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Abstract

The most fundamental decision problem in computer science is the halting problem, i.e.,

given a description of a program and an input, decide whether the program terminates

after finitely many steps or runs forever on that input. While Turing showed this problem

to be undecidable in general, developing static analysis techniques that can automatically

prove termination for many pairs of programs and inputs is of great practical interest.

This is true in particular for logic programming, as the inherent lack of direction in the

computation virtually guarantees that any non-trivial program terminates only for certain

classes of inputs. Thus, termination of logic programs is widely studied and significant

advances have been made during the last decades. Nowadays, there are fully-automated

tools that try to prove termination of a given logic program w.r.t. a given class of inputs.

Nevertheless, there still remain many logic programs that cannot be handled by any

current termination technique for logic programs that is amenable to automation.

Another area where termination has been studied even more intensively is term rewrit-

ing. This basic computation principle underlies the evaluation mechanism of many pro-

gramming languages. Significant advances towards powerful automatable termination

techniques during the last decade have yielded a plethora of powerful tools for proving

termination automatically.

In this thesis, we show that techniques developed for proving termination of term rewrit-

ing can successfully be adapted and applied to analyze logic programs. The new techniques

developed significantly extend the applicability and the power of automated termination

analysis for logic programs. The work presented here ranges from adapting techniques

to work directly on logic programs to transformations from logic programs to a special-

ized version of term rewriting. On the logic programming side we also present a new

pre-processing approach to handle logic programs with cuts. On the term rewriting side

we show how to search for certain popular classes of well-founded orders on terms more

efficiently by encoding the search into satisfiability problems of propositional logic.

The contributions developed in this thesis are implemented in tools for automated ter-

mination analysis – mostly in our fully automated termination prover AProVE. The sig-

nificance of our results is demonstrated by the fact that AProVE has reached the highest

score both for term rewriting and logic programming at the annual international Termi-

nation Competitions in all years since 2004, where the leading automated tools try to

analyze termination of programs from different areas of computer science.
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1. Introduction

The most fundamental decision problem in computer science is the halting problem, i.e.,

given a program and an input, decide whether the program terminates after finitely many

steps or whether it runs forever on that input. While [Tur36] showed this problem to be

undecidable in general, developing static analysis techniques that can automatically prove

termination for many pairs of programs and inputs is of great practical interest.

Proving termination is essential for a number of verification techniques. For example,

both theorem proving [BM79] and Knuth-Bendix completion [KB70] require frequent ter-

mination proofs for their correct operation (see [MV06, WSW06, BKN07] for recent work

on applying termination analysis in these areas). In process verification, liveness prob-

lems can often be reduced to termination problems [GZ03], and Microsoft uses termination

analysis to statically verify their device drivers [CPR05].

Termination analysis is of particular interest in logic programming as the inherent lack

of direction in the computation virtually guarantees that any non-trivial program ter-

minates only for certain classes of inputs. Thus, termination of logic programs is widely

studied (see [DD94] for an overview and [BCG+07, CLS05, CLSS06, DS02, LMS03, MR03,

MS07, ND05, ND07, NGSD08, SD05a, Sma04] for more recent work) and significant ad-

vances have been made during the last decades. Nowadays, there are fully-automated

tools [LSS97, MB05, TGC02, SD03a, GST06, ND07, OCM00] that try to prove termina-

tion of a given logic program w.r.t. a given class of inputs. Nevertheless, there still remain

many natural logic programs that cannot be shown terminating by any of these tools.

Another area where termination has been studied even more intensively is term rewrit-

ing (see for example [Der87, Zan95, AG00, GTSF06, EWZ06]). This basic computation

principle underlies the evaluation mechanism of many programming languages and, in-

deed, transformations from functional programs and logic programs to term rewriting

have yielded powerful termination provers [Ohl01, GSST06, SGST07].

Significant advances towards powerful automatable termination techniques during the

last decade [AG00, GTS05a, HM05a, EWZ06] have yielded a plethora of powerful tools

for proving termination of term rewriting automatically [HM07, CMU03, End06, Wal04,

Zan05, FGK03, BR03, Kop06, Wul06, Kor07, AGIL07, GST06].

The state of the art in automated termination proving is assessed through the annual

international Termination Competition [MZ07], where the leading automated tools try to

analyze termination of programs from different areas of computer science.
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Among these tools, our fully automated termination prover AProVE [GST06] has reached

the highest score for term rewriting in the years 2004, 2005, 2006, and 2007.1 Thanks to

the contributions of this thesis and our work on analyzing termination of Haskell programs

[GSST06], AProVE has also reached the highest scores for both logic programming and

functional programming.

Termination of Logic Programs

In the first part of this thesis, we show that techniques developed for proving termination

of term rewriting can successfully be adapted and applied to analyze logic programs.

The newly developed techniques significantly extend the applicability and the power of

automated termination analysis for logic programs. The work presented here ranges from

adapting techniques to work directly on logic programs to transformations from logic

programs to a specialized version of term rewriting. On the logic programming side we

also present a new pre-processing approach to handle logic programs with cuts.

To be more precise, we make the following contributions:

(i) Transformational approaches transform the logic program into a term rewrite system

and then prove termination of the term rewrite system. Existing approaches are

rather limited in their applicability and not very powerful.

We present a novel transformation from logic programs to term rewriting which is

applicable for all definite logic programs and show that it is much more powerful

than existing transformations.

(ii) Direct approaches work directly on logic programs to prove its termination. They

are often efficient, but not very powerful as either they lack modularity or they lack

a constraint-based approach. Here, constraint-based means that one does not fix the

well-founded order beforehand but instead generates a set of symbolic constraints,

which then can be solved by a constraint solver.

We show how to use two popular techniques from term rewriting (dependency pairs

and polynomial interpretations) to obtain a constraint-based modular approach that

is more powerful than existing direct approaches.

(iii) Direct and transformational approaches are incomparable w.r.t. efficiency and power.

Therefore, the best would be a combination of the two.

We introduce a modular variant of our transformation from (i) as a modular tech-

nique in (ii) to obtain a combined approach that subsumes (i) and (ii) when they

are used separately.

1The next competition will take place no earlier than November 2008.
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(iv) The approaches in (i) – (iii) are all limited to universal termination of definite logic

programs. They cannot analyze programs where termination depends on cuts or

negation-as-failure and they cannot show existential termination, i.e., that the first

solution will be found in finite time.

We present a novel pre-processing based on symbolic execution to handle logic pro-

grams with cuts. This allows also for the handling of negation-as-failure and exis-

tential termination as these can be simulated using cuts and meta-programming.

Automating Search by Encoding to SAT

Analyzing the termination of programs by techniques from term rewriting presents a

serious challenge to the efficiency of the search algorithms for well-founded orders.

Since 2006, several publications [CLS06, CSL+06, HW06, EWZ06, FGM+07, STA+07,

ZM07] have illustrated the huge potential in applying SAT solvers for various types of

termination problems for term rewrite systems (TRSs).

In the second part of this thesis we show how to search for certain popular classes of

well-founded orders on terms more efficiently by encoding the search into satisfiability

problems of propositional logic.

More precisely, our contributions to this part are:

(v) Recursive path orders are a popular class of orders used in the termination analysis

of term rewriting. They are a useful alternative to polynomial orders (cf. our con-

tributions in [FGM+07]) as they are incomparable w.r.t. power and w.r.t. efficiency.

And indeed, as described in Section 7.5, the use of a recursive path order together

with Contribution (vi) is essential for some termination proofs of logic programs.

We show how to encode the search for recursive path orders into satisfiability of

propositional logic. In particular, we show how to encode the precedence-based

comparison of terms common to all syntactic path orders, the multiset extension of

the ordering used for comparing arguments, and the lexicographic extension of the

order w.r.t. arbitrary permutations of the arguments. This yields an implementation

that is orders of magnitudes faster than existing dedicated algorithms.

(vi) Direct termination proofs for term rewriting using well-founded orders (such as

recursive path orders) are rather weak in practice. Therefore, virtually all tools for

termination analysis of term rewriting combine orders with dependency pairs and,

thus, need to search also for so-called argument filters.

We show how to extend the encoding of Contribution (v) to include argument filters.

In this way, we obtain a powerful implementation that is again orders of magnitude

faster than existing dedicated algorithms.
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Implementation & Evaluation

The theoretical contributions developed in this thesis have been implemented in tools

for automated termination analysis – mostly in our fully automated termination prover

AProVE and partly in Polytool [ND07]. Altogether, the author of this thesis has con-

tributed approx. 110,000 lines of Java code to the AProVE sources. The author has also

performed extensive experiments to evaluate these implementations.

More precisely, the practical contributions of this thesis are:

(vii) Contributions (i) and (iv) have been implemented as the logic programming frontend

of our termination prover AProVE.

We evaluated our implementation on a set of 296 logic programs (cf. Section 7.4) and

compared its performance to that of [ND05, TGC02, MB05, OCM00]. Furthermore,

we showed that the heuristics presented in Section 3.4 are successful in practice.

(viii) For Contributions (ii) and (iii), a prototypical implementation of the techniques

from [NGSD08] in Polytool by Manh Thang Nguyen shows their potential. This

implementation uses our implementation of our results from [FGM+07] in AProVE

to search for polynomial orders.

We evaluated this implementation successfully on the same example set that we

used for Contribution (vii).

(ix) For [CSL+06, FGM+07] we implemented a framework for SAT encodings in our

termination prover AProVE. Building on this framework, we implemented Contri-

butions (v) and (vi) in a modular way such that instead of searching for recursive

path orders and argument filters, we can search for restrictions like, for instance, the

lexicographic path order without argument filters or the multiset path order with

argument filters.

We performed extensive experiments with full recursive path orders with and with-

out argument filters as well as with 14 restricted classes of orders. For each configu-

ration we compared the performance of our new SAT-based implementation to that

of existing dedicated algorithms, and we observed a decrease in runtime by orders

of magnitude.

The significance of our practical contributions is demonstrated by the fact that AProVE

has reached the highest score both for term rewriting and logic programming at the annual

international Termination Competitions in the years 2004 – 2007. Also, Polytool has come

in at a respectable second place for logic programming in 2007.
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Published vs. New Contributions

Preliminary versions of some parts of this thesis have already been published by the

author in 20 articles in international journals or conference proceedings [SGST, TZGS08,

GTSF06, AEF+08, FNO+08, FGM+08, TGS08, NGSD08, STA+07, GTSS07, FGM+07,

CSL+06, GSST06, SGST07, GST06, GTS05b, GTS05a, TGS04, GTSF04, GTSF03].

However, this thesis contains numerous substantial novel contributions that have not

been published yet:

• Contribution (ii) is a novel unpublished contribution that extends the technique of

[NGSD08]. While [NGSD08] is based on the dependency pair approach [AG00], we

show how to adapt it to the more recent dependency pair framework [GTS05a].

• Contribution (iii) is novel and unpublished.

• Contribution (iv) is novel and unpublished.

• Contribution (i) extends the 15-page conference paper [SGST07] by approx. 30 pages

containing detailed algorithms and heuristics required for a successful implementa-

tion, a formal proof for subsumption of previous transformational approaches, and

more extensive and detailed experiments.

An extended version mostly corresponding to Contribution (i) was submitted to

ACM Transactions on Computational Logic in February 2008 and has been accepted

without revision in July 2008 [SGST] due to very positive reviews which considered

this contribution to be “a milestone in termination analysis of logic programs”.

• Contributions (v) and (vi) are mostly a restructured version of two published papers

[CSL+06, STA+07]. Additionally, the contributions of [CSL+06] have been extended

from lexicographic path orders to recursive path orders as used in [STA+07].

Structure of the Thesis

In Chapter 2 we establish some basic notions about terms, logic programming, and term

rewriting that are widely used throughout this thesis. Further notions or differences to

standard definitions are given in the preliminary sections of the respective chapters.

The first part of this thesis about termination of logic programs is divided into three

chapters. In Chapter 3 we present Contribution (i), i.e., the new transformation from logic

programs to term rewriting. Contributions (ii) and (iii) regarding our direct approach and

the combination of our direct and our transformational approaches are presented in Chap-

ter 4. Contribution (iv), i.e., our new pre-processing approach for logic programs with cuts

(and, thus, negation-as-failure, existential termination, and meta-programming), consti-

tutes Chapter 5.
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The second part of this thesis about SAT encodings for efficient automation of search

problems is divided into two chapters. In Chapter 6 we present Contribution (v), i.e.,

our SAT encoding for recursive path orders. This encoding is extended to recursive path

orders combined with dependency pairs and argument filters in Chapter 7, which contains

Contribution (vi).

Details about Contribution (vii) are given in Sections 3.6 and Section 5.6. Some de-

tails about Contribution (viii) are found in Section 4.4. The implementation and the

experiments for Contribution (ix) are described in Sections 6.3 and 7.4.

Finally, we conclude in Chapter 8, where we also show how the contributions of this

thesis can be combined to obtain a powerful termination analyzer for logic programs.



2. Preliminaries

In this chapter we establish the basic definitions for termination, term rewriting, and logic

programming used throughout this thesis. Special notations and formalisms relevant to

only one chapter are introduced in the preliminaries section of the respective chapter.

Abstract Reductions, Termination

To model computation steps of a program, we use the concept of abstract reductions.

An abstract reduction system is a pair (A,→) where → is a binary relation over A, i.e.,

→⊆ A×A. For the sake of brevity, instead of (a, b) ∈→ we write a→ b.

Now, we model a computation by defining A to be a superset of the program states

and → to be the transition relation from a certain program state to its successor state.

For a given state a ∈ A, we say that that → is terminating w.r.t. a if and only if there

is no infinite reduction a→ a0 → a1 → . . . Furthermore, we say that → is terminating if,

and only if, it is terminating for all a ∈ A.

In the remainder of this thesis, the set of program states A and the relation → will

typically be either terms and a suitable term rewriting relation or queries and the left-to-

right resolution used in logic programs.

Terms, Atoms, Substitutions

Both term rewriting and logic programming rely on the basic concepts of (possibly infi-

nite) terms and substitutions built over sets of function symbols and variables. For logic

programming, we additionally need the notion of atoms built from predicates and terms.

This leads to the following formal definition of sets of function and predicate symbols.

Definition 2.1 (Signature). A signature is a pair (Σ,∆) where Σ and ∆ are finite sets of

function respectively predicate symbols. If ∆ = ∅, we often just write Σ instead of (Σ,∅).

Each symbol in f ∈ Σ ∪∆ has an arity n ≥ 0 and we often write f/n instead of f to

denote that f has arity n.

In the following, we always assume that Σ contains at least one constant f/0. This is

not a restriction, since enriching the signature by a fresh constant does not change the

termination behavior. This assumption is useful to ensure that we can always build finite

ground terms over a given signature.
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Definition 2.2 (Terms). A term over Σ is a tree where every node is labeled with a

function symbol from Σ or with a variable from V = {X, Y, . . .}. Every inner node with

n children is labeled with some f/n ∈ Σ, while leaves are labeled with a variable X ∈ V
or with f/0 ∈ Σ. We write f(t1, . . . , tn) for the term t with root f (denoted root(t) = f)

and direct subtrees t1, . . . , tn. A term t is called finite if all paths in the tree t are finite,

otherwise it is infinite. A term is rational if it only contains finitely many subterms.

The sets of all finite terms, all rational terms, and all (possibly infinite) terms over Σ are

denoted by T (Σ,V), T rat(Σ,V), and T ∞(Σ,V), respectively. If ~t is the sequence t1, . . . , tn,

then ~t ∈ ~T ∞(Σ,V) means that ti ∈ T ∞(Σ,V) for all i. ~T (Σ,V) is defined analogously.

We write T (Σ) instead of T (Σ,∅) to denote ground terms, i.e., variable-free terms.

Finally, for any set of variables V ′ ⊆ V and any term t ∈ T ∞(Σ,V), let V ′(t) be the

set of all variables from V ′ occurring in t, i.e., V ′(X) = {X} for X ∈ V ′, V ′(X) = ∅ for

X 6∈ V ′, and V ′(f(t1, . . . , tn)) =
⋃

1≤i≤n V ′(ti).

Given the above definition, the formal definition for atoms is straightforward.

Definition 2.3 (Atom). An atom over (Σ,∆) is a tree p(t1, . . . , tn), where p/n ∈ ∆

and t1, . . . , tn ∈ T ∞(Σ,V). A∞(Σ,∆,V) is the set of atoms and Arat(Σ,∆,V) (and

A(Σ,∆,V), respectively) are the atoms p(t1, . . . , tn) where ti ∈ T rat(Σ,V) (and ti ∈
T (Σ,V), respectively) for all i. We write A(Σ,∆) instead of A(Σ,∆,∅).

To address or replace certain subterms, we introduce the notion of a position. The

intuition is that a position describes a path from the root of the term to the subterm.

Definition 2.4 (Position). For a term t we define the set of positions Occ(t) as the least

subset of N∗ such that ε ∈ Occ(t) and i pos ∈ Occ(t), if t = f(t1, . . . , tn), 1 ≤ i ≤ n,

and pos ∈ Occ(ti). We denote the subterm of t at position pos as t|pos where t|ε = t and

f(t1, . . . , tn)|i pos = ti|pos . For a position pos ∈ Occ(t) we denote the replacement of t|pos in

t with a term s by t[s]pos where t[s]ε = s and f(t1, . . . , tn)[s]i pos = f(t1, . . . , ti[s]pos , . . . , tn).

A common operation on terms is the instantiation of a term by a substitution, i.e., the

replacement of all occurrences of certain variables by certain terms.

Definition 2.5 (Substitution). A substitution is a function θ : V → T ∞(Σ,V). We

define the domain of a substitution θ as Dom(θ) = {X ∈ V | θ(X) 6= X} and similarly

the range of a substitution θ as Range(θ) = {θ(X) | X ∈ Dom(θ)}.
By abuse of notation, we extend substitutions homomorphically to work on terms,

atoms, etc. by applying them to all variables occurring in these expressions. If θ is a

variable renaming (i.e., a one-to-one correspondence on V), then θ(t) is a variant of t.

Instead of θ(X) we often write Xθ. We write θσ to denote that the application of θ is

followed by the application of σ, i.e., Xθσ = σ(θ(X)). For Dom(θ) = {X1, . . . , Xn} with

Xiθ = ti, we often write {X1/t1, . . . , Xn/tn}.
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Logic Programming

A clause c is a formula H ← B1, . . . , Bk. with k ≥ 0 and H,Bi ∈ A(Σ,∆,V). H is

called the head of the clause c and B1, . . . , Bk is called its body . A finite set of clauses

P = {c1 . . . cn} over (Σ,∆) is a definite logic program. A clause with empty body is a fact

and a clause with empty head is a query . We usually omit “←” in queries and just write

“B1, . . . , Bk”. The empty query is denoted 2.

To define the evaluation mechanism of resolution, we need the concept of a (most

general) unifier of two atoms or terms.

Definition 2.6 (Most General Unifier). A substitution θ is a unifier of two atoms or

terms s and t if and only if sθ = tθ. We write s ∼ t if there is a unifier of s and t. We

call θ a most general unifier (mgu) of s and t if and only if θ is a unifier of s and t and

for every unifiers σ of s and t there is a substitution µ such that σ = θµ.

We briefly present the procedural semantics of logic programs based on SLD-resolution

using the left-to-right selection rule implemented by most Prolog systems. More details

on logic programming can be found in [Apt97], for example.

Definition 2.7 (Derivation). Let Q be a query A1, . . . , Am, let c be a clause H ←
B1, . . . , Bk. Then Q′ is a resolvent of Q and c using θ (denoted Q `c,θ Q′) if θ is the mgu1

of A1 and H, and Q′ = (B1, . . . , Bk, A2, . . . , Am)θ. We call A1 the selected atom.

A derivation of a program P and Q is a possibly infinite sequence Q0, Q1, . . . of queries

with Q0 = Q where for all i, we have Qi `ci+1,θi+1
Qi+1 for some substitution θi+1 and

some fresh variant ci+1 of a clause of P. For a derivation Q0, . . . , Qn as above, we also

write Q0 `nP,θ1...θn Qn or Q0 `nP Qn, and we also write Qi `P Qi+1 for Qi `ci+1,θi+1
Qi+1.

The query Q terminates for P if all derivations of P and Q are finite, i.e., if `P is

terminating for Q.

If we restrict the substitutions used in derivations to functions from V → T (Σ,V), i.e.,

to substitutions for which the range contains only finite terms, the above notion of deriva-

tion corresponds to SLD-resolution using the left-to-right selection rule typically found

in logic programming. Without this restriction, the above notion of derivation coincides

with logic programming without an occur check [Col82] as implemented in common Prolog

systems such as SICStus or SWI.

Finally, we need the concept of answer substitutions that define the results of the

computation of a logic program.

Definition 2.8 (Answer Set). The answer set Answer(Q,P) for a logic program P and

a query Q is defined as the set of all substitutions θ|V(Q) such that Q `nP,θ 2 for some

n ∈ N.

1Note that for finite sets of rational atoms or terms, unification is decidable, the mgu is unique modulo
renaming, and it is a substitution with rational terms [Hue76].
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Example 2.9. Consider the predicate double/2 that is true when the second argument

is twice as large as the first one. The following two clauses constitute a logic program P
over ({0, s}, {double}) where 0 and the successor function s are used to represent natural

numbers:

double(0, 0). (1)

double(s(X), s(s(Y ))← double(X, Y ). (2)

For the query Q = double(s(0), Z) we obtain the following derivation:

double(s(0), Z) `(2),{X/0,Z/s(s(Y )} double(0, Y ) `(1),{Y/0} 2

The set of answer substitutions is Answer(Q,P) = {{Z/s(s(0))}}.

Term Rewriting

Now we define term rewrite systems and introduce the notion of term rewriting. For

further details on term rewriting we refer to [BN98].

Definition 2.10 (Term Rewriting). A term rewrite system (TRS) R is a finite set of

rules ` → r with `, r ∈ T (Σ,V) and ` /∈ V. The rewrite relation for R is denoted →R:

for s, t ∈ T (Σ,V) we have s→R t if there is a rule `→ r, a position pos ∈ Occ(s) and a

substitution σ : V → T (Σ,V) with s|pos = `σ and t = s[rσ]pos . Let →n
R, →≥nR , →∗R denote

rewrite sequences of n steps, of at least n steps, and of arbitrarily many steps, respectively

(where n ≥ 0). A term t is terminating for R if →R is terminating w.r.t. t. A TRS R
is terminating if →R is terminating.

Note that the above definition is the standard rewrite relation. One usually requires

V(r) ⊆ V(`) for all rules ` → r ∈ R as otherwise the standard rewrite relation is never

well founded. Here, we do not follow this requirement as Chapter 3 introduces a variant

which can be well founded even if V(r) 6⊆ V(`).

Example 2.11 (Term Rewrite System). Consider the following rulesR over {double, s, 0}
for the function returning the double value of its argument:

double(0) → 0

double(s(X)) → s(s(double(X)))

For the term t = double(s(0)) we obtain the following rewrite sequence where we marked

s|pos by underlining:

double(s(0))→R s(s(double(0)))→R s(s(0))



Part I.

Termination Analysis of Logic Programs





3. Transformational Approach

Termination of logic programs is widely studied. Most automated techniques try to prove

universal termination of definite logic programs, i.e., one tries to show that all derivations

of a logic program are finite w.r.t. the left-to-right selection rule.

Both “direct” and “transformational” approaches have been proposed in the literature

(see, e.g., [DD94] for an overview and [BCG+07, CLS05, CLSS06, DS02, LMS03, MR03,

MS07, ND05, ND07, NGSD08, SD05a, Sma04] for more recent work on “direct” ap-

proaches). “Transformational” approaches have been developed in [AM93, AZ95, CR93,

GW93, KKS98, Mar94, Mar96, Raa97] and a comparison of these approaches is given in

[Ohl01]. Moreover, similar transformational approaches also exist for other programming

languages (e.g., see [GSST06] for an approach to prove termination of Haskell-programs

via a transformation to term rewriting). Moreover, there is also work in progress to

develop such approaches for imperative programs.

In order to be successful for termination analysis of logic programs, transformational

methods

(I) should be applicable for a class of logic programs as large as possible and

(II) should produce TRSs whose termination is easy to analyze automatically.

Concerning (I), the above existing transformations can only be used for certain subclasses

of logic programs. More precisely, all approaches except [Mar94, Mar96] are restricted to

well-moded programs. The transformations of [Mar94, Mar96] also consider the classes of

simply well-typed and safely typed programs. However in contrast to all previous trans-

formations, we present a new transformation which is applicable for any (definite) logic

program. Like most approaches for termination of logic programs, we restrict ourselves to

programs without cuts and negation. While there are transformational approaches which

go beyond definite programs [Mar96], it is not clear how to transform non-definite logic

programs into TRSs that are suitable for automated termination analysis, cf. (II). In order

to handle cuts and negation we refer to the pre-processing introduced in Chapter 5.

Concerning (II), one needs an implementation and an empirical evaluation to find out

whether termination of the transformed TRSs can indeed be verified automatically for a

large class of examples. Unfortunately, to our knowledge there is only a single other ter-

mination tool available which implements a transformational approach. This tool TALP

[OCM00] is based on the transformations of [AZ95, CR93, GW93] which are shown to be
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equally powerful in [Ohl01]. So these transformations are indeed suitable for automated

termination analysis, but consequently, TALP only accepts well-moded logic programs.

This is in contrast to our approach which we implemented in our termination prover

AProVE [GST06]. Our experiments on large collections of examples in Section 3.6 show

that our transformation indeed produces TRSs that are suitable for automated termina-

tion analysis and that AProVE is currently the most powerful termination provers for logic

programs.

To illustrate the starting point for our research, we briefly review related work on

connecting termination analysis of logic programs and term rewrite systems. We start by

recapitulating the classical transformation of [AZ95, CR93, GW93, Ohl01] Then, we give

an overview on the structure of the remainder of this chapter.

The Classical Transformation

Our transformation is inspired by the transformation of [AZ95, CR93, GW93, Ohl01]. In

this classical transformation, each argument position of each predicate is either determined

to be an input or an output position by a moding function m. So for every predicate

symbol p of arity n and every 1 ≤ i ≤ n, we have m(p, i) ∈ {in,out}. Thus, m(p, i)

states whether the i-th argument of p is an input (in) or an output (out) argument.

As mentioned, the moding must be such that the logic program is well moded [AE93].

Well-modedness guarantees that each atom selected by the left-to-right selection rule is

“sufficiently” instantiated during any derivation with a query that is ground on all input

positions. More precisely, a program is well moded if, and only if, for any of its clauses

H ← B1, . . . , Bk with k ≥ 0, we have

(a) Vout(H) ⊆ Vin(H) ∪ Vout(B1) ∪ . . . ∪ Vout(Bk) and

(b) Vin(Bi) ⊆ Vin(H) ∪ Vout(B1) ∪ . . . ∪ Vout(Bi−1) for all 1 ≤ i ≤ k

Vin(B) and Vout(B) are the variables in terms on B’s input and output positions.

Example 3.1. Consider the following variant of a small example from [Ohl01].

p(X,X).

p(f(X), g(Y )) ← p(f(X), f(Z)), p(Z, g(Y )).

Letm be a moding withm(p, 1) = in andm(p, 2) = out. Then the program is well moded:

This is obvious for the first clause. For the second clause, (a) holds since the output

variable Y of the head is also an output variable of the second body atom. Similarly, (b)

holds since the input variable X of the first body atom is also an input variable of the

head, and the input variable Z of the second body atom is also an output variable of the

first body atom.
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In the classical transformation from logic programs to TRSs, two new function symbols

pin and pout are introduced for each predicate p. We write “p(~s,~t)” to denote that ~s and

~t are the sequences of terms on p’s in- and output positions.

• For each fact p(~s,~t), the TRS contains the rule pin(~s)→ pout(~t).

• For each clause c of the form p(~s,~t) ← p1(~s1,~t1), . . . , pk(~sk,~tk), the resulting TRS

contains the following rules:

pin(~s)→ uc,1(p1in(~s1),V(~s))

uc,1(p1out(~t1),V(~s))→ uc,2(p2in(~s2),V(~s) ∪ V(~t1))

. . .

uc,k(pkout(~tk),V(~s) ∪ V(~t1) ∪ . . . ∪ V(~tk−1))→ pout(~t)

Here, V(~s) are the variables occurring in ~s. Moreover, if V(~s) = {x1, . . . , xn}, then

“uc,1(p1in(~s1),V(~s))” abbreviates the term uc,1(p1in(~s1), x1, . . . , xn), etc.

If the resulting TRS is terminating, then the original logic program terminates for any

query with ground terms on all input positions of the predicates, cf. [Ohl01]. However,

the converse does not hold.

Example 3.2. For the program of Example 3.1, the transformation results in the follow-

ing TRS R.

pin(X)→ pout(X)

pin(f(X))→ u1(pin(f(X)), X)

u1(pout(f(Z)), X)→ u2(pin(Z), X, Z)

u2(pout(g(Y )), X, Z)→ pout(g(Y ))

The original logic program is terminating for any query p(t1, t2) where t1 is a ground term.

However, the above TRS is not terminating:

pin(f(X))→R u1(pin(f(X)), X)→R u1(u1(pin(f(X)), X), X)→R . . .

In the logic program, after resolving with the second clause, one obtains a query starting

with p(f(. . .), f(. . .)). Since p’s output argument f(. . .) is already partly instantiated,

the second clause cannot be applied again for this atom. However, this information is

neglected in the translated TRS. Here, one only regards the input argument of p in

order to determine whether a rule can be applied. Note that many current tools for

termination proofs of logic programs like cTI [MB05], TALP [OCM00], TermiLog [LSS97],

and TerminWeb [CT99] fail on Example 3.1.
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So this example already illustrates a drawback of the classical transformation: there are

several terminating well-moded logic programs which are transformed into non-terminating

TRSs. In such cases, one fails in proving the termination of the logic program. Even worse,

most of the existing transformations are not applicable for logic programs that are not

well moded.1

Example 3.3. We modify Example 3.1 by replacing g(Y ) with g(W ) in the body of the

second clause:
p(X,X).

p(f(X), g(Y )) ← p(f(X), f(Z)), p(Z, g(W )).

Still, all queries p(t1, t2) terminate if t1 is ground. But this program is not well moded, as

the second clause violates Condition (a): Vout(p(f(X), g(Y ))) = {Y } 6⊆ Vin(p(f(X), g(Y )))∪
Vout(p(f(X), f(Z)))∪Vout(p(Z, g(W ))) = {X,Z,W}. Transforming the program as before

yields a TRS with the rule u2(pout(g(W )), X, Z) → pout(g(Y )). So non-well-moded pro-

grams result in rules with variables like Y in the right- but not in the left-hand side. Such

rules are usually forbidden in term rewriting and they do not terminate, since Y may be

instantiated arbitrarily.

Example 3.4. A natural non-well-moded example is the append-program with the clauses

append([ ],M ,M ).

append([X|L],M , [X|N ]) ← append(L,M ,N ).

and the moding m(append, 1) = in and m(append, 2) = m(append, 3) = out, i.e., one

only considers append’s first argument as input. Due to the first clause append([ ],M ,M ),

this program is not well moded although all queries of the form append(t1, t2, t3) are

terminating if t1 is ground.

Term Rewriting Techniques for Termination of Logic Programs

Recently, several authors tackled the problem of applying termination techniques from

term rewriting for (possibly non-well-moded) logic programs. A framework for integrat-

ing orders from term rewriting into direct termination approaches for logic programs is

discussed in [DS02]. But in contrast to [DS02], transformational approaches like the

one presented in this chapter can also apply more recent termination techniques from

term rewriting for termination of logic programs (e.g., refined variants of the dependency

pair method like [GTS05a, GTSF06, HM05a], semantic labelling [Zan95], matchbounds

[GHW04], etc.). However, the automation of this framework is non-trivial in general. As

an instance of this framework, the automatic application of polynomial interpretations

1Example 3.3 is neither well moded nor simply well typed nor safely typed (using “Any” and “Ground”)
as required by the transformations of [AM93, AZ95, CR93, GW93, KKS98, Mar94, Mar96, Raa97].
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(well-known in term rewriting) to termination analysis of logic programs is investigated

in [ND05, ND07]. Moreover, in Chapter 4 we extend this work further by also adapt-

ing the dependency pair framework [AG00, GTS05a, GTSF06] from TRSs to the logic

programming setting.

Instead of integrating each termination technique from term rewriting separately, in

the current chapter we want to make all these techniques available at once. Therefore,

we choose a transformational approach. Our goal is a method which

(A) handles programs like Example 3.1 where the classical transformation fails,

(B) handles non-well-moded programs like Example 3.3 where most previous transfor-

mational techniques are not even applicable,

(C) allows the successful automated application of techniques from term rewriting for

logic programs like Example 3.1 and 3.3 where tools based on direct approaches fail.

For larger and more realistic examples we refer to the experiments in Section 3.6.

Structure of the Chapter

We start by introducing a modified notion of term rewriting in Section 3.1, so-called

“infinitary constructor rewriting”. Then, in Section 3.2 we modify the transformation

from logic programs to TRSs to achieve (A) and (B). So restrictions like well-modedness,

simple well-typedness, or safe typedness are no longer required.

Section 3.3 shows that the existing termination techniques for TRSs can easily be

adapted in order to prove termination of infinitary constructor rewriting. For a full

automation of the approach, one has to transform the set of queries that has to be

analyzed for the logic program to a corresponding set of terms that has to be analyzed

for the transformed TRS. This set of terms is characterized by a so-called argument

filter and we present heuristics to find a suitable argument filter in Section 3.4. Section

3.5 gives a formal proof that our new transformation and our approach to automated

termination analysis are strictly more powerful than the classical one. We present and

discuss an extensive experimental evaluation of our results in Section 3.6 which shows

that Goal (C) is achieved as well. In other words, the implementation of our approach

can indeed compete with modern tools for direct termination analysis of logic programs

and it succeeds for many programs where these tools fail. Finally, we summarize the

contributions of this chapter in Section 3.7.

3.1. Preliminaries

Our new transformation from Section 3.2 results in TRSs where the notion of “rewriting”

has to be slightly modified: we regard a restricted form of infinitary rewriting, called
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infinitary constructor rewriting. The reason is that logic programs use unification, whereas

TRSs use matching.

To illustrate this difference, consider the logic program p(s(X)) ← p(X) which does

not terminate for the query p(X): Unifying the query p(X) with the head of the variable-

renamed rule p(s(X1)) ← p(X1) yields the new query p(X1). Afterwards, unifying the

new query p(X1) with the head of the variable-renamed rule p(s(X2))← p(X2) yields the

new query p(X2), etc.

In contrast, the related TRS p(s(X)) → p(X) terminates for all finite terms. When

applying the rule to some subterm t, one has to match the left-hand side ` of the rule

against t. For example, when applying the rule to the term p(s(s(Y ))), one would use

the matcher that instantiates X with s(Y ). Thus, p(s(s(Y ))) would be rewritten to the

instantiated right-hand side p(s(Y )). Hence, one occurrence of the symbol s is eliminated

in every rewrite step. This implies that rewriting will always terminate. So in contrast

to unification (where one searches for a substitution θ with tθ = `θ), here we only use

matching (i.e., we search for a substitution θ with t = `θ, but we do not instantiate the

term t that is being rewritten).

However, the infinite derivation of the logic program above corresponds to an infinite

reduction of the TRS above with the infinite term p(s(s(. . .))) containing infinitely many

nested s-symbols. So to simulate unification by matching, we have to regard TRSs where

the variables in rewrite rules may be instantiated by infinite constructor terms. It turns

out that this form of rewriting also allows us to analyze the termination behavior of logic

programming with infinite terms, i.e., of logic programming without occur check.

Thus, we consider infinite substitutions θ : V → T ∞(Σ,V) for the derivations defined

in Definition 2.7 such that derivation coincides with logic programming without an occur

check. Since we consider only definite logic programs, any program which is terminating

without occur check is also terminating with occur check, but not vice versa. So if

our approach detects “termination”, then the program is indeed terminating, no matter

whether one uses logic programming with or without occur check. In other words, our

approach is sound for both kinds of logic programming, whereas most other approaches

only consider logic programming with occur check.

Example 3.5. Regard a program P with the clauses p(X) ← equal(X, s(X)), p(X) and

equal(X,X). We obtain p(X) `2
P p(s(s(. . .))) `2

P p(s(s(. . .))) `2
P . . ., where s(s(. . .)) is

the term containing infinitely many nested s-symbols. So the finite query p(X) leads to

a derivation with infinite (rational) queries. While p(X) is not terminating according to

Definition 2.7, it would be terminating if one uses logic programming with occur check.

Indeed, tools like cTI [MB05] and TerminWeb [CT99] report that such queries are “ter-

minating”. So in contrast to our technique, such tools are in general not sound for logic

programming without occur check, although this form of logic programming is typically

used in practice.
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Now we introduce the notion of infinitary constructor rewriting.

Definition 3.6 (Infinitary Constructor Rewriting). Given a TRS R ⊆ (T (Σ,V) \ V) ×
T (Σ,V), we divide the signature into defined symbols ΣD = {f | `→ r ∈ R, root(`) = f}
and constructors ΣC = Σ \ ΣD.

The infinitary constructor rewrite relation for R is denoted
∞→R: for s, t ∈ T ∞(Σ,V) we

have s
∞→R t if there is a rule `→ r, a position pos and a substitution σ : V → T ∞(ΣC ,V)

with s|pos = `σ and t = s[rσ]pos . Let
∞→n

R,
∞→≥nR ,

∞→∗R denote rewrite sequences of n steps,

of at least n steps, and of arbitrary many steps, respectively (where n ≥ 0). A term t is
∞→-terminating for R if

∞→R is terminating for t. A TRS R is
∞→-terminating if

∞→R is

terminating.

The above definition of
∞→R differs from the standard rewrite relation→R in two aspects:

(i) We only permit instantiations of rule variables by constructor terms.

(ii) We use substitutions with possibly non-rational infinite terms.

In Examples 3.8 and 3.9 in the next section, we will motivate these modifications and

show that there are TRSs which terminate w.r.t. the usual rewrite relation, but are non-

terminating w.r.t. infinitary constructor rewriting and vice versa.

3.2. Transforming Logic Programs into Term Rewrite

Systems

Now we modify the classical transformation of logic programs into TRSs to make it

applicable for arbitrary (possibly non-well-moded) programs as well. In this section we

first present the new transformation and then prove its soundness. Later in Section 3.5

we formally prove that the classical transformation is strictly subsumed by our new one.

The Improved Transformation

Instead of separating between input and output positions of a predicate p/n, now we keep

all arguments both for pin and pout (i.e., pin and pout have arity n).

Definition 3.7 (Transformation). A logic program P over (Σ,∆) is transformed into the

following TRS RP over ΣP = Σ ∪ {pin/n, pout/n | p/n ∈ ∆} ∪ {uc,i | c ∈ P , 1 ≤ i ≤ k,

where k is the number of atoms in the body of c }.

• For each fact p(~s) in P, the TRS RP contains the rule pin(~s)→ pout(~s).
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• For each clause c of the form p(~s)← p1(~s1), . . . , pk(~sk) in P, RP contains:

pin(~s)→ uc,1(p1in(~s1),V(~s))

uc,1(p1out(~s1),V(~s))→ uc,2(p2in(~s2),V(~s) ∪ V(~s1))

. . .

uc,k(pkout(~sk),V(~s) ∪ V(~s1) ∪ . . . ∪ V(~sk−1))→ pout(~s)

The following two examples motivate the need for infinitary constructor rewriting in

Definition 3.7, i.e., they motivate Modifications (i) and (ii) in Section 3.1.

Example 3.8. For the logic program of Example 3.1, the transformation of Definition 3.7

yields the following TRS.

pin(X,X)→ pout(X,X) (1)

pin(f(X), g(Y ))→ u1(pin(f(X), f(Z)), X, Y ) (2)

u1(pout(f(X), f(Z)), X, Y )→ u2(pin(Z, g(Y )), X, Y, Z) (3)

u2(pout(Z, g(Y )), X, Y, Z)→ pout(f(X), g(Y )) (4)

This example shows why rules of TRSs may only be instantiated with constructor terms

(Modification (i)). The reason is that local variables like Z (i.e., variables occurring in

the body but not in the head of a clause) give rise to rules ` → r where V(r) 6⊆ V(`)

(cf. Rule (2)). Such rules are never terminating in standard term rewriting. However, in

our setting one may only instantiate Z with constructor terms. So in contrast to the old

transformation in Example 3.2, now all terms pin(t1, t2)
∞→-terminate for the TRS if t1 is

finite, since now the second argument of pin prevents an infinite application of Rule (2).

Indeed, constructor rewriting correctly simulates the behavior of logic programs, since the

variables in a logic program are only instantiated by “constructor terms”.

For the non-well-moded program of Example 3.3, one obtains a similar TRS where g(Y )

is replaced by g(W ) in the right-hand side of Rule (3) and the left-hand side of Rule (4).

Again, all terms pin(t1, t2) are
∞→-terminating for this TRS provided that t1 is finite. Thus,

we can now handle programs where the classical transformation of [AZ95, CR93, GW93,

Ohl01] failed, cf. Goals (A) and (B) in Section 3.

Derivations in logic programming use unification, while rewriting is defined by match-

ing. Example 3.9 shows that to simulate unification by matching, we have to consider

substitutions with infinite and even non-rational terms (Modification (ii)).

Example 3.9. Let P be ordered(cons(X, cons(s(X),XS )))← ordered(cons(s(X),XS )). If

one only considers rewriting with finite or rational terms, then the transformed TRS

RP is terminating. However, the query ordered(YS ) is not terminating for P . Thus,
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to obtain a sound approach, RP must also be non-
∞→-terminating. Indeed, the term

t = orderedin(cons(X, cons(s(X), cons(s2(X), . . .)))) is non-
∞→-terminating with RP ’s

rule: orderedin(cons(X, cons(s(X),XS ))) → u(orderedin(cons(s(X),XS )), X,XS ). Here,

the non-rational term t corresponds to the infinite derivation with the query ordered(YS ).

Soundness of the Transformation

We first show an auxiliary lemma that is needed to prove the soundness of the transfor-

mation. It relates derivations with the logic program P to rewrite sequences with the

TRS RP .

Lemma 3.10 (Connecting P andRP). Let P be a program, let ~t be terms from T rat(Σ,V),

let p(~t) `nP,σ Q. If Q = 2, then pin(~t)σ
∞→≥nRP pout(~t)σ. Otherwise, if Q is “q(~v), . . .”, then

pin(~t)σ
∞→≥nRP r for a term r containing the subterm qin(~v).

Proof. Let p(~t) = Q0 `c1,θ1 . . . `cn,θn Qn = Q with σ = θ1 . . . θn. We use induction on n.

The base case n = 0 is trivial, since Q = p(~t) and pin(~t)
∞→0

RP pin(~t).

Now let n ≥ 1. We first regard the case Q1 = 2 and n = 1. Then c1 is a fact

p(~s) and θ1 is the mgu of p(~t) and p(~s). Note that such mgu’s instantiate all variables

with constructor terms (as symbols of Σ are constructors of RP). We obtain pin(~t)θ1 =

pin(~s)θ1
∞→RP pout(~s)θ1 = pout(~t)θ1 where σ = θ1.

Finally, let Q1 6= 2. Thus, c1 is p(~s) ← p1(~s1), . . . , pk(~sk) and Q1 is p1(~s1)θ1, . . . ,

pk(~sk)θ1 where θ1 is the mgu of p(~t) and p(~s). There is an i with 1 ≤ i ≤ k such that for

all j with 1 ≤ j ≤ i − 1 we have pj(~sj)σ0 . . . σj−1 `njP,σj 2. Moreover, if Q = 2 then we

can choose i = k and pi(~si)σ0 . . . σi−1 `niP,σi 2. Otherwise, if Q is “q(~v), . . .”, then we can

choose i such that pi(~si)σ0 . . . σi−1 `niP,σi q(~v), . . . Here, n = n1 + . . . + ni + 1, σ0 = θ1,

σ1 = θ2 . . . θn1+1, . . . , and σi = θn1+...+ni−1+2 . . . θn1+...+ni+1. So σ = σ0 . . . σi.

By the induction hypothesis we have pjin(~sj)σ0 . . . σj
∞→≥njRP pjout(~sj)σ0 . . . σj and thus

also pjin(~sj)σ
∞→≥njRP pjout(~sj)σ. Moreover, if Q = 2 then we also have piin(~si)σ

∞→≥niRP
piout(~si)σ where i = k. Otherwise, if Q is “q(~v), . . .”, then the induction hypothesis

implies piin(~si)σ
∞→≥niRP r′, where r′ contains qin(~v). Thus

pin(~t)σ = pin(~s)σ
∞→RP uc1,1(p1in(~s1),V(~s))σ
∞→≥n1

RP uc1,1(p1out(~s1),V(~s))σ
∞→RP uc1,2(p2in(~s2),V(~s) ∪ V(~s1))σ
∞→≥n2

RP uc1,2(p2out(~s2),V(~s) ∪ V(~s1))σ
∞→≥n3+...+ni−1

RP uc1,i(piin(~si),V(~s) ∪ V(~s1) ∪ . . . ∪ V(~si−1))σ
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Moreover, if Q = 2, then i = k and the rewrite sequence yields pout(~t)σ, since

uc1,i(piin(~si),V(~s) ∪ . . . ∪ V(~si−1))σ
∞→≥niRP uc1,i(piout(~si),V(~s) ∪ . . . ∪ V(~si−1))σ
∞→RP pout(~s)σ = pout(~t)σ.

Otherwise, if Q is “q(~v), . . .”, then rewriting yields a term containing qin(~v):

uc1,i(piin(~si),V(~s) ∪ . . . ∪ V(~si−1))σ
∞→≥niRP uc1,i(r

′,V(~s)σ ∪ . . . ∪ V(~si−1)σ).

For the soundness proof, we need another lemma which states that we can restrict

ourselves to non-terminating queries which only consist of a single atom.

Lemma 3.11 (Non-Terminating Queries). Let P be a logic program. Then for every

infinite derivation Q0 `P Q1 `P . . ., there is a Qi of the form “q(~v), . . .” with i > 0 such

that the query q(~v) is also non-terminating.

Proof. Assume that for all i > 0, the first atom in Qi does not have an infinite derivation.

Then for each Qi there are two cases: either the first atom fails or it can successfully be

proved. In the former case, there is no infinite reduction from Qi which contradicts the

infiniteness of the derivation from Q0. Thus for all i > 0, the first atom of Qi is successfully

proved in ni steps during the derivation Q0 `P Q1 `P . . . Let m be the number of atoms

in Q1. But then Q1+n1+...+nm is the empty query 2 which again contradicts the infiniteness

of the derivation.

We use argument filters to characterize the classes of queries whose termination we

want to analyze. Related definitions can be found in, e.g., [AG00, LS96].

Definition 3.12 (Argument Filter). A function π : Σ ∪∆→ 2N is an argument filter π

over a signature (Σ,∆) if and only if π(f/n) ⊆ {1, . . . , n} for every f/n ∈ Σ ∪ ∆. We

extend π to terms and atoms by defining π(x) = x if x is a variable and π(f(t1, . . . , tn)) =

f(π(ti1), . . . , π(tik)) if π(f/n) = {i1, . . . , ik} with i1 < . . . < ik. Here, the new terms

and atoms are from the filtered signature (Σπ,∆π) where f/n ∈ Σ implies f/k ∈ Σπ and

likewise for ∆π. For a logic program P we write (ΣPπ ,∆Pπ) instead of ((ΣP)π, (∆P)π). For

any TRS R, we define π(R) = {π(`)→ π(r) | `→ r ∈ R}. The set of all argument filters

over a signature (Σ,∆) is denoted by AF (Σ,∆). We write AF (Σ) instead of AF (Σ,∅)

and speak of an argument filter “over Σ”. We also write π(f) instead of π(f/n) if the

arity of f is clear from the context.

An argument filter π′ is a refinement of a filter π if and only if π′(f) ⊆ π(f) for all

f ∈ Σ ∪∆.
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Argument filters specify those positions which have to be instantiated with finite ground

terms. Then, we analyze termination of all queries Q where π(Q) is a (finite) ground atom.

In Example 3.1, we wanted to prove termination for all queries p(t1, t2) where t1 is finite

and ground. These queries are described by the filter π(h) = {1} for all h ∈ {p, f, g}.
Thus, we have π(p(t1, t2)) = p(π(t1)).

Note that argument filters also operate on function instead of just predicate symbols.

Therefore, they can describe more sophisticated classes of queries than the classical ap-

proach of [AZ95, CR93, GW93, Ohl01] which only distinguishes between input and output

positions of predicates. For example, if one wants to analyze all queries append(t1, t2, t3)

where t1 is a finite list, one would use the filter π(append) = {1} and π(•) = {2}, where

“•” is the list constructor (i.e., •(X,L) = [X|L]). Of course, our method can easily prove

that all these queries are terminating for the program of Example 3.4.

Now we show the soundness theorem: to prove termination of all queries Q where π(Q)

is a finite ground atom, it suffices to show
∞→-termination of all those terms pin(~t) for

the TRS RP where π(pin(~t)) is a finite ground term and where ~t only contains function

symbols from the logic program P . Here, π has to be extended to the new function

symbols pin by defining π(pin) = π(p).

Theorem 3.13 (Soundness of the Transformation). Let P be a logic program and let π

be an argument filter over (Σ,∆). We extend π such that π(pin) = π(p) for all p ∈ ∆.

Let S = {pin(~t) | p ∈ ∆, ~t ∈ ~T ∞(Σ,V), π(pin(~t)) ∈ T (ΣPπ) }. If all terms s ∈ S are
∞→-terminating for RP , then all queries Q ∈ Arat(Σ,∆,V) with π(Q) ∈ A(Σπ,∆π) are

terminating for P.2

Proof. Assume that there is a non-terminating query p(~t) as above with p(~t) `P Q1 `P
Q2 `P . . . By Lemma 3.11 there is an i1 > 0 with Qi1 = q1(~v1), . . . and an infinite

derivation q1(~v1) `P Q′1 `P Q′2 `P . . . From p(~t) `i1P,σ0
q1(~v1), . . . and Lemma 3.10 we get

pin(~t)σ0
∞→≥i1RP r1, where r1 contains the subterm q1in(~v1).

By Lemma 3.11 again, there is an i2 > 0 with Q′i2 = q2(~v2), . . . and an infinite derivation

q2(~v2) `P Q′′1 `P . . . From q1(~v1) `i2P,σ1
q2(~v2), . . . and Lemma 3.10 we get pin(~t)σ0σ1

∞→≥i1RP
r1σ1

∞→≥i2RP r2, where r2 contains the subterm q2in(~v2).

Continuing this reasoning we obtain an infinite sequence σ0, σ1, . . . of substitutions. For

each j ≥ 0, let µj = σj σj+1 . . . result from the infinite composition of these substitutions.3

2It is currently open whether the converse holds as well. For a short discussion see Section 3.6.
3The composition of infinitely many substitutions σ0, σ1, . . . is defined as follows. The definition ensures

that tσ0σ1 . . . is an instance of tσ0 . . . σn for all terms (or atoms) t and all n ≥ 0. It suffices to define
the symbols at the positions of tσ0σ1 . . . for any term t. Obviously, pos is a position of tσ0σ1 . . . if, and
only if, pos is a position of tσ0 . . . σn for some n ≥ 0. We define that the symbol of tσ0σ1 . . . at such
a position pos is f ∈ Σ if, and only if, f is at position pos in tσ0 . . . σm for some m ≥ 0. Otherwise,
(tσ0 . . . σn)|pos = X0 ∈ V. Let n = i0 < i1 < . . . be the maximal (finite or infinite) sequence with
σij+1(Xj) = . . . = σij+1−1(Xj) = Xj and σij+1(Xj) = Xj+1 for all j. We require Xj 6= Xj+1, but
permit Xj = Xj′ otherwise. If this sequence is finite (i.e., it has the form n = i0 < . . . < im), then we
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Since rjµj is an instance of rjσj . . . σn for all n ≥ j, we obtain that pin(~t)µ0 is non-
∞→-

terminating for RP :

pin(~t)µ0
∞→≥i1RP r1µ1

∞→≥i2RP r2µ2
∞→≥i3RP . . .

As π(p(~t)) ∈ A(Σπ,∆π) and thus π(pin(~t)) = π(pin(~t)µ0) ∈ T (ΣPπ), this is a contradic-

tion.

3.3. Termination of Infinitary Constructor Rewriting

One of the most powerful methods for automated termination analysis of rewriting is the

dependency pair (DP) method [AG00] which is implemented in most current termination

tools for TRSs. However, since the DP method only proves termination of term rewriting

with finite terms, its use is not sound in our setting. Nevertheless, we now show that only

very slight modifications are required to adapt dependency pairs from ordinary rewriting

to infinitary constructor rewriting. So any rewriting tool implementing dependency pairs

can easily be modified in order to prove termination of infinitary constructor rewriting as

well. Then, it can also analyze termination of logic programs using the transformation of

Definition 3.7.

Moreover, dependency pairs are a general framework that permits the integration of

any termination technique for TRSs [GTS05a, Thm. 36]. Therefore, instead of adapting

each technique separately, it is sufficient only to adapt the DP framework to infinitary

constructor rewriting. Then, any termination technique can be directly used for infinitary

constructor rewriting. In this section we first adapt the notions and the main termination

criterion of the dependency pair method to infinitary constructor rewriting and then

we show how to automate this criterion by adapting the “DP processors” of the DP

framework.

Dependency Pairs for Infinitary Rewriting

Let R be a TRS. For each defined symbol f/n ∈ ΣD, we extend the set of constructors

ΣC by a fresh tuple symbol f ]/n. We often write F instead of f ]. For t = g(~t) with

g ∈ ΣD, let t] denote g](~t).

Definition 3.14 (Dependency Pair [AG00]). The set of dependency pairs for a TRS R
is DP (R) = {`] → t] | `→ r ∈ R, t is a subterm of r, root(t) ∈ ΣD}.

define (tσ0σ1 . . .)|pos = Xm. Otherwise, the substitutions perform infinitely many variable renamings.
In this case, we use one special variable Z∞ and define (tσ0σ1 . . .)|pos = Z∞. So if σ0(X) = Y ,
σ1(Y ) = X, σ2(X) = Y , σ3(Y ) = X, etc., we define Xσ0σ1 . . . = Y σ0σ1 . . . = Z∞.
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Example 3.15. Consider again the logic program of Example 3.1 which was transformed

into the following TRS R in Example 3.8.

pin(X,X)→ pout(X,X) (1)

pin(f(X), g(Y ))→ u1(pin(f(X), f(Z)), X, Y ) (2)

u1(pout(f(X), f(Z)), X, Y )→ u2(pin(Z, g(Y )), X, Y, Z) (3)

u2(pout(Z, g(Y )), X, Y, Z)→ pout(f(X), g(Y )) (4)

For this TRS R, we have ΣD = {pin, u1, u2} and DP (R) is

Pin(f(X), g(Y ))→ Pin(f(X), f(Z)) (5)

Pin(f(X), g(Y ))→ U1(pin(f(X), f(Z)), X, Y ) (6)

U1(pout(f(X), f(Z)), X, Y )→ Pin(Z, g(Y )) (7)

U1(pout(f(X), f(Z)), X, Y )→ U2(pin(Z, g(Y )), X, Y, Z) (8)

While Definition 3.14 is from [AG00], all following definitions and theorems are new.

They extend existing concepts from ordinary to infinitary constructor rewriting.

For termination, one tries to prove that there are no infinite chains of dependency

pairs. Intuitively, a dependency pair corresponds to a function call and a chain represents

a possible sequence of calls that can occur during rewriting. Definition 3.16 extends the

notion of chains to infinitary constructor rewriting. To this end, we use an argument filter

π that describes which arguments of function symbols have to be finite terms. So if π

does not delete arguments (i.e., if π(f) = {1, . . . , n} for all f/n), then this corresponds to

ordinary (finitary) constructor rewriting and if π deletes all arguments (i.e., if π(f) = ∅
for all f), then this corresponds to full infinitary constructor rewriting. In Definition 3.16,

the TRS D usually stands for a set of dependency pairs. (Note that if R is a TRS, then

DP (R) is also a TRS.)

Definition 3.16 (Chain). Let D,R be TRSs and π be an argument filter. A (possibly

infinite) sequence of pairs s1→ t1, s2→ t2, . . . from D is a (D,R, π)-chain if, and only if,

• for all i ≥ 1, there are substitutions σi : V → T ∞(ΣC ,V) such that tiσi
∞→∗R si+1σi+1,

and

• for all i ≥ 1, we have π(siσi), π(tiσi) ∈ T (Σπ). Moreover, if the rewrite sequence

from tiσi to si+1σi+1 has the form tiσi = q0
∞→R . . .

∞→R qm = si+1σi+1, then for

all terms in this rewrite sequence we have π(q0), . . . , π(qm) ∈ T (Σπ) as well. So

all terms in the sequence have finite ground terms on those positions which are not

filtered away by π.

In Example 3.15, “(6), (7)” is a chain for any argument filter π: if one instantiates X
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and Z with the same finite ground term, then (6)’s instantiated right-hand side rewrites

to an instance of (7)’s left-hand side. Note that if one uses an argument filter π which

permits an instantiation of X and Z with the infinite term f(f(. . .)), then there is also an

infinite chain “(6), (7), (6), (7), . . . ”

In order to prove termination of a program P , by Theorem 3.13 we have to show

that all terms pin(~t) are
∞→-terminating for RP whenever π(pin(~t)) is a finite ground

term and ~t only contains function symbols from the logic program (i.e., ~t contains no

defined symbols of the TRS RP). Theorem 3.17 states that one can prove absence of

infinite (DP (RP),RP , π′)-chains instead. Here, π′ is a filter which filters away “at least

as much” as π. However, π′ has to be chosen in such a way that the filtered TRSs

π′(DP (RP)) and π′(RP) satisfy the “variable condition”, i.e., V(π′(r)) ⊆ V(π′(`)) for all

` → r ∈ DP (RP) ∪ RP . Then the filter π′ detects all potentially infinite subterms in

rewrite sequences (i.e., all subterms which correspond to “non-unification-free parts” of

P , i.e., to non-ground subterms when “executing” the program P).

Theorem 3.17 (Proving Infinitary Termination). Let R be a TRS over Σ and let π be

an argument filter over Σ. We extend π to tuple symbols such that π(F ) = π(f) for

all f ∈ ΣD. Let π′ be a refinement of π such that π′(DP (R)) and π′(R) satisfy the

variable condition.4 If there is no infinite (DP (R),R, π′)-chain, then all terms f(~t) with

~t ∈ ~T ∞(ΣC ,V) and π(f(~t)) ∈ T (Σπ) are
∞→-terminating for R.

Proof. Assume there is a non-
∞→-terminating term f(~t) as above. Since ~t does not contain

defined symbols, the first rewrite step in the infinite sequence is on the root position with

a rule ` = f(~̀) → r where `σ1 = f(~t). Since σ1 does not introduce defined symbols,

all defined symbols of rσ1 occur on positions of r. So there is a subterm r′ of r with

defined root such that r′σ1 is also non-
∞→-terminating. Let r′ denote the smallest such

subterm (i.e., for all proper subterms r′′ of r′, the term r′′σ1 is
∞→-terminating). Then

`] → r′] is the first dependency pair of the infinite chain that we construct. Note that

π(`σ1) and thus, π(`]σ1) and hence, also π′(`]σ1) = π′(F (~t)) is a finite ground term by

assumption. Moreover, as `] → r′] ∈ DP (R) and as π′(DP (R)) satisfies the variable

condition, π′(r′]σ1) is finite and ground as well.

The infinite sequence continues by rewriting r′σ1’s proper subterms repeatedly. During

this rewriting, the left-hand sides of rules are instantiated by constructor substitutions

(i.e., substitutions with range T ∞(ΣC ,V)). As π′(R) satisfies the variable condition, the

terms remain finite and ground when applying the filter π′. Finally, a root rewrite step is

4To see why the variable condition is needed in Theorem 3.17, let R = {g(X)→ f(X), f(s(X))→ f(X)}
and π = π′ where π′(g) = ∅, π′(f) = π′(F) = π′(s) = {1}. R’s first rule violates the variable
condition: V(π′(f(X))) = {X} 6⊆ V(π′(g(X))) = ∅. There is no infinite chain, since π′ does not
allow us to instantiate the variable X in the dependency pair F(s(X)) → F(X) by an infinite term.
Nevertheless, there is a non-∞→-terminating term g(s(s(. . .))) which is filtered to a finite ground term
π′(g(s(s(. . .)))) = g.
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performed again. Repeating this construction infinitely many times results in an infinite

chain.

The following corollary combines Theorem 3.13 and Theorem 3.17. It describes how

we use the DP method for proving termination of logic programs.

Corollary 3.18 (Termination of Logic Programs by Dependency Pairs).

Let P be a logic program and let π be an argument filter over (Σ,∆). We extend π to ΣP

and to tuple symbols such that π(pin) = π(Pin) = π(p) for all p ∈ ∆. For all other symbols

f/n that are not from Σ or ∆, we define π(f/n) = {1, . . . , n}. Let π′ be a refinement of

π such that π′(DP (RP)) and π′(RP) satisfy the variable condition. If there is no infinite

(DP (RP),RP , π′)-chain, then all queries Q ∈ Arat(Σ,∆,V) with π(Q) ∈ A(Σπ,∆π) are

terminating for P.

Example 3.19. We want to prove termination of Example 3.1 for all queries Q where

π(Q) is finite and ground for the filter π(h) = {1} for all h ∈ {p, f, g}. By Corollary

3.18, it suffices to show absence of infinite (DP (R),R, π′)-chains. Here, R is the TRS

{(1), . . . , (4)} from Example 3.8 and DP (R) are Rules (5) – (8) from Example 3.15. The

filter π′ has to satisfy π′(h) ⊆ π(h) = {1} for h ∈ {f, g} and moreover, π′(pin) and

π′(Pin) must be subsets of π(pin) = π(Pin) = π(p) = {1}. Moreover, we have to choose

π′ such that the variable condition is fulfilled. So while π is always given, π′ has to be

determined automatically. Of course, there are only finitely many possibilities for π′.

In particular, defining π′(h) = ∅ for all symbols h is always possible. But to obtain

a successful termination proof afterwards, one should try to generate filters where the

sets π′(h) are as large as possible, since such filters provide more information about

the finiteness of arguments. We will present suitable heuristics for finding such filters

π′ in Section 3.4. In our example, we use π′(pin) = π′(Pin) = π′(f) = π′(g) = {1},
π′(pout) = π′(u1) = π′(U1) = {1, 2}, and π′(u2) = π′(U2) = {1, 2, 4}. For the non-well-

moded Example 3.3 we choose π′(g) = ∅ instead to satisfy the variable condition.

So to automate the criterion of Corollary 3.18, we have to tackle two problems:

(a) We start with a given filter π describing the set of queries whose termination should

be proved. Then we have to find a suitable argument filter π′ that refines π in such a

way that the variable condition of Theorem 3.17 is fulfilled and that the termination

proof is “likely to succeed”. This problem will be discussed in Section 3.4.

(b) For the chosen refined argument filter π′, we have to prove that there is no infinite

(DP (RP),RP , π′)-chain. We show how to do this in the following subsection.
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Automation by Adapting the DP Framework

Now we show how to prove absence of infinite (DP (R),R, π)-chains automatically. To this

end, we adapt the DP framework of [GTS05a] to infinitary rewriting. In this framework,

we now consider arbitrary DP problems (D,R, π) where D and R are TRSs and π is an

argument filter. Our goal is to show that there is no infinite (D,R, π)-chain. In this case,

we call the problem terminating. Termination techniques should now be formulated as

DP processors which operate on DP problems instead of TRSs. A DP processor Proc

takes a DP problem as input and returns a new set of DP problems which then have

to be solved instead. Proc is sound if for all DP problems d, d is terminating whenever

all DP problems in Proc(d) are terminating. So termination proofs start with the initial

DP problem (DP (R),R, π). Then this problem is transformed repeatedly by sound DP

processors. If the final processors return empty sets of DP problems, then
∞→-termination

for R is proved.

In Theorem 3.22, 3.24, and 3.26 we will recapitulate three of the most important existing

DP processors [GTS05a] and describe how they must be modified for infinitary constructor

rewriting. To this end, they now also have to take the argument filter π into account. The

first processor uses an estimated dependency graph to estimate which dependency pairs

can follow each other in chains.

Definition 3.20 (Estimated Dependency Graph). Let (D,R, π) be a DP problem. The

nodes of the estimated (D,R, π)-dependency graph are the pairs of D and there is an arc

from s → t to u → v if, and only if, CAP(t) and a variant u′ of u unify with an mgu

µ where π(CAP(t)µ) = π(u′µ) is a finite term. Here, CAP(t) replaces all subterms of t

with defined root symbol by different fresh variables.

Example 3.21. For the DP problem (DP (R),R, π′) from Example 3.19 we obtain:

(5) oo (7)
&&
(6) //

ff
(8)

For example, there is an arc (6)→ (7), as CAP(U1(pin(f(X), f(Z)), X, Y )) = U1(V,X, Y )

unifies with U1(pout(f(X ′), f(Z ′)), X ′, Y ′) by instantiating the arguments of U1 with fi-

nite terms. But there are no arcs (5) → (5) or (5) → (6), since Pin(f(X), f(Z)) and

Pin(f(X ′), g(Y ′)) do not unify, even if one instantiates Z and Y ′ by infinite terms (as

permitted by the filter π′(Pin) = {1}).

Note that filters are used to detect potentially infinite arguments, but these arguments

are not removed, since they can still be useful in the termination proof. In Example 3.21,

they are needed to determine that (5) has no outgoing arcs.

If s → t, u → v is a (D,R, π)-chain then there is an arc from s → t to u → v in the

estimated dependency graph. Thus, absence of infinite chains can be proved separately
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for each maximal strongly connected component (SCC) of the graph. This observation is

used by the following processor to modularize termination proofs by decomposing a DP

problem into sub-problems. If there are n SCCs in the graph and if Di are the dependency

pairs of the i-th SCC (for 1 ≤ i ≤ n), then one can decompose the set of dependency

pairs D into the subsets D1, . . . ,Dn.

Theorem 3.22 (Dependency Graph Processor). For a DP problem (D,R, π), let Proc

return {(D1,R, π), . . . , (Dn,R, π)} where D1, . . . ,Dn are the sets of nodes of the SCCs in

the estimated dependency graph. Then Proc is sound.

Proof. We prove that if s → t, u → v is a chain, then there is an arc from s → t to

u → v in the estimated dependency graph. This suffices for Theorem 3.22, since then

every infinite (D,R, π)-chain corresponds to an infinite path in the graph. This path

ends in an SCC with nodes Di and thus, there is also an infinite (Di,R, π)-chain. Hence,

if all (Di,R, π) are terminating DP problems, then so is (D,R, π).

Let s → t, u → v be a (D,R, π)-chain, i.e., tσ1
∞→∗R uσ2 for some constructor substi-

tutions σ1, σ2 where π(tσ1) and π(uσ2) are finite. Let pos1, . . . , posn be the top positions

where t has defined symbols. Then CAP(t) = t[Y1]pos1
. . . [Yn]posn for fresh variables Yj.

Moreover, let the variant u′ result from u by replacing every X ∈ V(u) by a fresh variable

X ′. Thus, the substitution σ with σ(X ′) = σ2(X) for all X ∈ V(u), σ(X) = σ1(X) for

all X ∈ V(t), and σ(Yj) = uσ2|posj unifies CAP(t) and u′. So there is also an mgu µ

where σ = µτ for some substitution τ . Moreover, since π(uσ2) = π(u′σ) is finite, the

term π(u′µ) is finite, too. Hence, by Definition 3.20 there is indeed an arc from s→ t to

u→ v.

Example 3.23. In Example 3.21, the only SCC of the dependency graph consists of

(6) and (7). Thus, the dependency graph processor transforms the initial DP problem

(DP (R),R, π′) into ({(6), (7)},R, π′), i.e., it deletes the dependency pairs (5) and (8).

The next processor is based on reduction pairs (%,�) where % and � are relations on

finite terms. Here, % is reflexive, transitive, monotonic (i.e., s % t implies f(. . . s . . .) %

f(. . . t . . .) for all function symbols f), and stable (i.e., s % t implies sσ % tσ for all

substitutions σ) and � is a stable well-founded order compatible with % (i.e., % ◦ � ⊆ �
or � ◦ % ⊆ �). There are many techniques to search for such relations automatically

(recursive path orders, polynomial interpretations, etc. [Der87]).

For a DP problem (D,R, π), we now try to find a reduction pair (%,�) such that all

filtered R-rules are weakly decreasing (w.r.t. %) and all filtered D-dependency pairs are

weakly or strictly decreasing (w.r.t. % or �).5 Requiring π(`) % π(r) for all ` → r ∈ R
ensures that in chains s1 → t1, s2 → t2, . . . with tiσi →∗R si+1σi+1 as in Definition 3.16,

5We only consider filtered rules and dependency pairs. Thus, % and � are only used to compare those
parts of terms which remain finite for all instantiations in chains.
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we have π(tiσi) % π(si+1σi+1). Hence, if a reduction pair satisfies the above conditions,

then the strictly decreasing dependency pairs (i.e., those s → t ∈ D where π(s) � π(t))

cannot occur infinitely often in chains. So the following processor deletes these pairs from

D. For any TRS D and any relation �, let D�π = {s→ t ∈ D | π(s) � π(t)}.

Theorem 3.24 (Reduction Pair Processor). Let (%,�) be a reduction pair. Then the

following DP processor Proc is sound. For (D,R, π), Proc returns

• {(D \ D�π ,R, π)}, if D�π ∪ D%π = D and R%π = R

• {(D,R, π)}, otherwise

Proof. We prove this theorem by contradiction, i.e., we assume that (D,R, π) is non-

terminating and then proceed to show that (D \ D�π ,R, π) has to be non-terminating,

too.

From the assumption that (D,R, π) is non-terminating, we know that there is an infinite

(D,R, π)-chain s1 → t1, s2 → t2, . . . with tiσi
∞→∗R si+1σi+1. For any term t we have

π(tσ) = π(t)π(σ) where π(σ)(x) = π(σ(x)) for all x ∈ V . So by stability of � and %,

D�π ∪ D%π = D implies

π(siσi) = π(si)π(σi) (
%

)
π(ti)π(σi) = π(tiσi). (9)

Note that π(siσi) and π(tiσi) are finite. Thus, comparing them with % is possible.

Similarly, by the observation π(tσ) = π(t)π(σ) we also get that tiσi
∞→∗R si+1σi+1 implies

π(tiσi)
∞→∗π(R) π(si+1σi+1). As R%π = R means that π(R)’s rules are decreasing w.r.t.

%, by monotonicity and stability of % we get π(tiσi) % π(si+1σi+1). With (9), this

implies π(s1σ1)
(
%

)
π(t1σ1) % π(s2σ2)

(
%

)
π(t2σ2) % . . . As � is compatible with % and

well founded, π(siσi) � π(tiσi) only holds for finitely many i. So sj → tj, sj+1 → tj+1, . . .

is an infinite (D \D�π ,R, π) chain for some j and thus, the DP problem (D \D�π ,R, π)

is non-terminating.

Example 3.25. For the DP problem ({(6), (7)},R, π′) in Example 3.23, one can easily

find a reduction pair6 where the dependency pair (7) is strictly decreasing and where (6)

and all rules are weakly decreasing after applying the filter π′:

Pin(f(X)) % U1(pin(f(X)), X) pin(X) % pout(X,X)

U1(pout(f(X), f(Z)), X) � Pin(Z) pin(f(X)) % u1(pin(f(X)), X)

u1(pout(f(X), f(Z)), X) % u2(pin(Z), X, Z)

u2(pout(Z, g(Y )), X, Z) % pout(f(X), g(Y ))

6For example, one can use the polynomial interpretation |Pin(t1)| = |pin(t1)| = |U1(t1, t2)| =
|u1(t1, t2)| = |u2(t1, t2, t3)| = |t1|, |pout(t1, t2)| = |t2|, |f(t1)| = |t1|+ 1, and |g(t1)| = 0.
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Thus, the reduction pair processor can remove (7) from the DP problem which results in

({(6)},R, π′). By applying the dependency graph processor again, one obtains the empty

set of DP problems, since now the estimated dependency graph only has the node (6) and

no arcs. This proves that the initial DP problem (DP (R),R, π′) from Example 3.19 is

terminating and thus, the logic program from Example 3.1 terminates for all queries Q

where π(Q) is finite and ground. Note that termination of the non-well-moded program

from Example 3.3 can be shown analogously since finiteness of the initial DP problem can

be proved in the same way. The only difference is that we obtain g instead of g(Y ) in the

last inequality above.

As in Theorem 3.22 and 3.24, many other existing DP processors [GTS05a] can easily

be adapted to infinitary constructor rewriting as well. Finally, one can also use the fol-

lowing processor to transform a DP problem (D,R, π) for infinitary constructor rewriting

into a DP problem (π(D), π(R), id) for ordinary rewriting. Afterwards, any existing DP

processor for ordinary rewriting becomes applicable.7 Since any termination technique for

TRSs can immediately be formulated as a DP processor [GTS05a, Thm. 36], now any ter-

mination technique for ordinary rewriting can be directly used for infinitary constructor

rewriting as well.

Theorem 3.26 (Argument Filter Processor). Let Proc( (D,R, π) ) = {(π(D), π(R), id)}
where id(f) = {1, . . . , n} for all f/n. Then Proc is sound.

Proof. If s1 → t1, s2 → t2, . . . is an infinite (D,R, π)-chain with the substitutions σi as in

Definition 3.16, then π(s1)→ π(t1), π(s2)→ π(t2), . . . is an infinite (π(D), π(R), id)-chain

with the substitutions π(σi). The reason is that tiσi
∞→∗R si+1σi+1 implies π(ti)π(σi) =

π(tiσi)
∞→∗π(R) π(si+1σi+1) = π(si+1)π(σi+1). Moreover, by Definition 3.16, all terms in

the rewrite sequence π(tiσi)
∞→∗π(R) π(si+1σi+1) are finite.

3.4. Refining the Argument Filter

In Section 3.2 we introduced a new transformation from logic programs P to TRSsRP and

showed that to prove the termination of a class of queries for P , it is sufficient to analyze

the termination behavior of RP . Our criterion to prove termination of logic programs was

summarized in Corollary 3.18.

The transformation itself is trivial to automate and as shown in Section 3.3, existing

systems implementing the DP method can easily be adapted to prove termination of in-

finitary constructor rewriting. The missing part in the automation is the generation of a

7If (D,R, π) results from the transformation of a logic program, then for (π(D), π(R), id) it is even sound
to apply the existing DP processors for innermost rewriting [GTS05a, GTSF06]. These processors
are usually more powerful than those for ordinary rewriting. The framework presented in [GTS05a]
even supports constructor rewriting.
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suitable argument filter from the user input, cf. Task (a) in Section 3.3. In this section,

after presenting the general algorithm to refine argument filters, we introduce suitable

heuristics. Finally, we extend the general algorithm for the refinement of argument filters

by integrating a mode analysis based on argument filters. This allows us to handle logic

programs where a predicate is used with several different modes (i.e., where different oc-

currences of the same predicate have different input and output positions). The usefulness

of the different heuristics from this section and the power of our mode analysis will be

evaluated empirically in Section 3.6.

Refinement Algorithm for Argument Filters

In our approach of Corollary 3.18, the user supplies an initial argument filter π to describe

the set of queries whose termination should be proved. There are two issues with this

approach. First, while argument filters provide the user with a more expressive tool

to characterize classes of queries, termination problems are often rather posed in the

form of a moding function for compatibility reasons. Fortunately, it is straightforward to

extract an appropriate initial argument filter from such a moding function m: we define

π(p) = {i | m(p, i) = in} for all p ∈ ∆ and π(f/n) = {1, . . . , n} for all function symbols

f/n ∈ Σ.

Second, and less trivially, the variable condition V(π(r)) ⊆ V(π(`)) for all rules ` →
r ∈ DP (RP)∪RP does not necessarily hold for the argument filter π. Thus, a refinement

π′ of π must be found such that the variable condition holds for π′. Then, our method

from Corollary 3.18 can be applied.

Unfortunately, there are often many refinements π′ of a given filter π such that the

variable condition holds. The right choice of π′ is crucial for the success of the termination

analysis. As already mentioned in Example 3.19, the argument filter that simply filters

away all arguments of all function symbols in the TRS, i.e., that has π′(f) = ∅ for all

f ∈ ΣP , is a refinement of every argument filter π and it obviously satisfies the variable

condition. But of course, only termination of trivial logic programs can be shown when

using this refinement π′.

Example 3.27. We consider the logic program of Example 3.1. As shown in Example 3.8,

the following rule results (among others) from the translation of the logic program.

pin(f(X), g(Y ))→ u1(pin(f(X), f(Z)), X, Y ) (2)

Suppose that we want to prove termination of all queries p(t1, t2) where both t1 and t2

are (finite) ground terms. This corresponds to the moding m(p, 1) = m(p, 2) = in, i.e.,

to the initial argument filter π with π(p) = {1, 2}.
In Corollary 3.18, we extend π to pin and Pin by defining it to be {1, 2} as well. In order
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to prove termination, we now have to find a refinement π′ of π such that π′(DP (RP)) and

π′(RP) satisfy the variable condition and such that there is no infinite (DP (RP),RP , π′)-
chain.

Let us first try to define π′ = π. Then π′ does not filter away any arguments. Thus,

π′(pin) = {1, 2}, π′(u1) = {1, 2, 3}, and π′(f) = π′(g) = {1}. But then clearly, the variable

condition does not hold as Z occurs in π′(r) but not in π′(`) if `→ r is Rule (2) above.

So we have to choose a different refinement π′. There remain three choices how we can

refine π to π′ in order to filter away the variable Z in the right-hand side of Rule (2):

we can filter away the first argument of f by defining π′(f) = ∅, we can filter away pin’s

second argument by defining π(pin) = {1}, or we can filter away the first argument of u1

by defining π(u1) = {2, 3}.

The decision which of the three choices above should be taken must be done by a

suitable heuristic. The following definition gives a formalization for such heuristics. Here

we assume that the choice only depends on the term t containing a variable that leads

to a violation of the variable condition and on the position pos of the variable. Then

a refinement heuristic ρ is a function such that ρ(t, pos) returns a function symbol f/n

and an argument position i ∈ {1, . . . , n} such that filtering away the i-th argument of

f would erase the position pos in the term t. For instance, if t is the right-hand side

u1(pin(f(X), f(Z)), X, Y ) of Rule (2) and pos is the position of the variable Z in this term

(i.e., pos = 121), then ρ(t, pos) can be either (f, 1), (pin, 2), or (u1, 1).

Definition 3.28 (Refinement Heuristic). A refinement heuristic is a partial mapping

ρ : T (ΣP ,V)×N∗ → ΣP×N such that whenever ρ(t, pos) = (f, i), then there is a position

pos ′ with pos ′ i being a prefix of pos and root(t|pos′) = f .

Given a TRS RP resulting from the transformation of a logic program P and a refine-

ment heuristic ρ, Algorithm 1 computes a refinement π′ of a given argument filter π such

that the variable condition holds for DP (RP) and RP .

Termination of this algorithm is obvious asRP is finite and each change of the argument

filter in Step 2.2 reduces the number of unfiltered arguments. Note also that ρ(r, pos)

is always defined since pos is never the top position ε. The reason is that the TRS RP is

non-collapsing (i.e., it has no right-hand side consisting just of a variable). The algorithm

is correct as it only terminates if the variable condition holds for every dependency pair

and every rule.

Note that if π′(F ) = π′(f) for every defined function symbol f and if we do not filter

away the first argument position of the function symbols uc,i, i.e., 1 ∈ π′(uc,i), then

the satisfaction of the variable condition for RP implies that the variable condition for

DP (RP) holds as well. Thus, for heuristics that guarantee the above properties, we only

have to consider RP in the above algorithm.
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Input: argument filter π, refinement heuristic ρ, TRS RP
Output: refined argument filter π′ such that π′(DP (RP)) and π′(RP) satisfy the

variable condition

1. π′ := π

2. If there is a rule `→ r from DP (RP) ∪RP
and a position pos with r|pos ∈ V(π′(r))\V(π′(`)), then:

2.1. Let (f, i) be the result of ρ(r, pos), i.e., (f, i) := ρ(r, pos).

2.2. Modify π′ by removing i from π′(f), i.e., π′(f) := π′(f)\
{i}.
For all other symbols from ΣP , π′ remains unchanged.

2.3. Go back to Step 2.

Algorithm 1: General Refinement Algorithm

Simple Refinement Heuristics

The following definition introduces two simple possible refinement heuristics. If a term t

has a position pos with a variable that violates the variable condition, then these heuristics

filter away the respective argument position of the innermost resp. the outermost function

symbol above the variable.

Definition 3.29 (Innermost/Outermost Refinement Heuristic). Let t be a term and let

“pos i” resp. “i pos” be a position in t. The innermost refinement heuristic ρim is defined

as follows:

ρim(t, pos i) = (root(t|pos), i)

The outermost refinement heuristic ρom is defined as follows:

ρom(t, i pos) = (root(t), i)

So if t is again the term u1(pin(f(X), f(Z)), X, Y ), then the innermost refinement heuris-

tic would result in ρim(t, 121) = (f, 1) and the outermost refinement heuristic gives

ρom(t, 121) = (u1, 1).

Both heuristics defined above are simple but problematic, as shown in Example 3.30.

Filtering the innermost function symbol often results in the removal of an argument

position that is relevant for termination of another rule. Filtering the outermost function

symbol excludes the possibility of filtering the arguments of function symbols from the

signature Σ of the original logic program. Moreover, the outermost heuristic also often

removes the first argument of some uc,i-symbol. Afterwards, a successful termination

proof is hardly possible anymore.
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Example 3.30. Consider again the logic program of Example 3.1 which was transformed

into the following TRS in Example 3.8.

pin(X,X)→ pout(X,X) (1)

pin(f(X), g(Y ))→ u1(pin(f(X), f(Z)), X, Y ) (2)

u1(pout(f(X), f(Z)), X, Y )→ u2(pin(Z, g(Y )), X, Y, Z) (3)

u2(pout(Z, g(Y )), X, Y, Z)→ pout(f(X), g(Y )) (4)

As shown in Example 3.15 we obtain the following dependency pairs for the above rules.

Pin(f(X), g(Y ))→ Pin(f(X), f(Z)) (5)

Pin(f(X), g(Y ))→ U1(pin(f(X), f(Z)), X, Y ) (6)

U1(pout(f(X), f(Z)), X, Y )→ Pin(Z, g(Y )) (7)

U1(pout(f(X), f(Z)), X, Y )→ U2(pin(Z, g(Y )), X, Y, Z) (8)

As in Example 3.27 we want to prove termination of p(t1, t2) for all ground terms t1 and

t2. Hence, we start with the argument filter π that does not filter away any arguments,

i.e., π(f/n) = {1, . . . , n} for all f ∈ ΣP . We will now illustrate Algorithm 1 using our

two heuristics.

Using the innermost refinement heuristic ρim in the algorithm, for the second DP (6)

we get ρim(U1(pin(f(X), f(Z)), X, Y ), 121) = (f, 1). This requires us to filter away the only

argument of f, i.e., π′(f) = ∅. Now Z is contained in the right-hand side of the third

DP (7), but not in the filtered left-hand side anymore. Thus, we now have to filter away

the first argument of Pin, i.e., π′(Pin) = {2}. Due to the DP (6), we now also have to

remove the second argument X of U1, i.e., π′(U1) = {1, 3}. Consequently, we lose the

information about finiteness of p’s first argument and therefore cannot show termination

of the program anymore. More precisely, there is an infinite (DP (RP),RP , π′)-chain

consisting of the dependency pairs (6) and (7) using a substitution that instantiates the

variables X and Z by the infinite term f(f(. . .)). This is indeed a chain since all infinite

terms are filtered away by the refined argument filter π′. Hence, the termination proof

fails.

Using the outermost refinement heuristic ρom instead, for the second DP (6) we get

ρom(U1(pin(f(X), f(Z)), X, Y ), 121) = (U1, 1), i.e., π′(U1) = {2, 3}. Considering the third

DP (7) we have to filter away the first argument of Pin, i.e., π′(Pin) = {2}. Due to the

DP (6), we now also have to remove the second argument of U1, i.e., π′(U1) = {3}. So we

obtain the same infinite chain as above since we lose the information about finiteness of

p’s first argument. Hence, we again cannot show termination.
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A slightly improved version of the outermost refinement heuristic can be achieved by

disallowing the filtering of the first arguments of the symbols uc,i and Uc,i.

Definition 3.31 (Improved Outermost Refinement Heuristic). Let t be a term and pos

be a position in t. The improved outermost refinement heuristic ρom′ is defined as:

ρom′(t, i pos) =

ρom′(t|i, pos) if i = 1 and either root(t) = uc,i or root(t) = Uc,i

(root(t), i) otherwise

Example 3.32. Reconsider Example 3.30. Using Algorithm 1 with the improved outer-

most refinement heuristic, for the second rule (2) we get ρom′(u1(pin(f(X), f(Z)), X, Y ), 121)

= ρom′(pin(f(X), f(Z)), 21) = (pin, 2) requiring us to filter away the second argument of

pin, i.e., π′(pin) = {1}. Consequently, the algorithm filters away the third arguments

of both u1 and u2, i.e., π′(u1) = {1, 2} and π′(u2) = {1, 2, 4}. Now the variable con-

dition holds for RP . Therefore, by defining π′(Pin) = π′(pin), π′(u1) = π′(U1), and

π′(u2) = π′(U2), the variable condition also holds for DP (RP). (As mentioned above,

by filtering tuple symbols F in the same way as the original symbols f and by ensuring

1 ∈ π′(uc,i), it suffices to check the variable condition only for the rules RP and not for

the dependency pairs DP (RP).) This argument filter corresponds to the one chosen in

Example 3.19 and as shown in Section 3.3 one can now easily prove
∞→-termination.

Type-Based Refinement Heuristic

The improved outermost heuristic from Section 3.4 only filters symbols of the form pin,

pout, Pin, and Pout. Therefore, the generated argument filters are similar to modings.

However, there are cases where one needs to filter function symbols from the original

logic program, too. In this section we show how to obtain a more powerful refinement

heuristic using information from inferred types.

There are many approaches to (direct) termination analysis of logic programs that

use type information in order to guess suitable “norms” or “ranking functions”, e.g.,

[BCF92, BCG+07, DDF93, MKS96]. In contrast to most of these approaches, we do not

consider typed logic programs, but untyped ones and we use types only as a basis for a

heuristic to prove termination of the transformed TRS. To our knowledge, this is the first

time that types are considered in the transformational approach to termination analysis

of logic programs.

Example 3.33. Now we regard the logic program from Example 3.3. The rules after the
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transformation of Definition 3.7 are:

pin(X,X)→ pout(X,X) (1)

pin(f(X), g(Y ))→ u1(pin(f(X), f(Z)), X, Y ) (2)

u1(pout(f(X), f(Z)), X, Y )→ u2(pin(Z, g(W )), X, Y, Z) (10)

u2(pout(Z, g(W )), X, Y, Z)→ pout(f(X), g(Y )) (11)

Using the improved outermost refinement heuristic ρom′ we start off as in Example 3.32

and obtain π′(pin) = {1}, π′(u1) = {1, 2}, and π′(u2) = {1, 2, 4}. However, due to the last

rule (11) we now get ρom′(pout(f(X), g(Y )), 21) = (pout, 2), i.e., π′(pout) = {1}. Considering

the third rule (10), we have to filter pin once more and obtain π′(pin) = ∅. So we again

lose the information about finiteness of p’s first argument and cannot show termination.

Similar to Example 3.30, the innermost refinement heuristic which filters away the only

argument of f also fails for this program.

So in the example above, neither the innermost nor the (improved) outermost refine-

ment heuristic succeed. We therefore propose a better heuristic which is like the innermost

refinement heuristic, but which avoids the filtering of certain arguments of original func-

tion symbols from the logic program. Close inspection of the cases where filtering such

function symbols is required reveals that it is not advisable to filter away “reflexive”

arguments. Here, we call an argument position i of a function symbol f reflexive (or

“recursive”), if the arguments on position i have the same “type” as the whole term

f(. . .) itself, cf. [Wal94]. A type assignment associates a predicate p/n with an n-tuple

of types for its arguments and, similarly, a function f/n with an (n+ 1)-tuple where the

last element specifies the result type of f .

Definition 3.34 (Types). Let Θ be a set of types (i.e., a set of names). A type assign-

ment τ over a signature (Σ,∆) and a set of types Θ is a mapping τ : Σ ∪∆ → Θ∗ such

that τ(p/n) ∈ Θn for all p/n ∈ ∆ and τ(f/n) ∈ Θn+1 for all f/n ∈ Σ. Let f/n ∈ Σ be a

function symbol and τ be a type assignment with τ(f) = (θ1, . . . , θn, θn+1). Then the set

of reflexive positions of f/n is Reflexiveτ (f/n) = {i | 1 ≤ i ≤ n and θi = θn+1}.

To infer a suitable type assignment for a logic program, we use the following simple

algorithm. However, since we only use types as a heuristic to find suitable argument filters,

any other type assignment would also yield a correct method for termination analysis. In

other words, the choice of the type assignment only influences the power of our method,

not its soundness. So unlike [BCG+07], the correctness of our approach does not depend

on the logic program or the query being well-typed. More sophisticated type inference

algorithms were presented in [BGV05, CP98, GP02, JB92, Lu00, VB02], for example.

In our simple type inference algorithm, we define ' as the reflexive and transitive

closure of the following “similarity” relation on the argument positions: Two argument
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positions of (possibly different) function or predicate symbols are “similar” if there exists

a program clause such that the argument positions are occupied by identical variables.

Moreover, if a term f(. . .) occurs in the i-th position of a function or predicate symbol

p, then the argument position of f ’s result is similar to the i-th argument position of p.

(For a function symbol f/n we also consider the argument position n + 1 which stands

for the result of the function.) After having computed the relation ', we then use a type

assignment which corresponds to the equivalence classes imposed by'. So our simple type

inference algorithm is related to sharing analysis [BDB+96, CF99, LS02], i.e., the program

analysis that aims at detecting program variables that in some program execution might

be bound to terms having a common variable.

Example 3.35. As an example, we compute a suitable type assignment for the logic

program from Example 3.3:

p(X,X).

p(f(X), g(Y )) ← p(f(X), f(Z)), p(Z, g(W )).

Let pi denote the i-th argument position of p, etc. Then due to the first clause we obtain

p1 ' p2, since both argument positions are occupied by the variable X. Moreover, since

Z occurs both in the first argument positions of f and p in the second clause, we also have

p1 ' f1. Finally, since an f-term occurs in the first and second argument of p and since

a g-term occurs in the second argument of p we also have f2 ' p1 ' p2 and g2 ' p2. In

other words, the relation ' imposes the two equivalence classes {p1, p2, f1, f2, g2} and {g1}.
Hence, we compute a type assignment with two types a and b where a and b correspond

to {p1, p2, f1, f2, g2} and {g1}, respectively. Thus, the type assignment is defined as τ(p) =

τ(f) = (a, a) and τ(g) = (b, a).

Note that the first argument of f has the same type a as its result and hence, this

argument position is reflexive. On the other hand, the first argument of g has a differ-

ent type than its result and is therefore not reflexive. Hence, Reflexiveτ (f) = {1} and

Reflexiveτ (g) = ∅.

Now we can define the following heuristic based on type assignments. It is like the

innermost refinement heuristic of Definition 3.29, but now reflexive arguments of function

symbols from Σ (i.e., from the original logic program) are not filtered away.

Definition 3.36 (Type-based Refinement Heuristic). Let t be a term, let “pos i” be a

position in t, and let τ be a type assignment. The type-based refinement heuristic ρτtb is

defined as follows:

ρτtb(t, pos i) =

{
(root(t|pos), i) if root(t|pos) /∈ Σ or i /∈ Reflexiveτ (root(t|pos))
ρτtb(t, pos) otherwise
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Note that the heuristic ρτtb never filters away the first argument of a symbol uc,i or Uc,i

from the TRSs DP (RP) and RP . Therefore, as mentioned above, we only have to check

the variable condition for the rules of RP , but not for the dependency pairs.

Example 3.37. We continue with the logic program from Example 3.3 and use the

type assignment computed in Example 3.35 above. The rules after the transformation

of Definition 3.7 are the following, cf. Example 3.33.

pin(X,X)→ pout(X,X) (1)

pin(f(X), g(Y ))→ u1(pin(f(X), f(Z)), X, Y ) (2)

u1(pout(f(X), f(Z)), X, Y )→ u2(pin(Z, g(W )), X, Y, Z) (10)

u2(pout(Z, g(W )), X, Y, Z)→ pout(f(X), g(Y )) (11)

Due to the occurrence of Z in the right-hand side of the second rule (2), we compute:

ρτtb(u1(pin(f(X), f(Z)), X, Y ), 121)

= ρτtb(u1(pin(f(X), f(Z)), X, Y ), 12) as f ∈ Σ and 1 ∈ Reflexiveτ (f)

= (pin, 2) as pin 6∈ Σ

Thus, we filter away the second argument of pin, i.e., π′(pin) = {1}. Consequently, we

obtain π′(u1) = {1, 2} and π′(u2) = {1, 2, 4}.
Considering the fourth rule (11) we compute:

ρτtb(pout(f(X), g(Y )), 21)

= (g, 1) as 1 6∈ Reflexiveτ (g)

Thus, we filter away the only argument of g, i.e., π′(g) = ∅. By filtering the tuple symbols

in the same way as the corresponding “lower-case” symbols, now the variable condition

holds for RP and therefore also for DP (RP). Indeed, this is the argument filter chosen

in Example 3.19. With this filter, one can easily prove termination of the program, cf.

Section 3.3.

For the above example, it is sufficient only to avoid the filtering of reflexive positions.

However, in general one should also avoid the filtering of all “unbounded” argument

positions. An argument position of type θ is “unbounded” if it may contain subterms

from a recursive data structure, i.e., if there exist infinitely many terms of type θ. The

decrease of the terms on such argument positions might be the reason for the termination

of the program and therefore, they should not be filtered away. To formalize the concept

of unbounded argument positions, we define the set of constructors of a type θ to consist

of all function symbols whose result has type θ. Then an argument position of a function

symbol f is unbounded if it is reflexive or if it has a type θ with a constructor that has an
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unbounded argument position. For the sake of brevity, we also speak of just unbounded

positions when referring to unbounded argument positions.

Definition 3.38 (Unbounded Positions). Let θ ∈ Θ be a type and τ be a type assignment.

A function symbol f/n with τ(f/n) = (θ1, . . . , θn, θn+1) is a constructor of θ if, and only

if, θn+1 = θ. Let Constructorsτ (θ) be the set of all constructors of θ.

For such a function symbol f/n, we define the set of unbounded positions as the smallest

set such that Reflexiveτ (f/n) ⊆ Unbounded τ (f/n) and such that i ∈ Unbounded τ (f/n) if

there is a g/m ∈ Constructorsτ (θi) and a 1 ≤ j ≤ m with j ∈ Unbounded τ (g/m).

In the logic program from Examples 3.3 and 3.35, we had τ(p) = τ(f) = (a, a) and

τ(g) = (b, a). Thus, Constructorsτ (a) = {f, g} and Constructorsτ (b) = ∅. Since the first

argument position of f is reflexive, it is also unbounded. The first argument position of g

is not unbounded, since it is not reflexive and there is no constructor of type b with an

unbounded argument position. So in this example, there is no difference between reflexive

and unbounded positions.

However, we will show in Example 3.40 that there are programs where these two notions

differ. For that reason, we now improve our type-based refinement heuristic and disallow

the filtering of unbounded (instead of just reflexive) positions.

Definition 3.39 (Improved Type-based Refinement Heuristic). Let t be a term, let “pos i”

be a position in t, and let τ be a type assignment. The improved type-based refinement

heuristic ρτtb′ is defined as follows:

ρτtb′(t, pos i) =

{
(root(t|pos), i) if root(t|pos) /∈ Σ or i /∈ Unbounded τ (root(t|pos))
ρτtb′(t, pos) otherwise

Example 3.40. The following logic program inverts an integer represented by a sign (neg

or pos) and by a natural number in Peano notation (using s and 0). So the integer number

1 is represented by the term pos(s(0)), the integer number −1 is represented by neg(s(0)),

and the integer number 0 has the two representations pos(0) and neg(0). Here nat(t) holds

if, and only if, t represents a natural number (i.e., if t is a term containing just s and 0)

and inv simply exchanges the function symbols neg and pos. The main predicate safeinv

performs the desired inversion where safeinv(t1, t2) only holds if t1 really represents an

integer number and t2 is its inversion.

nat(0).

nat(s(X)) ← nat(X).

inv(neg(X), pos(X)).

inv(pos(X), neg(X)).

safeinv(X, neg(Y )) ← inv(X, neg(Y )), nat(Y ).

safeinv(X, pos(Y )) ← inv(X, pos(Y )), nat(Y ).
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The rules after the transformation of Definition 3.7 are:

natin(0)→ natout(0) (12)

natin(s(X))→ u1(natin(X), X) (13)

u1(natout(X), X)→ natout(s(X)) (14)

invin(neg(X), pos(X))→ invout(neg(X), pos(X)) (15)

invin(pos(X), neg(X))→ invout(pos(X), neg(X)) (16)

safeinvin(X, neg(Y ))→ u2(invin(X, neg(Y )), X, Y ) (17)

u2(invout(X, neg(Y )), X, Y )→ u3(natin(Y ), X, Y ) (18)

u3(natout(Y ), X, Y )→ safeinvout(X, neg(Y )) (19)

safeinvin(X, pos(Y ))→ u4(invin(X, pos(Y )), X, Y ) (20)

u4(invout(X, pos(Y )), X, Y )→ u5(natin(Y ), X, Y ) (21)

u5(natout(Y ), X, Y )→ safeinvout(X, pos(Y )) (22)

Let us assume that the user wants to prove termination of all queries safeinv(t1, t2)

where t1 is ground. So we use the moding m(safeinv, 1) = in and m(safeinv, 2) = out.

Thus, as initial argument filter π we have π(safeinv) = {1} and hence π(safeinvin) =

π(SAFEINVin) = {1}, while π(f/n) = {1, . . . , n} for all f /∈ {safeinv,

safeinvin, SAFEINVin}. In Rule (17) one has to filter away the second argument of invin

or the only argument of neg in order to remove the “extra” variable Y on the right-

hand side. From a type inference for these rules we obtain the type assignment τ with

τ(s) = (b, b), τ(0) = (b), and τ(neg) = τ(pos) = (b, a). So “a” corresponds to the type of

integers and “b” corresponds to the type of naturals. The constructors of the naturals are

Constructorsτ (b) = {s, 0}. This is a recursive data structure since s has an unbounded

argument: 1 ∈ Reflexiveτ (s) ⊆ Unbounded τ (s). Thus, while neg’s first argument position

of type b is not reflexive, it is still unbounded, i.e., 1 ∈ Unbounded τ (neg). Hence, our

improved type-based heuristic decides to filter away the second argument of invin (as invin

is not from the original signature Σ). Now termination is easy to show.

If one had considered the original type-based heuristic instead, then the non-reflexive

first argument of neg would be filtered away. Due to Rule (17), then also the last argument

of u2 has to be removed by the filter. But then the variable Y would not occur anymore in

the filtered left-hand side of Rule (18). So to satisfy the variable condition for Rule (18),

we would have to filter away the only argument of natin. Similarly, the only argument of

the corresponding tuple symbol NATin would also be filtered away, blocking any possibility

for a successful termination proof.
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Mode Analysis based on Argument Filters and an Improved

Refinement Algorithm

In logic programming, it is not unusual that a predicate is used with different modes

(i.e., that different occurrences of the predicate have different input and output posi-

tions). Uniqueness of moding can then be achieved by creating appropriate copies of

these predicate symbols and their clauses for every different moding.

Example 3.41. Consider the following logic program for rotating a list taken from

[Cod07]. Let P be the append-program consisting of the clauses from Example 3.4 and

the new clause

rotate(N ,O)← append(L,M ,N ), append(M ,L,O). (23)

with the moding m(rotate, 1) = in and m(rotate, 2) = out. For this moding, the program

is terminating.

But while the first use of append in Clause (23) supplies it with a ground term only on

the last argument position, the second use in (23) is with ground terms only on the first

two argument positions. Although the append-clauses are even well moded for both kinds

of uses, the whole program is not.

The logic program is transformed into the following TRS. As before, “[X|L]” is an

abbreviation for •(X,L), i.e., • is the constructor for list insertion.

appendin([ ],M,M)→ appendout([ ],M,M) (24)

appendin(•(X,L),M, •(X,N))→ u1(appendin(L,M,N), X, L,M,N) (25)

u1(appendout(L,M,N), X, L,M,N)→ appendout(•(X,L),M, •(X,N)) (26)

rotatein(N,O)→ u2(appendin(L,M,N), N,O) (27)

u2(appendout(L,M,N), N,O)→ u3(appendin(M,L,O), L,M,N,O) (28)

u3(appendout(M,L,O), L,M,N,O)→ rotateout(N,O) (29)

Due to the “extra” variables L and M in the right-hand side of Rule (27) and the “extra”

variable O in the right-hand side of Rule (28),8 the only refined argument filter which

would satisfy the variable condition of Corollary 3.18 is the one where π(appendin) = ∅.9

As we can expect, for the queries described by this filter, the append-program is not

terminating and, thus, our new approach fails, too.

8In the left-hand side of Rule (27), the variable O in the second argument of rotatein is removed by the
initial filter that describes the desired set of queries given by the user. Consequently, one also has to
filter away the last argument of u2. Hence, then O is indeed an “extra” variable in the right-hand
side of Rule (28).

9Alternatively, one could also filter away the first arguments of u2 and u3. But then one would also have
to satisfy the variable condition for the dependency pairs and one would obtain π(APPENDin) = ∅.
Hence, the termination proof attempt would fail as well.
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The common solution [Apt97] is to produce two copies of the append-clauses and to

rename them apart. This is often referred to as “mode-splitting”. First, we create labeled

copies of the predicate symbol append and label the predicate of each append-atom by

the input positions of the moding in which it is used. Then, we extend our moding

to m(append{3}, 3) = m(append{1,2}, 1) = m(append{1,2}, 2) = in and m(append{3}, 1) =

m(append{3}, 2) = m(append{1,2}, 3) = out. In our example, termination of the resulting

logic program can easily be shown using both the classical transformation from Section 3

or our new transformation:

rotate(N ,O) ← append{3}(L,M ,N ), append{1,2}(M ,L,O).

append{3}([ ],M ,M ).

append{3}([X|L],M , [X|N ]) ← append{3}(L,M ,N ).

append{1,2}([ ],M ,M ).

append{1,2}([X|L],L, [X|N ]) ← append{1,2}(L,M ,N ).

In the example above, a pre-processing based on modings was sufficient for a successful

termination proof. In general, though, this is insufficient to handle queries described by

an argument filter. The following example demonstrates this.

Example 3.42. Consider again the logic program P from Example 3.41 which is trans-

lated to the TRS RP = {(24), . . . , (29)}. This time we want to show termination for all

queries of the form rotate(t1, t2) where t1 is a finite list (possibly containing non-ground

terms as elements). So t1 is instantiated by terms of the form •(r1, •(r2, . . . •(rn, [ ]) . . .))

where the ri can be arbitrary terms possibly containing variables.10

To specify these queries, the user would provide the initial argument filter π with

π(rotate) = {1} and π(•) = {2}. Now our aim is to prove termination of all queries

that are ground under the filter π. Thus, the first argument of rotate is not necessarily a

ground term (it is only guaranteed to be ground after filtering away the second argument

of •).
Therefore, if one wanted to pre-process the program using modings, then one could not

assume that the first argument of rotate were ground. Instead, one would have to use the

moding m(rotate, 1) = m(rotate, 2) = out. Therefore, in the calls to append, all argument

positions would be considered as “out”. As a consequence, no renamed-apart copies of

clauses would be created and the termination proof would fail.

10Such a termination problem can also result from an initial termination problem that was described by
modings. To demonstrate this, we could extend the program by the following clauses.

p(X,O) ← s2`(X,N), rotate(N,O).
s2`(0, [ ]).
s2`(s(X), [Y |N ]) ← s2`(X,N).

To prove termination of all queries described by the moding m(p, 1) = in and m(p, 2) = out, one
essentially has to show termination for all queries of the form rotate(t1, t2) where t1 is a finite list.
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In general, Algorithm 1 aims to compute an argument filter that filters away as few

arguments as possible while ensuring that the variable condition holds. In this way we

make sure that the maximal amount of information remains for the following termination

analysis.

But as Examples 3.41 and 3.42 above demonstrate, there are cases where we need to

create renamed-apart copies of clauses for certain predicates in order to obtain a viable

refined argument filter. To this end, a first idea might be to combine an existing mode

inference algorithm with Algorithm 1. However, it is not clear how to do such a combi-

nation. The problem is that we already need to know the refined argument filter in order

to create suitable copies of clauses. At the same time, we already need the renamed-

apart copies of the clauses in order to compute the refined argument filter. Thus, we

have a classical “chicken-and-egg” problem. Moreover, such an approach would always

fail for programs like Example 3.42 where there exists no suitable pre-processing based

on modings.

Therefore, we replace Algorithm 1 by the following new Algorithm 2 that simultaneously

refines the argument filter and creates renamed-apart copies on demand.

The idea of the algorithm is the following. Whenever our refinement heuristic suggests

to filter away an argument of a symbol pin, then instead of changing the argument filter

appropriately, we introduce a new copy of the symbol pin. To distinguish the different

copies of the symbols pin, we label them by the argument positions that are not filtered

away.

In general, a removal of argument positions of pin can already be performed by the initial

filter π that the user provides in order to describe the desired set of queries. Therefore,

if π(p) does not contain all arguments {1, . . . , n} for some predicate symbol p/n, then we

already introduce a new symbol p
π(p)
in and new copies of the rewrite rules originating from

p. In these rules, we use the new symbol p
π(p)
in instead of pin.

Let us reconsider Example 3.42. To prove termination of all queries rotate(t1, t2) with

a finite list t1, the user would select the argument filter π that eliminates the second

argument of rotate and the first argument of the list constructor •. So we have π(rotate) =

{1}, π(•) = {2}, and π(append) = {1, 2, 3}. Then in addition to the rules (27) – (29) for

the symbol rotatein we also introduce the symbol rotate
{1}
in . Moreover, in order to ensure

that rotate
{1}
in does the same computation as rotatein, we add the following copies of the

rewrite rules (27) – (29) originating from the predicate rotate. Here, all root symbols of

left- and right-hand sides are labeled with {1}.

rotate
{1}
in (N,O)→ u

{1}
2 (appendin(L,M,N), N,O) (30)

u
{1}
2 (appendout(L,M,N), N,O)→ u

{1}
3 (appendin(M,L,O), L,M,N,O) (31)

u
{1}
3 (appendout(M,L,O), L,M,N,O)→ rotate

{1}
out(N,O) (32)
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Input: argument filter π, refinement heuristic ρ, TRS RP
Output: refined argument filter π′ and modified TRS R′P

such that π′(R′P) satisfies the variable condition

1. R′P := RP ∪ {`π(p) → rπ(p) | `→ r ∈ RP(p), p/n ∈ ∆, π(p) ( {1, . . . , n}}

2. π′(f) :=


π(f), for all f ∈ Σ (i.e., for functions of P)
I, for all f = pIin with p ∈ ∆
{1, . . . , n}, for all other symbols f/n

3. If there is a rule `→ r from R′P
and a position pos with r|pos ∈ V(π′(r))\V(π′(`)), then:

3.1. Let (f, i) be the result of ρ(r, pos), i.e., (f, i) := ρ(r, pos).

3.2. We perform a case analysis depending on whether f has
the form pIin for some p ∈ ∆. Here, unlabeled symbols of
the form pin/n are treated as if they were labeled with
I = {1, . . . , n}.
• If f = pIin, then we must have r = u(pIin(...), . . .)

for some symbol u. We introduce a new function
symbol p

I\{i}
in with π′(p

I\{i}
in ) = I \ {i} if it has not

yet been introduced. Then:

◦ We replace pIin by p
I\{i}
in in the right-hand side

of `→ r:

R′P := R′P \ {`→ r} ∪ {`→ r},

where r = u(p
I\{i}
in (...), . . .).

◦ R′P := R′P ∪ {sI\{i} → tI\{i} | s→ t ∈ R′P(p)}.
If this introduces new labeled function symbols
f/n where π′ was not yet defined on, we define
π′(f) = {1, . . . , n}.
◦ Let `′ → r′ be the rule in R′P with `′ =

u(pIout(...), . . .). We now replace pIout by p
I\{i}
out

in the left-hand side of `′ → r′:

R′P := R′P \ {`′ → r′} ∪ {`′ → r′},

where `′ = u(p
I\{i}
out (...), . . .).

• Otherwise (i.e., if f does not have the form pin or
pIin), then modify π′ by removing i from π′(f), i.e.,
π′(f) := π′(f) \ {i}.

3.3. Go back to Step 3.

Algorithm 2: Improved Refinement Algorithm
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So in Step 1 of the algorithm, we initialize R′P to contain all rules of RP . But in

addition, R′P contains labeled copies of the rules resulting from those predicates p/n

where π(p) ( {1, . . . , n}. In these rules, the root symbols of left- and right-hand sides are

labeled with π(p).

Formally, for every predicate symbol p ∈ ∆, let RP(p) denote those rules of RP which

result from p-clauses (i.e., from clauses whose head is built with the predicate p). So

RP(rotate) consists of the rule for rotatein and the rules for u2 and u3, i.e., RP(rotate) =

{(27), (28), (29)}.

Then for a term t = f(t1, . . . , tn) and a set of argument positions I ⊆ N, let tI denote

f I(t1, . . . , tn). So for t = rotatein(N,O) and I = {1}, we have tI = rotate
{1}
in (N,O). Hence

if π(rotate) = {1}, then we extend R′P by copies of the rules in RP(rotate) where the root

symbols are labeled by {1}. In other words, we have to add the rules {`π(p) → rπ(p) | `→
r ∈ RP(rotate)} = {(30), (31), (32)}.

In Step 2, we initialize our desired argument filter π′. This filter does not yet eliminate

any arguments except for original function symbols from the logic program and for symbols

of the form pIin. Since in our example, the initial argument filter π of the user is π(rotate) =

{1}, we have π′(rotatein) = {1, 2}, but π′(rotate
{1}
in ) = {1}. So for symbols pIin, the label

I describes those arguments that are not filtered away. However, this does not hold for

the other labeled symbols. So the labelling of the symbols u
{1}
2 , u

{1}
3 , and append

{1}
out only

represents that they “belong” to the symbol rotate
{1}
in . But the argument filter for these

symbols can be determined arbitrarily. Initially, π′ would not filter away any of their

arguments, i.e., π′(u
{1}
2 ) = {1, 2, 3}, π′(u

{1}
3 ) = {1, 2, 3, 4, 5}, and π′(rotate

{1}
out) = {1, 2}.

The filter for original function symbols of the logic program is taken from the user-

defined argument filter π. So since the user described the desired set of queries by setting

π(•) = {2}, we also have π′(•) = {2}.

In Steps 3 and 3.1, we look for rules violating the variable condition as in Algorithm

1. Again, we use a refinement heuristic ρ to suggest a suitable function symbol f and

an argument position i that should be filtered away. As before, we restrict ourselves to

refinement heuristics ρ which never select the first argument of a symbol uc,i. In this

way, we only have to examine the rules (and not also the dependency pairs) for possible

violations of the variable condition.

If f is not a (possibly labeled) symbol of the form pin or pIin, then we proceed in Step

3.2 as before (i.e., as in Step 2.2 of Algorithm 1). But if f is a (possibly labeled) symbol

of the form pin or pIin, then we do not modify the filter for f . If I are the non-filtered

argument positions of f , then we introduce a new function symbol labeled with I \ {i}
instead and replace f by this new function symbol in the rule that violated the variable

condition.
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In our example, we had R′P = {(24), . . . , (29), (30), (31), (32)} and π′ was the filter that

does not eliminate any arguments except for π′(rotate
{1}
in ) = {1} and π′(•) = {2}.

The rules (25), (27), and (30) violate the variable condition. In the following, we mark

the violating variables by boxes. Let us regard Rule (25) first:

appendin(•(X,L),M, •(X,N))→ u1(appendin(L,M,N), X , L,M,N) (25)

To remove the variable X from the right-hand side, in Step 3.1 any refinement heuristic

must suggest to filter away the second argument of u1. As u1 does not have the form pIin,

we use the second case of Step 3.2. Thus, we change π′ such that π′(u1) = {1, 2, 3, 4, 5}\
{2} = {1, 3, 4, 5}. Indeed, now this rule does not violate the variable condition anymore.

We reach Step 3.3 and, thus, go back to Step 3 where we again choose a rule that

violates the variable condition. Let us now regard Rule (30):

rotate
{1}
in (N,O)→ u

{1}
2 (appendin( L , M ,N), N, O ) (30)

To remove the first violating variable L, in Step 3.1 our refinement heuristic sug-

gests to filter away the first argument of the symbol appendin. But instead of chang-

ing π′(appendin), we introduce a new symbol append
{2,3}
in with π′(append

{2,3}
in ) = {2, 3}.

Moreover, we replace the symbol appendin in the right-hand side of Rule (30) by the new

symbol append
{2,3}
in . Thus, Rule (30) is modified to

rotate
{1}
in (N,O)→ u

{1}
2 (append

{2,3}
in (L, M ,N), N, O ). (33)

To make sure that append
{2,3}
in has rewrite rules corresponding to the rules of appendin, we

now have to add copies of all rules that result from the append-predicate. However, here

we label every root symbol by {2, 3}. In other words, we have to add the following rules

to R′P :

append
{2,3}
in ([ ],M,M)→ append

{2,3}
out ([ ],M,M) (34)

append
{2,3}
in (•(X,L),M, •(X,N))→ u

{2,3}
1 (appendin(L,M,N), X, L,M,N) (35)

u
{2,3}
1 (appendout(L,M,N), X, L,M,N)→ append

{2,3}
out (•(X,L),M, •(X,N)) (36)

Now the result of rewriting a term append
{2,3}
in (. . .) will always be a term of the form

append
{2,3}
out (. . .). Therefore, we have to replace appendout by append

{2,3}
out in the left-hand

side of Rule (31) (since (31) is the rule that always “follows” (30)). So the original rule

(31)

u
{1}
2 (appendout(L,M,N), N,O)→ u

{1}
3 (appendin(M,L,O), L,M,N,O) (31)
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is replaced by the modified rule

u
{1}
2 (append

{2,3}
out (L,M,N), N,O)→ u

{1}
3 (appendin(M,L,O), L,M,N,O). (37)

Thus, after the execution of Step 3.2, we have R′P = {(24) − −(29), (33) − (36), (37),

(32)}. In this way, we have introduced three new labeled symbols append
{2,3}
in , u

{2,3}
1 , and

append
{2,3}
out . On the unlabeled symbols, the argument filter π′ did not change, but we now

additionally have π′(append
{2,3}
in ) = {2, 3}, π′(u

{2,3}
1 ) = {1, 2, 3, 4, 5}, and π′(append

{2,3}
out ) =

{1, 2, 3}.
We reach Step 3.3 and, thus, go back to Step 3 where we again choose a rule

that violates the variable condition. Let us again regard Rule (30), albeit in its mod-

ified form as Rule (33). The variable M still violates the variable condition. In Step

3.1, the refinement heuristic suggests to filter away the second argument of the symbol

append
{2,3}
in . Instead of changing π′, we again introduce a new symbol, namely append

{3}
in

with π′(append
{3}
in ) = {3}, and replace the symbol append

{2,3}
in in the right-hand side of

Rule (33) by append
{3}
in . Thus, we obtain a further modification of Rule (33):

rotate
{1}
in (N,O)→ u

{1}
2 (append

{3}
in (L,M,N), N, O ) (38)

Again, we have to ensure that append
{3}
in has rewrite rules corresponding to the rules of

appendin. Thus, we add copies of all rules that result from the append-predicate where

every root symbol is labeled by {3}:

append
{3}
in ([ ],M,M)→ append

{3}
out([ ],M,M) (39)

append
{3}
in (•(X,L),M, •(X,N))→ u

{3}
1 (appendin(L,M,N), X, L,M,N) (40)

u
{3}
1 (appendout(L,M,N), X, L,M,N)→ append

{3}
out(•(X,L),M, •(X,N)) (41)

We also have to replace append
{2,3}
out by append

{3}
out in the left-hand side of Rule (37) (since

(37) is the rule that always “follows” (33)). So the rule (37) is replaced by the modified

rule

u
{1}
2 (append

{3}
out(L,M,N), N,O)→ u

{1}
3 (appendin(M,L,O), L,M,N,O) (42)

Thus, after the execution of Step 3.2, we have R′P = {(24)−−(29), (38)− (41), (34)−
−(36), (42), (32)}. Again we have introduced three new labeled symbols append

{3}
in , u

{3}
1 ,

and append
{3}
out . On the unlabeled symbols, the argument filter π′ did not change, but we

now additionally have π′(append
{3}
in ) = {3}, π′(u

{3}
1 ) = {1, 2, 3, 4, 5}, and π′(append

{3}
out) =

{1, 2, 3}.
We reach Step 3.3 and, thus, go back to Step 3 where we again choose a rule that

violates the variable condition. We again regard Rule (30), albeit in its modified form
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as Rule (38). The variable O still violates the variable condition. In Step 3.1, any

refinement heuristic must suggest to filter away the third argument of the symbol u
{1}
2 .

As u
{1}
2 does not have the form pIin, we use the second case of Step 3.2. Thus, we change

π′ such that π′(u
{1}
2 ) = {1, 2, 3} \ {3} = {1, 2}. Indeed, now Rule (38) does not violate

the variable condition anymore.

We reach Step 3.3 and, thus, go back to Step 3 where we again choose a rule that

still violates the variable condition. Let us now regard Rule (42):

u
{1}
2 (append

{3}
out(L,M,N), N,O)→ u

{1}
3 (appendin(M,L, O ), L,M,N, O ) (42)

Here our refinement heuristic suggests to filter away the third argument of the symbol

appendin in order to remove the extra variable O. Instead of changing π′, we again

introduce a new symbol, namely append
{1,2}
in with π′(append

{1,2}
in ) = {1, 2}, and replace the

symbol appendin in the right-hand side of Rule (42) by append
{1,2}
in . Thus, we obtain a

further modification of Rule (42):

u
{1}
2 (append

{3}
out(L,M,N), N,O)→ u

{1}
3 (append

{1,2}
in (M,L,O), L,M,N, O ) (43)

Again, we have to ensure that append
{1,2}
in has rewrite rules corresponding to the rules of

appendin. Thus, we add copies of all rules that result from the append-predicate where

every root symbol is labeled by {1, 2}:

append
{1,2}
in ([ ],M,M)→ append

{1,2}
out ([ ],M,M) (44)

append
{1,2}
in (•(X,L),M, •(X,N))→ u

{1,2}
1 (appendin(L,M,N), X, L,M,N) (45)

u
{1,2}
1 (appendout(L,M,N), X, L,M,N)→ append

{1,2}
out (•(X,L),M, •(X,N)) (46)

We also have to replace appendout by append
{1,2}
out in the left-hand side of Rule (32) (since

(32) is the rule that always “follows” (42)). So the rule (32) is replaced by the modified

rule

u
{1}
3 (append

{1,2}
out (M,L,O), L,M,N,O)→ rotate

{1}
out(N,O) (47)

Thus, after the execution of Step 3.2, we now haveR′P = {(24)−−(29), (38)−(41), (34)−
−(36), (43)−−(46), (47)}. Again we have introduced three new labeled symbols append

{1,2}
in ,

u
{1,2}
1 , and append

{1,2}
out . On the unlabeled symbols, the argument filter π′ did not change,

but we now additionally have π′(append
{1,2}
in ) = {1, 2}, π′(u

{1,2}
1 ) = {1, 2, 3, 4, 5}, and

π′(append
{1,2}
out ) = {1, 2, 3}.

Note that now we have indeed separated the two copies of the append-rules where

append
{3}
in corresponds to the version of append that has the third argument as input and
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append
{1,2}
in is the version where the first two arguments serve as input. This copying

of predicates works although the initial argument filter already filtered away arguments

of function symbols like “•” (i.e., the initial argument filter was already beyond the

expressivity of modings).

Step 3 is repeated until the variable condition is not violated anymore. Note that

Algorithm 2 always terminates since there are only finitely many possible labeled variants

for every symbol. In our example, we obtain the following set of rules R′P :

appendin([ ],M,M)→ appendout([ ],M,M) (24)

appendin(•(X,L),M, •(X,N))→ u1(appendin(L,M,N), X, L,M,N) (25)

u1(appendout(L,M,N), X, L,M,N)→ appendout(•(X,L),M, •(X,N)) (26)

rotatein(N,O)→ u2(append
{3}
in (L,M,N), N,O) (48)

u2(append
{3}
out(L,M,N), N,O)→ u3(appendin(M,L,O), L,M,N,O) (49)

u3(appendout(M,L,O), L,M,N,O)→ rotateout(N,O) (29)

rotate
{1}
in (N,O)→ u

{1}
2 (append

{3}
in (L,M,N), N,O) (38)

u
{1}
2 (append

{3}
out(L,M,N), N,O)→ u

{1}
3 (append

{1,2}
in (M,L,O), L,M,N,O) (43)

u
{1}
3 (append

{1,2}
out (M,L,O), L,M,N,O)→ rotate

{1}
out(N,O) (47)

append
{2,3}
in ([ ],M,M)→ append

{2,3}
out ([ ],M,M) (34)

append
{2,3}
in (•(X,L),M, •(X,N))→ u

{2,3}
1 (append

{2,3}
in (L,M,N), X, L,M,N) (50)

u
{2,3}
1 (append

{2,3}
out (L,M,N), X, L,M,N)→ append

{2,3}
out (•(X,L),M, •(X,N)) (51)

append
{3}
in ([ ],M,M)→ append

{3}
out([ ],M,M) (39)

append
{3}
in (•(X,L),M, •(X,N))→ u

{3}
1 (append

{3}
in (L,M,N), X, L,M,N) (52)

u
{3}
1 (append

{3}
out(L,M,N), X, L,M,N)→ append

{3}
out(•(X,L),M, •(X,N)) (53)

append
{1,2}
in ([ ],M,M)→ append

{1,2}
out ([ ],M,M) (44)

append
{1,2}
in (•(X,L),M, •(X,N))→ u

{1,2}
1 (append

{1,2}
in (L,M,N), X, L,M,N) (54)

u
{1,2}
1 (append

{1,2}
out (L,M,N), X, L,M,N)→ append

{1,2}
out (•(X,L),M, •(X,N)) (55)

The refined argument filter π′ is given by

π′(appendin) = {1, 2, 3} π′(rotate
{1}
in ) = {1} π′(append

{2,3}
in ) = {2, 3}

π′(appendout) = {1, 2, 3} π′(u{1}2 ) = {1, 2} π′(append
{2,3}
out ) = {1, 2, 3}

π′(•) = {2} π′(u{1}3 ) = {1, 2, 3, 4} π′(u{2,3}
1 ) = {1, 4, 5}

π′(u1) = {1, 3, 4, 5} π′(append
{1,2}
in ) = {1, 2} π′(u{3}1 ) = {1, 5}

π′(rotatein) = {1, 2} π′(append
{1,2}
out ) = {1, 2, 3} π′(u{1,2}

1 ) = {1, 3, 4}
π′(u2) = {1, 2, 3} π′(rotate

{1}
out) = {1, 2}

π′(append
{3}
in ) = {3}

π′(append
{3}
out) = {1, 2, 3}

π′(u3) = {1, 2, 3, 4, 5}
π′(rotateout) = {1, 2}
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Termination forR′P w.r.t. the terms specified by π′ is now easy to show using our results

from Section 3.3.

If one is only interested in termination of queries rotate(t1, t2) for a specific predicate

symbol like rotate, then one can remove superfluous (copies of) rules from the TRS before

starting the termination proof. For example, if one only wants to prove termination of

queries rotate(t1, t2) for finite lists t1, then it now suffices to prove
∞→-termination of the

above TRS for those “start terms” rotate
{1}
in (. . .) that are finite and ground under the

filter π′ and where the arguments of rotate
{1}
in do not contain any function symbols except

• and [ ]. Since the rules for rotatein, appendin, and append
{2,3}
in (i.e., the rules (24) –

(26), (29), (34), and (48) – (51)) are not reachable from these “start terms”, they can

immediately be removed. In other words, for the queries rotate(t1, t2) we indeed need rules

for rotate
{1}
in , append

{1,2}
in , and append

{3}
in , but the rules for rotatein, appendin, and append

{2,3}
in

are superfluous.

Note however that such superfluous copies of rules are never problematic for the ter-

mination analysis. If the rules for append
{3}
in are

∞→-terminating for terms that are finite

and ground under the filter π′, then this also holds for the append
{2,3}
in - and the appendin-

rules, since here π′ filters away less arguments. A corresponding statement holds for the

connection between the rotate
{1}
in - and the rotatein-rules.

The following theorem proves the correctness of Algorithm 2. More precisely, it shows

that one can use π′ and R′P instead of π and RP in Theorem 3.13. So it is sufficient

to prove that all terms in the set S ′ = {pπ(p)
in (~t) | p ∈ ∆, ~t ∈ ~T ∞(Σ,V), π′(p

π(p)
in (~t)) ∈

T (ΣPπ′ ) } are
∞→-terminating w.r.t. the modified TRS R′P . In Example 3.42, S ′ would

be the set of all terms rotate
{1}
in (t1, t2) that are ground after filtering with π′. Hence, this

includes all terms where the first argument is a finite list.

If all terms in S ′ are
∞→-terminating w.r.t. R′P , we can conclude that all queries Q ∈

Arat(Σ,∆,V) with π(Q) ∈ A(Σπ,∆π) are terminating for the original logic program. Since

π′ satisfies the variable condition for the TRS R′P (and also for DP (R′P) if 1 ∈ π′(uc,i)
for all symbols of the form uc,i), one can also use π′ and R′P for the termination criterion

of Corollary 3.18. In other words, then it is sufficient to prove that there is no infinite

(DP (R′P),R′P , π′)-chain.

Theorem 3.43 (Soundness of Algorithm 2). Let P be a logic program and let π be an

argument filter over (Σ,∆). Let π′ and R′P result from π and RP by Algorithm 2. Let

S = {pin(~t) | p ∈ ∆, ~t ∈ ~T ∞(Σ,V), π(pin(~t)) ∈ T (ΣPπ) }. Furthermore, let S ′ =

{pπ(p)
in (~t) | p ∈ ∆, ~t ∈ ~T ∞(Σ,V), π′(p

π(p)
in (~t)) ∈ T (ΣPπ′ ) }. All terms s ∈ S are

∞→-

terminating for RP if all terms s′ ∈ S ′ are
∞→-terminating for R′P .

Proof. We first show that every reduction of a term from S with RP can be simulated by

the reduction of a term from S ′ withR′P . More precisely, we show the following proposition
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where Sn = {t | pin(~t)
∞→n

RP t for some p ∈ ∆, ~t ∈ ~T ∞(Σ,V), and π(pin(~t)) ∈ T (ΣPπ) }
and S′ = {t | pπ(p)

in (~t)
∞→∗R′P t for some p ∈ ∆, ~t ∈ ~T ∞(Σ,V), and π′(p

π(p)
in (~t)) ∈ T (ΣPπ′ ) }

If s ∈ Sn and s′ ∈ S′ with Unlab(s′) = s, then s
∞→RP t implies

that there is a t′ with Unlab(t′) = t and s′
∞→R′P t′.

(56)

Here, Unlab removes all labels introduced by Algorithm 2:

Unlab(s) =

f(Unlab(s1), . . . ,Unlab(sn)), if s = f I(s1, . . . , sn)

s, otherwise

We prove (56) by induction on n. There are three possible cases for s and for the rule

that is applied in the step from s to t.

Case 1: n = 0 and thus, s = pin(~s)

So s ∈ S and there is a rule `→ r ∈ RP with ` = pin(~̀) such that s = `σ and t = rσ for

some substitution σ with terms from T ∞(Σ,V).

Let s′ ∈ S′ with Unlab(s′) = s. Thus, we also have s′ ∈ S ′ where s′ = p
π(p)
in (~s) (since a

term with a root symbol pIin cannot be obtained from S ′ if one has performed at least one

rewrite step with R′P). Due to the construction of R′P , there exists a rule `π(p) → r′ ∈ R′P
where Unlab(r′) = r. We define t′ to be r′σ. Then we clearly have s′ = `π(p)σ

∞→R′P r′σ = t′

and Unlab(t′) = t.

Case 2: n ≥ 1 and s = uc,i(s, ~q), s
∞→RP t, t = uc,i(t, ~q)

Since s ∈ Sn, there exists a pin(~s) with ~s ∈ ~T ∞(Σ,V) such that pin(~s)
∞→∗RP s, i.e., s ∈ Sm

for some m ∈ N. Since the reduction from pin(~s) to s is shorter than the overall reduction

that led to s, we obtain that m < n.

Let s′ ∈ S′ with Unlab(s′) = s. Hence, we have s′ = uIc,i(s
′, ~q) for some label I

and Unlab(s′) = s. Since s′ ∈ S′, there exists a pJin(~s) with ~s ∈ ~T ∞(Σ,V) such that

pJin(~s)
∞→∗R′P s′. Hence, s′ ∈ S′ as well. Now the induction hypothesis implies that there

exists a t′ such that s′
∞→R′P t′ and Unlab(t′) = t. We define t′ = uIc,i(t

′, ~q). Then we

clearly have s′
∞→R′P t′ and Unlab(t′) = t.

Case 3: n ≥ 1 and s = uc,i(pout(~s), ~q)

Here, there exists a rule `→ r ∈ RP with ` = uc,i(pout(~̀), ~x) such that s = `σ and t = rσ.

Let s′ ∈ S′ with Unlab(s′) = s. Hence, we have s′ = uIc,i(p
J
out(~s), ~q) for some labels I

and J . Since s′ ∈ S′, s′ resulted from rewriting the term uIc,i(p
J
in(~s), ~q) which must be an

instantiated right-hand side of a rule from R′P . Due to the construction of R′P , then there

also exists a rule `′ → r′ ∈ R′P where `′ = uIc,i(p
J
out(

~̀), ~x) and Unlab(r′) = r. We define

t′ = r′σ. Then we have s′ = `′σ
∞→R′P r′σ = t′ and clearly Unlab(t′) = t.
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We now proceed to prove the theorem by contradiction. Assume there is a term s0 ∈ S
that is non-

∞→-terminating w.r.t.RP , i.e., there is an infinite sequence of terms s0, s1, s2, . . .

with si
∞→RP si+1. We must have s0 = pin(~t) with ~t ∈ ~T ∞(Σ,V) and π(pin(~t)) ∈ T (ΣPπ).

Let s′0 = p
π(p)
in (~t). Then s′0 ∈ S ′, since π′(p

π(p)
in (~t)) ∈ T (ΣPπ′ ). The reason is that π′(p

π(p)
in ) =

π(p) = π(pin) and for all f ∈ Σ we have π′(f) ⊆ π(f).

So by (56), s′0 ∈ S′ and Unlab(s′0) = s0 imply that there is an s′1 with Unlab(s′1) = s1

and s′0
∞→R′P s′1. Clearly, this also implies s′1 ∈ S′. By applying (56) repeatedly, we

therefore obtain an infinite sequence of labeled terms s′0, s
′
1, s
′
2, . . . with s′i

∞→R′P s′i+1.

3.5. Formal Comparison of the Transformational

Approaches

In this section we formally compare the power of the classical transformation with the

power of our new approach. In the classical approach, the class of queries is character-

ized by a moding function whereas in our approach, it is characterized by an argument

filter. Therefore, the following definition establishes a relationship between modings and

argument filters.

Definition 3.44 (Argument Filter Induced by Moding). Let (Σ,∆) be a signature and

let m be a moding over the set of predicate symbols ∆. Then for every predicate symbol

p ∈ ∆ we define the induced argument filter πm over ΣP as πm(pin) = πm(Pin) = {i |
m(p, i) = in} and πm(pout) = {i | m(p, i) = out}. All other function symbols f from ΣP

are not filtered, i.e., πm(f/n) = {1, . . . , n}.

Example 3.45. Regard again the well-moded logic program from Example 3.1.

p(X,X).

p(f(X), g(Y )) ← p(f(X), f(Z)), p(Z, g(Y )).

We used the moding m with m(p, 1) = in and m(p, 2) = out. Thus, for the induced

argument filter πm we have πm(pin) = πm(Pin) = {1} and πm(pout) = {2}.

As the classical approach is only applicable to well-moded logic programs, we restrict

our comparison to this class. For non-well-moded programs, our new approach is clearly

more powerful, since it can often prove termination (cf. Section 3.6), whereas the classical

transformation is never applicable.

Our goal is to show the connection between the TRSs resulting from the two transfor-

mations. If one refines πm to a filter π′m by Algorithm 1 using any arbitrary refinement

heuristic, then the TRS of the classical transformation corresponds to the TRS of our

new transformation after filtering it with π′m.
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Example 3.46. We continue with Example 3.45. The TRS RP resulting from our new

transformation was given in Example 3.8:

pin(X,X)→ pout(X,X) (1)

pin(f(X), g(Y ))→ u1(pin(f(X), f(Z)), X, Y ) (2)

u1(pout(f(X), f(Z)), X, Y )→ u2(pin(Z, g(Y )), X, Y, Z) (3)

u2(pout(Z, g(Y )), X, Y, Z)→ pout(f(X), g(Y )) (4)

If we apply the induced argument filter πm, then we obtain the TRS πm(RP):

pin(X)→ pout(X)

pin(f(X))→ u1(pin(f(X)), X, Y )

u1(pout(f(Z)), X, Y )→ u2(pin(Z), X, Y, Z)

u2(pout(g(Y )), X, Y, Z)→ pout(g(Y ))

The second rule has the “extra” variable Y on the right-hand side, i.e., it does not

satisfy the variable condition. Thus, we have to refine the filter πm to a filter π′m with

π′m(u1) = π′m(U1) = {1, 2} and π′m(u2) = π′m(U2) = {1, 2, 4}. The resulting TRS π′m(RP)

is identical to the TRS Rold
P resulting from the classical transformation, cf. Example 3.2:

pin(X)→ pout(X)

pin(f(X))→ u1(pin(f(X)), X)

u1(pout(f(Z)), X)→ u2(pin(Z), X, Z)

u2(pout(g(Y )), X, Z)→ pout(g(Y ))

The following theorem shows that our approach (with Corollary 3.18) succeeds whenever

the classical transformation of Section 3 yields a terminating TRS.

Theorem 3.47 (Subsumption of the Classical Transformation). Let P be a well-moded

logic program over a signature (Σ,∆) w.r.t. the moding m. Let Rold
P be the result of

applying the classical transformation of Section 3 and let RP be the result of our new

transformation from Definition 3.7. Then there is a refinement of π′m of πm such that

(a) π′m(RP) and π′m(DP (RP)) satisfy the variable condition and (b) if Rold
P is terminat-

ing (with ordinary rewriting), then there is no infinite (DP (RP),RP , π′m)-chain. Thus,

in particular, termination of Rold
P implies that RP is

∞→-terminating (with infinitary con-

structor rewriting) for all terms pin(~t) with p ∈ ∆, ~t ∈ ~T ∞(Σ,V), and π(pin(~t)) ∈ T (ΣPπ).

Proof. Let π′m result from Algorithm 1 using any refinement heuristic ρ which does not

filter away the first argument of any uc,i.

We now analyze the structure of the TRS π′m(RP). For any predicate symbol p ∈ ∆,
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let “p(~s,~t)” denote that ~s and ~t are the sequences of terms on p’s in- and output positions

w.r.t. the moding m.

When Algorithm 1 is applied to compute the refinement π′m of πm, one looks for a rule

` → r from πm(RP) such that V(r) 6⊆ V(`). Such a rule cannot result from the facts of

the logic program. The reason is that for each fact p(~s,~t), πm(RP) contains the rule

pin(~s)→ pout(~t)

and by well-modedness, we have V(~t) ⊆ V(~s).

For each rule c of the form p(~s,~t) ← p1(~s1,~t1), . . . , pk(~sk,~tk) in P , the TRS

πm(RP) contains:

pin(~s) → uc,1(p1in(~s1),V(~s) ∪ V(~t))

uc,1(p1out(~t1),V(~s) ∪ V(~t)) → uc,2(p2in(~s2),V(~s) ∪ V(~t) ∪ V(~s1) ∪ V(~t1))
...

uc,k(pkout(~tk),V(~s) ∪ V(~t) ∪ V(~s1) ∪ V(~t1) ∪ . . . ∪ V(~sk−1) ∪ V(~tk−1)) → pout(~t)

For the first rule, by well-modedness we have V(~s1) ⊆ V(~s) and thus, the only “extra”

variables on the right-hand side of the first rule must be from V(~t). There is only one

possibility to refine the argument filter in order to remove them: one has to filter away the

respective argument positions of uc,1. Hence, the filtered right-hand side of the first rule is

uc,1(p1in(~s1),V(~s)) and the filtered left-hand side of the second rule is uc,1(p1out(~t1),V(~s)).

Similarly, for the second rule, well-modedness implies V(~s2) ∪ V(~s) ∪ V(~s1) ∪ V(~t1) ⊆
V(~t1) ∪ V(~s). So the only “extra” variables on the right-hand side of the second rule

are again from V(~t). As before, to remove them one has to filter away the respective

argument positions of uc,2. Moreover, since V(~s1) ⊆ V(~s) we obtain the filtered right-

hand side uc,2(p2in(~s2),V(~s) ∪ V(~t1)) for the second rule and the filtered left-hand side

uc,2(p2out(~t2),V(~s) ∪ V(~t1)) side in the third rule.

An analogous argument holds for the other rules. The last rule has no extra variables,

since V(~t) ⊆ V(~s) ∪ V(~t1) ∪ . . . ∪ V(~tk) by well-modedness.

So for any rule c of the logic program P , π′m(RP) has the following rules:

pin(~s) → uc,1(p1in(~s1),V(~s))

uc,1(p1out(~t1),V(~s)) → uc,2(p2in(~s2),V(~s) ∪ V(~t1))
...

uc,k(pkout(~tk),V(~s) ∪ V(~t1) ∪ . . . ∪ V(~tk−1)) → pout(~t)

Hence, π′m(RP) = Rold
P . Since the refined argument filter π′m does not filter away the

first argument of any uc,i, by defining π′m(Uc,i) := π′m(uc,i), then the variable condition is

satisfied for both π′m(RP) and π′m(DP (RP)) and, thus, (a) is fulfilled.
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Now to prove (b), we assume that Rold
P is terminating. We have to show that then there

is no infinite (DP (RP),RP , π′m)-chain. By the soundness of the argument filter processor

(Theorem 3.26), it suffices to show that there is no infinite (π′m(DP (RP)), π′m(RP), id)-

chain.

Note that π′m(DP (RP)) = DP (π′m(RP)). The reason is that all uc,i only occur on the

root level in RP . Moreover, all pin-symbols only occur in the first argument of a uc,i and

1 ∈ π′m(uc,i). In other words, occurrences of defined function symbols are not removed by

the filter π′m. So we have

u→ v ∈ π′m(DP (RP))

if, and only if, there is a rule `→ r ∈ RP with u = π′m(`]), v = π′m(t])

for a subterm t of r with defined root

if, and only if, there is a rule ` → r ∈ RP with u = (π′m(`))], v =

(π′m(t))]

for a subterm π′m(t) of π′m(r) with defined root

if, and only if, there is a rule `→ r ∈ π′m(RP) with u = `], v = t]

for a subterm t of r with defined root

if, and only if, u→ v ∈ DP (π′m(RP))

Hence, π′m(RP) = Rold
P and π′m(DP (RP)) = DP (π′m(RP)) = DP (Rold

P ). Thus, it suffices

to show absence of infinite (DP (Rold
P ),Rold

P , id)-chains. But this follows from termination

of Rold
P , cf. [AG00, Thm. 6], since (P ,R, id)-chains correspond to chains for ordinary

(non-infinitary) rewriting.

Hence by Theorem 3.17, termination of Rold
P also implies that all terms pin(~t) with

p ∈ ∆, ~t ∈ ~T ∞(Σ,V), and π(pin(~t)) ∈ T (ΣPπ) are
∞→-terminating w.r.t. RP (using

infinitary constructor rewriting).

The reverse direction of the above theorem does not hold, though. As a counterex-

ample, regard again the logic program from Example 3.1, cf. Example 3.46. As shown

in Example 3.2, the TRS resulting from the classical transformation is not terminating.

Still, for the filter π′m from Example 3.46, there is no infinite (DP (RP),RP , π′m)-chain

and thus, our method of Corollary 3.18 succeeds with the termination proof. In other

words, our new approach is strictly more powerful than the classical transformation, even

on well-moded programs.

Thus, a termination analyzer based on our new transformation should be strictly more

successful in practice, too. That this is in fact the case will be demonstrated in the next

section.
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3.6. Experiments and Discussion

We integrated our approach (including all refinements presented) in the termination tool

AProVE [GST06] which implements the DP framework. To evaluate our results, we

tested AProVE against four other representative termination tools for logic programming:

TALP [OCM00] is the only other available tool based on transformational methods (it uses

the classical transformation of Section 3), whereas Polytool [ND07], TerminWeb [CT99],

and cTI [MB05] are based on direct approaches. We now describe the results of our

experimental evaluation and then discuss the limitations of our approach.

Experimental Evaluation

We ran the tools on a set of 296 examples in fully automatic mode.11 This set includes all

logic programming examples from the Termination Problem Data Base [TPD07] which

is used in the annual international Termination Competition [MZ07]. It contains collec-

tions provided by the developers of several different tools including all examples from the

experimental evaluation of [BCG+07]. However, to eliminate the influence of the transla-

tion from Prolog to logic programs, we removed all examples that use non-trivial built-in

predicates or that are not definite logic programs after ignoring the cut operator. All

tools were run locally on an AMD Athlon 64 at 2.2 GHz under GNU/Linux 2.6. For each

example we used a time limit of 60 seconds. This is similar to the way that tools are

evaluated in the annual competitions for termination tools. For every tool we give the

number of LPs which could be proved terminating (denoted “Successes”), the number of

examples where termination could not be shown (“Failures”), the number of examples for

which the timeout of 60 seconds was reached (“Timeouts”), and the total running time

(“Total”) in seconds.

AProVE Polytool TerminWeb cTI TALP

Successes 232 204 177 167 163

Failures 57 82 118 129 112

Timeouts 7 10 1 0 21

Total 1471.4 622.7 95.3 10.4 413.5

As shown in the table above, AProVE succeeds on more examples than any other tool.

The comparison of AProVE and TALP shows that our approach improves significantly

upon the previous transformational method that TALP is based on, cf. Goals (A) and

(B). In particular, TALP fails for all non-well-moded programs.

11We combined termsize and list-length norm for TerminWeb and allowed 5 iterations before widening
for cTI. Apart from that, we used the default settings of the tools. For both AProVE and Polytool we
used the (fully automated) original executables from the Termination Competition 2007 [MZ07]. To
refine argument filters, this version of AProVE uses the refinement heuristic ρtb′ from Definition 3.39.
For a list of the main termination techniques used in AProVE, we refer to [GTS05a, GTSF06]. Of
these techniques, only the ones in Section 3.3 were adapted to infinitary constructor rewriting.
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While we have shown our technique to be strictly more powerful than the previous

transformational method, due to the higher arity of the function symbols produced by

our transformation, proving termination could take more time in some cases. However,

in the above experiments this did not affect the practical power of our implementation.

In fact, AProVE is able to prove termination well within the time limit for all examples

where TALP succeeds. Further analysis shows that while AProVE never takes more than

15 seconds longer than TALP, there are indeed 6 examples where AProVE is more than

15 seconds faster than TALP.

The comparison with Polytool, TerminWeb, and cTI demonstrates that our new trans-

formational approach is not only comparable in power, but usually more powerful than

direct approaches. In fact, there is only a single example where one of the other tools

(namely Polytool) succeeds and AProVE fails. This is the rather contrived example from

(2) in Section 3.6 which we developed to demonstrate the limitations of our method.

Polytool is only able to handle this example via a pre-processing step based on partial

evaluation [NBDL06, SD03b, TC04]. In this example, this pre-processing step results in

a trivially terminating logic program. Thus, if one combined this pre-processing with

any of the other tools, then they would also be able to prove termination of this par-

ticular example.12 Integrating some form of partial evaluation into AProVE might be an

interesting possibility for further improvement. For all other examples, AProVE can show

termination whenever at least one of the other tools succeeds. Moreover, there are several

examples where AProVE succeeds whereas no other tool shows the termination. These in-

clude examples where the termination proof requires more complex orders. For instance,

termination of the example SGST06/hbal tree.pl can be proved using recursive path

orders with status and termination of talp/apt/mergesort ap.pl is shown using matrix

orders.13

Note that 52 examples in this collection are known to be non-terminating, i.e., there are

at most 244 terminating examples. In other words, there are only at most 12 terminating

examples where AProVE did not manage to prove termination. With this performance,

AProVE won the Termination Competition with Polytool being the second most powerful

tool. The best tool for non-termination analysis of logic programs was NTI [PM06].

However, from the experiments above one should not draw the conclusion that the trans-

formational approach is always better than the direct approach to termination analysis of

logic programs. There are several extensions (e.g., termination inference [CT99, MB05],

non-termination analysis [PM06], handling numerical data structures [SD04, SD05b]) that

can currently only be handled by direct techniques and tools.

12Similarly, with such a pre-processing the existing “direct” tools would also be able to prove termination
of the program in Example 3.1.

13For recursive path orders with status and matrix orders see [Les83] resp. [EWZ06].



3.6. Experiments and Discussion 59

Regarding the use of term rewriting techniques for termination analysis of logic pro-

grams, it is interesting to note that the currently most powerful tool for direct termination

analysis of logic programs (Polytool) implements the framework of [ND05, ND07] for ap-

plying techniques from term rewriting (most notably polynomial interpretations) to logic

programs directly. This framework forms the basis for further extensions to other TRS-

termination techniques. For example, it can be extended further by adapting also the

dependency pair framework to the logic programming setting as demonstrated in Chap-

ter 4 of this thesis.

So transformational and direct approaches both have their advantages and the most

powerful solution would be to combine direct tools like Polytool with a transformational

prover like AProVE which is based on the contributions of this section as demonstrated in

Chapter 4. But it is clear that it is indeed beneficial to use termination techniques from

TRSs for logic programs, both for direct and for transformational approaches.

In addition to the experiments described above (which compare different termination

provers), we also performed experiments with several versions of AProVE in order to eval-

uate the different heuristics and algorithms for the computation of argument filters from

Section 3.4. The following table shows that indeed our improved type-based refinement

heuristic (tb′) significantly outperforms the simple improved outermost (om′) and inner-

most (im) heuristics. In fact, all examples that could be proved terminating by any of

the simple heuristics can also be proved terminating by the type-based heuristic.

AProVE tb′ AProVE om′ AProVE im

Successes 232 218 195

Failures 57 76 98

Timeouts 7 2 3

So far, for all experiments we used Algorithm 2 in order to compute a refined argument

filter from the initial one. To evaluate the advantage of this improved algorithm over

Algorithm 1, we performed experiments with the two algorithms (again using the type-

based refinement heuristic tb′). The following table shows that Algorithm 2 is indeed

significantly more powerful than Algorithm 1.

AProVE Algorithm 2 AProVE Algorithm 1

Successes 232 212

Failures 57 74

Timeouts 7 10

Preliminary versions of parts of this chapter appeared in [SGST07]. However, the table

below clearly shows that the results of Section 3.4 (which are new compared to [SGST07])

improve the power of termination analysis substantially. To this end, we compare our

new implementation that uses the improved type-based refinement heuristic (tb′) and the
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improved refinement algorithm (Algorithm 2) from Section 3.4 with the version of AProVE

from the Termination Competition 2006 that only contains the results of [SGST07]. To

find argument filters, it uses a simple ad-hoc heuristic which turns out to be clearly

disadvantageous to the new sophisticated techniques from Section 3.4.

AProVE tb′ AProVE [SGST07]

Successes 232 208

Failures 57 69

Timeouts 7 19

To run AProVE, for details on our experiments, and to access our collection of examples,

we refer to http://aprove.informatik.rwth-aachen.de/eval/TOCL/.

Limitations

Our experiments also contain examples which demonstrate the limitations of our ap-

proach. Of course, our implementation in AProVE usually fails if there are features out-

side of definite logic programming (e.g., built-in predicates, negation as failure, meta-

programming, etc.). A novel approach for the handling of meta-logical features such as

cuts and meta-programming is presented in Chapter 5.

In the following, we discuss the limitations of the approach when applying it for definite

logic programming. In principle, there could be three points of failure:

(i) The transformation of Theorem 3.13 could fail, i.e., there could be a logic program

which is terminating for the set of queries, but not all corresponding terms are
∞→-

terminating in the transformed TRS. We do not know of any such example. It is

currently open whether this step is in fact complete.

(ii) The approach via dependency pairs (Theorem 3.17) can fail to prove
∞→-termination

of the transformed TRS, although the TRS is
∞→-terminating. In particular, this

can happen because of the variable condition required for Theorem 3.17. This is

demonstrated by the following logic program P :

p(X) ← q(f(Y )), p(Y ).

p(g(X)) ← p(X).

q(g(Y )).
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The resulting TRS RP is

pin(X)→ u1(qin(f(Y )), X)

u1(qout(f(Y )), X)→ u2(pin(Y ), X, Y )

u2(pout(Y ), X, Y )→ pout(X)

pin(g(X))→ u3(pin(X), X)

u3(pout(X), X)→ pout(g(X))

qin(g(Y ))→ qout(g(Y ))

and there are the following dependency pairs.

Pin(X)→ Qin(f(Y )) (57)

Pin(X)→ U1(qin(f(Y )), X) (58)

U1(qout(f(Y )), X)→ Pin(Y ) (59)

U1(qout(f(Y )), X)→ U2(pin(Y ), X, Y ) (60)

Pin(g(X))→ Pin(X) (61)

Pin(g(X))→ U3(pin(X), X) (62)

We want to prove termination of all queries p(t) where t is finite and ground (i.e.,

m(p, 1) = in). Looking at the logic program P , it is obvious that they are all ter-

minating. However, there is no argument filter π such that π(RP) and π(DP (RP))

satisfy the variable condition and such that there is no infinite (DP (RP),RP , π)-

chain.

To see this, note that if π(Pin) = ∅ or π(g) = ∅ then we can build an infinite chain

with the last dependency pair where we instantiate X by the infinite term g(g(. . .)).

So, let π(Pin) = π(g) = {1}. Due to the variable condition of the dependency pair

(59) we know π(f) = π(qout) = {1} and 1 ∈ π(U1). Hence, to satisfy the variable

condition in dependency pair (58) we must set π(qin) = ∅. But then the last rule

of π(RP) does not satisfy the variable condition.

(iii) Finally it can happen that the resulting DP problem of Theorem 3.17 is terminating,

but that our implementation fails to prove it. The reason can be that one should

apply other DP processors or DP processors with other parameters. After all, ter-

mination of DP problems is undecidable. This is shown by the following example

where we are interested in all queries f(t1, t2) where t1 and t2 are ground terms:

f(X, Y ) ← g(s(s(s(s(s(X))))), Y ).

f(s(X), Y ) ← f(X, Y ).

g(s(s(s(s(s(s(X)))))), Y ) ← f(X, Y ).
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∞→-termination can (for example) be proved if one uses a polynomial order with

coefficients from {0, 1, 2, 3, 4, 5}. But the current automation does not use such

polynomials and thus, it fails when trying to prove termination of this example.

While the DP method can also be used for non-termination proofs if one considers

ordinary rewriting, this is less obvious for infinitary constructor rewriting. The reason is

that the main termination criterion is “complete” for ordinary rewriting, but incomplete

for infinitary constructor rewriting (cf. the counterexample (ii) to the completeness of

Theorem 3.17 above). Therefore, in order to also prove non-termination of logic programs,

a combination of our method with a loop-checker for logic programs would be fruitful.

As mentioned before, a very powerful non-termination tool for logic programs is NTI

[PM06]. Our collection of 296 examples contains 233 terminating examples (232 of these

can be successfully shown by AProVE), 52 non-terminating examples, and 11 examples

whose termination behavior is unknown. NTI can prove non-termination of 42 of the 52

non-terminating examples. Hence, a combination of AProVE and NTI would successfully

analyze the termination behavior of 274 of the 296 examples.

3.7. Summary

In this chapter, we developed a new transformation from logic programs P to TRSs RP .

To prove the termination of a class of queries for P , it is now sufficient to analyze the

termination behavior of RP on a corresponding class of terms w.r.t. infinitary constructor

rewriting. This class of terms is characterized by a so-called argument filter and we showed

how to generate such argument filters from the given class of queries for P . Our approach is

even sound for logic programming without occur check. To prove termination of infinitary

rewriting automatically, we showed how to adapt the DP framework of [AG00, GTS05a,

GTSF06] from ordinary term rewriting to infinitary constructor rewriting. Then the DP

framework can be used for termination proofs of RP and thus, for automated termination

analysis of P . Since any termination technique for TRSs can be formulated as a DP

processor [GTS05a], now any such technique can also be used for logic programs.

In addition to the results presented in [SGST07], we showed that our new approach sub-

sumes the classical transformational approach to termination analysis of logic programs.

We also provided new heuristics and algorithms for refining the initial argument filter that

improve the power of our method (and hence, also of its implementation) substantially.

Moreover, we implemented all contributions in our termination prover AProVE and

performed extensive experiments which demonstrate that our results are indeed applicable

in practice. More precisely, due to our contributions, AProVE has become the currently

most powerful automated termination prover for logic programs.
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As we have seen in the previous chapter, termination analysis for logic programming

traditionally aims at proving that a given logic program terminates w.r.t. a specific set of

queries. So far we have only discussed transformational approaches, i.e., non-termination

preserving transformations from logic programming to term rewriting.

In contrast, direct termination proofs are usually performed by finding ranking functions

that map the sequence of program states to a sequence of elements of a well-founded

domain such that the sequence is decreasing w.r.t. a well-founded order of the domain.

Practically, it is sufficient to consider only the states that are involved in loops of the

program.

Direct techniques in termination analysis of LPs can be divided into two groups: the

global approach versus the local approach [BCG+07, CG03, CT99, DSVB92, DDV99,

DLSS01, ND05]. In the global approach, one wants to find only one ranking function for

all loops [DSVB92, DDV99, ND05]. In contrast, techniques in the local approach apply

different ranking functions for different loops [BCG+07, CG03, CT99, DLSS01]. Some

automated techniques in the global approach are based on a constraint-based framework

to search for a suitable ranking function. This is done by first generating a set of symbolic

constraints from all termination conditions. Then, a constraint solver is used to solve the

set of constraints, yielding a suitable ranking function for the proof. In the local approach,

most techniques use a given small set of norms, and try to prove that (a combination of)

these norms can be applied for the termination proof of the program. Unfortunately, by

restricting the norms that can be used, implementations are considerably less powerful in

practice than the theory allows. It is unclear at this stage whether a search for arbitrary

norms in the local approach could also be automated using a constraint-based technique

like [DDV99].

While the constraint-based global approach is very suitable for automation, it has some

drawbacks. Since it generates the constraints for all termination conditions and solves

them at once, it may be very time-consuming, especially for non-terminating programs.

This is because the time for solving a set of constraints often increases exponentially with

its size. Moreover, if a complex well-founded order is needed for the termination proof

(e.g., a lexicographical combination of orders), it is often difficult to find such an order

using the constraint-based global approach.
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Example 4.1 (ack). Consider a logic program P computing the Ackermann function.

We use a variant with a predecessor predicate p/2 in order to illustrate how our technique

handles local variables. We want to prove termination of this program w.r.t. the set of

queries S = {ack(t1, t2, t3) | t1 and t2 are ground terms }.

p(s(X), X).

ack(0, X, s(X)).

ack(X, 0, Z)← p(X,Y ), ack(Y, s(0), Z).

ack(s(X), s(Y ), Z)← ack(s(X), Y, Z ′), ack(X,Z ′, Z).

Proving termination of this example based on the local approach involves two ranking

functions: the first one measures the size of the first argument and the other one measures

that of the second argument of the predicate ack/3. However, with the constraint-based

global approach, it is impossible to find a single ranking function for the termination

proof (if one is restricted to ranking functions based on polynomial interpretations). As a

matter of fact, both the tool cTI [MB05] and the tool Polytool [ND05, ND07] fail to prove

termination of this example.

In spite of the success of the new transformational method presented in Chapter 3,

there remain LPs whose termination can currently only be proved by tools working with

direct approaches. An example is the “der”-program from [DS02, ND05]. On the other

hand, there are also many LPs where currently only transformational tools succeed (e.g.,

the example “LP/SGST06-shuffle” from the Termination Problem Data Base (TPDB)

[TPD07]). In [NGSD08], we developed a new approach which solves this problem by

adapting TRS-techniques so that they can be applied to LPs directly. In this way, we

intended to combine the advantages of direct and transformational approaches. Indeed,

a first prototypical implementation shows that our approach from [NGSD08] can handle

both the examples “der” and “shuffle” above as well as other examples that could not be

handled by any tool up to now (e.g., “LP/SGST06-snake” from the TPDB).

In this chapter we introduce a novel modular framework for termination analysis of LPs

that extends and generalizes our approach of [NGSD08]. To this end, instead of adapting

the dependency pair approach of [AG00], we adapt the dependency pair framework that we

introduced in [GTS05a, GTSF06] to the LP context. With this new technique, termination

analysis of programs like Example 4.1 can be performed by decomposing them into several

simple sub-problems. Each of them can be solved independently by using any suitable

well-founded order or indeed any of the modular techniques formulated in the framework.

The main difference to our work in [NGSD08] is that instead of a fixed combination of

dependency graph analysis and polynomial orders, in the new framework any technique

can be applied to the current modular problem at any time. Due to this flexible approach,

we can propose a modular transformation from sub-problems in this new framework to

our infinitary constructor dependency pair framework from Section 3.3.
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This chapter is organized as follows. In Section 4.1, we provide some preliminaries

about call sets and orders. In Section 4.2, we introduce the new modular framework for

proving termination of LPs based on the dependency pair framework. We instantiate

this framework with three modular techniques in Section 4.3. Finally, we summarize the

contributions of this chapter in Section 4.4.

4.1. Preliminaries

A quasi-order on a set S is a reflexive and transitive binary relation % over S. In this

chapter, we use quasi-orders comparing atoms with each other and comparing terms with

each other. We define the associated equivalence relation ≈ as s ≈ t if, and only if, s % t

and t % s. A well-founded order on S is a transitive relation � where there is no infinite

sequence s0 � s1 � . . . with si ∈ S. A reduction pair (%,�) consists of a quasi-order %

and a well-founded order � that are compatible (i.e., t1 % t2 � t3 implies t1 � t3).1

Let P be a logic program and let S be a set of atomic queries. The call set , Call(S,P),

is the set of all atoms A, such that a variant of A is the selected atom in some derivation

for P and Q for some Q ∈ S. In this chapter, we use ranking functions and reduction pairs

built from norms and level mappings [BCF94]. A norm is a mapping ‖ · ‖ : T (Σ,V)→ N.

A level mapping is a mapping | · | : A(Σ,∆,V) → N. An interargument relation for a

predicate p/n is a relation Rp/n = {p(t1, . . . , tn) | ti ∈ T (Σ,V) ∧ ϕp(t1, . . . , tn)}, where

(1) ϕp(t1, . . . , tn) is a formula of an arbitrary Boolean combination of inequalities, and

(2) each inequality in ϕp is either si % sj or si � sj, where si, sj are constructed from

t1, . . . , tn by applying function symbols of P . Rp/n is valid if, and only if, for every

p(t1, . . . , tn) ∈ A(Σ,∆,V): p(t1, . . . , tn) `+
P 2 implies p(t1, . . . , tn) ∈ Rp/n. A reduction

pair (%,�) is rigid on a term t or an atom A if for all substitutions σ, we have t ≈ tσ

and A ≈ Aσ, respectively. A reduction pair (%,�) is rigid on a set of terms or atoms if

it is rigid on all its elements.

Example 4.2 (call set, norm, and level mapping for ack). We again regard the program

P and the set of queries S in Example 4.1. Then we have Call(P ,S) = S ∪ { p(t1, t2) |
t1 is a ground term, t2 is a variable }. Consider the reduction pair (%,�) which is in-

duced2 by a norm ‖0‖ = 0, ‖s(t)‖ = 1 + ‖t‖, ‖X‖ = 0 for all variables X, and by

an associated level mapping |p(t1, t2)| = 0 and |ack(t1, t2, t3)| = ‖t1‖. Thus, we have

s(0) � 0, ack(s(0), X, Y ) � ack(0, X, Y ), and ack(0, X, Y ) ≈ ack(0, 0, 0). Note that (%,�)

is rigid on Call(P ,S). An example for a valid interargument relation w.r.t. (%,�) is

Rp/2 = {p(t1, t2) | t1 � t2}.
1In contrast to the definition of “reduction pairs” in term rewriting (cf. Section 3.3), for the theoretical

results in Section 4.2 we do not require % and � to be closed under substitutions.
2So for terms t1, t2 we define t1 (%)t2 if, and only if, ‖t1‖ (≥)‖t2‖ and for atoms A1, A2 we define A1 (%)A2

if, and only if, |A1| (≥) |A2|.
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4.2. Dependency Triple Framework

Definition 4.3 adapts the notion of dependency pairs [AG00] (cf. Definition 3.14) from

TRSs to the LP setting. Note that in term rewriting one uses nested terms for calling

auxiliary functions, while in logic programming auxiliary calls are implemented by in-

termediate body atoms. Thus instead of descending into right-hand sides of rules for

building dependency pairs, for building dependency triples we have to consider all atoms

in the body of a clause. Furthermore, here we need to keep track of the intermediate body

atoms up to the atom that we are currently considering.

Definition 4.3 (Dependency Triple). A dependency triple is a clause H ← I, B where

H and B are atoms and I is a list of atoms. For a logic program P , we define the set

DT (P) of all dependency triples as DT (P) = {H ← I, B | H ← I, B, . . . ∈ P}.

For any finite logic program P , the set of dependency triples DT (P) is a finite set. To

see this, let k be the number of clauses in P and let m be the maximal number of atoms

in the body of a clause. Then the number of dependency triples in DT (P) is bounded by

k ∗m and, thus, finite.

Example 4.4 (dependency triples of ack). Reconsider the program from Example 4.1.

The dependency triples DT (P) of the program are:

ack(X, 0, Z)← p(X,Y ). (1)

ack(X, 0, Z)← p(X,Y ), ack(Y, s(0), Z). (2)

ack(s(X), s(Y ), Z)← ack(s(X), Y, Z ′). (3)

ack(s(X), s(Y ), Z)← ack(s(X), Y, Z ′), ack(X,Z ′, Z). (4)

Intuitively, a dependency triple H ← I, B represents that a call that is an instance of

H can be followed by a call that is an instance of B if the corresponding instance of I can

be proven. The idea how to use dependency triples for termination analysis is to show

that one cannot have infinite “chains” of such calls.

Definition 4.5 (Chain). Let D and P be sets of clauses. Let C be a set of atoms. A

(possibly infinite) list of dependency triples (H0 ← I0, B0), (H1 ← I1, B1), . . . from D is a

D-chain w.r.t. C and P if, and only if, there are substitutions θi, σi and an A ∈ C such

that θ0 = mgu(A,H0) and for all i, σi ∈ Answer(Iiθi,P), θi+1 = mgu(Biθiσi, Hi+1), and

Biθiσi ∈ C.

The above definition of a chain corresponds closely to the notion of chain introduced in

Definition 3.16. Each dependency triple with k intermediate body atoms corresponds to

k + 1 dependency pairs. In Theorem 4.22 we use this relation to transform dependency
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triples into a number of dependency pairs. The substitution θiσi corresponds to the

substitutions used to instantiate the corresponding k + 1 dependency pairs. Finally, the

set C of atoms could be represented by, e.g., an argument filter (cf. Definition 3.12) defining

which parts of an atom must be ground. Then the condition that Biθiσi ∈ C corresponds

to the condition of Definition 3.16 that all terms in the chain have to be finite ground

terms after application of the argument filter.

Example 4.6 (chain of ack). Again we consider P and S from Example 4.1. The list of

triples (2), (3) is a DT (P)-chain w.r.t. Call(S,P) and P . To see this, consider the substi-

tutions θ0, σ0, θ1 with θ0 = {X/s(s(0)), Z/0}, σ0 = {Y/s(0)}, and θ1 = {X/0, Y/0, Z/0}.
Then, for A = ack(s(s(0)), 0, 0) ∈ S we have H0θ0 = ack(X, 0, Z)θ0 = ack(s(s(0)), 0, 0) =

A = Aθ0. Furthermore, σ0 ∈ Answer(p(X, Y )θ0) = Answer(p(s(s(0)), Y )) and B0θ0σ0 =

ack(s(0), s(0), 0) = ack(s(X), s(Y ), Z)θ1 ∈ Call(S,P).

Now we adapt the notion of dependency pair problems as the modular problems of the

dependency pair framework [GTS05a] to the concept of dependency triple problems.

Definition 4.7 (Dependency Triple Problem). A dependency triple problem is a triple

(D, C,P) where D and P are finite sets of clauses and C is a set of atoms. We say that

a problem (D, C,P) is terminating if, and only if, there are no infinite D-chains w.r.t. C
and P. We say that a problem is non-terminating if, and only if, it is not terminating.

Based on these problems and on the notion of termination, we can now show that our

new dependency triple framework is sound and complete.

Theorem 4.8 (Soundness, Completeness). A logic program P is terminating w.r.t. a set

of atomic queries S if, and only if, the dependency triple problem (DT (P), Call(S,P),P)

is terminating.

Proof. For soundness, assume that P is not terminating w.r.t. Call(S,P). Then there is

an infinite derivation Q0, Q1, . . . with Q0 ∈ S and Qi `ci,δi Qi+1. W.l.o.g. assume that

the clause ci has the form Hi ← A1
i , . . . , A

ki
i . Let j > 0 be the minimal index such that

the first atom A in Qj starts an infinite derivation. Such a j always exists as shown in

Lemma 3.11. As we started from an atomic query, there must be some m0 such that

A = Am0
0 δ0δ1 . . . δj−1. Then H0 ← A1

0, . . . , A
m0−1
0 , Am0

0 ∈ DT (P) is the first dependency

triple in our DT (P)-chain w.r.t. Call(S,P) and P with θ0 = δ0 and σ0 = δ1 . . . δj−1. As

A is the selected atom in some derivation for P and Q0 ∈ S, we have A ∈ Call(S,P).

We repeat this construction starting from A and obtain H1 ← A1
1, . . . , A

m1−1
1 , Am1

1 ∈
DT (P) such that θ1 = δj = mgu(Am0

0 , Am1
1 ). By repeating this construction over and

over, we obtain an infinite DT (P)-chain w.r.t. Call(S,P) and P . Thus, the problem

(DT (P), Call(S,P),P) is not terminating.
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For completeness, assume that (H0 ← I0, B0), (H1 ← I1, B1), . . . is a non-terminating

DT (P)-chain w.r.t. Call(S,P) and P . Thus, there are substitutions θi, σi and an

A ∈ Call(S,P) such that θ0 = mgu(A,H0) and for all i, σi ∈ Answer(Iiθi,P) and

θi+1 = mgu(Biθiσi, Hi+1). Due to the construction of DT (P) there is a clause c0 ∈ P
with c0 = H0 ← I0, B0, R0 for a list of atoms R0 and the first step in our deriva-

tion is A `c0,θ0 I0θ0, B0θ0, R0θ0. From σ0 ∈ Answer(I0θ0,P) we obtain the derivation

I0θ0 `∗σ0
2 and, consequently, I0θ0, B0θ0, R0θ0 `∗σ0

B0θ0σ0, R0θ0σ0. Together with the

first step we obtain the derivation Q0 `θ0σ0 B0θ0σ0, R0θ0σ0. Now, as B0θ0σ0θ1 = H1θ1

and as there is a rule c1 = H1 ← I1, B1, R1 ∈ P , we continue the derivation with

B0θ0σ0, R0θ0σ0 `θ1 I1θ1, B1θ1, R0θ0σ0θ1, R1θ1. Due to σ1 ∈ Answer(I1θ1,P) we continue

with I1θ1, B1θ1, R0θ0σ0θ1, R1θ1 `σ1 B1θ1σ1, R0θ0σ0θ1σ1, R1θ1σ1.

By continuing this construction, we obtain an infinite chainA `θ0σ0 B0θ0σ0, R0θ0σ0 `θ1,σ1

B1θ1σ1, R0θ0σ0θ1σ1, R1θ1σ1 `θ2σ2 B2θ2σ2, . . . `θ3,σ3 . . .. Thus, the logic program P is not

terminating w.r.t. Call(S,P). From A ∈ Call(S,P) we know there is a Q ∈ S such that

a variant A′ of A is the selected atom in some derivation for P and Q. As the termination

behavior of A and A′ is identical, we obtain that P is not terminating w.r.t. Q ∈ S.

Finally, we adapt the notion of dependency pair processors to our framework in order

to formalize the modular techniques to be used in our framework.

Definition 4.9 (Dependency Triple Processor). A dependency triple processor Proc

is a function that takes a dependency triple problem as input and returns a set of de-

pendency triple problems, i.e., for any problem (D, C,P) we have Proc((D, C,P)) =

{(D1, C1,P1), . . . , (Dn, Cn,Pn)}.
A processor Proc is sound if, and only if, whenever all (Di, Ci,Pi) are terminating, then

also (D, C,P) is terminating. A processor Proc is complete if, and only if, whenever there

is some non-terminating (Di, Ci,Pi), then (D, C,P) is also non-terminating.

The intuition behind such a processor is that it takes a dependency triple problem and

splits it up into sub-problems, returns a simplified problem, or shows termination of the

given problem by some other means.

Now we have all the ingredients needed in our framework for analyzing termination of

logic programs. The idea for termination analysis is to apply sound processors repeatedly

to the initial dependency triple problem and to the resulting sub-problems and simplified

problems. If we can show termination of all sub-problems, i.e., for each leaf of our proof

tree some processor returns the empty set, then we have shown termination of the original

logic program. While soundness is essential to be able to conclude termination of the

original problem, completeness is essential to allow the development of modular techniques

for non-termination analysis, e.g., by adapting the techniques of [GTS05b, PM06].
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4.3. Dependency Triple Processors

Note that while we now know the basic components of our framework, i.e., dependency

triple problems and dependency triple processors, we are still missing concrete instances

of dependency triple processors that can be used to split, simplify, and solve dependency

triple problems. First, we will introduce a processor based on the so-called dependency

graph. To this end, we adapt the notion of the (estimated) dependency graph [AG00] from

TRSs to LPs.3 While “dependency triples” are related to the “binary clauses” of [CT99],

our notion of dependency graphs for LPs is similar to the “atom dependency graph” of

[DLSS01]. But in contrast to [DLSS01], we use dependency graphs to modularize termi-

nation proofs such that several different reduction pairs can be used in the termination

proof of one program.

Definition 4.10 (Dependency Graph). Let (D, C,P) be a dependency triple problem. The

dependency graph for (D, C,P) is a directed graph whose vertices are the clauses of D
and there is an arc from a vertex N to a vertex M if, and only if, N,M is a D-chain

w.r.t. C and P.

As the real dependency graph is not computable, we need an estimation. Here, we

adapt the idea of [AG00]. Note that in this estimation, we ignore the intermediate body

atoms, which corresponds closely to the use of the CAP function in [AG00]. 4 5

Definition 4.11 (Estimated Dependency Graph). Let (D, C,P) be a dependency triple

problem. The estimated dependency graph for (D, C,P) is a directed graph whose vertices

are the clauses D and there is an arc from a vertex Hi ← Ii, Bi to a vertex Hj ← Ij, Bj,

if, and only if, Bi unifies with Hj and there are atoms Ai, Aj ∈ C such that Ai unifies

with Hi and Aj unifies with Hj.

Example 4.12 (dependency graph for ack). The following graph shows the dependency

graph for the ack-program from Example 4.1.

(1) ack(X, 0, Z)← p(X,Y ).

(3) ack(s(X), s(Y ), Z)← ack(s(X), Y, Z′). (4) ack(s(X), s(Y ), Z)← ack(s(X), Y, Z′), ack(X,Z′, Z).

(2) ack(X, 0, Z)← p(X,Y ), ack(Y, s(0), Z).

Note that for this example, the estimated dependency graph coincides with the real

dependency graph. This is, for instance, not the case for ({p← q(a), p}, {q(b)}, {p}).
3Our notion should not be confused with the notion of the “(predicate) dependency graph” from [BAK91,

DLSS01, Plü90] that simply represents the dependencies between different predicate symbols.
4In [NGSD08] we did not distinguish between the real and the estimated dependency graph. There, the

dependency graph corresponds to the estimated one here.
5For the dependency graphs in term rewriting, better estimations have been developed (cf. [HM05a,

GTS05b]). Similar improvements should be possible in our new framework when taking the interme-
diate body atoms of the dependency triples into account.
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To be able to use the estimated dependency graph in general, we need to prove that it

is an overapproximation of the real dependency graph, i.e., that the former contains at

least all edges of the latter.

Lemma 4.13 (Estimated Dependency Graph is an Over-Approximation). The estimated

dependency graph for (D, C,P) overapproximates the real dependency graph for (D, C,P),

i.e., whenever there is an arc between a vertex N and a vertex M in the real graph, there

is also a vertex in the estimated graph.

Proof. If there is an arc from N = Hi ← Ii, Bi to M = Hj ← Ij, Bj in the real graph,

we know that (Hi ← Ii, Bi), (Hj ← Ij, Bj) is a D-chain w.r.t. C and P . Thus, there

are substitutions θ0, θ1, and σ0 and some A ∈ C such that θ0 = mgu(A,Hi), θ1 =

mgu(Biθ0σ0, Hj) and Biθ0σ0 ∈ C. As we assume Bi and Hj to be variable disjoint, we

can define a new substitution δ such that δ|V(Bi) = θ0σ0θ1 and δ|V(Hj) = θ1. Then, clearly,

δ is a unifier of Bi and Hj and there is an arc in the estimated dependency graph.

Now, every infinite derivation of the program has to have an infinite suffix that corre-

sponds to a strongly connected component (SCC) of the dependency graph. The basic idea

of the processor based on the dependency graph is to split the dependency triple prob-

lem into sub-problems corresponding to the SCCs of the dependency graph. In this way,

dependency triples that are not part of an SCC can be deleted and (mutually) recursive

clusters of dependency triples can be analyzed separately.

Example 4.14 (SCCs for ack). The dependency graph in Example 4.12 contains exactly

one SCC: {(2), (3), (4)}. This implies that (1) cannot occur infinitely often in an infinite

chain and can be deleted.

Before we introduce the processor based on the dependency graph formally, we note

that all processors deleting elements from D, C, or P are always complete. This follows

directly from the following lemma.

Lemma 4.15 (Completeness of Reducing Problems). Let (D, C,P) and (D′, C ′,P ′) be

dependency triple problems with D′ ⊆ D, C ′ ⊆ C, and P ′ ⊆ P. Then (D, C,P) is non-

terminating whenever (D′, C ′,P ′) is non-terminating.

Proof. Let (H0 ← I0, B0), (H1 ← I1, B1), . . . be a non-terminating D′-chain w.r.t. C ′ and

P ′. Thus, there are substitutions θi, σi and an A ∈ C ′ such that θ0 = mgu(A,H0) and for

all i, σi ∈ Answer(Iiθi,P ′), θi+1 = mgu(Biθiσi, Hi+1), and Biθiσi ∈ C ′.
From D′ ⊆ D we know that Hi ← Ii, Bi ∈ D, from C ′ ⊆ C we obtain A ∈ C and

Biθiσi ∈ C, and, finally, from P ′ ⊆ P we get σi ∈ Answer(Iiθi,P).

Now we can formulate our first processor based on the dependency graph. This is a

straightforward adaption of the one in [AG00] and Definition 3.22.
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Theorem 4.16 (Dependency Graph Processor). Let Proc((D, C,P)) = {(D1, C,P), . . . ,

(Dn, C,P)}, where D1, . . . ,Dn are the SCCs of the (estimated) dependency graph for

(D, C,P). Then Proc is sound and complete.

Proof. For soundness, we proceed by contradiction. Assume that (D, C,P) is non-terminat-

ing, i.e., there is an infinite D-chain w.r.t. C and P . By definition of the dependency graph,

this infinite chain corresponds to an infinite path in the real dependency graph. From the

finiteness of D it follows that a suffix of that path must be contained entirely in one of the

SCCs. To see this, assume that the path leaves every SCC that it enters at some time.

Then there must be an infinite number of SCCs and, thus, an infinite number of vertices

in the dependency graph. But this is a contradiction to the finiteness of D. Without loss

of generality, assume that this suffix is contained in (D1, C,P). Then there is an infinite

D1-chain w.r.t. C and P and (D1, C,P) is non-terminating. According to Lemma 4.13,

the estimated dependency graph contains the real dependency graph and, consequently,

the application of Proc also yields a non-terminating dependency triple problem.

For completeness, we observe that Di ⊆ D for all 1 ≤ i ≤ n. Using Lemma 4.15 we

immediately obtain the completeness of Proc.

Example 4.17 (dependency graph processor on ack). For the dependency triple problem

(DT (P), Call(S,P),P) where P is the logic program from Example 4.1 and Proc is the

processor from Theorem 4.16, by applying Proc we obtain one new dependency triple

problem ({(2), (3), (4)}, Call(S,P),P), i.e., we delete (1) from DT (P).

While we now can use the dependency triple processor based on the dependency graph to

delete some dependency triples, for those that are part of a strongly connected component,

we need a different dependency triple processor. One of the most useful dependency pair

processor from [GTS05a, GTSF06] is the processor based on reduction pairs.

The basic idea is to inspect each SCC of the dependency graph separately and to

find a reduction pair (%,�) such that some dependency triples of the SCC are strictly

decreasing (i.e., w.r.t.�) and all others are weakly decreasing (i.e., w.r.t. %). The following

definition formalizes when a dependency triple is considered to be “decreasing”. It relies

on interargument relations for the predicates of the program. We have explained how

to synthesize such interargument relations and how to find reduction pairs automatically

that make dependency triples “decreasing” in our paper [NGSD08].

Note that the interargument relations are needed to approximate the semantics of the

intermediate body atoms I in our dependency triples H ← I, B. This corresponds closely

to demanding that all rules in R in our dependency pairs (D,R, π) are weakly decreasing

w.r.t. (%,�). In both cases, we need to ensure that the derivation of the intermediate

body atoms of the triples and the evaluation of nested terms in the right hand sides of

dependency terms, respectively, do not lead to a strict increase in the size of arguments

considered by our reduction pair.
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Definition 4.18 (decreasing dependency triples). Let P be a logic program. Let (%,�)

be a reduction pair and R = {Rp1 , . . . ,Rpk} be a set of interargument relations based on

(%,�) for the predicates p1, . . . , pk defined in P. Let N = H ← p1(~t1), . . . , pn(~tn), B be a

dependency triple in DT (P).

N is weakly decreasing (denoted (%,R) |= N) if Hσ % Bσ holds for any substitution

σ where (%,�) is rigid on Hσ and where p1(~t1)σ ∈ Rp1 , . . . , pn(~tn)σ ∈ Rpn. Analogously,

N is strictly decreasing (denoted (�,R) |= N) if Hσ � Bσ holds for any such σ.

Example 4.19 (decreasing dependency triples for ack). Consider the reduction pair

(%,�) from Example 4.2. Let R be the set of valid interargument relations where

Rack/3 = {ack(t1, t2, t3) | t1, t2, t3 ∈ T (Σ,V)} and where Rp/2 is defined as in Example 4.2.

Then we have (�,R) |= (2). The reason is that for any substitution σ where (%,�) is

rigid on ack(X, 0, Z)σ (i.e., where Xσ is a ground term) and where p(X, Y )σ ∈ Rp/2

(i.e., where Xσ � Y σ), we have ack(X, 0, Z)σ � ack(Y, s(0), Z)σ. Similarly, we also have

(%,R) |= (3) and (�,R) |= (4).

We can now formulate our second dependency triple processor.

Theorem 4.20 (Reduction Pair Processor). Let (%,�) be a reduction pair and R =

{Rp1 , . . . ,Rpk} be a set of valid interargument relations for the predicates p1, . . . , pk defined

in P. Then the following processor Proc is sound and complete. Here, Proc((D, C,P)) =

• {(D \ D�, C,P)}, if

– (%,�) is rigid on C and

– there is a non-empty subset D� ⊆ D such that (�,R) |= N for all N ∈ D�
and (%,R) |= N for all N ∈ D \ D�

• {(D, C,P)}, otherwise

Proof. The definition of Proc has two cases. First, if Proc((D, C,P)) = {(D, C,P)}, Proc
is trivially sound and complete.

Second, we consider soundness of the case when Proc((D, C,P)) = {(D \ D�, C,P)}.
Then there is a set of valid interargument relations R, a reduction pair (%,�) that is rigid

on C, and a non-empty set D� ⊆ D such that (�,R) |= N for all N ∈ D� and (%,R) |= N

for all N ∈ D \ D�. Assume that (D \ D�, C,P) is terminating while (D, C,P) is non-

terminating. Then there is an infinite D-chain w.r.t. C and P . Now, if no clause from D�
appears infinitely often, there is an infinite suffix which forms a (D\D�)-chain w.r.t. C and

P and (D\D�, C,P) is non-terminating, which contradicts our assumption. Thus, at least

one clause from D� must appear infinitely often in the chain. Without loss of generality,

let this chain be (H0 ← I0.B0), (H1 ← I1, B1), . . . with A ∈ C and substitutions θi, σi such
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that θ0 = mgu(A,H0) and for all i, σi ∈ Answer(Iiθi,P), θi+1 = mgu(Biθiσi, Hi+1), and

Biθiσi ∈ C. We can now build the sequence

Hiθi ≈ (by rigidity, since Hiθi = Bi−1θi−1σi−1θi

and Bi−1θi−1σi−1 ∈ C)
Hiθiσiθi+1 %

Biθiσiθi+1 =

Hi+1θi+1 ≈ (by rigidity, since Hi+1θi+1 = Biθiσiθi+1

and Biθiσi ∈ C)
Hi+1θi+1σi+1θi+2 %

Biθi+1σi+1θi+2 =

. . .

where infinitely many %-steps are “strict” (i.e., we can replace infinitely many %-steps by

�-steps). This contradicts the well-foundedness of �.

For completeness, we observe that D \ D� ⊆ D. Using Lemma 4.15 we immediately

obtain the completeness of Proc.

Example 4.21 (finishing the proof for ack). After applying the reduction pair processor,

we are left with the dependency triple problem ({(3)}, Call(S,P),P).

Now, consider the reduction pair (%,�) which is induced by a norm ‖s(t)‖ = 1 + ‖t‖,
‖X‖ = 0 for all variables X, and by an associated level mapping |ack(t1, t2, t3)| = ‖t2‖.
Then, we have (�,R) |= (3).

For the remaining dependency triple problem (∅, Call(S,P),P) we can use the de-

pendency graph processor Proc: Proc((∅, Call(S,P),P)) = ∅. Thus, we have indeed

proven termination of the logic program from Example 4.1.

In this way, our method can use different reduction pairs for different SCCs of the

dependency graph. Moreover, one can also use several different reduction pairs in the

termination analysis of one single SCC, since SCCs are handled in an incremental way by

removing dependency triples one after another.

However, in our approach we may only use reduction pairs (%,�) that are rigid on

Call(S,P). This prevents an increase of atoms and terms due to further instantiations in

subsequent derivation steps. For details, we refer to [ND05].

Modular Transformation to Term Rewriting

With the processors based on the dependency graph and on reduction pairs, we have intro-

duced a powerful and useful framework for direct termination analysis of logic programs

that subsumes our contribution in [NGSD08].
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The full power of our transformational method from Chapter 3 depends on being able

to use all the other modular techniques available for term rewriting, though. For instance,

this includes semantic labelling [Zan95] and matchbounds [GHW04].

While some of these techniques as well as further more sophisticated processors from

[GTS05a, GTSF06] might be adapted to our new framework, it would be very interesting

to reuse existing techniques developed for term rewriting directly. Additionally, the use

of reduction pairs based on path orders (for example recursive path orders [Les83]) is not

possible with our framework yet, as it is open how to specify interargument relations for

syntactic orders in a general way.

For these cases, we present another dependency triple processor based on the transfor-

mation of Chapter 3.

Theorem 4.22 (Transformation Processor). Let (D, C,P) be a dependency triple problem

over the signature (Σ,∆). Let πC be an argument filter such that we have πC(A) ∈ A(Σ,∆)

for all A ∈ C and πC(p) = πC(pin) for all p ∈ ∆. Let RD and RP result from D resp. P
by the transformation of Definition 3.7. Let π′C be a refinement of πC such that π′C(RD)

and π′C(RP) satisfy the variable condition.

Then Proc with Proc((D, C,P)) = ∅, if (DP (RD),RP , π′C) is a terminating dependency

pair problem, and Proc((D, C,P)) = {(D, C,P)}, otherwise, is a sound and complete

dependency triple processor.

Proof. For the case Proc((D, C,P)) = {(D, C,P)}, soundness and completeness hold triv-

ially. For the case Proc((D, C,P)) = ∅ completeness holds trivially, too, while soundness

can be proved by contradiction. Assume there is an infinite D-chain w.r.t. C and P .

Without loss of generality, this chain has the form (H0 ← I0, B0), (H1 ← I1, B1), . . . and

there is a substitution θ0 such that θ0 = mgu(A,H0) for some A ∈ C. From the soundness

of the transformation (in particular Lemma 3.10) and the definition of π′C we know there

are terms s0, s1, . . . and t0, t1, . . . such that s0 ∈ Sπ′C and s0
∞→DP (RD) t0

∞→∗RP s1
∞→DP (RD)

t1
∞→∗RP . . .. As all substitutions only use constructor symbols and π′C(RD) and π′C(RP)

satisfy the variable condition, this implies that (DP (RD),RP , π′C) is non-terminating,

which is a contradiction.

By this transformation we are guaranteed to have the best of both worlds. We can use

the direct (and, in general, more efficient) dependency triple framework to solve as many

sub-problems as possible. If we cannot solve a particular hard sub-problem, we can use

the transformation and obtain a problem in the dependency pair framework for infinitary

constructor rewriting which is already reduced compared to the problem we would obtain

from directly transforming the original logic program.

Example 4.23 (translation for ack). After applying the dependency triple processor

based on the dependency graph and the dependency triple processor based on reduction
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pairs to the initial dependency triple problem for Example 4.1 once, we are left with

the dependency triple problem ({ack(s(X), s(Y ), Z)← ack(s(X), Y, Z ′).}, Call(S,P),P).

The result of our new processor based on transformation would be the infinitary construc-

tor rewriting dependency pair problem (DP (RD),RP , π′Call(S,P)) where the set DP (RD)

contains the two dependency pairs ACKin(s(X), s(Y ), Z)→ U(ackin(s(X), Y, Z ′), X, Y, Z)

and ACKin(s(X), s(Y ), Z) → ACKin(s(X), Y, Z ′) and for π′Call(S,P) we have, in particular,

π′Call(S,P)(ackin) = π′Call(S,P)(ACKin) = {1, 2} and π′Call(S,P)(u) = π′Call(S,P)(s) = {1}.
By applying the dependency pair processor based on the dependency graph from

Theorem 3.22 once, we can delete the first dependency pair and obtain the new depen-

dency triple problem ({ACKin(s(X), s(Y ), Z)→ ACKin(s(X), Y, Z ′)},RP , π′Call(S,P)). One

application of the dependency pair processor based on reduction pairs from Theorem 3.24

with for example any recursive path order deletes this pair, too. Then, by applying

Theorem 3.22 once more, we have successfully shown termination of the dependency pair

problem (DP (RD),RP , π′Call(S,P)) and, thus, termination of the dependency triple prob-

lem (DT (P), Call(S,P),P), i.e., termination of P w.r.t. S.

Automating the Framework

Last but not least, we show how to automate our new framework. The one main ingredient

needed is the following general strategy that defines which processors should be used on

the initial dependency triple problem in what order.

1. For a logic program P , start with the problem (DT (P), Call(S,P),P).

2. Apply the processor based on the dependency graph from Theorem 4.16.

If there are no further sub-problems, return “Success”.

3. Apply the processor based on reduction pairs from Theorem 4.20. If some triples

have been deleted, go to Step 2.

4. Apply the processor based on transformation from Theorem 4.22. If some triples

have been deleted, go to Step 2.

5. Return “Failure”.

We are left with explaining how the termination analysis technique based on polynomial

interpretations from [ND05, ND07] can be applied to the framework. The basic idea

is that instead of fixing a polynomial interpretation and interargument relations before

performing the termination proof, we only fix the degree of the polynomials used in the

polynomial interpretation (e.g., linear or quadratic ones). Then we can automatically

generate symbolic constraints and try to solve them afterwards. In this way, polynomial

interpretations and interargument relations can be synthesized fully automatically. For a

detailed description of how to do this, we refer to [NGSD08, Section 4.2].
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4.4. Summary

We have introduced a new framework for termination analysis of LPs: the dependency

triple framework. Our contribution is threefold: (1) like our earlier work in [NGSD08], it

results in a weaker condition for verifying termination of LPs, where the decrease condition

is established for parts of the strongly connected components of the dependency graph,

and not at the clause level, as it has been done before; (2) it introduces a modular

approach in which termination conditions can be separated into different groups, each of

which can be treated independently by automatically searching for different suitable well-

founded orderings; (3) it combines direct and transformational approaches by allowing

for modular application of transformations.

A difference between the dependency pair framework for TRSs and our approach is that

instead of separating between defined symbols and constructors as for TRSs, we separate

between predicate and function symbols of the LP. Another main difference is that in

the dependency pair method for TRSs, one requires a weak decrease for the rules of the

TRS in order to take the effect of “nested” functions in recursive arguments into account.

In the LP-context, these nested functions correspond to body atoms preceding recursive

calls. We store these atoms in an additional component of the dependency pair (yield-

ing dependency triples) and take their effect into account by considering interargument

relations.

The author of this thesis was involved in the implementation of two of the most pow-

erful automated termination analyzers for LPs (Polytool, which follows the approach of

[ND05, ND07, NGSD08], and AProVE [GST06], which uses the transformation from Chap-

ter 3 to transforms LPs to TRSs and then tries to prove termination of the resulting TRS.)

AProVE was the most successful termination prover for logic programs, functional pro-

grams, and term rewrite systems in all annual International Competitions of Termination

Tools 2004 – 2007 [MZ07], where Polytool obtained a close second place for logic programs

in the 2007 competition. As mentioned in Chapter 3, there exist many LPs where ter-

mination can currently only be proved by transformational tools like AProVE, but there

are also examples where the termination proof only succeeds with direct tools like Poly-

tool. The results of this chapter combine the advantages of both approaches by adapting

TRS-techniques like dependency pairs to direct termination approaches for LPs and even

allowing for transformations to be applied at a modular level.

A first prototypical implementation of the techniques described in [NGSD08] and this

chapter (excluding the dependency triple processor based on transformation) already

proves termination for 220 out of 296 examples under conditions identical to the ex-

perimental setup of Chapter 3. In the table below, we refer to the new implementation

as Polytool 2 to distinguish it from the version of Polytool that implements [ND05].
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AProVE Polytool 2 Polytool TerminWeb cTI TALP

Successes 232 220 204 177 167 163

Failures 57 65 82 118 129 112

Timeouts 7 11 10 1 0 21

Total 1471.4 1517.4 622.7 95.3 10.4 413.5

This implementation also shows that in this way one can handle (a) examples that could

up to now only be solved with direct tools such as [ND05, “der”], (b) examples that could

up to now only be solved with transformational tools based on dependency pairs such

as [TPD07, “LP/SGST06-shuffle”], as well as (c) examples like [TPD07, “LP/SGST06-

snake”] that could not be solved by any tool up to now.

Our modular transformation from Theorem 4.22 and the general strategy outlined at

the end of the previous section yield an approach that is more powerful than the one of

Chapter 3 and more powerful than the one of this chapter without Theorem 4.22. To see

this, consider the logic program with consists of all clauses from [ND05, “der”] and all

clauses from [TPD07, “LP/SGST06-shuffle”]. This program cannot be shown terminating

by either approach.

Using the dependency triple processor from Theorem 4.16, though, we can split the

initial dependency triple problem into four problems, one for d from der and three for

append, reverse, and shuffle from shuffle. The problems for d, append, and reverse can be

handled by the processors from Theorems 4.16 and 4.20. For shuffle, we need to apply the

processor from Theorem 4.22. The resulting dependency pair problem can then easily be

solved by the techniques from Chapter 3.

Future Work

Note that the current formulation of our new framework assumes unification with occur

check. Future work should be to investigate how this new framework can be adapted to

the case of unification without occur check. This requires to keep track of potentially

infinite terms similar to the way this is handled in Chapter 3.

While this chapter only adapted basic concepts of the dependency pair method to the

LP setting, it would be interesting to adapt further more sophisticated dependency pair

processors [GTS05a, GTSF06] to our dependency triple framework as well. One could

also develop completely new processors in this framework that rely on special properties

of logic programming





5. Logic Programs with Cuts

As noted in Chapters 3 and 4, termination of logic programs is widely studied. This is

mostly due to the importance of termination analysis when one is developing and using

Prolog programs.

Still, the presented techniques for termination analysis are limited to definite logic

programs. There are several major differences between this notion and Prolog programs:

(i) In definite logic programs, the only method of computation is left-to-right, depth-

first search (SLD resolution). In practice, virtually all Prolog programs make use of

additional extra-logical constructs to cut the search space (! operator) or implement

some kind of negation (\+ operator). Currently, there is no termination analysis

for logic programs with cuts.

(ii) When speaking of termination, one might be interested in either universal termina-

tion (finiteness of the SLD tree) or existential termination (failure or first answer

after a finite number of derivation steps). With very few exceptions (cf. [Mar96]),

only universal termination is analyzed.

(iii) In definite logic programs there is a clear distinction between predicate symbols and

function symbols and, consequently, between atoms and terms. In Prolog there is no

such distinction and when one is using so-called meta-programming, “atoms” may

well be arguments of other atoms or terms. Using meta-programming, negation-as-

failure can, e.g., be expressed by the two clauses not(X) ← X, !, fail and not(X).

For an atomic query Q, not(Q) can be proven if, and only if, Q fails.

(iv) SLD resolution uses unification with occur check. For efficiency, most Prolog imple-

mentations do not make use of the occur check. Except for our transformational

approach from Chapter 3, all methods for termination analysis of logic programs

assume unification with occur check.

In Chapter 3 we presented a new transformation from logic programs to term rewrite

systems that is correct for unification without occur check and, thus, can handle (iv).

In this chapter we show how to handle (i) – (iii) by introducing a non-termination-

preserving pre-processing step for logic programs with cuts based on symbolic evaluation.

By handling logic programs with cuts, we can also handle logic programs with negation-

as-failure (which can be expressed using a cut, cf. (iii)). In Example 5.33 we show that
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our pre-processing indeed works for negation-as-failure, too. By adding a cut to the end

of a query, we can in principle also analyze existential instead of universal termination,

but our pre-processing often is not precise enough (cf. Example 5.48).

Probably the most common use of the cut is to exploit the order of the clauses by

adding a cut as the first part of the body for a certain clause. Then, all following clauses

can assume that the head of this clause does not unify with the selected atom of the query.

The following example demonstrates this particular kind of use of the cut and will lead

us through the rest of this chapter.

Example 5.1. Consider the following logic program P :

div(X, 0, Z) ← !, fail. (5)

div(0, Y, Z) ← !,=(Z, 0). (6)

div(X, Y, s(Z)) ← minus(X, Y, U), div(U, Y, Z). (7)

=(X,X). (8)

minus(0, Y, 0). (9)

minus(X, 0, X). (10)

minus(s(X), s(Y ), Z) ← minus(X, Y, Z). (11)

and the set of queries Q = {div(t1, t2, t3) | t1, t2 are ground}. Any termination analyzer

that ignores the cut must fail on this example as div(0, 0, Z) leads to the subtraction of 0

using the third div-rule and, thus, starts an infinite derivation.

The goal of this chapter is to handle especially these kinds of examples as well as

negation-as-failure. But as the cut can be used virtually everywhere, we also have to deal

with the less intuitive behavior exhibited by logic programs with cuts. In fact, even when

one is using the cut in the spirit of Example 5.1, the behavior differs significantly from

one’s intuition on logic programming.

Example 5.2. Obviously, the linear query p(X, Y ) might not terminate while the non-

linear query p(X,X) terminates. Consider for example the logic program consisting of

the single clause p(0, 1)← p(0, 1).

For definite logic programs, the linear query always allows more derivations. For logic

programs with cut this need not be the case. Consider for example the following logic

program, which terminates for the linear case, but not for the non-linear case:

p(0, 1) ← !.

p(0, 0) ← p(0, 0).

These effects can become significant when p/2 is used by another clause. For example,

given the clause q ← p(X, Y ), the query q terminates. This is trivial to show using the

pre-processing technique introduced in this chapter.
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Structure of the Chapter

In the remainder of this chapter, our goal is to prove universal termination of logic pro-

grams with cuts for a (typically infinite) set of queries Q. As in the preceding chapters,

these sets are typically given by the user by providing a predicate and by specifying which

of its arguments are instantiated by ground terms.

In Section 5.1 we introduce some required notation and explain differences to the con-

cept of logic programming used in Chapters 3 and 4. Then we present a set of simple

inference rules that characterize the behavior of logic programming with cut for concrete

queries in Section 5.2. We proceed to show how these rules can be extended to handle

classes of queries represented by abstract queries in Section 5.3. Using these rules for

abstract queries we can automatically build so-called termination graphs that are the

basis for our pre-processing step in Section 5.4. How to generate a new, cut-free logic

program from such a graph automatically is the topic of Section 5.5. Here, we will show

that termination of the cut-free logic program implies termination of the original one. We

summarize the contributions of this chapter in Section 5.6.

5.1. Preliminaries

As we intend to handle meta-programming, too, we do not distinguish between predicate

symbols and function symbols in this chapter. However, we distinguish between individual

cuts to make their scope explicit. Thus, there is only one signature Σ containing all

“predicate” and “function” symbols as well as the cut operator !/0 and labeled versions

!m/0 for m ∈ N. Instead of atoms and terms we will just consider terms from T (Σ,V).

To be able to represent sets of queries, we introduce abstract terms , i.e., terms containing

two kinds of variables. The set A is the set of all abstract variables where each variable

represents a fixed but arbitrary term. The variables corresponding to variables in logic

programming are from the set N . Thus, as abstract terms we consider all terms from

the set T (Σ,V) where V = N ] A. Concrete terms are terms from T (Σ,N ), i.e., terms

containing no abstract variables. Throughout the chapter, we often use the notation N (t)

and A(t) to denote the set of all non-abstract and abstract variables occurring in a term

t as defined in Definition 2.2, respectively. Likewise, in many cases it is necessary to

consider restrictions of substitutions. The restriction of σ to a set of variables V ′ ⊆ V
(denoted σ|V ′) is defined as σ|V ′(X) = σ(X), if X ∈ V ′, and σ|V ′(X) = X, otherwise.

A clause of a logic program with cuts is a clause H ← B where the head H is a

term over Σ and V and the body B is a list of terms over Σ and V . We call such lists

goals over Σ and V . The set of all goals over Σ and V is Goal(Σ,V) = T (Σ,V)∗. We

denote the empty goal by 2 and the concatenation of two terms t and t′ by t, t′. The

concatenation of any term t with 2 (i.e., t,2) is again just t. Furthermore, for a logic



82 Chapter 5. Logic Programs with Cuts

program P = {c1, . . . , ck}, Slice(P , t) denotes the set of all clauses for the root of t, i.e.,

Slice(P , p(t1, . . . , tn)) = {ci | ci = p(s1, . . . , sn) ← Bi ∈ P} and Slice(P , X) = ∅ for

X ∈ N .

Finally, to denote the term resulting from replacing all occurrences of a function symbol

f in a term t by another function symbol g, we introduce the notation t[f/g].

5.2. Concrete Derivations

In Example 5.1 we have seen that the introduction of the cut into logic programming

requires a more detailed analysis of the backtracking behavior of these programs. Instead

of representing the current state of the computation by just a goal and a stack of backtrack

information, we choose a more explicit representation where backtrack information is given

by lists of goals which are optionally labeled by the clauses that may be applied to these

goals next. This, together with explicit marks for the scope of a cut, will allow us to

express the non-local effect of the cut by a local rule.

The main idea is to label each cut with a fresh natural number when it is introduced by

a step in the derivation. By additionally inserting such a number into the backtracking

list, we can determine the scope of the correspondingly labeled cut.

More precisely, our states are lists of three different types of elements:

• The list may contain a goal q ∈ Goal(Σ,V) which just represents itself.

• A labeled goal qim ∈ Goal(Σ,V) × N × N represents that we must apply the i-th

clause to the goal q. The m determines how a cut introduced by the body of the

i-th clause will be labeled.

• A natural number m ∈ N in our backtracking lists marks that, when a cut labeled

by m is reached, all elements preceding m are discarded. We denote m as ?m in our

backtracking lists.

The following example demonstrates the intended use of these states.

Example 5.3. Consider again the logic program for div from Example 5.1 and the query

div(0, 0, Z). This would be represented by the concrete state consisting of just the goal

div(0, 0, Z). As this atom unifies with the head of all three clauses for div, we obtain

the identical behavior from the state div(0, 0, Z)5
1 | div(0, 0, Z)6

1 | div(0, 0, Z)7
1 | ?1. This

denotes that we first try to apply clause (5) and then backtrack using first clause (6)

and finally clause (7). Now, we can evaluate the first labeled goal using (5) and obtain

!1, fail | div(0, 0, Z)6
1 | div(0, 0, Z)7

1 | ?1. By applying the cut we get rid of the backtracking

goals div(0, 0, Z)6
1 and div(0, 0, Z)7

1 and obtain the state fail | ?1, which eventually fails.

Note that due to the cut, we did not have to backtrack using the other div clauses.
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In contrast, consider the state minus(0, 0, Z). Here, the first two clauses for minus are

applicable and our state becomes minus(0, 0, Z)9
1 | minus(0, 0, Z)10

1 | ?1. By using (9) we

obtain 2 | minus(0, 0, Z)10
1 | ?1. Now, as we consider universal termination, we need to

backtrack by removing the first element of our backtrack list and get minus(0, 0, Z)10
1 | ?1

which we evaluate to 2 | ?1 using (10). Further backtracking leads to the empty word ε

where, finally, the computation stops.

The following definition formalizes the representation of such a concrete state.

Definition 5.4 (Concrete State). The set of concrete states State(Σ,V) is the set of all

finite words over Goal(Σ,V) ∪ (Goal(Σ,V)× N× N) ∪ N.

Example 5.5. Let · denote the composition of our backtracking lists. Now, consider

again some of the states from Example 5.3. A state consisting of just a goal (for instance

div(0, 0, Z)) is represented by itself. The state div(0, 0, Z)5
1 | div(0, 0, Z)6

1 | div(0, 0, Z)7
1 |

?1, where we explicitly list all alternative clauses that might be applied to div(0, 0, Z),

is represented as (div(0, 0, Z), 5, 1) · (div(0, 0, Z), 6, 1) · (div(0, 0, Z), 7, 1) · 1. Finally, the

state !1, fail | div(0, 0, Z)6
1 | div(0, 0, Z)7

1 | ?1 is represented by !1, fail · (div(0, 0, Z), 6, 1) ·
(div(0, 0, Z), 7, 1) · 1.

With the help of this representation we can express derivations in logic programming

with cut by eight simple inference rules. For readability we use the intuitive notation.

Definition 5.6 (Concrete Inference Rules).

2 | S
S

(Success)
?m | S
S

(Failure)

!m, q | S | ?m | S ′

q | ?m | S ′
(Cut) where S

contains
no ?m

!m, q | S
q

(Cut) where S
contains
no ?m

!, q | S
q | S

(Cut)

t, q | S
(t, q)i1m | . . . | (t, q)ikm | ?m | S

(Case) where m is fresh, i1 < . . . < ik, and
Slice(P , t) = {ci1 , . . . , cik}

(t, q)im | S
B′iσ, qσ | S

(Eval) where ci = Hi ← Bi, mgu(t,Hi) = σ, and
B′i = Bi[!/!m].

(t, q)im | S
S

(Backtrack)
where ci = Hi ← Bi and t 6∼ Hi.

In the above rules we use the following conventions. First, the unlabeled term t must

not be a !, i.e., t 6∈ {!} ∪ {!m | m ∈ N}. Second, the list of terms q may be 2 and then

t, q = t,2 collapses to just t. Third, S and S ′ denote concrete states.
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Note that these rules do not overlap, i.e., there is at most one rule that can be applied

to any state. The only cases when no rule is applicable are when the state is the empty

list (denoted ε) or when the selected “atom” is a variable. In the latter case, Prolog halts

the execution with an instantiation error while our formalism is stuck.6

We now describe the intuition behind the individual rules.

• Success: This rule is applicable if the first goal of our backtracking list could be

proved. As we handle universal termination, we have to backtrack in the case of

Success of the current goal. For analyzing existential termination we could modify

this rule to yield the empty word. We refrain from this as existential termination

can readily be expressed in terms of universal termination with cut by adding a ! to

the end of the query.

• Failure: While 2 explicitly represents the empty list of goals and, therefore,

success, Failure is represented by the lack of further backtracking possibilities,

i.e., by the question mark introduced by the corresponding Case. If this rule is

applicable, the labeled question mark is the first element of our backtracking list,

and, thus, is not needed anymore.

• Case: In order to make the backtracking possibilities explicit, the resolution of a

clause with the first atom of the current goal is split into two separate operations.

The Case analysis determines which clauses cj can potentially be applied to the

first atom of the current goal by slicing the logic program according to the root

symbol of the atom t. It replaces the current goal by a goal labeled with the index

of the first such clause and adds copies of the current goal labeled by the indices of

the other potentially applicable clauses as backtracking possibilities. Additionally,

these goals are labeled by a fresh natural number, and an appropriately labeled

question mark is added to the end of the list of new backtracking goals in order to

denote the scope of cuts introduced at that level.

• Eval: Then, if the first atom of our labeled goal unifies with the head of the

corresponding clause, we apply the Eval rule. This rule replaces the first atom of

the current goal by the body of the corresponding rule and applies the most general

unifier to the result.

• Backtrack: If the first atom of our labeled goal does not unify with the head

of the corresponding clause, we apply the Backtrack rule. The reason is that in

6A related approach for modeling logic programming with cut has been introduced by [KB01] as a set
of rules in rewriting logic. In contrast to our approach, they do not need explicit marks to denote the
scope of cuts because of the so-called “suffix criterion”. Unfortunately, due to approximations and
generalizations, this criterion does not work for abstract queries. Furthermore, their formalism uses
operations that are too fine-grained for our purposes. Even if we could build our analysis on their
lower level, more extensive rule set, it would be unclear how to obtain a finite analysis.
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this case, the corresponding clause cannot be used (as t and Hi do not unify). We

just backtrack to the next possibility in our backtracking list.

• Cut: Finally, there are three variants of the Cut rule. The first rule removes

all backtracking information on the level where it was introduced. Note that here

we profit from the explicit scope represented by the labeled question mark and,

thus, have turned the cut into a local operation. Note further that, in general, one

must not delete the labeled question mark as the current goal could still contain a

correspondingly labeled cut.

The second variant is introduced to handle the splitting of states into sub lists which

is needed to obtain a finite analysis in Section 5.3. The problem is that by splitting

the list we might separate the question mark from the correspondingly labeled cut.

If we started from a state consisting of a single goal and if we only applied our eight

rules, this rule would never become applicable.

The third variant is for ignoring cuts introduced by meta-programming. This cor-

responds to the behavior of typical Prolog systems. To illustrate this, consider the

logic program consisting of the clause p(X) ← X, fail and the fact p(X). The goal

p(!) can be proven as the cut is ignored and, consequently, backtracking leads to the

application of p(X).

Example 5.7. Consider again the logic program for div from Example 5.1 and the query

div(0, 0, Z) from Example 5.3. Using our inference rules we obtain the following tree.

div(0, 0, Z)

div(0, 0, Z)51 | div(0, 0, Z)61 | div(0, 0, Z)71 | ?1

Case

!1, fail | div(0, 0, Z)61 | div(0, 0, Z)71 | ?1

Eval

fail | ?1

Cut

?2 | ?1

Case

?1

Failure

ε

Failure

Note that we do not need special treatment for fail as we can handle it just like any

other undefined predicate by using the Case rule to effectively delete the first goal.
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Similar, for the query minus(0, 0, Z) from Example 5.3 we obtain the following deriva-

tion using the rules from Definition 5.6.

minus(0, 0, Z)

minus(0, 0, Z)91 | minus(0, 0, Z)101 | minus(0, 0, Z)111 | ?1

Case

2 | minus(0, 0, Z)101 | minus(0, 0, Z)111 | ?1

Eval

minus(0, 0, Z)101 | minus(0, 0, Z)111 | ?1

Success

2 | minus(0, 0, Z)111 | ?1

Eval

minus(0, 0, Z)111 | ?1

Success

?1

Backtrack

ε

Failure

Using these eight simple rules, we can indeed characterize the derivation behavior of

logic programs with cuts. This is stated by the following proposition.

Proposition 5.8 (Characterization of Logic Programming with Cut). For any (infinite)

derivation starting in a cut-free goal q, there is a corresponding (infinite) derivation of

the initial state consisting of just q using the inference rules from Definition 5.6.

Finally, we define what it means for a state to be terminating.

Definition 5.9 (Termination of States). We say that a given state S ∈ State(Σ,V)

is terminating if, and only if, there is no infinite derivation starting from S using the

inference rules from Definition 5.6.

Note that by Proposition 5.8 termination of a state corresponding to some cut-free goal

implies termination of that goal w.r.t. logic programming with cut. The same also holds

for a goal q that contains cuts if we start with q[!/!1] instead of q.

5.3. Abstract Derivations

To be able to represent sets of queries, in Section 5.1 we introduced abstract terms, i.e.,

terms containing two kinds of variables by defining the set of variables V to be the disjoint
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union of the set A of all abstract variables and the set N of variables corresponding to

variables in logic programming.

To constrain by which terms abstract variables may be instantiated, we add knowledge

about instantiation and unification status. All knowledge is expressed by a knowledge

base representable by a triple KB = (G,F ,U) where G ⊆ A, F ⊆ N , and U ⊆ T (Σ,V)×
T (Σ,V). Here, G is the set of all abstract variables whose instantiations are restricted to

ground terms. When unifying abstract variables with each other, shared variables from

N (i.e., variables that occur in both terms represented by the abstract variables) may be

instantiated. To distinguish shared variables from variables that occur free in our abstract

terms, we keep track of the latter in F . Finally, U represents a set of pairs of terms, where a

pair of terms (s, t) represents that s and t are not unifiable after instantiating the abstract

variables, i.e., that we have sγ 6∼ tγ for a given instantiation γ of the abstract variables.

We can now define an abstract state based on a concrete state with abstract variables

and a knowledge base.

Definition 5.10 (Abstract State). The set of abstract states AState(Σ,N ,A) is a set

of pairs (s;KB) of a concrete state s ∈ State(Σ,N ∪A) and a knowledge base KB.

For a substitution γ to be a concretization of an abstract state, it needs to respect

the knowledge from the knowledge base (G,F ,U). First, it is only allowed to instantiate

abstract variables. This can be expressed by Dom(γ) ⊆ A or, equivalently, by γ|A = γ.

Second, for all abstract variables a, after we apply γ, the resulting term must not contain

any abstract variables. This can be expressed as
⋃
a∈AA(aγ) = ∅. To demand that

abstract variables from G are only replaced by ground terms, we state that Range(γ)

restricted to G contains no variables, i.e., N (Range(γ|G)) = ∅. Likewise, we need to

prevent γ from introducing variables from F into the instantiations of abstract variables.

This is expressed as F(Range(γ)) = ∅. Finally, for all pairs (t, t′) ∈ U we need to specify

that tγ and t′γ do not unify, i.e., that tγ 6∼ t′γ.

Definition 5.11 (Concretization). A substitution γ is a concretization w.r.t. a knowl-

edge base (G,F ,U) if, and only if, γ|A = γ,
⋃
a∈AA(aγ) = ∅, N (Range(γ|G)) = ∅,

F(Range(γ)) = ∅, and
∧

(t,t′)∈U tγ 6∼ t′γ.

For an abstract state (S; (G,F ,U)), we define the set of concretizations C(S; (G,F ,U))

as the set {Sγ | γ is a concretization w.r.t. the knowledge base (G,F ,U)}.

Example 5.12. Consider the abstract state minus(T1, T2, T3); ({T1, T2},∅, {(T1, T3)}) with

Ti ∈ A for all i. This represents all concrete states minus(t1, t2, t3) where t1, t2 are ground

terms and t1 and t3 do not unify, i.e., t3 does not match t1. For example, the concrete

state minus(0, 0, Z) is not represented as 0 and Z unify. In contrast, the concrete state

minus(s(0), s(0), 0) is represented and, using Clause (11), can be reduced to minus(0, 0, 0).

But this clause cannot be applied to all concretizations. Consider e.g. the concrete state

minus(0, 0, s(0)) represented by our abstract state, for which no clause is applicable.
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As the example above demonstrates, we need to adapt our inference rules to reflect that

a clause can be applied only for some instances, and to exploit the information from the

knowledge base contained in the abstract state.

As we are now considering sets of concrete states represented by abstract states, the

general idea of our rules is that all states represented by the parent node are terminating

if all the states represented by its children are terminating.

Definition 5.13 (Sound Rules). A rule ρ : AState(Σ,N ,A) → 2AState(Σ,N ,A) is a sound

rule if for all abstract states (S;KB), all Sγ ∈ C(S;KB) are terminating if all states in

{Rγ′ | (R;KB′) ∈ ρ(S;KB), Rγ′ ∈ C(R;KB′)} are terminating.

The rules for Success, Failure, Cut, and Case do not mandate changes to the

knowledge base and are, thus, straightforward to adapt to the abstract case. Note that

we introduce two Case rules, one for the case that we know the root symbol of the first

term of the first goal and one for the case that we do not. The latter is the case whenever

we reach an abstract variable as the first term of the first goal due to meta-programming.

Consider the logic program consisting of just the clause p(X)← X and the abstract state

p(T1);KB for the knowledge base KB = (∅,∅,∅). This leads to a state p(T1)i1 | ?1;KB

for some i and on to T1 | ?1;KB. Now, we do not know the root symbol of T1 and must

consider all possibilities by branching to many nodes – one node for each p ∈ Σ.

Now, we define the first set of abstract rules corresponding to the first part of the five

original rules from Definition 5.6. We will handle the Backtrack and Eval rules in

later definitions and even introduce additional rules in order to allow for a finite analysis.

Definition 5.14 (Abstract Inference Rules – Part 1 (Success, Failure, Cut, Case)).

2 | S;KB

S;KB
(Success)

?m | S;KB

S;KB
(Failure)

!m, q | S | ?m | S ′;KB
q | ?m | S ′;KB

(Cut) where S
contains
no ?m

!m, q | S;KB

q;KB
(Cut) where S

contains
no ?m

!, q | S
q | S

(Cut)

t, q | S;KB

(t, q)i1m | . . . | (t, q)ikm | ?m | S;KB
(Case) where m is fresh, t 6∈ A, i1 < . . . < ik,

and Slice(P , t) = {ci1 , . . . , cik}

a, q | S;KB

(a, q)i
p1
1
m | . . . | (a, q)

i
p1
kp1
m | ?m | S;KB . . . (a, q)i

pn
1
m | . . . | (a, q)

ipnkpn
m | ?m | S;KB

(Case)

where m is fresh, a ∈ A, and for each p ∈ Σ = {p1, . . . , pn},
ip1 < . . . < ipkp and Slice(P , p(~t )) = {cip1 , . . . , cipkp}
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In the above rules, in addition to the notation used in Definition 5.6, we write S | S ′;KB
for an abstract state ((S | S ′);KB) with knowledge base KB.

Lemma 5.15 (Soundness of Success, Failure, Cut, and Case). The rules Success,

Failure, Cut, and Case from Definition 5.14 are sound.

Proof. For Success we need to show that if all concretizations Sγ′ ∈ C(S;KB) are

terminating, then so are all concretizations 2 | Sγ ∈ C(2 | S;KB). We proceed by

contradiction, i.e., we show that if for some concretization 2 | Sγ ∈ C(2 | S;KB)

there is an infinite derivation, then there is also an infinite derivation for some Sγ′ ∈
C(S;KB). Assume 2 | Sγ ∈ C(2 | S;KB) has an infinite derivation. The only rule from

Definition 5.6 that is applicable is the concrete Success rule. Thus, this derivation must

start with a step from 2 | Sγ to Sγ and there is an infinite derivation starting from Sγ.

As γ is a concretization w.r.t. KB, we have that Sγ ∈ C(S;KB), which concludes our

proof for Success.

Likewise, for the first Cut rule we have to show that if !m, qγ | Sγ | ?m | S ′γ ∈
C(!m, q | S | ?m | S ′;KB) has an infinite derivation, qγ | ?m | S ′γ ∈ C(q | ?m | S ′;KB)

and qγ | ?m | S ′γ has an infinite derivation. To this end, notice that the first step in the

derivation of !m, qγ | Sγ | ?m | S ′γ has to be an application of the first concrete Cut

rule resulting in qγ | ?m | S ′γ that, thus, has an infinite derivation, too. As KB remains

unchanged, we immediately obtain qγ | ?m | S ′γ ∈ C(q | ?m | S ′;KB). For the second

Cut rule, assume !m, qγ | Sγ has an infinite derivation and S, and, therefore, Sγ do not

contain ?m. Then, the only applicable concrete rule is the second Cut rule. We obtain

qγ which has to have an infinite derivation and qγ ∈ C(q;KB). For the third Cut rule,

assume !, qγ | Sγ has an infinite derivation. Then, the only applicable concrete rule is

the third Cut rule. We obtain qγ | Sγ, which has to have an infinite derivation and

qγ | Sγ ∈ C(q | S;KB).

For the first Case rule, assume there is an infinite derivation from tγ, qγ | Sγ ∈ C(t, q |
S;KB). The only applicable concrete rule is Case, which results in (tγ, qγ)i1m | . . . |
(tγ, qγ)ikm | ?m | Sγ, which starts an infinite derivation. As we do not change KB, this

concrete state is an element of C((t, q)i1m | . . . | (t, q)ikm | ?m | S;KB). For the second

Case rule, assume there is an infinite derivation from aγ, qγ | Sγ ∈ C(a, q | S;KB).

W.l.o.g., aγ = p(t1, . . . , tn). The only applicable concrete rule is also Case which results

in (aγ, qγ)
ip1
m | . . . | (aγ, qγ)

ipkp
m |?m | Sγ which starts an infinite derivation. As we do not

change KB, this concrete state is an element of C((a, q)i
p
1
m | . . . | (a, q)

ipkp
m | ?m | S;KB).

For Failure, assume there is an infinite derivation from ?m | Sγ ∈ C(?m | S;KB).

The only applicable concrete rule is Failure, which results in Sγ which starts an infinite

derivation. As we do not change KB, this concrete state is an element of C(S;KB).

So far, like for the concrete rules, the applicable rule can uniquely be determined by

looking at the top element in the backtracking stack. Now, for the concrete Eval and
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Backtrack rule we determine which of these two rules to choose by trying to unify the

first atom with the head of the corresponding clause. As demonstrated by Example 5.12,

in the abstract case we might need to apply Eval in some cases and Backtrack in

others. Assume we are in a state (t, q)im and the i-th clause is Hi ← Bi. Consider that the

abstract variables represent arbitrary but fixed terms. Thus, whenever the most general

unifier of Hi and t instantiates an abstract variable by another abstract variable or a

non-variable term, this might or might not succeed.

If already the abstract term t does not unify with Hi, by variable disjointness of t and

Hi we know that no concretization tγ unifies with Hi. Likewise, if mgu(t,Hi) = σ, but σ

contradicts information in U , we know that for all concretizations tγ 6∼ Hi. In this case,

we can use the backtrack rule for all concretization of our abstract state.

Definition 5.16 (Abstract Inference Rules – Part 2 (Backtrack)).

(t, q)im | S; (G,F ,U)

S; (G,F ,U ∪ {(t,Hi)})
(Backtrack)

where ci = Hi ← Bi and there is no substitution δ with Dom(δ) ⊆ A and V(Range(δ)) ⊆
N such that tδ ∼ Hiδ and

∧
(s,s′)∈U (sδ 6∼ s′δ).

Lemma 5.17 (Soundness of Backtrack). The rule Backtrack from Definition 5.16

is sound.

Proof. Assume there is an infinite derivation from (tγ, qγ)im | Sγ ∈ C((t, q)im | S; (G,F ,U)).

From the fact that there is no substitution δ with Dom(δ) ⊆ A and V(Range(δ)) ⊆ N ,

we know that there is no concretization γ′ such that tγ′ ∼ Hi. In particular, we have that

tγ 6∼ Hi and, therefore, the only applicable concrete rule is Backtrack, which results in

Sγ, which starts an infinite derivation. From tγ 6∼ Hi and A(Hi) = ∅ we know Hiγ = Hi

and, therefore, tγ 6∼ Hiγ. Thus, γ is also a concretization w.r.t. (G,F ,U ∪ {(t,Hi)}) and

Sγ ∈ C(S; (G,F ,U ∪ {(t,Hi)})).

When the abstract Backtrack rule is not applicable, we still cannot be sure that

tγ unifies with Hi for all concretizations, as demonstrated by Example 5.12. Thus, in

the abstract case we have a rule Eval with two successor states that combines both the

concrete Eval and the concrete Backtrack rule.

Note that this does not invalidate the need for the abstract Backtrack rule as without

it we cannot simulate that a clause is not applied due to a cut. To see this, consider the

logic program consisting of the clauses p ← ! and p ← p. Without Backtrack, there

would always be a successor node resulting from Eval with the second clause.

To avoid that the most general unifier σ of t and Hi changes variables that are still

used in other goals in the backtracking list, we demand that all variables in the range of
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σ are variables not occurring anywhere in our backtracking list or knowledge base. We

denote such fresh variables as belonging to the subset Vfresh of V . Thus, the condition

on σ is V(Range(σ)) ⊆ Vfresh.
When σ instantiates an abstract variable a, all variables in aσ have to be abstract

variables, too. Without the condition V(Range(σ|A)) ⊆ A that one instantiates, for

instance, the abstract variable T1 which represents s(0) by s(X). But this does not

correspond to correct operation of the concrete Eval rule.

Furthermore, it makes no sense to have σ introduce new abstract variables unless they

are needed. Thus, we constrain the abstract variables occurring in the range of σ restricted

to non-abstract variables to contain only those abstract variables that are introduced by σ

restricted to abstract variables. This can be expressed by the condition A(Range(σ|N )) ⊆
A(Range(σ|A)).

Note that all these restrictions are without loss of generality as they can be obtained

by a simple variable renaming from any most general unifier of t and Hi.

Given a most general unifier that satisfies the above conditions, we can update the

knowledge base accordingly. In addition to the abstract variables from G, we also know

that all (abstract) variables in the range of aσ for all a ∈ G are instantiated to ground

terms. Thus, the new set G ′ of abstract variables instantiated by ground terms is G ∪
A(Range(σ|G)). As we can assume all variables in Hi ← Bi to be from Vfresh, the ones

that are not in Hi cannot be used in the instantiations of abstract variables. Thus, we

add N (Bi)\N (Hi) to F . Furthermore, if we replace a variable from F by a non-abstract

variable that is not in the range of any variable not from F and the head Hi, we know

that this variable cannot occur in the instantiation of abstract variables, either. Thus, we

also add N (Range(σ|F)) \N (Range(σ|N\(F∪NHi ))) to F , which yields the new set of free

variables F ′. The set of non-unifying term pairs is updated differently for the successor

corresponding to the application of the concrete Eval rule and for the one corresponding

to the application of the concrete Backtrack rule. For the former, we can apply σ|G
to U as for this path to be taken, the ground variables must have had this shape from

the beginning. For the latter, we know that for our instantiation, t and Hi do not unify.

Thus, we can add this pair to U .

There remains a problem with the instantiation of possibly shared variables. When σ

replaces a non-abstract variable of t not from F , this variable may occur in the instan-

tiations of abstract variables not from G ′. Thus, we need to replace all these abstract

variables by fresh abstract variables. This is done by the substitution αA\G′ as defined in

the definition below. Even worse, when σ replaces an abstract variable not from G, this

variable can contain any shared variable. Thus, we need to replace all abstract variables

not from G ′ as well as all non-abstract variables not from F ′. This is done by α(A\G′)∪(N\F ′).

The decision which approximation to use is performed by the Approx function.
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The state for the successor corresponding to the application of the concrete Eval rule

is updated by replacing t by the correspondingly instantiated body of the i-th clause.

Note that we replace all cuts by a cut labeled with the scope label m. Furthermore, like

for U , we can apply σ restricted to G to the rest of the backtracking list. For the successor

corresponding to the application of the concrete Backtrack rule, we just remove the

current goal from the list.

Definition 5.18 (Abstract Inference Rules – Part 3 (Eval)).

(t, q)im | S; (G,F ,U)

B′iσ
′, qσ′ | Sσ|G; (G ′,F ′,Uσ|G) S; (G,F ,U ∪ {(t,Hi)})

(Eval)

where ci = Hi ← Bi, mgu(t,Hi) = σ with V(Range(σ)) ⊆ Vfresh, V(Range(σ|A)) ⊆ A,

A(Range(σ|N )) ⊆ A(Range(σ|A)), G ′ = G∪A(Range(σ|G)), F ′ = F∪(N (Range(σ|F))\
N (Range(σ|N\(F∪N (Hi))))) ∪ (N (Bi) \ N (Hi)), σ′ = Approx(σ,G,F), and B′i = Bi[!/!m].

Approx replaces some variables by fresh abstract variables:

Approx(σ,G,F) =


σ if A(t) ⊆ G and N (t) ⊆ F
σαA\G′ if A(t) ⊆ G and N (t) 6⊆ F
σα(A\G′)∪(N\F ′) if A(t) 6⊆ G

Here, for afresh ∈ A ∩ Vfresh, we define αM for a set of variables M as follows:

αM(x) =

afresh if x ∈M
x otherwise

Lemma 5.19 (Soundness of Eval). The rule Eval from Definition 5.18 is sound.

Proof. Assume (tγ, qγ)im | Sγ ∈ C(t, q | S; (G,F ,U)) has an infinite derivation. There are

two cases depending on whether tγ and Hi unify.

First, if tγ does not unify with Hi, the unique applicable concrete rule is Backtrack

and we obtain Sγ which has to start an infinite derivation. From tγ 6∼ Hi, V(Hi) ⊆ N , and

Dom(γ) ⊆ A, we know that Hiγ = Hi and, therefore, tγ 6∼ Hiγ and γ is a concretization

w.r.t. (G,F ,U ∪ {(t,Hi)}). Thus, Sγ ∈ C(S; (G,F ,U ∪ {(t,Hi)})).
Second, if tγ ∼ Hi, the unique applicable concrete rule is Eval. From Hiγ = Hi we

know that tγ ∼ Hiγ and thus t also unifies with Hi. Let mgu(tγ,Hi) = σ′′. Then due

to Hiγ = Hi and mgu(t,Hi) = σ there must be a substitution σ′′′ such that γσ′′ = σσ′′′.

W.l.o.g., we demand that V(Range(σ′′)) ⊆ Nfresh.
By application of the concrete Eval rule we obtain B′iσ

′′, qγσ′′ | Sγ where B′i = Bi[!/!m].

We are, thus, left to show that B′iσ
′′, qγσ′′ | Sγ ∈ C(B′iσ′, qσ′ | Sσ|G; (G ′,F ′,Uσ|G)), i.e.,
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that there is a concretization γ′ w.r.t. (G ′,F ′,Uσ|G) such that B′iσ
′′ = B′iσ

′γ′, qγσ′′ =

qσ′γ′, and Sγ = Sσ|Gγ′.
We perform a case analysis over σ′ ∈ {σ, σαA\G′ , σα(A\G′)∪(N\F ′)}.

Case 1: σ′ = σ, i.e., A(t) ⊆ G and N (t) ⊆ F :

Here, we can assume Dom(σ) = G(t) ∪ F(t) ∪ N (Hi). Define γ′(a) = σ′′′(a) for a ∈
A(Range(σ)) and γ′(a) = γ(a) otherwise.

We first show that w.l.o.g. we can demand that σ′′ is chosen in such a way that σ′′ = σ′′′′

for σ′′′′ = σ|Nσ′′′|A(Range(σ|N )) by showing that σ′′′′ is a most general unifier of tγ and Hi.

That σ′′′′ is most general follows from σ and σ′′ being most general unifiers of t and Hi

resp. tγ and Hi. To see this consider that by the definition of σ′′′ as γσ′′ = σσ′′′ we have

σ′′ = σ|Nσ′′′|V(Range(σ|N )). Clearly, σ′′′|A(Range(σ|N )) is more general than σ′′′|V(Range(σ|N ))

and, consequently, σ′′′′ is more general than σ′′ which is a most general unifier of tγ and

Hi. We now show that σ′′′′ is still a unifier of tγ and Hi:

tγσ′′′′
Def.σ′′′′

= tγσ|N (tγ)σ
′′′|A(Range(σ|N (tγ)))

N (Range(γ|V(t)))=∅
= tγσ|N (t)σ

′′′|A(Range(σ|N (t)))

γ|A(t)=(γσ′′)|A(t)=σ|A(t)σ
′′′|A(Range(σ|A(t)))

= tσ|A(t)σ
′′′|A(Range(σ|A(t)))σ|N (t)σ

′′′|A(Range(σ|N (t)))

N (Range(σ′′′|A(Range(σ|A(t)))
))=∅

= tσ|A(t)σ|N (t)σ
′′′|A(Range(σ|V(t)))

V=A]N
= tσσ′′′|A(Range(σ))

σ=mgu(t,Hi)
= Hiσσ

′′′|A(Range(σ))

V=A]N
= Hiσ|A(Hi)σ|N (Hi)σ

′′′|A(Range(σ|V(Hi)
))

A(Hi)=∅
= Hiσ|N (Hi)σ

′′′|A(Range(σ|N (Hi)
))

Def.σ′′′′
= Hiσ

′′′′

We continue by showing that γ′ is a concretization w.r.t. (G ′,F ′,Uσ|G), i.e., γ′|A = γ′,⋃
a∈AA(aγ′) = ∅, N (Range(γ′|G′)) = ∅, F ′(Range(γ′)) = ∅, and

∧
(t,t′)∈Uσ|G tγ

′ 6∼ t′γ′.

As γ′ is only defined for A, we trivially have γ′|A = γ′.

To show that
⋃
a∈AA(aγ′) = ∅, we perform a case analysis w.r.t. A = A(Range(σ)) ]

(A \ A(Range(σ))). For a ∈ A(Range(σ)) we have A(aγ′)
Def.γ′

= A(aσ′′′)
a6∈Dom(σ)

=

A(aσσ′′′)
Def.σ′′′

= aγσ′′
V(Range(σ′′))⊆N

= A(aγ)
S
a∈AA(aγ)=∅

= ∅. For a ∈ A \ A(Range(σ))

we have A(aγ′)
Def.γ′

= A(aγ)
S
a∈AA(aγ)=∅

= ∅.

To show that N (Range(γ′|G′)) = ∅, we make a case analysis over a ∈ G ′ = G ]
A(Range(σ|G)). For a ∈ G we know that N (aγ) = ∅ and by γ′|G

A(Range(σ))⊆Vfresh∧Def.γ′
=

γ|G we obtain N (aγ′) = ∅. For a ∈ A(Range(σ|G)) we have N (aγ′) = N (aσ′′′). For all

a′ ∈ Dom(σ|G), N (a′σσ′′′)
Def.σ′′′

= N (a′γσ′′)
a′∈G
= ∅. Thus, N (aγ′) = ∅.
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Now, to show that F ′(Range(γ′)) = ∅, we perform a case analysis over a ∈ A =

(A \ A(Range(σ))) ] A(Range(σ)). For a ∈ A \ A(Range(σ)) we have aγ′ = aγ and

F ′(aγ) = F(aγ) as all variables in F ′ \F are fresh. This amounts to F ′(aγ′) = F ′(aγ) =

F(aγ) = ∅. For a ∈ A(Range(σ)) ⊆ A(Range(σ|A)) there must be an a′ ∈ Dom(σ|A)

such that a ∈ A(a′σ). Now, assume x ∈ F ′(aγ′). Then we have x ∈ F ′(a′σγ′) Def.γ′
=

F ′(a′σσ′′′) Def.σ′′′
= F ′(a′γσ′′) a′∈G

= ∅.

Finally, we have
∧

(t,t′)∈Uσ|G tγ
′ 6∼ t′γ′ =

∧
(s,s′)∈U sσ|Gγ′ 6∼ s′σ|Gγ′ =

∧
(s,s′)∈U sγ 6∼ s′γ as

aσ|Gγ′ = aγ for all abstract variables in a ∈ A(U) by definition of γ′. To see this, consider

the partition A(U) = (A(U)\Dom(σ|G))](A(U)∩Dom(σ|G)). If a ∈ A(U)\Dom(σ|G) we

have aγ
Def.γ′

= aγ′
a6∈Dom(σ|G)

= aσ|Gγ′. If a ∈ A(U) ∩Dom(σ|G) we have aγ
a∈G
= aγσ′′

Def.σ′′′
=

aσσ′′′
a∈G
= aσ|Gσ′′′

Def.γ′∧V(Range(σ|A))⊆A
= aσ|Gγ′.

Now, we are left to show that B′iσ
′′ = B′iσ

′γ′, qγσ′′ = qσ′γ′, and Sγ = Sσ|Gγ′.
For S there are two cases according to the partition A(S) = (A(S) \ Dom(σ|G)) ]

(A(S) ∩Dom(σ|G)). Analogous to the analysis for A(U) above, we have aγ = aσ|Gγ′ for

both cases. With γ|A = γ and γ′|A = γ′ we obtain Sγ = Sσ|Gγ′.
For B′i we analyze two cases according to the partition V(Bi) ⊆ (N (Bi) ∩ N (Hi)) ]

(N (Bi) \ N (Hi)). For x ∈ N (Bi) ∩ N (Hi) note that V(Range(σ)) ⊆ Vfresh implies x ∈
Dom(σ). Then, we have xσ′′

σ′′=σ|Nσ′′′|A(Range(σ|N ))

= xσ|Nσ′′′|A(Range(σ|N ))
Def.γ′

= xσ|Nγ′ x∈N=
xσγ′

σ=σ′
= xσ′γ′. For x ∈ N (Bi)\N (Hi) note that σ′ and σ′′ are most general unifiers and,

thus, w.l.o.g. do not instantiate the fresh variable x. Therefore, xσ′′
x 6∈Dom(σ′′)

= x
x 6∈Dom(γ′)

=

xγ′
x 6∈Dom(σ′)

= xσ′γ′. Thus, B′iσ
′′ = B′iσ

′γ′.

Now, for q consider the partition V(q) = (A(q)\Dom(σ′))](A(q)∩Dom(σ′))](N (q)\
F) ] (F(q) \Dom(σ′)) ] (F(q) ∩Dom(σ′)) which leads to the following sub cases:

• a ∈ A(q) \Dom(σ′):

From V(t) = G(t) ] F(t) we get V(tγ) = N (F(t)γ) ∪ N (G(t)γ) = F(t). Together

with F(aγ) = ∅ we obtain V(aγ) ∩ N (tγ) = N (aγ) ∩ F(t)
F(aγ)=∅

= ∅ and with

V(aγ)∩N (Hi) = ∅ also V(aγ)∩Dom(σ′′) = ∅. Thus, we have aγσ′′
N (aγ)∩Dom(σ′′)=∅

=

aγ
Def.γ′

= aγ′
a6∈Dom(σ′)

= aσ′γ′.

• a ∈ A(q) ∩Dom(σ′):

Note that a ∈ Dom(σ′) implies a ∈ Dom(σ). We immediately have aγσ′′
Def.σ′′′

=

aσσ′′′
Def.γ′∧V(Range(σ|A))⊆A

= aσγ′
σ=σ′
= aσ′γ′.

• x ∈ N (q) \ F :

From x 6∈ F(t) = N (tγ) = N (t) we know that x 6∈ Dom(σ′′) and x 6∈ Dom(σ′).

From γ|A = γ and γ′|A = γ′ and x 6∈ A we get x 6∈ Dom(γ) and x 6∈ Dom(γ′).

Thus, we have xγσ′′
x 6∈Dom(γ)

= xσ′′
x 6∈Dom(σ′′)

= x
x 6∈Dom(γ′)

= xγ′
x 6∈Dom(σ′)

= xσ′γ′.

• x ∈ F(q) \Dom(σ′):
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From x 6∈ Dom(σ′) we know x 6∈ F(t) = N (tγ) and, consequently, x 6∈ Dom(σ′′).

With x 6∈ A we have xγσ′′
x 6∈Dom(γ)

= xσ′′
x 6∈Dom(σ′′)

= x
x 6∈Dom(γ′)

= xγ′
x 6∈Dom(σ′)

= xσ′γ′.

• x ∈ F(q) ∩Dom(σ′):

Note that x ∈ Dom(σ′) and σ′ = σ imply x ∈ Dom(σ). Then, we have xγσ′′
x 6∈A
=

xσ′′
σ′′=σ|Nσ′′′|A(Range(σ|N ))

= xσ|Nσ′′′|A(Range(σ|N ))
Def.γ′

= xσ|Nγ′ x∈N∧σ=σ′
= xσ′γ′.

Thus, we have shown that xγσ′′ = xσ′γ′ for all x ∈ V(q) and, consequently, qγσ′′ = qσ′γ′.

This concludes the case of σ′ = σ.

Case 2: σ′ = σαA\G′ , i.e., A(t) ⊆ G and N (t) 6⊆ F :

Here, we can assume Dom(σ) = G(t) ∪ N (t) ∪ N (Hi). Define γ′(a) = σ′′′(a) for a ∈
A(Range(σ)), αA\G′γ

′(a) = σσ′′′(a) for a ∈ A \ G ′, and γ′(a) = γ(a) otherwise. This is

possible as all variables in the ranges of σ and αA\G′ are fresh.

First, w.l.o.g. we can demand that σ′′ is chosen in such a way that σ′′ = σ|Nσ′′′|A(Range(σ|N ))

by the identical argument as for the case of σ′ = σ where we made use of A(t) ⊆ G, which

still holds for this case.

We continue by showing that γ′ is a concretization w.r.t. (G ′,F ′,Uσ|G), i.e., γ′|A = γ′,⋃
a∈AA(aγ′) = ∅, N (Range(γ′|G′)) = ∅, F ′(Range(γ′)) = ∅, and

∧
(t,t′)∈Uσ|G tγ

′ 6∼ t′γ′.

As γ′ is only defined for A, we trivially have γ′|A = γ′.

To show that
⋃
a∈AA(aγ′) = ∅, we perform a case analysis w.r.t. A = A(Range(σ)) ]

A(Range(αA\G′)) ] (A \ (A(Range(σ)) ∪ A(Range(αA\G′)))). For a ∈ A(Range(σ)) we

haveA(aγ′)
Def.γ′

= A(aσ′′′)
a6∈Dom(σ)

= A(aσσ′′′)
Def.σ′′′

= aγσ′′
V(Range(σ′′))⊆N

= A(aγ)
S
a∈AA(aγ)=∅

=

∅. For a ∈ A(Range(αA\G′)) there is an a′ 6∈ A(Range(αA\G′)) such that a′αA\G′ = a

and A(aγ′)
a′αA\G′=a

= A(a′αA\G′γ
′)

Def.γ′
= A(a′σσ′′′)

Def.σ′′′
= a′γσ′′

V(Range(σ′′))⊆N
= A(a′γ)S

a∈AA(aγ)=∅
= ∅. For a ∈ A \ (A(Range(σ)) ∪ A(Range(αA\G′))) we have A(aγ′)

Def.γ′
=

A(aγ)
S
a∈AA(aγ)=∅

= ∅.

By the identical argument as for the case of σ′ = σ, we obtain N (Range(γ′|G′)) = ∅.

Now, to show that F ′(Range(γ′)) = ∅, we perform a case analysis over a ∈ A =

(A \ (A(Range(σ)) ∪ A(Range(αA\G′)))) ] A(Range(σ)) ] A(Range(αA\G′)). For a ∈
A \ (A(Range(σ)) ∪ A(Range(αA\G′)))) we have aγ′ = aγ and F ′(aγ) = F(aγ) as all

variables in F ′ \ F are fresh. This amounts to F ′(aγ′) = F ′(aγ) = F(aγ) = ∅. For

a ∈ A(Range(σ)) ⊆ A(Range(σ|A)) there must be an a′ ∈ Dom(σ|A) such that a ∈
A(a′σ). Now, assume x ∈ F ′(aγ′). Then we have x ∈ F ′(a′σγ′) Def.γ′

= F ′(a′σσ′′′) Def.σ′′′
=

F ′(a′γσ′′) a′∈G
= ∅. For a ∈ A(Range(αA\G′)) there must be an a′ ∈ A \ G ′ such that

a = a′αA\G′ . Now assume x ∈ F ′(aγ′). Then x ∈ F ′(a′αA\G′γ′) Def.γ′
= F ′(a′σσ′′′) Def.σ′′′

=

F ′(a′γσ′′). Now, for x ∈ F ′(a′γσ′′) there would have to be a z ∈ N (a′γ) such that

x ∈ N (zσ′′). As all variables in the range of σ′′ and in N (Bi) \ N (Hi) are fresh, x 6∈
F ∪(N (Bi)\N (Hi))). From σ′′ = σ|Nσ′′′|A(Range(σ|N )) we get z ∈ Dom(σ). As z ∈ N (a′γ)
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and F(a′γ) = ∅, we know z 6∈ F . As all variables in N (Hi) are fresh, z 6∈ N (Hi).

Thus, z ∈ N \ (N (Hi) ∪ F) and, consequently, x ∈ N (Range(σ|N\(N (Hi)∪F))). But as

F ′ = F∪(N (Bi)\N (Hi))∪(N (Range(σ|F))\N (Range(σ|N\(N (Hi)∪F)))), this contradicts

our assumption that x ∈ F ′(a′γσ′′) = F ′(aγ′).
Finally, we have

∧
(t,t′)∈Uσ|G tγ

′ 6∼ t′γ′ =
∧

(s,s′)∈U sγ 6∼ s′γ by the identical argument as

the one used in the case of σ′ = σ.

Now, we are left to show that B′iσ
′′ = B′iσ

′γ′, qγσ′′ = qσ′γ′, and Sγ = Sσ|Gγ′.
For S, we can use the identical argument as for the case of σ′ = σ.

For B′i we analyze two cases according to the partition V(Bi) = (N (Bi) ∩ N (Hi)) ]
(N (Bi) \ N (Hi)). For x ∈ N (Bi) ∩ N (Hi) note that V(Range(σ)) ⊆ Vfresh implies

x ∈ Dom(σ). Then, we have xσ′′
σ′′=σ|Nσ′′′|A(Range(σ|N ))

= xσ|Nσ′′′|A(Range(σ|N ))
Def.γ′∧σσ=σ

=

xσ|NαA\G′γ′ x∈N= xσαA\G′γ
′ σαA\G′=σ

′

= xσ′γ′. For x ∈ N (Bi) \ N (Hi) note that σ′ and

σ′′ are most general unifiers and, thus, w.l.o.g. do not instantiate the fresh variable x.

Therefore, xσ′′
x 6∈Dom(σ′′)

= x
x 6∈Dom(γ′)

= xγ′
x 6∈Dom(σ′)

= xσ′γ′. Thus, B′iσ
′′ = B′iσ

′γ′.

Now, for q consider the partition V(q) = (A(q) \ G) ] (G(q) ∩ Dom(σ′)) ] (G(q) \
Dom(σ′))] (N (q) \Dom(σ′))] (N (q)∩Dom(σ′)) which leads to the following subcases:

• a ∈ A(q) \ G:

We immediately have aγσ′′
Def.σ′′′

= aσσ′′′
Def.γ′∧σσ=σ

= aσαA\G′γ
′ σαA\G′=σ

′

= aσ′γ′.

• a ∈ G(q) ∩Dom(σ′):

Note that a ∈ G(q) ∩ Dom(σ′) implies a ∈ Dom(σ). Then, we have aγσ′′
Def.σ′′′

=

aσσ′′′
Def.γ′

= aσγ′
A(aσ)⊆G′

= aσαA\G′γ
′ σαA\G′=σ

′

= aσ′γ′.

• a ∈ G(q) \Dom(σ′):

We have aγσ′′
a∈G
= aγ

Def.γ′
= aγ′

a6∈Dom(σ′)
= aσ′γ′.

• x ∈ N (q) \Dom(σ′):

From x 6∈ Dom(σ′) we know x 6∈ V(t). From A(t) ⊆ G and N (Range(γ|G)) = ∅
we know that x 6∈ V(tγ) and together with N (Hi) ⊆ Nfresh, we have x 6∈ Dom(σ′′).

Then, we have xγσ′′
x 6∈Dom(γ)

= xσ′′
x 6∈Dom(σ′′)

= x
x 6∈Dom(γ′)

= xγ′
x 6∈Dom(σ′)

= xσ′γ′.

• x ∈ N (q) ∩Dom(σ′):

Note that x ∈ N (q) ∩ Dom(σ′) implies x ∈ Dom(σ). Then, we have xγσ′′
γ|A=γ

=

xσ′′
σ′′=σ|Nσ′′′|A(Range(σ|N ))

= xσ|Nσ′′′|A(Range(σ|N ))
x∈N
= xσσ′′′|A(Range(σ|N ))

x∈Dom(σ)∧Def.γ′
= xσαA\G′γ

′ σ
′=σαA\G′

= xσ′γ′.

Thus, we have shown that xγσ′′ = xσ′γ′ for all x ∈ V(q) and, consequently, qγσ′′ = qσ′γ′.

This concludes the case of σ′ = σαA\G′ .
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Case 3: σ′ = σα(A\G′)∪(N\F ′), i.e., A(t) 6⊆ G:

Here, we can assume Dom(σ) = A(t) ∪ N (t) ∪ N (Hi). Define γ′(a) = σ′′′(a) for a ∈
A(Range(σ)), α(A\G′)∪(N\F ′)γ

′(a) = σσ′′′(a) for a ∈ (A\G ′)∪ (N \F ′), and γ′(a) = γ(a)

otherwise. This is possible as all variables in the ranges of σ and α(A\G′)∪(N\F ′) are fresh.

First, we show that w.l.o.g. we can demand that σ′′ is chosen in such a way that σ′′ = σ′′′′

for σ′′′′|F∪N (Hi) = σ|F∪N (Hi)σ
′′′|A(Range(σ|F∪N (Hi)

)) and σ′′′′|N\(F∪N (Hi)) = σ′′|N\(F∪N (Hi))

by showing that σ′′′′ is a most general unifier of tγ and Hi. That σ′′′′ is most gen-

eral follows from σ and σ′′ being most general unifiers of t and Hi resp. tγ and Hi.

To see this consider that by the definition of σ′′′ as γσ′′ = σσ′′′ we have σ′′|F∪N (Hi) =

σ|F∪N (Hi)σ
′′′|V(Range(σ|F∪N (Hi)

)). Clearly, σ′′′|A(Range(σ|F∪N (Hi)
)) is more general than

σ′′′|V(Range(σ|F∪N (Hi)
)) and, consequently, σ′′′′ is more general than σ′′ which is a most gen-

eral unifier of tγ and Hi. We now show that σ′′′′ is still a unifier of tγ and Hi:

tγσ′′′′
V(Range(σ′′)∪Range(σ)∪
Range(σ′′′))⊆Vfresh

= tγσ′′′′|F∪N (Hi)σ
′′′′|N\(F∪N (Hi))

F(Range(γ))=∅∧γA=γ
= tσ′′′′|F∪N (Hi)γσ

′′′′|N\(F∪N (Hi))

Def.σ′′′′
= tσ|F∪N (Hi)σ

′′′|A(Range(σ′′|F∪N (Hi)
))γσ

′′|N\(F∪N (Hi))

γσ′′|N\(F∪N (Hi))
=σ|V\(F∪N (Hi))

σ′′′|V(Range(σ|V\(F∪N (Hi))
))

= tσ|F∪N (Hi)σ
′′′|A(Range(σ|F∪N (Hi)

))σ|V\(F∪N (Hi))

σ′′′|V(Range(σ|V\(F∪N (Hi))
))

Dom(σ)∩V(Range(σ′′′))=∅
= tσ|F∪N (Hi)σ|V\(F∪N (Hi))σ

′′′|A(Range(σ|F∪N (Hi)
))

σ′′′|V(Range(σ|V\(F∪N (Hi))
))

V(Range(σ))⊆Vfresh
= tσσ′′′|A(Range(σ|F∪N (Hi)

))σ
′′′|V(Range(σ|V\(F∪N (Hi))

))

σ=mgu(t,Hi)
= Hiσσ

′′′|A(Range(σ|F∪N (Hi)
))σ
′′′|V(Range(σ|V\(F∪N (Hi))

))

V(Hi)⊆F∪N (Hi)
= Hiσ|F∪N (Hi)σ

′′′|A(Range(σ|F∪N (Hi)
))

Def.γ′′′′
= Hiσ

′′′′

We are left to show that γ′ is a concretization w.r.t. (G ′,F ′,Uσ|G), i.e., γ′|A = γ′,⋃
a∈AA(aγ′) = ∅, N (Range(γ′|G′)) = ∅, F ′(Range(γ′)) = ∅, and

∧
(t,t′)∈Uσ|G tγ

′ 6∼ t′γ′.

As γ′ is only defined for A, we trivially have γ′|A = γ′.

To show that
⋃
a∈AA(aγ′) = ∅, we perform a case analysis w.r.t. A = A(Range(σ)) ]

A(Range(α(A\G′)∪(N\F ′))) ] (A \ (A(Range(σ)) ∪ A(Range(α(A\G′)∪(N\F ′))))). For the

case that a ∈ A(Range(σ)) we have A(aγ′)
Def.γ′

= A(aσ′′′)
a6∈Dom(σ)

= A(aσσ′′′)
Def.σ′′′

=

aγσ′′
V(Range(σ′′))⊆N

= A(aγ)
S
a∈AA(aγ)=∅

= ∅. For a ∈ A(Range(α(A\G′)∪(N\F ′))) there is an

a′ 6∈ A(Range(α(A\G′)∪(N\F ′))) such that a′α(A\G′)∪(N\F ′) = a and A(aγ′)
a′α(A\G′)∪(N\F′)=a

=
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A(a′α(A\G′)∪(N\F ′)γ
′)

Def.γ′
= A(a′σσ′′′)

Def.σ′′′
= a′γσ′′

V(Range(σ′′))⊆N
= A(a′γ)

S
a∈AA(aγ)=∅

= ∅.

For a ∈ A \ (A(Range(σ)) ∪ A(Range(α(A\G′)∪(N\F ′)))) we have A(aγ′)
Def.γ′

= A(aγ)S
a∈AA(aγ)=∅

= ∅.

By the identical argument as for the case of σ′ = σ, we obtain N (Range(γ′|G′)) = ∅.

Now, to show that F ′(Range(γ′)) = ∅, we perform a case analysis over a ∈ A = (A \
(A(Range(σ)) ∪ A(Range(α(A\G′)∪(N\F ′))))) ] A(Range(σ)) ] A(Range(α(A\G′)∪(N\F ′))).

For a ∈ A \ (A(Range(σ)) ∪ A(Range(α(A\G′)∪(N\F ′)))) we have aγ′ = aγ and F ′(aγ) =

F(aγ) as all variables in F ′\F are fresh. This amounts to F ′(aγ′) = F ′(aγ) = F(aγ) = ∅.

For a ∈ A(Range(σ)) ⊆ A(Range(σ|A)) there must be an a′ ∈ Dom(σ|A) such that a ∈
A(a′σ). Now, assume x ∈ F ′(aγ′). Then we have x ∈ F ′(a′σγ′) Def.γ′

= F ′(a′σσ′′′) Def.σ′′′
=

F ′(a′γσ′′). Now, for x ∈ F ′(a′γσ′′) there would have to be a z ∈ N (a′γ) such that

x ∈ N (zσ′′). As all variables in the range of σ′′ and in N (Bi) \ N (Hi) are fresh, x 6∈
F ∪(N (Bi)\N (Hi))). From σ′′ = σ|Nσ′′′|A(Range(σ|N )) we get z ∈ Dom(σ). As z ∈ N (a′γ)

and F(a′γ) = ∅, we know z 6∈ F . As all variables in N (Hi) are fresh, z 6∈ N (Hi).

Thus, z ∈ N \ (N (Hi) ∪ F) and, consequently, x ∈ N (Range(σ|N\(N (Hi)∪F))). But as

F ′ = F∪(N (Bi)\N (Hi))∪(N (Range(σ|F))\N (Range(σ|N\(N (Hi)∪F)))), this contradicts

our assumption that x ∈ F ′(a′γσ′′) = F ′(aγ′). For a ∈ A(Range(αA\G′)) there must be an

a′ ∈ A\G ′ such that a = a′αA\G′ . Now assume x ∈ F ′(aγ′). Then x ∈ F ′(a′αA\G′γ′) Def.γ′
=

F ′(a′σσ′′′) Def.σ′′′
= F ′(a′γσ′′). By the identical argument as for the case of a ∈ A(Range(σ))

we can show that x 6∈ F ′(a′γσ′′).
Finally, we have

∧
(t,t′)∈Uσ|G tγ

′ 6∼ t′γ′ =
∧

(s,s′)∈U sγ 6∼ s′γ by the identical argument as

the one used in the case of σ′ = σ.

Now, we are left to show that B′iσ
′′ = B′iσ

′γ′, qγσ′′ = qσ′γ′, and Sγ = Sσ|Gγ′.
For S, we can use the identical argument as for the case of σ′ = σ.

For B′i we analyze two cases according to the partition V(Bi) = (N (Bi) ∩ N (Hi)) ]
(N (Bi) \ N (Hi)). For the case of x ∈ N (Bi) ∩ N (Hi) note that V(Range(σ)) ⊆
Vfresh implies x ∈ Dom(σ). Then, we have xσ′′

σ′′|F∪N (Hi)
=σ|F∪N (Hi)

σ′′′|A(Range(σ|F∪N (Hi)
))

=

xσ|F∪N (Hi)σ
′′′|A(Range(σ|F∪N (Hi)

))
Def.γ′∧σσ=σ

= xσ|F∪N (Hi)α(A\G′)∪(N\F ′)γ
′ x∈N (Hi)

=

xσα(A\G′)∪(N\F ′)γ
′ σα(A\G′)∪(N\F′)=σ

′

= xσ′γ′. For x ∈ N (Bi) \ N (Hi) note that σ′ and σ′′

are most general unifiers and, thus, w.l.o.g. do not instantiate the fresh variable x. There-

fore, xσ′′
x6∈Dom(σ′′)

= x
x 6∈Dom(γ′)

= xγ′
x 6∈Dom(σ′)

= xσ′γ′. Thus, B′iσ
′′ = B′iσ

′γ′.

Now, for q consider the partition V(q) = (A(q)\G)](G(q)∩Dom(σ′))](G(q)\Dom(σ′))]
(N (q)\F)] (F(q)\Dom(σ′))] (F(q)∩Dom(σ′)) which leads to the following sub cases:

• a ∈ A(q) \ G:

From A(t) 6⊆ G we know that a ∈ Dom(σ′). Then, we have aγσ′′
Def.σ′′′

= aσσ′′′

Def.γ′∧σσ=σ
= aσα(A\G′)∪(N\F ′)γ

′ σα(A\G′)∪(N\F′)=σ
′

= aσ′γ′.

• a ∈ G(q) ∩Dom(σ′):
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Note that a ∈ G(q) ∩ Dom(σ′) implies a ∈ Dom(σ). Then, we have aγσ′′
Def.σ′′′

=

aσσ′′′
Def.γ′

= aσγ′
A(aσ)⊆G′

= aσα(A\G′)∪(N\F ′)γ
′ σα(A\G′)∪(N\F′)=σ

′

= aσ′γ′.

• a ∈ G(q) \Dom(σ′):

We have aγσ′′
a∈G
= aγ

Def.γ′
= aγ′

a6∈Dom(σ′)
= aσ′γ′.

• x ∈ N (q) \ F :

From A(t) 6⊆ G we know x ∈ Dom(σ′). Then, we have xγσ′′
Def.σ′′′

= xσσ′′′
Def.γ′∧σσ=σ

=

xσα(A\G′)∪(N\F ′)γ
′ σαA\G′= xσ′γ′.

• x ∈ F(q) \Dom(σ′):

From x 6∈ Dom(σ′) we get x 6∈ V(t). From x ∈ F(q) ⊆ F we get x 6∈ N (Range(γ)).

Together, we obtain x 6∈ V(tγ) and, consequently, x 6∈ Dom(σ′′). Then, we have

xγσ′′
x 6∈Dom(γ)

= xσ′′
x 6∈Dom(σ′′)

= x
x 6∈Dom(γ′)

= xγ′
x 6∈Dom(σ′)

= xσ′γ′.

• x ∈ F(q) ∩Dom(σ′):

Note that x ∈ F(q) ∩ Dom(σ′) implies x ∈ Dom(σ). Then, we have xγσ′′
γ|A=γ

=

xσ′′
σ′′|F∪N (Hi)

=σ|F∪N (Hi)
σ′′′|A(Range(σ|F∪N (Hi)

))

= xσ|F∪N (Hi)σ
′′′|A(Range(σ|F∪N (Hi)

))
Def.γ′

=

xσ|F∪N (Hi)α(A\G′)∪(N\F ′)γ
′ x∈F= xσα(A\G′)∪(N\F ′)γ

′ σα(A\G′)∪(N\F′)=σ
′

= xσ′γ′.

Thus, we have shown that xγσ′′ = xσ′γ′ for all x ∈ V(q) and, consequently, qγσ′′ = qσ′γ′.

This concludes the case of σ′ = σα(A\G′)∪(N\F ′) and, consequently, our proof for the

soundness of the Eval rule.

With these adapted rules any concrete derivations can be simulated with abstract

derivations using the rules from Definition 5.6. Unfortunately, even for terminating goals,

in general, we obtain an infinite derivation tree. The reason is that the number of times

an abstract evaluation may succeed is not limited as there is no bound on the size of

the terms represented by the abstract variables. This is demonstrated by the following

example.

Example 5.20. The infinite nature of the trees built by the rules of Parts 1 – 3 can

be demonstrated using Clause (11). For simplicity, consider the following simpler logic

program consisting of just one rule:

p(s(X)) ← p(X). (12)

For queries of the form p(t) where t is ground, the logic program clearly terminates.
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Now, consider the tree built using the rules from Parts 1 – 3:

p(T1); ({T1},∅,∅)

p(T1)121 | ?1; ({T1},∅,∅)

Case

?1; ({T1},∅, {(p(T1), p(s(X)))})

Eval

ε; ({T1},∅, {(p(T1), p(s(X)))})

Failure

p(T2) | ?1; ({T1, T2},∅,∅)

EvalT1/s(T2)

p(T2)122 | ?2 | ?1; ({T1, T2},∅,∅)

Case

?2 | ?1; ({T1, T2},∅, {(p(T2), p(s(X)))})

Eval

p(T3) | ?2 | ?1; ({T1, T2, T3},∅,∅)

EvalT2/s(T3)

. . .

Case

. . .

Failure

This process can obviously be continued infinitely often.

Thus, in order to obtain a finite graph instead of an infinite tree, we need a way to

refer back to previous nodes in our tree structure. In the following section we introduce

operations that allow to obtain a finite graph for any start query.

5.4. Termination Graph

The main idea in avoiding infinite graphs is to introduce an Instance rule for the case

that our current state is an instance of a previous state. In these cases we can conclude

termination of the current state from termination of that previous state, provided that

this process is well founded. To this end, we show in Section 5.5 how to extract a cut-

free logic program from our graphs such that termination of these logic programs implies

termination of all states in the graph.

Example 5.21. Consider again the graph from Example 5.20. If we ignore the ?1 for

the moment, the abstract state p(T1); ({T1},∅,∅) of the first node and the abstract state

p(T2); ({T1, T2},∅,∅) of the third node are very similar. Indeed, if one uses a substitution

µ = {T1/T2} we see that the third state is an instance of the first state.

The basic idea of the following Instance rule is that instead of showing that an abstract

state is terminating, we can show that this state is an instance of another state. Let

S; (G,F ,U) be our current state and S ′; (G ′,F ′,U ′) the more general state, i.e., there is a

substitution µ such that S = S ′µ.

For a rule based on this idea to be sound, we have to ensure that all concrete states

represented by S; (G,F ,U) are also concrete states of S ′; (G ′,F ′,U ′). Thus, we have to
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ensure that all abstract variables from G ′ are instantiated by µ to a term for which all

variables are from G, i.e., for all a ∈ G ′, V(aµ) ⊆ G. We allow that µ is a variable renaming

for the non-abstract variables. Further instantiation of the non-abstract variables would

lead to problems similar to the ones presented in Example 5.2. For the non-abstract

variables from F ′, we demand that these are mapped to non-abstract variables from

F , i.e., F ′µ ⊆ F . Furthermore, if µ introduced variables from F ′µ, this would mean

that abstract variables in S would be instantiated by terms containing a variable from

F ′. Thus, we demand F ′µ(Range(µ|A)) = ∅. Finally, we have to show that the non-

unification information in U ′ is more general than the one in U . This is obviously the case

if U ′µ is a subset of U .

Definition 5.22 (Abstract Inference Rules – Part 4 (Instance)).

S; (G,F ,U)

S ′; (G ′,F ′,U ′)
(Instance)

if there is a µ such that S = S ′µ, for all a ∈ G ′,
V(aµ) ⊆ G, µ|N is a variable renaming, F ′µ ⊆ F ,
F ′µ(Range(µ|A)) = ∅, and U ′µ ⊆ U .

Lemma 5.23 (Soundness of Instance). The rule Instance from Definition 5.22 is

sound.

Proof. Assume we have an infinite derivation starting from Sγ ∈ C(S; (G,F ,U)). We

show that there is a substitution γ′ such that S ′γ′ ∈ C(S ′; (G ′,F ′,U ′)) and S ′γ′ has an

infinite derivation.

As µ|N is a variable renaming, there must be a µ−1 such that µ|Nµ−1 = µ−1µ|N = id.

Let γ′ = µγµ−1. Clearly, as S ′µ = S and µ−1 is a variable renaming, S ′γ′ = Sγµ−1 has

an infinite derivation. We are left to show that γ′ is a concretization w.r.t. (G ′,F ′,U ′).
For x ∈ N we have xµ ∈ N and, thus, xγ′

Def.γ′
= xµγµ−1 xµ∈N

= xµµ−1 Def.µ−1

= x, i.e.,

γ′|A = γ′. From
⋃
a∈AA(aγ) = ∅ andA(Range(µ−1)) = ∅, we also obtain

⋃
a∈AA(aγ′) =⋃

a∈AA(µγµ−1) = ∅.

We know that for all a ∈ G ′, V(aµ) ⊆ G. Further, as γ is a concretization w.r.t.

(G,F ,U) we know that for all a ∈ G, N (aγ) = ∅. Thus, for all a ∈ G ′, we have

N (aγ′)
Def.γ′

= N (aµγµ−1) = N (aµγ) = ∅ and, therefore, N (Range(γ′|G′)) = ∅.

We need to show that F ′(Range(γ′)) = F ′(Range(µγµ−1)) = F ′(Range(µ|Nµ|Aγµ−1)) =

∅. From γ′|N = id this is equivalent to F ′(aµ|Aγµ−1) = ∅ for all a ∈ Dom(µ|Aγµ−1).

Now, F ′(aµ|Aγµ−1) = ∅ is equivalent to F ′µ|N (aµ|Aγµ−1µ|N ) = F ′µ|N (aµ|Aγ) = ∅.

Now, this holds as F ′µ(Range(µ|A)) = ∅, F ′µ ⊆ F , and F(Range(γ)) = ∅. Thus, we

can conclude F ′(Range(γ′)) = ∅.

Finally, from
∧

(s,s′)∈U tγ 6∼ t′γ and U ′µ ⊆ U , we know that
∧

(s,s′)∈U ′µ tγ 6∼ t′γ

which is equivalent to
∧

(t,t′)∈U ′ tµγ 6∼ t′µγ. As µ−1 is a variable renaming, trivially∧
(t,t′)∈U ′ tµγµ

−1 6∼ t′µγµ−1 and, consequently,
∧

(t,t′)∈U ′ tγ
′ 6∼ t′γ′.

This concludes our proof as µγµ−1 satisfies all conditions of a concretization w.r.t.

(G ′,F ′,U ′).
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Example 5.24. Still, this is not enough to obtain a finite analysis for Example 5.20 as we

need to get rid of superfluous backtracking goals, even if they only consist of the question

marks. To see this, note that in Example 5.21 we ignored the ?1 although it is an integral

part of the abstract state considered.

To solve this problem, we introduce the Parallel rule that allows us to split a back-

tracking list into separate problems. While this rule may lose precision, it is virtually

always needed for obtaining a finite graph. As the splitting of backtracking lists is incor-

rect in general, we will introduce the notions of active cuts and active marks to characterize

positions where splitting is allowed. Here active cuts for a state S are represented by a

subset of N containing all those m for which !m occurs in S or can be introduced by Eval

applied to a labeled goal (t, q)im occurring in S. Likewise, the active marks for a state

S are represented by a subset of N containing those m for which ?m occurs in S. Note

that we can exclude ?m occurring as the first or last element of S. The former is possible,

as an application of the Failure rule would remove such a !m without any side effects.

The latter is possible, as applying the first cut rule to a state ending in ?m is identical to

applying the second Cut rule to the same state without ?m.

Definition 5.25 (Abstract Inference Rules – Part 5 (Parallel)).

S | S ′;KB
S;KB S ′;KB

(Parallel) if AC(S) ∩ AM(S ′) = ∅

Here, the active cuts AC(S) of a state S are defined as the set of all m such that S =

S ′ | q, !m, q′ | S ′′ or S = S ′ | (t, q)jm | S ′′ and cj = Hj ← Bj, !, B
′
j, while the active marks

AM(S) of a state S are defined as all m such that S = S ′ | ?m | S ′′ and S ′ 6= ε 6= S ′′.

Lemma 5.26 (Soundness of Parallel). The rule Parallel from Definition 5.25 is

sound.

Proof. Assume that Sγ | S ′γ ∈ C(S | S ′;KB) has an infinite derivation. Then there are

three cases. If Sγ has an infinite derivation, we immediately have that Sγ ∈ C(S;KB) has

an infinite derivation. If Sγ does not have an infinite derivation and, after finitely many

steps, we reach the state S ′γ, we have that S ′γ ∈ C(S ′;KB) has an infinite derivation.

Finally, if Sγ has no infinite derivation, but we do not reach S ′γ, S ′ must be of the form

S ′′ | ?m | S ′′′ with S ′′ 6= ε and in the derivation of Sγ | S ′γ we apply the Cut rule to

!m, q | S ′′′′γ | S ′′γ |?m | S ′′′γ, i.e., m ∈ AC(S). As Sγ | S ′γ has an infinite derivation, we

get S ′′′ 6= ε. But S ′′ 6= ε 6= S ′′′ implies m ∈ AM(S ′). Thus we have a contradiction to

AC(S) ∩ AM(S ′) = ∅.
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Example 5.27. Consider again the one-rule logic program from Example 5.20. Now,

using the rules from Parts 1 – 5 we can obtain the following finite tree.

p(T1); ({T1},∅,∅)

p(T1)121 | ?1; ({T1},∅,∅)

Case

?1; ({T1},∅,∅)
Parallel

ε; ({T1},∅,∅)

Failure

p(T1)121 ; ({T1},∅,∅)

Parallel

ε; ({T1},∅, {(p(T1), p(s(X)))})

Eval

p(T2); ({T1, T2},∅,∅)

EvalT1/s(T2)

Instance

By using Parallel and Failure we can always get rid of question marks at the end

of a state. From here on we will always implicitly use these two rules in such cases.

Example 5.28. Consider again the one-rule logic program from Example 5.20. Using

implicit removal of trailing question marks, we obtain the following finite tree.

p(T1); ({T1},∅,∅)

p(T1)121 ; ({T1},∅,∅)

Case

ε; ({T1},∅, {(p(T1), p(s(X)))})

Eval

p(T2); ({T1, T2},∅,∅)

EvalT1/s(T2)

Instance

So far, we have used the Parallel rule only to remove superfluous trailing question

marks. In general, backtracking lists can, of course, contain non-trivial information that

needs to be removed for finiteness of the analysis.

Example 5.29. Consider the following simple logic program consisting just of one rule

and one fact:

p(s(X)) ← p(X). (13)

p(X). (14)

For queries of the form p(t) where t is ground, the logic program once again clearly

terminates.
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Now, consider the tree built using the rules from Parts 1 – 5 where Parallel is only

used implicitly to remove trailing question marks:

p(T1); ({T1},∅,∅)

p(T1)131 | p(T1)141 ; ({T1},∅,∅)

Case

p(T1)141 ; ({T1},∅, {(p(T1), p(s(X)))})Eval

p(T2) | p(T1)141 ; ({T1, T2},∅,∅)

EvalT1/s(T2)

2; ({T1},∅, {(p(T1), p(s(X)))})

Evalid

ε; ({T1},∅, {(p(T1), p(s(X))),

(p(T1), p(X))})

Eval

ε; ({T1},∅, {(p(T1), p(s(X)))})

Success

p(T2)132 | p(T2)142 | p(T1)141 ; ({T1, T2},∅,∅)

Case

p(T2)142 | p(T1)141 ; ({T1, T2},∅, {(p(T2), p(s(X)))})

Eval

p(T3) | p(T2)142 | p(T1)141 ; ({T1, T2, T3},∅,∅)

EvalT2/s(T3)

. . .

Case

. . .

Evalid

. . .

Eval

This process can obviously be continued infinitely often without encountering an in-

stance of a previous state. The reason is that each application of the Case rule produces

another backtracking target.

Now, by using Parallel more liberally, we can obtain the following alternative tree:

p(T1); ({T1},∅,∅)

p(T1)131 | p(T1)141 ; ({T1},∅,∅)

Case

p(T1)141 ; ({T1},∅,∅)
Parallel

p(T1)131 ; ({T1},∅,∅)

Parallel

p(T2); ({T1, T2},∅,∅)

EvalT1/s(T2)

Instance

ε; ({T1},∅, {(p(T1), p(s(X)))})

Eval

2; ({T1},∅,∅)

Evalid

ε; ({T1},∅, {(p(T1), p(X)})

Eval

ε; ({T1},∅,∅)

Success

Thus, by using the Parallel rule in these non-trivial cases, we can easily close the

tree.

Note that Instance is not only useful for closing the graph, but also for generalizing

a state. This allows for example to get rid of superfluous information in the knowledge

base.
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Example 5.30. Consider once more the one-rule logic program from Example 5.20. Now,

using another generalization we can obtain the following tree.

p(T1); ({T1},∅,∅)

p(T1)121 ; ({T1},∅,∅)

Case

ε; ({T1},∅, {(p(T1), p(s(X)))})

Eval

p(T2); ({T1, T2},∅,∅)

EvalT1/s(T2)

ε; (∅,∅,∅)

Instance

p(T2); ({T2},∅,∅)

Instance

Instance

From here on we will always use implicit generalizations in our examples to keep the

knowledge base relevant to the current state. In particular, information about variables

no longer used in the state can safely be disregarded.

Example 5.31. Consider for the last time the one-rule logic program from Example 5.20.

Now, using an implicit generalization step we obtain the following tree.

p(T1); ({T1},∅,∅)

p(T1)121 ; ({T1},∅,∅)

Case

ε; (∅,∅,∅)

Eval

p(T2); ({T2},∅,∅)

EvalT1/s(T2)

Instance

In the examples above, we used the Instance node both to refer back to an existing

node and to remove superfluous knowledge by creating a new node. There are also cases

where the Instance rule is needed to create a new, more general node with a generalized

state.

Example 5.32. Consider the following logic program consisting of just one rule:

p(X) ← p(s(X)). (15)

Now, consider the query p(0) and the corresponding tree built using the rules from Parts

1 – 5 as we have applied them so far:
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p(0); (∅,∅,∅)

p(0)151 ; (∅,∅,∅)

Case

ε; (∅,∅,∅)

Eval

p(s(0)); (∅,∅,∅)

Evalid

p(s(0))152 ; (∅,∅,∅)

Case

ε; (∅,∅,∅)

Eval

p(s(s(0))); (∅,∅,∅)

Evalid

. . .

Case

This process can obviously be continued infinitely often. But if we use the Instance

rule to generalize 0 to an abstract variable T1, we obtain the following finite tree.

p(0); (∅,∅,∅)

p(T1); ({T1},∅,∅)

Instance

p(T1)151 ; ({T1},∅,∅)

Case

ε; (∅,∅,∅)

Eval

p(s(T2)); ({T2},∅,∅)

EvalT1/T2

Instance

With the rules from Parts 1 – 5 we can also handle programs using meta-programming,

e.g., negation-as-failure expressed by two clauses. While we can also handle the case

that we have to evaluate an abstract variable (cf. the definition of Slice and Case), the

example below shows that in typical examples using negation-as-failure, we do not even

need this feature.

Example 5.33. Consider the following logic program:

not(X) ← X, !, fail. (16)

not(X). (17)

q(X) ← not(zero(X)), p(X, Y ), q(Y ). (18)

p(0, 0). (19)

p(s(X), X). (20)

zero(0). (21)
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Now, consider the class of queries q(t) where t is a ground term. The logic program clearly

terminates for these queries as clause (19) can never be applied. The corresponding tree

built using the rules from Parts 1 – 5 is:

q(T1); ({T1},∅,∅)

q(T1)181 ; ({T1},∅,∅)

Case

not(zero(T2)), p(T2, Y ), q(Y ); ({T2}, {Y },∅)

EvalT1/T2

ε; (∅,∅,∅)

Eval

not(zero(T2)), p(T2, Y ), q(Y )162 |
not(zero(T2)), p(T2, Y ), q(Y )172 | ?2; ({T2}, {Y },∅)

Case

not(zero(T2)), p(T2, Y ), q(Y )172 ;

({T2}, {Y }, {(not(zero(T2)), not(X))})

Eval

ε; (∅,∅,∅)

Backtrack

zero(T3), !2, fail, p(T3, U), q(U) |
not(zero(T3)), p(T3, U), q(U)172 | ?2; ({T3}, {U},∅)

Eval
T2/T3, Y/U

zero(T3), !2, fail, p(T3, U), q(U)213 |
not(zero(T3)), p(T3, U), q(U)172 | ?2; ({T3}, {U},∅)

Case

!2, fail, p(0, V ), q(V ) | not(zero(0)),

p(0, V ), q(V )172 | ?2; (∅, {V },∅)

Eval
T3/0, U/V

fail, p(0, V ), q(V ); (∅, {V },∅)

Cut

ε; (∅,∅,∅)

Case

not(zero(T3)), p(T3, U), q(U)172 ;

({T3}, {U}, {(zero(T3), zero(0))})

Eval

p(T4, V ), q(V ); ({T4}, {V }, {(zero(T4), zero(0))})

EvalT3/T4, U/V

ε; (∅,∅,∅)

Eval

p(T4, V ), q(V )194 | p(T4, V ), q(V )204 ;

({T4}, {V }, {(zero(T4), zero(0))})

Case

p(T4, V ), q(V )204 ; ({T4}, {V }, {(zero(T4), zero(0))})

Backtrack

q(T5); ({T5},∅,∅)

EvalT4/s(T5)

Instance

ε; (∅,∅,∅})

Eval

In the next section, Example 5.43 shows that the termination problem of this example

can be reduced to a trivial termination problem.

While we are able to close the graph for the simple examples above, in general we are

unable to close the graph as, for some paths, we never obtain an instance of a previous

node.
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Example 5.34. Consider the following simple logic program consisting just of one rule

and one fact:

p(s(X)) ← p(X), q. (22)

q. (23)

For queries of the form p(t) where t is ground, the logic program again clearly termi-

nates. Now, consider the tree built using the rules from Parts 1 – 4:

p(T1); ({T1},∅,∅)

p(T1)221 ; ({T1},∅,∅)

Case

ε; (∅,∅,∅)

Eval

p(T2), q; ({T2},∅,∅)

EvalT1/s(T2)

p(T2)222 q; ({T2},∅,∅)

Case

ε; (∅,∅,∅)

Eval

p(T3), q, q; ({T3},∅,∅)

EvalT2/s(T3)

. . .

Case

This can obviously be continued infinitely often without encountering an instance of a

previous state. The reason is that each application of a clause adds a q to the query.

For these cases we introduce the final abstract rule Split for splitting a goal of more

than one term. The basic idea is to take a state t, q | S;KB and split it into two new

states, t | S;KB for the selected “atom” and qµ | S;KB for the following goal where

µ represents an approximation of the answer substitutions for t. For such a rule to be

correct, one would have to restrict that the active cuts for t, q have no corresponding

active marks in S. Furthermore, if some instantiation of t fails, we have to backtrack

to S;KB. Thus, we only define Split for backtracking lists of one element. To obtain

such a list, we can use Parallel which has similar restrictions on active cuts and active

marks.

Thus, we refine our idea to take a state t, q; (G,F ,U) and split it into two successors

t; (G,F ,U) and qµ; (G ′,F ′,Uµ). Here, µ is an overapproximation of the answer substitu-

tions where we assume that all free variables of t are potentially instantiated and thus

replace them by a fresh abstract variable. If t contains possibly shared variables, i.e.,

non-abstract variables not in F or abstract variables not in G, we also have to replace all

such variables in q by fresh abstract variables as they might be instantiated by the answer

substitution for t. When assuming that the free variables of t are instantiated, one has

to remove them from the set of free variables F .
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The set of abstract variables instantiated by ground terms may grow by, for instance, a

free variable being replaced with a ground term by the answer substitution for t. Here, we

can use any groundness analysis that, given a predicate and a set of argument positions

known to be ground, analyzes which argument positions are instantiated with ground

terms by the answer substitution. Finally, we can also apply the overapproximation µ to

specialize our non-unification information in U .

Definition 5.35 (Abstract Inference Rules – Part 6 (Split)).

t, q; (G,F ,U)

t; (G,F ,U) qµ; (G ′,F ′,Uµ)
(Split)

where µ = ApproxSub(t,G,F), G ′ = G ∪ ApproxGnd(t, µ), and F ′ = F \ F(t).

Here, ApproxSub approximates the substitutions of the answer sets of all concretizations

w.r.t. (G,F ,U) of t:

ApproxSub(t,G,F) =

αF(t) if V(t) ⊆ G ∪ F
αF(t)αA\GαN\F otherwise

Finally, ApproxGnd approximates the abstract variables that have to be instantiated by

ground terms using a given groundness analysis GroundP : Σ × 2N → 2N which given a

predicate p and a set of ground argument positions computes the set of ground arguments

positions after a successful computation using the clauses from P:

ApproxGnd(t, µ) = {A(tiµ) | t = p(t1, . . . , tn), i ∈ GroundSlice(P,t)(p, {i | V(ti) ⊆ G})}

Lemma 5.36 (Soundness of Split). The rule Split from Definition 5.35 is sound.

Proof. Assume that tγ, qγ ∈ C(t, q; (G,F ,U)) has an infinite derivation. Then, there are

two cases. If tγ has an infinite derivation, we immediately have that tγ ∈ C(t; (G,F ,U))

has an infinite derivation. If tγ does not have an infinite derivation and we did not reach

a state of the form qγµ′ | S ′γ for some answer substitution µ′ and state S ′, we would

reach the state ε, which contradicts our assumption that tγ, qγ has an infinite derivation.

Therefore, if tγ does not have an infinite derivation, we reach states of the form qγµ′ | S ′γ
for answer substitutions µ′ and states S ′. If all qγµ′ did not have an infinite derivation, this

would contradict our assumption that tγ, qγ has an infinite derivation. Thus, there must

be a state qγµ′ that has an infinite derivation. We now show that there is a concretization

γ′ such that qγµ′ = qµγ′. There are two subcases. First, if V(t) ⊆ G ∪ F we have

V(tγ) ⊆ F as γ is a concretization and, therefore, for all a ∈ G(t), N (aγ) = ∅. Thus,

we have Dom(µ′) ⊆ F(tγ). From µ = αF(t) we know that for all x ∈ F(tγ) = F(t),

xµ ∈ A is a fresh variable. We define γ′(xµ) = xµ′ for x ∈ F(t) and γ′(x) = γ(x)
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otherwise. Then, obviously, qγµ′ = qµγ′. We are left to show that γ′ is a concretization

w.r.t. (G ′,F ′,Uµ). As we have only defined γ′ for abstract variables, clearly γ′|A = γ′.

From A(Range(µ′)) = ∅ and
⋃
a∈AA(aγ) = ∅ we know that

⋃
a∈AA(aγ′) = ∅. We

perform a case analysis based on the partition G ′ = G ] (ApproxGnd(t, µ) \ G). For a ∈ G
we have defined aγ′ = aγ and thus N (aγ′) = N (aγ) = ∅. For a ∈ ApproxGnd(t, µ)\G by

definition of ApproxGnd and equality of γµ′ and µγ′ we know that aγ′ is a ground term,

i.e., N (aγ′) = ∅. Furthermore, note that F(Range(µ′)) ⊆ F(t) and F(Range(γ)) = ∅.

Thus, F(Range(γ′)) ⊆ F(t) and, consequently, F ′(Range(γ′)) = ∅. For all (s, s′) ∈ U we

have sγ 6∼ s′γ and, consequently, sγµ′ 6∼ s′γµ′. But from γµ′ = µγ′ we get sµγ′ 6∼ s′µγ′.

Thus, for all (s′′, s′′′) ∈ Uµ, we have sγ′ 6∼ s′γ′. Second, if V(t) 6⊆ G ∪ F , the answer

substitution µ′ can potentially instantiate any non-ground term in qγ except for variables

from F(q) \ F(t). We define γ′ in such a way that γµ′ = µγ′. This is always possible

because Dom(µ′)∩ (F \ F(t)) = ∅ and all variables in Range(µ) are fresh. Then, clearly,

qγµ′ = qµγ. We are left to show that γ′ is a concretization w.r.t. (G ′,F ′,Uµ). As we

only need to define γ′ for abstract variables, clearly γ′|A = γ′. From A(Range(µ′)) = ∅
and

⋃
a∈AA(aγ) = ∅ we know that

⋃
a∈AA(aγ′) = ∅. We perform a case analysis

based on the partition G ′ = G ] (ApproxGnd(t, µ) \ G). For a ∈ G we have effectively

defined aγ′ = aγ and thus N (aγ′) = N (aγ) = ∅. For a ∈ ApproxGnd(t, µ) \ G by

definition of ApproxGnd and equality of γµ′ and µγ′ we know that aγ′ is a ground term,

i.e., N (aγ′) = ∅. Furthermore, note that F(Range(µ′)) ⊆ F(t) and F(Range(γ)) = ∅.

Thus, F(Range(γ′)) ⊆ F(t) and, consequently, F ′(Range(γ′)) = ∅. For all (s, s′) ∈ U we

have sγ 6∼ s′γ and, consequently sγµ′ 6∼ s′γµ′. But from sγµ′ = sµγ′ and s′γµ′ = s′µγ′

we get sµγ′ 6∼ s′µγ′. Thus, for all (s′′, s′′′) ∈ Uµ, we have sγ′ 6∼ s′γ′.

Example 5.37. Consider again the logic program from Example 5.34. Now, consider the

tree built using the rules from Parts 1 – 6:

p(T1); ({T1},∅,∅)

p(T1)221 ; ({T1},∅,∅)

Case

ε; (∅,∅,∅)
Eval

p(T2), q; ({T2},∅,∅)

EvalT1/s(T2)

p(T2); ({T2},∅,∅)

Split

Instance

q; (∅,∅,∅)
Split

q23
2 ; (∅,∅,∅)

Case

ε; (∅,∅,∅)

Eval

2; (∅,∅,∅)

Evalid

ε; (∅,∅,∅)
Success

Thus, with the help of the Split rule, we can easily close the tree.
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5.5. Termination Graph to Logic Program

In this section we show how to extract a cut-free logic program from so-called termination

graphs built by the abstract rules from the preceding section. For a graph G and a rule

Rule, we use the notation Rule(G) to denote all nodes of G to which Rule has been

applied. We denote by Succ(i, n) the i-th child of n.

Definition 5.38 (Termination Graph). A finite graph built from an initial state (s;KB)

using the rules from Definitions 5.14 – 5.35 is called a termination graph if, and only

if, there is no cycle consisting only of Instance nodes and all leaves are of the form

(ε;KB′) for some knowledge base KB′.

First, we must not have cycles consisting only of Instance nodes as we do not obtain

any clauses for them and thus, could falsely prove termination.

Second, we must have applied some rule to all nodes of the graph except for final states,

i.e., those states where our computation stops. These are exactly those nodes for which

the state consists only of the empty backtracking list ε.

Example 5.39. Consider again the graph from Example 5.33. All leaves are abstract

states of the form ε; (∅,∅,∅). The only cycle traversing the only Instance node

q(T5); ({T5},∅,∅) also contains, for instance, the Case node q(T1); ({T1},∅,∅). Thus,

this graph is indeed a termination graph.

Note that we can always obtain a termination graph for any given logic program P and

given abstract state S;KB. The first observation is that by using Parallel and Split,

for any abstract state we can obtain a number of successor states consisting of just one

“atomic” query p(t1, . . . , tk);KB or just a question mark, i.e., ?m;KB. For the latter we

can apply Failure to obtain final states. For the former, our second observation is that

by using Instance, we can generalize states of the form p(t1, . . . , tn);KB to states of the

form p(T1, . . . , Tk); (∅,∅,∅) where T1, . . . , Tk are fresh variables from A. The conditions

for Instance are trivially satisfied as we do not instantiate any variables from N and as

G ′, F ′, and U ′ are empty.

To the new states we apply Case, Backtrack, Success, Failure, and Eval as long

as possible where we always use Parallel and Split to deconstruct non-trivial back-

tracking lists and, if applicable, Instance to generalize p(t′1, . . . , t
′
n);KB to p(T1, . . . , Tk);

(∅,∅,∅). As the signature of P is finite and as we can reuse the generalized states, after

finitely many steps we obtain a termination graph.

Example 5.40. The following graph can be obtained using Definitions 5.14 – 5.35 for the

program from Example 5.1 and the set of queries Q = {div(t1, t2, t3) | t1, t2 are ground}:
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div(T1, T2, T3); ({T1, T2},∅,∅)

div(T1, T2, T3)51 | div(T1, T2, T3)61 |
div(T1, T2, T3)71 | ?1; ({T1, T2},∅,∅)

Case

!1, fail | div(T1, 0, T3)61 | div(T1, 0, T3)71 | ?1;

({T1},∅,∅)

Eval

T2/0

fail; (∅,∅,∅)

Cut

ε; (∅,∅,∅)

Case

div(T1, T2, T3)61 | div(T1, T2, T3)71 | ?1;

({T1, T2},∅, {(div(T1, T2, T3), div(X, 0, Z))})

Eval

!1,=(T4, 0) | div(0, T2, T3)71 | ?1;

({T2},∅, {(div(0, T2, T3), div(X, 0, Z))})

Eval

T1/0, T3/T4

=(T4, 0); (∅,∅,∅)

Cut

=(T4, 0)
8
4; (∅,∅,∅)

Case

2; (∅,∅,∅)

Eval

T4/0

ε; (∅,∅,∅)

Success

ε; (∅,∅,∅)

Eval

div(T1, T2, T3)71; ({T1, T2},∅, {(div(T1, T2, T3),

div(X, 0, Z)), (div(T1, T2, T3), div(0, Y, Z))})

Eval

minus(T5, T6, U), div(U, T6, T7); ({T5, T6}, {U},
{(div(T5, T6, T3), div(X, 0, Z)), (div(T5, T6, T3), div(0, Y, Z))})

Eval

T1/T5, T2/T6, T3/s(T7)

ε; (∅,∅,∅)

Eval

minus(T5, T6, U); ({T5, T6}, {U}, {(div(T5, T6, T3),

div(X, 0, Z)), (div(T5, T6, T3), div(0, Y, Z))})

Split

div(T8, T6, T7); ({T6, T8},∅, {(div(T5, T6, T3),

div(X, 0, Z)), (div(T5, T6, T3), div(0, Y, Z))})

Split
U/T8

Instance

minus(T5, T6, U)92 | minus(T5, T6, U)102 | minus(T5, T6, U)112 ;

({T5, T6}, {U}, {(div(T5, T6, T3), div(X, 0, Z)), (div(T5, T6, T3), div(0, Y, Z))})

Case

minus(T5, T6, U)92; ({T5, T6}, {U}, {(div(T5, T6, T3),

div(X, 0, Z)), (div(T5, T6, T3), div(0, Y, Z))})

Parallel

minus(T5, T6, U)102 | minus(T5, T6, U)112 ; ({T5, T6}, {U},
{(div(T5, T6, T3), div(X, 0, Z)), (div(T5, T6, T3), div(0, Y, Z))})

Parallel

ε; (∅,∅,∅)

Backtrack

minus(T5, T6, U)102 ; ({T5, T6}, {U}, {(div(T5, T6, T3),

div(X, 0, Z)), (div(T5, T6, T3), div(0, Y, Z))})

Parallel

minus(T5, T6, U)112 ; ({T5, T6}, {U}, {(div(T5, T6, T3),

div(X, 0, Z)), (div(T5, T6, T3), div(0, Y, Z))})

Parallel

ε; (∅,∅,∅)

Backtrack

minus(T9, T10, V ); ({T9, T10}, {V },∅)

Eval

T5/s(T9), T6/s(T10), U/V

ε; (∅,∅,∅)

Eval

minus(T9, T10, V )93 | minus(T9, T10, V )103 | minus(T9, T10, V )113 ; ({T9, T10}, {V },∅)

Case

minus(T9, T10, V )93; ({T9, T10}, {V },∅)

Parallel

minus(T9, T10, V )103 | minus(T9, T10, V )113 ; ({T9, T10}, {V },∅)

Parallel

2; (∅,∅,∅)

Eval

T9/0, V/0

ε; (∅,∅,∅)

Eval

minus(T9, T10, V )103 ; ({T9, T10}, {V },∅)

Parallel

minus(T9, T10, V )113 ; ({T9, T10}, {V },∅)

Parallel

ε; (∅,∅,∅)

Success

2; (∅,∅,∅)

Eval

T9/T11,T10/0, V/T11

ε; (∅,∅,∅)

Eval

Instance

minus(T12, T13,W ); ({T12, T13}, {W},∅)

Eval

T9/s(T12), T10/s(T13), V/W

ε; (∅,∅,∅)

Eval

ε; (∅,∅,∅)

Success
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Remember that our goal is to show termination of the initial state of the graph. By

soundness of the abstract rules, we are left to prove that the cycles in our graph cannot

be traversed infinitely often. Here, we have to show that the Instance edges for div and

minus cannot be traversed infinitely often.

To show that the Instance edges cannot be traversed infinitely often, we build clauses

for all paths in the graph that start in the topmost node, in the left child of the only

Split node, or in the successor node of the Instance node for minus. We look at all

paths that either end in one of the Success or Instance nodes or in the left child of the

only Split node.

For the path from div(T1, T2, T3); ({T1, T2},∅,∅) to 2; (∅,∅,∅), by looking at the

substitutions T1/0, T3/T4 and T4/0 on the path, we obtain the fact div1(0, T2, 0). Note

that we can use fresh natural numbers to label different occurrences of the same root

symbol.

For the path from div(T1, T2, T3); ({T1, T2},∅,∅) to div(T8, T6, T7); ({T6, T8},∅,
{(div(T5), T6, T3), div(X, 0, Z)), (div(T5), T6, T3), div(0, Y, Z))}) we have to consider the sub-

stitutions T1/T5, T2/T6, T3/s(T7) and U/T8. We can also use that minus(T5, T6, U) needs

to be derived to 2 before we can continue with div. Thus, we obtain the new clause

div1(T5, T6, s(T7))← minus1(T5, T6, T8), div1(T8, T6, T7). Note that we used the same fresh

natural number for both occurrences of div as they are linked by an Instance edge.

Continuing in this manner, we obtain the following logic program for which we have

to show termination w.r.t. the set of queries Q = {div1(t1, t2, t3) | t1, t2 are ground} as

specified by the knowledge base in the first node.

div1(0, T2, 0).

div1(T5, T6, s(T7)) ← minus1(T5, T6, T8), div1(T8, T6, T7).

div1(T5, T6, s(T7)) ← minus1(T5, T6, U).

minus1(s(0), s(T10), 0).

minus1(s(T11), s(0), T11).

minus1(s(T12), s(T13), V ) ← minus2(T12, T13, V ).

minus2(0, T10, 0).

minus2(T11, 0, T11).

minus2(s(T12), s(T13),W ) ← minus2(T12, T13,W ).

The above logic program can easily be proved terminating both by the transformational

method presented in Chapter 3, by the direct one from Chapter 4, and, of course, by their

combination through Theorem 4.22. Indeed, virtually all methods for proving termination

of logic programs will succeed to prove termination of this definite logic program.



114 Chapter 5. Logic Programs with Cuts

We now show how to obtain a logic program and a set of queries (characterized by a

moding function) from a termination graph. To this end, we first need the notion of a

clause path to characterize paths in the termination graph from which we generate the

clauses for the logic program.

Definition 5.41 (Clause Path). A path π = n1 . . . nk is a clause path w.r.t. G if, and

only if, k > 1 and the following conditions are satisfied:

• n1 ∈ Succ(1, Instance(G) ∪ Split(G)),

• nk ∈ Success(G) ∪ Instance(G) ∪ Succ(1, Split(G)),

• for all 1 ≤ j < k, nj 6∈ Instance(G), and

• for all 1 < j < k, nj−1 ∈ Split(G) =⇒ nj = Succ(2, nj−1).

Intuitively, the above definition characterizes all non-trivial paths that start at the

successor of an Instance node or at a left successor of a Split node, end at a Success

node, at an Instance node, or at a left successor of a Split node, and do not traverse an

Instance edge or left successors of Split nodes. We do not traverse Instance edges to

make sure there are only finitely many clause paths. Instead of following left successors

of Split nodes, we get clause paths starting at these nodes. These will correspond to the

intermediate body atoms in the generated logic program.

Now, for obtaining a cut-free logic program, the idea is to construct one clause for each

clause path π = n1 . . . nk. Here, the head of the new clause is the renamed state of n1

where we apply the substitutions between n1 and nk. The last body atom is the renamed

state of nk. As intermediate body atoms we use renamed states of nodes n that are left

children of some ni ∈ Split(G). Note that also here, we apply the substitutions between

ni and nk to the respective intermediate body atom.

The renaming contributes to the success of our method in three ways. First, it allows

to use different predicate symbols for different nodes. This is needed, for instance, in

Example 5.40 where the cut-free logic program would not terminate if one was to iden-

tify minus1 and minus2. Second, it allows to represent a whole state by one atom, even

if this state consisted of a non-atomic goal or a backtracking list with more than one

element. Third, it simplifies the problem even for states consisting of a goal of one atom

by flattening the context of the variables to one predicate symbol.

The only remaining problem is that paths may contain Backtrack or Success edges

or go to the right child of some Eval node. Here, the substitutions that correspond to

the same cut scope, i.e., the same number m, must not be regarded for instantiating the

head of the new clause. The reason is that backtracking undoes the substitutions of the

clauses tried before. Thus, we collect the substitutions between n1 and nk backwards and

whenever we pass a a problematic edge, we keep track of the current scope m. When
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we come from the left child of some Eval node with the same m, we disregard the

corresponding substitution. Note that the same is not necessary for the intermediate

body atoms as we do not allow any non-empty backtracking list after the goal to split.

Definition 5.42 (Logic Programs and Queries from Termination Graph). The logic

program PG and the moding function mG for a termination graph G are defined as

PG =
⋃
π clause-path w.r.t. GClause(π) and mG(p, i) = in if, and only if, for all clause-paths

π = (n1; (G,F ,U)) . . . w.r.t. G, whenever Rename(n1) = p(x1, . . . , xn) then xi ∈ G.

For a path π = n1 . . . nk, we define Clause(π) = Rename(n1)σπ,∅ ← Iπ, Rename(nk).

Here, the Rename function is defined as follows. For n ∈ Success(G), Rename(n) is 2

and for n ∈ Instance(G), it is Rename(Succ(1, n))µ where µ is the substitution associated

with this Instance node. Otherwise, Rename(n) is pn(V(n)) where pn is a fresh predicate

symbol and V(S;KB) = V(S).

Finally, σπ,M and Iπ are defined as follows (where the substitutions µ and σ′ and the

index m are from the corresponding node nj−1).

σn1...nj ,M =



id if j = 1

σn1...nj−1,Mµ if nj−1 ∈ Split(G), nj = Succ(2, nj−1)

σn1...nj−1,Mσ
′ if nj−1 ∈ Eval(G), nj = Succ(1, nj−1),

and m 6∈M for nj−1 = (t, q)im | S;KB

σn1...nj−1,Mσ|G if nj−1 ∈ Eval(G), nj = Succ(1, nj−1),

and m ∈M for nj−1 = (t, q)im | S; (G,F ,U)

σn1...nj−1,M∪{m} if nj−1 ∈ Eval(G), nj = Succ(2, nj−1)

or nj−1 ∈ Backtrack(G) ∪ Success(G)

and nj = (t, q)im | S;KB

σn1...nj−1,M otherwise

Inj ...nk =


2 if j = k

Rename(Succ(1, nj))σnj ...nk,∅, Inj+1...nk if nj ∈ Split(G), nj+1 = Succ(2, nj)

Inj+1...nk otherwise

Example 5.43. The graphG in Example 5.33 is a termination graph. Applying the above

definition we obtain the single clause logic program PG with the clause q(s(T5))← q(T5)

and the moding function mG where mG(q, 1) = in. Termination of PG is trivial and can

be shown by any technique.

The following lemma shows how the clauses of LP (G) can be used to simulate concrete

derivations of concrete states described by the states of the graph.
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Lemma 5.44 (Simulation using LP(G)). Let S0γ0 ∈ C(S0;KB0) and Skγk ∈ C(Sk;KB′)
for some path π = n0 . . . nk w.r.t. G with ni = Si;KBi where for i < k, ni 6∈ Instance(G).

If there is a concrete derivation from S0γ0 to Skγk | S ′γk, then Rename(n0)γ0 `Clause(π)

◦ `∗PG Rename(nk)γk.

Proof. We perform the proof by induction, using as the induction relation the lexico-

graphic combination of the length k of the concrete derivation from S0γ0 to Skγk | S ′γk
and the edge relation of the graph G′ obtained from G by keeping only outgoing edges

from nodes in Instance(G) ∪ Split(G) ∪ Parallel(G). This relation is well-founded,

as every cycle of the termination graph must contain at least one outgoing edge from

Instance(G) ∪ Split(G) ∪ Parallel(G).

For k = 0 we have Clause(π) = Rename(n0)← Rename(n0). Thus, obviously we have

Rename(n0)γ0 `Clause(π) Rename(n0)γ0. For k > 0, we can assume the lemma holds for

concrete derivations of length at most k − 1.

We now perform a case analysis based on nk and nk−1. If nk−1 ∈ Split(G) and nk =

Succ(2, nk−1), i.e., we traverse the right child of a Split node, we know that by the

induction hypothesis Rename(n0)γ0 `Clause(n1...nk−1) Rename(nk−1)γk−1. From the proof

of Split we know that γk−1µ
′ = µγk where Rename(Succ(1, nk−1))γk−1 `∗PG 2 with

answer substitution µ′. We may assume the latter due to the induction hypothesis and

the derivation being shorter than k. Thus, we obtain:

Rename(n0)γ0

`Clause(π) ◦ `PG Rename(Succ(1, nk−1))µγk, Rename(nk)µ
−1γk−1

= Rename(Succ(1, nk−1))γk−1µ
′, Rename(nk)µ

−1γk−1

`PG Rename(nk)µ
−1γk−1µ

′

= Rename(nk)µ
−1µγk

= Rename(nk)γk

If nk−1 ∈ Eval(G) and nk = Succ(1, nk−1), i.e., we traverse the left child of an Eval

node, we know that by the induction hypothesis, Rename(n0)γ0 `Clause(n1...nk−1) ◦ `∗PG
Rename(nk−1)γk−1. From the proof of Eval we know that qγk−1σ

′′ = qσ′γk and Sγk−1 =

Sσ|Gγk. Let nk−1 = t, q | S; (G,F ,U). Then, we obtain:

Rename(n0)γ0

`Clause(π) ◦ `PG Rename(qγk−1σ
′′ | Sγk−1; (G,F ,U))

= Rename(qσ′γk | Sσ|Gγk; (G,G,U))

= Rename(nk)γk

If nk−1 ∈ Eval(G) and nk = Succ(2, nk−1) or nk−1 ∈ Backtrack(G) ∪ Success(G) and
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nk−1 = (t, q)im | S;KBk−1, i.e., we backtrack by removing the first element of the back-

tracking list, we perform a case analysis based on the existence of a Case node introducing

m in n1 . . . nk−1. If such a Case node does not exist in our path, there is also no Split

node in our path. Thus, σπ = id and Iπ = 2. Then, Rename(n0)γ0 `Rename(n0)←Rename(nk)

Rename(nk)γk. If there is such a Case node in our path, i.e., there is a j such that

nj ∈ Case(G) and nj = (t′, q′)i
′
m | S ′;KBj, we know by the induction hypothesis that

Rename(n0)γ0 `Clause(n1...nj) ◦ `PG Rename(nj)γj. As σnj ...nk = id and Inj ...nk = 2 we

have Rename(n0)γ0 `Clause(π) ◦ `PG Rename(nk)γk.
Finally, if nk−1 is in none of the above sets, we have σπ = σn1...nk−1

and Iπ = In1...nk−1
.

Again, from the induction hypothesis we know that Rename(n0)γ0 `Clause(n1...nk−1) ◦ `PG
Rename(nk−1)γk−1. From the definition of the abstract rules used, we know that V(sk) ⊆
V(sk−1) and, thus, Rename(n0)γ0 `Clause(π) ◦ `PG Rename(nk)γk−1 = Rename(nk)γk.

Now, we need a way to relate concrete infinite derivations to infinite paths in the graph.

As the Instance rule allows renaming of variables and as the question marks introduced

by Case are unique, we need to view outgoing edges of Instance nodes not just as

referring back to a previous node, but to a renamed-apart copy of the termination graph

where variable names and Case marks have been renamed accordingly. We call the

infinite graph that we obtain in this way the unrolled termination graph.

Lemma 5.45 (Infinite Path for Infinite Derivation). Let Sγ ∈ C(S;KB) for some n0 =

S;KB ∈ G. If Sγ has an infinite concrete derivation s0s1s2 . . . with s0 = Sγ, there is an

infinite path n0n1 . . . in the unrolled termination graph and there are indices j0, j1, . . . such

that for all i there is a prefix s′ji of sji with s′ji ∈ C(ni) and s′ji has an infinite derivation.

Proof. By the proofs of soundness for all abstract rules, we know that for any node n,

if some s′0 ∈ C(n) has an infinite concrete derivation r0r1r2 . . ., for some j there is some

prefix r′j of rj that has an infinite derivation r′jr
′
j+1r

′
j+2 . . . where r′k is a prefix of rk for

k ≥ j and r′j ∈ C(n′) for some successor node n′ of n.

To see this, consider the following case analysis over all abstract rules. For Success,

Failure, Cut, Case, and Backtrack we clearly have j = 1 and r′1 = r1. That

r1 ∈ C(Succ(1, n)) holds follows directly from the proofs of these rules. Similarly, for

Instance we have j = 0, r′0 = r0, and r′0 ∈ C(Succ(1, n)).

For Parallel we perform a case analysis. If Sγ from r0 = Sγ | S ′γ has an infinite

derivation, we have j = 0, r′0 = Sγ, and r′0 ∈ C(Succ(1, n)). If Sγ does not have an infinite

derivation, there must be a j such that rj = S ′γ. We have r′j = rj and r′j ∈ C(Succ(2, n)).

For Split we perform a case analysis. If tγ from r0 = tγ, qγ has an infinite derivation,

j = 0, r′0 = tγ, and r′0 ∈ C(Succ(1, n)). If tγ has not infinite derivation, there must be

a j such that rj = qγµ′ for tγ `∗P 2 with answer substitution µ′. We have r′j = rj and

r′j ∈ C(Succ(2, n)).
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By applying the above reasoning repeatedly, we obtain the infinite list of indices

j0j1j2 . . . and, thus, prove the lemma.

Theorem 5.46 (Correctness). If G is a termination graph for P such that PG is terminat-

ing w.r.t. the moding mG, then all concretizations of all states have only finite derivations

w.r.t. the rules of Definition 5.6.

Proof. Assume PG is terminating w.r.t. the moding function mG, but there is a concretiza-

tion Sγ ∈ C(S;KB) from some n0 = S;KB that has an infinite concrete derivation. Then,

according to Lemma 5.45 there is an infinite path n0n1n2 . . . in the unrolled termination

graph and there are indices j0j1j2 . . . such that for all i there is a prefix s′ji of sji with

s′ji ∈ C(ni) and s′ji has an infinite derivation.

Then, there is a k such that the infinite suffix nknk+1nk+2 . . . of n0n1n2 . . . consists of

an infinite sequence of clause paths π0π1π2 . . . and there are indices l0l1l2 . . . such that for

nlm = Slm ;KBlm and s′lm ∈ C(nlm) we have s′lm ∈ C(nm) where πm = nm . . ..

Now, according to Lemma 5.44, for all m ∈ N, we have Rename(nlm)γlm `Clause(πm)

◦ `PG Rename(nlm+1)γlm+1 .

Thus, Rename(nl0)γl0 has an infinite derivation w.r.t. PG. As Sl0γl0 ∈ C(nl0), PG is

not terminating w.r.t. the moding function mG. This contradicts our initial assumption

and, thus, proves the theorem.

Corollary 5.47 (Termination Analysis of Logic Programs with Cuts). A logic program

P is terminating w.r.t. a class of queries described by a symbol p ∈ Σ and a mod-

ing function m : Σ × N → {in,out} if G is a termination graph for the initial node

p(T1, . . . , Tn), (G,∅,∅) where G = {Ti | m(p, i) = in} and PG terminates w.r.t. the mod-

ing function mG.

The reverse direction of the corollary above does not hold. The following example

demonstrates that our pre-processing is not termination-preserving.

Example 5.48. Consider the logic program P consisting of the following clauses:

q(X)← p(X), !. (24)

p(0). (25)

p(s(X))← p(X). (26)

Now, consider the set of queries described by the symbol q and the moding function m

with m(q, 1) = out, i.e., the set of all queries q(t) for arbitrary terms t. In our setting of

unification with occur check, we can assume t to be a finite term. But then, for any t,

after finitely many steps removing one s, there are two possibilities. First, the derivation

can fail because we reach some function symbol different to 0 and s. Second, we reach 0

or a variable and, consequently, the cut. Thus, P terminates w.r.t. m.
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We obtain the following termination graph G for the initial node q(T1).

q(T1); (∅,∅,∅)

q(T1)241 ; (∅,∅,∅)

Case

p(T2), !; (∅,∅,∅)

EvalT1/T2

ε; (∅,∅,∅)

Eval

p(T2), !252 | p(T2), !262 | ?2; (∅,∅,∅)

Case

! | p(T2), !262 | ?2; (∅,∅,∅)
Eval

T2/0

2; (∅,∅,∅)

Cut

ε; (∅,∅,∅)

Success

p(T2), !262 ; (∅,∅, {(p(T2), p(0))})

Eval

p(T3), !2; (∅,∅, {(p(T2), p(0))})

EvalT2/s(T3)

Instance

ε; (∅,∅,∅)

Eval

We obtain PG containing the following clauses:

p1(0).

p1(s(T3))← p1(T3).

For the moding function mG we obtain mG(p1, 1) = out. But, for instance, the query

p1(X) does not terminate.

5.6. Summary

We have introduced a novel non-termination preserving pre-processing method to elimi-

nate the effect of cuts in many practically relevant cases. After this pre-processing, any

technique for proving universal termination of logic programming can be applied. As our

method also works for meta-programming and as cuts can be used to express negation-as-

failure as well as existential termination, the contributions of this chapter solve challenges

(i), (ii), and (iii) from the beginning of this chapter.

The success for meta-programming and, in particular, negation-as-failure is demon-

strated by Example 5.33 as the logic program obtained after the pre-processing step is

trivially termination (cf. Example 5.43).

Regarding existential termination, Example 5.48 shows that without further improve-

ments, our approach in its current form is not very strong for showing existential termina-

tion. Note that the graph does contain all information needed for the termination proof.

The problem is just that this information is not used when constructing the cut-free logic

programs.
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This pre-processing has been implemented in our tool AProVE and the implementation

indeed succeeds in proving termination of both Example 5.1 and Example 5.33. It has

also been tested successfully on a number of further examples where the cut is needed to

ensure termination.

Future work would primarily be to make the abstract rules more precise, e.g., by using

sharing analysis to track possibly shared variables more precisely, by better approximating

answer substitutions for the Split rule, or by using an approach based on argument filters

(cf. Chapter 3) instead of simply tracking abstract variables instantiated by ground terms.

Finally, additional shape analysis for the structure of terms used in answer substitutions

should improve power on queries expressing existential termination (cf. Example 5.48).



Part II.

Automating Search by Encoding to SAT





6. Recursive Path Order

In the first part of this thesis we presented powerful techniques for termination analysis of

logic programs. Regardless of whether we use the transformational approach of Chapter 3,

the direct approach of Chapter 4, their combination through Theorem 4.22, or whether

we apply the pre-processing from Chapter 5 – in the end it all boils down to searching for

a well-founded order on terms.

To this end, many tools search for polynomial orders, i.e., polynomial interpretations of

terms into natural numbers. Still, there are many natural examples where no tool based

on polynomial orders can show termination.

Example 6.1. The following logic program from the [TPD07] can be used to compute

the conjunctive normal form (CNF) of a propositional formula represented by a/2 and

o/2 for conjunction and disjunction, respectively, and n/1 for negation.

cnfequiv(X, Y )← transform(X,Z), cnfequiv(Z, Y ).

cnfequiv(X,X).

transform(n(n(X)), X).

transform(n(a(X, Y )), o(n(X), n(Y ))).

transform(n(o(X, Y )), a(n(X), n(Y ))).

transform(o(X, a(Y, Z)), a(o(X, Y ), o(X,Z))).

transform(o(a(X, Y ), Z), a(o(X,Z), o(Y, Z))).

transform(o(X1, Y ), o(X2, Y ))← transform(X1, X2).

transform(o(X, Y 1), o(X, Y 2))← transform(Y 1, Y 2).

transform(a(X1, Y ), a(X2, Y ))← transform(X1, X2).

transform(a(X, Y 1), a(X, Y 2))← transform(Y 1, Y 2).

transform(n(X1), n(X2))← transform(X1, X2).

The clauses for transform implement one transformation step which can either be elimi-

nation of double negation, De Morgan’s rule, or distribution. The last 5 clauses allow to

descend into formulas. Finally, the first answer for cnfequiv(t,X), where t is a proposi-

tional formula, is the CNF of t. At the end of Chapter 7 we are able to use recursive path

order to show termination w.r.t. the set of queries {cnfequiv(t1, t2) | t1 is ground }.
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Since 2006, several papers have illustrated the huge potential in applying SAT solvers

for various types of termination problems for term rewrite systems (TRSs). The key idea

is classic: the specific NP-complete termination problem for a TRS R is encoded to a

propositional formula ϕ which is satisfiable if and only if R has the desired termination

property. Satisfiability of ϕ is tested using a state-of-the-art SAT solver [LP08, ES07] and

the termination proof for R is reconstructed from a satisfying assignment of ϕ. However,

in order to obtain significant speedups, it is crucial to base the approach on polynomial-

size encodings which are also small in practice.

The first such attempt addresses LPO-termination [KK04]. This work is based on BDDs

and does not yield competitive results. A significant improvement is described in [CLS06]

which presents an extremely fast SAT-based implementation. Successful SAT encodings

of other termination techniques are presented in [EWZ06, FGM+07, HW06, ZM07]. A

common theme in all of these works is to represent (finite domain) integer variables as

binary numbers in bit representation and to encode arithmetic constraints as Boolean

functions on these representations.

This chapter introduces the first SAT-based encoding for full recursive path orders.

The main new and interesting contributions compared to [CLS06] are (1) the encoding

for the lexicographic comparison w.r.t. permutations and (2) the encoding for the multiset

extension of the base order.

Our encoding of RPO is implemented in the termination prover AProVE [GST06]. The

combination of a termination prover with a SAT solver yields a surprisingly fast implemen-

tation of RPO. All 865 TRSs in the Termination Problem Data Base (TPDB) [TPD06]

are analyzed in 50 seconds for the case of strict precedences, i.e., the SAT solver decides

whether a given TRS is terminating with RPO in, on average, less than 100 ms. Allowing

non-strict precedences takes only 85.3 seconds. Moreover, power increases considerably

compared to the implementation of LPO described in [CLS06]: 25 additional termination

proofs are obtained.

Note that this collection also contains TRSs that are the results of transforming logic

programs to term rewriting in the spirit of Chapter 3. Such TRSs typically produce

particularly hard search problems as the arities of the many function symbols introduced

by the translation are rather high (5 – 20 arguments per function symbol). Thus, an

efficient implementation is absolutely essential for the practical application of recursive

path orders to TRSs resulting from logic programming.

After the necessary preliminaries on RPO in Section 6.1, Section 6.2 shows how to en-

code both multiset comparisons and lexicographic comparisons w.r.t. permutations, and

how to combine them into a single class of orders. In Section 6.3 we describe the imple-

mentation of our results and provide extensive experimental evidence indicating speedups

in orders of magnitude. We summarize the contributions of this chapter in Section 6.4.
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6.1. Preliminaries

The classical approach to prove termination of a TRS R is to find a reduction order �
which orients all rules `→ r in R (i.e., ` � r). A reduction order is an order which is well-

founded, monotonic, and stable (closed under contexts and substitutions). In practice,

most reduction orders amenable to automation are simplification orders [Der82].

Three of the most prominent simplification orders are the lexicographic path order

(LPO) [KL80], the multiset path order (MPO) [Der82], and the recursive path order

(RPO) [Les83], which combines the lexicographic and multiset path order allowing also

permutations in the lexicographic comparison. This section introduces their definitions

using a formulation that is suitable for the subsequent SAT encoding.

We assume all terms to be constructed over a signature Σ of function symbols and

variables V . For a quasi-order % (i.e., a transitive and reflexive relation), we define s � t

if, and only if, s % t and t 6% s and we define s ∼ t if, and only if, both s % t and t % s.

Path orders are defined in terms of lexicographic and multiset extensions of a base order

(on terms). We often denote tuples of terms as s̄ = 〈s1, . . . sn〉, etc.

Definition 6.2 (lexicographic extension). Let % be a quasi-order. The lexicographic

extensions of �, ∼, and % are defined on sequences of terms:

• 〈s1, . . . , sn〉 ∼lex 〈t1, . . . , tm〉 if and only if n = m and si ∼ ti for all 1 ≤ i ≤ n

• 〈s1, . . . , sn〉 �lex 〈t1, . . . , tm〉 if and only if (a) m = 0 and n > 0; or

(b) s1 � t1; or (c) s1 ∼ t1 and 〈s2, . . . , sn〉 �lex 〈t2, . . . , tm〉.

• %lex = ∼lex ∪ �lex

So for tuples of numbers s̄ = 〈3, 3, 4, 0〉 and t̄ = 〈3, 2, 5, 6〉, we have s̄ >lex t̄ as s1 = t1

and s2 > t2 (where > is the usual order on numbers).

The multiset extension of an order � is defined as follows: s̄ �mul t̄ holds if t̄ is obtained

by replacing at least one element of s̄ by a finite number of (strictly) smaller elements.

However, the order of the elements in s̄ and t̄ is irrelevant. For example, let s̄ = 〈3, 3, 4, 0〉
and t̄ = 〈4, 3, 2, 1, 1〉. We have s̄ >mul t̄ because s1 = 3 is replaced by the smaller elements

t3 = 2, t4 = 1, t5 = 1 and s4 = 0 is replaced by zero smaller elements. So each element

in t̄ is “covered” by some element in s̄. Such a cover is either by a larger si (then si may

cover several tj) or by an equal si (then one si covers one tj). In this chapter we formalize

the multiset extension by a multiset cover which is a pair of mappings (γ, ε). Intuitively,

γ expresses which elements of s̄ cover which elements in t̄ and ε expresses for which si

this cover is by means of equal terms and for which by means of greater terms. This

formalization facilitates encodings to propositional logic.

So in the example above, we have γ(1) = 3, γ(2) = 2 (since t1 is covered by s3 and t2

is covered by s2), and γ(3) = γ(4) = γ(5) = 1 (since t3, t4, and t5 are all covered by s1).
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Moreover, ε(2) = ε(3) = true (since s2 and s3 are replaced by equal components), whereas

ε(1) = ε(4) = false (since s1 and s4 are replaced by (possibly zero) smaller components).

Of course, in general multiset covers are not unique. For example, t2 could also be covered

by s1 instead of s2.

Definition 6.3 (multiset cover). Let s̄ = 〈s1, . . . sn〉 and t̄ = 〈t1, . . . tm〉 be tuples of

terms. A multiset cover (γ, ε) is a pair of mappings γ : {1, . . . ,m} → {1, . . . , n} and

ε : {1, . . . , n} → {false, true} such that for each 1 ≤ i ≤ n, if ε(i) (indicating equality)

then {j | γ(j) = i} is a singleton set.

For s̄ = 〈s1, . . . sn〉 and t̄ = 〈t1, . . . tm〉 we define that s̄ %mul t̄ if there exists a multiset

cover (γ, ε) such that γ(j) = i implies that either: ε(i) = true and si ∼ tj, or ε(i) = false

and si � tj.

Definition 6.4 (multiset extension). Let % be a quasi-order on terms. The multiset

extensions of %, �, and ∼ are defined on tuples of terms:

• 〈s1, . . . , sn〉 %mul 〈t1, . . . , tm〉 if and only if there exists a multiset cover (γ, ε) such

that for all i, j, γ(j) = i ⇒ (if ε(i) then si ∼ tj else si � tj).

• 〈s1, . . . , sn〉 �mul 〈t1, . . . , tm〉 if and only if 〈s1, . . . , sn〉 %mul 〈t1, . . . , tm〉 and for

some i, ¬ε(i), i.e., some si is not used for equality but rather replaced by zero or

more smaller arguments tj.

• 〈s1, . . . , sn〉 ∼mul 〈t1, . . . , tm〉 if and only if 〈s1, . . . , sn〉 %mul 〈t1, . . . , tm〉, n = m,

and for all i, ε(i), i.e., all si are used to cover some tj by equality.

Let ≥Σ denote a quasi-order (a so-called precedence) on the set of function symbols

Σ and let >Σ = (≥Σ \ ≤Σ) and ≈Σ = (≥Σ ∩ ≤Σ). Then ≥Σ induces corresponding

lexicographic and multiset path orders on terms.

Definition 6.5 (lexicographic and multiset path orders). For a precedence ≥Σ and ρ ∈
{lpo,mpo} we define the relations �ρ and ∼ρ on terms. We use the notation s̄ =

〈s1, . . . sn〉 and t̄ = 〈t1, . . . tm〉.

• s �ρ t if, and only if, s = f(s̄) and one of the following holds:

(1) si �ρ t or si ∼ρ t for some 1 ≤ i ≤ n; or

(2) t = g(t̄) and s �ρ tj for all 1 ≤ j ≤ m and either:

(i) f >Σ g or (ii) f ≈Σ g and s̄ �extρ t̄;

• s ∼ρ t if, and only if, (a) s = t; or (b) s = f(s̄), t = g(t̄), f ≈Σ g, and s̄ ∼extρ t̄;

where �extρ and ∼extρ are the lexicographic or multiset extensions of �ρ and ∼ρ for the

respective cases when ρ = lpo and ρ = mpo.
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Example 6.6. Consider the following three TRSs for adding numbers:

(a) { plus(0, y)→ y , plus(s(x), y)→ plus(x, s(y)) }
(b) { plus(x, 0)→ x , plus(x, s(y))→ s(plus(y, x)) }
(c) { plus(x, 0)→ x , plus(x, s(y))→ plus(s(x), y) }

Example (a) is LPO-terminating for the precedence plus >Σ s, but not MPO-terminating

for any precedence. Example (b) is MPO-terminating for plus >Σ s, but not LPO-

terminating for any precedence as the second rule swaps x and y. Example (c) is neither

LPO- nor MPO-terminating. However, termination could be proved using a path order

where lexicographic comparison proceeds from right to left instead of left to right. The

following definitions extend this observation to arbitrary permutations of the order in

which we compare arguments.

As remarked before, the RPO combines such an extension of the LPO with MPO.

This combination is facilitated by a status function which indicates for each function

symbol if its arguments are to be compared based on a multiset extension or based on a

lexicographic extension using some permutation µ.

Definition 6.7 (status function). A status function σ maps each symbol f ∈ Σ of arity

n either to the symbol mul or to a permutation µf on {1, . . . , n}.

Definition 6.8 (recursive path order with status). For a precedence ≥Σ and status func-

tion σ we define the relations �rpo and ∼rpo on terms. We use the notation s̄ = 〈s1, . . . sn〉
and t̄ = 〈t1, . . . tm〉.

• s �rpo t if, and only if, s = f(s̄) and one of the following holds:

(1) si �rpo t or si ∼rpo t for some 1 ≤ i ≤ n; or

(2) t = g(t̄) and s �rpo tj for all 1 ≤ j ≤ m and either:

(i) f >Σ g or (ii) f ≈Σ g and s̄ �f,grpo t̄;

• s ∼rpo t if, and only if, (a) s = t; or (b) s = f(s̄), t = g(t̄), f ≈Σ g, and s̄ ∼f,grpo t̄;

where �f,grpo and ∼f,grpo are the tuple extensions of �rpo and ∼rpo defined by:

• 〈s1, . . . sn〉 �f,grpo 〈t1, . . . tm〉 if, and only if, one of the following holds:

(1) σ maps f and g to permutations µf and µg; and

µf〈s1, . . . , sn〉 �lexrpo µg〈t1, . . . , tm〉;

(2) σ maps f and g to mul; and 〈s1, . . . sn〉 �mulrpo 〈t1, . . . tm〉.

• 〈s1, . . . sn〉 ∼f,grpo 〈t1, . . . tm〉 if, and only if, one of the following holds:
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(1) σ maps f and g to µf and µg; and µf〈s1, . . . , sn〉 ∼lexrpo µg〈t1, . . . , tm〉;

(2) σ maps f and g to mul; and 〈s1, . . . sn〉 ∼mulrpo 〈t1, . . . tm〉.

Def. 6.8 can be specialized to capture the previous path orders by taking specific forms of

status functions: LPO when σ maps all symbols to the identity permutation; lexicographic

path order w.r.t. permutation (LPOS) when σ maps all symbols to some permutation;

MPO when σ maps all symbols to mul.

The RPO termination problem is to determine for a given TRS if there exists a prece-

dence and a status function such that the system is RPO-terminating. There are two

variants of the problem: “strict-” and “quasi-RPO termination” depending on whether

the precedence ≥Σ is strict or not (i.e., on whether f ≈Σ g can hold for f 6= g). The

corresponding decision problems, strict- and quasi-RPO termination, are decidable and

NP-complete [CT94]. In this chapter we address the implementation of decision proce-

dures for RPO termination problems by encoding them into corresponding SAT problems.

6.2. Encoding RPO problems

We introduce an encoding τ which maps constraints of the form s �rpo t to propositional

statements about the status and the precedence of the symbols in the terms s and t. A

satisfying assignment for the encoding of such a constraint indicates a precedence and a

status function such that the constraint holds.

The first part of the encoding is straightforward and similar to the one in [CLS06] and

our work for lexicographic path orders [CSL+06]. All “missing” cases (e.g., τ(x �rpo t)
for variables x) are defined to be false. The encodings for �f,grpo and ∼f,grpo are defined later

in this section.

τ(f(s̄) �rpo t) =
n∨
i=1

(τ(si �rpo t) ∨ τ(si ∼rpo t)) ∨ τ2(f(s̄) �rpo t) (1)

τ2(f(s̄) �rpo g(t̄)) =
m∧
j=1

τ(f(s̄) �rpo tj) ∧
(

(f >Σ g)∨
((f ≈Σ g) ∧ τ(s̄ �f,grpo t̄))

)
(2)

τ(s ∼rpo s) = true (3)

τ(f(s̄) ∼rpo g(t̄)) = (f ≈Σ g) ∧ τ(s̄ ∼f,grpo t̄) (4)

The propositional encoding of statements about precedences of the form f >Σ g or f ≈Σ g

is performed following the approach applied in [CLS06].

Let |Σ| = m. The basic idea is to interpret the symbols in Σ as indices in a partial

order taking finite domain values from the set {0, . . . ,m − 1}. Each symbol f ∈ Σ is

thus modeled as 〈fk, . . . , f1〉 with fk the most significant bit and k = dlog2me. The

binary value of 〈fk, . . . , f1〉 represents the position of f in the partial order. Of course,
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fk, . . . , f1 may be equal to gk, . . . , g1 for f 6= g, if a (possibly strict) partial order imposes

no order between f and g, or if a non-strict partial order imposes f ≈Σ g. Constraints

of the form (f >Σ g) or (f ≈Σ g) on Σ are interpreted as constraints on indices and it is

straightforward to encode them in k-bit arithmetic: A constraint of the form (f ≈Σ g) is

encoded in k bits by

‖(f ≈Σ g)‖k =
∧

1≤i≤k

(fi ↔ gi).

A constraint of the form (f >Σ g) is encoded in k bits by

‖(f >Σ g)‖k =

{
(f1 ∧ ¬g1) if k = 1

(fk ∧ ¬gk) ∨ ((fk ↔ gk) ∧ ‖(f > g)‖k−1) if k > 1

Now, we show how to encode lexicographic comparisons w.r.t. permutations. Then

we continue with an encoding for multiset comparisons. Finally, we combine these two

encodings into �f,grpo and ∼f,grpo.

Encoding Lexicographic Comparisons w.r.t. Permutation

For lexicographic comparisons with permutations, we associate with each symbol f ∈
Σ (of arity n) a permutation µf encoded through n2 propositional variables fi,k with

i, k ∈ {1, . . . , n}. Here, fi,k is true if, and only if, µf (i) = k (i.e., the i-th argument of

f(s1, . . . , sn) is considered at k-th position when comparing lexicographically). To ease

presentation, we define that fi,k is false for k > n.

For the encoding to be correct, we impose constraints on the variables fi,k to ensure

that they indeed correspond to a permutation on {1, . . . , n}. So for each i ∈ {1, . . . , n}
there must be exactly one k ∈ {1, . . . , n} and for each k ∈ {1, . . . , n} there must be

exactly one i ∈ {1, . . . , n} such that fi,k is true.

We denote by one(b1, . . . , bn) the constraint expressing that exactly one of the bits

b1, . . . , bn is true. Then our encoding includes a formula of the form

∧
f/n∈Σ

(
n∧
i=1

one(fi,1, . . . , fi,n) ∧
n∧
k=1

one(f1,k, . . . , fn,k)

)
(5)

Here, we apply a linear encoding for constraints of the form one(b1, . . . , bn) which in-

troduces ≈ 2n fresh Boolean variables which we denote here as onebi,...,bn (expressing that

one of the variables bi, . . . , bn is true) and zerobi,...,bn (expressing that all of the variables

bi, . . . , bn are false) for 1 < i ≤ n. The encoding applies a ternary propositional connective
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x→ y ; z (denoting if-then-else) that is equivalent to (x→ y) ∧ (¬x→ z):

∧
1≤i≤n


(
onebi,...,bn ↔

(
(bi → zerobi+1,...,bn

; onebi+1,...,bn

))
∧
(
zerobi,...,bn ↔ ¬bi ∧ zerobi+1,...,bn

)


where onebn+1,...,bn = false and zerobn+1,...,bn = true.

This encoding introduces ≈ 2n conjuncts, each involving a formula with at most 4

Boolean variables. So the encoding is more concise than the more straightforward one

which introduces a quadratic number of conjuncts ¬bi ∨ ¬bj for all 1 ≤ i < j ≤ n.

Now consider the encoding of s̄ ∼f,grpo t̄ and s̄ �f,grpo t̄ for the case where the arguments of

f and g are compared lexicographically (thus, we use the notations ∼f,glex and �f,glex). Like

in Definition 6.8, let s̄ = 〈s1, . . . , sn〉 and t̄ = 〈t1, . . . , tm〉. Now equality constraints of

the form s̄ ∼f,glex t̄ are encoded by stating that for all k, the arguments si and tj used at

the k-th position in the comparison (as denoted by fi,k and and gj,k) must be equal. This

implies that s̄ ∼f,glex t̄ only holds if n = m.

τ(s̄ ∼f,glex t̄) = (n = m) ∧

 n∧
k=1

n∧
i=1

m∧
j=1

fi,k ∧ gj,k → τ(si ∼rpo tj)

 (6)

To encode s̄ �f,glex t̄, we define auxiliary relations �f,g,klex , where k ∈ N denotes that the

k-th component of s̄ and t̄ is currently being compared. Thus �f,glex = �f,g,1lex , since the

comparison starts with the first component. For any k, there are three cases to consider

when encoding s̄ �f,g,klex t̄. If there is no si that can be used for the k-th comparison (i.e.,

k > n), then we encode to false. If there is such an si but no such tj (i.e., m < k ≤ n),

then we encode to true. If there are both an si and a tj used for the k-th comparison

(i.e., fi,k and gj,k hold), then we encode to a disjunction that either si is greater than tj,

or si is equal to tj, and we continue the encoding at position k+ 1. Since exactly one fi,k

is true, the disjunction and conjunction over all fi,k (with i ∈ {1, ..., n}) coincide (similar

for gj,k). Here, we use a disjunction of conjunctions, as this will be more convenient when

introducing argument filters in Chapter 7.

τ(s̄ �f,g,klex t̄) =



false if k > n

true if m < k ≤ n∨n
i=1

(
fi,k ∧

(∧m
j=1 gj,k → otherwise

(τ(si �rpo tj) ∨ (τ(si ∼rpo tj) ∧ τ(s̄ �f,g,k+1
lex t̄)))

)) (7)

Example 6.9. Consider again the TRS of Example 6.6(c):

{ plus(x, 0)→ x , plus(x, s(y))→ plus(s(x), y) }
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In the encoding of the constraints for the second rule, we have to encode the comparison

〈x, s(y)〉 �plus,plus,1
lex 〈s(x), y〉, which yields:

“
plus1,1 ∧

“
plus1,1 →

“
τ(x �rpo s(x)) ∨ (τ(x ∼rpo s(x)) ∧ τ(〈x, s(y)〉 �plus,plus,2

lex 〈s(x), y〉))
””

∧
“
plus2,1 →

“
τ(x �rpo y) ∨ (τ(x ∼rpo y) ∧ τ(〈x, s(y)〉 �plus,plus,2

lex 〈s(x), y〉))
”””

∨
“
plus2,1 ∧

“
plus1,1 →

“
τ(s(y) �rpo s(x)) ∨ (τ(s(y) ∼rpo s(x)) ∧ τ(〈x, s(y)〉 �plus,plus,2

lex 〈s(x), y〉))
””

∧
“
plus2,1 →

“
τ(s(y) �rpo y) ∨ (τ(s(y) ∼rpo y) ∧ τ(〈x, s(y)〉 �plus,plus,2

lex 〈s(x), y〉))
”””

Seeing that τ(x �rpo s(x)) = τ(x ∼rpo s(x)) = τ(x �rpo y) = τ(x ∼rpo y) = τ(s(y) �rpo
s(x)) = τ(s(y) ∼rpo s(x)) = false and τ(s(y) �rpo y) = true, we can simplify the above

formula to plus2,1 ∧ ¬plus1,1. Together with the constraint (5) which ensures that the

variables plusi,k specify a valid permutation µplus, this implies that plus1,2 and ¬plus2,2 must

be true. And indeed, for the permutation µplus = 〈2, 1〉 the tuple µplus(〈x, s(y)〉) = 〈s(y), x〉
is greater than the tuple µplus(〈s(x), y〉) = 〈y, s(x)〉.

Encoding Multiset Comparisons

For multiset comparisons, we associate s̄ and t̄ with a multiset cover (γ, ε) encoded by

n ∗ m propositional variables γi,j and n variables εi. Here, γi,j is true if, and only if,

γ(j) = i (si covers tj) and εi is true if, and only if, ε(i) = true (si is used for equality).

For the encoding to be correct, we again have to impose constraints on these variables

to ensure that (γ, ε) indeed forms a multiset cover. So for each j ∈ {1, . . . ,m} there must

be exactly one i ∈ {1, . . . , n} such that γi,j is true, and for each i ∈ {1, . . . , n}, if εi is true

then there must be exactly one j ∈ {1, . . . ,m} such that γi,j is true. Thus, our encoding

includes the following formula:

m∧
j=1

one(γ1,j , . . . , γn,j) ∧
n∧
i=1

(εi → one(γi,1, . . . , γi,m)) (8)

Now we encode s̄ �f,grpo t̄ for the case where f and g have multiset status. To have an

analogous notation to the case of lexicographic comparisons, we use the notation �f,gmul
instead of �mulrpo . The encoding of %f,g

mul, �f,gmul, and ∼f,gmul is similar to Definition 6.4. To

encode s̄ %f,g
mul t̄, one has to require that if γi,j and εi are true, si ∼rpo tj holds, and else,

if γi,j is true and εi is not, si �rpo tj holds. For �f,gmul, we must have at least one si that

is not used for equality, and for ∼f,gmul, all si must be used for equality.

τ(s̄ %f,g
mul t̄) =

n∧
i=1

m∧
j=1

(γi,j → (εi → τ(si ∼rpo tj); τ(si �rpo tj))) (9)

τ(s̄ �f,gmul t̄) = τ(s̄ %f,g
mul t̄) ∧ ¬

n∧
i=1

εi (10)

τ(s̄ ∼f,gmul t̄) = τ(s̄ %f,g
mul t̄) ∧

n∧
i=1

εi (11)
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Example 6.10. Consider again the rules for the TRS from Example 6.6(b):

{ plus(x, 0)→ x , plus(x, s(y))→ s(plus(y, x)) }
In the encoding of the constraints for the second rule, we have to encode the comparison

〈x, s(y)〉 �f,gmul 〈y, x〉, which yields:(
γ1,1 →

(
(ε1 → τ(x ∼rpo y)) ∧ (¬ε1 → τ(x �rpo y))

))
∧
(
γ1,2 →

(
(ε1 → τ(x ∼rpo x)) ∧ (¬ε1 → τ(x �rpo x))

))
∧
(
γ2,1 →

(
(ε2 → τ(s(y) ∼rpo y)) ∧ (¬ε2 → τ(s(y) �rpo y))

))
∧
(
γ2,2 →

(
(ε2 → τ(s(y) ∼rpo x)) ∧ (¬ε2 → τ(s(y) �rpo x))

))
∧ ¬(ε1 ∧ ε1)

Seeing that τ(x ∼rpo y) = τ(x �rpo y) = τ(x �rpo x) = τ(s(y) ∼rpo y) = τ(s(y) ∼rpo
x) = τ(s(y) �rpo x) = false and τ(x ∼rpo x) = τ(s(y) �rpo y) = true, we can simplify

the above formula to ¬γ1,1 ∧ (¬γ1,2 ∨ ε1) ∧ (¬γ2,1 ∨ ¬ε2) ∧ ¬γ2,2 ∧ (¬ε1 ∨ ¬ε2). Together

with the constraint (8) which ensures that the variables γi,j and εi specify a valid multiset

cover (γ, ε), this implies that γ2,1, ¬ε2, γ1,2, and ε1 must hold. And indeed, the multiset

cover (γ, ε) with γ(1) = 2, γ(2) = 1, ε(1) = true, and ε(2) = false, shows that the tuple

〈x, s(y)〉 is greater than the tuple 〈y, x〉.

Combining Lexicographic and Multiset Comparisons

We have shown how to encode lexicographic and multiset comparisons. In order to com-

bine �f,glex and �f,gmul into �f,grpo as well as ∼f,glex and ∼f,gmul into ∼f,grpo, we introduce for each

symbol f ∈ Σ a variable mf , which is true if, and only if, the arguments of f are to be

compared as multisets (i.e., the status function maps f to mul ).

τ(s̄ �f,grpo t̄) =
(
mf ∧mg ∧ τ(s̄ �f,gmul t̄)

)
∨
(
¬mf ∧ ¬mg ∧ τ(s̄ �f,g,1lex t̄)

)
(12)

τ(s̄ ∼f,grpo t̄) =
(
mf ∧mg ∧ τ(s̄ ∼f,gmul t̄)

)
∨
(
¬mf ∧ ¬mg ∧ τ(s̄ ∼f,glex t̄)

)
(13)

Similar to Def. 6.8, the above encoding function τ can be specialized to other standard

path orderings: lexicographic path order w.r.t. permutation (LPOS) when mf is set to

false for all f ∈ Σ; LPO when additionally fi,k is set to true if, and only if, i = k; MPO

when mf is set to true for all f ∈ Σ.

Size of the Encoding

We conclude this section with an approximation of the size of the propositional formula

obtained when s �rpo t is encoded, where s = f(s1, . . . , sn) and t = g(t1, . . . , tm) with the

total size of terms s and t being k.
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A single step of unfolding Def. 6.8 results in a formula containing at least n copies of t

(with all its subterms) and m copies of s (with all its subterms) occurring in constraints

of the form s′ �rpo t′.
Hence, without memoing, the final encoding is clearly exponential in k. To obtain a

polynomial encoding, we introduce sharing of common subformulas in the propositional

formula. The approach is similar to that proposed by Tseitin to obtain a linear CNF

transformation of Boolean formulas [Tse68].

If τ(s′ �rpo t′) occurs in the encoding τ(s �rpo t), then we do not immediately perform

the encoding of s′ �rpo t′ as well. Instead, we introduce a fresh Boolean variable of the

form Xs′�rpo t′ , and encode also the meaning of such fresh variables.

The encoding of Xs′�rpo t′ is of the form Xs′�rpo t′ ↔ τ(s′ �rpo t′). Again, when con-

structing τ(s′ �rpo t′), we replace all subformulas τ(s′′ �rpo t′′) encountered by Boolean

variables Xs′′�rpo t′′ .

In total, there are at most O(k2) fresh Boolean variables to encode. As the encodings

of multiset comparisons and lexicographic comparisons are both of size O(k3), the size of

the overall encoding is in O(k5). Thus, the size of the encoding is indeed polynomial.

A finer analysis shows that not all multiset and lexicographic comparisons are large. For

example, for s = f(a1, . . . , an) and t = g(b1, . . . , bn) with constants ai and bj, there is one

comparison of two n-tuples with encoding size O(n3), but the other n2 + 2n comparisons

only need size O(n) each. In fact, one can show that the size of the overall encoding is in

O(k3).

6.3. Implementation and Experiments

We implemented the encoding of RPO in the termination analyzer AProVE [GST06]. For

analyzing satisfiability of our propositional formulas, we used the SAT4J solver [LP08].

(We also tried other SAT solvers like MiniSAT [ES07] and obtained similar results.) The

encoding can be restricted to instances of RPO like LPO or MPO.

We tested the implementation on all 865 TRSs from the TPDB [TPD06]. The experi-

ments were run on a 2.2 GHz AMD Athlon 64 with a time-out of 60 seconds (corresponding

to the most common setting used in the international Termination Competition [MZ07]).

The following table compares our new SAT-based approach for direct application of

path orders to the previous dedicated solvers for path orders in AProVE 1.2 which did

not use SAT solving. The columns contain the data for LPO with strict and non-strict

precedence (denoted lpo/qlpo), for LPO with status (lpos/qlpos), for MPO (mpo/qmpo),

and for RPO with status (rpo/qrpo). For each encoding we give the number of TRSs

which could be proved terminating (with the number of time-outs in brackets) and the

analysis time (in seconds) for the full collection.
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Solver lpo qlpo lpos qlpos mpo qmpo rpo qrpo

SAT 123 (0) 127 (0) 141 (0) 155 (0) 92 (0) 98 (0) 146 (0) 162 (0)

31.0 44.7 26.1 40.6 49.4 74.2 50.0 85.3

ded. 123 (5) 127(16) 141 (6) 154(45) 92 (7) 98(31) 145(10) 158(65)

334.4 1426.3 460.4 3291.7 653.2 2669.1 908.6 4708.2

The table shows that with our new SAT encoding, performance improves by orders of

magnitude over existing dedicated solvers for direct analysis with path orders. Note that

without a time-out, this effect would be aggravated. While there are up to 65 time-outs for

the dedicated solver, there are no time-outs at all for our SAT-based solver. Indeed, even

for RPO with non-strict precedence, the average time per example is below 0.1 seconds.

The table also shows that the use of RPO instead of LPO increases power substantially.

This increase in power comes with a large penalty in runtime when the dedicated solver

is used, while in the SAT-based setting, runtimes increase only mildly.

6.4. Summary

This chapter extends the SAT-based approach of [CLS06] and our work for lexicographic

path orders [CSL+06] to the more powerful class of recursive path orders. The main

new challenges were the encoding of multiset comparisons as well as of lexicographic

comparisons w.r.t. permutations.

The contributions of this chapter solve this problem by a novel SAT encoding which

combines all of the constraints originating from these notions into a single search pro-

cess. Through implementation and experimentation we showed that our encoding leads

to speedups in orders of magnitude over existing termination tools as well as increased

termination proving power. To experiment with our SAT-based implementation and for

further details on our experiments in this chapter and in Chapter 7, please visit our

evaluation web site at http://aprove.informatik.rwth-aachen.de/eval/SATRPO/.

Note that this kind of efficiency improvement is essential for the application of recursive

path orders to TRSs resulting from logic programs by, for instance, our transformation

from Chapter 3. In the following chapter, after combining the results of this chapter

with dependency pairs and argument filters, we demonstrate that the application of re-

cursive path orders to search problems originating from logic programs enables us to show

termination for programs where all other techniques and tools for logic programming fail.

http://aprove.informatik.rwth-aachen.de/eval/SATRPO/
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In Chapter 6 we introduced a propositional encoding of recursive path orders and demon-

strated that SAT solving can drastically speed up the solving of RPO termination prob-

lems. The key idea was that the encoding of a term rewrite system R is satisfiable if and

only if R is RPO-terminating and that each model of the encoding indicates a particular

RPO which orients the rules in R.

However, recursive path orders on their own are too weak for many interesting termina-

tion problems, and hence RPO is typically combined with more sophisticated termination

proving techniques. One of the most popular and powerful such techniques is the depen-

dency pair (DP) method [AG00]. Essentially, for any TRS the DP method generates a

set of inequalities between terms. If one can find a well-founded order satisfying these

inequalities, then termination is proved. A main advantage of the DP method is that it

permits the use of orders which need not be monotonic. This allows the application of

recursive path orders combined with argument filters.

For every function symbol f , an argument filter π specifies which parts of a term f(. . .)

may be eliminated before comparing terms. As stated in [HM05a], “the dependency pairs

method derives much of its power from the ability to use argument filters to simplify

constraints”. However, argument filters represent a severe bottleneck for the automation

of dependency pairs, as the search space for argument filters is enormous. In recent

refinements of the DP method [GTSF03, TGS04, GTSF06], the choice of π also influences

the set of usable rules which contribute to the inequalities that have to be oriented.

This chapter extends the approach of Chapter 6 by providing a propositional encoding

which combines the search for an RPO with the search for an argument filter. This

extension is non-trivial as the choice of an argument filter π influences the structure of

the terms in the rules as well as the set of rules which contribute to the inequalities that

need to be oriented. The key idea is to combine all of the constraints on π which influence

the definition of the RPO and the definition of the usable rules and to encode these

constraints in SAT. This encoding captures the synergy between precedences on function

symbols and argument filters. In our approach there exist an argument filter π and an

RPO which orient a set of inequalities if and only if the encoding of the inequalities is

satisfiable. Moreover, each model of the encoding corresponds to a suitable argument

filter and a suitable RPO which orient the inequalities.

After the necessary preliminaries on the DP method in Section 7.1, Section 7.2 extends
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the approach of Chapter 6 to consider argument filters. Section 7.3 shows how to extend

this encoding to account for the influence of an argument filter on the set of usable rules.

In Section 7.4 we describe the implementation of our results in the termination prover

AProVE [GST06] and provide extensive experimental evidence indicating speedups in

orders of magnitude. We summarize the contributions of this chapter in Section 7.5 where

we also show how RPO and argument filtering can successfully be applied to termination

analysis of logic programs.

7.1. Preliminaries

This section briefly describes the components of the dependency pair framework [AG00,

GTS05a, GTSF06] needed to present the results of this chapter. Notions like defined

symbols, dependency pairs, and reduction pairs are defined exactly as in Chapter 3.

It is well known that recursive path orders on their own are not very powerful for

proving termination.

Example 7.1. Consider the following TRS R for division on natural numbers [AG00].

minus(x, 0) → x (1)

minus(s(x), s(y)) → minus(x, y) (2)

quot(0, s(y)) → 0 (3)

quot(s(x), s(y)) → s(quot(minus(x, y), s(y))) (4)

The rules (1) – (3) can easily be oriented using any RPO, but rule (4) cannot. To see

this, observe that if we instantiate y by the term s(x), we obtain quot(s(x), s(s(x))) ≺emb
s(quot(minus(x, s(x)), s(s(x)))). Thus, no simplification order and, consequently, no RPO

can show termination of R. This drawback was the reason for developing more powerful

approaches like the dependency pair method.

The defined symbols of R are minus and quot, and there are three dependency pairs:

MINUS(s(x), s(y)) → MINUS(x, y) (5)

QUOT(s(x), s(y)) → MINUS(x, y) (6)

QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y)) (7)

The main result underlying the dependency pair method states that a term rewrite

system R is terminating if and only if there is no infinite (minimal) R-chain of its de-

pendency pairs DP (R) [AG00]. In contrast to Definitions 3.16 and 4.5, we try to prove

termination of all terms and, consequently, do not need to integrate argument filters or

sets of queries, respectively. In other words, there is no infinite sequence of dependency

pairs s1 → t1, s2 → t2, . . . from DP (R) such that for all i there is a substitution σi where

tiσi is terminating with respect to R and tiσi →∗R si+1σi+1. To prove absence of such
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infinite chains automatically, we consider so-called dependency pair problems . A depen-

dency pair problem (P ,R) is a pair of term rewrite systems P and R and poses the

question: “Is there an infinite R-chain of dependency pairs from P?” The goal is to solve

the dependency pair problem (DP (R),R) in order to determine termination of R.

Termination techniques now operate on dependency pair problems and are called DP

processors. Formally, a DP processor Proc takes a dependency pair problem as input and

returns a new dependency pair problem which then has to be solved instead. A processor

Proc is sound if for all dependency pair problems (P ,R) where Proc(P ,R) = (P ′,R),

there is an infinite R-chain of pairs from P ′ whenever there is an infinite R-chain of pairs

from P . Soundness of a DP processor is required to prove termination and in particular,

to conclude that there is no infinite R-chain if Proc(P ,R) = (∅,R).

So termination proofs in our framework start with the initial DP problem (DP (R),R).

Then the DP problem is simplified repeatedly by sound DP processors. If one reaches the

DP problem (∅,R), then termination is proved. In the following, we present one of the

most important processors of the framework, the so-called reduction pair processor which

was the inspiration for Theorems 3.24 and 4.20.

For a DP problem (P ,R), the reduction pair processor generates inequality constraints

which should be satisfied by a reduction pair. Note that in this context, � need not be

monotonic. A typical choice for a reduction pair (%,�) is to use simplification orders in

combination with argument filters [AG00] (we again adopt the notation of [KNT99]).

Note that the following definition of argument filter is an extension of Definition 3.12

as it allows not only to filter arguments of a term, but also to collapse a term f(t1, . . . , tn)

to one of its arguments. If π(f) = i, then π(f(t1, . . . , tn)) = ti.

Definition 7.2 (Argument Filter). An argument filter π maps every n-ary function sym-

bol to an argument position i ∈ {1, . . . , n} or to a (possibly empty) list [i1, . . . , ip] with

1 ≤ i1 < · · · < ip ≤ n. An argument filter π induces a mapping from terms to terms:

π(t) =


t if t is a variable

π(ti) if t = f(t1, . . . , tn) and π(f) = i

f(π(ti1), . . . , π(tip)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , ip]

For a relation � on terms, let �π be the relation where s �π t holds if and only if

π(s) � π(t). An argument filter with π(f) = i is called collapsing on f .

Arts and Giesl showed in [AG00] that if (%,�) is a reduction pair and π is an argument

filter then (%π,�π) is also a reduction pair. In particular, we focus on reduction pairs of

the form (%π
rpo, �πrpo) to prove termination of examples like Example 7.1 where the direct

application of simplification orders fails.

The constraints generated by the reduction pair processor require that (a) all depen-

dency pairs in P are weakly or strictly decreasing and, (b) all usable rules U(P ,R) are
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weakly decreasing. Here, a rule f(. . .)→ r from R is usable if f occurs in the right-hand

side of a dependency pair from P or of a usable rule. In Example 7.1, the symbols oc-

curring in the right-hand sides of the dependency pairs (5) – (7) are MINUS, QUOT, s,

and minus. Therefore the minus-rules (1) and (2) are usable. Since the right-hand sides

of the minus-rules do not contain additional symbols, these are in fact all of the usable

rules. Hence, the quot-rules (3) and (4) are not usable.

As shown in [HM04, TGS04], under certain conditions on the reduction pair, Restriction

(b) ensures that in chains s1 → t1, s2 → t2, . . . with tiσi →∗R si+1σi+1, we have tiσi %

si+1σi+1. The required conditions hold in particular for any reduction pair constructed

using simplification orders and argument filters and specifically for (%π
rpo,�πrpo). Hence,

the strictly decreasing pairs of P cannot occur infinitely often in chains. This enables the

processor to delete such pairs from P . In the following, for any term rewrite system Q
and relation �, we denote Q� = {s→ t ∈ Q | s � t}.

Theorem 7.3 (Reduction Pair Processor). Let (%,�) be a reduction pair for a simplifi-

cation order � and let π be an argument filter. Then the following DP processor Proc is

sound.

Proc(P ,R) =

{
(P \ P�π ,R) if P�π ∪ P%π = P and R%π ⊇ U(P ,R)

(P ,R) otherwise

Example 7.4. For the TRS of Example 7.1, according to Theorem 7.3 we search for a

reduction pair solving the following inequality constraints (where
(
%

)
denotes � ∪ %):

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)

MINUS(s(x), s(y))
(
%

)
MINUS(x, y) (8)

QUOT(s(x), s(y))
(
%

)
MINUS(x, y) (9)

QUOT(s(x), s(y))
(
%

)
QUOT(minus(x, y), s(y)) (10)

By Theorem 7.3, all dependency pairs corresponding to strictly decreasing inequalities

(8) – (10) can be removed. To solve the inequalities we may take (%π
rpo, �πrpo) where

π(minus)=1, π(s)=π(MINUS)=π(QUOT)=[1], and where %rpo and �rpo are induced by

the partial order QUOT >Σ MINUS. Thus, the constraints after applying π are the

following:

x % x

s(x) % x

MINUS(s(x))
(
%

)
MINUS(x)

QUOT(s(x))
(
%

)
MINUS(x)

QUOT(s(x))
(
%

)
QUOT(x)
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Thus, after filtering, inequalities (8) – (10) are all strict for any simplification order

and, consequently, any RPO. Hence, they are removed by the reduction pair processor.

This results in the new DP problem (∅,R) which proves termination of Example 7.1.

As an additional example we consider the following variant of addition.

Example 7.5. Consider the TRS (on the left) for addition using an accumulator and its

three dependency pairs (on the right):

plus(x, y) → plus′(x, y, 0) PLUS(x, y) → PLUS′(x, y, 0)

plus′(0, 0, z) → z

plus′(s(x), y, z) → plus′(x, y, s(z)) PLUS′(s(x), y, z) → PLUS′(x, y, s(z))

plus′(x, s(y), z) → plus′(y, x, s(z)) PLUS′(x, s(y), z) → PLUS′(y, x, s(z))

The rule PLUS′(s(x), y, z) → PLUS′(x, y, s(z)) cannot be oriented by RPO. Lexico-

graphic comparison fails as the first two arguments are swapped. Multiset comparison

is prevented by the third argument (s(z) cannot be covered). But an argument filter

π(PLUS′) = [1, 2], which eliminates the third argument of PLUS′, enables the multiset

comparison.

To orient all DPs we use (%π
rpo,�πrpo) where π(PLUS)=π(PLUS′)=[1, 2], π(s)=[1], and

where %rpo and �rpo are induced by the precedence PLUS >Σ PLUS′ and the status

function σ that maps PLUS and PLUS′ to mul. Since the problematic third accumulator

argument (in the last two DPs) is filtered away, all three DPs are strictly decreasing and

can be removed, as there are no usable rules. This results in the DP problem (∅,R)

which proves termination for the TRS.

Note that while argument filters are very powerful in the context of the DP framework,

they also present a severe bottleneck for automation, as the search space for argument

filters is enormous (exponential in the arities of the function symbols).

We conclude this brief description of the required components of the dependency pair

framework with a statement of the central decision problem associated with argument

filters, RPO, and dependency pairs:

For a given dependency pair problem (P ,R), does there exist a reduction

pair (%π
rpo, �πrpo) for some argument filter π and lexicographic path order

induced by some partial order ≥Σ such that all rules in P and in R are weakly

decreasing and at least one rule in P is strictly decreasing?

In the following section we show how to encode constraints like “s �πrpo t” and “s %π
rpo t”

as propositional formulas. Such an encoding enables us to encode the decision problem

stated above as a SAT problem. Based on the solution of the SAT problem one can then

identify the dependency pairs which can be removed from P .
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7.2. Encoding RPO with Argument Filters

In this section we consider recursive path orders with argument filters and the corre-

sponding decision problem. Consider first a naive brute force approach. For any given

argument filter π we generate the formula∧
`→r∈U(P,R)

π(`) %rpo π(r) ∧
∧

s→t∈P

π(s) %rpo π(t) ∧
∨

s→t∈P

π(s) �rpo π(t) (11)

The constraints “π(s) %rpo π(t)” and “π(s) �rpo π(t)” can be encoded as described in

Chapter 6. Then SAT solving can search for an RPO satisfying (11) for the given filter

π. However, this approach is hopelessly inefficient, potentially calling the SAT solver for

each of the exponentially many argument filters. Even if one considers the less naive

enumeration algorithms implemented in [GST06] and [HM05b], for many examples the

SAT solver would be called exponentially often.

A contribution of this chapter is to show instead how to encode the argument filters

into the propositional formula and delegate the search for an argument filter to the SAT

solver. In this way, the SAT solver is only called once with an encoding of Formula (11)

and it can search for an argument filter and for a precedence at the same time. This is

clearly advantageous, since the filter and the precedence highly influence each other.

So our goal is to encode constraints like “s �πrpo t” (or “s %π
rpo t”) into propositional

formulas such that every model of the encoding corresponds to a concrete filter π, a

status σ and precedence ≥Σ which satisfy “s �πrpo t” (or “s %π
rpo t”). We first provide an

explicit definition which then provides the basis for specifying constraints on precedences

and argument filters, satisfaction of which gives “s �πlpo t” (or “s %π
lpo t”). The essential

difference with Definition 6.8 is that all cases are refined to consider the effect of π.

Definition 7.6 (RPO modulo π). For a precedence ≥Σ, a status function σ, and an

argument filter π on Σ we define the relations �πrpo, ∼πrpo, %π
rpo on terms. Again, we use

the notation s̄ = 〈s1, . . . , sn〉 and t̄ = 〈t1, . . . , tm〉.

• s �πrpo t if, and only if, s = f(s̄) and one of the following holds:

(1) (a) π(f) = i and si �πrpo t; or

(b) π(f) = [i1, . . . , ip] and for some i ∈ [i1, . . . , ip], si �πrpo t or si ∼πrpo t; or

(2) t = g(t̄) and

(a) π(g) = j and s �πrpo tj; or

(b) π(f) = [i1, ..., ip], π(g) = [j1, ..., jq], s �πrpo tj for all j ∈ [j1, . . . , jq],

and either (i) f >Σ g or

(ii) f ≈Σ g and 〈si1 , . . . , sip〉 �f,g,πrpo 〈tj1 , . . . , tjq〉.
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• s ∼πrpo t if, and only if, one of the following holds:

(1) s = t; or

(2) s = f(s̄) and π(f) = i and si ∼πrpo t; or

(3) t = g(t̄) and π(g) = j and s ∼πrpo tj; or

(4) s = f(s̄), t = g(t̄), π(f) = [i1, ..., ip], π(g) = [j1, ..., jq],

f ≈Σ g, and 〈si1 , . . . , sip〉 ∼f,g,πrpo 〈tj1 , . . . , tjq〉.

• s %π
rpo t if, and only if, s �πrpo t or s ∼πrpo t.

where �f,g,πrpo and ∼f,g,πrpo are the tuple extensions of �πrpo and ∼πrpo defined analogously to

�f,grpo and ∼f,grpo from Definition 6.8 w.r.t. �rpo and ∼rpo.

It follows directly from Definitions 6.8, 7.2, and 7.6 that for all terms s and t we have

s �πrpo t⇔ π(s) �rpo π(t) and s %π
rpo t⇔ π(s) %rpo π(t).

The decision problem associated with Definition 7.6 is stated as follows: For terms s

and t, does there exist a precedence ≥Σ and an argument filter π such that s �πrpo t resp.

s %π
rpo t holds. This problem again comes in two flavors:“strict-RPO” and “quasi-RPO”

depending on whether ≥Σ is required to be strict or not. Our aim is to encode these

decision problems as constraints on ≥Σ and π, similar to the encoding of s �rpo t as

a constraint on the precedence in Chapter 6. The difference is that now we have two

types of constraints: constraints on the precedence ≥Σ and constraints on the argument

filter π. To express constraints on argument filters we use atoms of the following forms:

“π(f) = i” to constrain π to map f to the value i; “π(f) 3− i” to constrain π to map f

either to a list containing i or to i itself; and “list(π(f))” to constrain π to map f to a

list. So “list(π(f))” means that π is not collapsing on f .

To encode argument filters, each n-ary function symbol f ∈ Σ is associated with n

propositional variables f1, . . . , fn, and another variable listf . Here, fi is true if, and

only if, π(f) 3− i, and listf is true if, and only if, list(π(f)). To ensure that these n + 1

propositional variables indeed correspond to an argument filter, we impose the following

constraints which express that if π collapses f then it is replaced by exactly one1 of its

subterms:

¬listf → one(f1, . . . , fn).

To encode the combination of RPO with argument filters, consider again the equa-

tions (1) – (4) from Chapter 6. Each reference to a subterm must now be “wrapped”

by the question: “has this subterm been filtered by π?” In the following, similar to

the encoding of Section 6.2, all “missing” cases are defined to be false. Equations (1′)

– (3′) enhance Equations (1) – (3) from Chapter 6. Equations (4a′) and (4b′) enhance

Equation (4) from Chapter 6 in the cases when one of the terms is a variable x and (4c′)

1For one we use the encoding from Section 6.2.
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considers the other case and examines whether the filter collapses the root symbols or

not.

τ(f(s̄) �πrpo t) =
n∨
i=1

(
fi ∧

(
τ(si �πrpo t) ∨
(listf ∧ τ(si ∼πrpo t))

))
∨ τ2(f(s̄) �πrpo t) (1′)

τ2(f(s̄) �πrpo g(t̄)) =
m∧
j=1

(
gj → τ(f(s̄) �πrpo tj)

)
∧ (2′)(

listg →
(
listf ∧

(
(f >Σ g) ∨ ((f ≈Σ g) ∧ τ(s̄ �f,g,πrpo t̄))

)))
τ(s ∼πrpo s) = true (3′)

τ(f(s̄) ∼πrpo x) = (¬listf ∧
n∧
i=1

(
fi → τ(si ∼πrpo x)

)
for variables x (4a′)

τ(x ∼πrpo g(t̄)) = (¬listg ∧
m∧
j=1

(
gj → τ(x ∼πrpo tj)

)
for variables x (4b′)

τ(f(s̄) ∼πrpo g(t̄)) =

(
¬listf →

n∧
i=1

(
fi → τ(si ∼πrpo g(t̄))

))
∧ (4c′)(listf ∧ ¬listg)→

m∧
j=1

(
gj → τ(f(s̄) ∼πrpo tj)

) ∧

(
(listf ∧ listg)→

(
(f ≈Σ g) ∧ τ(s̄ ∼f,g,πrpo t̄)

))
For the lexicographic comparison w.r.t. permutations, we enhance Formula (5) of

Chapter 6 to specify the relation between filters and permutations. Only non-filtered

arguments are permuted. Moreover, for an n-ary symbol f with ` < n non-filtered

arguments, the permutation should map all ` non-filtered arguments to positions from

{1, . . . , `}. Formula (5a′) states that if some argument of f is considered at the k-th

position (i.e., some fi,k is true), then there is exactly one such argument. Formula (5b′)

specifies that filtered arguments may not be used in the permutation. So if the i-th argu-

ment of f is filtered (i.e., fi is false), then the permutation variables fi,k (for 1 ≤ k ≤ n)

are also false. Formula (5c′) states that if the i-th argument of f is not filtered (i.e., fi is

true), then the i-th argument of f is considered at exactly one position in the permutation.

Finally, Formula (5d′) expresses that all ` non-filtered arguments are permuted “to the

left”, i.e., to positions from {1, . . . , `}. Hence, if an argument is mapped to position k,

then some argument is also mapped to position k − 1.

n∧
k=1

(
n∨
i=1

fi,k → one(f1,k, . . . , fn,k)

)
(5a′)

n∧
i=1

(
¬fi →

n∧
k=1

¬fi,k
)

(5b′)
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n∧
i=1

(fi → one(fi,1, . . . , fi,n)) (5c′)

n∧
k=2

(
n∨
i=1

fi,k →
n∨
i=1

fi,k−1

)
(5d′)

For the encoding of f(s̄) ∼f,g,πrpo g(t̄) and f(s̄) �f,g,πrpo g(t̄), we use the notation ∼f,g,πlex and

�f,g,πlex when the arguments of f and g are compared lexicographically. For an equality

constraint of the form s̄ ∼f,g,πlex t̄ we enhance Equation (6) of Chapter 6. There must

be a one-to-one correspondence between the non-filtered arguments of s̄ and of t̄ via the

permutations for f and for g. To express this, we use a constraint of the form eq arity(f,g)

in Equation (6′) which states that the number of non-filtered arguments of f and of g are

the same. It corresponds to the constraint (n = m) in Equation (6) of Chapter 6 and is

encoded as

eq arity(f, g) =
max(n,m)∧
k=1

 n∨
i=1

fi,k ↔
m∨
j=1

gj,k


τ(s̄ ∼f,g,πlex t̄) = eq arity(f, g) ∧

n∧
k=1

n∧
i=1

m∧
j=1

(
fi,k ∧ gj,k → τ(si ∼πrpo tj)

)
(6′)

Next we enhance Equation (7) of Chapter 6 to define �f,g,πrpo = �f,g,1,πrpo . For m < k ≤ n

we now require that f considers an argument at the k-th position. The remaining cases

are structurally identical to the corresponding cases of Equation (7) of Chapter 6.

τ(s̄ �f,g,k,πlex t̄) =



false if k > n∨n
i=1 fi,k if m < k ≤ n∨n
i=1

(
fi,k ∧

(∧m
j=1 gj,k → otherwise

(τ(si �πrpo tj) ∨ (τ(si ∼πrpo tj) ∧ τ(s̄ �f,g,k+1,π
lex t̄)))

)) (7′)

For the multiset comparison, we enhance Formula (8) of Chapter 6 such that the multiset

cover only considers non-filtered arguments of f(s̄) and g(t̄). Formula (8a′) states that

if the j-th argument of g is not filtered (i.e., gj is true), then there must be exactly one

argument of f that covers it. Formula (8b′) states that if the i-th argument of f is filtered

(i.e., fi is false), then it cannot cover any arguments of g. Formula (8c′) specifies that if

the j-th argument of g is filtered (i.e., gj is false), then there is no argument of f that

covers it. Finally, the newly labeled Formula (8d′) is taken straight from the original
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Formula (8) of Chapter 6

m∧
j=1

(gj → one(γ1,j , . . . , γn,j)) (8a′)

n∧
i=1

¬fi → ¬ m∨
j=1

γi,j

 (8b′)

m∧
j=1

(
¬gj → ¬

n∨
i=1

γi,j

)
(8c′)

n∧
i=1

(
εi → one(γi,1, . . . , γi,m)

)
(8d′)

Now we define τ(s̄ %f,g,π
mul t̄) analogously to Equation (9) of Chapter 6 and for the encoding

of �f,g,πmul and ∼f,g,πmul , we restrict Equations (10) and (11) of Chapter 6 to arguments that

are not filtered:

τ(s̄ %f,g,π
mul t̄) =

n∧
i=1

m∧
j=1

(
γi,j →

(
εi → τ(si ∼πrpo tj); τ(si �πrpo tj)

))
(9′)

τ(s̄ �f,g,πmul t̄) = τ(s̄ %f,g,π
mul t̄) ∧ ¬

n∧
i=1

(fi → εi) (10′)

τ(s̄ ∼f,g,πmul t̄) = τ(s̄ %f,g,π
mul t̄) ∧

n∧
i=1

(fi → εi) (11′)

Finally, for the combination of lexicographic and multiset comparisons, we simply change

the equations (12) and (13) of Chapter 6 to use �f,g,πmul instead of �f,gmul etc.:

τ(s̄ �f,g,πrpo t̄) =
(
mf ∧mg ∧ τ(s̄ �f,g,πmul t̄)

)
∨
(
¬mf ∧ ¬mg ∧ τ(s̄ �f,g,1,πlex t̄)

)
(12′)

τ(s̄ ∼f,g,πrpo t̄) =
(
mf ∧mg ∧ τ(s̄ ∼f,g,πmul t̄)

)
∨
(
¬mf ∧ ¬mg ∧ τ(s̄ ∼f,g,πlex t̄)

)
(13′)

Example 7.7. Consider the first arguments of QUOT in the left-hand side and the right-

hand side of dependency pair (7) of Example 7.1. Using the above encoding, after sim-

plification of conjunctions, disjunctions, and implications with true and false and using

the side conditions for permutation, multiset cover, and argument filter we obtain:

τ(s(x) �πrpo minus(x, y))

= (s1 ∧ lists ∧ ¬listminus ∧minus1) ∨
((minus1 → s1 ∧ lists) ∧ ¬minus2 ∧ (listminus → lists ∧ (s >Σ minus ∨ (s ≈Σ minus∧
¬ms ∧ ¬mminus ∧ s1,1 ∧ ¬minus1,1 ∧ ¬minus2,1 ∧ s1 ∧ ¬minus1 ∧ ¬minus2))))
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Thus, s(x) �πrpo minus(x, y) holds if and only if

• minus is collapsed to its first argument and s is not filtered; or

• s and minus are not collapsed, s is greater than minus in the precedence, the second

argument of minus is filtered, and whenever minus keeps the first argument then s

keeps the first argument, too; or

• s and minus are not collapsed, s is equal to minus in the precedence, s keeps the first

argument while minus filters both arguments.

Example 7.8. We solved the inequality PLUS′(x, s(y), z)
(
%

)
PLUS′(y, x, s(z)) in Ex.

7.5 by the argument filter π(PLUS′) = [1, 2] and RPO. To find such argument filters

and the status and precedence of the RPO, such inequalities are now encoded into propo-

sitional formulas. Indeed, the formula resulting from our inequality is satisfiable by the

corresponding setting of the propositional variables (i.e., mPLUS′ = listPLUS′ = PLUS′1 =

PLUS′2 = true and PLUS′3 = false). So we use a multiset comparison for the filtered

tuples 〈x, s(y)〉 and 〈y, x〉. Hence, as in Example 6.10 we set γ1,2 = ε1 = γ2,1 = true and

ε2 = false.

In recent refinements of the DP method [GTSF06], the choice of the argument filter

π also influences the set of usable rules which contribute to the inequalities that have to

be oriented. In the following section, we show how to extend the encoding of RPO and

argument filters in order to take this refinement into account as well. Similar to Section

6.2 one can easily show that the size of our encoding is again polynomial.

7.3. Argument Filters and Usable Rules

Recent improvements of the DP method [GTSF03, TGS04, GTSF06] significantly reduce

the number of rules required to be weakly decreasing in the reduction pair processor of

Theorem 7.3. We first recapitulate the improved reduction pair processor and then adapt

our propositional encoding accordingly.

The idea is that one can restrict the set of usable rules by taking the argument filter into

account: in right-hand sides of dependency pairs or rules, an occurrence of f in the i-th

argument of g will never be the cause to introduce a usable f -rule if the argument filter

eliminates g’s i-th argument. For instance, when taking π(QUOT) = [2] in Example 7.1,

the right-hand sides of the filtered dependency pairs do not contain minus anymore. Thus,

no rule is considered usable. In Definition 7.9, we define these restricted usable rules for

a term t (initially corresponding to the right-hand side of a dependency pair). Here,

we make the TRS R explicit to facilitate a straightforward encoding in Definition 7.12

afterwards.
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Definition 7.9 (Usable Rules modulo π [GTSF03, TGS04, GTSF06]). For any function

symbol f , let RlsR(f) = {` → r ∈ R | ` = f(s1, . . . , sn)}. Let R be a TRS and π an

argument filter. For any term t, the usable rules Uπ(t,R) modulo π are given by:

Uπ(x,R) = ∅ for all variables x

Uπ(f(t1, . . . , tn),R) = RlsR(f) ∪⋃
`→r∈RlsR(f) Uπ(r,R \RlsR(f)) ∪⋃
π(f)3−i

Uπ(ti,R \RlsR(f))

For a set of rules P, let Uπ(P ,R) =
⋃
s→t∈P Uπ(t,R).

We refine the reduction pair processor of Theorem 7.3 to consider usable rules modulo π.

Theorem 7.10 (Reduction Pair Processor modulo π [TGS04]). Let (%,�) be a reduction

pair for a simplification order � and let π be an argument filter. Then the following DP

processor Proc is sound.

Proc(P ,R) =

{
(P \ P�π ,R) if P�π ∪ P%π = P and R%π ⊇ Uπ(P ,R)

(P ,R) otherwise

Example 7.11. Consider the following TRS (together with the minus-rules (1), (2))

minus(x, 0) → x (1)

minus(s(x), s(y)) → minus(x, y) (2)

ge(x, 0) → true (12)

ge(0, s(y)) → false (13)

ge(s(x), s(y)) → ge(x, y) (14)

div(x, y) → if(ge(x, y), x, y) (15)

if(true, s(x), s(y)) → s(div(minus(x, y), s(y))) (16)

if(false, x, s(y)) → 0 (17)

The usable rules are the minus- and ge-rules since minus occurs in the right-hand side of

the dependency pair IF(true, s(x), s(y)) → DIV(minus(x, y), s(y)) resulting from rule (16)

and ge occurs in the dependency pair DIV(x, y) → IF(ge(x, y), x, y) resulting from rule

(15). However, if one chooses an argument filter with π(DIV) = [1] and π(IF) = [2], then

the ge-rules are no longer usable since ge does not occur in the right-hand side of the

filtered dependency pair DIV(x) → IF(x). Now Theorem 7.10 only requires the filtered

minus-rules and the dependency pairs to be decreasing.
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As demonstrated in [GTSF03, TGS04, GTSF06] and confirmed by the experiments

described in Section 7.4, introducing argument filters to the specification of usable rules

results in a significant gain of termination proving power. However, Theorem 7.10 is not

straightforward to automate using SAT solvers. The technique of Section 7.2 assumes a

given set of inequalities which is then encoded to a propositional formula. The problem

with Theorem 7.10 is that that the set of inequalities to be oriented depends on the chosen

argument filter. Hence, the search for an argument filter should be combined with the

computation of the usable rules. As discussed before, an enumeration of argument filters

is hopelessly inefficient. Therefore, we modify the encoding of the inequalities in Formula

(11) such that for every rule ` → r ∈ R, the condition under which ` → r is usable is

considered. Only under this condition one has to require the inequality π(`) %rpo π(r).

To this end, instead of encoding formula (11) we encode the following formula.∧
`→r∈Uπ(P,R)

` %π
lpo r︸ ︷︷ ︸

(a)

∧
∧

s→t∈P

s %π
lpo t︸ ︷︷ ︸

(b)

∧
∨

s→t∈P

s �πlpo t︸ ︷︷ ︸
(c)

(11′)

The subformulas (b) and (c) are identical to those in Formula (11) and are encoded as a

conjunction and disjunction of encodings of the forms τ(s %π
lpo t) and τ(s �πlpo t) using

the encoding of Section 7.2. The definition of the usable rules in Definition 7.9 now

induces the following encoding of subformula (a) as a propositional formula ω(P ,R).2 As

in Section 7.2, we use argument filter constraints of the form “π(f)3− i”. Moreover, we

introduce a new propositional variable uf for every defined function symbol f of U(P ,R)

which indicates whether f ’s rules are usable.

Definition 7.12 (Encoding Usable Rules modulo Argument Filter). For a term t and a

TRS R the formula ω(t,R) is defined as follows:

ω(x,R) = true for x ∈ V
ω(f(t1, . . . , tn),R) =

∧
1≤i≤n (π(f) 3− i→ ω(ti,R)) for f 6∈ DR

ω(f(t1, . . . , tn),R) = uf ∧ for f ∈ DR∧
`→r∈RlsR(f) ω(r,R \RlsR(f)) ∧∧
1≤i≤n (π(f) 3− i→ ω(ti,R \RlsR(f)))

For a set of rules P, let

ω(P ,R) =

( ∧
s→t∈P

ω(t,R)

)
∧

 ∧
f∈DU(P,R)

uf →

 ∧
`→r∈RlsR(f)

τ(` %π
lpo r)

 .

2The definition of ω can easily be adapted to more advanced definitions of usable rules as well, cf. e.g.
[AG00, GTSF03, GTS05b].
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For a DP problem (P ,R) we encode the formula (11′). Every model of this encoding

corresponds to a precedence ≥Σ, a status function σ, and an argument filter π satisfying

the constraints of the improved reduction pair processor from Theorem 7.10. Thus, we

can now use SAT solving to automate Theorem 7.10 as well.

Example 7.13. Consider again the TRS R from Example 7.11. Using the encoding of

Definition 7.12, for P = DP (R) we obtain:

ω(P ,R) = (π(DIV) 3− 1→ uminus) ∧ (π(IF) 3− 1→ uge) ∧
(uminus → (τ(minus(x, 0) %π

lpo x) ∧ τ(minus(s(x), s(y)) %π
lpo minus(x, y)))) ∧

(uge → (τ(ge(x, 0) %π
lpo true) ∧ τ(ge(0, s(y)) %π

lpo false) ∧
τ(ge(s(x), s(y)) %π

lpo ge(x, y))))

7.4. Implementation and Experiments

The propositional encodings for RPO with argument filters and for the reduction pair

processors described in Sections 7.2 and 7.3 are implemented and integrated in our ter-

mination prover AProVE. Our implementation uses several optimizations to minimize

encoding size:

(i) We apply basic simplification axioms for true and false as well as standard Boolean

simplifications to flatten nested conjunctions and disjunctions.

(ii) When building the formulas top-down, at each point we maintain the sets of atomic

constraints (on precedences and argument filters) that must be true and false from

this point on. This information is then applied to simplify all constraints generated

below (in the top-down process) and to prune the encoding process.

(iii) We memo and identify identical subformulas in the propositional encodings and

represent formulas as directed acyclic graphs (or Boolean circuits) instead of trees.

This decreases the size of the representation considerably. (The usefulness of sharing

when solving LPO constraints was already discussed in [GG97].) For instance, con-

sider the constraint from Example 7.7. Already in this tiny example, the subformula

s1 ∧ lists occurs twice.

Optimization (ii) typically reduces the number of propositional variables in the resulting

CNF by a factor of at least 2. Optimizations (i) and (iii) together further reduce the

number of propositional variables by a typical factor of 10.

We tested the implementation on all 865 TRSs from the TPDB [TPD06] with the

identical setup as in Section 6.3.
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Apart from the reduction pair processor, we also used the dependency graph processor

[AG00, GTS05a, HM05a], which is the other main processor of the dependency pair

framework.

The following table compares our new SAT-based approach for path orders within the

DP framework to the previous dedicated solvers in AProVE 1.2 which did not use SAT

solving. The columns contain the data for LPO with strict and non-strict precedence

(denoted lpo/qlpo), for LPO with status (lpos/qlpos), for MPO (mpo/qmpo), and for

RPO with status (rpo/qrpo). For each encoding we give the number of TRSs which could

be proved terminating (with the number of time-outs in brackets) and the analysis time

(in seconds) for the full collection.

Solver lpo qlpo lpos qlpos mpo qmpo rpo qrpo

SAT 357 (0) 389 (0) 362 (0) 395 (2) 369 (0) 408 (1) 375 (0) 416 (2)

79.3 199.6 69.0 261.1 110.9 267.8 108.8 331.4

ded. 350(55) 374(79) 355(57) 380(92) 359(69) 391(82) 364(74) 394(102)

4039.6 5469.4 4522.8 6476.5 5169.7 5839.5 5536.6 7186.1

The table shows that with our new SAT encoding, performance improves by orders of

magnitude over existing dedicated solvers. Note that without a time-out, this effect would

be aggravated. By using SAT, the number of time-outs reduces dramatically from up to

102 to at most 2. The two remaining SAT examples with time-out have function symbols

of high arity and can only be shown terminating by further sophisticated termination

techniques in addition to RPO. Apart from these two, there are only 15 examples that

take longer than two seconds and only 3 of these take longer than 10 seconds.

The table also shows that combining RPO with argument filters significantly increases

the number of examples that can be shown terminating. The best configuration, qrpo,

shows termination for 416 examples compared to 162 examples in the experiments of

Chapter 6. While the increase in runtime is prohibitive when using dedicated algorithms,

when using our SAT encodings, one should always combine RPO with argument filters.

7.5. Summary

In Chapter 6 we demonstrated the power of propositional encoding and application of SAT

solving to RPO termination analysis. This chapter extends the SAT-based approach to

consider the more realistic setting of dependency pair problems with RPO and argument

filter. The main challenge derives from the strong dependencies between the notions of

RPO, argument filters, and the set of rules which need to be oriented. The key to a solution

is to introduce and encode in SAT all of the constraints originating from these notions

into a single search process. We introduced such an encoding and through implementation

and experimentation showed that it meets the challenge, yielding speedups in orders of

magnitude over existing termination tools as well as increasing termination proving power.
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In our experiments with our transformational approach for termination analysis of

logic programs in Chapter 3, we used both our SAT-based implementation of polynomial

orders [FGM+07] and the SAT-based implementation of RPO and argument filters from

this chapter to search for well-founded orders.

While our implementation of RPO and argument filtering was used in many situations,

here, we discuss three of the logic programs in more details. For these examples, AProVE

could only find a proof using RPO and argument filters, and no other tool for termination

analysis of logic programs could prove their termination at all. For each of these three

examples and for each of the LP termination tools, the following table lists whether the

tool was successful for the example and how many seconds it took.

AProVE Polytool 2 Polytool TerminWeb cTI TALP

shapes Success Timeout Timeout Failure Failure Failure

15.28 60 60 0.19 0.04 0.28

cnfequiv Success Failure Failure Failure Failure Failure

10.50 7.08 3.29 0.13 0.04 0.24

hbal tree Success Failure Failure Failure Failure Timeout

10.57 5.91 2.95 0.08 0.03 60

The example shapes was an entry to to the 4th Annual Prolog programming contest in

Leuven, Belgium, in 1997. In a matrix of black and white pixels, it counts white shapes,

i.e., areas of connected white pixels.

We already know cnfequiv from Example 6.1. It was written in 2004 by Martin Jur-

dzinski to transform propositional formulas into conjunctive normal form (CNF).

Finally, hbal tree contains an algorithm that, given a natural number n, constructs all

height-balanced trees of n nodes by backtracking. It is P-59 from Werner Hett’s collection

P-99: Ninety-Nine Prolog Problems.

Thus, we can conclude that the contributions of Chapter 6 and of this chapter have

improved the efficiency of RPO implementations by orders of magnitude. Furthermore,

they have yielded the first automated termination proofs for a number of natural logic

programs.
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In Chapter 3 we developed a new transformation from logic programs to TRSs (Contri-

bution (i)). To prove termination of the resulting TRSs automatically, we showed how to

adapt the DP framework to infinitary constructor rewriting. We formally proved that our

new approach strictly subsumes the classical transformational approach. All contributions

of the chapter were implemented in our termination prover AProVE and evaluated suc-

cessfully in extensive experiments (cf. Section 3.6). Due to these contributions, AProVE

is currently the most powerful automated termination prover for logic programs. This

is also evidenced by AProVE reaching the highest score in all the annual international

Termination Competitions since 2004.

In Chapter 4 we introduced a new framework for termination analysis of LPs: the de-

pendency triple framework. This framework allows for the first constraint-based modular

approach for termination analysis (Contribution (ii)). A prototypical implementation in

the tool Polytool [ND07] yielded the most powerful automated direct termination prover

for logic programs (cf. Sections 3.6 and 4.4). This is further evidenced by Polytool reaching

the second highest score in the Termination Competition 2007. The modularization also

allows to combine direct and transformational approaches by the modular application of

the new transformation from Chapter 3 (Contribution (iii)).

In Chapter 5 we introduced a novel non-termination preserving pre-processing method

to eliminate the effect of cuts in logic programs (Contribution (iv)). After this pre-

processing, any technique for proving universal termination of definite logic programming

can be applied. Our method also works for meta-programming, and cuts can be used to

express negation-as-failure as well as existential termination. This pre-processing has been

implemented in our tool AProVE and has successfully been evaluated on logic programs

that use cuts and negation-as-failure. For details, see Section 5.5.

In Chapter 6 we presented a polynomial-size encoding from recursive path orders to

propositional logic such that the resulting formula is satisfiable if, and only if, termination

can be shown with such an order (Contribution (v)). Our encoding combines the solving

of constraints on partial orders and performing multiset comparisons and lexicographic

comparisons w.r.t. arbitrary permutations into a single search process. Through extensive

experiments in Section 6.3 we showed that our encoding is faster than existing dedicated

solvers by orders of magnitude.

In Chapter 7 we extended the encoding of Chapter 6 to consider the more realistic set-
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ting of dependency pair problems with recursive path orders and argument filters (Con-

tribution (vi)). The key idea was again to encode all of the constraints originating from

these notions into a single search process. Through implementation and experimentation

presented in 7.4 we showed that this encoding also yields speedups in orders of magnitude

over existing termination tools.

The Big Picture

We conclude this thesis by presenting a strategy how to combine and apply Contributions

(i) – (vi) in order to obtain a powerful automated termination prover for logic programs.

Assume that we are given a logic program P and a set of queries. This is the typical

setting for termination analyzers in logic programming.

1. If P contains cuts, apply the pre-processing step from Chapter 5 to P . Show

universal termination for the resulting logic program instead.

2. Use the contributions of Chapter 4 and build the initial dependency triple problem

(DT (P), Call(S,P),P).

3. Apply dependency triple processors from Chapter 4 based on the dependency graph

and on reduction pairs as long as possible.

4. If termination cannot be shown for all sub-problems, use the processor based on the

transformation from Chapter 3 to obtain a dependency pair problem.

5. Use the adapted dependency pair framework from Chapter 3. Among others, use

the encodings from Chapters 6 and 7 to search for well-founded orders.

Empirical Results

The theoretical contributions developed in this thesis have been implemented in tools

for automated termination analysis – Contributions (vii) and (ix) in our fully automated

termination prover AProVE and Contribution (viii) in a prototypical implementation of

Polytool which we refer to as Polytool 2 to distinguish it from the version of Polytool that

implements [ND07].

To evaluate Contributions (vii) and (viii), we tested AProVE and Polytool 2 against

four other representative termination tools for logic programming: TALP [OCM00] is

the only other available tool based on transformational methods (it uses the classical

transformation [Ohl01]), whereas Polytool [ND07], TerminWeb [CT99], and cTI [MB05]

are based on direct approaches.

We ran all available termination provers for logic programming on a set of 296 exam-

ples of which 52 examples are known to be non-terminating, i.e., there are at most 244
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terminating examples. This set basically includes all logic programming examples from

the Termination Problem Data Base [TPD07], which is used in the annual international

Termination Competition [MZ07]. For details on the examples or on the configuration of

the tools, we refer to Section 3.6. For every tool we give the number of LPs which could

be proved terminating (denoted “Successes”), the number of examples where termination

could not be shown (“Failures”), the number of examples for which the timeout of 60

seconds was reached (“Timeouts”), and the total running time (“Total”) in seconds.

AProVE Polytool 2 Polytool TerminWeb cTI TALP

Successes 232 220 204 177 167 163

Failures 57 65 82 118 129 112

Timeouts 7 11 10 1 0 21

Total 1471.4 1517.4 622.7 95.3 10.4 413.5

The table show that there are only at most 12 terminating examples where AProVE did

not manage to prove termination. With this performance, AProVE won the Termination

Competition with Polytool being the second most powerful tool. The comparison with

Polytool 2, Polytool, TerminWeb, and cTI demonstrates that our transformational approach

is not only comparable in power, but usually more powerful than direct approaches.

Once fully implemented, Contribution (iii) would clearly yield an even more powerful

termination prover.

Note that there are several examples where AProVE succeeds whereas no other tool

shows their termination. For instance, termination of the example SGST06/hbal tree.pl

can only be shown using Contribution (ix), i.e., RPO in combination with argument filters.

To evaluate Contribution (ix), we tested our implementation on all 865 TRSs from the

TPDB [TPD06]. For details on the setup of the experiments, we refer to Section 7.4.

The following table compares our new SAT-based approach for path orders and argument

filters to the previous dedicated solvers in AProVE which did not use SAT solving. The

columns contain the data for recursive path orders with non-strict precedence (denoted

rpo) and for lexicographic path orders with strict precedence (lpo). For each encoding we

again give the number of “Successes”, “Failures”, and “Timeouts”. Additionally, in the

fourth row we give the analysis time (in seconds) for the full collection of 865 examples.

SAT-based rpo dedicated rpo SAT-based lpo dedicated lpo

Successes 416 394 357 350

Failures 447 369 508 460

Timeouts 2 102 0 55

Total Time 331.4 7186.1 79.3 4039.6

The table shows that with our new SAT encoding, performance improves by orders of

magnitude over existing dedicated solvers. The table also shows that the use of RPO

instead of LPO also increases power substantially in the combination with argument
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filters. This increase in power comes with a large penalty in runtime when the dedicated

solver is used, while in the SAT-based setting, runtimes increase only mildly.

In our experiments to evaluate Contribution (ix), we found three logic programs for

which AProVE could only find a proof using RPO and argument filters. The following

table shows that no other tool for termination analysis of logic programs could prove their

termination at all. For more details, we refer to Section 7.5.

AProVE Polytool 2 Polytool TerminWeb cTI TALP

shapes Success Timeout Timeout Failure Failure Failure

15.28 60 60 0.19 0.04 0.28

cnfequiv Success Failure Failure Failure Failure Failure

10.50 7.08 3.29 0.13 0.04 0.24

hbal tree Success Failure Failure Failure Failure Timeout

10.57 5.91 2.95 0.08 0.03 60

Future Work

The contributions of this thesis have advanced the state of the art in termination analysis

of both logic programming and term rewriting significantly. Still, there are many ways

in which these contributions might be extended in future work. For example, one should

adapt further processors from term rewriting to the framework presented in Chapter 4

and develop completely new processors in this framework that rely on special properties

of logic programming.

Another important topic for future work regarding Contributions (i) – (iv) is the effec-

tive and efficient handling of built-in data structures like integers and of built-in (meta)

predicates. Likewise, the techniques of Contributions (ii) and (iv) should be adapted to

handle both unification with and unification without an occur check.

The graph-based approach of Chapter 5 could be made more precise by, e.g., integrating

a sharing analysis. Adding some kind of structure shape analysis would allow both for a

more precise graph and for improved power on queries expressing existential termination.

While we applied the graph-based approach of Chapter 5 to a programming languages

based on logic programming (Prolog), in [GSST06] we applied a similar graph-based ap-

proach to a functional programming language (Haskell). Interesting future work is to

develop a new graph-based approach for termination analysis of imperative programs.

Indeed, we are currently investigating such an approach for Java programs.

Finally, the encodings presented in Chapters 6 and 7 could be extended to handle more

complex orders (e.g., higher-order recursive path order, recursive path order for rewriting

modulo associativity and commutativity, context-sensitive recursive path order). And, of

course, one might apply ideas developed here for encodings of other search problems.
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2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots
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2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code



173

2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-

grams

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,

Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modu-

lar, Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent pro-

grams
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