
Aachen
Department of Computer Science

Technical Report

Preemptive Scheduling of Equal-Length Jobs

in Polynomial Time

George B. Mertzios and Walter Unger

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2008-10

RWTH Aachen · Department of Computer Science · May 2008

1

The publications of the Department of Computer Science of RWTH Aachen University are in
general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

2

Preemptive Scheduling of Equal-Length Jobs

in Polynomial Time

George B. Mertzios and Walter Unger
Department of Computer Science

RWTH Aachen University
{mertzios, quax}@cs.rwth-aachen.de

Abstract. We study the preemptive scheduling problem of a set of n jobs with release times and
equal processing times on a single machine. The objective is to minimize the sum of the weighted
completion times

∑n

i=1
wiCi of the jobs. We propose for this problem the first parameterized algo-

rithm on the number k of different weights. The runtime of the proposed algorithm is O((n
k

+ 1)kn8)
and hence, the problem is polynomially solvable for any fixed number k of different weights.

1 Introduction

In this paper we consider the preemptive scheduling of n jobs J1, J2, . . . , Jn with equal processing
time p on a single machine. Here, preemption means job splitting, i.e. the execution of a job
Ji may be interrupted for the execution of another job Jj , while the execution of Ji will be
resumed later on. Every job Ji has a release time ri, after which Ji is available, and a positive
weight wi ∈ {αj}

k
j=1. A schedule of these jobs is called feasible, if every job Ji starts not earlier

than its release time ri. The objective is to find a feasible schedule of these jobs that minimizes
the weighted sum

∑n
i=1 wiCi, where Ci is the completion time of job Ji.

The preemptive scheduling has attracted many research efforts. Several problems, which
are NP-hard in the general case, admit polynomial algorithms under the assumption of equal-
length jobs. In particular, the problem of minimizing the sum of completion times on identical
parallel machines is polynomially solvable for equal-length jobs [1,2], while it is unary NP-hard
for arbitrary processing times [2]. The problem of maximizing the weighted throughput, or
equivalently of minimizing the weighted number of late jobs on a single machine, is NP-hard [3]
and pseudo-polynomially solvable [4] in the general case. On the contrary, its restriction to equal-
length jobs is solvable in polynomial time in the preemptive, as well as in the non-preemptive
case [5,6]. For the problem of minimizing the total tardiness there is also a polynomial algorithm
for equal-length jobs [7]. Furthermore, minimizing the sum of completion times [8] or the number
of late jobs [4,9] on a single machine can be done in polynomial time also for arbitrary processing
times. More detailed complexity results on machine scheduling can be found in [10,11].

In the non-preemptive case, the problems of minimizing the number of late jobs on a single
machine [12] and minimizing the sum of the completion times on identical parallel machines [13]
are polynomial for equal-length jobs, while the corresponding problems in the general case
are both NP-hard, also on a single machine [3, 14]. Moreover, polynomial time algorithms are
presented in [15] for the case of equal-length jobs on uniform parallel machines.

The complexity status of the problem we focus on in this paper has been stated as an open
question for equal-length jobs and arbitrary weights on a single machine [2,11,16,17]. The non-
preemptive version of this problem is known to be polynomially solvable on a fixed number of
identical parallel machines [16]. On the other hand, the preemptive version of this problem is
known to be NP-hard if the processing times are arbitrary on a single machine [18], or even
for equal processing times on identical parallel machines [19]. We propose the first polynomial
algorithm for arbitrary release times ri, which is parameterized on the number k of different

weights wi. The runtime of the proposed algorithm is O((n
k +1)kn8), while its space complexity

is O((n
k + 1)kn6).

Several real-time applications of this problem can be found. In the context of service man-
agement, vehicles may arrive in predefined appointments for regular check. This process is
preemptive, while the service time of each vehicle is the same. In addition, special purpose vehi-
cles, such as ambulances, have higher priority than others. In the context of logistics, products
that need special conditions, such as humidity and temperature, have to be stored with higher
priority than other products.

In Section 2 we provide some properties of an optimal schedule, in order to determine the
possible start and completion times of the jobs. By using these results, we construct a polynomial
dynamic programming algorithm in Section 3. Finally, some conclusions and open questions are
discussed in Section 4.

2 Properties of an optimal schedule

In this section we provide some properties of an optimal preemptive schedule S, in order to
determine the set of all possible start and completion times of the n jobs in S. For every job
Ji let ri be its release time and Ci be its completion time in S. As a first step, we prove the
technical Lemma 1 that will be used several times in the remaining part of the article.

Lemma 1. For every job Ji that is at least partially executed in an optimal schedule S in the
time interval [rk, Ck), it holds Ci < Ck.

Proof. The proof will be done by contradiction. Suppose that job Ji is partially executed in at
least one time interval I ⊂ [rk, Ck) and that Ci > Ck, as it is illustrated in Figure 1. Since Jk is
completed at time Ck in S, there is a sufficient small positive ε ≤ |I|, such that Jk is executed
during the interval [Ck − ε,Ck). We can exchange now a part of length ε of the interval I with
the interval [Ck−ε,Ck). In this modified schedule S ′, the completion time of Jk becomes at most
Ck − ε, while the completion times of all other jobs remain the same. This is a contradiction to
the assumption that S is optimal. It follows that Ci < Ck.

rk

Jk
JkJi Ji

Ck Ci

I

ε ε

Fig. 1. The impossible case Ci > Ck, where job Ji is partially executed in [rk, Ck).

The following Lemma 2 restricts the possible values of the makespan Cmax of any optimal
schedule, i.e. the completion time of the last completed job.

Lemma 2. The makespan Cmax in an optimal schedule S equals

Cmax = ri + ℓp (1)

for some i, ℓ ∈ {1, 2, . . . , n}.

4

Proof. Let t be the end of the last idle period in S, i.e. the machine is working continuously
between t and Cmax. Let also that job Ji is executed directly after t, for some i ∈ {1, 2, . . . , n}.
Then, t equals the release time ri of Ji, since otherwise Ji could be scheduled to complete
earlier, resulting thus to a better schedule, which is a contradiction. Furthermore, every job Jk

that is at least partially executed after t, has release time rk ≥ t, since otherwise Jk could be
scheduled to complete earlier, which is again a contradiction. Thus, since the machine is working
continuously between t and Cmax, it holds that Cmax = ri + ℓp, where 1 ≤ ℓ ≤ n is the number
of jobs executed in the interval [t, Cmax).

Now, Lemma 3 determines the possible start and completion times of the jobs J1, J2, . . . , Jn

in S.

Lemma 3. The start and completion times of the jobs in an optimal schedule S take values
from the set

T := {ri + ℓp : 1 ≤ i ≤ n, 0 ≤ ℓ ≤ n} (2)

Proof. Consider an arbitrary job Jk and let J = {Ji : Ci ≤ Ck} be the set of all jobs that are
completed not later than Jk in S. Consider now a job Jm /∈ J . Then, Lemma 1 implies that
no part of Jm is executed at all in any time interval [ri, Ci), where Ji ∈ J , since otherwise it
would be Cm < Ci ≤ Ck, i.e. Jm ∈ J , which is a contradiction. It follows that the completion
time Ck of job Jk remains the same if we remove from schedule S all jobs Jm /∈ J .

Thus, it holds due to Lemma 2 that Ck = ri + ℓp, for some Ji ∈ J and ℓ ∈ {1, 2, . . . , |J |}.
Since |J | ≤ n, it follows that for the completion time of an arbitrary job Jk it holds Ck ∈ T .
Furthermore, due to the optimality of S, an arbitrary job Ji starts either at its release time ri,
or at the completion time Ck of another job Jk. Thus, all start points of the jobs belong to T
as well.

3 The dynamic programming algorithm

3.1 Definitions and boundary conditions

In this section we propose a polynomial dynamic programming algorithm that computes the
value of an optimal preemptive schedule on a single machine, where the weights of the jobs take
k possible values {αi : 1 ≤ i ≤ k}, with α1 > . . . > αk > 0. We partition the jobs into k sets
J i = {J i

1, J
i
2, . . . , J

i
ni
}, i ∈ {1, . . . , k}, such that job J i

ℓ has weight αi for every ℓ ∈ {1, . . . , ni}.
Assume without loss of generality that for every i, the jobs J i

ℓ are sorted with respect to ℓ in
non-decreasing order according to their release times ri

ℓ, i.e.

ri
1 ≤ ri

2 ≤ . . . ≤ ri
ni

(3)

Denote now by
t = (tk, tk−1, . . . , t1) (4)

a vector t ∈ N
k
0, where for its coordinates it holds 0 ≤ ti ≤ ni for every i ∈ {1, . . . , k}. Let

P(t) = {i : ti > 0, 1 ≤ i ≤ k} be the set of indices that corresponds to strictly positive
coordinates of t. For every vector t 6= 0 = (0, . . . , 0) and every i ∈ P(t) define the vectors

t′i = (tk, . . . , ti+1, ti − 1, ti−1, . . . , t1) (5)

t′′i = (0, . . . , 0, ti, ti−1, . . . , t1) (6)

and let
tmax = maxP(t) (7)

5

be the maximum index i, for which ti > 0. Furthermore, let R = {ri
ℓ | 1 ≤ i ≤ k, 1 ≤ ℓ ≤ ni}

be the set of all release times of the jobs and

R(t) = {ri
ℓ | i ∈ P(t), 1 ≤ ℓ ≤ ti} (8)

Denote now by
Q(t, x, y, z) (9)

where t 6= 0 and x ≤ y < z, the set of all jobs among
⋃

i∈P(t)

⋃ti
ℓ=1 J i

ℓ that have release times

ri
ℓ ∈

{
[x, z), if i = tmax and ℓ = ti
[y, z), otherwise

(10)

We define for t = 0
Q(0, x, y, z) = ∅ (11)

for all values x ≤ y < z. Moreover, we define for every vector t and every triple {x, y, z}, such
that x ≤ y and y ≥ z

Q(t, x, y, z) = ∅ (12)

Definition 1. The set Q(t, x, y, z) 6= ∅ of jobs is called feasible, if there exists a feasible schedule
of these jobs in the interval [y, z).

For the case of a feasible set Q(t, x, y, z) 6= ∅, denote now by

F (t, x, y, z) (13)

the value of an optimal schedule of all jobs of the set Q(t, x, y, z) in the interval [y, z). Due to
Lemma 3, we allow the variables y, z in (9) and (13) to take values only from the set T . Also,
due to (10), since every job is released not earlier than x, it suffices to consider that x ∈ R. For
an arbitrary y ∈ T , let

r(y) = min{r ∈ R | r ≥ y} (14)

be the smallest release time that equals at least y. For simplicity reasons, we define r(y) = maxT
in the case where there exists no release time r ∈ R with r ≥ y, where maxT is the greatest value
of the set T , cf. (2). In the case where Q(t, x, y, z) 6= ∅ is not feasible, we define F (t, x, y, z) = ∞.
In the case where Q(t, x, y, z) = ∅, we define F (t, x, y, z) = 0.

The following lemma uses the release times of the jobs of Q(t, x, y, z) in order to decide
whether it is feasible, i.e. whether there exists a feasible schedule of these jobs in the interval
[y, z).

Lemma 4 (feasibility test). Let r̃1 ≤ r̃2 ≤ . . . ≤ r̃q be the release times of the jobs of
Q(t, x, y, z) and let

C1 = max{r̃1, y} + p
Cℓ = max{r̃ℓ, Cℓ−1} + p

(15)

for every ℓ ∈ {2, 3, . . . , q}. It holds that Q(t, x, y, z) is feasible if and only if Cq ≤ z.

Proof. The proof is straightforward. The set Q(t, x, y, z) of jobs is feasible if and only if there
exists a schedule of these jobs with makespan Cmax not greater than z. Without loss of generality,
in a schedule that minimizes Cmax, every job is scheduled without preemption at the earliest
possible point. In particular, the job with the earliest release time r̃1 starts at max{r̃1, y}.
Suppose that the ℓ−1 first jobs complete at point Cℓ−1, for some ℓ ∈ {2, 3, . . . , q}. If the ℓth job
has release time r̃ℓ > Cℓ−1, then this job starts obviously at r̃ℓ. In the opposite case r̃ℓ ≤ Cℓ−1,
it starts at Cℓ−1. Since every job has processing time p, we obtain (15) for the completion times
of the scheduled jobs and thus the minimum makespan is Cq. It follows that Q(t, x, y, z) is
feasible, i.e. F (t, x, y, z) 6= ∞, if and only if Cq ≤ z.

6

3.2 The recursive computation

Consider a vector t 6= 0 and a feasible set Q(t, x, y, z) 6= ∅ of jobs. Then, y < z by the definition
of Q(t, x, y, z). Furthermore, for every index i ∈ P(t) \ {tmax}, if ri

ti /∈ [y, z), it follows that

F (t, x, y, z) = F (t′i, x, y, z) (16)

Indeed, in this case J i
ti /∈ Q(t, x, y, z) by (10), and thus we can ignore job J i

ti , i.e. we can replace
ti by ti − 1. Then, all jobs of Q(t, x, y, z) have release times according to (10) and they are
scheduled in the interval [y, z). Therefore, (16) follows.

On the other hand, for i = tmax, if ri
ti /∈ [x, z), then

F (t, x, y, z) = F (t′i, r(y), r(y), z) (17)

Indeed, in this case again J i
ti /∈ Q(t, x, y, z) by (10), and thus we can ignore job J i

ti , i.e. we can
replace again ti by ti − 1. Then, all jobs of Q(t, x, y, z) are released not earlier than y, i.e. not
earlier than r(y), and thus they are all scheduled in the interval [r(y), z). Therefore, (17) follows.
Note here that in the extreme case where r(y) ≥ z, no job of Q(t, x, y, z) \ {J i

ti} is released
in [y, z), and thus Q(t, x, y, z) = ∅ by (10), which is a contradiction to the assumption that
Q(t, x, y, z) 6= ∅.

Suppose in the following without loss of generality that J i
ti ∈ Q(t, x, y, z) for every i ∈ P(t).

Let Ci
ℓ denote the completion time of job J i

ℓ , where i ∈ {1, . . . , k} and ℓ ∈ {1, . . . , ni}. Consider
now the vector of the completion times (C1

1 , C1
2 , . . . , Ck

nk
) and the feasible set Q(t, x, y, z) 6=

∅. Let C(t, x, y, z) be the restriction of the vector (C1
1 , C1

2 , . . . , Ck
nk

) on those values j and ℓ,

for which Jj
ℓ ∈ Q(t, x, y, z). Denote now by S(t, x, y, z) the optimal schedule of the jobs of

Q(t, x, y, z) that lexicographically minimizes the vector C(t, x, y, z) among all other optimal
schedules. In the sequel, we denote S(t, x, y, z) by S, whenever the values t, x, y, z are clear
from the context. Next, we compute in Theorems 1 and 2 the values F (t, x, y, z). To this end,
we provide first the technical Lemma 5 and Corollary 1 that will be used in the proof of these
theorems. Denote by si and ei the start and completion time of job J i

ti in S = S(t, x, y, z),
respectively. Also, for i = tmax, denote for simplicity J i

ti and ri
ti by Jtmax

and rtmax
, respectively.

Lemma 5. Suppose that Q(t, x, y, z) 6= ∅ is feasible and that J i
ti ∈ Q(t, x, y, z) for some i ∈

P(t). For every other job Jj
ℓ ∈ Q(t, x, y, z) \ {J i

ti} with j ≤ i, if Jj
ℓ is completed in S at a point

Cj
ℓ > si, then its release time is rj

ℓ > si.

Proof. The proof will be done by contradiction. Consider a job Jj
ℓ ∈ Q(t, x, y, z) \ {J i

ti} with

j ≤ i and suppose that Jj
ℓ is completed in S at a point Cj

ℓ > si. We distinguish the cases

Cj
ℓ > Ci

ti and Cj
ℓ < Ci

ti , respectively.

Suppose that Cj
ℓ > Ci

ti and that Jj
ℓ is executed in [Ci

ti , z) for a time period of total length

L ≤ p, as it is illustrated in Figure 2(a). If rj
ℓ ≤ si, then we can exchange the execution of

Jj
ℓ in the interval [Ci

ti , z) with the last part of total length L of the execution of J i
ti in the

interval [si, C
i
ti). In the resulting schedule S ′, the completion times Cj

ℓ and Ci
ti exchange values,

while the completion times of all other jobs remain the same. Since j ≤ i, it holds αj ≥ αi

and therefore the schedule S ′ is not worse than S. Thus, since S is optimal, S ′ is also optimal.
However, S ′ is lexicographically smaller than S, which is a contradiction to the assumption on
S. It follows that job Jj

ℓ is released not earlier than si, i.e. rj
ℓ > si.

Suppose now that Cj
ℓ < Ci

ti , as it is illustrated in Figure 2(b). Then, there exists a sufficiently

small time period ε > 0, such that during the time intervals [si, si + ε) and [Cj
ℓ − ε,Cj

ℓ) the

jobs J i
ti and Jj

ℓ are executed, respectively. If rj
ℓ ≤ si, we can now exchange the execution of the

7

L L

si

J i
ti

Ci
ti

C
j
ℓ

J
j
ℓ J

j
ℓ

J i
ti

J i
ti

r
j
ℓ z

(a)

ε ε

si

J i
ti

J i
ti

J
j
ℓ

Ci
ti

C
j
ℓr

j
ℓ z

(b)

Fig. 2. The impossible case rj

ℓ ≤ si, where j ≤ i and Cj

ℓ > si.

jobs J i
ti and Jj

ℓ in these intervals, obtaining a completion time of Jj
ℓ at most Cj

ℓ − ε, while the
completion times of all other jobs remain the same. Since all weights are positive, the resulting
schedule is better than S, which is a contradiction to its optimality. This implies again that job
Jj

ℓ is released not earlier than si, i.e. rj
ℓ > si.

Corollary 1. Suppose that Q(t, x, y, z) 6= ∅ is feasible and that J i
ti ∈ Q(t, x, y, z) for some

i ∈ P(t). Then, every other job J i
ℓ ∈ Q(t, x, y, z) \ {J i

ti} is completed in S at a point Ci
ℓ ≤ si.

Proof. Consider such a job J i
ℓ , with ℓ < ti and suppose that J i

ℓ is completed at a point Ci
ℓ > si.

Then, Lemma 5 implies that ri
ℓ > si. On the other side, it holds due to (3) that ri

ℓ ≤ ri
ti ≤ si,

which is a contradiction.

Theorem 1. Let Q(t, x, y, z) 6= ∅ be feasible and J i
ti ∈ Q(t, x, y, z) for every i ∈ P(t). Suppose

that rtmax
> y. Then,

F (t, x, y, z) = F1 = min
s∈(y,z)∩T

s/∈R(t′
tmax

)

{
F (t′

tmax
, r(y), r(y), s) + F (t, x, s, z)

}
(18)

Proof. First, recall that si and ei denote the start and completion times of the
job J i

ti ∈ Q(t, x, y, z) in S = S(t, x, y, z), for every i ∈ P(t). Due to the assumption that
rtmax

> y, it follows that also stmax
> y.

For every job Jj
ℓ ∈ Q(t, x, y, z) it holds j ≤ tmax, due to (7). Thus, Lemma 5 implies that

all jobs Jj
ℓ ∈ Q(t, x, y, z) \ {Jtmax

} with release times rj
ℓ ≤ stmax

are scheduled completely in

the interval [y, stmax
), while all jobs Jj

ℓ ∈ Q(t, x, y, z) \ {Jtmax
} with release times rj

ℓ > stmax
are

scheduled in S completely in the interval [stmax
, z). Note that the extreme case rj

ℓ = stmax
is

impossible for any job Jj
ℓ ∈ Q(t, x, y, z) \ {Jtmax

}, since otherwise job Jj
ℓ must be scheduled in

the empty interval [stmax
, stmax

), which is a contradiction. That is, stmax
/∈ R(t′

tmax
).

Since Jtmax
is scheduled in the second part [stmax

, z) of S, it follows that every job Jj
ℓ , which

is scheduled in the first part [y, stmax
) of S, has release time rj

ℓ ≥ y, i.e. rj
ℓ ≥ r(y). Thus, the value

of this first part of S equals F (t′
tmax

, r(y), r(y), stmax
). Note here that in the extreme case where

r(y) ≥ stmax
, no job of Q(t, x, y, z)\{Jtmax

} is released in [y, stmax
), and thus no job is scheduled

8

in the first part of S, i.e. the value of this part equals zero. However, in this case, where r(y) ≥
stmax

, it holds Q(t′
tmax

, r(y), r(y), stmax
) = ∅ by (12), and thus F (t′

tmax
, r(y), r(y), stmax

) = 0.
Thus, in any case, the value of the first part of S equals F (t′

tmax
, r(y), r(y), stmax

).

On the other hand, in the second part [stmax
, z) of S, exactly Jtmax

and the jobs
Jj

ℓ ∈ Q(t, x, y, z) \ {Jtmax
} with release times rj

ℓ > stmax
are scheduled. Thus, since

stmax
/∈ R(t′

tmax
), we can state equivalently that in the second part [stmax

, z) of S, exactly Jtmax

and the jobs Jj
ℓ ∈ Q(t, x, y, z) \ {Jtmax

} with release times rj
ℓ ≥ stmax

are scheduled. Therefore,
since Jtmax

is released not earlier than x, the value of the second part of S equals F (t, x, stmax
, z).

It follows that

F (t, x, y, z) = F (t′
tmax

, r(y), r(y), stmax
) + F (t, x, stmax

, z) (19)

Conversely, if the value of (19) is finite, then it corresponds to a feasible schedule of the jobs
of Q(t, x, y, z) in the interval [y, z). Thus, since S is assumed to be optimal, the value F (t, x, y, z)
is the minimum of the expression in (19) over all possible values s = stmax

∈ (y, z) ∩ T , such
that stmax

/∈ R(t′
tmax

).

Theorem 2. Let Q(t, x, y, z) 6= ∅ be feasible and J i
ti ∈ Q(t, x, y, z) for every i ∈ P(t). Suppose

that rtmax
≤ y and let e = y + p · |Q(t, x, y, z)|. If Q(t, r(e), r(e), z) 6= ∅, then

F (t, x, y, z) = min
s∈(y,z)∩T

i∈P(t)\{tmax}
s≥r(y), s/∈R(t′i)

{
F1, F (t′i, x, y, s) + F (t′′i , r(y), s, z)

}
(20)

Otherwise, if Q(t, r(e), r(e), z) = ∅, then

F (t, x, y, z) = min
s∈(y,z)∩T

i∈P(t)\{tmax}
s≥r(y), s/∈R(t′i)





F1,

F (t′i, x, y, s) + F (t′′i , r(y), s, z),

F (t′
tmax

, r(y), r(y), e) + e · αtmax





(21)

where F1 is the value computed in (18).

Proof. Similarly to the proof of Theorem 1, let job J i
ti ∈ Q(t, x, y, z) start at point si and

complete at point ei in S = S(t, x, y, z), for every i ∈ P(t). In the case where stmax
> y,

Theorem 1 implies that F (t, x, y, z) = F1, where F1 is the value computed in (18). Suppose in
the sequel of the proof that stmax

= y. We distinguish in the following two cases.

Case 1. Suppose that there exists an index i ∈ P(t), such that si ≥ etmax
, and let i be

the greatest among them. Then, i < tmax and y < si < z. That is, for every index j ∈ P(t)
with j > i, job Jj

tj
starts at a point sj ∈ [stmax

, etmax
) in S, as it is illustrated in Figure 3(a).

Then, Lemma 1 implies that this job completes also in this interval, i.e. ej ∈ [stmax
, etmax

).
Furthermore, Corollary 1 implies that for every such index j ∈ P(t) (where j > i), all jobs
Jj

ℓ ∈ Q(t, x, y, z) \ {Jj
tj
} are completed at a point Cj

ℓ ≤ sj. Then, since sj < si, we obtain that

Cj
ℓ < si. It follows that for every job Jj

ℓ that is completed at a point Cj
ℓ > si, it holds j ≤ i. Thus,

Lemma 5 implies that all jobs Jj
ℓ ∈ Q(t, x, y, z) \ {J i

ti} with release times rj
ℓ ≤ si are scheduled

completely in the interval [y, si), while all jobs Jj
ℓ ∈ Q(t, x, y, z) \ {J i

ti} with release times

rj
ℓ > si are scheduled in S completely in the interval [si, z). Note that the extreme case rj

ℓ = si

is impossible for any job Jj
ℓ ∈ Q(t, x, y, z) \ {J i

ti}, since otherwise job Jj
ℓ must be scheduled in

the empty interval [si, si), which is a contradiction. That is, si /∈ R(t′i). Furthermore, since the
release time of J i

ti is assumed to be ri
ti ≥ y, i.e. ri

ti ≥ r(y), and since si ≥ ri
ti , it follows that

si ≥ r(y).

9

y = stmax
etmax

sj ej si

Jtmax Jtmax

J
j
tj

J
j
tj

J i
ti

zx

(a)

y = stmax
etmax

Jtmax Jtmax

Jtmax

.

(b)

Fig. 3. The case stmax
= y.

Note that Jtmax
is scheduled in the first part [y, si) of S, since we assumed that y = stmax

,
while J i

ti is scheduled in the second part [si, z) of S. Thus, since Jtmax
is released not earlier

than x, the value of the first part [y, si) of S equals F (t′i, x, y, si).

In the second part [si, z) of S, exactly J i
ti and the jobs Jj

ℓ ∈ Q(t, x, y, z) \ {J i
ti} with j ≤ i

and release times rj
ℓ > si are scheduled. Thus, since si /∈ R(t′i), we can state equivalently that

in the second part [si, z) of S, exactly J i
ti and the jobs Jj

ℓ ∈ Q(t, x, y, z) \ {J i
ti} with j ≤ i and

release times rj
ℓ ≥ si are scheduled. Since the release time of J i

ti is assumed to be ri
ti ≥ y,

i.e. ri
ti ≥ r(y), the value of the second part of S equals F (t′′i , r(y), si, z). Note here that, since

r(y) ≤ si < z, the value F (t′′i , r(y), si, z) is well defined. It follows that

F (t, x, y, z) = F (t′i, x, y, si) + F (t′′i , r(y), si, z) (22)

Conversely, if the value of (22) is finite, then it corresponds to a feasible schedule of the
jobs of Q(t, x, y, z) in the interval [y, z). Thus, since S is assumed to be optimal, the value
F (t, x, y, z) equals (in Case 1) to the minimum of the expression in (22) over all possible values
of i ∈ P(t) \ {tmax} and s = si ∈ (y, z) ∩ T , such that s /∈ R(t′i) and s ≥ r(y).

Case 2. Suppose that si < etmax
for every i ∈ P(t). Then, Corollary 1 implies that for every

i ∈ P(t), all jobs J i
ℓ ∈ Q(t, x, y, z) with ℓ < ti are completed at most at point si in S. Thus,

in this case all jobs of Q(t, x, y, z) are scheduled completely in the interval [y, etmax
), as it is

illustrated in Figure 3(b). Since the processing time of every job equals p, the total processing
time of all jobs equals p · |Q(t, x, y, z)|. On the other hand, there is no idle period between y and
etmax

, since otherwise Jtmax
would be scheduled to complete earlier, resulting thus to a better

schedule, which is a contradiction to the optimality of S. Therefore,

etmax
= y + p · |Q(t, x, y, z)| (23)

Note that, since Q(t, x, y, z) is assumed to be feasible, there exists a feasible schedule of the jobs
of Q(t, x, y, z) in the interval [y, z), and thus, z ≥ etmax

= y+p·|Q(t, x, y, z)|. Furthermore, since
all jobs of Q(t, x, y, z) are scheduled completely in the interval [y, etmax

), it follows in particular
that all jobs of Q(t, x, y, z) are released strictly before etmax

, and thus Q(t, r(etmax
), r(etmax

), z) =
∅. Note here that, in the extreme case where r(etmax

) ≥ z, again Q(t, r(etmax
), r(etmax

), z) = ∅
by (12).

Now, Lemma 1 implies that no part of Jtmax
is executed in any time interval [ri

ℓ, C
i
ℓ), where

J i
ℓ ∈ Q(t, x, y, z) \ {Jtmax

}, since otherwise Jtmax
would complete before J i

ℓ , which is a con-
tradiction. Thus, the completion times of all these jobs remain the same if we remove Jtmax

10

from the schedule S. Recall that all jobs J i
ℓ ∈ Q(t, x, y, z) \ {Jtmax

} have release times ri
ℓ ≥ y,

i.e. ri
ℓ ≥ r(y). Thus, since the weight of Jtmax

is αtmax
and its completion time is etmax

, it follows
in this case that

F (t, x, y, z) = F (t′
tmax

, r(y), r(y), etmax
) + etmax

· αtmax
(24)

Note here that in the extreme case where r(y) ≥ etmax
, no job of Q(t, x, y, z) \ {Jtmax

} is released
in [y, etmax

), and thus no job except Jtmax
is scheduled in S, i.e. F (t, x, y, z) = etmax

· αtmax
.

In this case, where r(y) ≥ etmax
, it holds Q(t′

tmax
, r(y), r(y), etmax

) = ∅ by (12), and thus
F (t′

tmax
, r(y), r(y), etmax

) = 0. Thus, in any case, the value of F (t, x, y, z) is given by (24).
Conversely, suppose that Q(t, r(etmax

), r(etmax
), z) = ∅ and that the value of F (t, x, y, z)

in (24) is finite, or equivalently, the value F (t′
tmax

, r(y), r(y), etmax
) is finite, where etmax

is
given by (23). Then, since Q(t, r(etmax

), r(etmax
), z) = ∅, all jobs J i

ℓ ∈ Q(t, x, y, z) \ {Jtmax
}

have release times ri
ℓ, such that r(y) ≤ ri

ℓ < etmax
.

If F (t′
tmax

, r(y), r(y), etmax
) = 0, then Q(t′

tmax
, r(y), r(y), etmax

) = ∅. Therefore, since
also Q(t, r(etmax

), r(etmax
), z) = ∅, it follows that Q(t, x, y, z) = {Jtmax

}, and thus
F (t, x, y, z) = etmax

· αtmax
corresponds to a feasible schedule of Q(t, x, y, z) in [y, z).

In the opposite case, where F (t′
tmax

, r(y), r(y), etmax
) 6= 0, this value corresponds to a feasible

schedule S0 of the jobs of the set Q(t, x, y, z)\{Jtmax
} in the interval [y, etmax

). Since the process-
ing time of each job is p, the total processing time of these jobs in [y, etmax

) is p·(|Q(t, x, y, z)|−1).
Thus, due to (23), the machine has idle periods in the interval [y, etmax

) of total length p (in the
schedule S0). Therefore, since rtmax

≤ y by the assumption, we can schedule the job Jtmax
in

these idle periods, obtaining a feasible schedule of all jobs of Q(t, x, y, z) in the interval [y, etmax
)

with value F (t, x, y, z), as it is expressed in (24). That is, if Q(t, r(etmax
), r(etmax

), z) = ∅, and
if the value of (24) is finite, then this value corresponds to a feasible schedule of the jobs of
Q(t, x, y, z) in the interval [y, z). Thus, since S is assumed to be optimal, the value F (t, x, y, z)
equals (in Case 2) to the expression in (24) for etmax

= y + p · |Q(t, x, y, z)|.
Summarizing now Cases 1 and 2, and since S is optimal, it follows that the optimal value

F (t, x, y, z) is the minimum among the value F1 (computed in (18)) and the values of the
expressions in (22) and (24), over all possible values s = si ∈ (y, z) ∩ T and i ∈ P(t) \ {tmax},
such that s /∈ R(t′i) and s ≥ r(y). This completes the theorem.

3.3 The algorithm

Since the start and endpoints of the jobs in an optimal schedule belong to T , the value of such
a schedule equals

F (t∗,min T,min T,maxT) (25)

where
t∗ = (n1, n2, . . . , nk) (26)

and min T , maxT denote the smallest and the greatest value of the set T , respectively, cf. (2).
Note that min T coincides with the smallest release time. The dynamic programming Algo-
rithm 1 follows now by Lemma 4 and Theorems 1 and 2. The correctness and the complexity
of this algorithm is proved in the next theorem.

Note that, as a preprocessing step, we partition the n jobs into the sets J i =
{J i

1, J
i
2, . . . , J

i
ni
}, i ∈ {1, . . . , k}, such that job J i

ℓ has weight αi for every ℓ ∈ {1, . . . , ni}, and
that, for every i, the jobs J i

ℓ are sorted with respect to ℓ according to (3). This can be done
clearly in O(n log n) time.

Theorem 3. An optimal schedule can be computed in O((n
k + 1)kn8) time and O((n

k + 1)kn6)
space.

11

Algorithm 1 Compute the value of an optimal schedule with n jobs
1: for every x ∈ R and y, z ∈ T , with x ≤ y < z do

2: F (0, x, y, z)← 0 {initialization}
3: for every t between 0 and t∗, x ∈ R and y, z ∈ T , with x ≤ y and y ≥ z do

4: F (t, x, y, z)← 0 {initialization}

5: for every t between 0 and t∗ in lexicographical order do

6: for every x ∈ R and z ∈ T with x < z do

7: for y = z downto x (with y ∈ T and y 6= z) do

8: if Q(t, x, y, z) = ∅ then

9: F (t, x, y, z)← 0
10: else if Q(t, x, y, z) is not feasible then

11: F (t, x, y, z)←∞
12: else

13: for every i ∈ P(t) do

14: if i = tmax then

15: if ri
ti

/∈ [x, z) then

16: F (t, x, y, z)← F (t′i, r(y), r(y), z)
17: else {i 6= tmax}
18: if ri

ti
/∈ [y, z) then

19: F (t, x, y, z)← F (t′i, x, y, z)

20: if F (t, x, y, z) has not been computed in lines 16 or 19 then

21: Compute F (t, x, y, z) by Theorems 1 and 2

22: return F (t∗, min T, min T, max T)

Proof. We present Algorithm 1 that computes the value of an optimal schedule of the given n
jobs. A slight modification of this algorithm returns an optimal schedule, instead of its value
only. In lines 1-4, Algorithm 1 initializes F (0, x, y, z) = 0 for all possible values of x, y, z, such
that x ≤ y < z, as well as F (t, x, y, z) = 0 for all possible values of t, x, y, z, such that x ≤ y and
y ≥ z, cf. (11) and (12). It iterates further for every t between 0 and t∗ in lexicographical order
and for every possible x, y, z, such that x ≤ y < z. For every such tuple (t, x, y, z), the algorithm
computes the value F (t, x, y, z) as follows. At first, it computes the set Q(t, x, y, z) in line 8. If
this set is empty, it defines F (t, x, y, z) = 0. Otherwise, it checks in line 10 its feasibility, using
Lemma 4 and, if it is not feasible, it defines F (t, x, y, z) = ∞. In the case of feasibility of the set
Q(t, x, y, z), the algorithm checks in lines 13-19 the release times of the jobs J i

ti for all i ∈ P(t).
If at least one of these jobs does not belong to Q(t, x, y, z), it computes F (t, x, y, z) recursively
in lines 16 and 19, due to (17) and (16), respectively. Finally, if all jobs J i

ti , i ∈ P(t) belong
to Q(t, x, y, z), i.e. if the value F (t, x, y, z) has not been computed in the lines 16 or 19, the
algorithm computes F (t, x, y, z) in line 21 by Theorems 1 and 2.

Note here that, for every i ∈ P(t), the vectors t′i and t′′i are lexicographically smaller
than t. Thus, the values F (t′i, ·, ·, ·) and F (t′′i , ·, ·, ·), which are used in lines 16 and 19, as well
as in equations (18), (20), and (21), have been already computed at a previous iteration of the
algorithm. Furthermore, since we iterate for y in line 7 from the value z downwards to the value
x, the values F (t, x, s, z), for every s with y < s < z, cf. equation (18), have been also computed
at a previous iteration of the algorithm. Thus, all recursive values that are used by Theorems 1
and 2, cf. equations (18), (20), and (21), have been already computed at a previous iteration of
the algorithm. This completes the correctness of Algorithm 1.

The running time of the algorithm can be computed as follows. For each vector
t = (tk, tk−1, . . . , t1), the set P(t) = {i | ti > 0, 1 ≤ i ≤ k} and the value tmax = maxP(t) can
be computed in linear O(n) time, since k ≤ n. Thus, the computation of the set Q(t, x, y, z)
in line 8 can be done in linear time as well. Indeed, since y < z, we can check in linear time

12

whether t = 0, cf. (11), while we can check also in linear time in (10) the release times of
the jobs

⋃
i∈P(t)

⋃ti
ℓ=1 J i

ℓ . The feasibility of Q(t, x, y, z) in line 10 can be checked in O(n log n)
time using Lemma 4, by sorting first increasingly the release times r̃1, r̃2, . . . , r̃q of the jobs in
Q(t, x, y, z) and then, by computing in linear time the value Cq. The execution of lines 13-19
can be simply done in linear time, by checking the release times of the jobs J i

ti , for all i ∈ P(t).
For the computation of F (t, x, y, z) by Theorems 1 and 2, the algorithm uses for at most

every s ∈ T and every i ∈ P(t) \ {tmax} the values of one or two smaller instances that have
been already computed at a previous iteration. This takes O(n3) time, since T has at most n2

elements and P(t) has at most n elements. Furthermore, the sets R(t′
tmax

) and R(t′i) in the
statements of these theorems can be computed in linear O(n) time by (8). Moreover, the set
Q(t, r(e), r(e), z) in the statement of Theorem 2 can be computed in linear O(n) time. Indeed,
we can check in linear time whether t = 0 or whether r(e) ≥ z, cf. (11) and (12), while we
can check also in linear time in (10) the release times of the jobs

⋃
i∈P(t)

⋃ti
ℓ=1 J i

ℓ . Thus, the

algorithm needs O(n3) time for the execution of the lines 8-21.
There are in total

∏k
i=1 (ni + 1) possible values of the vector t, where it holds∑k

i=1(ni + 1) = n + k. The product
∏k

i=1(ni + 1) is maximized, when (ni + 1) = n+k
k for every

i = 1, . . . , k. Thus, there are in total at most O((n
k + 1)k) vectors t and O((n

k + 1)kn5) possible
tuples (t, x, y, z), since x ∈ R can take at most O(n) possible values and y, z ∈ T can take
at most O(n2) possible values each. Since the lines 8-21 are executed for all these tuples, the
algorithm needs for the lines 5-21 O((n

k + 1)kn8) time. Furthermore, the initialization of the
values F (0, x, y, z) for all possible x, y, z in lines 1-2 takes O(n5) time. Finally, the initialization
of the values F (t, x, y, z) in lines 3-4 takes O((n

k + 1)kn5) time, since it is executed for at most
all possible tuples (t, x, y, z). Summarizing, the running time of Algorithm 1 is O((n

k + 1)kn8).
The space complexity of Algorithm 1 can be computed as follows. For the computation of

the optimal value, the algorithm stores for every tuple (t, x, y, z) the value F (t, x, y, z) in an
array of size O((n

k + 1)kn5). The storage of the release and completion times in Lemmas 4
and Theorem 1 can be done in an array of linear size O(n). In order to build the optimal
schedule, instead of its value, we need to store at every entry of these arrays the corresponding
schedule. For each one of them we store the start and completion times of the jobs in an array
of size O(n). Then, the optimal schedule can be easily computed by sorting these start and
completion times in non-decreasing order, storing the interrupted jobs in a stack. This implies
space complexity O((n

k + 1)kn6).

4 Conclusion

In this paper we presented the first polynomial algorithm for the preemptive scheduling of
equal-length jobs on a single machine, parameterized on the number k of different weights.
The objective is to minimize the sum of the weighted completion times

∑n
i=1 wiCi of the jobs,

where wi and Ci is the weight and the completion time of job Ji. The complexity status of the
generalized version with an arbitrary number of positive weights on a single machine remains
an interesting open question for further research.

References

1. L.A. Herrbach and J.Y.-T. Leung. Preemptive scheduling of equal length jobs on two machines to minimize
mean flow time. Operations Research, 38:487–494, 1990.

2. P. Baptiste, P. Brucker, M. Chrobak, C. Durr, Svetlana A. Kravchenko, and F. Sourd. The complexity of
mean flow time scheduling problems with release times. Journal of Scheduling, 10(2):139–146, 2007.

3. M.R. Garey and D.S. Johnson. Computers and intractability, a guide to the theory of NP-completeness. W.H.
Freeman and Company, 1979.

13

4. E.L. Lawler. A dynamic programming algorithm for preemptive scheduling of a single machine to minimize
the number of late jobs. Annals of Discrete Mathematics, 26(1–4):125–133, 1990.

5. P. Baptiste. Polynomial time algorithms for minimizing the weighted number of late jobs on a single machine
when processing times are equal. Journal of Scheduling, 2:245–252, 1999.

6. P. Baptiste, M. Chrobak, Ch. Dürr, W. Jawor, and N. Vakhania. Preemptive scheduling of equal-length jobs
to maximize weighted throughput. Operation Research Letters, 32(3):258–264, 2004.

7. Z. Tian, C.T. Ng, and T.C.E. Cheng. An O(n2) algorithm for scheduling equal-length preemptive jobs on a
single machine to minimize total tardiness. SIAM Journal of Computing, 9(4):343–364, 2006.

8. K.R. Baker. Introduction to Sequencing and Scheduling. John Wiley and Sons, New York, 1974.
9. P. Baptiste. An o(n4) algorithm for preemptive scheduling of a single machine to minimize the number of

late jobs. Operations Research Letters, 24:175–180, 1999.
10. P. Brucker. Scheduling algorithms. Springer Verlag, Heidelberg, 5 edition, 2007.
11. P. Brucker and S. Knust. Complexity results for scheduling problems. http://www.mathematik.uni-

osnabrueck.de/research/OR/class/.
12. M.R. Garey, D.R. Johnson, B.B. Simons, and R.E. Tarjan. Scheduling unit-time tasks with arbitrary release

times and deadlines. SIAM J. Comput., 10:256–269, 1981.
13. B. Simons. Multiprocessor scheduling of unit-time jobs with arbitrary release times and deadlines. SIAM

Journal of Computing, 12:294–299, 1983.
14. J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of machine scheduling problems. Annals of

Discrete Mathematics, 1:343–362, 1977.
15. M.I. Dessouky, B.J. Lageweg, J.K. Lenstra, and S.L. van de Velde. Scheduling identical jobs on uniform

parallel machines. Statistica Neerlandica, 44:115–123, 1990.
16. P. Baptiste. Scheduling equal-length jobs on identical parallel machines. Discrete Applied Mathematics,

103:21–32, 2000.
17. P. Baptiste and C. Dürr. http://www.lix.polytechnique.fr/ durr/

OpenProblems/1 rj pmtn pjp sumWjCj/.
18. J. Labetoulle, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Preemptive scheduling of uniform

machines subject to release dates. In Progress in Combinatorial Optimization, pages 245–261. Academic
Press, Toronto, 1984.

19. J.Y.-T. Leung and G.H. Young. Preemptive scheduling to minimize mean weighted flow time. Information

Processing Letters, 34:47–50, 1990.

14

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years. A complete

list of reports dating back to 1987 is available from http://aib.informatik.rwth-aachen.de/.

To obtain copies consult the above URL or send your request to: Informatik-Bibliothek,

RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

15

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

16

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling

Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,

Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli

Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI

Work Group “Requirements Management Tools for Product Line Engi-

neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical

sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for

Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-

ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-

ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A

System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal

2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking

2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications

2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches

17

2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler

Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical

Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke

2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code

2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-

grams

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,

Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modular,

Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent programs

2007-16 Sadeq Ali Makram, Mesut Güneç, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Balanc-

ing for Wireless Mesh Networks

2007-17 René Thiemann: The DP Framework for Proving Termination of Term

Rewriting

2007-18 Uwe Naumann: Call Tree Reversal is NP-Complete

2007-19 Jan Riehme, Andrea Walther, Jörg Stiller, Uwe Naumann: Adjoints for

Time-Dependent Optimal Control

2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:

Three-Valued Abstraction for Probabilistic Systems

2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-

sitional Modeling and Minimization of Time-Inhomogeneous Markov

Chains

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,

and Berthold Vöcking: Uncoordinated Two-Sided Markets

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007

2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René :Thiemann, Harald Zankl: Maximal Termination

2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler

2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations

2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message

Passing Programs

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on

Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-

endpoint path cover on proper interval graphs

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

18

