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Abstract. We investigate the problem of specification based testing with dense
sets of inputs and outputs, in particular with imprecision as they might occur
due to imprecise measurements, numerical instability or noisy channels. Using
quantitative transition systems to describe implementations and specifications,
we introduce implementation relations that capture a notion of correctness “up
to ε”, i.e. that allow deviation of the implementations behavior from that of the
specification as long as it does not deviate more than ε. The deviations are de-
scribed as Hausdorff distances between certain sets of traces. The implementation
relations are conservative extensions of the well-known ioco relation. We develop
a testing algorithm that we show to be sound and exhaustive with respect to the
implementation relations introduced.

1 Introduction

Model-driven test theories have recently been developed, which surpass plain
functional testing by taking also quantitative information of the system under
test into account: [2, 1, 6, 7] extend the classical model-driven test theories [11, 5]
with real-time and data respectively, and [13] to testing of hybrid systems. These
works provide a solid formal underpinning of real-time, hybrid and data testing,
together with methods for automatic test case generation, execution and eval-
uation for system with real-time and data. These theories, however, handle the
values contained within the requirement specification and the implementation-
under-test (IUT) with an infinite precision, not taking into account deviations
due to measurement errors, numerical instability or noisy channels: if the spec-
ification requires a response within 1 second, but the IUT responds within 1.01
second, a fail verdict is generated, not allowing small deviations from the require-
ments for measurement errors etc.

For real-time testing, in [9] this problem is overcome by explicitly modeling
the tester’s time observation capabilities through a digital clock. In the area of
verification, the related problem that real-time models are idealized mathemat-
ical abstractions from reality that may not be implementable or robust have
gained attention in [8, 10, 3].

This paper presents a model-driven test theory in the presence of impreci-
sions: the theory comprises definitions of implementation relations which take
imprecision into account, and an on-the-fly testing algorithm that is shown to
be sound and exhaustive w.r.t. the implementation relations. Rather than con-
centrating on one particular area like timed or hybrid testing, we take a more
abstract view to testing when imprecisions are present; our results can can later
be specialized to deal with the particularties of a concrete testing theory. We
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set our theory in the context of quantitative transition systems. These are an
extension of input/output transition systems with continuous information: Each
action in a QTS carries also a value x ∈ [0, 1]. Based on this model class, we
define conformance relations qiocoε , conservative extensions of the well-known
ioco relation [11], which are parameterized with a tolerance ε. An implementa-
tion conforms to a specification as long as it is functionally correct (i.e. delivers
only outputs that are expected) and deviates in the quantitative part by at most
ε. The presented theory relies on so-called distance functions [4], or distances.
These distances, defined on the actions, traces and QTS, measure how far one
action, trace or QTS lies apart from another. Our testing scenario finds out how
far an IUT is from conforming to the specification: We show that, if every out-
put generated by the IUT lies closely to a output one expects, then the distance
(formalized by a quantitative notion of the conformance relation qiocoε will be
small, otherwise it will be large. The definition of qiocoε relies on what trace
distance is used. More than one reasonable choice seems to exist. In Figure 1 we
see the classical testing framework for conformance testing, as it is for example
formalized in the ioco theory [11]. The tester has access to the specification, and
sends inputs derived from the specification to the implementation. The imple-
mentation responds with one or more outputs (or no output at all). The tester
checks whether the received (lack of) outputs is correct according to specifica-
tion. For our quantitative testing framework we assume that specification and
implementation can be modeled by QTS, and that inputs are of the form i?(x)
and outputs of the form o!(y); i and o indicate the type of input or output, and
x, y the quantitative information assigned to it. In Figure 1 (b) we extend the
previous scenario with two black boxes which represent the perturbances inputs
and outputs can become subjected to. The sources of the perturbances are of
no relevance, but we assume that inputs are perturbed by at most ε′, outputs
by at most ε (ε, ε′ ∈ [0, 1]). The perturbances have an influence on the real and
the perceived behavior of the implementation. An input i?(x) sent to the imple-
mentation might actually be interpreted as an input i?(x′) with x′ 6= x, where
|x′ − x| ≤ ε′. The implementation might then produce an output o!(y), which is
then perturbed itself and arrives as o!(y′) at the tester, where |y − y′| ≤ ε. This
picture allows for different approaches to testing, which corresponds to different
quality on the system to be tested. One view is to see the implementation to-
gether with the perturbances inside a black box, which makes it impossible to
know how large ε and ε′ are. However, the testing objective here is to find out if
the complete black box conforms, i.e. if the deviations seen in output are within
the tolerated limits. In this scenario the tester would send inputs that are correct
according to the specification, observe outputs that are sent back, measure the
deviation of the received to the expected outputs according to the specification,
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and base its verdict on these deviations. A second scenario is to assume that the
tester has actually unperturbed access to the implementation itself. However,
the implementation might be deployed in an environment in which inputs and
outputs are perturbed by ε and ε′, respectively. The testing objective might then
be to find out how the implementation reacts to perturbations in the input. This
would require that the tester sends inputs to the implementation that are delib-
erately perturbed and deviate from the inputs prescribed by the specification. By
testing it could then, for example, be established that a perturbation of inputs
by at most ε causes the implementation to produce outputs that are deviating
by more than ε (which could be seen as a reason to fail the test).

In the reminder of this paper we show that both approaches to testing can be
described in a single theory, and it is the choice of the trace distance which makes
the difference. For that reason we keep the definition of qiocoε parametric, i.e.
define a qiocoD

ε , where D is the trace distance used to measure deviations in
quantitative information. In the scope of this paper, two trace distances are
introduced that corresponds to the two scenarios sketched above. We also define
an on-the-fly testing algorithm which again is parametric in the chosen trace
distance. We show that the algorithm is sound and exhaustive w.r.t. to the
qiocoD

ε relations.

Structure of the paper. Section 2 introduces the necessary technical prelim-
inaries on distances and QTS. In Section 3 we define the qiocoD

ε relations and
analyze some of their properties. In Section 4 we introduce the on-the-fly testing
algorithm for qiocoD

ε and prove its soundness and exhaustiveness. We conclude
with Section 5.

2 Preliminaries

2.1 Distances and Hausdorff distances

Let X be a set. A distance1 on X is a non-negative function d : X×X → TT, where
TT is a totally ordered dense set with + containing 0 and for with d(x, x) = 0
and d(x, y)+ d(y, z) ≥ d(x, z) (triangle inequality) holds. If d is a distance on X,
then d can be lifted to sets by the Hausdorff distance hd: for sets Y,Z ⊆ X, hd is
defined as hd(Y,Z) = supy∈Y infz∈Z d(y, z). Thus, for every y ∈ Y , the minimal
distance to a z ∈ Z is derived, and from these minimal distances the maximum is
chosen. Note that the a Hausdorff distance hd is in general not symmetric, even
if d is so. To cover empty sets, we define for f a function, supx∈∅ f(x) = 0 and
infx∈∅ f(x) = ⊤.

For Y ⊆ X, the ε-ball Bd(Y, ε) around Y , containing all elements within
distance ε from some element in Y , is defined as Bd(Y, ε) = {x ∈ X | ∃y ∈ Y :
d(x, y) ≤ ε}. For Y,Z ⊆ X, set inclusion can be expressed as Y ⊆ Z = ∀y ∈
Y : ∃z ∈ Z : y = z. If distance d is defined on X, then this can be rephrased
as Y ⊆ Z = ∀y ∈ Y : ∃z ∈ Z : d(y, z) = 0. A natural generalization of set
inclusion is then Y ⊆d

ε Z=̂∀y ∈ Y : ∃z ∈ Z : d(y, z) ≤ ε. It is straightforward to
show that Y ⊆d

ε Z if and only if hd(Y,Z) ≤ ε. The following lemma gives a third
characterization of ⊆d

ε in terms of (ordinary) set inclusion.

1 Sometimes also called quasi-pseudo metrics.
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Lemma 1. Let d : X2 → IR be a distance and Y,Z ⊆ X. Then Y ⊆d
ε Z if and

only if Y ⊆ Bd(Z, ε).

Proof. See Appendix A.

2.2 Quantitative transition systems

This section introduces quantitive transition systems (QTS), which are labeled
transition systems whose actions a(x) consist of a label a and a value x in [0, 1].

Definition 1. A quantitative transition system Q is a tuple 〈S, S0, L,→〉, where

– S is a set of states (possibly uncountable);
– S0 ⊆ S is a set of initial states;
– L is a a set of action labels, which is partitioned into two sets (LI , LO) of input

and output labels respectively. We write A = L × [0, 1] and pairs (a, x) ∈ A
as a(x); We write AI = LI × [0, 1] and AO = LO × [0, 1];

– →⊆ S × A × S is the transition relation.

For states s, s′ ∈ S, we write s
a
−→s′ for (s, a, s′) ∈ −→.

We use the following notational convention: if we refer to actions a, b, c, . . ., then
a, b, c ∈ A. If we refer to a(x), b(y), c(z), . . ., then a, b, c ∈ L and x, y, z ∈ [0, 1].
Note that we do not consider τ or hidden actions. For s ∈ S, we write s

a(x)
−−→,

if ∃s′ ∈ S : s
a(x)
−−→s′. We assume all QTS 〈S, S0, L,→〉 to be non-blocking on

outputs, i.e. for every state s ∈ S, there is an action a ∈ AO such that s
a
−→. Note

that it is straightforward to transform any QTS into a non-blocking one: extend
LO with a fresh label δ (representing quiescence, or output-inactivity). For a state
s ∈ S which is blocking on outputs (i.e. without any outgoing output-transition),
we add the transition s

δ(0)
−−→s to the transition relation. This construction is

analogous to the suspension-automaton in (c.f. [11]).

Definition 2 (Determinism). A QTS Q = 〈S, S0, L,→〉 is said to be deter-
ministic iff for s, s′, s′′ ∈ S, a ∈ A: s

a
−→s′ and s

a
−→s′′ implies s′ = s′′; Q is input-

enabled iff for all s ∈ S and all a ∈ AI we have s a→.

Definition 3 (Traces). An execution fragment of Q is a finite sequence ν =
s0a1s1a2s2 . . . sn such that (si−1, ai, si) ∈→ for all 1 ≤ i ≤ n. The trace of ν is
obtained by removing all states in ν, i.e. trace(ν) = a1a2 · · · an. We then write
s0

a1a2···an−−−−−−−−→ sn. We denote by tr(Q) ⊆ A∗ the set of all traces σ of Q starting
in a starting state. Given a trace σ = a1a2 · · · an, we denote its length n by |σ|
and write σi for ith symbol in σ and σi = σiσi+1 . . . for the suffix of σ starting
from σi. We define λ to be the empty trace.

2.3 Trace distances

In order to quantify how far an execution of an implementation is off from a
specification, we introduce several distances on sets of traces [4]. For our purposes,
distances take values x ∈ [0, 1]⊤ := [0, 1] ∪ ⊤. The ⊤ element is used to express
incomparability between actions, and we define ∀x ∈ [0, 1] : x < ⊤. To define
the trace distances, we define first distances on (sets of) actions and lift these
on the set of traces. In general, the distance between sets that we use here are
Hausdorff distances.
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Definition 4. (Action Distances) We define action distances ad I , adO , ad I
c ,

and adO
c . Let † ∈ {I,O}. Then

1. ad† is defined as

ad†(a(x), b(y)) =











|x − y| if a = b and {a, b} ⊆ L†,

0 if a = b and {a, b} 6⊆ L†

⊤ otherwise.

2. ad†
c (the constrained action distance), is defined as

ad†
c (a(x), b(y)) =











|x − y| if a = b and {a, b} ⊆ L†,

0 if a(x) = b(y),

⊤ otherwise.

All distances derived from ad†
c are marked with subscript ·c.

3. For d ∈ {ad†, ad†
c}, E,E′ ⊆ A: d(E,E′) = supa∈E infb∈E′ d(a, b).

The action distance adO and adO
c measure the distances between output actions:

for o(x), o(y) ∈ AO : adO (o(x), o(y)) = adO
c (o(x), o(y)) = |x − y|. They differ in

the way how input actions are compared: for i(x), i(y) ∈ AI , adO (i(x), i(y)) = 0,
regardless of the values of x, y. However, adO

c (i(x), i(y)) = 0 only if x = y, and
⊤ otherwise. The same holds dually for ad I and ad I

c . For all actions distances it
holds that they result in ⊤ if the labels of the compared actions do not match. For
Y = {o(x), i(y)}, Z = {o(x′), i(y′)} with y 6= y′ it holds that adO (Y,Z) = |x−y|,
whereas adO

c (Y,Z) = ⊤.

Using the action distances, we define now distances on traces.

Definition 5. (Trace Distances)

1. For traces σ = a1 · · · an and ρ = b1 · · · bm, and † ∈ {I,O}, we define td†(σ, ρ) =
max1≤i≤n ad†(ai, bi) if n = m, and td†(σ, ρ) = ⊤, otherwise. Then td(σ, ρ) =
max{td I (σ, ρ), tdO (σ, ρ)}.

2. For d ∈ {td I , tdO , td}, and P,Q QTS, d(P,Q) = supσ∈tr(P ) infρ∈tr(Q) d(σ, ρ).

3. The constrained trace distances, td†
c and td c , are defined as td† and td,

respectively, with ad†
c taking the place of ad†.

The trace distances which we will consider in this paper are td and tdO
c , and

we will let the variable D range over {td , tdO
c }, if not indicated otherwise. The

relation between these two distances is established in the following lemma.

Lemma 2. Let σ, ρ ∈ A∗. Then

tdO (σ, ρ) ≤ ε and td I (σ, ρ) ≤ 0 if and only if tdO
c (σ, ρ) ≤ ε.

Proof. See Appendix A.

Trace distances on traces with length 1 define also action distances, which are
related to, but different from the ones defined above.
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Lemma 3. Let a, b ∈ A. Then

(i) tdO
c (a, b) = adO

c (a, b) and (ii) td(a, b) =











ad I (a, b) if {a, b} ⊆ AI

adO (a, b) if {a, b} ⊆ AO

⊤ otherwise.

Note that tdO
c (a, b) = td(a, b) = adO (a, b) for {a, b} ⊆ AO.

We define now the set of states that can be reached from a starting state
with a trace with maximal tolerance ε ∈ [0, 1]. The definition is generic for
D ∈ {td , tdO

c }.

Definition 6. Let Q = 〈S, S0, L,→〉 be a QTS, and D ∈ {td , tdO
c }. Then, for

s ∈ S, σ ∈ A∗ and ε ∈ [0, 1]: s afterDε σ = {s′ | ∃ρ ∈ A∗ : s
ρ

−−→ s′ ∧ D(σ, ρ) ≤

ε}. For S′ ⊆ S, S′ afterDε σ =
⋃

s∈S′ s afterDε σ. We define Q afterDε σ :=

S0 afterDε σ.

The following definition defines the set of outputs thet can be executed from a
set of states.

Definition 7 (Out-sets). For QTS Q = 〈S, S0, L,→〉 and S′ ⊆ S, the out-set
of S′ is defined as out(S′) = {o ∈ AO | ∃s ∈ S′ : s o→}.

3 Quantitative implementation relations

3.1 A quantitative generalization of the input-output refusal-relation

A frequently used formal correctness criterion for an implementation w.r.t. to
a specification is to demand that every trace of the implementation is also a
trace of the specification. Implementation relations for non-quantitative tran-
sition systems with inputs and outputs (a la ioconf, ioco and the I/O refusal
relation) can all be formulated in terms trace inclusion. A natural adaption of
this idea to quantitative systems is to replace strict set inclusion, ⊆, with the
quantitative version defined in Section 2.1. This idea leads us directly to the
following definition.

Definition 8. We assume a QTS S as specification and a QTS I as imple-
mentation. We assume both I,S being input-enabled. For 0 ≤ ε ≤ 1 and D ∈
{td , tdO

c }, we define I ⊑D
ε S ⇐⇒ D(I,S) ≤ ε.

Thus, we define I ⊑D
ε S as tr(I) ⊆D

ε tr(S), and we obtain by Lemma 1 that
I ⊑D

ε S iff tr(I) ⊆ BD(tr(S), ε). If ε = 0, then ⊑D
ε reduces to trace inclusion.

Note that ⊑D
ε for ε 6= 0 is not a preorder, since transitivity does not hold:

from P ⊑D
ε Q and Q ⊑D

ε R we can not conclude that P ⊑D
ε R. However, the

triangle inequality that holds for D allows us to conclude that P ⊑D
2ε R. The

ordinary input-output refusal relation has a characterization in terms of output
sets of implementation and specification. A similar characterization of ⊑D

ε is also
possible.

Lemma 4. Let S,I be two input-enabled QTS and D ∈ {td , tdO
c }. Then

I ⊑D
ε S ⇐⇒ ∀σ ∈ A∗ : out(I afterD0 σ) ⊆D

ε out(S afterDε σ)

Proof. See Appendix A.
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a!(0.2)

i?(1.0)

a!(0.7). . .

. . .

b!(0.7) b!(1.0). . .

i?(0.1)

Fig. 2. Example 1

3.2 qiocoD

ε

The formulation of ⊑D
ε in terms of out-sets of implementation and specification

allows us now to define a relation on QTS which corresponds to the ioco relation
in the non-quantitative case. We assume again QTS S and I, with I input-
enabled.The classical way to define the non-quantitative ioco relation is to require
inclusion of out sets not for all possible words σ ∈ A∗, but only for traces of the
specification. In the quantitative case, this restriction is too sharp. Since the idea
is to cut the implementation some slack (ε, to be exact), it is necessary to consider
also traces that are at most ε off from the set of traces of the specification. The
idea is that a tester sends inputs that are prescribed by the specification to the
IUT, and receives outputs that may or may not be off from the expected output
in the specification. We will therefore restrict the set of considered traces to
BD(tr(S), ε), i.e. to the traces that are at most ε off from the trace-set of the
specification.

Definition 9. I qiocoD
ε S iff ∀σ ∈ BD(tr(S), ε):

out(I afterD0 σ) ⊆D
ε out(S afterDε σ).

Clearly, the following property does hold:

Lemma 5. I ⊑D
ε S ⇒ I qiocoD

ε S,

by the fact that in case of qiocoD
ε the out-set inclusion does only need to hold

for a subset of A∗. Furthermore, the following holds:

Lemma 6. Let S be input-enabled. Then I qiocoD
ε S implies I ⊑D

ε S.

Proof. See Appendix A.

Example 1. In Figure 2 we see two QTS I and S, where I serves as implemen-
tation and S as specification2. We have tr(I) ⊇ {i?(x) · a!(x) | x ∈ [0, 0.7]} ∪
{i?(x) · b!(x) | x ∈ [0.7, 1.0]}. I implements an “echo process” which returns the
input it has received, either with label a! or b!. Specification S has only the trace

i?(0.1) · a!(0.2). It turns out that I qioco
tdO

c
ε S for ε = 0.1, witnessed by

out(I after
tdO

c

0 i?(0.1)) = {a!(0.1)} ⊆
tdO

c

0.1 {a!(0.2)} = out(S after
tdO

c

0.1 i?(0.1)).

2 Fot the sake of simplicity we do not bother to make I input-complete and non-blocking on
outputs.
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o!(0.0)

i?(0.0) i?(1.0)

I S

o!(0.0)

i?(0.0)

o!(1.0)o!(0.8)o!(0.6)o!(0.4)o!(0.2)

Fig. 3. Example 2

Moreover, I qioco
tdO

c
ε S for 0.1 < ε ≤ 1.

If we choose td as trace distance, things look differently. It is also true that
I qiocotd

ε S, but only for ε ∈ [0.2, 0.6]. To demonstrate this, we first choose ε =
0.1. For σ = i?(0.0) ∈ Btd(tr(S), 0.1), we have out(I aftertd

0 σ) = {a!(0.0)} and

out(S aftertd
0.1 σ) = {a!(0.2)} Certainly, {a!(0.0)} 6⊆td

0.1 {a!(0.2)}. For ε = 0.2,

and σ = i?(0.0), we get the same out-sets, but anyway {a!(0.0)} ⊆td
0.2 {a!(0.2)}.

For σ = i?(0.3), we derive the respective out-sets {a!(0.3)} and again {a!(0.2)},
and {a!(0.3)} ⊆td

0.2 {a!(0.2)}. In case of ε = 0.7 and σ = i?(0.8), we have the
respective out-sets {b!(0.8)} and {a!(0.2)}, and of course {b!(0.8)} 6⊆td

0.7 {a!(0.2)},
since the labels do not match.

The example shows that I qiocotd
ε S does not imply that I qiocotd

ε′ S for
ε′ > ε. The underlying cause of this phenomenon is that the chosen tolerance
value ε does also influence what inputs are applied to the implementation. The
larger ε is, the more inputs to choose from. For a certain value ε on, inputs might
be sent to the the implementation which might trigger behaviour that does not
conform.

Example 2. In Figure 3,

tr(I) ⊇ {i?(0.0)·o!(0.0)} ∪ {i?(x)·o!(0.2) | x ∈ (0.0, 0.2]}

∪ {i?(x)·o!(0.4) | x ∈ (0.2, 0.4]} ∪ {i?(x)·o!(0.6) | x ∈ (0.4, 0.6]}

∪ {i?(x)·o!(0.8) | x ∈ (0.6, 0.8]} ∪ {i?(x)·o!(1.0) | x ∈ (0.8, 1.0]}.

and tr(S) = {i?(0.0)·o!(0.0)}. We have I qioco
tdO

c
ε S for ε ∈ [0, 1], however,

I qiocotd
ε S only for ε ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.

3.3 qiocoD expressed as trace inclusion

Again we keep the definitions generic, assuming distance D ∈ {td , tdO
c }. Our

approach to express qiocoD in terms of trace inclusion is based on demonic
completion, similar to what is proposed in [12]. The idea is to manipulate the
specifications such that they become input-enabled, yet retain basically all the
information w.r.t. their underspecification. For this to work we must assume that
the considered QTS have a certain structure (are “well-formed”).

Definition 10 (well-formedness). Let Q = 〈S, S0, L,→〉 be a QTS (not nec-
essarily input-complete). We say that Q is well-formed, iff the following holds:

∀σ ∈ A∗ : s, s′ ∈ Q afterD0 σ implies ∀a ∈ AI : s a→ iff s′ a→
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Note that a well-formed QTS is not necessarily deterministic. However, obviously
all deterministic QTS are well-formed.

Definition 11 (Γ -Closure). Let Q = 〈S, S0, L,→〉 be a well-formed QTS. We
define Γ (Q) = 〈S′, S0′, L′,→′〉, the Γ -closure of Q, as follows:

1. S′ = S ∪ {sΓ}, where we require that sΓ 6∈ S.
2. S0′ = S0

3. L′ = L
4. →′= {(s, a, sΓ ) | s ∈ S, a ∈ AI , s 6

a
−→}

∪ {(sΓ , a, sΓ ) | a ∈ A}

We call Γ (Q) the Γ -closure of Q, and call sΓ the garbage collector (thus the
Γ ). Note that Γ (Q) is input-enabled. The well-formedness of Q is crucial for the
Γ -closure, which becomes apparent in the following lemma.

Lemma 7. Let Q be a well-formed QTS. Then ∀σ ∈ A∗:

sΓ ∈ Γ (Q) afterD0 σ implies Γ (Q) afterD0 σ = {sΓ }.

Proof. See Appendix A.

The lemma states that, if a trace leads to the garbage collector, then the garbage
collector is the only state to be reached with this trace. The other direction of
the implication is of course vacuously true.

The definition of qiocoD
ε makes use of the set BD(tr(S), ε). In order to

express qiocoD
ε in terms of trace inclusion, we must assume the existence of a

QTS BD
ε (S) such that tr(BD

ε (S)) = BD(tr(S), ε).

Definition 12. Let Q = 〈S, S0, L,→〉 be a QTS. Then we denote by BD
ε (Q) the

QTS (S′, S0′, L,→′), where

1. S′ = S,
2. S0′ = S0,
3. −→′ ⊆ S′ × A × S′ is the smallest set fulfilling the following property: s

a
−→s′

implies s
b
−→′s′ for all b ∈ A with D(a, b) ≤ ε.

Lemma 8. tr(BD
ε (S)) = BD(tr(S), ε).

Proof. Can be shown by induction in a straightforward manner.

The next lemma provides the characterization of qiocoD
ε in terms of trace in-

clusion.

Lemma 9. Let I be an input-enabled QTS and S a well-formed one. Then

I qiocoD
ε S if and only if tr(I) ⊆ tr(Γ (BD

ε (S))).

Proof. See Appendix A.

Γ (·) is introducing traces which are actually only needed for technical reasons,
not because they have a special significance for testing: these are traces which
would during actual testing never occur due to the underspecification of the
specification. In the next step we will remove these traces therefore again.

Apparently, BD(tr(S), ε) ⊆ tr(Γ (BD
ε (S))). We define Tε = tr(Γ (BD

ε (S))) \
BD(S, ε). Then tr(Γ (BD

ε (S))) \ Tε = BD(tr(S), ε).

Lemma 10. I qiocoD
ε S iff (tr(I) \ Tε) ⊆

D
ε tr(S).

Proof. Follows directly from Lemma 9, Lemma 1 and the definition of set Tε.
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3.4 The qiocoD distance

The definition of the qiocoD
ε relation in Section 3.2 is dissatisfactory in the

sense that, for given I the implementation and S the specification, it lacks an
indication of the minimal ε such that I qiocoD

ε S. It would be desirable to have
a distance function dDqioco which actually measures the distance between I and
S. This function can be defined readily enough.

Definition 13 (dDqioco). Let I be an input-enabled QTS and S a QTS. Then we
define:

dDqioco(I,S) = inf{ε ∈ [0, 1]⊤ | I qiocoD
ε S}.

It is desirable to express dDqioco also in terms of distances between sets of traces.
This, however, is is in general not possible. Lemma 10 illustrates the prob-
lem: although qiocoD

ε is defined in terms of trace inclusion (i.e. (tr(I) \ Tε) ⊆
BD(tr(S), ε)) all we can say is that D((tr(I) \ Tε), tr(S)) = ε. This is not satis-
factory, since there still might be a ε′ < ε with I qiocoD

ε′ S. The reason for this
is that set tr(I) \ Tε is also depending on ε.

Although a more illuminating characterisation of dDqioco seems to elude us, a
different formulation of the above definition sheds light on how we can approxi-
mate dDqioco by means of testing. Another way to formulate dDqioco is as follows:

dDqioco(I,S) = sup{ ε ∈ [0, 1]⊤ | ∀ε′ < ε : I qiocoD
ε′/ S}.

Using Lemma 9, this can be transformed to

dDqioco(I,S) = sup{ ε ∈ [0, 1]⊤ | ∀ε′ < ε : tr(I) ∩ tr(Γ (BD
ε (S))) 6= ∅}.

Thus for all ε < dDqioco(I,S), tr(I) ∩ tr(Γ (BD
ε (S))) 6= ∅, i.e. ∃σ ∈ tr(I) which

is not element of tr(Γ (BD
ε (S))). A testing approach to approximate dDqioco(I,S)

is then the following: we start with ε = 0 and begin to synthesize a trace of
the implementation by exchanging inputs and outputs between tester and im-
plementation. Whenever we encounter a trace σ ∈ tr(I) with σ 6∈ tr(Γ (BD

ε (S)))
we can conclude that the chosen ε was too small. We must then derive an ε′ > ε
from σ such that σ ∈ tr(Γ (BD

ε′ (S))). With this new ε′ we start testing from the
beginning and synthesize another trace σ′, which gives us an ε′′, and so on. In
this way we approximate dDqioco(I,S). In the next section we will show how this
general idea can be formulated in an on-the-fly testing algorithm.

4 On-the-fly testing with QTS

In this section we present a on-the-fly testing algorithm to approximate the
qiocoD

ε distance between an input-enabled QTS I and a QTS S by means of
testing.

4.1 Tracefunctions and stepwise distance measuring

In order to make the behaviour of the implementation more accessible, we intro-
duce the concept of trace functions.
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Definition 14 (Trace function). Let I be an input-enabled QTS. A trace func-
tion i of I is a partial function i : A∗ ⇀ AO with the properties:

1. i(λ)↓
2. i(σ)↓ ⇒ i(σ · a)↓ for all a ∈ AI

3. i(σ)=o ⇒ i(σ · o)↓ and for all o′ ∈ AO with o 6= o′ and for all ρ ∈ A∗ :
i(σ · o′ · ρ)↑

4. i(σ)↓ ⇒ i(σ) ∈ out(Q afterD0 σ),

where f(a)↓ means that f is defined for a, and f(a)↑, if it is not.
We define tr(i) = {σ | i(σ)↓}. The set of all trace functions of I is denoted

as TF (I).

There is a close relationship between the i ∈ TF (I) and tr(I).

Lemma 11. Let I be an input-enabled QTS and i a trace function of I. Then
tr(i) ⊆ tr(I) and

⋃

i∈TF (I) tr(i) = tr(I).

Proof. See Appendix A.

In the following, we will use the trace functions i ∈ TF (I) to represent the
behaviour of I. The following definition describes a way to express the distance
of trace σ = a1a2 · · · an, D(σ, tr(S)), stepwise in terms of a1, a2, . . . , an.

Definition 15. Let S = 〈S, S0, L,→〉 be a QTS, i a trace function of I and D ∈
{td , tdO

c }. We define for S and i a family of functions, curr distDσ : S → [0, 1]⊤
with σ ∈ A∗, i(σ)↓ as follows:

1. curr distDλ (s) = 0 if s ∈ S0, and ⊤ otherwise;
2. for a = i(σ) or a ∈ AI : curr distDσ·a(s) = inf

s′
b

−−→s
max{curr distDσ (s′),D(a, b)}.

curr distDσ (s) is the minimal trace distance w.r.t. D of a trace σ from the set of
traces {ρ ∈ A∗ | ∃s0 ∈ S0 : s0

ρ→ s}, as is stated in Theorem 1.

Theorem 1. curr distDσ (s) = D(σ, {ρ | ∃s0 ∈ S0 : s0
ρ→ s}).

Proof. See Appendix A.

Corollary 1. infs∈S curr distDσ (s) = D(σ, tr(S)).

For more convenient construction of the curr dist functions we introduce the
operator C : (S → [0, 1]⊤) × A × {td , tdO

c } → (S → [0, 1]⊤) as follows:

C(c, a,D) = s 7→ inf
s′

b
−−→s

max{c(s′),D(a, b)}).

Clearly, C(curr distDσ , a,D) = curr distDσ·a.

4.2 The algorithm

The algorithm for on-the-fly testing of QTS has two parts. The first is the actual
testing algorithm which synthesizes a trace of the implementation and measures
the distance of this trace to the specification. The second algorihm uses the
first to approximate dDqioco. Again we assume that I is an input-enabled QTS
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Algorithm 1 The distance measuring algorithm

Require: S = 〈S, S0, L,→〉 is a QTS, i is a trace function of the IUT, n ∈ IN, D ∈ {td , tdO
c },

ε ∈ [0, 1].
1: procedure mqotf(i,S , n,D, ε)
2: σ ← λ

3: cd← ε

4: curr dist = curr dist
D
λ

5: M ← S0

6: n′ ← 0
7: while cd < ⊤ ∧ n′ ≤ n do

8: [ ∃a ∈ AI and M afterDcd a 6= ∅]→ let a ∈ AI with M afterDcd a 6= ∅ in

9: curr dist ← C(curr dist , a,D)
10: M ← {s | curr dist(s) ≤ cd}
11: σ ← σ · a
12: n′ ← n′ + 1
13: end

14: [true]→ o← i(σ)
15: curr dist ← C(curr dist , o,D)
16: cd← max{cd, infs∈S curr dist(s)}
17: M ← {s | curr dist(s) ≤ cd}
18: σ ← σ · o
19: n′ ← n′ + 1
20: end

21: end while

22: return(cd, σ)
23: end procedure

representing the specification, and S = 〈S, S0, L,→〉 is a QTS representing the
specification.

The first algorithm is Algorithm 1. This depicts a non-deterministic procedure
mqotf, which takes five parameters, i,S, n,D, ε. i ∈ TF (I) is a trace function
representing the behaviour of the implementation in this particular test run.
n is the maximal number of test steps to be executed. D ∈ {td , tdO

c } is the
distance function to be used. Finally, ε ∈ [0, 1] is a tolerance parameter which
has influence on the inputs to be chosen to trigger the implementation. mqotf
returns a tuple (cd, σ), where σ ∈ tr(I) is the trace which was generated during
testing, and cd ∈ [0, 1]⊤. Later we will show that cd = max{ε,D(σ, tr(S))}. The
main purpose of mqotf is to construct the function curr distDσ step-by-step, where
σ is the trace synthesized during testing and by using S.

In lines 2–6, several local variables are initialized: σ is the trace observed so far,
and is initialised with λ. cd keeps track of the lower bound of the distance of
the observed trace to tr(S) and is initialised with parameter ε. curr dist is the
current curr distσ function and is initialized with curr distλ. M is the so-called
menu, the set of states of S which can be reached with traces ρ ∈ tr(S) such
that D(σ, ρ) ≤ cd. M is initialized with the initial states. n′ counts the number
of test steps already performed, and is initialised with 0.

Lines 7 to 21 cover the main loop of mqotf, which is terminated if cd = ⊤ or
n′ > n. The body of the while-loop is a nondeterministic algorithm: execution
starts either on line 8 or 14. On line 8, an input a ∈ AI is chosen such that
M afterDcd a 6= ∅. If such an a exists, curr dist is updated, new menu M is
defined, a is appended to σ, and n′ increased by 1 (lines 9–12). Note that cd is
not updated, since σ ·a has the same trace distance to tr(S) as σ. This is ensured
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Algorithm 2 Approximating dDqioco(I,S)

Require: S = 〈S,S0, L,→〉 is a QTS, I an input-enabled QTS, n ∈ IN, D ∈ {td , tdO
c }.

1: n′ ← 0
2: cd← 0
3: σ ← λ

4: while n′ ≤ n and cd < ⊤ do

5: [true]→ let i ∈ TF (I), m ∈ IN in

6: (cd, σ)← mqotf(i,S ,m,D, cd)
7: n′ ← n′ + 1
8: end

9: end while

by the condition on the choice of a on line 8. If execution continues with line 14,
rather than 8, the output i(σ) is used to update curr dist , cd, M and σ. Note
that cd is only increased if D(σ · o, tr(S)) is larger than ε. Once the while-loop
terminates, line 22 is reached. The computed distance cd, together with σ is then
returned.

mqotf returns (cd, σ), i.e. the trace distance of one trace only. Assuming
that cd ≥ D(σ, tr(S)) (this is shown in Section 4.3), mqotf can be used to
approximate dDqioco(I,S), as it has been sketched in Section 3.4 and is worked
out in Algorithm 2. There, we have again an n ∈ IN, which bounds the number
of test runs to be executed, and the usual S,I and D. The approximation takes
place in the while-loop between lines 5 and 7. In each run through the loop, an
m ∈ IN is chosen, which is used to restrict the length of the test run. Moreover, a
trace function i ∈ TF (I) is chosen nondeterministically from TF (I). This choice
reflects the fact that in each test run the implementation I might actually behave
differently from a previous test run, even if the same inputs are applied. mqotf is
called with the current value of cd as tolerance parameter, initially 0. The value
of cd is constantly updated with the distance computed by mqotf.

4.3 Soundness and exhaustiveness of mqotf

The procedure mqotf (Algorithm 1) is sound w.r.t. qiocoD
ε , for D ∈ {td , tdO

c }.
Soundness means that, whenever I qiocoD

ε S than for all n ∈ IN, i ∈ TF (I) and
possible return values (cd, σ) from mqotf(i,S, n,D, ε), cd = ε holds. Moreover,
the algorithm is exhaustive, i.e. if I qiocoD

ε/ S, then there is a trace function
i ∈ TF (I) and a run of mqotf(i,S, n,D, ε) with return value (cd, σ) such that
cd > ε.

Integral part of a soundness proof is to show that the following property of
Algorithm 1 holds: whenever execution reaches line 7 (begin of while loop), it
holds:

1. curr dist = curr distDσ ;
2. cd = max{D(σ, tr(S)), ε} ;
3. M = {s | curr dist(s) ≤ cd};
4. n′ ≤ n + 1.

These conditions are easily verified when line 7 is entered for the first time.
Then σ = λ, cd = ε (D(λ, tr(S)) = 0), curr dist = curr distDλ ,M = S0 =
{s | curr dist(s) = 0}, and n′ = 0.

15



If we assume that all four condition hold and additionally M 6= ∅ and n′ 6=
n + 1, the loop body is entered, and a non-deterministic choice has to be made
on either to continue with line 8 or line 14.

If the precondition of line 8 holds and the line is nondeterministically chosen,
then action a ∈ AI is the input selected to be sent to the implementations (which
is only implicitly done by appending a to σ). In line 9, curr dist is updated. From
the definition of C it is easy to see that then curr dist = curr distDσ·a on line 10.
Important to note is that in lines 9–12 the value of cd is not updated. The reason
is that in fact infs∈S curr distDσ·a(s) = infs∈S curr distDσ (s), since the input a is
chosen to not deviate more than cd from the specified inputs. The trace distance
of σ ·a to S is therefore equal to that of σ. When we return from line 12 to line 7,
the four conditions are thus still satisfied.

If line 14 is chosen, output o is received from the implementation (symbolized
by consulting the trace function). In line 15, curr dist is updated from curr distDσ
to curr distDσ·o. In line 15, cd is updated. By precondition and Theorem 1, then
cd = max{max{ε,D(σ, tr(S)),D(σ · o, tr(S))}} = max{ε,D(σ · o, tr(S))}. In the
remaining lines until line 19, the remaining variables are updated. Clearly, on
return to line 7, the four conditions hold again.

The fact that these conditions hold also once line 22 is reached allows the con-
clusion that, once mqotf returns a result (cd, σ), then cd = max{ε,D(σ, tr(S))}.

Proving soundness. To prove now the soundness of Algorithm 1, we assume
that I qiocoD

ε S, but that a run of mqotf(i,S, n,D, ε) for i ∈ TF (I) returns
(cd, σ) with cd > ε. We know then that cd = D(σ, tr(S)). Then there is also a
prefix σ′ · o of σ such that D(σ′, tr(S)) ≤ ε, but D(σ′ · o, tr(S)) > ε. Clearly,
o ∈ AO, since, as shown above, only outputs can increase the distance of the
computed trace to tr(S). Then σ′ ∈ BD(tr(S), ε), and o ∈ out(I afterD0 σ′). But

this implies also that out(I afterD0 σ′) 6⊆D
ε out(S afterD0 σ′), i.e. a contradiction

to the assumption I qiocoD
ε S.

Proving exhaustiveness. We have to show that, if I qiocoD
ε/ S, then there

is a trace function i ∈ TF (I) and a run of mqotf(i,S, n,D, ε) with returns
value (cd, σ) such that cd > ε. I qiocoD

ε/ S implies according to the definition of
qiocoD

ε that ∃σ ∈ BD(tr(S), ε) such that out(I afterD0 σ) 6⊆D
ε out(S afterDε σ).

There is thus an output o ∈ out(I afterD0 σ) such that D({o}, out (S afterDε σ)) >
ε, and moreover, D(σ · o, tr(S)) > ε.

This implies that {σ, σ·o} ⊆ tr(I), i.e. there is also a trace function i ∈ TF (I)
with σ ∈ tr(i) and i(σ) = o. Let n = |σ|. Since σ ∈ BD(tr(S), ε), we can
assume that there is a run through mqotf(i,S, n,D, ε) such that we enter line 8
of Algorithm 1 with the following conditions fulfilled:

1. curr dist = curr distDσ ;

2. cd = ε ≥ D(σ, tr(S)) ;

3. M = {s | curr dist(s) ≤ ε};
4. n′ = n.

If the algorithm proceeds then to line 14, trace function i will return output o,
curr dist will be updated to curr distDσ·o and cd to max{ε, infs∈S curr dist(s)} =
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max{ε,D(σ · o, tr(S)} = D(σ · o, tr(S)). Thus cd > ε. Since n′ will be updated
to n + 1, the algorithm will terminate and return with (cd, σ · o), where cd > ε.
This was to be shown.

Approximating dD

qioco(I, S). If Algorithm 2 is executed with parameter n ∈

IN, then for the value of variable cd it holds cd < dDqioco(I,S). Increasing n → ∞

does not guarantee that cd → dDqioco(I,S). The reason is that in general the
set TF (I) is uncountable (since [0, 1] is uncountable) and Algorithm 2 can even
in infinite time only test against a countable number of trace functions. The
test runs of mqotf might then well give results that converge against an ε <
dDqioco(I,S). It is however possible to show that at least there exists always a

series of trace functions and results of mqotf which converge to dDqioco(I,S) in
the limit. We show this in the following.

Let d = dDqioco(I,S). If d = 0, then there is nothing to show: since mqotf is
sound, for all runs of Algorithm 2, in the end cd = 0. If we assume that d > 0,
then I qiocoD

d S, but ∀ε < d: I qiocoD
ε/ S.

Then there is an increasing series 〈dj〉j=0,...∞ with d0 = 0 and limj→∞ dj = d.
Then I qiocoD

dj
/ S for all dj < d, j = 1, 2, 3, . . .. Since mqotf is sound and exhaus-

tive, we can find for each dj a trace function ij and a run of mqotf(ij ,S,m,D, dj)
with outcome (cdj , σj) such that dj ≤ cdj ≤ d. Then limj→∞ cdj = d, and
〈cdj〉j=0,...,∞ corresponds to the intermediate values of variable cd of a run of
Algorithm 2, which approximates d.

5 Conclusions and further work

We introduced two ioco-like implementation relations for QTS, based on the two
different trace distances td and tdO

c . We have introduced a algorithm for on-the-
fly conformance testing of QTS and shown that this algorithm is sound w.r.t. to
the two respective conformance relations.

The algorithm is unusual in the sense that it just measures the distance of
the implmentation to the specification, rather than reaching a verdict. However,
a judging testing algorithm for QTS can be easily defined by an straightforward
adaption of the measuring algorithm: whenever the distance of the implementa-
tion is larger than tolerated, testing is stopped and a fail verdict returned.

The algorithm is only effective if the QTS serving as specification fullfils
certain structural restrictions. In particular, the QTS state space must be finitley
representable. Otherwise the function curr dist is not representable. Moreover,
· afterD · must be computable, and the choice of an input must be effectively
possible. One such class of QTS is that representabla as finite interval automata.

The developed theory is currently abstract from any concrete application
area. A most important topic to be adressed is therefore how it can be inte-
grated into existing testing theories with concrete quantitative elements, like
timed testing [1, 2] or hybrid testing [13].
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A Proofs

Lemma 1. Let d : X2 → IR be a distance and Y,Z ⊆ X. Then

Y ⊆d
ε Z ⇐⇒ Y ⊆ Bd(Z, ε).

Proof. Let y ∈ Y . Then ∃z ∈ Z : d(y, z) ≤ ε. But then y ∈ Bd(Z, ε). Since this
holds for all y ∈ Y , we have immediately Y ⊆ Bd(Z, ε).

Lemma 2. Let σ, ρ ∈ A∗. Then

tdO (σ, ρ) ≤ ε and td I (σ, ρ) ≤ 0 if and only if tdO
c (σ, ρ) ≤ ε.

Proof.

“⇐” : tdO
c (σ, ρ) ≤ ε implies |σ| = |ρ| and ∀i : 1 ≤ i ≤ |σ| : adO

c (σi, ρi) ≤ ε.
Moreover, if σi ∈ AI , then σi = ρi. We can conclude that td I (σ, ρ) = 0 and
tdO (σ, ρ) ≤ ε.

“⇒”: td I (σ, ρ) = 0 and tdO (σ, ρ) ≤ ε implies |σ| = |ρ|. Then the reasoning of
the “⇐” direction can be easily reversed.

Lemma 4. Let S,I be two input-enabled QTS and D ∈ {td , tdO
c }. Then

I ⊑D
ε S ⇐⇒ ∀σ ∈ A∗ : out(I afterD0 σ) ⊆D

ε out(S afterDε σ)

Proof. “⇒”: Let I ⊑D
ε S and σ ∈ A∗. We have two cases to consider:

1. σ ∈ tr(I). Then out(I afterD0 σ) 6= ∅, and for all o ∈ out(I afterD0 σ),
σ·o ∈ tr(I). Therefore, there exists ρ·o′ ∈ tr(S) with D(σ·o, ρ·o′) ≤ ε.
Then D(σ, ρ) ≤ ε and D(o, o′) ≤ ε. Thus, o′ ∈ out(S afterDε σ) and

therefore out(i afterD0 σ) ⊆D
ε out(s afterDε σ).

2. σ 6∈ tr(I). Then out(I afterD0 σ) = ∅, thus the statement is vacuously
true.

“⇐”: We assume the right part of the lemma to be true. We have to show that
for all σ ∈ tr(I) there exists a ρ ∈ tr(S) with D(σ, ρ) ≤ ε, i.e. D(σ,S) ≤ ε. We
do this with induction over the length of σ ∈ tr(I). For σ = λ, there is nothing
to show. Assume we have shown that for σ′ ∈ tr(I), D(σ′,S) ≤ ε. We now
consider σ = σ′·a. If a is an input, there is nothing to show, since we assume
S to be input enabled, i.e. D(σ,S) = D(σ′,S) ≤ ε. If a ∈ out(I afterD0 σ′),

then there is a o ∈ out(S afterDε σ′) with D(a, o) ≤ ε. Also there is a ρ′ ∈ A∗

such that ρ = ρ′ · o ∈ tr(S) and D(σ′, ρ′) ≤ ε. Then D(σ, ρ) ≤ ε.

Lemma 6. Let S be input-enabled. Then I qiocoD
ε S implies I ⊑D

ε S.

Proof. We assume I qiocoD
ε S. Let T = BD(tr(S), ε) and σ ∈ tr(I). We prove

by induction over the length of σ that D(σ′, tr(S)) ≤ ε and σ′ ∈ T .
For σ = λ this is trivial. Let σ = σ′ · a, assuming that D(σ′, tr(S)) ≤ ε and

σ′ ∈ T has been shown already. If a ∈ AI , nothing has to be shown due to the
input-enabledness of S. If a ∈ AO, then we know that a ∈ out(I afterD0 σ′).

Since I qiocoD
ε S, and σ′ ∈ T , ∃a′ ∈ out(S afterDε σ′) with D(a, a′) ≤ ε. Thus,

there is a trace ρ′ ∈ tr(S) such that D(σ′, ρ′) ≤ ε and ρ′ · a′ ∈ tr(S). Also
D(σ, ρ′ · a′) ≤ ε, thus also D(σ, tr(S)) ≤ ε. Also σ ∈ T then. We can conclude
that supσ∈tr(I) D(σ, tr(S)) = D(I,S) ≤ ε, i.e. I ⊑D

ε S.
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Lemma 7. Let Q be a well-formed QTS. Then ∀σ ∈ A∗:

sΓ ∈ Γ (Q) afterD0 σ implies Γ (Q) afterD0 σ = {sΓ}.

Proof. We denote by → the transition relation of Q, and by →′ that of Γ (Q).
If sΓ ∈ Γ (Q) afterD0 σ, then there is a unique prefix σ′ · a of σ such that

sΓ ∈ Γ (Q) afterD0 σ′ · a, but sΓ 6∈ Γ (Q) afterD0 σ′. Since sΓ can only ini-
tially be reached by transitions labeled with inputs, a must be an input. Thus
there is a s ∈ Γ (Q) afterD0 σ′ with s

a
−→′sΓ . Then s

a
−−→6 in Q. Since Q is

well-formed, it holds then for all s′ ∈ Q afterD0 σ′ : s′ 6
a
−→. But then, for all

s′ ∈ Γ (Q) afterD0 σ′ : s′
a
−→′sΓ . Therefore Γ (Q) afterD0 σ′ · a = {sΓ }, and for all

σ′′ ∈ A∗, also Γ (Q) afterD0 σ′ · a · σ′′ = {sΓ}.

Lemma 9. Let I be an input-enabled QTS and S a well-formed one. Then

I qiocoD
ε S if and only if tr(I) ⊆ tr(Γ (BD

ε (S))).

Proof.

“If”: We assume tr(I) ⊆ tr(Γ (BD
ε (S))). Let σ ∈ BD(S, ε). We have to show

that out(I afterD0 σ) ⊆D
ε out(S afterDε σ). If σ 6∈ tr(I), this is vacuously

true. Let us thus assume that σ ∈ tr(I). Then ∃o ∈ out(I afterD0 σ), and

σ ·o ∈ tr(I) and of course also {σ, σ ·o} ⊆ tr(Γ (BD
ε (S))). There is a ρ ∈ tr(S)

such that D(σ, ρ) ≤ ε, but also an o′ ∈ AO such that ρ · o′ ∈ tr(S) and
D(σ · o, ρ · o′) ≤ ε. Then o′ ∈ out(S afterDε σ) and D(o, o′) ≤ ε. Since σ was

chosen arbitrarily from BD(S, ε) (and o ∈ out(I afterD0 σ) as well), we have

I qiocoD
ε S.

“Only if”: We assume I qiocoD
ε S, and let σ ∈ tr(I). We prove by induction

over the length of σ that σ ∈ tr(Γ (BD
ε (S))). For σ = λ this is vacuously true.

Assume now that σ = σ · a ∈ tr(I) (the 6∈ tr(I) case is also vacuously true),
and assume that we have shown already that σ′ ∈ tr(Γ (BD

ε (S))). If a ∈ AI ,
then σ ∈ tr(Γ (BD

ε (S))) as well, since Γ (BD
ε (S)) is input-enabled. If a ∈ AO,

then a ∈ out(I afterD0 σ′). We have now to distinguish two cases. First, σ′ 6∈

BD(S, ε). Then S afterDε σ = ∅, which implies that Γ (BD
ε (S)) afterD0 σ =

{sΓ }. Due to the definition of the Γ -closure, sΓ
o
−→sΓ , i.e. σ ∈ tr(Γ (BD

ε (S))).
Second, σ′ ∈ BD(S, ε). Then ∃ρ′ ∈ tr(S) and o′ ∈ out(S afterDε σ′) such

that D(σ′ · o, ρ′ · o′) ≤ ε. Then also σ′ · o ∈ tr(Γ (BD
ε (S))).

Lemma 11. Let I be an input-enabled QTS and i a trace function of I. Then
tr(i) ⊆ tr(I) and

⋃

i∈TF (I) tr(i) = tr(I).

Proof. The first part follows directly from the definition and the fact that I is
input enabled. The second part follows from the fact that from each σ ∈ tr(I)
we can construct a i ∈ TF (I) such that σ ∈ tr(i).

Theorem 1. curr distDσ (s) = D(σ, {ρ | ∃s0 ∈ S0 : s0
ρ→ s}).

Proof. Proof by induction over the length of σ:
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σ = λ: For s ∈ S,

D(λ, {ρ | ∃s0 ∈ S0 : s0
ρ

−−→ s}) = inf
ρ:s0

ρ
−−→s

s0∈S0

D(λ, ρ)

=

{

⊤ if s 6∈ S0

0 otherwise,

which coincides precisely with the definition of curr distDλ .
σ = σ′·a:

curr distDσ′·a(s) = inf
s′

b
−−→s

max{curr distDσ′(s′),D(a, b)}

= inf
s′

b
−−→s

max{D(σ′, {ρ′ | ∃s0 ∈ S0 : s0
ρ′

−−→ s′}),D(a, b)}

= inf
s′

b
−−→s

max{ inf
ρ′:∃s0∈S0:s0

ρ′
−−→s′

D(σ′, ρ′),D(a, b)}

= inf
s′

b
−−→s

inf
ρ′:∃s0∈S0:s0

ρ′
−−→s′

max{D(σ′, ρ′),D(a, b)}

= inf
ρ:∃s0∈S0:s0

ρ
−−→s

D(σ, ρ)

= D(σ, {ρ | ∃s0 ∈ S0 : s0
ρ

−−→ s})
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2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002
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2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots
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2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

25



2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking
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2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code

26



2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-

grams

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,

Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modular,

Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and current programs
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