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Abstract. Ranging from the development of new protocols to validating analyt-
ical performance metrics, network simulation is the most prevalent methodology
in the field of computer network research. While the well known ns-2 toolkit has
established itself as the quasi standard for network simulation, the successors
are on their way. In this paper, we first survey recent contributions in the field
of network simulation tools as well as related aspects such as parallel network
simulation. Moreover, we present preliminary results which compare the resource
demands for ns-3, JiST, SimPy and OMNeT++ by implementing the identical
simulation scenario in all these simulation tools.
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1 Introduction

Simulation means to model a real system with a computer program and by this
evaluating the behavior of the system. If one wants for example to test a new
network protocol, one can model a complete network using this protocol with a
simulation program.

The interesting point in such a simulation is how certain values change over
time. An advantage of simulation is that this time has not to be equal to the
real time. One speaks therefore of simulation time. Time inside the simulation
can run faster or slower than the real time. One second inside the simulation can
take a day to compute or also only a millisecond. How fast the simulation runs
depends on the computation speed of the computer.

If changes inside the simulation happen not continuously, but only at specific
points in simulation time, this is called discrete event simulation. Events can be
scheduled for certain time-points and the events can trigger new events by them-
selves. Through this mechanism one can for example model how packets traverse
a network. Each packet being sent corresponds to an event. The processing and
forwarding of this packet can be modeled by events again and so on. In discrete
event simulation there is a series of events which trigger one another. A sim-
ulation stops if there are either no more events to process or if the simulation
time reaches a given limit. The objects in a discrete-event simulation, which can
execute and receive events, are called entities.

There are several simulation frameworks which all use this principle of dis-
crete event simulation, but the way how this is implemented can be very different.
There exist special programming languages with the only purpose of doing sim-
ulations. One writes the simulation code in such a language and compiles an
executable from it. A different concept are simulation kernels, where a static



program loads and executes the simulation. A more efficient and widely used
concept are simulation libraries. One writes the simulation in a standard pro-
gramming language and uses a special library which provides the functionality
for creating, scheduling and executing the events. Through this the simulation
kernel and the simulation itself get merged into a single binary, which results in
higher efficiency. To increase efficiency, the concept of a simulation kernel was
even implemented directly as an operating system called Time Warp OS [§]. But
this was developed 20 years ago and such a concept seems not to have succeeded
for simulations of the size where normal PC hardware is used.

In this paper, we instead focus on recent developments in the field of network
simulation. In section B, we introduce general concepts which aim at the improve-
ment of both scalability and efficient simulation execution. Qur survey continues
in section Bl where we compare recent network simulation tools according to their
architecture, their feature set and the availability of models. Finally, section Hl
provides preliminary results from a performance evaluation study where we im-
plemented the same simulation in four different toolkits in order to compare their
simulation performance.

2 Optimization techniques

Simulation itself is not a new concept, however quite a few techniques surfaced
during the last decade, mainly addressing the improvement of simulation effi-
ciency with the goal of simulating larger networks in less time. There are also
advancements which make simulations easier to use or help to connect them with
other parts of the work environment. The aim of this section is to present a few
of these new techniques.

2.1 Improving Scalability

Performance and scalability have been the main issues since the early days of
computer simulation. There has always been the desire to simulate systems which
are so complex that they drive a computer simulation to its limit. Examples for
such problems are weather forecasts or the simulation of physical phenomena.
Although the available computation power rises continuously, this does not solve
the problem since the demand for more complex simulations is also rising.

This is especially the case in computer networks since they are getting bigger
and more complex as computers are getting faster. Thus are also the simulations
trying to model them. For areas as P2P Networks or Wireless Ad Hoc Networks
it is necessary to examine their behavior in a large scale and although the needed
computing power and memory are not this much for a single device, it sums up
to a respectable amount when trying to simulate dozens of them.

There is not a single way how to improve the scalability of a simulation.
The most common approach is to parallelize the simulation, but there are also
others. This includes improving the efficiency of the simulation itself or the used
simulation system. However it may also be possible to replace whole parts of the
simulation by a totally different concept.

Parallelization The main idea of parallelization is very simple: The simula-
tion problem has to be partitioned in independent parts in order to run these



in parallel on different computers. This reduces the computation time and mem-
ory requirements per machine. However it is often not possible to partition the
problem in real independent parts. Thus one tries to find a partition where each
computation can run as independent as possible and the federates communi-
cate among each other whenever they need information which is not present at
themselves. This communication of course quickly becomes the bottleneck of the
whole simulation for which reason one uses special high speed links and tries to
minimize the need for information exchange.

In the example of a large wireless network, a single simulation federate can
simulate a couple of wireless network nodes. The only thing which these nodes
have in common is the radio field. Hence it is possible to simulate the upper
network layers of these nodes independently and communication is only needed
for the simulation of data exchange in the radio field.

As usual simulation time progresses independent from the real time. In a
parallelized simulation it may be the case that one federate needs information
from another federate which has not reached the same point in simulation time
yet. There are two ways how to handle this situation. The first one is to wait until
the other federate has reached the same point in simulation time. This is known
as conservative synchronization. The other way is to guess this information and
continue the computation based on this assumption. If this assumption turns out
to be wrong, the computation has to be restarted from the point onwards where
the guess has been made. This is called optimistic synchronization.

Optimistic synchronization is much more complex, but has the advantage to
utilize the the computation time better. If the assumption which has been made
was correct, everything is fine. But even if the assumption turns out to be wrong
and the computation is restarted, one only wasted the time in which the feder-
ate would have been idle when using conservative synchronization. If a needed
information is missing and there are other simulation events to process, it is of
course better to first compute these instead of doing an optimistic computation
which might be wrong.

One major problem with optimistic synchronization is what to do if an as-
sumption turns out to be wrong. The computation has to be restarted from that
point onwards where the wrong assumption has been made - a so called rollback
has to be performed. This is mostly done by state saving, which means that the
memory state of the application is saved and restored when needed. This method
is simple but can cost a lot of memory and is inefficient when only small changes
are made.

A different way to solve this problem is Reverse Computation, which is de-
scribed in [4]. Here the original state is restored by reversing the computation
steps themselves. Doing a computation in reverse is not trivial. Operations as +=
can be done simply in reverse, but for operations as modulo not only the result
but also the original operands are needed. Thus the operands or the old left-hand
side have to be saved. One must also store whether an if-branch was executed or
not and similar information. Depending on the computation, saving all this can
be better or worse than saving and restoring the complete state. The authors of
M) created a special compiler which adds necessary state saving instructions to
the normal code and produces in addition the reversing code. For this purpose
they created a table of all possible instructions types, the two code-outputs and



the total memory requirements. Doing this automatically is often not optimal.
If one knows the semantics of the code, which a compiler naturally cannot, it is
often possible to produce much better reversing code. An example for this which
plays an important role in simulations are random number generators. Since the
random numbers have to be repeatable when using the same seed, the random
number generator has to be rolled back when using optimistic synchronization.
The computation of the next random number uses many operations which would
require a lot of state saving. In contrast it may be much easier to reverse the
computation when the computation is regarded on a mathematical level. It is
therefore much more efficient to use appropriate random number generators and
separate hand written reverse code. If the technique of reverse computations is
reasonable depends strongly on the simulation code itself, but is often suitable
for simulations which require a lot of memory and do only small computation
steps in each event.

Beside such theoretical problems a parallelized simulation should also be as
transparent as possible, meaning that the simulation code for a simulation on
a single machine should not differ much from that for the parallelized case. A
problem in parallelized simulations is that the entities are distributed among
the federates and can therefore only directly access other entities that are on
the same machine. This leads to problems when entities want to communicate
with each other or the entities simply want to know which other entities are in
the network. In order to perform these tasks the entities have to communicate
with the other simulation federates. Doing this communication directly in the
simulation code is very inconvenient since it makes the code more complicated
and is different to the code which is used in a simulation without parallelization.

A solution to this problem are techniques as proxy entities [B], [I4] or ghost
nodes [I3]. The basic idea is to have two kinds of entity objects: normal objects
as they are used for a simulation on a single machine and special objects that
are only proxies or ghosts. Every simulation federate has to execute a group of
entities for which the regular objects are instantiated. For all other entities which
are not executed on this federate, it instantiates only special objects which act
as a placeholder. Whenever communication methods on such a proxy object are
called, the proxy object establishes a connection to the corresponding federate
on which a similar proxy object for the sending node exists. This means that if A
on federate = wants to send a message to B on federate y, A sends the message to
PRp on z, PRp sends it to PR 4 on y, and PR, finally to B. From the perspective
of the nodes A and B everything is similar to the simulation on a single machine.
By this it is possible to use communication in a parallelized simulation with the
same code that is used for a simulation on a single machine. This approach also
helps for routing algorithms which need to know the complete network topology.
If only the active nodes would be available on a federate, the nodes would have
to query all federates in order to gain knowledge about the network topology.
By using such placeholder objects all nodes have direct access to the topology
information and do not have to query the other simulation federates.

Another aspect regarding federated simulations is that parallelizing a simu-
lation might not always be the best solution. It is often the case that one runs a
series of simulations for an experiment with different parameters. In this case it
is probably inefficient to run the simulation in parallel on all available machines



again and again for each parameter value. Running the whole experiment in par-
allel with each simulation for one parameter value on a single machine might
result in better performance.

The reason for this is that the entities in the simulation might depend so
strong among one another that in a parallelized simulation more time is spend on
waiting than on computation. Optimistic synchronization can help to solve this
problem, but is very difficult to implement and therefore rarely used in practice.
With conservative synchronization however the complete simulation may block if
one federate has not finished its computation. How good a parallelized simulation
will perform with conservative synchronization depends therefore strongly on the
model used for a simulation. In [T6] the authors present a quantitative criterion
to calculate if a specific simulation model will perform well in a parallelized
simulation using the Null Message Algorithm. With this type of conservative
synchronization each entity distributes the earliest point in simulation time it
will output any data and the other entities save these time-points as earliest
input times. Once an entity reaches one of its stored earliest input times, it
is blocked since it might otherwise receive a message in the past. The earliest
input time could for example be the current simulation time of another entity
plus the delay of the simulated network connection. This difference is called
Lookahead and can be used together with three other parameters in a formula to
determine how well a parallelized simulation using the Null Message Algorithm
will perform. The other parameters are how many events occur per simulated
second, how many events per second can be processed and the latency of the of
the simulation hardware. The first two of these parameters depend only on the
simulation model whereas the latter two depend only on the simulation hardware.

Calculating Radio Propagation Network simulators provide different radio
models for the propagation of waves in the radio field. This ranges from easy free
space models to more difficult ones where the reflection of waves at obstacles is
taken into account. This can be very resource demanding, since for each emitted
signal the set of nodes which receive the signal has to be computed. This is
often done by calculating the reception power for every node in the radio field
whenever a signal is emitted. If this power level is below a specific threshold the
signal is discarded as noise, which is often the case for the majority of nodes.

Since the power of radio signals decreases with increasing distance and the
reception threshold for receiving nodes is constant, there is a maximum distance
in which nodes can receive the signal. Even with a complicated model which
takes signal reflection into account, no node will receive the signal if it is outside
this range. Therefore it is sufficient to do the complete calculation only for nodes
which are inside this range.

In [T2] the authors present an algorithm which uses this knowledge. Instead
of maintaining a simple list of all nodes, the nodes are stored in a grid reflecting
the geographical position of the nodes. When simulating a emitted signal only
nodes which are stored in a cell within the reception range have to be regarded.
This results in a bit more required memory, but often much less computation
cost. The size of the cells is very important. If the cells are too big and contain
too much nodes, too many nodes within a cell in reception range have to be
checked. If the cell size is too small, there are too many cells, which means that



the algorithm has to check many cells containing only one node or being empty.
In both cases the algorithm degrades to the simple algorithm.

The algorithm can be further improved by using a simple double-linked list
to store the nodes. Inside the list, the nodes are ordered by their X —coordinated.
If now a signal is emitted, the algorithm searches the linked list beginning from
the sending node in both directions. This means if (X,Y") are the coordinates of
the sending node and R is the range how far the signal will be received, the list
has to be searched from X + R to X — R. This has the disadvantage that nodes
with their Y-coordinates being out of reception range are checked, but is faster
and more memory efficient than the grid-based algorithm.

An improvement of the grid-based approach is used in the wireless ad hoc
simulator JiIST/SWANS, which is presented in [3]. Here the field is recursively
divided along each axis, for which reason this is called Hierarchical Binning. One
can represent this as a spatial tree where each inner node represents one division
step and the nodes are stored in the leaves. Thus the node bins are the leaves
of this tree. Calculating the set of receiving radios means to search this tree
from top to bottom. If the subtree being checked is completely out of reception
range, descending the tree can be stopped at this node. Compared to the simple
grid this algorithm has the advantage that the bin size is less important for the
computation cost.

Staged Simulation Another method to save computation time is the caching
of function results. Whenever a function is called with the same arguments (and
side-effects), it will return the same result. If the result of a function call is saved,
the cached result can be used in the future instead of computing the function
again. This so-called Staged Simulation saves computation time but requires
more memory for the cached data. In [I8] it is described how to use function
caching for network simulation as an extension of ns-2. In this context there are
not only functions but also events to which the same problem applies. In addition
to identical events within one simulation run, identical events between different
runs of a simulation should also be taken into account. Especially in the area of
mobile network simulations the problem occurs that the arguments of a event
differ slightly, but big parts of the computation might be the same. The authors
of this ns-2 extension solved this problem by breaking down events into a series of
equivalent events. This has the effect that these smaller events occur more often
with the same parameters. The speedup of this method can be further improved
by combining it with other techniques as parallelization.

Analytical Methods In some cases analytical methods might be an alterna-
tive to direct simulation. Obtaining them is often more difficult than writing
an algorithmic simulation model. However, analytical models may outperform
simulations which implement all network behavior. In the case of TCP/IP-
Networks there exist fluid models which can be used to obtain characteristics
as the throughput of large networks. Such a model analyzes classes of TCP flows
for a set of routers and links between them. This is done by solving a set of

! Here it is assumed that the X-side is the largest side of the simulated area. If this is not the
case, sides have to be swapped or the algorithm has to be modified accordingly.



differential equations which describe arrival- and departure rate, the queue evo-
lution and the TCP Window dynamics. By this it is possible to model a much
larger network than by simulating each single packet. A drawback is that the
information one can obtain from this is less. For instance it is not possible to
analyze the behavior of single network packets.

The concept of Hybrid Simulations, which is described in [6], combines net-
work simulations with fluid models. This can be used for example to model
two small wireless networks which exchange data through a wide area network.
The network simulated by the network simulator is called packet network or
foreground network and the network modeled by the fluid model is called fluid
network or background network. The interesting point is what happens when a
packet of the foreground network traverses the background network. The authors
of [6] propose two different algorithms. The first one is simpler and neglects the
influence that the foreground packets have on the flows of the background net-
work. The properties of a foreground packet traversing the background network
are directly derived from the fluid model. The second algorithm first transforms
the foreground packets into a flow of the background network, recalculates the
background network and then derives the probabilities for the foreground packets.
It is therefore more complex, but better suited if the influence of the foreground
packets is not negligible.

The authors of [6] implemented their concept in ns-2 by adding a special ns-2
node which represents the whole fluid model. This node is connected to other
special nodes which represent the nodes inside the background network from
which data enters and leaves the background network. These access points are
then connected to the real nodes of the foreground network. This is illustrated in
Figure [ for the case of two packet networks connected through a fluid network.
When a packet enters the background network through such an access point,
properties as delay and loss are obtained from the fluid model. Then the packet
leaves the background network with the corresponding loss-probability and delay
through another access point node.

(O Normal Node
@ Access Point Node

Fluid Network

NS-2 Link
O———— Fluid Link

Fig. 1. Two Packet Networks exchanging data through a large Fluid Network

A different approach which replaces the simulation of single events completely
is Traffic Flow Analysis. Here statistical methods are used to distribute traffic



in the network and afterwards the influence of the finite network capacities is
calculated. In [I0] the authors present a way to combine this method with discrete
event simulation. One can collect statistical data from a discrete event simulation
and use this for a traffic flow analysis. For the other direction events which
are based on the statistical data for the traffic flow analysis can be used. The
paper [I] shows even how to connect these two methods with similar simulation
methods for business processes. The reason for a simulation of communication
systems together with business processes is that traffic in a company network is
caused by the business processes and vice versa. Therefore a combined simulation
might be more accurate than two independent simulations.

2.2 Usability and Extensibility

Another interesting point is the question how well the simulator supports the user
with his task of creating and running the simulation. This includes the API of
the simulation engine, the documentation, how the simulation is run, debugging
tools, etc. Since all this strongly depends on the used simulator, we will describe
only a few points in a very brief fashion.

A graphical user interface (GUI) might be helpful for running the simula-
tion. For instance it might visualize the simulation entities and the events being
passed between them. A further feature can be to provide controls for stepwise
simulation or an object inspector which allows to have a look at the states of the
entities. Such features make sense for debugging a simulation. To run a whole
set of simulation runs via scripts, a command line interface is better suited.

In the case of network simulators, the network topology is often defined in
the simulation code. This has both advantages and drawbacks. One advantage
is that one is very flexible in the type of used topology and that the topology
can be parametrized. A drawback is that the computer can not understand the
semantics of this code and GUIs therefore cannot visualize the topology directly.

It is often the case that one performs not only a single run of a simulation,
but a whole set with different parameters as network size, noise of the radio field,
etc. This is mostly done by writing a script which calls the simulation with the
specific parameter and collects the desired results. Some simulators support this
out of the box and one can tell the simulator for which range of parameters it
shall run the simulations.

Another feature which is helpful for debugging is the ability to look inside the
simulation entities and modify them during runtime. This can be implemented
by the simulation engine itself, or through reflection capabilities of the used
programming language.

One often uses not only simulation, but also real networks. It might be inter-
esting to combine the simulation with other parts of the environment one uses.
One way to do this is by connecting the simulation with a real network. In this
case the simulation has to run in real time and the used network simulator has to
offer such interfaces. Another interesting point is to connect the simulator with
external tools. For instance it might be reasonable to analyze trace files which
are generated by the simulator with a standard network protocol analyzer.

Another interesting point is how easy it is to use existing code for the simu-
lation. If one wants for instance to model a TCP stack, it would be the easiest to
use some existing code of a real operating system instead of writing everything
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from scratch. How easy this is possible depends on the used programming lan-
guages and especially on internals and interfaces of the simulator. Support for
networking applications can be easily added by implementing a socket interface,
but when it comes to network stacks or routing protocols things get more difficult
due to the lack of definite interfaces. This can be solved by using an abstraction
library which provides such an interface. This library has then to be implemented
in the simulator and the operating systems. Since the networking code has to
use this library this does not work so well for existing code and is better suited
for new code which shall be used in a simulation and a real implementation.

2.3 Process Oriented Simulation

While all popular network simulators follow the paradigm of event-based sim-
ulation, process-oriented simulation follows a different design principle where
processes are the main concept. A process is like an entity, but is always doing
something. It might perform a calculation or wait for something to happen. If a
process is waiting for an event to occur, the difference to event-oriented simu-
lation is the following: In event-oriented simulation the events themselves cause
some code to be executed, whereas in process-oriented simulation a process runs
in a loop and actively waits for the event to happen. This means in addition that
if no process is waiting for a specific event, such an event will be ignored.

The process-oriented approach has some drawbacks compared to event-oriented
simulation. Since processes are always active, concurrency is required. This is not
needed for an event-oriented simulator which can simply execute one event after
another. This slows down the execution of a process-oriented simulation, be-
cause even if the threads are implemented in user-level there is more overhead.
Another advantage of event-oriented simulation is that it is more flexible. In
process-oriented simulation one has to stick to the concept of processes with
an execution loop. But process-oriented simulation has also advantages. If this
approach fits the simulated scenario well, it produces more modular and easier
code.

One can not classify a simulator to belong strictly to one of these groups.
For example JiST or OMNeT++ are mainly event-oriented, but support also
the process-oriented concept. In JiST it is possible to create events which are
blocking, meaning that scheduling such an event suspends the execution of the
calling code until the event finished. In OMNeT++ the activity() function, which
is something like the main loop of a process, can be used.

3 Network simulator comparison

As shown so far in this paper, quite a few approaches have been developed with
the goal of improving simulation performance and scalability. In this section,
we introduce common network simulation tools with the focus on more recent
developments. While our following comparison is for sure partial, we still believe
that it may support one in choosing an appropriate network simulator for a given
problem.
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3.1 OMNeTH+

OMNeT++ is a discrete event simulation environment. It has been designed to
provide the basic machinery and tools for all kinds of distributed and parallel
systems. Support for computer networks is added by simulation frameworks as
the INET Framework or the Mobility Framework.

A simulation consists of various modules. Simple modules are written in C++.
These simple modules are then glued together to compound modules. A com-
pound module can also consist of other compound modules. To communicate
with each other, the modules have gates which can be linked to a connection.
Inside an OMNeT++4 simulation simple modules do not use events directly, but
send messages through these gates or to themselves, which is essentially the same
as events. The structure and connections of modules are described in a special
language, called NED. Modules are comparable to objects of object-oriented pro-
gramming languages. To make these modules generic, they can have parameters.
The upcoming version of OMNeT++, which is described in [I5], also supports
features which are known from normal object-oriented programming languages:
inheritance, interfaces, packages and inner types. It will also be possible to add
meta data as a graphical icon, the unit of parameters, etc. To make a simulation,
the modules are connected as a network, which is also done in the NED language.
It is not only possible to describe a fixed topology, but also parametric topologies
are supported.

Some flexibility is lost due to the usage of the special NED language compared
to writing the whole simulation in C++, but this is beneficial for other reasons.
The advantage is that the structure of the simulation modules is described in a
defined manner which is easier to understand for a user and makes it possible
that a computer can understand it as well. This way, it is possible to have a GUI
which allows to edit the NED-file graphically. The current version of OMNeT++
offers a GUI which visualizes the structure of the simulated network and the
flow of data in it. One can also edit the structure, do stepwise simulation or use
an object inspector to view details of a simulation object at a certain point in
time. Additionally OMNeT++ provides a command line interface which is better
suited if the simulation shall be run automatically, e.g. by a script.

Parameters as the size of a simulated network are not specified in the NED-
file, but in a separate INI-file. This allows to describe the general model topology
in the NED-file and to invoke the simulation for different parameters specified
in the INI-file without having to recompile the simulation. One can generate the
INI-file, invoke the simulation and collect the data with a script, but this can also
be done by OMNeT-++ itself by specifying different values inside the INI-file.

The upcoming version 4 of OMNeT++ contains a new GUI which is based
on Eclipse. The current GUI is only used for running the simulation, whereas the
new GUI provides a real IDE for all steps required to perform a simulation. It is
possible to create the NED and INI files using the GUI and to switch between
a graphical and a source view. The part of running a simulation has also been
extended: e.g. a sequence chart tool has been added which visualizes how events
follow each other. The new GUI provides also tools to collect the data of a
simulation and to create charts.

OMNeT++ compiles the simulation kernel, the user-interface and the sim-
ulation itself into one binary. For the upcoming version the kernel has been
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undergone memory optimization and uses now shared objects and copy-on-write
semantics to save memory. To speed-up a simulation OMNeT-++ supports paral-
lelization (with conservative synchronization), which uses the technique of proxy
entities which we presented already. The configuration of a parallelized simulation
takes also place in the INI-file. Since C++ does not provide garbage collection
and OMNeT++ does not use smart-pointers or similar concepts, the user has
to keep track of the memory allocated in simple modules. OMNeT++ however
helps to detect memory leaks by printing a list of undeleted objects at the end
of a simulation.

A very notable aspect of OMNeT++ is its modular architecture which facil-
itates the replacement and the extension of the simulator. Using a plugin-alike
system, custom graphical user interfaces can be implemented. Furthermore, OM-
NeT++ allows one to modify the behavior of the simulation core itself, most no-
tably the event queue. This is important for the realization of network emulation
scenarios where the simulation interacts with real world systems. Finally, it is
possible to integrate a complete OMNeT++ core into another application which
requires simulation capabilities.

3.2 ns-3

ns-8 is a simulator designed specifically for computer networks. It is still in
development and not all features are implemented, but [7] gives a good overview
of its design goals. It is the successor of the widely used network-simulator ns-2,
however, their architecture differs widely. As many extensions and simulation
models have been developed for ns-2 over the years, they are currently converted
for later usage with ns-3.

ns-2 uses C++ for the core and OTcl for simulation scripts. By this one can
change the scripted parts of the simulation without recompiling everything. But
this approach has drawbacks: the usage of OTcl slows the simulation down and
many users are not familiar with the OTcl language. Therefore the authors of
ns-3 decided to rely solely on C++ for the entire simulation, thus abstaining
from backward compatibility.

Many improvements of ns-3 target its interfaces and its extensibility. It sup-
ports network traces of the simulation to be written out in the widely used
pcap-format, which can then be read by tools such as wireshark. Another goal is
to implement abstraction layers as a socket interface which help to use existing
networking code inside a simulation. Moreover, the authors of ns-3 plan to ex-
tend the interaction support for testbed environments in a sense that it should
be possible to run the same code in ns-3 and in a network testbed. In addition,
network emulation features are also planned for ns-3.

Scalability is also a big issue in the design of ns-3. There have been many
extensions as staged simulation, various approaches for parallelized simulation
or the ghost-node approach, which aim to increase the scalability of ns-2. Some
of them will be used in ns-3 to support parallelization from the outset, but only
with conservative synchronization. Other issues regarding scalability are class-
redesign and the support of 64-bit processors.

ns-2 itself does not contain any GUI, but there exists a GUI called Nam which
graphically animates network traces. Nam shall be included in ns-3, which is why
ns-3 is also called nsnam. There shall be support for GUI-based configurators,
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but ns-3 itself will probably not provide one. Another improvement regarding us-
ability will be made by extending the support of creating statistics. Another nice
feature is that ns-3 uses and provides smart-pointers which free the programmer
from the task of keeping track of allocated memory.

3.3 JiST

JiST is a quite young simulation system based on Java. JiST itself has not been
designed specifically for the simulation of networks, but its authors provide a
package called SWANS which turns JiST into a wireless ad hoc network simula-
tor. It has not as many users as OMNeT++ or ns-2 have, but uses some really
interesting concepts.

Simulations for JiST are written, compiled and executed using a standard
Java toolchain. In order to make the simulation code more transparent, the
simulation semantics are directly embedded into the Java-language. Simulation
entities are arbitrary classes which implement the Entity-interface and scheduling
an event is nothing more than calling a non-private method of such a class. If
a method of an entity is declared as private, the semantic of method calls stays
unchanged, otherwise method calls will be scheduled as an event (even if called
from the class itself). The simulation time of an entity can be advanced by calling
a special sleep-method of the JiST-API inside the corresponding object. An event
is always scheduled for that point in time, where the calling entity currently is.
The simulation kernel ensures that the event is executed when the called entity
is at the point in time when the calling entity scheduled the event. Since the
time synchronization can only be ensured through this, different entities may
only exchange data through events and not through normal function calls or
class attributes. Accessing objects directly is only allowed if the object is not an
entity and does not change over time. If this is the case JiST tries to detect this
automatically, but it can also be forced by implementing the Timeless-interface.
Another difference between normal method calls and scheduling events is that
normal methods are blocking. If one calls a method which is then scheduled
as event, the program returns directly to the calling method and the event is
executed at some later point in time. This also holds if an entity calls an event of
itself. Since the program continues directly after scheduling the event, methods
implementing an event may not return any data, i.e. have the return type void.

It is also possible to make events blocking by declaring the method to throw an
C’ontinuation-exceptionﬁ. If an entity calls such a method, the program execution
is halted. After the event has been executed, the program continues directly after
the method-call, but with the simulation time advanced to the time-point where
the event of the called entity finished. Through this blocking method semantics
it is possible to write simulations in a process-oriented style. Another use for
blocking methods is the socket-interface that JiST provides. It is possible to
simulate regular network applications which are written in Java and use sockets
for communication. Since it is possible to have blocking events, this is used to
simulate a blocking recv-method.

JiST uses an unmodified Java compiler and runtime, though it changes the
the semantics of the Java-code. This works as follows: The simulation is compiled

2 This exception is not thrown, it serves only as a marker.
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with a normal Java compiler into bytecode and is afterwards executed using a
normal Java runtime. It is not the simulation class which is executed by the run-
time, but the JiST simulation-kernel. The simulation kernel gets the simulation-
class to execute as parameter and loads the simulation classes. While loading
them it modifies the semantics of the non-private methods and transforms them
into events. This mechanism allows to use a standard Java implementation, re-
quires no source-code access of the simulation classes and has only low overhead,
since the transformation takes place only once during startup. A drawback of
this method is that many errors which could be detected during compilation, are
only reported via exceptions during runtime. This happens for example if one
implements public non-void methods in an entity, since this is correct for normal
Java-programs, but not with the JiST-semantics. More details how all this is
implemented can be found in [3].

JiST provides no default interface for configuring a simulation but allows
multiple methods to do this. One can configure the simulation in the source
code, use parameters or configuration files which are parsed during runtime.
Additionally one can use the reflection-mechanism of Java which allows to set
and read values with other scripting languages during runtime, which allows
great flexibility.

There is only a very simple parallelization-mechanism currently available in
JiST, which allows to distribute a set of simulations onto several servers. Each
JiST-engine can request a simulation from a job server, loads it, processes it
and sends the results back to the server. However real parallelization could be
implemented easily in JiST by modifying the simulation kernel. Java already
provides a number of features as remote method invocation or object serializa-
tion which would be very helpful for this. Another efficiency-improvement which
is implemented in JiIST/SWANS is the hierarchical binning algorithm used for
calculating the radio signal propagation in a wireless network, which we intro-
duced in the last section. As most network simulators JiIST/SWANS also allows
more efficient data-less data-transfers, meaning not to model the data which is
exchanged but only how many bytes are transferred. In addition it is also pos-
sible to include the data, which is for example needed for the socket-interface.
JiST provides its own threading-package which can be used as a non-preemptive
replacement of the standard Java Thread class. Non-preemptive scheduling is
better suited for simulations, because it avoids context switches and is therefore
more efficient. Since time inside the simulation is independent of the real time
and all events have to be executed at some point, it does not care when exactly an
event is executed and non-preemptive scheduling can therefore be used without
problems.

The authors of [9] developed an extension for JIST/SWANS which simplifies
the process of setting up and running many single simulations. This extension
called DUCKS builds the set of simulations to run from parameters stored in
a configuration file, distributes the simulations among JiST simulation servers,
collects the results and stores the results in a database. DUCKS includes also a
graphical tool which helps to evaluate the generated data.

JiST benefits from many features of the Java-language. The rewriting of
code is only possible since the Java-bytecode is not compiled directly into ma-
chine code. Java-features as garbage collection, reflection, type safety or the
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standard Java library are directly available in JiST, although the semantics of
the simulation-code differs from normal Java-semantics.

3.4 SimPy

The last simulation presented in this paper is SimPy, for which [I7] and [IT]
provide a good introduction. SimPy is not so well suited for network simulation,
but is a good example of a process-oriented simulator.

Simulations for SimPy are written in Python. Simulation entities are defined
as classes which are derived from a special Process class. When such an entity
class is instantiated inside the simulation, a Process FExecution Method is called.
This method models the activities which the process does. This is often an infinite
loop which waits for events to happen, sends events or waits for resources to
become available. This is the fundamental difference to event-oriented simulators,
where functions are used as event handlers and there in general no function which
is always active.

Beside entities and events SimPy provides classes for resources of identical
units, homogeneous material or arbitrary Python objects. Entities can then re-
quest and provide units of them. If a resource is currently empty, the requesting
entity is blocked until a unit becomes available. Monitors to create statistics are
also included in SimPy. Features as garbage collection which are provided by
Python itself, are of course also available in SimPy.

In most cases the event-oriented paradigm is better suited for the simulation
of networks. An application area of such a process-oriented simulator is e.g. the
simulation of manufacturing processes.

3.5 Available Network Models

For real network simulations it is not only important how good the simulator
itself is, but also which network models are provided and how good they are.
We want to give a short overview of the network models provided with the
INET Framework of OMNeT—I——J—E, ns-2/ns-3 and JiST/SWANS. To our knowl-
edge there exist no network models for SimPy. For this reason, we omit it in the
following comparison. The information in table [l is mainly based on [I, [ and
[2], and might be outdated. The list of network models is also not complete, but
we tried to pick out the most important ones. Furthermore there may exist other
network models provided by third-party extensions. Thus a [J in the table does
not necessarily mean that such a model does not exist.

4 Performance Comparison

With the goal of evaluating the performance of the discussed simulation tools, we
implemented a simple simulation in order to compare the four simulators which
we introduced in the last section. Our simulation models a very simple abstract
network which is not a real computer network. We did not use any of the network
models which are included in the simulators, but used only the basic machinery

3 There exist many other models for OMNeT++ which are well suited for special networks,
but the INET Framework seems to be the most general one.
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Table 1. Comparison of available network models
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they provide. Our results therefore do not give any information on how good these
network models are. Such results for JiIST/SWANS and ns-2 can be found in [9]
and [3]. Since we used only the basic machinery and no network models, we could
implement our setup nearly identical in all four simulators, including SimPy for
which no network models exist at all. Such a simple simulation model is better
suited to outline the basic mechanisms used in the simulators. It allows also to
compare the performance of the simulators themselves (and not the performance
of the network models they use).

4.1 Setup

The simple network we simulated consists of nodes which are connected as a
quadratic grid, like the one shown in Figure Bl Node 0 generates one packet
each second and sends it to its neighbors. Whenever a node receives an unseen
packet, it forwards it to all its neighbors. The connections between the nodes
delay each packet by one second and drop the packets with a certain probability.
Other aspects as collision or congestion were not considered, for which reason
our simulation does not reflect a real computer network.

Sender @ @ @ 9

0 1 2 3

o @ @ @ Receiver

12 13 14 15

Fig. 2. The simple network used in the simulation for a size of 16 nodes

We ran the simulation for network sizes ranging from 2 - 2 to 32 - 32 nodes
with drop probabilities at each connection from 0 to 1. The node at the opposite
corner of the sending node counts the packets it receives. We took the average
delay and the total packet loss of the packets, traversing the network from one
side to the other side, as qualitative measures. In order to compare the efficiency
of the simulators, we measured the memory consumption and computation time.
10 seconds after the start Node 0 begins to send packets for 3600 seconds and
the complete simulation is stopped after 5000 seconds simulation time.

We implemented the simulation nearly identical in all four simulators. There
is a class Network which contains the main-Method. It initializes the simulation
and sets up the network. The class Packet represents a network packet and
contains the id of the sender, the time it has been sent and an id which is unique
for a specific sender. A class Node is responsible for representing the nodes of
the network. It can generate packets, receive and forward packets and register
whenever a packet has been received. Since the same packet can be received
multiple times through different connections, all nodes maintain a linked list in
which they store references to the packets they have seen. The longest time a
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packet can stay in the network is when it is sent through every node and gets
then back to the sender. It is therefore sufficient to keep only packets of the
last (networksize 4+ 1) seconds in this list. This cleaning-process takes place
every 50 seconds. All nodes maintain a second list of connections they use. The
class Connection stores to which node it is connected and can accept packets.
Whenever a packet is accepted, it drops the packet with the given probability,
delays the packet and delivers it to the node it is connected to. Sending a packet
means to schedule an event in the appropriate Connection-class and receiving
a packet means that the Connection-class schedules an event in the receiving
node. The nodes use a class Stats which can count the number of packets being
sent and received. This class prints out the accumulated data at the end of the
simulation.

Differences in the implementations have been only made if necessary, but
we also tried to stick to the simulators paradigm. Since OMNeT++ supports
events not directly, but has gates and connections to which a delay and bit-
error—rateH can be assigned, we used the predefined connections instead of our
own Connection-class. The network setup of the OMNeT++ implementation
is also performed in a NED-file instead of a C++-Class. Another difference is
that SimPy uses the process-oriented approach. The node-entities in the SimPy-
simulation use therefore a method which waits until a new packet is received,
whereas the other three simulators provide an event-handler method for this.
Since an entity in SimPy can have only one method which is running actively in
a loop, we created separate entity classes for each node which are responsible for
cleaning up the list of seen packets and generating Packets.

4.2 Examples of the Implementation

In order to outline the different concepts of the four simulators, we will now
present in detail how the connections are implemented.

As already mentioned we did not implement our own connection in OM-
NeT++. Figure Bl shows the part in the NED-file where the connections are
created. It is part of the compound module which describes the whole network.
Two nested for loops iterate through all nodes in the grid and for each node the
connections to its neighbors are added.

node[i] .out++ —--> error 0.5 delay 1 --> node[j].in++

means that a new output-gate of node i shall be connected to a new input gate
of node j and that this connection has a bit-error-rate of 0.5 and a delay of 1
second. In our code variables conLoss and conDelay are used for the connection
properties. These variables are set through the INI-file. There are four such lines
in our source code, because a node in the grid is connected to its neighbor at
each side. At the borders there are only two or three neighbors, for which reason
we added an if-statement to each line which checks if the connection that shall
be created is made to a valid neighbor. These few lines demonstrate also the
drawback of using the NED-language: The node-id is computed in every line
again and again, since one can not create variables at arbitrary positions in the

4 The drop probability we use in our own Connection-class is per packet, but if the length of
the messages in OMNeT++ is set to 1 bit, this is the same.
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code. In the if-condition of the latter two connections we had to use normal
division together with the floor-function, since NED does not provide a div-
operator for integers.

connections:
for y = 0..ySize-1, x = 0..x8ize-1 do

node [x+y*xSize].out++ --> error conLoss delay conDelay --> node
[(x+y*xSize) -1].in++ if (x+y*xSize) % xSize > O0;

node [x+y*xSize].out++ --> error conlLoss delay conDelay --> node
[(x+y*xSize)+1].in++ if (x+y*xSize) ¥ xSize < xSize - 1;

node [x+y*xSize].out++ --> error conlLoss delay conDelay --> node
[(x+y*xSize)-xSize].in++ if floor ((x+y*xSize) / xSize) > O0;

node [x+y*xSize].out++ --> error conLoss delay conDelay --> node
[(x+y*xSize)+xSize].in++ if floor ((x+y*xSize) / xSize) <
ySize - 1;

endfor;

Fig. 3. A part of the network description in OMNeT++’s NED-language.

Figure Hl shows a part of the Connection-class in the ns-3 implementation.
This method send is called by nodes which want to send a packet through this
connection. It gets the a smart-pointer of the Packet which shall be sent as
parameter. At first a new random number is generated and if it is below the
loss-threshold, the packet is dropped. Otherwise a new event is scheduled. This
means in detail that after delay seconds the method receive of the object to
is called with p as parameter.

void Connection::send(ns3::Ptr<Packet> p) {
if (rand->GetValue () < loss)
return;
ns3::Simulator::Schedule(ns3::Seconds(delay), &Node::receive, to,
P);
}

Fig. 4. The send-method in the connection-class of the ns-3 implementation.

Figure Bl shows the corresponding part of the JiST implementation, which
works basically in the same way. One difference is that invoking the event receive
on the to object is done by simply calling this method. JiST itself translates this
into the corresponding code for scheduling it as event. The second difference is
that the time when this event shall be executed is not set explicit. Instead the
time inside the send method is advanced before calling the event.

The appropriate method in the SimPy implementation is shown in Figure @
It works similar to the ones of the ns3 and the JiST implementation, but uses
the process-based approach. It is called only once during start up and not every
time a message is received. It therefore runs in an infinite loop.

yield waitevent, self, self.event
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void send(Packet p) {
if (rand .nextFloat () < loss) {
return;

}
JistAPI.sleep(delay);

to.receive (p);

}

Fig. 5. The send-method in the connection-class of the JiST implementation.

means that the program shall wait until the object receives the event self .event.
At next, the packet itself is extracted out of the signal parameter. Then a random
number is generated and the packet is not processed any further if this random
number is bigger than the threshold.

yield hold, self, self.delay

means to progress time of the object by self.delay seconds. After that hap-
pened, the received packet is sent to the receiving object self.to. This is done
by calling the signal method of the event stored in self.to.event. Then the
while-loop continues from its beginning and waits for the next packet.

def ACTIONS (self):
while 1:
yield waitevent , self, self.event

packet = self.event.signalparam

if random() < self.loss:
continue

yield hold, self, self.delay

self .to.event.signal (packet)

Fig. 6. The Process Execution Method in the connection-class of the SimPy
implementation.

4.3 Results

We used a computer with a 2.1 GHz AMD Dual-Core CPU and 2 GB of memory.
Our simulations used only one CPU-core. We used OMNeT++ 3.4b2, ns-3.0.12,
JiST/SWANS 1.0.6 with Sun Java 1.6.0 and SimPy-1.9.1 with Python 2.5. We
ran the simulation for drop probabilities from 0 to 1 and network sizes from 4
to 1024. Figure [ shows the average end-to-end packet delay depending on these
values. The delay is rising with increasing network size, which is obvious since
the packets have to pass more connections to reach the opposite corner. The
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delay rises also slightly with increasing drop probability, because not all packets
are able to take the shortest route. With a high drop probability and a large
network size no packet at all makes its way through the network, leading to an
infinite delay which is not plotted in this diagram. Figure B shows that the total
packet loss is also rising slightly with increasing network size, since the drop
probability is for each single connection and many connections have to be used
in large networks. The packet loss is of course also rising with increasing drop
probability.
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Fig. 7. End-to-End Packet Delay

The retrieved data is nearly identical for all simulators, which proves the
equivalence of the specific implementations. Slight derivations are normal since
we used random data to decide if a packet is dropped or not. It is noteworthy that
SimPy has a slightly higher packet loss for nearly all the values, which should
not be the case. However we could not find any difference in the implementations
which could cause this. We therefore suppose that this behavior can be attributed
to the process-based simulation paradigm. Another possible explanation is a
difference in the generation of random numbers.

We ran the simulations by an external script which measures also the com-
putation time and memory consumption of each simulation. The time includes
everything from starting the simulation process until it finishes. The memory
consumption is determined by reading /proc/<PID>/status file of the Linux
operating system. Before the simulation finishes, the simulation program prints
out the packet delay, total loss and the content of this file. The external script
parses the VmHWM field, which is the largest amount of memory ever owned
by the process so far. Since the simulation has already ended, this is the memory
peak value of the overall simulation.
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Fig. 8. End-to-End Packet Loss

Measuring the memory consumption of JiST is problematic since unneeded
memory is not released directly, but at some unpredictable point in time by the
Java garbage collector. Since this results in a much higher peak, the memory
consumption of JiST is not comparable with the other simulators. We therefore
did another measurement with a slightly modified version of our simulation where
garbage collection is forced every time after some nodes have cleaned their lists
of known packets. This dramatically decreases the maximum memory usage, but
results in a slightly higher computation time. Both of these values thus have to
be taken with care.

Figure and Figure show the memory usage and computation time
depending on the network size for a drop probability of 0.1 (run several times
and averaged). It is not a surprise that memory consumption and computation
time grow with increasing network size, because more data has to be stored and
processed. One can also see that JiST with normal garbage collection needs more
memory and a bit less computation time than the version with massive garbage
collection (denoted by JiST-GC in the figures).

Figure and show memory usage and computation time depending
on the drop probability for a network size of 256 nodes (again for the average
of several runs). Memory consumption and computation time both sink with an
increasing drop probability. This is due to the fact that less packets make their
way through the network if the drop probability is high and therefore less packets
have to be stored and processed. One can see here again the difference between
our two JiST-implementations.

Regarding computation time one can say that SimPy performed very bad and
it is in that point far behind the other three simulators. This may be in some
parts due to implementation details, but is for sure because it uses the process-
oriented approach which requires time-demanding threading. JiST performed

23



200 8000
IOMNeT++ + % |OMNeT++ +
ns-3 - N ns-3
180 | JST  x g * JST % o
SimPy o o 7000 - SimPy O
JiST-GE « - JiST-GC
160 - T o
P * 6000 o
140 | "
= * @ 5000 |- H
= 120 - @
g 2 .
) F £
2 100 - * S 4000 a
o x 5
> g o
g * 2
80 * £
H S 3000 °
»- =
60 - ¥ a
2 2000 a
i .
40 F  xwx a
k' o a
ol — 1000 - o e
2 e a® e
- o ¥
o lmma03035.5-5.0-5-8-8-3-5 ‘ ‘ ‘ o Lecog®® 0 e ek
] 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Network Size Network Size
(a) Memory Usage (drop probability = 0.1) (b) Computation Time (drop probability = 0.1)
90 1000
OMNeT++ + OMNeT++ +
ol . JST 900 JST  x
. SimPy o SimPy ©
JiST-GC JiST-GC
800 -
70 » !
K
% 700
60
I w =)
= e 600
% S0 IS
§ ; s
2 y g so0f
s g
g 40 " E 2}
5 E 400
£
= o
30 -
-, 300
x
20 * 200 [:}
10 | 100 |
S = 32s =) =] =] T
T e — =
0 - - - . 0 e * 4 - '
0 0.2 0.4 0.6 08 1 0 0.2 0.4 0.6 0.8 1
Drop Probability Drop Probability
(c) Memory Usage (drop probability = 0.1) (d) Computation Time (network size = 256)

Fig. 9. Comparing simulator performance

best regarding computation time and was especially for large network sizes better
than ns-3 and OMNeT++.

The memory usage of OMNeT++, ns-3 and SimPy is nearly equal. Our two
JiST implementations however needed far more memory and especially the one
with normal garbage collection performed worst.

Simulations of wireless ad-hoc networks with ns-2 and JiST, which are pre-
sented in [9] and [3], showed that JiST used less memory than ns-2 and it is said
that JiST/SWANS is very memory-efficient. Our results however show that JiST
itself can also perform worsdl and that it might be only the network modules of
SWANS which are more memory efficient than the ones of ns-2.

5 Conclusion

In this paper, we have surveyed recent developments in the area of network sim-
ulation toolkits. Looking closer at ns-3, OMNeT++, JiST/SWANS and SimPy,
all four inspected simulators exhibit interesting concepts and projects as JiST
show that also the fundamentals of discrete-event simulation can be implemented
in a surprisingly different way. The comparison study we conducted reveals ma-
jor differences in simulation performance and thus substantiates prior research
results, such as [9].

5 We have used ns-3 and not ns-2 for our simulation. Thus another reason might be that ns-3
is more memory efficient than ns-2.
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Moreover, we emphasize that the results retrieved from the simulators were
mostly equivalent, no matter what simulation tool was used. This is a straight
consequence of the conformity of the simulation set-ups and models. We conclude
that the conformity of network models and their parameter sets is important in
order to achieve comparable and general results, and we hope that the discussion
will shift from the choice of the right simulation tool more towards to the correct
and reasonable design and use of simulation models.
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