is used in, e.g., stochastic control theory
and financial mathematics. This result relies on a product construction of CTMC C
and DTA A, denoted C ⊗ A, yielding deterministic Markov timed automata (DMTA),
a variant of DTA in which, besides the usual ingredients of timed automata, like guards
and clock resets, the location residence time is exponentially distributed. We show that



the probability of C |= A coincides with the reachability probability of accepting paths
in C ⊗ A. The underlying PDP of a DMTA is obtained by a slight adaptation of the
standard region construction. The desired reachability probability is characterized as the
least solution of a system of integral equations that is obtained from the PDP. Finally,
this probability is shown to be approximated by solving a system of partial differential
equations (PDEs). For single-clock DTA, we show that the system of integral equations
can be transformed into a system of linear equations, where the coefficients are solutions
of some ordinary differential equations (ODEs), which can either have an analytical so-
lution (for small state space) or an arbitrarily closely approximated solution efficiently.

Related work is model checking of asCSL [BCH+07] and CSLTA [DHS09]. asCSL al-
lows to impose a time constraint on action sequences described by regular expressions;
its model-checking algorithm is based on a deterministic Rabin automaton construc-
tion. In CSLTA, time constraints (of until modalities) are specified by single-clock DTA.
In [DHS09], C ⊗ A is interpreted as a Markov renewal processes and model checking
CSLTA is reduced to computing reachability probabilities in a DTMC whose transition
probabilities are given by subordinate CTMCs. This technique cannot be generalized
to multiple clocks. Our approach does not restrict the number of clocks and supports
more specifications than CSLTA. For the single-clock case, our approach produces the
same result as [DHS09], but yields a conceptually simpler formulation whose correctness
can be derived from the simplification of the system of integral equations obtained in
the general case. Moreover, measurability has not been addressed in [DHS09]. Other re-
lated work [BBB+07,BBB+08,BBBM08] provides a quantitative interpretation to timed
automata where delays and discrete choices are interpreted probabilistically. In this ap-
proach, delays of unbounded clocks are governed by exponential distributions like in
CTMCs. Decidability results have been obtained for almost-sure properties [BBB+08]
and quantitative verification [BBBM08] for (a subclass of) single-clock timed automata.

2 Preliminaries

Given a set H , let Pr : F(H) → [0, 1] be a probability measure on the measurable
space (H,F(H)), where F(H) is a σ-algebra over H . Let Distr(H) denote the set of
probability measures on this measurable space.

2.1 Continuous-time Markov chains

Definition 1 (CTMC). A (labeled) continuous-time Markov chain (CTMC) is a tuple
C = (S,AP, L, α,P, E) where S is a finite set of states; AP is a finite set of atomic
propositions; L : S → 2AP is the labeling function; α ∈ Distr(S) is the initial
distribution; P : S × S → [0, 1] is a stochastic transition probability matrix; and
E : S → R>0 is the exit rate function.

The probability to exit state s as well as to take the transition s → s′ in t time units is∫ t

0 E(s)·e−E(s)τdτ and P(s, s′)·
∫ t

0 E(s)·e−E(s)τdτ , respectively. A state s is absorbing if
P(s, s) = 1. The embedded discrete-time Markov chain (DTMC) of CTMC C is obtained
by deleting the exit rate function E, i.e., emb(C) = (S,AP, L, α,P).

Definition 2 (Timed paths). Let C be a CTMC. PathsCn := S×(R>0 × S)
n

is the set
of paths of length n in C; the set of finite paths in C is defined by PathsC⋆ =

⋃
n∈N

PathsCn
and PathsCω := (S × R>0)

ω
is the set of infinite paths in C. PathsC = PathsC⋆ ∪ PathsCω

denotes the set of all paths in C.

We denote a path ρ ∈ PathsC(s0) (ρ ∈ Paths(s0) for short) as the sequence ρ =

s0
t0−−→ s1

t1−−→ s2 · · · starting in state s0 such that for n 6 |ρ| (|ρ| is the number of
transitions in ρ if ρ is finite); ρ[n] := sn is the n-th state of ρ and ρ〈n〉 := tn is the time
spent in state sn. Let ρ@t be the state occupied in ρ at time t ∈ R>0, i.e. ρ@t := ρ[n]

4



where n is the smallest index such that
∑n

i=0 ρ〈i〉 > t. We assume w.l.o.g. that the time
to stay in any state is strictly greater than 0.

The definition of a Borel space on paths through CTMCs follows [Var85,BHHK03].
A CTMC C with initial state s0 yields a probability measure PrC on paths as follows: Let
s0, · · ·, sk ∈ S with P(si, si+1) > 0 for 0 6 i < k and I0, · · ·, Ik−1 nonempty intervals in
R>0, C(s0, I0, · · ·, Ik−1, sk) denotes the cylinder set consisting of all paths ρ ∈ Paths(s0)
such that ρ[i] = si (i 6 k), and ρ〈i〉 ∈ Ii (i < k). F(Paths(s0)) is the smallest σ-
algebra on Paths(s0) which contains all sets C(s0, I0, · · ·, Ik−1, sk) for all state sequences
(s0, · · ·, sk) ∈ Sk+1 with P(si, si+1) > 0 (0 6 i < k) and I0, · · ·, Ik−1 range over all
sequences of nonempty intervals in R>0. The probability measure PrC on F(Paths(s0))
is the unique measure defined by induction on k by PrC(C(s0)) = α(s0) and for k > 0:

PrC
(
C(s0, I0, · · ·, Ik−1, sk)

)
= PrC

(
C(s0, I0, · · ·, Ik−2, sk−1)

)

·

∫

Ik−1

P(sk−1, sk)E(sk−1)·e
−E(sk−1)τdτ. (1)

Example 1. An example CTMC is illustrated in Fig. 4(b) (page 13), where AP =
{a, b, c} and s0 is the initial state, i.e., α(s0) = 1 and α(s) = 0 for any s 6= s0. The
exit rates and transition probabilities are as shown.

2.2 Deterministic timed automata

Let X = {x1, . . ., xn} be a set of variables in R. An X -valuation is a function η : X → R

assigning to each variable x a value η(x). Let V(X ) denote the set of all valuations
over X . A constraint over X , denoted by g, is a subset of Rn. Let B(X ) denote the
set of constraints over X . An X -valuation η satisfies constraint g, denoted as η |= g if
(η(x1), . . . , η(xn)) ∈ g.

Occasionally we use a special case of nonnegative variables, called clocks. We write ~0
for the valuation that assigns 0 to all clocks. For a subset X ⊆ X , the reset of X , denoted
η[X := 0], is the valuation η′ such that ∀x ∈ X. η′(x) := 0 and ∀x /∈ X. η′(x) := η(x). For
δ ∈ R>0, η+δ is the valuation η′′ such that ∀x ∈ X . η′′(x) := η(x)+δ, which implies that
all clocks proceed at the same speed, or equivalently, ∀xi ∈ X . ẋi = 1. A clock constraint
on X is an expression of the form x ⊲⊳ c, or x − y ⊲⊳ c, or the conjunction of any clock
constraints, where x, y ∈ X , ⊲⊳ ∈ {<,6, >,>} and c ∈ N.

Definition 3 (DTA). A deterministic timed automaton is a tuple
A = (Σ,X , Q, q0, QF,→) where

– Σ is a finite alphabet;
– X is a finite set of clocks;
– Q is a nonempty finite set of locations;
– q0 ∈ Q is the initial location;

– → ∈ Q × Σ × B(X ) × 2X × Q is an edge relation satisfying: q a,g,X−−−−→ q′ and

q a,g′,X′

−−−−−→ q′′ with g 6= g′ implies g ∩ g′ = ∅; and
– QF is the Y acceptance condition, where

– ◮ if Y= reachability, then QF := QF ⊆ Q is a set of accepting locations;
– ◮ if Y= Muller, then QF := QF ⊆ 2Q is the acceptance family.

We refer to q a,g,X−−−−→ q′ as an edge, where a ∈ Σ is the input symbol, the guard g
is a clock constraint on the clocks of A, X ⊆ X is a set of clocks to be reset and q′ is
the successor location. The intuition is that the DTA A can move from location q to
location q′ when the input symbol is a and the guard g holds, while the clocks in X
should be reset when entering q′. Note that we don’t consider diagonal constraints like
x − y ⊲⊳ c in DTA. However, it is known that this does not harm the expressiveness of
a TA [BPDG98].

5



We will denote DTA♦ and DTAω for the DTA with reachability and Muller accep-
tance conditions, respectively; while with DTA we denote the general case covering both
DTA♦ and DTAω. As a convention, we assume each location q ∈ QF in DTA♦ is a sink.

An (infinite) timed path in A is of the form θ = q0
a0,t0−−−−→ q1

a1,t1−−−−→ · · · , satisfying that
η0 = ~0, and for all j > 0, it holds that tj > 0, ηj + tj |= gj and ηj+1 = (ηj + tj)[Xj := 0],
where ηj is the clock evaluation on entering qj . Let inf(θ) denote the set of states q ∈ Q
such that q = qi for infinitely many i > 0. Furthermore, all the definitions on paths in
CTMCs can be adapted.

Definition 4 (DTA accepting paths). An infinite path θ is accepted by a DTA♦ if
there exists some i > 0 such that θ[i] ∈ QF ; θ is accepted by a DTA

ω if inf(θ) ∈ QF .

Example 2 (DTA♦ and DTAω). An example DTA♦ is shown in Fig. 4(c) (page 13)
over the alphabet {a, b}. The reachability acceptance condition is characterized by the
accepting location set QF = {q1}. The unique initial location is q0 and the guards x < 1
and 1 < x < 2 are disjoint on the edges labeled with a and emanating from q0. This
guarantees the determinism.

We then consider the DTA
ω in Fig. 1 over Σ = {a, b, c}. The unique initial location

is q0 and the Muller acceptance family is QF =
{
{q0, q2}

}
. Since QF is a singleton, we

can indicate it in the figure by the double-lined states. Any accepting path should cycle
between the states q0 and q1 for finitely many times, and between states q0 and q2 for
infinitely many times. The determinism is guaranteed of the similar reason.

q0 q2q1

a, x < 1, ∅

b, {x}

a, 1 < x < 2, {x}

c, {x}

Fig. 1. DTA with Muller acceptance conditions (DTA
ω)

Remark 1 (Muller not Büchi). According to [AD94], the expressive power of (deter-
ministic) timed Muller automata (D)TMA and (deterministic) timed Büchi automata
(D)TBA has the following relation:

TMA = TBA > DTMA > DTBA.

Also notice that DTMA are closed under all Boolean operators (union, intersection and
complement), while DTBA are not closed under complement. These two points justify
our choice of DTMA (or DTAω) instead of DTBA.

Remark 2 (Successor location). Due to the determinism, we can replace the transition
relation →∈ Q×Σ×B(X )×2X×Q by a function succ : Q×Σ×B(X ) 7→ 2X×Q. Namely,
given a location q, an action a and a guard g, there is at most one successor location
q′. Note that the set of reset clocks is irrelevant to the successor location. Therefore, if
only the successor location is of interest, then we can thus simplify the function succ to
s̃ucc : Q × Σ × B(X ) 7→ Q, i.e., q′ = s̃ucc(q, a, g).

6



2.3 Piecewise-Deterministic Markov Processes

The model PDP was introduced by Davis in 1984 [Dav84]. We abbreviate it as PDP

instead of literally PDMP, following the convention by Davis [Dav93]. A PDP consti-
tutes a general framework that can model virtually any stochastic system without diffu-
sions [Dav93] and for which powerful analysis and control techniques exist [LL85,LY91,CD88].
A PDP is a stochastic process of hybrid type, i.e., the stochastic process concerns both
a discrete location and a continuous variable. The class of PDPs was recognized as a
very wide class holding many types of stochastic hybrid system. This makes PDP a
useful model for an enormous variety of applied problems in engineering, operations re-
search, management science and economics; examples include queueing systems, stochas-
tic scheduling, fault detection in systems engineering, etc.

Given a set H , let Pr : F(H) → [0, 1] be a probability measure on the measurable
space (H,F(H)), where F(H) is a σ-algebra over H . Let Distr(H) denote the set of
probability measures on this measurable space.

Definition 5 (PDP [Dav93]). A piecewise-deterministic (Markov) process is a tuple
Z = (Z,X , Inv , φ, Λ, µ) with:

– Z is a finite set of locations;
– X is a finite set of variables;
– Inv : Z → B(X ) is an invariant function;
– φ : Z × V(X ) × R → V(X ) is a flow function1;
– Λ : S → R>0 is an exit rate function;

– µ : S̊ ∪ ∂S → Distr(S) is the transition probability function, where:

S := {ξ := (z, η) | z ∈ Z, η |= Inv(z)} is the state space of the PDP Z, S̊ is the interior

of S and ∂S =
⋃

z∈Z{z}×∂Inv(z) is the boundary of S with ∂Inv(z) = Inv(z)\ ˚Inv(z) as

the boundary of Inv(z), ˚Inv(z) the interior of Inv(z) and Inv(z) the closure of Inv(z).
Functions Λ and µ satisfy the following conditions:

– ∀ξ ∈ S. ∃ǫ(ξ) > 0. function t 7→ Λ(ξ ⊕ t) is integrable on [0, ǫ(ξ)[, where ξ ⊕ t =(
z, φ(z, η, t)

)
, for ξ = (z, η);

– Function ξ 7→ µ(ξ, A)2 is measurable for any A ∈ F(S), where F(S) is a σ-algebra
generated by the countable union

⋃
z∈Z{z}×Az with Az being a subset of F(Inv(z))

and µ(ξ, {ξ}) = 0.

We will explain the behavior of a PDP by the aid of Fig. 2. A PDP consists of a finite
set of locations each with a location invariant over a set of variables. A state consists of
a location and a valuation of the variables. A PDP is only allowed to stay in location z
when the constraint Inv(z) is satisfied. If e.g., Inv(z) is x2

1 − 2x2 6 1.5∧x3 > 2, then its

interior ˚Inv(z) is x2
1 − 2x2 < 1.5 ∧ x3 > 2 and its closure Inv(z) is x2

1−2x2 6 1.5∧x3 > 2,
and the boundary ∂Inv(z) is x2

1 − 2x2 = 1.5∧x3 = 2. In Fig. 2, there are three locations
z0, z1, z2 and the gray zones are the valid valuations for respective locations. A state is a
black dot. A boundary state is a white dot. When a new state ξ = (z, η) is entered and
Inv(z) is valid, i.e., ξ ∈ S, the PDP can (i) either delay to state ξ′ = (z, η′) ∈ S ∪ ∂S

according to both the flow function φ and the time delay t (in this case ξ′ = ξ ⊕ t); (ii)
or take a Markovian jump to state ξ′′ = (z′′, η′′) ∈ S with probability µ(ξ, {ξ′′}). Note
that the residence time of a location is exponentially distributed. When the variable
valuation satisfies the boundary (i.e., ξ ∈ ∂S), the PDP is forced to take a boundary
jump and leave the current location z with probability µ(ξ, {ξ′′}) to state ξ′′.

The flow function φ defines the time-dependent behavior in a single location, in
particular, how the variable valuations change when time elapses. State ξ ⊕ t is the

1 The flow function is the solution of a system of ODEs with a Lipschitz continuous vector
field.

2 µ(ξ, A) is a shorthand for (µ(ξ))(A).

7



z0

z1

z2

ξ ξ ⊕ tdelay, φ

delay, determined by φ

forced boundary jump

locations

time

Markovian jump with prob. µ(ξ, {ξ′})

ξ′ ξ′ ⊕ ♭(ξ)

ξ′′

Fig. 2. The behavior of a PDP

timed successor of state ξ (on the same location) given that t time units have passed.
The PDP is piecewise-deterministic because in each location (one piece) the behavior
is deterministically determined by φ. The process is Markovian as the current state
contains all the information to predict the future progress of the process.

The embedded discrete-time Markov process (DTMP) emb(Z) of the PDP Z has
the same state space S as Z. The (one-jump) transition probability from a state ξ to a
set A ⊆ S of states (on different locations as ξ), denoted µ̂(ξ, A), is given by [Dav93]:

µ̂(ξ, A) =

∫ ♭(ξ)

0

(Q1A)(ξ ⊕ t)·Λ (ξ ⊕ t) e−
R

t
0

Λ(ξ⊕τ)dτ dt (2)

+ (Q1A)(ξ ⊕ ♭(ξ)) · e−
R ♭(ξ)
0 Λ(ξ⊕τ)dτ , (3)

where ♭(ξ) = inf{t > 0 | ξ ⊕ t ∈ ∂S} is the minimal time to hit the boundary if such
time exists; ♭(ξ) = ∞ otherwise. (Q1A)(ξ) =

∫
S
1A(ξ′)µ(ξ, dξ′) is the accumulative (one-

jump) transition probability from ξ to A and 1A(ξ) is the characteristic function such
that 1A(ξ) = 1 when ξ ∈ A and 1A(ξ) = 0 otherwise. Term (2) specifies the probability
to delay to state ξ ⊕ t (on the same location) and take a Markovian jump from ξ ⊕ t to
A. Note the delay t can take a value from [0, ♭(ξ)). Term (3) is the probability to stay
in the same location for ♭(ξ) time units and then it is forced to take a boundary jump
from ξ ⊕ ♭(ξ) to A since Inv(z) is invalid.

z0

x < 2

ẋ = 1

1

3

z1

x ∈ R

ẋ = 1

z2

x ∈ R

ẋ = 1

2

3

Fig. 3. An example PDP Z

Example 3. Fig. 3 depicts a 3-location PDP Z with one variable x, where Inv(z0)
is x < 2 and Inv(z1), Inv(z2) are both x ∈ [0,∞). Solving ẋ = 1 gives the flow
function φ(zi, η(x), t) = η(x) + t for i = 0, 1, 2. The state space of Z is {(z0, η) |

8



0 < η(x) < 2} ∪ {(z1, R)} ∪ {(z2, R)}. Let exit rate Λ(ξ) = 5 for any ξ ∈ S. For
η |= Inv(z0), let µ

(
(z0, η), {(z1, η)}

)
:= 1

3 , µ
(
(z0, η), {(z2, η)}

)
:= 2

3 and the bound-

ary measure µ
(
(z0, 2), {(z1, 2)}

)
:= 1. Given state ξ0 = (z0, 0) and the set of states

A = (z1, R), the time for ξ0 to hit the boundary is ♭(ξ0) = 2. Then (Q1A)(ξ0 ⊕ t) = 1
3 if

t < 2, and (Q1A)(ξ0 ⊕ t) = 1 if t = 2. In emb(Z), the transition probability from state
ξ0 to A is:

µ̂(ξ0, A) =

∫ 2

0

1

3
·5·e−

R

t
0

5 dτ dt + 1·e−
R 2
0

5 dτ =
1

3
+

2

3
e−10. �

3 Model checking DTA specifications

In this section, we deal with model checking linear real-time properties specified by DTA.
The aim of model checking is to compute the probability of the set of paths in CTMC C
accepted by a DTA A. We prove that this can be reduced to computing the reachability
probability in the product of C and A (Theorem 2). To simplify the notations, we assume
w.l.o.g. that a CTMC has only one initial state s0, i.e., α(s0) = 1, and α(s) = 0 for
s 6= s0.

Definition 6 (CTMC paths accepted by a DTA). Given a
CTMC C = (S,AP, L, s0,P, E) and a DTA A = (2AP,X , Q, q0, QF,→), a CTMC path

σ = s0
t0−−→ s1

t1−−→ s2 · · · is accepted by A if the DTA path

q0
L(s0),t0−−−−−−→ s̃ucc

(
q0, L(s0), g0

)
︸ ︷︷ ︸

q1

L(s1),t1−−−−−−→ s̃ucc
(
q1, L(s1), g1

)
︸ ︷︷ ︸

q2

· · ·

is accepted by A, where η0 = ~0, gi is the unique guard (if it exists) such that ηi + ti |= gi

and ηi+1 = (ηi + ti)[Xi := 0].

The model checking problem on CTMC C against DTA A is to compute the prob-
ability of the set of paths in C that can be accepted by A. Formally, let

PathsC(A) := { ρ ∈ PathsC | ρ is accepted by DTA A }.

Prior to computing the probability of this set, we first prove its measurability:

Theorem 1. For any CTMC C and DTA A, PathsC(A) is measurable.

Proof. We first deal with the case that A only contains strict inequality. Since PathsC(A)
is a set of finite paths, PathsC(A) =

⋃
n∈N

PathsCn(A), where PathsCn(A) is the set of ac-

cepting paths by A of length n. For any path ρ := s0
t0−−→ s1 · · · sn−1

tn−1−−−−→ sn ∈ PathsCn(A),

we can associate ρ with a path θ := q0
L(s0),t0−−−−−−→ q1 · · ·qn−1

L(sn−1),tn−1−−−−−−−−−→ qn of A induced
by the location sequence:

q0
L(s0),g0,X0−−−−−−−−→ q1 · · · qn−1

L(sn−1),gn−1,Xn−1−−−−−−−−−−−−−−→ qn,

such that qn ∈ QF and there exist {ηi}16i<n with 1) η0 = ~0; 2) (ηi + ti) |= gi; and 3)
ηi+1 = (ηi + ti)[Xi := 0], where ηi is the clock valuation on entering qi.

To prove the measurability of PathsCn(A), it suffices to show that for each path

ρ := s0
t0−−→ · · ·

tn−1−−−−→ sn ∈ PathsCn(A), there exists a cylinder set C(s0, I0, . . ., In−1, sn)
(Cρ for short) that contains ρ and that each path in Cρ is accepted by A. The interval
Ii is constructed according to ti as Ii = [t−i , t+i ] such that

– If ti ∈ Q, then t−i = t+i := ti;

9



– else if ti ∈ R \ Q, then let t−i , t+i ∈ Q such that
– t−i 6 ti 6 t+i and ⌊t−i ⌋ = ⌊ti⌋ and ⌈t+i ⌉ = ⌈ti⌉;

– t+i − t−i <
∆

2 · n
, where (with {·} denoting the fractional part)

∆ = min06j<n, x∈X

{
{ηj(x) + tj}, 1 − {ηj(x) + tj}

∣∣ {ηj(x) + tj} 6= 0
}

3.

To show that ρ′ := s0
t′0−−→ · · ·

t′n−1−−−−→ sn ∈ Cρ is accepted by A, let η′
0 := ~0 and

η′
i+1 := (η′

i + t′i)[Xi := 0]. We will show that η′
i + t′i |= gi. To this end, it suffices to

observe that η′
0 = η0, and for any i > 0 and any clock variable x,

∣∣η′
i(x) − ηi(x)

∣∣ 6
i−1∑

j=0

∣∣t′j − tj
∣∣ 6

i−1∑

j=0

t+j − t−j 6 n · (t+j − t−j ) 6
∆

2
.

We claim that since DTA A is open, it must be the case that η′
i + t′i |= gi. To see this,

suppose gi is of the form x > K for some integer K. We have that |η′
i(x) − ηi(x)| 6 ∆

2

and |t′i − ti| < ∆
2 , therefore |(η′

i(x) + t′i) − (ηi(x) + ti)| < ∆. Note that ηi(x) + ti > K,
and thus ηi(x) + ti − {ηi(x) + ti} = ⌈ηi(x) + ti⌉ ≥ K. Hence ηi(x) + ti − ∆ ≥ K since
∆ 6 {ηi(x) + ti}. It follows that η′

i(x) + t′i > K. A similar argument applies to the case
x < K and can be extended to any constraint gi. Thus, η′

i + t′i |= gi.
It follows that Cρ is a cylinder set of C and each path in this cylinder set is accepted

by A, namely, ρ ∈ Cρ and Cρ ⊆ PathsCn(A) with |ρ| = n. Together with the fact that

PathsCn(A) ⊆
⋃

ρ∈PathsC
n(A) Cρ, we have:

PathsCn(A) =
⋃

ρ∈PathsC
n(A)

Cρ and PathsC(A) =
⋃

n∈N

⋃

ρ∈PathsC
n(A)

Cρ.

We note that each interval in the cylinder set Cρ has rational bounds, thus Cρ is

measurable. It follows that PathsC(A) is a union of countably many cylinder sets, and
hence is measurable.

We then deal with A with equalities of the form x = n for n ∈ N. We show the
measurability by induction on the number of equalities appearing in A. We have shown
the base case (DTA with only strict inequalities). Now suppose there exists a transition

ι = q
a,g,X
−→ q′ where g contains x = n. We first consider a DTA Aι obtained from A by

deleting the transitions from q other than ι. We then consider three DTA Āι, A
>
ι and

A<
ι where Āι is obtained from Aι by replacing x = n by true; A>

ι is obtained from Aι

by replacing x = n by x > n and A<
ι is obtained from Aι by replacing x = n by x < n.

It is not difficult to see that

PathsC(Aι) = PathsC(Āι) \ (PathsC(A>
ι ) ∪ PathsC(A<

ι )).

Note that this holds since A is deterministic. By induction hypothesis, PathsC(Āι),
PathsC(A>

ι ) and PathsC(A<
ι ) are measurable. Hence PathsC(Aι) is measurable. Fur-

thermore, we note that

PathsC(A) =
⋃

ι=q
a,g,X
−→ q′

PathsC(Aι),

therefore PathsC(A) is measurable as well.
For arbitrary A with time constraints of the form x ⊲⊳ n where ⊲⊳∈ {≥,≤}, we

consider two DTA A= and A⊲⊳. Clearly PathsC(A) = PathsC(A=)∪PathsC(A⊲̄⊳), where
⊲̄⊳ => if ⊲⊳=≥; < otherwise. Clearly PathsC(A) is measurable. �

3 Note that we are considering open timed automata. Hence for any i with ηi + ti |= gi, it must
be the case that {ηi(x) + ti} 6= 0.

10



3.1 Product of CTMC and DTA

As the traditional way of verifying the automata specifications, a product between the
model and the automaton is built first and the (adapted) property can then be checked
on the product model. Our approach is carried out in the same fashion. In this section,
we focus on building the product (and some more transformations on the product) and
in Section 4 and 5, the probability measure ProbC(A) will be computed.

We will first exploit the product of a CTMC and a DTA, which is what we call a
deterministic Markovian timed automaton:

Definition 7 (DMTA). A deterministic Markovian timed automaton is a tuple M =
(Loc,X , ℓ0, LocF, E, ), where

– Loc is a finite set of locations;
– X is a finite set of clocks;
– ℓ0 ∈ Loc is the initial location;
– LocF is the acceptance condition with LocF := LocF ⊆ Loc the reachability condition

and LocF := LocF ⊆ 2Loc the Muller condition;
– E : Loc → R>0 is the exit rate function; and
–  ⊆ Loc×B(X )×2X×Distr(Loc) is an edge relation satisfying (ℓ, g, X, ζ), (ℓ, g′, X ′, ζ′)

∈ with g 6= g′ implies g ∩ g′ = ∅.

The set of clocks X and the related concepts, e.g., clock valuation, clock constraints

are defined as for DTA. We refer to ℓ
g,X

///o/o/o ζ for distribution ζ ∈ Distr(Loc) as an edge

and refer to ℓ
�

g,X

ζ(ℓ′)

// ℓ′ as a transition of this edge. The intuition is that when entering

location ℓ, the DMTA chooses a residence time which is governed by the exponential
distribution, i.e., the probability to leave ℓ within t time units is 1 − e−E(ℓ)t. When it

decides to jump, at most one edge, say ℓ
g,X

///o/o/o ζ , due to the determinism, is enabled

and the probability to jump to ℓ′ is given by ζ(ℓ′). The DMTA is deterministic as it has
a unique initial location and disjoint guards for all edges emanating from any location.
Similar as in DTAs, DMTA♦ and DMTAω are defined in an obvious way and DMTA

refers to both cases.

Definition 8 (Paths in DMTAs). Given a DMTA M, an (infinite) symbolic path
is of the form:

ℓ0
�

g0,X0

p0

// ℓ1
�

g1,X1

p1

// ℓ2 · · ·

where pi = ζi(ℓi+1) is the transition probability of ℓi
�

gi,Xi

ζi(ℓi+1)
// ℓi+1 .

An infinite path in M (induced from the symbolic path) is of the form

τ = ℓ0
t0−−→ ℓ1

t1−−→ ℓ2 · · · and has the property that η0 = ~0, (ηi + ti) |= gi, and ηi+1 =
(ηi + ti)[Xi := 0] where i > 0 and ηi is the clock valuation of X in M on entering
location ℓi.

The path τ is accepted by a DMTA♦ if there exists n > 0, such that τ [n] ∈ LocF .
It is accepted by DMTAω iff inf(τ) ∈ LocF , i.e., ∃LF ∈ LocF such that inf(τ) = LF .

All definitions on paths in CTMCs can be carried over to DMTA paths.

DMTA Semantics. First we characterize the one-jump probability ℓ
�

g,X

P(ℓ,ℓ′)

// ℓ′ within

time interval I starting at clock valuation η, denoted pη(ℓ, ℓ′, I), as follows:

pη(ℓ, ℓ′, I) =

∫

I

E(ℓ) · e−E(ℓ)τ

︸ ︷︷ ︸
(i) density to leave ℓ at τ

· 1g(η + τ)︸ ︷︷ ︸
(ii) η+τ |=g?

· P(ℓ, ℓ′)︸ ︷︷ ︸
(iii) probabilistic jump

dτ (4)

11



Actually, (i) characterizes the delay τ at location ℓ which is exponentially distributed
with rate E(ℓ); (ii) is the characteristic function, where 1g(η + τ) = 1, if η + τ |= g; 0,
otherwise. It compares the current valuation η + τ with g and rules out the paths that
cannot lead to ℓ′; and (iii) indicates the probabilistic jump. Note that (i) and (iii) are
features from CTMCs while (ii) is from DTA. The characteristic function is Riemann
integrable as it is bounded and its support is an interval, therefore pη(ℓ, ℓ′, I) is well-
defined.

Based on the one-jump probability, we can now consider the probability of a set of
paths. Given DMTA M, C(ℓ0, I0, . . ., In−1, ℓn) is the cylinder set where (ℓ0, . . ., ℓn) ∈
Locn+1 and Ii ⊆ R>0. It denotes a set of paths τ in M such that τ [i] = ℓi and τ〈i〉 ∈ Ii.
Let PrMη0

(C(ℓ0, I0, . . ., In−1, ℓn)) denote the probability of C(ℓ0, I0, . . ., In−1, ℓn) such
that the initial clock valuation in location ℓ0 is η0. We define
PrMη0

(C(ℓ0, I0, . . ., In−1, ℓn)) := PM
0 (η0), where PM

i (η) for 0 6 i 6 n is defined as:

PM
n (η) = 1 and for 0 6 i < n, we note that there exists a transition from ℓi to ℓi+1 with

ℓi
�

gi,Xi

pi

// ℓi+1 (0 6 i < n) and thus we define

PM
i (η) =

∫

Ii

E(ℓi)·e
−E(ℓi)τ ·1gi

(η + τ)·pi︸ ︷︷ ︸
(⋆)

· PM
i+1(η

′)︸ ︷︷ ︸
(⋆⋆)

dτ, (5)

where η′ := (η + τ)[Xi := 0]. Intuitively, PM
i (ηi) is the probability of the suffix cylinder

set starting from ℓi and ηi to ℓn. It is recursively computed by the product of the
probability of taking a transition from ℓi to ℓi+1 within time interval Ii (cf. (⋆) and (4))
and the probability of the suffix cylinder set from ℓi+1 and ηi+1 on (cf. (⋆⋆)). For the
same reason as pη(ℓ, ℓ′, I) was well-defined, PM

i (η) is well-defined.

Example 4 (DMTA♦ and DMTAω). The DMTA♦ in Fig. 4(a) has initial location ℓ0

with two edges, with guards x < 1 and 1 < x < 2. We use the small black dots to indicate
distributions. Assume t time units elapsed. If t < 1, then the upper edge is enabled and
the probability to go to ℓ1 within time t is p~0(ℓ0, ℓ1, t) = (1−e−r0t)·1, where E(ℓ0) = r0;
no clock is reset. It is similar for 1 < t < 2, except that x will be reset. LocF = {q3}.
It is obvious to see the determinism in this automaton. The DMTAω in Fig. 5(c) has
Muller acceptance family LocF =

{
{ℓ1, ℓ2, ℓ3}, {ℓ4, ℓ5, ℓ6}

}
.

3.2 Product DMTAs

Given a CTMC C and a DTA A, the product C ⊗ A is a DMTA defined by:

Definition 9 (Product of CTMC and DTA). Let C = (S,AP, L, s0,P, E) be a
CTMC and A = (2AP,X , Q, q0, QF,→) be a DTA. We define
C ⊗ A = (Loc,X , ℓ0, LocF, E, ) as the product DMTA, where

– Loc := S × Q; ℓ0 := 〈s0, q0〉; E(〈s, q〉) := E(s);
– LocF = LocF := S × QF , if QF = QF ; (reachability condition)

LocF = LocF :=
⋃

F∈QF
S × F , if QF = QF ; (Muller condition)

–  is defined as the smallest relation defined by the rule:

P(s, s′) > 0 ∧ q L(s),g,X−−−−−−→ q′

〈s, q〉
g,X

///o/o/o ζ

, such that ζ(〈s′, q′〉) = P(s, s′).

Example 5 (Product DMTA♦). Let CTMC C and DTA♦ A be in Fig. 4(b) and 4(c),
the product DMTA♦ C⊗A is as in Fig. 4(a). Since QF = {q1} in A, the set of accepting
locations in DMTA♦ is LocF = {〈s2, q1〉} = {ℓ3}.

12



ℓ0=〈s0, q0〉 ℓ1=〈s1, q0〉

x<1, ∅ 1

ℓ2=〈s2, q0〉

11<x<2,{x}

x<1,∅

0.2

r0 r1

r2

ℓ4=〈s3, q0〉 r3

ℓ3=〈s2, q1〉

r21<x<2,{x}

x>1,∅ 1

0.3

0.5

(a) DMTA
♦ M = C ⊗ A

s0 s1

1

0.5

s2

s3

0.2

0.3

1

1

{a} {a}

{b}

{c}r3

r2

r1r0

(b) CTMC C

q0 q1

a, x < 1, ∅

a, 1 < x < 2, {x}

b, x > 1, ∅

(c) DTA
♦ A

ℓ0, 06x<1 ℓ0, 16x<2

ℓ1, 06x<1 ℓ1, 16x<2

1 1

v0, r0 v1, r0

v2, r1 v3, r1

0.5

δ

reset, 0.5

ℓ2, 06x<1 ℓ2, 16x<2

ℓ3, 16x<2

ℓ2, x > 2

ℓ3, x > 2

1

v4, 0 v5, r2

v7, 0

δ

δ

1
v8, 0

reset,0.20.2

δ

v6, r2

(d) Reachable region graph

Fig. 4. Example product DMTA
♦ of CTMC C and DTA

♦ A

Example 6 (Product DMTAω). For the CTMC C in Fig. 5(a) and the DTAω Aω in
Fig. 5(b) with acceptance family QF =

{
{q1, q2}, {q3, q4}

}
, the product DMTA

ω C⊗Aω

is shown in Fig. 5(c). LocF =
{
{〈si, q1〉, 〈sj , q2〉}, {〈s

′
i, q3〉, 〈s

′
j , q4〉}

}
, for any si, s

′
i, sj , s

′
j ∈

S, in particular, LocF =
{
{ℓ1, ℓ2, ℓ3}, {ℓ4, ℓ5, ℓ6}

}
.

Remark 3. It is easy to see from the construction that C ⊗ A is indeed a DMTA. The
determinism of the DTA A guarantees that the induced product is also deterministic.
In C ⊗ A, from each location there is at most one “action” possible, viz. L(s). We can
thus omit actions from the product DMTA.

For DTA♦ A with the set of accepting locations LocF , we denote
PathsC⊗A(♦LocF ) := { τ ∈ PathsC⊗A | τ is accepted by C⊗A } as the set of accepted
paths in C⊗A. Recall that PathsC(A) is the set of paths in CTMC C that are accepted
by DTA A. For any n-ary tuple J , let J⇂i denote the i-th entry in J , for 1 6 i 6 n. For
a (C⊗A)-path τ = 〈s0, q0〉

t0−−→〈s1, q1〉
t1−−→ · · · , let τ⇂1 := s0

t0−−→ s1
t1−−→ · · · , and for any

set Π of (C⊗A)-paths, let Π⇂1 =
⋃

τ∈Π τ⇂1.

Lemma 1. For any CTMC C and DTA♦ A, PathsC(A) = PathsC⊗A(♦LocF )⇂1.

Proof. (=⇒) It is to prove that for any path ρ ∈ PathsC(A), there exists a path τ ∈
PathsC⊗A(♦LocF ) such that τ⇂1 = ρ.

We assume w.l.o.g. that ρ = s0
t0−−→ s1 · · · sn−1

tn−1−−−−→ sn ∈ PathsC is accepted by A,
i.e., sn ∈ QF and for 0 6 i < n, η0 |= ~0 and ηi + ti |= gi and ηi+1 = (ηi + ti)[Xi := 0],

13



s1

s2s0

1

0.3

0.4

s3

0.6

0.7

1

r0, {b}

r3, {c}

r2, {a}

r1, {c}

(a) CTMC C

q0 q3 q4q1q2

b, 1<x<2, ∅b, x<1, {x}

c, x < 2, {x}

a, x > 1, ∅c, x > 1, ∅

a, x > 2, {x}

(b) DTA
ω Aω

ℓ0 = 〈s0, q0〉

ℓ1 = 〈s1, q3〉

ℓ2 = 〈s3, q3〉

ℓ3 = 〈s2, q4〉

ℓ4 = 〈s1, q1〉

ℓ5 = 〈s3, q1〉

ℓ6 = 〈s2, q2〉
x<1, {x} 1<x<2, ∅

0.4

0.6

0.4

0.6

0.3

0.7

x > 1, ∅

0.3

0.7

x > 2, {x}

r0

r1

r3

r2

r1

r3

r2

x > 1, ∅

1

x > 1, ∅

1

x < 2, {x}

1

x < 2, {x}

1

(c) DMTA
ω C ⊗ Aω

Fig. 5. Example product DMTA
ω of CTMC C and DTA

ω Aω

where ηi is the time valuation on entering state si. We can then construct a path θ ∈

PathsA from ρ such that θ = q0
L(s0),t0−−−−−−→ q1 · · · qn−1

L(sn−1),tn−1−−−−−−−−−→ qn, where si and qi

have the same entering clock valuation. From ρ and θ, we can construct the path

τ = 〈s0, q0〉
t0−−→〈s1, q1〉 · · · 〈sn−1, qn−1〉

tn−1−−−−→〈sn, qn〉,

where 〈sn, qn〉 ∈ LocF . It follows from the definition of an accepting path in a DTA
ω

that τ ∈ PathsC⊗A(♦LocF ) and τ⇂1 = ρ.

(⇐=) It is to prove that for any path τ ∈ PathsC⊗A(♦LocF ), τ⇂1 ∈ PathsC(A).
We assume w.l.o.g. that path

τ = 〈s0, q0〉
t0−−→ · · ·

tn−1−−−−→〈sn, qn〉 ∈ PathsC⊗A(♦LocF ),

it holds that 〈sn, qn〉 ∈ LocF and for 0 6 i < n, η0 |= ~0 and ηi + ti |= gi and ηi+1 =
(ηi + ti)[Xi := 0], where ηi is the time valuation on entering state 〈si, qi〉. It then directly
follows that qn ∈ QF and τ⇂1 ∈ PathsC(A), given ηi the entering clock valuation of state
si. �

The following theorem establishes the link between CTMC C and DMTA♦ C ⊗ A.

Theorem 2. For any CTMC C and DTA♦ A,

PrC
(
PathsC(A)

)
= PrC⊗A

~0

(
PathsC⊗A(♦LocF )

)
.

Proof. According to Theorem 1, PathsC(A) can be rewritten as the combination of
cylinder sets of the form C(s0, I0, . . . , In−1, sn) which are all accepted by DTA A4.
By Lemma 1, namely by path lifting, we can establish exactly the same combination
of cylinder sets C(ℓ0, I0, . . . , In−1, ℓ0) for PathsC⊗A(♦LocF ), where si = ℓi⇂1. It then

4 Note that this means each path in the cylinder set is accepted by A.

14



suffices to show that for each cylinder set C(s0, I0, . . . , In−1, sn) which is accepted by A,
PrC and PrC⊗A yield the same probabilities. Note that a cylinder set C is accepted by
a DTA A, if each path that C generates can be accepted by A.

For the measure PrC , according to Eq. 1 (page 5),

PrC
(
C(s0, I0, . . . , In−1, sn)

)
=

∏

06i<n

∫

Ii

P(si, si+1) · E(si) · e
−E(si)τdτ.

For the measure PrC⊗A
~0

, according to Section 3.1, it is given by PC⊗A
0 (~0) where

PC⊗A
n (η) = 1 for any clock valuation η and

PC⊗A
i (ηi) =

∫

Ii

1gi
(ηi + τi)·pi·E(ℓi)·e

−E(ℓi)τi · PC⊗A
i+1 (ηi+1) dτi,

where ηi+1 = (ηi + τi)[Xi := 0] and 1gi
(ηi + τi) = 1, if ηi + τi |= gi; 0, otherwise.

We will show, by induction, that PC⊗A
i (ηi) is a constant, i.e., is independent of ηi, if

the cylinder set C(ℓ0, I0, . . . , In−1, ℓn) is accepted by C ⊗ A. Firstly let us note that for
C(ℓ0, I0, . . . , In−1, ℓn), there must exist some sequence of transitions

ℓ0
�

g0,X0

p0

// ℓ1 · · · ℓn−1
�

gn−1,Xn−1

pn−1

// ℓn

with η0 = ~0 and ∀ti ∈ Ii with 0 6 i < n, ηi + ti |= gi and ηi+1 := (ηi + ti)[Xi := 0].
Moreover, according to Def. 9, we have:

pi = P(si, si+1) and E(ℓi) = E(si). (6)

We apply a backward induction on n down to 0. The base case is trivial since PC⊗A
n (η) =

1. By I.H., PC⊗A
i+1 (η) is a constant. For the induction step, consider i < n. For any τi ∈ Ii,

since ηi + τi |= gi, 1gi
(ηi + τi) = 1, it follows that

PC⊗A
i (ηi) =

∫

Ii

1gi
(ηi + τi)·pi·E(ℓi)·e

−E(ℓi)τi · PC⊗A
i+1 (ηi+1) dτi

I.H.
=

∫

Ii

pi·E(ℓi)·e
−E(ℓi)τidτi · P

C⊗A
i+1 (ηi+1)

Eq.(6)
=

∫

Ii

P(si, si+1)·E(si)·e
−E(si)τidτi · PC⊗A

i+1 (ηi+1).

Clearly, this is a constant. It is thus easy to see that

PrC⊗A
~0

(
C(ℓ0, I0, . . . , In−1, ℓn)

)
:= PC⊗A

0 (~0) =
∏

06i<n

∫

Ii

P(si, si+1)·E(si)·e
−E(si)τdτ,

which completes the proof. �

3.3 Region Construction for DMTA

In the remainder of this section, we focus on how to compute the probability measure

PrC⊗A
~0

(
PathsC⊗A(♦LocF )

)
in an effective way. Since the state space

{
(ℓ, η) | ℓ ∈

Loc, η ∈ V(X )
}

of C ⊗ A is uncountable, we start with adopting the standard region
construction [AD94] to DMTA♦ to discretize the state space into a finite one. As we
will see in Section 3.4, this allows us to obtain a piecewise-deterministic Markov process
from a DMTA♦ in a natural way.

As usual, a region is a constraint. For regions Θ, Θ′ ∈ B(X ), Θ′ is the successor
region of Θ if for all η |= Θ there exists δ ∈ R>0 such that η + δ |= Θ′ and for all δ′ < δ,
η + δ′ |= Θ ∨ Θ′. A region Θ satisfies a guard g (denoted Θ |= g) iff ∀η |= Θ. η |= g. A
reset operation on region Θ is defined as Θ[X := 0] :=

{
η[X := 0] | η |= Θ

}
.

15



Definition 10 (Region graph of DMTA♦). Given DMTA♦ M = (Loc,X , ℓ0, LocF , E, 
), the region graph is G(M) = (V, v0, VF , Λ, →֒), where

– V := Loc × B(X ) is a finite set of vertices, consisting of a location ℓ in M and a
region Θ;

– v0 ∈ V is the initial vertex if (ℓ0,~0) ∈ v0;
– VF :=

{
v | v⇂1 ∈ LocF

}
is the set of accepting vertices;

– →֒ ⊆ V ×
((

[0, 1] × 2X
)
∪ {δ}

)
× V is the transition (edge) relation, such that:

– ◮ v
δ
→֒ v′ is a delay transition if v⇂1 = v′⇂1 and v′⇂2 is a successor region of v⇂2;

– ◮ v
p,X
→֒ v′ is a Markovian transition if there exists some transition v⇂1

�

g,X

p
// v′⇂1

in M such that v⇂2 |= g and v⇂2[X := 0] |= v′⇂2; and
– Λ : V → R>0 is the exit rate function where Λ(v) := E(v⇂1) if there exists a Marko-

vian transition from v, Λ(v) := 0 otherwise.

Note that in the obtained region graph, Markovian transitions emanating from any
boundary region do not contribute to the reachability probability as the time to hit the
boundary is always zero (i.e., ♭(v, η) = 0 in (8), page 18). Therefore, we can remove all
the Markovian transitions emanating from boundary regions and then collapse each of
them with its unique non-boundary (direct) successor. In the sequel, by slightly abusing
the notation we still denote this collapsed region graph as G(M).

Remark 4 (Exit rates). The exit rate Λ(v) is set to 0 if there is only delay transition
from v. The probability to take the delay transition within time t is e−Λ(v)t = 1 and the
probability to take Markovian transitions is 0.

Example 7. For the DMTA♦ C⊗A in Fig. 6(a), the reachable part (forward reachable
from the initial vertex and backward reachable from the accepting vertices) of the col-
lapsed region graph G(C⊗A) is shown in Fig. 6(b). The accepting vertices are sinks.

ℓ0=〈s0, q0〉 ℓ1=〈s1, q1〉

x2 > 1, {x1}, 1

x1 < 2, {x2}, 1

r0 r1

(a) DMTA
♦ M = C ⊗A

v0, 0 v2, r0v1, r0

v3, 0

1, {x1}

δ δ

1, {x1}

v4, 0

ℓ0

06x1=x2<1

ℓ0

16x1=x2<2

ℓ0

x1>2, x2>2

ℓ1
06x1<1
16x2<2
x2>x1+1

ℓ1
06x1<1
x2>2

x2>x1+2

(b) Reachable region graph G(C ⊗ A)

Fig. 6. Example of a region graph

Notice that DMTA♦ and DMTAω have the same locations and edge relations. The
only difference is their acceptance condition. This guarantees that their obtained region

16



graphs are the same except for the definition and interpretation of the final set VF . We
will present how VF is derived in the region graph for DMTAω in Section 5.

3.4 From Region Graph to PDP

We can now define the underlying PDP of a DMTA♦ by using the region graph G(M).
Actually, a region graph is a PDP.

Definition 11 (PDP for DMTA♦). For DMTA♦ M = (Loc,X , ℓ0, LocF , E, ) and
region graph G(M) = (V, v0, VF , Λ, →֒), let PDP Z(M) = (V,X , Inv , φ, Λ, µ) where for
any v ∈ V ,

– Inv(v) := v⇂2 and the state space S :=
{
(v, η) | v ∈ V, η ∈ Inv(v)

}
;

– φ(v, η, t) := η + t for η |= Inv(v);
– Λ(v, η) := Λ(v) is the exit rate of state (v, η);

– [boundary jump] for each delay transition v
δ
→֒ v′ in G(M) we have µ(ξ, {ξ′}) := 1,

where ξ = (v, η), ξ′ = (v′, η) and η |= ∂Inv(v);

– [Markovian jump] for each Markovian transition v
p,X
→֒ v′ in G(M) we have µ(ξ, {ξ′}) :=

p, where ξ = (v, η), η |= Inv(v) and ξ′ = (v′, η[X := 0]).

From now on we write Λ(v) instead of Λ(v, η) as they coincide.

4 Model Checking DTA♦ Specifications

With the model and problem transformation presented in the last section, we are now
ready to model check CTMC against DTA♦ specifications. We first consider the general
case, i.e., DTA♦ with arbitrary number of clocks and then the special case of single clock
DTA♦ specifications is investigated.

4.1 General DTA♦ Specifications

Recall that the aim of model checking is to compute the probability of the set of paths
in CTMC C accepted by a DTA♦ A. For the general case, we have proven that this is
reducible to computing the reachability probability in the product C ⊗ A (Theorem 2,
page 14), which can be further reduced to computing the reachability probability in a
corresponding PDP (Theorem 3 below), which will be established in Section 4.1. The
characterization by a system of integral equations is usually difficult to solve. Therefore
we propose an approach to approximate the reachability probabilities in Section 4.1.

Characterizing Reachability Probabilities. Computing PrC⊗A
~0

(
PathsC⊗A(♦LocF )

)
is

now reduced to computing the (time-unbounded) reachability probability in the PDP

Z(C ⊗A) — basically the region graph of C ⊗A — given the initial state (v0,~0) and the
set of goal states {(v, η) | v ∈ VF , η ∈ Inv(v)}

(
(VF , ·) for short

)
. Reachability probabili-

ties of untimed events in a PDP Z can be computed in the embedded DTMP emb(Z).
Note that the set of locations of Z and emb(Z) are equal. In the sequel, let D denote
emb(Z).

For each vertex v ∈ V , we define recursively ProbD
(
(v, η), (VF , ·)

) (
or shortly ProbDv (η)

)

as the probability to reach the goal states (VF , ·) in D from state (v, η).

– for the delay transition v
δ
→֒ v′,

ProbD
v,δ(η) = e−Λ(v)♭(v,η) · ProbD

v′

(
η + ♭(v, η)

)
. (7)

Recall that ♭(v, η) is the minimal time for (v, η) to hit the boundary ∂Inv(v).

17



– for the Markovian transition v
p,X
→֒ v′,

ProbD
v,v′(η) =

∫ ♭(v,η)

0

p·Λ(v)·e−Λ(v)τ ·ProbD
v′

(
(η + τ)[X := 0]

)
dτ. (8)

Overall, for each vertex v ∈ V , we obtain:

ProbD
v (η) =

{
ProbD

v,δ(η) +
∑

v
p,X
→֒ v′

ProbD
v,v′(η), if v /∈ VF

1, otherwise
. (9)

Note that here the notation η is slightly abused. It represents a vector of clock variables
(see Example 8). Eq. (7) and (8) are derived based on (3) and (2), respectively. In par-
ticular, the multi-step reachability probability is computed using a sequence of one-step
transition probabilities.

Hence we obtain a system of integral equations (9). One can read (9) either in the
form f(ξ) =

∫
Dom(ξ) K(ξ, ξ′)f(dξ′), where K is the kernel and Dom(ξ) is the domain of

integration depending on the continuous state space S; or in the operator form f(ξ) =
(Jf)(ξ), where J is the integration operator. Generally, (9) does not necessarily have a
unique solution. It turns out that the reachability probability ProbD

v0
(~0) coincides with

the least fixpoint of the operator J (denoted by lfpJ ) i.e., ProbD
v0

(~0) = (lfpJ )(v0,~0).
Formally, we have:

Theorem 3. For any CTMC C and DTA♦ A, PrC⊗A
~0

(
PathsC⊗A(♦LocF )

)
is the least

solution of ProbDv0
(·), where D is the embedded DTMP of C ⊗ A.

Proof. We can express the set of all finite paths in C ⊗ A ending in some accepting
location ℓn ∈ LocF for n ∈ N as the union over all location sequences i.e.,

ΠC⊗A =
⋃

n∈N

⋃

(ℓ0,...,ℓn)∈Locn+1

C(ℓ0, I0, . . . , In−1, ℓn)

= PathsC⊗A(♦LocF ) ∪ PathsC⊗A(♦LocF ).

where C(ℓ0, I0, . . . , In−1, ℓn) is a cylinder set, Ii = [0,∞[ and PathsC⊗A(♦LocF )⇂1 are
the set of paths which are not accepted by the DTA A. Notice that we can easily extend
the measure PrC⊗A

~0
to ΠC⊗A such that

PrC⊗A
~0

(
ΠC⊗A

)
= PrC⊗A

~0

(
PathsC⊗A(♦LocF )

)
.

This means that in order to prove the theorem we need to show that

PrC⊗A
~0

(
ΠC⊗A

)
= ProbD

v0
(~̂0), (10)

where ProbD
v0

(~̂0) is the short form of ProbD
(
(v0, ~̂0), (VF , ·)

)
, i.e., the reachability prob-

ability from state (v0, ~̂0) to (VF , ·). Note that for better readability, we indicate clock
valuations in D by adding a “̂ ”.

Eq. (10) is to be shown on cylinder sets. Note that each cylinder set C(ℓ0, I0, . . . ,
In−1, ℓn) ⊆ ΠC⊗A (Cn for short) induces a region graph G(Cn) = (V, v0, VF , Λ, →֒),
where its underlying PDP and embedded DTMP is Z(Cn) and D(Cn), respectively. To
prove Eq. (10), it suffices to show that for each Cn,

PrC⊗A
~0

(Cn) = ProbD(Cn)
v0

(~̂0),

since ΠC⊗A =
⋃

n∈N

⋃
(ℓ0,...,ℓn)∈Locn+1 Cn and D =

⋃
n∈N

⋃
(ℓ0,...,ℓn)∈Locn+1 D(Cn).

We will prove it by induction on the length n of the cylinder set Cn ⊆ ΠC⊗A.

18



– By B.C. of n = 0, i.e. C0 = C(ℓi) and ℓi ∈ LocF , it holds that PrC⊗A
ηi

(C0) = 1; while
in the embedded DTMP D(C0), since the initial vertex of G(C0) is v0 = (ℓi, Θ0),
where ηi ∈ Θ0 and v0 is consequently the initial location of Z(C0) as well as D(C0)

which is accepting, ProbD(C0)
v0

(η̂i) = 1. Note ℓi ∈ Loc is not necessarily the initial
location ℓ0.

– By I.H., we have that for n = k − 1, PrC⊗A
ηi+1

(Ck−1) = ProbD(Ck−1)
vi+1

(η̂i+1), where
Ck−1 = C(ℓi+1, Ii+1, . . . , Ii+k−1, ℓi+k) and ℓi+k ∈ LocF . Note ℓi+1 ∈ Loc is not
necessarily the initial location ℓ0.

– For n = k, let Ck = C(ℓi, Ii, ℓi+1, Ii+1, . . . , Ii+k−1, ℓi+k). As a result, there exists a

transition ℓi
�

gi,Xi

pi

// ℓi+1 where ηi +τi |= gi for every τi ∈ ]t1, t2[. t1, t2 ∈ Q>0∪{∞}

can be obtained from gi, such that τj ∈ ]t1, t2[ iff ηi + τj |= gi. According to the
semantics of MTA we have

PrC⊗A
ηi

(Ck) =

∫ t2

t1

pi·E(ℓi)·e
−E(ℓi)τi · PrC⊗A

ηi+1
(Ck−1) dτi, (11)

where ηi+1 = (ηi + τi)[Xi := 0].

· · · · · ·
vi
0=(ℓi,Θ0)
♭(vi

0,η̂
i

0)61

vi
m−1=(ℓi,Θm−1)

♭(vi

m−1,η̂
i

m−1)=1

δ δ vi
m=(ℓi,Θm)
♭(vi

m,η̂i

m)=1

vi
m′=(ℓi,Θm′)

♭(vi

m′ ,η̂i

m′)=1

δ δδ

vi+1
m =(ℓi+1,Θm)

♭(vi+1
m ,η̂i+1

m )61

pi

vi+1
m′ =(ℓi+1,Θm′)
♭(vi+1

m′ ,η̂i+1

m′ )61

pi

Now we deal with the inductive step for D(Ck). Let us assume that Ck induces

the region graph G(Ck) whose subgraph corresponding to transition ℓi
�

gi,Xi

pi

// ℓi+1

is depicted in the figure above. For simplicity we consider that location ℓi induces
the vertices {vi

j = (ℓi, Θj) | 0 6 j 6 m′} and location ℓi+1 induces the vertices

{vi+1
j = (ℓi+1, Θj) | m 6 j 6 m′}, respectively. Note that for Markovian transitions,

the regions stay the same. We denote η̂i
j (resp. η̂i+1

j ) as the entering clock valuation

on vertex vi
j (resp. η̂i+1

j ), for j the indices of the regions. For any η̂ ∈
⋃m−1

j=0 Θj ∪⋃
j>m′ Θj , η̂ 6|= gi; or more specifically,

t1 =

m−1∑

j=0

♭(vi
j , η̂

i
j) and t2 =

m′∑

j=0

♭(vi
j , η̂

i
j).

Recall that η̂i (in the I.H.) is the clock valuation to first hit a region with ℓi

and η̂i. Given the fact that from vi
0 the process can only execute a delay transition

before time t1, it holds that

Prob
D(Ck)

vi
0

(η̂i) = e−t1Λ(vi) · Prob
D(Ck)
vi

m
(η̂i

m)

Prob
D(Ck)
vi

m
(η̂i

m) = Prob
D(Ck)
vi

m,δ
(η̂i

m) + Prob
D(Ck)

vi
m,vi+1

m
(η̂i+1).

Therefore, we get by substitution of variables:

ProbD
vi
0
(η̂i) = e−t1Λ(vi)·Prob

D(Ck)
vi

m,δ
(η̂i

m) + e−t1Λ(vi)·Prob
D(Ck)

vi
m,vi+1

m
(η̂i+1)

= e−t1Λ(vi)·Prob
D(Ck)

vi
m,δ

(η̂i
m)

+ e−t1Λ(vi)·

∫ ♭(vi
m,η̂i

m)

0

piΛ(vi)e
−Λ(vi)τ ·Prob

D(Ck−1)

vi+1
m

(
(η̂i

m + τ)[Xi := 0]
)
dτ

= e−t1Λ(vi)·Prob
D(Ck)
vi

m,δ
(η̂i

m)

+

∫ t1+♭(vi
m,η̂i

m)

t1

piΛ(vi)e
−Λ(vi)τ ·Prob

D(Ck−1)

vi+1
m

(
(η̂i

m + τ − t1)[Xi := 0]
)
dτ.

19



Evaluating each term Prob
D(Ck)
vi

m,δ
(η̂i

m) we get the following sum of integrals:

Prob
D(Ck)

vi
0

(η̂i) =

m′−m∑

j=0

∫ t1+
Pj

h=0 ♭(vi
m+h,η̂i

m+h)

t1+
Pj−1

h=0 ♭(vi
m+h

,η̂i
m+h

)

piΛ(vi)e
−Λ(vi)τ

· Prob
D(Ck−1)

vi+1
m+j

(
(η̂i

m+j+τ−t1−

j−1∑

h=0

♭(vi
m+h, η̂i

m+h))[Xi:=0]
)
dτ.

Now we define the function FD(Ck−1)(t) : [t1, t2] → [0, 1], such that when t ∈ [t1 +∑j−1
h=0 ♭(vi

m+h, η̂i
m+h), t1 +

∑j
h=0 ♭(vi

m+h, η̂i
m+h)] for j 6 m′ − m then FD(Ck−1)(t) =

Prob
D(Ck−1)

vi+1
m+j

(
(η̂i

m+j + t− t1 −
∑j−1

h=0 ♭(vi
m+h, η̂i

m+h))[Xi := 0]
)
. Using FD(Ck−1)(t) we

can rewrite Prob
D(Ck)

vi
0

(η̂i) to an equivalent form as:

Prob
D(Ck)

vi
0

(η̂i) =
m′−m∑

j=0

∫ t1+
Pj

h=0 ♭(vi
m+h,η̂i

m+h)

t1+
Pj−1

h=0 ♭(vi
m+h

,η̂i
m+h

)

piΛ(vi)e
−Λ(vi)τFD(Ck−1)(τ)dτ

=

∫ t2

t1

piΛ(vi)e
−Λ(vi)τFD(Ck−1)(τ)dτ.

By the I.H. we now have that for every
t ∈ [t1 +

∑j−1
h=0 ♭(vi

m+h, η̂i
m+h), t1 +

∑j
h=0 ♭(vi

m+h, η̂i
m+h)] for j 6 m′ − m we have

that:

PrC⊗A
ηi+1

(Ck−1) = Prob
D(Ck−1)

vi+1
m+j

(
(η̂i

m+j+t−t1−

j−1∑

h=0

♭(vi
m+h, η̂i

m+h))[Xi:=0]
)

= FD(Ck−1)(t),

where ηi+1 = (ηi + t)[Xi := 0] and η̂i
m+j = η̂i + t1+

∑j−1
h=0 ♭(vi

m+h, η̂i
m+h). This shows

that PrC⊗A
ηi

(Ck) = ProbD(Ck)
vi

(η̂i) which proves the theorem. �

Remark 5. Clock valuations η and η′ in region Θ may induce different reachability prob-
abilities. The reason is that η and η′ may have different periods of time to hit the
boundary, thus the probability for η and η′ to either delay or take a Markovian transi-
tion may differ. This is in contrast with the traditional timed automata theory as well
as probabilistic timed automata [KNSS02], where η and η′ are not distinguished.

Example 8. For the region graph in Fig. 6(b), the system of integral equations for v1 in
location ℓ0 is as follows for 1 6 x1 = x2 < 2:

ProbD
v1

(x1, x2) = ProbD
v1,δ(x1, x2) + ProbD

v1,v3
(x1, x2),

where
ProbD

v1,δ(x1, x2) = e−(2−x1)r0 ·ProbD
v2

(2, 2)

and

ProbD
v1,v3

(x1, x2) =

∫ 2−x1

0

r0·e
−r0τ ·ProbD

v3
(0, x2 + τ) dτ

where ProbD
v3

(0, x2 + τ) = 1. The integral equations for v2 can be derived similarly.

Approximating Reachability Probabilities. Finally, we discuss how to obtain a solution
of (9). The integral equations (9) are Volterra equations of the second type [AW95]. For
a general reference on solutions to Volterra equations, cf., e.g. [Cor91]. As an alternative
option to solve (9), we proceed to give a general formulation of PrC

(
PathsC(A)

)
using

a system of partial differential equations (PDEs). Let the augmented DTA♦ A[tf ] be

20



obtained from A by adding a new clock variable y which is never reset and a clock
constraint y < tf on all edges entering the accepting locations in LocF , where tf is a
finite (and usually very large) integer. The purpose of this augmentation is to ensure
that the value of all clocks reaching LocF is bounded. It is clear that PathsC(A[tf ]) ⊆

PathsC(A). More precisely, PathsC(A[tf ]) coincides with those paths which can reach the

accepting states of A within the time bound tf . Note that limtf→∞ PrC(PathsC(A[tf ])) =

PrC(PathsC(A)). We can approximate PrC(PathsC(A)) by solving the PDEs with a large
tf as follows:

Proposition 1. Given a CTMC C, an augmented DTA♦ A[tf ] and the underlying

PDP Z(C ⊗ A[tf ]) = (V,X , Inv , φ, Λ, µ), PrC
(
PathsC(A[tf ])

)
= ~v0(0,~0)

(
which is the

probability to reach the final states in Z starting from initial state (v0,~0X∪{y}
5)
)

is the
unique solution of the following system of PDEs:

∂~v(y, η)

∂y
+

|X |∑

i=1

∂~v(y, η)

∂η(i)
+ Λ(v)·

∑

v
p,X
→֒ v′

p·(~v′ (y, η[X := 0]) − ~v(y, η)) = 0,

where v ∈ V \ VF , η |= Inv(v), η(i) is the i’th clock variable and y ∈ [0, tf). For every

η |= ∂Inv(v) and transition v
δ
→֒ v′, the boundary conditions take the form: ~v(y, η) =

~v′(y, η). For every vertex v ∈ VF , η |= Inv(v) and y ∈ [0, tf), we have the following
PDE:

∂~v(y, η)

∂y
+

|X |∑

i=1

∂~v(y, η)

∂η(i)
+ 1 = 0.

The final boundary conditions are that for every vertex v ∈ V and η |= Inv(v)∪∂Inv (v),
~v(tf , η) = 0.

Proof. For any set of clocks X (n clocks) of the PDP Z = (Z,X , Inv , φ, Λ, µ) we define
a system of ODEs:

dη(y)

dy
= ~1, η(y0) = η0 ∈ Rn

>0, (12)

which describe the evolution of clock values η(y) at time y given the initial value η0 of all
clocks at time y0. Notice that contrary to our DTA notation, Eq. (12) describes a system

of ODEs where η(y) is a vector of clock valuations at time y and dη(i)(y)
dy

gives the timed

evolution of clock η(i). Given a continuous differentiable functional f : Z ×Rn
>0 → R>0,

for every z ∈ Z let:

df(z, η(y))

dy
=

n∑

i=1

∂f(z, η(y))

∂η(i)
·
dη(i)(y)

dy

Eq.(12)
=

n∑

i=1

∂f(z, η(y))

∂η(i)
.

For notation simplicity we define the vector field from Eq. (13) as the operator Ξ which

acts on functional f(z, η(y)) i.e., Ξf(z, η(y)) =
∑n

i=1
∂f(z,η(y))

∂η(i) . We also define the equiv-

alent notation Ξf(ξ) for the state ξ = (z, η(y)) and any y ∈ R>0.

We define the value of PrC
(
PathsC(A)

)
as the expectation ~(0, ξ0) on PDP Z as

follows:

~(0, ξ0) = E

[∫ tf

0

1Z(Xτ )dτ | X0 = ξ0

]
= E(0,ξ0)

[∫ tf

0

1Z(Xτ )dτ

]
,

where the initial starting time is 0 the starting state is ξ0 = (z0,~0), Xτ is the un-
derlying stochastic process of Z defined on the state space S and 1Z(Xτ ) = 1 when

5 denoting the valuation η with η(x) = 0 for x ∈ X ∪ {y}.

21



Xτ ∈ {(z, η(τ)) | z ∈ VF , η(τ) ∈ Inv(z)}, 1Z(Xτ ) = 0, otherwise. Notice that we
can also define the expectation in Eq. (13) for any starting time y < tf and state ξ as

E(y,ξ)

[∫ tf
y

1Z(Xτ )dτ
]
.

We can obtain the expectation ~(0, ξ0) by following the construction in [Dav93]. For

this we form the new state space Ŝ = ([0, tf ] × S) ∪ {∆} where ∆ is the sink state

and the boundary is ∂Ŝ := ([0, tf ] × ∂S) ∪ ({tf} × S). We define the following functions:

Λ̂(y, ξ) = Λ(ξ), µ̂((y, ξ), {y} × A) = µ(ξ, A) and µ̂((tf , ξ), {∆}) = 1 for y ∈ [0, tf [, A ⊆ S

and ξ ∈ S.
Given the construction we obtain an equivalent form for the expectation (13) i.e.,:

~(0, ξ0) = E(0,ξ0)

[∫ ∞

0

~̂1Z(τ, Xτ )dτ

]
, (13)

where ~̂1Z : Ŝ → {0, 1}, ~̂1Z(τ, Xτ ) = 1 when Xτ ∈ {(z, η(τ)) | z ∈ VF , η(τ) ∈ Inv(z)}

and τ ∈ [0, tf [, ~̂1Z(τ, Xτ ) = 0, otherwise. We also define ~̂1Z(∆) to be zero. Notice that
we introduce the sink state ∆ in order to ensure that limy→∞ E(0,ξ)~(y, Xy) = 0, which
is a crucial condition in order to obtain a unique value for the expectation ~(0, ξ0).

For the expectation (13) [Dav93] defines the following integro-differential equations
(for any y ∈ [0, tf [):

U~(y, ξ)=Ξ~(y, ξ) + Λ̂(y, ξ) ·

∫

S

(~(y, ξ′) − ~(y, ξ)) µ̂((y, ξ), (y, dξ′)), ξ ∈ S (14)

~(y, ξ)=

∫

S

~(y, ξ′)µ̂((y, ξ), (y, dξ′)), ξ ∈ ∂S (15)

U~(y, ξ) + ~̂1Z(y, ξ) = 0, ξ ∈ S (16)

Equation (14) denotes the generator of the stochastic process Xy and Eq. (15) states
the boundary conditions for Eq. (16). We can rewrite the integro-differential equations
(14),(15) and (16) into a system of PDEs with boundary conditions given the fact that
the measure µ̂ is not uniform. For each vertex v /∈ VF , η ∈ Inv(v) and y ∈ [0, tf [ of
the region graph G we write the PDE as follows (here we define ~v(y, η) := ~(y, ξ) for
ξ = (v, η)):

∂~v(y, η)

∂y
+
∑

i

∂~v(y, η)

∂η(i)
+ Λ(v)

∑

v
p,X
→֒ v′

p · (~v′(y, η[X := 0]) − ~v(y, η)) = 0,

Notice that for any edge v
p,X
→֒ v′ in the region graph G, µ̂((y, (v, η)), (y, (v′, η′))) = p.

For every η ∈ ∂Inv(v) and transition v
δ
→֒ v′ the boundary conditions take the form:

~v(y, η) = ~v′(y, η). For every vertex v ∈ VF , η ∈ Inv(v) and y ∈ [0, tf [ we get:

∂~v(y, η)

∂y
+
∑

i

∂~v(y, η)

∂η(i)
+ 1 = 0

Notice that all final states are made absorbing. The final boundary conditions are that
for every vertex v ∈ Z and η ∈ Inv(v) ∪ ∂Inv(v), ~v(tf , η)=0. �

4.2 Single-Clock DTA♦ Specifications

For single-clock DTA♦ specifications, we can simplify the system of integral equations
obtained in the previous section to a system of linear equations where the coefficients
are a solution of a system of ODEs that can be calculated efficiently.

Given a DMTA♦ M, we denote the set of constants appearing in the clock constraints
of M as {c0, . . . , cm} with c0 = 0. We assume the following order: 0 = c0 < c1 < · · · < cm.

22



Let ∆ci = ci+1 − ci for 0 6 i < m. Note that for one clock DMTA♦, the regions in the
region graph G(M) can be represented by the following intervals: [c0, c1), . . . , [cm,∞).
We partition the region graph G(M) = (V, v0, VF , Λ, →֒), or G for short, into a set of
subgraphs Gi = (Vi, VFi, Λi, {Mi, Fi, Bi}), where 0 6 i 6 m and Λi(v) = Λ(v), if v ∈ Vi,
0 otherwise. These subgraphs are obtained by partitioning V , VF and →֒ as follows:

– V =
⋃

06i6m{Vi}, where Vi = {(ℓ, Θ) ∈ V | Θ ⊆ [ci, ci+1)};
– VF =

⋃
06i6m{VFi}, where v ∈ VFi iff v ∈ Vi ∩ VF ;

– →֒=
⋃

06i6m{Mi ∪ Fi ∪ Bi}, where
- Mi is the set of Markovian transitions (without reset) between vertices inside
Gi;
- Fi is the set of delay transitions from the vertices in Gi to that in Gi+1

(Forward);
- Bi is the set of Markovian transitions (with reset) from Gi to G0 (Backward).

It is easy to see that Mi, Fi, and Bi are pairwise disjoint.

Since the initial vertex of G0 is v0 and the initial vertices of Gi for 0 < i 6 m are implicitly
given by Fi−1, we omit them in the definition.

Example 9. Given the region graph in Fig. 7, the vertices are partitioned as indicated by
the ovals. The Mi edges are unlabeled while the Fi and Bi edges are labeled with δ and
“reset”, respectively. The VF vertices (double circles) may appear in any Gi. Actually, if
v = (ℓ, [ci, ci+1)) ∈ VF , then v′ = (ℓ, [cj , cj+1)) ∈ VF for i < j 6 m. This is true because
VF = {(ℓ, true) | ℓ ∈ LocF }. It implies that for each final vertex not in the last region,
there is a delay transition from it to the next region, see e.g. the final vertex in Gi+1 in
Fig. 7. The exit rate functions and the probabilities on Markovian edges are omitted in
the graph.

Given a subgraph Gi (06i6m) of G with ki states, let the probability vector ~Ui(x) =

[u1
i (x), . . . , uki

i (x)]
⊤
∈ Rki×1 where uj

i (x) is the probability to go from vertex vj
i ∈ Vi to

some vertex in VF (in G) at time x. Starting from (7)-(9), we provide a set of integral

equations for ~Ui(x) which we later on reduce to a system of linear equations. Distinguish
two cases:

Case 0 6 i < m: ~Ui(x) is given by:

~Ui(x) =

∫ ∆ci−x

0

Mi(τ)~Ui(x + τ)dτ +

∫ ∆ci−x

0

Bi(τ)dτ · ~U0(0)+Di(∆ci − x) ·Fi
~Ui+1(0),

(17)
where x ∈ [0, ∆ci] and

– Di(x) ∈ Rki×ki is the delay probability matrix, where for any 0 6 j 6 ki, Di(x)[j, j] =

e−E(vj
i )x (the off-diagonal elements are zero);

– Mi(x) = Di(x)·Ei·Pi ∈ Rki×ki is the probability density matrix for the Markovian
transitions inside Gi, where Pi and Ei are the transition probability matrix and exit
rate matrix for vertices inside Gi, respectively;

– Bi(x) ∈ Rki×k0 is the probability density matrix for the reset edges Bi, where
Bi(x)[j, j′] indicates the probability density function to take the Markovian jump
with reset from the j-th vertex in Gi to the j′-th vertex in G0; and

– Fi ∈ Rki×ki+1 is the incidence matrix for delay edges Fi. More specifically, Fi[j, j
′] =

1 indicates that there is a delay transition from the j-th vertex in Gi to the j′-th
vertex in Gi+1; 0 otherwise.

Let us explain these equations. The third summand of (17) is obtained from (7)
where Di(∆ci − x) indicates the probability to delay until the “end” of region i, and

Fi
~Ui+1(0) denotes the probability to continue in Gi+1 (at relative time 0). Similarly, the

first and second summands are obtained from (8); the former reflects the case where

23



clock x is not reset, while the latter considers the reset of x (thus, implying a return to
G0).

Case i = m: ~Um(x) is simplified as follows:

~Um(x) =

∫ ∞

0

M̂m(τ)~Um(x + τ)dτ +~1F +

∫ ∞

0

Bm(τ)dτ · ~U0(0) (18)

where M̂m(τ)[v, ·] = Mm(τ)[v, ·] for v /∈ VF , 0 otherwise. ~1F is a vector such that
~1F [v] = 1 if v ∈ VF , 0 otherwise. We note that ~1F stems from the second clause of (9),

and M̂m is obtained by setting the corresponding elements of Mm to 0. Also note that
as the last subgraph Gm involves infinite regions, it has no delay transitions.

...

δ

δ

reset

......

δ
δ

δ

...

δ

δ

G0 Gi Gi+1 Gm

δ

δ

Fig. 7. Partitioning the region graph

Before solving the system of integral equations (17)-(18), we first make the following
observations:

(i) Due to the fact that inside Gi there are only Markovian jumps with neither resets
nor delay transitions, Gi with (Vi, Λi, Mi) forms a CTMC Ci, say. For each Gi we define
an augmented CTMC Ca

i with state space Vi ∪ V0, such that all V0-vertices are made
absorbing in Ca

i . The edges connecting Vi to V0 are kept and all the edges inside C0 are
removed. The augmented CTMC is used to calculate the probability to start from a
vertex in Gi and take a reset edge within a certain period of time.

(ii) Given any CTMC C with k states and rate matrix P · E, the matrix Π(x) is
given by:

Π(x) =

∫ x

0

M(τ)Π(x − τ)dτ + D(x). (19)

Intuitively, Π(t)[j, j′] indicates the probability to start from vertex j and reach j′ at
time t.

The following proposition states the close relationship between Π(x) and the tran-
sient probability vector:

Proposition 2. Given a CTMC C with initial distribution α, rate matrix P·E and
Π(t), ~℘(t) satisfies the following two equations:

~℘(t) = α ·Π(t), (20)

d~℘(t)

dt
= ~℘(t) ·Q, (21)

where Q = P·E− E is the infinitesimal generator.

24



Proof. The transition probability matrix Π(t) for a CTMC C with state space S is
denoted by the following system of integral equations:

Π(t) =

∫ t

0

M(τ)Π(t − τ)dτ + D(t), (22)

where M(τ) = P·E·D(τ). Now we define for the CTMC C a stochastic process X(t).
The probability Pr(X(t + ∆t) = sj) to be in state sj at time t + ∆t can be defined as:

Pr(X(t + ∆t) = sj) =
∑

si∈S

Pr(X(t) = si) · Pr(X(t + ∆t) = sj |X(t) = si)

We can define Pr(X(t + ∆t) = sj) in the vector form as follows:

~℘(t + ∆t) = ~℘(t)Φ(t, t + ∆t),

where ~℘(t) = [Pr(X(t) = s1), . . . , Pr(X(t) = sn)] and Φ(t, t+∆t)[i, j] = Pr(X(t+∆t) =
sj |X(t) = si).

As the stochastic process X(t) is time-homogeneous we have that

Pr(X(t + ∆t) = sj |X(t) = si) = Pr(X(∆t) = sj |X(0) = si),

which means that Φ(t, t + ∆t) = Φ(0, ∆t). As Pr(X(∆t) = sj|X(0) = si) denotes the
transition probability to go from state si to state sj at time ∆t we have that Φ(0, ∆t) =
Π(∆t), which results in the equation:

~℘(t + ∆t) = ~℘(t)Π(∆t). (23)

Now we transform Eq. (23) as follows:

~℘(t + ∆t) = ~℘(t)Π(∆t)

=⇒ ~℘(t + ∆t) − ~℘(t) = ~℘(t)Π(∆t) − ~℘(t)

=⇒ ~℘(t + ∆t) − ~℘(t) = ~℘(t)(Π(∆t) − I)

=⇒
d~℘(t)

dt
= lim

∆t→0

~℘(t + ∆t) − ~℘(t)

∆t
= ~℘(t) lim

∆t→0

Π(∆t) − I

∆t
.

Now it is to compute lim∆t→0
Π(∆t)−I

∆t
. For this we rewrite the right hand limit as:

lim
∆t→0

1

∆t

∫ ∆t

0

M(τ)Π(∆t − τ)dτ + lim
∆t→0

1

∆t
(D(∆t) − I) .

The lim∆t→0
1

∆t

∫∆t

0 M(τ)Π(∆t − τ)dτ is of the type 0
0 , which means we have to use

l’Hospital rule:

d(∆t)

d∆t
= 1,

d

d∆t

(∫ ∆t

0

M(τ)Π(∆t − τ)dτ

)
= M(∆t)Π(0) +

∫ ∆t

0

M(τ)
∂

∂∆t
Π(∆t − τ)dτ.

Notice that Π(0) = I and we obtain:

lim
∆t→0

1

∆t

∫ ∆t

0

M(τ)Π(∆t − τ)dτ

= lim
∆t→0

(
M(∆t)Π(0) +

∫ ∆t

0

M(τ)
∂

∂∆t
Π(∆t − τ)dτ

)
= M(0)Π(0) = P·E.

25



The lim∆t→0
1

∆t (D(∆t) − I) is of the type 0
0 , which means the use of l’Hospital rule:

d(∆t)

d∆t
= 1

d

d∆t
(D(∆t) − I) = −ED(∆t)

Therefore, we obtain lim∆t→0
1

∆t
(D(∆t) − I) = −E and

lim
∆t→0

Π(∆t) − I

∆t
= P·E− E = Q,

where Q is the infinitesimal generator of the CTMC C. As a result we obtain:

d~℘(t)

dt
= ~℘(t) lim

∆t→0

Π(∆t) − I

∆t
= ~℘(t)Q.

Combining with Eq. (23) we get:

~℘(t) =α · Π(t),

d~℘(t)

dt
=~℘(t) · Q. �

~℘(t) is the transient probability vector with ℘s(t) indicating the probability to be
in state s at time t given the initial probability distribution α. Eq. (21) is the cele-
brated forward Chapman-Kolmogorov equations. According to this proposition, solving
the integral equation Π(t) boils down to selecting the appropriate initial distribution
vector α and solving the system of ODEs (21), which can be done very efficiently using
uniformization.

Prior to exposing how to solve the system of integral equations by solving a system
of linear equations, we define Π̄a

i ∈ Rki×k0 for an augmented CTMC Ca
i to be part of

Πa
i , where Π̄a

i only keeps the probabilities starting from Vi and ending in V0. Actually,

Πa
i (x) =

(
Πi(x) Π̄a

i (x)
0 I

)
,

where 0 ∈ Rk0×ki is the zero matrix and I ∈ Rk0×k0 is the identity matrix.

Theorem 4. For subgraph Gi of G with ki states, it holds for 0 6 i < m that:

~Ui(0) = Πi(∆ci) · Fi
~Ui+1(0) + Π̄a

i (∆ci) · ~U0(0), (24)

where Πi(∆ci) and Π̄a
i (∆ci) are for CTMC Ci and the augmented CTMC Ca

i , respec-
tively. For case i = m,

~Um(0) = P̂i · ~Um(0) +~1F + B̂m · ~U0(0), (25)

where P̂i(v, v′) = Pi(v, v′) if v /∈ VF ; 0 otherwise and B̂m =
∫∞

0 Bm(τ)dτ .

Proof. We first deal with the case i < m. If in Gi, there exists some backward edge,
namely, for some j, j′, Bi(x)[j, j′] 6= 0, then we shall consider the augmented CTMC

Ca
i with ka

i = ki + k0 states. In view of this, the augmented integral equation ~Ua
i (x) is

defined as:

~Ua
i (x) =

∫ ∆ci−x

0

Ma
i (τ)~Ua

i (x + τ)dτ + Da
i (∆ci − x) ·Fa

i
~̂
Ui(0)

where ~Ua
i (x) =

(
~Ui(x)
~U ′

i(x)

)
∈ Rka

i ×1, ~U ′
i(x) ∈ Rk0×1 is the vector representing reachability

probability for the augmented states in Gi, Fa
i =

(
F′

i B′
i

)
∈ Rka

i ×(ki+1+k0) such that

26



F′
i =

(
Fi

0

)
∈ Rka

i ×ki+1 is the incidence matrix for delay edges and B′
i =

(
0
I

)
∈ Rka

i ×k0 ,

~̂
Ui(0) =

(
~Ui+1(0)
~U0(0)

)
∈ R(ki+1+k0)×1.

First, we prove the following equation:

~Ua
i (x) = Πa

i (∆ci − x) · Fa
i
~̂
Ui(0),

where

Πa
i (x) =

∫ x

0

Ma
i (τ)Πa

i (x − τ)dτ + Da
i (x). (26)

We consider the iterations of the solution of the following system of integral equations:
set ci,x = ∆ci − x.

~U
a,(0)
i (x) = ~0

~U
a,(j+1)
i (x) =

∫ ci,x

0

Ma
i (τ)~U

a,(j)
i (x+τ)dτ + Da

i (ci,x) · Fa
i
~̂
Ui(0).

and

Π
a,(0)
i (ci,x) = 0

Π
a,(j+1)
i (ci,x) =

∫ ci,x

0

Ma
i (τ)Π

a,(j)
i (ci,x−τ)dτ + Da

i (ci,x).

By induction on j, we prove the following relation:

~U
a,(j)
i (x) = Π

a,(j)
i (ci,x) ·Fa

i
~̂
Ui(0).

– Base case: ~U
a,(0)
i (x) = ~0 and Π

a,(0)
i (ci,x) = 0.

– Induction hypothesis: ~U
a,(j)
i (x) = Π

a,(j)
i (ci,x) ·Fa

i
~̂
Ui(0).

– Induction step j → j + 1:

~U
a,(j+1)
i (x) =

∫ ci,x

0

Ma
i (τ)~U

a,(j)
i (x + τ)dτ + Da

i (ci,x) · Fa
i
~̂
Ui(0).

By induction hypothesis we have

~U
a,(j+1)
i (x) =

∫ ci,x

0

Ma
i (τ)~U

a,(j)
i (x + τ)dτ + Da

i (ci,x) ·Fa
i
~̂
Ui(0)

=

∫ ci,x

0

Ma
i (τ)Π

a,(j)
i (ci,x−τ) · Fa

i
~̂
Ui(0)dτ + Da

i (ci,x) ·Fa
i
~̂
Ui(0)

=

(∫ ci,x

0

Ma
i (τ)Π

a,(j)
i (ci,x − τ)dτ + Da

i (ci,x)

)
· Fa

i
~̂
Ui(0)

= Π
a,(j+1)
i (ci,x) ·Fi

~̂
Ui(0).

Clearly, Πa
i (ci,x) = limj→∞ Π

a,(j+1)
i (ci,x) and ~Ua

i (x) = limj→∞
~U

a,(j+1)
i (x).

Let x = 0 and we obtain

~Ua
i (0) = Πa

i (ci,0) ·F
a
i
~̂
Ui(0).

27



We can also write the above relation for x = 0 as:

 

~Ui(0)
~U ′

i(0)

!

= Π
a

i (∆ci)
`

F′
i B′

i

´

 

~Ui+1(0)
~U0(0)

!

=

„

Πi(∆ci) Π̄a

i (∆ci)

0 I

«„

Fi 0

0 I

«

 

~Ui+1(0)
~U0(0)

!

=

„

Πi(∆ci)Fi Π̄a

i (∆ci)

0 I

«

 

~Ui+1(0)
~U0(0)

!

=

 

Πi(∆ci)Fi
~Ui+1(0) + Π̄a

i (∆ci)~U0(0)
~U0(0)

!

.

As a result we can represent ~Ui(0) in the following matrix form

~Ui(0) = Πi(∆ci)Fi
~Ui+1(0) + Π̄a

i (∆ci)~U0(0)

by noting that Πi is formed by the first ki rows and columns of matrix Πa
i and Π̄a

i is
formed by the first ki rows and the last ka

i − ki columns of Πa
i .

For i = m, i.e., the last graph Gm, the region size is infinite, therefore delay transitions
do not exist. The vector ~Um(x + τ) in

∫∞

0 M̂m(τ)~Um(x + τ)dτ does not depend on
entering time x, therefore we can take it out of the integral. As a result we obtain∫∞

0 M̂m(τ)dτ · ~Um(0). More than that
∫∞

0 M̂m(τ)dτ boils down to P̂m and
∫∞

0 Bm(τ)dτ

to B̂m. Also we add the vector ~1F to ensure that the probability to start from a state
in VF is one (see (9)). �

Since the coefficients of the linear equations are all known, solving the system of
linear equations yields ~U0(0), which contains the probability Probv0(0) of reaching VF

from initial vertex v0.

Now we explain how (24) is derived from (17). The term Πi(∆ci)·Fi
~Ui+1(0) is for the

delay transitions, where Fi specifies how the delay transitions are connected between Gi

and Gi+1. The term Π̄a
i (∆ci) · ~U0(0) is for Markovian transitions with reset. Π̄a

i (∆ci) in
the augmented CTMC Ca

i specifies the probabilities to take first transitions inside Gi and
then a one-step Markovian transition back to G0. Eq. (25) is derived from (18). Since it
is the last region and time goes to infinity, the time to enter the region is irrelevant (thus

set to 0). Thus
∫∞

0 M̂i(τ)dτ boils down to P̂i. In fact, the Markovian jump probability

inside Gm can be taken from the embedded DTMC of Cm, which is P̂i.

Example 10. For the single-clock DMTA♦ in Fig. 4(a) (page 13), we show how to com-
pute the reachability probability Prob((v0, 0), (v5, ·)) on the region graph G (cf. Fig. 4(d)),
which has been partitioned into subgraphs G0, G1 and G2 as in Fig. 8.

The matrices for G0 are given as

M0(x) =




0 1·r0·e
−r0x 0

0.5·r1·e
−r1x 0 0

0 0 0


 F0 =




1 0 0 0
0 0 0 0
0 0 1 0




The matrices for G1 are given as

M1(x) =




0 r0·e
−r0x 0 0

0 0 0 0
0 0 0 r2·e

−r2x

0 0 0 0


 F1 =




0 0
0 0
1 0
0 1


 B1 =




0 0 0
1 0 1
0 0 0
0 0 0




28



ℓ0, 06x<1 ℓ0, 16x<2

ℓ1, 06x<1 ℓ1, 16x<2

1 1

v0, r0 v1, r0

v2, r1 v3, r1

0.5

δ

reset, 0.5

ℓ2, 06x<1 ℓ2, 16x<2

ℓ3, 16x<2

ℓ2, x > 2

ℓ3, x > 2

1

v4, r2 v5, r2

v7, r2

δ

δ

1
v8, r2

reset,0.20.2

δ

v6, r2

G0 G1 G2

Fig. 8. Partition the region graph in Fig. 4(d)

Ma
1(x) =




0 r0·e
−r0x 0 0 0 0 0

0 0 0 0 0.5·r1·e
−r1x 0 0.2·r1·e

−r1x

0 0 0 r2·e
−r2x 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




The matrices for G2 are given as

M̂2(x) =

(
0 r2·e

−r2x

0 0

)
P̂2 =

(
0 1
0 0

)

To obtain the system of linear equations, we need:

Π0(1) =




p00 p02 p04

p20 p22 p24

p40 p42 p44


 Π1(1) =




p11 p13 p15 p17

p31 p33 p35 p37

p51 p53 p55 p57

p71 p73 p75 p77


 Π̄a

1(1) =




p̄10 p̄12 p̄14

p̄30 p̄32 p̄32

p̄50 p̄52 p̄54

p̄70 p̄72 p̄74




All elements in these Π-matrices can be computed by the transient probability in
the corresponding CTMCs C0, C1 and Ca

1 (cf. Fig. 9).
The obtained system of linear equations by applying Theorem 4 is:




u0

u2

u4


 =




p00 p02 p04

p20 p22 p24

p40 p42 p44


 ·




1 0 0 0
0 0 0 0
0 0 1 0


 ·




u1

u3

u5

u7







u1

u3

u5

u7


 =




p11 p13 p15 p17

p31 p33 p35 p37

p51 p53 p55 p57

p71 p73 p75 p77


 ·




0 0
0 0
1 0
0 1


 ·

(
u6

u8

)
+




p̄10 p̄12 p̄14

p̄30 p̄32 p̄32

p̄50 p̄52 p̄54

p̄70 p̄72 p̄74


 ·




u0

u1

u3




(
u6

u8

)
=

(
0 1
0 0

)
·

(
u6

u8

)
+

(
0
1

)

This can be solved easily.

29



v0

v2

v4

1 0.5

0.2

r0

r1

r2

(a) C0

v1

v3

v5r0

r1

r2

v7 r2

1 1

1 1

(b) C1

v1

v3

v5r0

r1

r2

v7 r2

1 1

1

v0

v2

v4
0.5

0.2

r0

r1

r2

(c) Ca

1

v6

v8

r2

r2

1

1

(d) C2

Fig. 9. Derived CTMCs

Remark 6. We note that for two-clock DTA♦ which yield two-clock DMTA♦, the ap-
proach given in this section fails in general. In the single-clock case, the reset guarantees
to jump to G0(0) and delay to Gi+1(0) when it is in Gi. However, in the two-clock case,
after a delay or reset generally only one clock has a fixed value while the value of the
other one is not determined.

The time-complexity of computing the reachability probability in the single-clock
DTA♦ case is O(m · |S|

2
· |Loc|

2
· λ · ∆c + m3 · |S|

3
· |Loc|

3
), where m is the number of

constants appearing in the DTA♦, |S| is the number of states in the CTMC, |Loc| is the
number of locations in the DTA♦, λ is the maximal exit rate in the CTMC and ∆c =
max0≤i<m{ci+1 − ci}. The first term m · |S|

2
· |Loc|

2
·λ ·∆c is due to the uniformization

technique for computing transient distribution; and the second term m3 · |S|
3
· |Loc|

3

is the time complexity for solving a system of linear equations with O(m · |S| · |Loc|)
variables.

5 Model Checking DTAω Specifications

We now deal with DTAω specifications. Given the product Mω = (Loc,X , ℓ0, LocF , E, 
), we first define the region graph Gω(Mω) (or simply Gω) as (V, v0, V

ω
F , Λ, →֒) without

specifying how the accepting set V ω
F is defined. This will become clear later. The elements

V , v0, Λ and →֒ are defined in the same way as in Def. 10 (page 16).
The Muller acceptance conditions QF in the DTAω consider the infinite paths that

visit the locations in F ∈ QF infinitely often. For this sake, BSCCs in the region graph
Gω that consist of set of vertices corresponding to LF ∈ LocF are of most importance.
Note that it is not sufficient to consider the BSCCs in the DMTAω. The reason will
become clear in Remark 7. Let v ∈ B denote that vertex v is in the BSCC B. We define
accepting BSCCs as follows:

Definition 12 (aBSCC). Given a product C ⊗ Aω = (Loc,X , ℓ0, LocF , E, ) and its
region graph Gω, a BSCC B in Gω is accepting if there exists LF ∈ LocF such that for
any v ∈ B, v⇂1 ∈ LF . Let aB denote the set of accepting BSCCs in Gω.

Based on aB, we can now define the set of accepting vertices of Gω as V ω
F = {v ∈ B |

B ∈ aB}. Note that it is not an acceptance family but a set of accepting vertices.

Example 11. For the DMTAω in Fig. 5(c) with LocF =
{
{ℓ1, ℓ2, ℓ3}, {ℓ4, ℓ5, ℓ6}

}
, the

region graph is as in Fig. 10. There is one accepting BSCC, which has been labeled with
gray. This BSCC corresponds to the set {ℓ4, ℓ5, ℓ6} ∈ LocF in the DMTA

ω. There is

30



no BSCC corresponding to the set {ℓ1, ℓ2, ℓ3} because in the region graph v12 and v14

are sink vertices connecting to the SCC. In other words, the probabilities will leak when
x > 2 on either ℓ1 or ℓ2. This is determined by the guards on the DTAω.

ℓ0, 06x<1

ℓ4, 16x<2

ℓ4, 06x<1

ℓ5, 16x<2

v0, r0

v1, 0 v2, 0

v3, r1

ℓ5, 06x<1

ℓ4, x>2 ℓ5, x>2ℓ6, 16x<2

ℓ6, x > 2

ℓ0, 16x<2

ℓ1, 16x<2 ℓ2, 16x<2

ℓ3, 06x<1ℓ1, x>2

ℓ3, 16x<2

ℓ3, x>2

ℓ2, x>2

v4, r3

v5, r1 v7, r3

v8, r2

v6, 0

0.60.4

δ δ

1δ 1
δ

1 δ
1

0.3 0.7

δ

0.4 0.6

1

δ

δ

δ δ

0.3 0.7

0.3 0.7

v9, r0

v10, r1 v11, r3

v12, r1 v13, 0 v14, r3

v15, 0

v16, r2

1

Fig. 10. Region graph of the product DMTA
ω in Fig. 5(c)

We remark on two points: 1) the probability of staying in an aBSCC is 1, consid-
ering both the delay and Markovian transitions. That is to say, there are no outgoing
transitions from which probabilities can “leak”; 2) any two aBSCCs are disjoint, such
that the probabilities to reach two BSCCs can be added. These two points are later
important for the computation of the reachability probability.

Let ProbC(Aω) be the probability of the set of infinite paths in C that can be accepted
by Aω . The following theorem computes ProbC(Aω) on the region graph:

Theorem 5. For any CTMC C, DTAω Aω, and the region graph Gω = (V, v0, V
ω
F , Λ, →֒

) of the product, it holds that:

ProbC(Aω) = ProbGω

(v0,♦V ω
F ).

Proof. We show the theorem by the following three steps:

1. ProbC(Aω) = ProbC⊗A(LocF ), where ProbC⊗A(LocF ) denotes the probability of
accepting paths of DMTA C ⊗ A w.r.t. Muller accepting conditions;

2. ProbC⊗A(LocF ) = ProbGω

(v0, LocF );

3. ProbGω

(v0, LocF) = ProbGω

(v0,♦V ω
F ).

For the first step, we note that PathsC(Aω) =
⋂

16i6k Paths i where

Paths i =
⋂

n>0

⋃

m>n

⋃

s0,...,sn,sn+1...,sm

C(s0, I0, . . . , In−1, sn, . . . , Im−1, sm), where

– {sn+1, . . . , sm} = LFi
;

– C(s0, I0, . . . , In−1, sn, . . . , Im−1, sm) is the cylinder set such that each timed path

of the cylinder set of the form s0
t0−−→ · · ·

tn−1−−−−→ sn · · ·
tm−1−−−−→ sm is a prefix of an

accepting path of A.

31



Similar to Lemma 1, one can easily see that each path of CTMC C can be lifted to a
unique path of DMTAω C ⊗ Aω . Following the same argument as in Theorem 2, one
can obtain that for each cylinder set of the form C(s0, I0, . . . , In−1, sn, . . . , Im−1, sm), C

and C ⊗ Aω give rise to the same probability. Hence ProbC(Aω) = ProbC⊗Aω

(LocF ).
For the second step, we need to define a timed path of Gω, which is of the form

v0
t0−−→ v1

t2−−→ · · · such that given the initial valuation η0, one can construct a sequence
{ηi} such that

– ηi+1 = (ηi + ti)[Xi := 0] if ηi + ti |= Inv(vi) (namely, the transition from vi to vi+1

is via a Markovian transition); and
– ηi+1 = ηi + ti if ηi + ti ∈ ∂Inv(vi) (namely, the transition from vi to vi+1 is via a

forced boundary jump).

A path of Gω is accepted if the discrete part of the path, namely v0v1 · · · meets the
Muller condition.

Following the standard region construction, one can lift a timed path of DMTAω

C⊗Aω to a unique timed path of the corresponding region graph Gω . Moreover, following
the same argument of Theorem 3, one can show that C ⊗ Aω and Gω give rise to the
same probability to the accepted paths.

For the third step, we note that according to the ergodicity of PDP (region graph),
for each path of Gω, with probability 1 the states visited infinitely often constitute a
BSCC. It follows that

ProbGω

(v0, LocF) =
∑

B∈aB

Prob{ρ | inf(ρ) = B}.

We note that for each note v in an accepting BSCC, Prob{PathsG
ω

(v)} = 1. Hence

ProbG
ω

(v0, LocF) = ProbGω

(v0,♦V ω
F ).

�

Actually, the region graph Gω can be simplified to Gω
abs to compute ProbC(Aω). Gω

abs

is obtained by making (i) all vertices in V ω
F and (ii) all vertices that cannot reach V ω

F

absorbing. (i) is justified by the fact that for these v ∈ V ω
F , ProbG(v,♦V ω

F ) = 1; while

(ii) is because ProbG(v′,♦V ω
F ) = 0, for v′ cannot reach V ω

F . It is obvious to see that

ProbGω

(v0,♦V ω
F ) = ProbGω

abs(v0,♦V ω
F ).

ℓ0, 06x<1

ℓ4, 06x<1

v0, r0

v1, r1 v2, r3

ℓ5, 06x<1

ℓ0, 16x<2

0.60.4

δ

v9, r0

1 1

1

Fig. 11. The transformed region graph Gω

abs

Example 12. The transformed region graph Gω
abs of that in Fig. 10 is shown in Fig. 11.

We omit all the vertices that cannot be reached from v0 in Gω
abs. In this new model,

V ω
F = {v1, v2}. We now can perform the approach for computing timed-unbounded

reachability probabilities in Section 4 such that Eq. (7)-(9) can be applied. We have:

32



ProbGω
abs(v0,♦V ω

F ) = ProbGω
abs(v0,♦ atv1)+ProbGω

abs(v0,♦ atv2). Note that ProbGω
abs(vi,♦V ω

F ) =

1 for i = 1, 2 and 0 for i = 9. For the delay transition v0
δ
→֒ v9,

Probv0,δ(0) = e−r0·1·Probv9(1) = e−r0·1·0 = 0.

For the Markovian transition v0

0.4,{x}
→֒ v1,

Probv0,v1(0) =

∫ 1

0

0.4·r0·e
−r0·τ ·Probv1(τ)dτ =

∫ 1

0

0.4·r0·e
−r0·τdτ.

A similar reasoning applies to v0

0.6,{x}
→֒ v2. In the end, we have

ProbC(Aω) =

∫ 1

0

(0.4 + 0.6)·r0·e
−r0·τdτ =

∫ 1

0

r0·e
−r0·τdτ = 1 − e−r0 .

Remark 7 (Why not BSCCs in the product?). There are two BSCCs in the product
DMTAω: one formed by {ℓ1, ℓ2, ℓ3} and the other by {ℓ4, ℓ5, ℓ6}. As turned out in the
example that only the latter forms a BSCC in the region graph while the former does
not. This is because the guards on the transitions also play a role on whether a path
can be accepted. The impact of guards, however, is not immediately clear in the product
DMTAω, but is implicitly consumed in the region graph. This justifies finding BSCCs
in the region graph instead of in the product.

Theorem 5 implies that computing the probability of a set of infinite paths (LHS)
can be reduced to computing the probability of a set of finite paths (RHS). The latter
has been solved in Section 4 with the characterization of a system of integral equations
and also the approximation by a system of PDEs. The case of a single clock DTA

ω, due
to this reduction, can also be solved as a system of ODEs (as in Section 4.2).

6 Conclusion

We addressed the quantitative verification of a CTMC C against a DTA♦ A (DTAω Aω).
As a key result, we showed that the set of the accepting paths in C by DTA is measurable
and the probability of C |= A can be reduced to computing reachability probabilities in
the embedded DTMP of a PDP. The probabilities can be characterized by a system of
Volterra integral equations of the second type and can be approximated by a system of
PDEs. For single-clock DTA♦, this reduces to solving a system of linear equations whose
coefficients are a system of ODEs. The probability of C |= Aω is reducible to computing
the reachability probabilities to the accepting BSCCs in the region graph and the thus
obtained PDP.

Acknowledgement

We thank Jeremy Sproston for the fruitful and insightful discussions. This research is funded

by the DFG research training group 1295 AlgoSyn, the Dutch Bsik project BRICK, the NWO

project QUPES and the EU FP7 project QUASIMODO.

References

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

[ASSB00] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert K. Brayton. Model-
checking continous-time Markov chains. ACM Trans. Comput. Log., 1(1):162–170,
2000.

33



[AW95] George B. Arfken and Hans J. Weber. Mathematical Methods for Physicists (4th
ed.). Academic Press, 1995.

[BBB+07] Christel Baier, Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Marcus
Größer. Probabilistic and topological semantics for timed automata. In FSTTCS,
pages 179–191, 2007.

[BBB+08] Christel Baier, Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Marcus
Grösser. Almost-sure model checking of infinite paths in one-clock timed automata.
In LICS, pages 217–226, 2008.

[BBBM08] Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Quan-
titative model-checking of one-clock timed automata under probabilistic semantics.
In QEST, pages 55–64, 2008.

[BCH+07] Christel Baier, Lucia Cloth, Boudewijn R. Haverkort, Matthias Kuntz, and Markus
Siegle. Model checking Markov chains with actions and state labels. IEEE Trans.
Software Eng., 33(4):209–224, 2007.

[BHHK03] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-Pieter Ka-
toen. Model-checking algorithms for continuous-time Markov chains. IEEE Trans.
Software Eng., 29(6):524–541, 2003.

[BPDG98] Béatrice Bérard, Antoine Petit, Volker Diekert, and Paul Gastin. Characterization
of the expressive power of silent transitions in timed automata. Fundam. Inform.,
36(2-3):145–182, 1998.

[CD88] Oswaldo L.V. Costa and Mark H.A. Davis. Approximations for optimal stopping
of a piecewise-deterministic process. Math. Control Signals Systems, 1(2):123–146,
1988.

[Cor91] C. Corduneanu. Integral Equations and Applications. Cambridge University Press,
1991.

[Dav84] Mark H. A. Davis. Piecewise-deterministic Markov processes: A general class of non-
diffusion stochastic models. Journal of the Royal Statistical Society (B), 46(3):353–
388, 1984.

[Dav93] Mark H. A. Davis. Markov Models and Optimization. Chapman and Hall, 1993.
[DHS09] Susanna Donatelli, Serge Haddad, and Jeremy Sproston. Model checking timed and

stochastic properties with CSLTA. IEEE Trans. Software Eng., 35(2):224–240, 2009.
[KNSS02] Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston.

Automatic verification of real-time systems with discrete probability distributions.
Theor. Comput. Sci., 282(1):101–150, 2002.

[LL85] Suzanne M. Lenhart and Yu-Chung Liao. Integro-differential equations associ-
ated with optimal stopping time of a piecewise-deterministic process. Stochastics,
15(3):183–207, 1985.

[LY91] Suzanne M. Lenhart and Naoki Yamada. Perron’s method for viscosity solutions
associated with piecewise-deterministic processes. Funkcialaj Ekvacioj, 34:173–186,
1991.

[Var85] Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state pro-
grams. In FOCS, pages 327–338, 1985.

34



Aachener Informatik-Berichte

This is the list of all technical reports since 1987. To obtain copies of reports please con-
sult http://aib.informatik.rwth-aachen.de/ or send your request to: Informatik-
Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email: biblio@informatik.
rwth-aachen.de

1987-01 ∗ Fachgruppe Informatik: Jahresbericht 1986
1987-02 ∗ David de Frutos Escrig, Klaus Indermark: Equivalence Relations of Non-

Deterministic Ianov-Schemes
1987-03 ∗ Manfred Nagl: A Software Development Environment based on Graph

Technology
1987-04 ∗ Claus Lewerentz, Manfred Nagl, Bernhard Westfechtel: On Integration

Mechanisms within a Graph-Based Software Development Environment

1987-05 ∗ Reinhard Rinn: Über Eingabeanomalien bei verschiedenen Inferenzmod-
ellen

1987-06 ∗ Werner Damm, Gert Döhmen: Specifying Distributed Computer Archi-
tectures in AADL*

1987-07 ∗ Gregor Engels, Claus Lewerentz, Wilhelm Schäfer: Graph Grammar En-
gineering: A Software Specification Method

1987-08 ∗ Manfred Nagl: Set Theoretic Approaches to Graph Grammars
1987-09 ∗ Claus Lewerentz, Andreas Schürr: Experiences with a Database System

for Software Documents
1987-10 ∗ Herbert Klaeren, Klaus Indermark: A New Implementation Technique

for Recursive Function Definitions
1987-11 ∗ Rita Loogen: Design of a Parallel Programmable Graph Reduction Ma-

chine with Distributed Memory
1987-12 J. Börstler, U. Möncke, R. Wilhelm: Table compression for tree automata
1988-01 ∗ Gabriele Esser, Johannes Rückert, Frank Wagner Gesellschaftliche As-

pekte der Informatik
1988-02 ∗ Peter Martini, Otto Spaniol: Token-Passing in High-Speed Backbone

Networks for Campus-Wide Environments
1988-03 ∗ Thomas Welzel: Simulation of a Multiple Token Ring Backbone
1988-04 ∗ Peter Martini: Performance Comparison for HSLAN Media Access Pro-

tocols
1988-05 ∗ Peter Martini: Performance Analysis of Multiple Token Rings
1988-06 ∗ Andreas Mann, Johannes Rückert, Otto Spaniol: Datenfunknetze
1988-07 ∗ Andreas Mann, Johannes Rückert: Packet Radio Networks for Data Ex-

change
1988-08 ∗ Andreas Mann, Johannes Rückert: Concurrent Slot Assignment Protocol

for Packet Radio Networks
1988-09 ∗ W. Kremer, F. Reichert, J. Rückert, A. Mann: Entwurf einer Netzw-

erktopologie für ein Mobilfunknetz zur Unterstützung des öffentlichen
Straßenverkehrs

1988-10 ∗ Kai Jakobs: Towards User-Friendly Networking
1988-11 ∗ Kai Jakobs: The Directory - Evolution of a Standard
1988-12 ∗ Kai Jakobs: Directory Services in Distributed Systems - A Survey
1988-13 ∗ Martine Schümmer: RS-511, a Protocol for the Plant Floor
1988-14 ∗ U. Quernheim: Satellite Communication Protocols - A Performance

Comparison Considering On-Board Processing
1988-15 ∗ Peter Martini, Otto Spaniol, Thomas Welzel: File Transfer in High Speed

Token Ring Networks: Performance Evaluation by Approximate Analysis
and Simulation

1988-16 ∗ Fachgruppe Informatik: Jahresbericht 1987

35



1988-17 ∗ Wolfgang Thomas: Automata on Infinite Objects
1988-18 ∗ Michael Sonnenschein: On Petri Nets and Data Flow Graphs
1988-19 ∗ Heiko Vogler: Functional Distribution of the Contextual Analysis in

Block-Structured Programming Languages: A Case Study of Tree Trans-
ducers

1988-20 ∗ Thomas Welzel: Einsatz des Simulationswerkzeuges QNAP2 zur Leis-
tungsbewertung von Kommunikationsprotokollen

1988-21 ∗ Th. Janning, C. Lewerentz: Integrated Project Team Management in a
Software Development Environment

1988-22 ∗ Joost Engelfriet, Heiko Vogler: Modular Tree Transducers
1988-23 ∗ Wolfgang Thomas: Automata and Quantifier Hierarchies
1988-24 ∗ Uschi Heuter: Generalized Definite Tree Languages
1989-01 ∗ Fachgruppe Informatik: Jahresbericht 1988
1989-02 ∗ G. Esser, J. Rückert, F. Wagner (Hrsg.): Gesellschaftliche Aspekte der

Informatik
1989-03 ∗ Heiko Vogler: Bottom-Up Computation of Primitive Recursive Tree

Functions
1989-04 ∗ Andy Schürr: Introduction to PROGRESS, an Attribute Graph Gram-

mar Based Specification Language
1989-05 J. Börstler: Reuse and Software Development - Problems, Solutions, and

Bibliography (in German)
1989-06 ∗ Kai Jakobs: OSI - An Appropriate Basis for Group Communication?
1989-07 ∗ Kai Jakobs: ISO’s Directory Proposal - Evolution, Current Status and

Future Problems
1989-08 ∗ Bernhard Westfechtel: Extension of a Graph Storage for Software Doc-

uments with Primitives for Undo/Redo and Revision Control
1989-09 ∗ Peter Martini: High Speed Local Area Networks - A Tutorial
1989-10 ∗ P. Davids, Th. Welzel: Performance Analysis of DQDB Based on Simu-

lation
1989-11 ∗ Manfred Nagl (Ed.): Abstracts of Talks presented at the WG ’89 15th

International Workshop on Graphtheoretic Concepts in Computer Sci-
ence

1989-12 ∗ Peter Martini: The DQDB Protocol - Is it Playing the Game?
1989-13 ∗ Martine Schümmer: CNC/DNC Communication with MAP
1989-14 ∗ Martine Schümmer: Local Area Networks for Manufactoring Environ-

ments with hard Real-Time Requirements
1989-15 ∗ M. Schümmer, Th. Welzel, P. Martini: Integration of Field Bus and

MAP Networks - Hierarchical Communication Systems in Production
Environments

1989-16 ∗ G. Vossen, K.-U. Witt: SUXESS: Towards a Sound Unification of Ex-
tensions of the Relational Data Model

1989-17 ∗ J. Derissen, P. Hruschka, M.v.d. Beeck, Th. Janning, M. Nagl: Integrat-
ing Structured Analysis and Information Modelling

1989-18 A. Maassen: Programming with Higher Order Functions
1989-19 ∗ Mario Rodriguez-Artalejo, Heiko Vogler: A Narrowing Machine for Syn-

tax Directed BABEL
1989-20 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Graph-based Implementation of a Functional Logic Language
1990-01 ∗ Fachgruppe Informatik: Jahresbericht 1989
1990-02 ∗ Vera Jansen, Andreas Potthoff, Wolfgang Thomas, Udo Wermuth: A

Short Guide to the AMORE System (Computing Automata, MOnoids
and Regular Expressions)

1990-03 ∗ Jerzy Skurczynski: On Three Hierarchies of Weak SkS Formulas
1990-04 R. Loogen: Stack-based Implementation of Narrowing

36



1990-05 H. Kuchen, A. Wagener: Comparison of Dynamic Load Balancing Strate-
gies

1990-06 ∗ Kai Jakobs, Frank Reichert: Directory Services for Mobile Communica-
tion

1990-07 ∗ Kai Jakobs: What’s Beyond the Interface - OSI Networks to Support
Cooperative Work

1990-08 ∗ Kai Jakobs: Directory Names and Schema - An Evaluation
1990-09 ∗ Ulrich Quernheim, Dieter Kreuer: Das CCITT - Signalisierungssystem

Nr. 7 auf Satellitenstrecken; Simulation der Zeichengabestrecke
1990-11 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Lazy Narrowing in a Graph Machine
1990-12 ∗ Kai Jakobs, Josef Kaltwasser, Frank Reichert, Otto Spaniol: Der Com-

puter fährt mit
1990-13 ∗ Rudolf Mathar, Andreas Mann: Analyzing a Distributed Slot Assign-

ment Protocol by Markov Chains
1990-14 A. Maassen: Compilerentwicklung in Miranda - ein Praktikum in funk-

tionaler Programmierung (written in german)
1990-15 ∗ Manfred Nagl, Andreas Schürr: A Specification Environment for Graph

Grammars
1990-16 A. Schürr: PROGRESS: A VHL-Language Based on Graph Grammars
1990-17 ∗ Marita Möller: Ein Ebenenmodell wissensbasierter Konsultationen - Un-

terstützung für Wissensakquisition und Erklärungsfähigkeit
1990-18 ∗ Eric Kowalewski: Entwurf und Interpretation einer Sprache zur Beschrei-

bung von Konsultationsphasen in Expertensystemen
1990-20 Y. Ortega Mallen, D. de Frutos Escrig: A Complete Proof System for

Timed Observations
1990-21 ∗ Manfred Nagl: Modelling of Software Architectures: Importance, No-

tions, Experiences
1990-22 H. Fassbender, H. Vogler: A Call-by-need Implementation of Syntax Di-

rected Functional Programming
1991-01 Guenther Geiler (ed.), Fachgruppe Informatik: Jahresbericht 1990
1991-03 B. Steffen, A. Ingolfsdottir: Characteristic Formulae for Processes with

Divergence
1991-04 M. Portz: A new class of cryptosystems based on interconnection net-

works
1991-05 H. Kuchen, G. Geiler: Distributed Applicative Arrays
1991-06 ∗ Ludwig Staiger: Kolmogorov Complexity and Hausdorff Dimension
1991-07 ∗ Ludwig Staiger: Syntactic Congruences for w-languages
1991-09 ∗ Eila Kuikka: A Proposal for a Syntax-Directed Text Processing System
1991-10 K. Gladitz, H. Fassbender, H. Vogler: Compiler-based Implementation

of Syntax-Directed Functional Programming
1991-11 R. Loogen, St. Winkler: Dynamic Detection of Determinism in Func-

tional Logic Languages
1991-12 ∗ K. Indermark, M. Rodriguez Artalejo (Eds.): Granada Workshop on the

Integration of Functional and Logic Programming
1991-13 ∗ Rolf Hager, Wolfgang Kremer: The Adaptive Priority Scheduler: A More

Fair Priority Service Discipline
1991-14 ∗ Andreas Fasbender, Wolfgang Kremer: A New Approximation Algorithm

for Tandem Networks with Priority Nodes
1991-15 J. Börstler, A. Zündorf: Revisiting extensions to Modula-2 to support

reusability
1991-16 J. Börstler, Th. Janning: Bridging the gap between Requirements Anal-

ysis and Design
1991-17 A. Zündorf, A. Schürr: Nondeterministic Control Structures for Graph

Rewriting Systems

37



1991-18 ∗ Matthias Jarke, John Mylopoulos, Joachim W. Schmidt, Yannis Vassil-
iou: DAIDA: An Environment for Evolving Information Systems

1991-19 M. Jeusfeld, M. Jarke: From Relational to Object-Oriented Integrity
Simplification

1991-20 G. Hogen, A. Kindler, R. Loogen: Automatic Parallelization of Lazy
Functional Programs

1991-21 ∗ Prof. Dr. rer. nat. Otto Spaniol: ODP (Open Distributed Processing):
Yet another Viewpoint

1991-22 H. Kuchen, F. Lücking, H. Stoltze: The Topology Description Language
TDL

1991-23 S. Graf, B. Steffen: Compositional Minimization of Finite State Systems
1991-24 R. Cleaveland, J. Parrow, B. Steffen: The Concurrency Workbench: A

Semantics Based Tool for the Verification of Concurrent Systems
1991-25 ∗ Rudolf Mathar, Jürgen Mattfeldt: Optimal Transmission Ranges for Mo-

bile Communication in Linear Multihop Packet Radio Networks
1991-26 M. Jeusfeld, M. Staudt: Query Optimization in Deductive Object Bases
1991-27 J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem
1991-28 J. Knoop, B. Steffen: Unifying Strength Reduction and Semantic Code

Motion
1991-30 T. Margaria: First-Order theories for the verification of complex FSMs
1991-31 B. Steffen: Generating Data Flow Analysis Algorithms from Modal Spec-

ifications
1992-01 Stefan Eherer (ed.), Fachgruppe Informatik: Jahresbericht 1991
1992-02 ∗ Bernhard Westfechtel: Basismechanismen zur Datenverwaltung in struk-

turbezogenen Hypertextsystemen
1992-04 S. A. Smolka, B. Steffen: Priority as Extremal Probability
1992-05 ∗ Matthias Jarke, Carlos Maltzahn, Thomas Rose: Sharing Processes:

Team Coordination in Design Repositories
1992-06 O. Burkart, B. Steffen: Model Checking for Context-Free Processes
1992-07 ∗ Matthias Jarke, Klaus Pohl: Information Systems Quality and Quality

Information Systems
1992-08 ∗ Rudolf Mathar, Jürgen Mattfeldt: Analyzing Routing Strategy NFP in

Multihop Packet Radio Networks on a Line
1992-09 ∗ Alfons Kemper, Guido Moerkotte: Grundlagen objektorientierter Daten-

banksysteme
1992-10 Matthias Jarke, Manfred Jeusfeld, Andreas Miethsam, Michael Gocek:

Towards a logic-based reconstruction of software configuration manage-
ment

1992-11 Werner Hans: A Complete Indexing Scheme for WAM-based Abstract
Machines

1992-12 W. Hans, R. Loogen, St. Winkler: On the Interaction of Lazy Evaluation
and Backtracking

1992-13 ∗ Matthias Jarke, Thomas Rose: Specification Management with CAD
1992-14 Th. Noll, H. Vogler: Top-down Parsing with Simultaneous Evaluation on

Noncircular Attribute Grammars
1992-15 A. Schuerr, B. Westfechtel: Graphgrammatiken und Graphersetzungssys-

teme(written in german)
1992-16 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Forschungsprojekte

des Graduiertenkollegs Informatik und Technik
1992-17 M. Jarke (ed.): ConceptBase V3.1 User Manual
1992-18 ∗ Clarence A. Ellis, Matthias Jarke (Eds.): Distributed Cooperation in

Integrated Information Systems - Proceedings of the Third International
Workshop on Intelligent and Cooperative Information Systems

1992-19-00 H. Kuchen, R. Loogen (eds.): Proceedings of the 4th Int. Workshop on
the Parallel Implementation of Functional Languages

38



1992-19-01 G. Hogen, R. Loogen: PASTEL - A Parallel Stack-Based Implementation
of Eager Functional Programs with Lazy Data Structures (Extended
Abstract)

1992-19-02 H. Kuchen, K. Gladitz: Implementing Bags on a Shared Memory MIMD-
Machine

1992-19-03 C. Rathsack, S.B. Scholz: LISA - A Lazy Interpreter for a Full-Fledged
Lambda-Calculus

1992-19-04 T.A. Bratvold: Determining Useful Parallelism in Higher Order Func-
tions

1992-19-05 S. Kahrs: Polymorphic Type Checking by Interpretation of Code
1992-19-06 M. Chakravarty, M. Köhler: Equational Constraints, Residuation, and

the Parallel JUMP-Machine
1992-19-07 J. Seward: Polymorphic Strictness Analysis using Frontiers (Draft Ver-

sion)
1992-19-08 D. Gärtner, A. Kimms, W. Kluge: pi-Redˆ+ - A Compiling Graph-

Reduction System for a Full Fledged Lambda-Calculus
1992-19-09 D. Howe, G. Burn: Experiments with strict STG code
1992-19-10 J. Glauert: Parallel Implementation of Functional Languages Using

Small Processes
1992-19-11 M. Joy, T. Axford: A Parallel Graph Reduction Machine
1992-19-12 A. Bennett, P. Kelly: Simulation of Multicache Parallel Reduction
1992-19-13 K. Langendoen, D.J. Agterkamp: Cache Behaviour of Lazy Functional

Programs (Working Paper)
1992-19-14 K. Hammond, S. Peyton Jones: Profiling scheduling strategies on the

GRIP parallel reducer
1992-19-15 S. Mintchev: Using Strictness Information in the STG-machine
1992-19-16 D. Rushall: An Attribute Grammar Evaluator in Haskell
1992-19-17 J. Wild, H. Glaser, P. Hartel: Statistics on storage management in a lazy

functional language implementation
1992-19-18 W.S. Martins: Parallel Implementations of Functional Languages
1992-19-19 D. Lester: Distributed Garbage Collection of Cyclic Structures (Draft

version)
1992-19-20 J.C. Glas, R.F.H. Hofman, W.G. Vree: Parallelization of Branch-and-

Bound Algorithms in a Functional Programming Environment
1992-19-21 S. Hwang, D. Rushall: The nu-STG machine: a parallelized Spineless

Tagless Graph Reduction Machine in a distributed memory architecture
(Draft version)

1992-19-22 G. Burn, D. Le Metayer: Cps-Translation and the Correctness of Opti-
mising Compilers

1992-19-23 S.L. Peyton Jones, P. Wadler: Imperative functional programming (Brief
summary)

1992-19-24 W. Damm, F. Liu, Th. Peikenkamp: Evaluation and Parallelization of
Functions in Functional + Logic Languages (abstract)

1992-19-25 M. Kesseler: Communication Issues Regarding Parallel Functional Graph
Rewriting

1992-19-26 Th. Peikenkamp: Charakterizing and representing neededness in func-
tional loginc languages (abstract)

1992-19-27 H. Doerr: Monitoring with Graph-Grammars as formal operational Mod-
els

1992-19-28 J. van Groningen: Some implementation aspects of Concurrent Clean on
distributed memory architectures

1992-19-29 G. Ostheimer: Load Bounding for Implicit Parallelism (abstract)
1992-20 H. Kuchen, F.J. Lopez Fraguas, J.J. Moreno Navarro, M. Rodriguez

Artalejo: Implementing Disequality in a Lazy Functional Logic Language

39



1992-21 H. Kuchen, F.J. Lopez Fraguas: Result Directed Computing in a Func-
tional Logic Language

1992-22 H. Kuchen, J.J. Moreno Navarro, M.V. Hermenegildo: Independent
AND-Parallel Narrowing

1992-23 T. Margaria, B. Steffen: Distinguishing Formulas for Free
1992-24 K. Pohl: The Three Dimensions of Requirements Engineering
1992-25 ∗ R. Stainov: A Dynamic Configuration Facility for Multimedia Commu-

nications
1992-26 ∗ Michael von der Beeck: Integration of Structured Analysis and Timed

Statecharts for Real-Time and Concurrency Specification
1992-27 W. Hans, St. Winkler: Aliasing and Groundness Analysis of Logic Pro-

grams through Abstract Interpretation and its Safety
1992-28 ∗ Gerhard Steinke, Matthias Jarke: Support for Security Modeling in In-

formation Systems Design
1992-29 B. Schinzel: Warum Frauenforschung in Naturwissenschaft und Technik
1992-30 A. Kemper, G. Moerkotte, K. Peithner: Object-Orientation Axiomatised

by Dynamic Logic
1992-32 ∗ Bernd Heinrichs, Kai Jakobs: Timer Handling in High-Performance

Transport Systems
1992-33 ∗ B. Heinrichs, K. Jakobs, K. Lenßen, W. Reinhardt, A. Spinner: Euro-

Bridge: Communication Services for Multimedia Applications
1992-34 C. Gerlhof, A. Kemper, Ch. Kilger, G. Moerkotte: Partition-Based Clus-

tering in Object Bases: From Theory to Practice
1992-35 J. Börstler: Feature-Oriented Classification and Reuse in IPSEN
1992-36 M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, Y. Vassiliou: Theories Un-

derlying Requirements Engineering: An Overview of NATURE at Gen-
esis

1992-37 ∗ K. Pohl, M. Jarke: Quality Information Systems: Repository Support for
Evolving Process Models

1992-38 A. Zuendorf: Implementation of the imperative / rule based language
PROGRES

1992-39 P. Koch: Intelligentes Backtracking bei der Auswertung funktional-
logischer Programme

1992-40 ∗ Rudolf Mathar, Jürgen Mattfeldt: Channel Assignment in Cellular Radio
Networks

1992-41 ∗ Gerhard Friedrich, Wolfgang Neidl: Constructive Utility in Model-Based
Diagnosis Repair Systems

1992-42 ∗ P. S. Chen, R. Hennicker, M. Jarke: On the Retrieval of Reusable Soft-
ware Components

1992-43 W. Hans, St.Winkler: Abstract Interpretation of Functional Logic Lan-
guages

1992-44 N. Kiesel, A. Schuerr, B. Westfechtel: Design and Evaluation of GRAS,
a Graph-Oriented Database System for Engineering Applications

1993-01 ∗ Fachgruppe Informatik: Jahresbericht 1992
1993-02 ∗ Patrick Shicheng Chen: On Inference Rules of Logic-Based Information

Retrieval Systems
1993-03 G. Hogen, R. Loogen: A New Stack Technique for the Management of

Runtime Structures in Distributed Environments
1993-05 A. Zündorf: A Heuristic for the Subgraph Isomorphism Problem in Ex-

ecuting PROGRES
1993-06 A. Kemper, D. Kossmann: Adaptable Pointer Swizzling Strategies in

Object Bases: Design, Realization, and Quantitative Analysis
1993-07 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Graduiertenkolleg In-

formatik und Technik

40



1993-08 ∗ Matthias Berger: k-Coloring Vertices using a Neural Network with Con-
vergence to Valid Solutions

1993-09 M. Buchheit, M. Jeusfeld, W. Nutt, M. Staudt: Subsumption between
Queries to Object-Oriented Databases

1993-10 O. Burkart, B. Steffen: Pushdown Processes: Parallel Composition and
Model Checking

1993-11 ∗ R. Große-Wienker, O. Hermanns, D. Menzenbach, A. Pollacks, S. Repet-
zki, J. Schwartz, K. Sonnenschein, B. Westfechtel: Das SUKITS-Projekt:
A-posteriori-Integration heterogener CIM-Anwendungssysteme

1993-12 ∗ Rudolf Mathar, Jürgen Mattfeldt: On the Distribution of Cumulated
Interference Power in Rayleigh Fading Channels

1993-13 O. Maler, L. Staiger: On Syntactic Congruences for omega-languages
1993-14 M. Jarke, St. Eherer, R. Gallersdoerfer, M. Jeusfeld, M. Staudt: Con-

ceptBase - A Deductive Object Base Manager
1993-15 M. Staudt, H.W. Nissen, M.A. Jeusfeld: Query by Class, Rule and Con-

cept
1993-16 ∗ M. Jarke, K. Pohl, St. Jacobs et al.: Requirements Engineering: An In-

tegrated View of Representation Process and Domain
1993-17 ∗ M. Jarke, K. Pohl: Establishing Vision in Context: Towards a Model of

Requirements Processes
1993-18 W. Hans, H. Kuchen, St. Winkler: Full Indexing for Lazy Narrowing
1993-19 W. Hans, J.J. Ruz, F. Saenz, St. Winkler: A VHDL Specification of a

Shared Memory Parallel Machine for Babel
1993-20 ∗ K. Finke, M. Jarke, P. Szczurko, R. Soltysiak: Quality Management for

Expert Systems in Process Control
1993-21 M. Jarke, M.A. Jeusfeld, P. Szczurko: Three Aspects of Intelligent Co-

operation in the Quality Cycle
1994-01 Margit Generet, Sven Martin (eds.), Fachgruppe Informatik: Jahres-

bericht 1993
1994-02 M. Lefering: Development of Incremental Integration Tools Using Formal

Specifications
1994-03 ∗ P. Constantopoulos, M. Jarke, J. Mylopoulos, Y. Vassiliou: The Software

Information Base: A Server for Reuse
1994-04 ∗ Rolf Hager, Rudolf Mathar, Jürgen Mattfeldt: Intelligent Cruise Control

and Reliable Communication of Mobile Stations
1994-05 ∗ Rolf Hager, Peter Hermesmann, Michael Portz: Feasibility of Authenti-

cation Procedures within Advanced Transport Telematics
1994-06 ∗ Claudia Popien, Bernd Meyer, Axel Kuepper: A Formal Approach to

Service Import in ODP Trader Federations
1994-07 P. Peters, P. Szczurko: Integrating Models of Quality Management Meth-

ods by an Object-Oriented Repository
1994-08 ∗ Manfred Nagl, Bernhard Westfechtel: A Universal Component for the

Administration in Distributed and Integrated Development Environ-
ments

1994-09 ∗ Patrick Horster, Holger Petersen: Signatur- und Authentifikationsver-
fahren auf der Basis des diskreten Logarithmusproblems

1994-11 A. Schürr: PROGRES, A Visual Language and Environment for PRO-
gramming with Graph REwrite Systems

1994-12 A. Schürr: Specification of Graph Translators with Triple Graph Gram-
mars

1994-13 A. Schürr: Logic Based Programmed Structure Rewriting Systems
1994-14 L. Staiger: Codes, Simplifying Words, and Open Set Condition
1994-15 ∗ Bernhard Westfechtel: A Graph-Based System for Managing Configura-

tions of Engineering Design Documents
1994-16 P. Klein: Designing Software with Modula-3

41



1994-17 I. Litovsky, L. Staiger: Finite acceptance of infinite words
1994-18 G. Hogen, R. Loogen: Parallel Functional Implementations: Graphbased

vs. Stackbased Reduction
1994-19 M. Jeusfeld, U. Johnen: An Executable Meta Model for Re-Engineering

of Database Schemas
1994-20 ∗ R. Gallersdörfer, M. Jarke, K. Klabunde: Intelligent Networks as a Data

Intensive Application (INDIA)
1994-21 M. Mohnen: Proving the Correctness of the Static Link Technique Using

Evolving Algebras
1994-22 H. Fernau, L. Staiger: Valuations and Unambiguity of Languages, with

Applications to Fractal Geometry
1994-24 ∗ M. Jarke, K. Pohl, R. Dömges, St. Jacobs, H. W. Nissen: Requirements

Information Management: The NATURE Approach
1994-25 ∗ M. Jarke, K. Pohl, C. Rolland, J.-R. Schmitt: Experience-Based Method

Evaluation and Improvement: A Process Modeling Approach
1994-26 ∗ St. Jacobs, St. Kethers: Improving Communication and Decision Making

within Quality Function Deployment
1994-27 ∗ M. Jarke, H. W. Nissen, K. Pohl: Tool Integration in Evolving Informa-

tion Systems Environments
1994-28 O. Burkart, D. Caucal, B. Steffen: An Elementary Bisimulation Decision

Procedure for Arbitrary Context-Free Processes
1995-01 ∗ Fachgruppe Informatik: Jahresbericht 1994
1995-02 Andy Schürr, Andreas J. Winter, Albert Zündorf: Graph Grammar En-

gineering with PROGRES
1995-03 Ludwig Staiger: A Tight Upper Bound on Kolmogorov Complexity by

Hausdorff Dimension and Uniformly Optimal Prediction
1995-04 Birgitta König-Ries, Sven Helmer, Guido Moerkotte: An experimental

study on the complexity of left-deep join ordering problems for cyclic
queries

1995-05 Sophie Cluet, Guido Moerkotte: Efficient Evaluation of Aggregates on
Bulk Types

1995-06 Sophie Cluet, Guido Moerkotte: Nested Queries in Object Bases
1995-07 Sophie Cluet, Guido Moerkotte: Query Optimization Techniques Ex-

ploiting Class Hierarchies
1995-08 Markus Mohnen: Efficient Compile-Time Garbage Collection for Arbi-

trary Data Structures
1995-09 Markus Mohnen: Functional Specification of Imperative Programs: An

Alternative Point of View of Functional Languages
1995-10 Rainer Gallersdörfer, Matthias Nicola: Improving Performance in Repli-

cated Databases through Relaxed Coherency
1995-11 ∗ M.Staudt, K.von Thadden: Subsumption Checking in Knowledge Bases
1995-12 ∗ G.V.Zemanek, H.W.Nissen, H.Hubert, M.Jarke: Requirements Analy-

sis from Multiple Perspectives: Experiences with Conceptual Modeling
Technology

1995-13 ∗ M.Staudt, M.Jarke: Incremental Maintenance of Externally Materialized
Views

1995-14 ∗ P.Peters, P.Szczurko, M.Jeusfeld: Oriented Information Management:
Conceptual Models at Work

1995-15 ∗ Matthias Jarke, Sudha Ram (Hrsg.): WITS 95 Proceedings of the 5th
Annual Workshop on Information Technologies and Systems

1995-16 ∗ W.Hans, St.Winkler, F.Saenz: Distributed Execution in Functional Logic
Programming

1996-01 ∗ Jahresbericht 1995
1996-02 Michael Hanus, Christian Prehofer: Higher-Order Narrowing with Defi-

nitional Trees

42



1996-03 ∗ W.Scheufele, G.Moerkotte: Optimal Ordering of Selections and Joins in
Acyclic Queries with Expensive Predicates

1996-04 Klaus Pohl: PRO-ART: Enabling Requirements Pre-Traceability
1996-05 Klaus Pohl: Requirements Engineering: An Overview
1996-06 ∗ M.Jarke, W.Marquardt: Design and Evaluation of Computer–Aided Pro-

cess Modelling Tools
1996-07 Olaf Chitil: The Sigma-Semantics: A Comprehensive Semantics for Func-

tional Programs
1996-08 ∗ S.Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics
1996-09 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP96 - Fifth

International Conference on Algebraic and Logic Programming
1996-09-0 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP 96 -

Fifth International Conference on Algebraic and Logic Programming:
Introduction and table of contents

1996-09-1 Ilies Alouini: An Implementation of Conditional Concurrent Rewriting
on Distributed Memory Machines

1996-09-2 Olivier Danvy, Karoline Malmkjær: On the Idempotence of the CPS
Transformation

1996-09-3 Vı́ctor M. Guĺıas, José L. Freire: Concurrent Programming in Haskell
1996-09-4 Sébastien Limet, Pierre Réty: On Decidability of Unifiability Modulo

Rewrite Systems
1996-09-5 Alexandre Tessier: Declarative Debugging in Constraint Logic Program-

ming
1996-10 Reidar Conradi, Bernhard Westfechtel: Version Models for Software Con-

figuration Management
1996-11 ∗ C.Weise, D.Lenzkes: A Fast Decision Algorithm for Timed Refinement
1996-12 ∗ R.Dömges, K.Pohl, M.Jarke, B.Lohmann, W.Marquardt: PRO-

ART/CE* — An Environment for Managing the Evolution of Chemical
Process Simulation Models

1996-13 ∗ K.Pohl, R.Klamma, K.Weidenhaupt, R.Dömges, P.Haumer, M.Jarke: A
Framework for Process-Integrated Tools

1996-14 ∗ R.Gallersdörfer, K.Klabunde, A.Stolz, M.Eßmajor: INDIA — Intelligent
Networks as a Data Intensive Application, Final Project Report, June
1996

1996-15 ∗ H.Schimpe, M.Staudt: VAREX: An Environment for Validating and Re-
fining Rule Bases

1996-16 ∗ M.Jarke, M.Gebhardt, S.Jacobs, H.Nissen: Conflict Analysis Across Het-
erogeneous Viewpoints: Formalization and Visualization

1996-17 Manfred A. Jeusfeld, Tung X. Bui: Decision Support Components on the
Internet

1996-18 Manfred A. Jeusfeld, Mike Papazoglou: Information Brokering: Design,
Search and Transformation

1996-19 ∗ P.Peters, M.Jarke: Simulating the impact of information flows in net-
worked organizations

1996-20 Matthias Jarke, Peter Peters, Manfred A. Jeusfeld: Model-driven plan-
ning and design of cooperative information systems

1996-21 ∗ G.de Michelis, E.Dubois, M.Jarke, F.Matthes, J.Mylopoulos, K.Pohl,
J.Schmidt, C.Woo, E.Yu: Cooperative information systems: a manifesto

1996-22 ∗ S.Jacobs, M.Gebhardt, S.Kethers, W.Rzasa: Filling HTML forms simul-
taneously: CoWeb architecture and functionality

1996-23 ∗ M.Gebhardt, S.Jacobs: Conflict Management in Design
1997-01 Michael Hanus, Frank Zartmann (eds.): Jahresbericht 1996
1997-02 Johannes Faassen: Using full parallel Boltzmann Machines for Optimiza-

tion

43



1997-03 Andreas Winter, Andy Schürr: Modules and Updatable Graph Views for
PROgrammed Graph REwriting Systems

1997-04 Markus Mohnen, Stefan Tobies: Implementing Context Patterns in the
Glasgow Haskell Compiler

1997-05 ∗ S.Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-
tische Spezifikation inkrementeller Integrationswerkzeuge

1997-06 Matthias Nicola, Matthias Jarke: Design and Evaluation of Wireless
Health Care Information Systems in Developing Countries

1997-07 Petra Hofstedt: Taskparallele Skelette für irregulär strukturierte Prob-
leme in deklarativen Sprachen

1997-08 Dorothea Blostein, Andy Schürr: Computing with Graphs and Graph
Rewriting

1997-09 Carl-Arndt Krapp, Bernhard Westfechtel: Feedback Handling in Dy-
namic Task Nets

1997-10 Matthias Nicola, Matthias Jarke: Integrating Replication and Commu-
nication in Performance Models of Distributed Databases

1997-11 ∗ R. Klamma, P. Peters, M. Jarke: Workflow Support for Failure Manage-
ment in Federated Organizations

1997-13 Markus Mohnen: Optimising the Memory Management of Higher-Order
Functional Programs

1997-14 Roland Baumann: Client/Server Distribution in a Structure-Oriented
Database Management System

1997-15 George Botorog: High-Level Parallel Programming and the Efficient Im-
plementation of Numerical Algorithms

1998-01 ∗ Fachgruppe Informatik: Jahresbericht 1997
1998-02 Stefan Gruner, Manfred Nagel, Andy Schürr: Fine-grained and

Structure-Oriented Document Integration Tools are Needed for Devel-
opment Processes

1998-03 Stefan Gruner: Einige Anmerkungen zur graphgrammatischen Spezifika-
tion von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und
Schürr

1998-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments
1998-05 Martin Leucker, Stephan Tobies: Truth - A Verification Platform for

Distributed Systems
1998-06 ∗ Matthias Oliver Berger: DECT in the Factory of the Future
1998-07 M. Arnold, M. Erdmann, M. Glinz, P. Haumer, R. Knoll, B. Paech, K.

Pohl, J. Ryser, R. Studer, K. Weidenhaupt: Survey on the Scenario Use
in Twelve Selected Industrial Projects

1998-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am
Beispiel intraoraler Radiographien

1998-10 ∗ M. Nicola, M. Jarke: Performance Modeling of Distributed and Repli-
cated Databases

1998-11 ∗ Ansgar Schleicher, Bernhard Westfechtel, Dirk Jäger: Modeling Dynamic
Software Processes in UML

1998-12 ∗ W. Appelt, M. Jarke: Interoperable Tools for Cooperation Support using
the World Wide Web

1998-13 Klaus Indermark: Semantik rekursiver Funktionsdefinitionen mit Strik-
theitsinformation

1999-01 ∗ Jahresbericht 1998
1999-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version
1999-03 ∗ R. Gallersdörfer, M. Jarke, M. Nicola: The ADR Replication Manager
1999-04 Maŕıa Alpuente, Michael Hanus, Salvador Lucas, Germán Vidal: Spe-

cialization of Functional Logic Programs Based on Needed Narrowing

44



1999-05 ∗ W. Thomas (Ed.): DLT 99 - Developments in Language Theory Fourth
International Conference

1999-06 ∗ Kai Jakobs, Klaus-Dieter Kleefeld: Informationssysteme für die ange-
wandte historische Geographie

1999-07 Thomas Wilke: CTL+ is exponentially more succinct than CTL
1999-08 Oliver Matz: Dot-Depth and Monadic Quantifier Alternation over Pic-

tures
2000-01 ∗ Jahresbericht 1999
2000-02 Jens Vöge, Marcin Jurdzinski A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games
2000-03 D. Jäger, A. Schleicher, B. Westfechtel: UPGRADE: A Framework for

Building Graph-Based Software Engineering Tools
2000-04 Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems
Approach

2000-05 Mareike Schoop: Cooperative Document Management
2000-06 Mareike Schoop, Christoph Quix (eds.): Proceedings of the Fifth Interna-

tional Workshop on the Language-Action Perspective on Communication
Modelling

2000-07 ∗ Markus Mohnen, Pieter Koopman (Eds.): Proceedings of the 12th Inter-
national Workshop of Functional Languages

2000-08 Thomas Arts, Thomas Noll: Verifying Generic Erlang Client-Server Im-
plementations

2001-01 ∗ Jahresbericht 2000
2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces
2001-03 Thierry Cachat: The power of one-letter rational languages
2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus
2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages
2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic
2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem
2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication
Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of
term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures
2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung
2002-01 ∗ Jahresbericht 2001
2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems
2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages
2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting
2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines
2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic
Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-
ture Densities

45



2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java
2002-09 Markus Mohnen: Interfaces with Default Implementations in Java
2002-10 Martin Leucker: Logics for Mazurkiewicz traces
2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting
2003-01 ∗ Jahresbericht 2002
2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting
2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations
2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs
2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard
2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates
2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-
wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:
Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003
2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic
2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting
2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming
2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming
2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming
2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination
2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information
2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity
2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules
2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004
2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer
School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-
proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for
the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing
Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-
tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-
ploring a Root-Cause Methodology to Prevent Distributed Denial-of-
Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With
Applications To Max-Cut

46



2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General
Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts
2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture
2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-
tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting
Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization
2005-15 Uwe Naumann: The Complexity of Derivative Computation
2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)
2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)
2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,
Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-
Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented
LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-
dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-
bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-
gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit
BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-
ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-
ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:
Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering
with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005
2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems
2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler
2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation
2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint
Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-
and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-
terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-
Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic
Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,
Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid
MCG-Mesh Testbed

47



2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:
Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:
Replaying Play in and Play out: Synthesis of Design Models from Sce-
narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling
Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,
Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli
Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI
Work Group “Requirements Management Tools for Product Line Engi-
neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical
sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for
Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-
ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006
2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-
ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-
Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A
System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal
2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking
2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications
2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches
2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler
Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical
Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke
2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code
2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-
grams

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,
Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modular,
Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent programs
2007-16 Sadeq Ali Makram, Mesut Güneç, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Balanc-
ing for Wireless Mesh Networks

2007-17 René Thiemann: The DP Framework for Proving Termination of Term
Rewriting

2007-18 Uwe Naumann: Call Tree Reversal is NP-Complete
2007-19 Jan Riehme, Andrea Walther, Jörg Stiller, Uwe Naumann: Adjoints for

Time-Dependent Optimal Control

48



2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:
Three-Valued Abstraction for Probabilistic Systems

2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-
sitional Modeling and Minimization of Time-Inhomogeneous Markov
Chains

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,
and Berthold Vöcking: Uncoordinated Two-Sided Markets

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007
2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing
2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, Harald Zankl: Maximal Termination
2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler
2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations
2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message
Passing Programs

2008-07 Alexander Nyßen, Horst Lichter: The MeDUSA Reference Manual, Sec-
ond Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on
Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-
endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-
Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable
Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-
straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl
Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-
proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers
2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves
2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study
2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving
2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems
2008-19 Dirk Wilking: Empirical Studies for the Application of Agile Methods to

Embedded Systems
2009-02 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Quantitative Model Checking of Continuous-Time Markov Chains
Against Timed Automata Specifications

2009-03 Alexander Nyßen: Model-Based Construction of Embedded
Real-Time Software - A Methodology for Small Devices

2009-04 Daniel Klünder: Entwurf eingebetteter Software mit abstrakten Zus-
tandsmaschinen und Business Object Notation

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model
and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-
erance and Bounded Tolerance Graphs is NP-complete

49



2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing
Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-
dependent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm
Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the
Correctness of the Upper Bound of a Maximum Independent Set Algo-
rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The
Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in
Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset Games
2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)
2009-15 Joost-Pieter Katoen, Daniel Klink, Martin Neuhäußer: Compositional

Abstraction for Stochastic Systems

∗ These reports are only available as a printed version.

Please contact ttbiblio@informatik.rwth-aachen.de to obtain copies.

50


