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Abstract. The use of discrete adjoints in the context of a hard time-dependent optimal
control problem is considered. Gradients required for the steepest descent method are com-
puted by code that is generated automatically by the differentiation-enabled NAGWare
Fortran compiler. Single time steps are taped using an overloading approach. The entire
evolution is reversed based on an efficient checkpointing schedule that is computed by
revolve. The feasibility of nonlinear optimization based on discrete adjoints is supported
by our numerical results.

1 Background

Controlling and optimizing flow processes is a matter of increasing importance that
includes a wide range of applications, such as drag minimization, transition control,
noise reduction, and the enhancement of mixing or combustion processes [3, 11]. The
intention of the present work is to demonstrate the suitability of an approach to optimal
control of transient flow problems based on automatic differentiation (AD) [5]. As an
example we consider the impulsive flow of a compressible viscous fluid between two
parallel walls. The objective is to determine a time dependent cooling rate that com-
pensates the heat release caused by internal friction and thus leads to a nearly constant
temperature distribution.

The flow is governed by the Navier-Stokes equations (see e.g.[17])
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or in short
∂tu = F (u) (1)

whereρ is the density,v velocity, T temperature,e= cvT + 1
2v2 total energy,p = ρRT

pressure,Rgas constant,cv = R/(γ −1) specific heat at constant volume,f body force,
q heat source, andu represents the state vector. The fluid is confined by two isothermal
walls located aty = ±a and driven by a constant body forcef = f ex. The asymptotic
solution for the caseq = 0 is given byu∞ = u(ρ∞,v∞,T∞) whereρ∞ is a constant,

v∞ =
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f 2
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andTw is the wall temperature. We remark that, alternatively,T∞ = Tw can be achieved
by choosingq = q∞ := −ηv′2∞ . In the following we assume that the heat source is given
by

q(c) = cq∞ (2)

wherec is a time-dependent control parameter.
The model problem is discretized in the truncated domainΩ = (0, l)× (−a,a) using

a discontinuous Galerkin method in space and a TVD Runge-Kutta method of order 3
in time (see [2]). The time integration is performed on the interval [0, te] with an a-priori
fixed step sizeh∈ IR resulting inn = te/h time steps. The control is distributed over the
whole time interval. For our discretization, it can be represented by a finite dimensional
vectorc∈ IRn+1, where theith component ofc acts only on the time step that transfers
the stateui ∈ IRm at timeti to the stateui+1 ∈ IRm at timeti+1 for i = 0, . . . ,n−1. Hence,
the development of the complete system for a given initial value u0 is computed by a
Runge-Kutta integration of the following form

do i = 1,n
call TVDRK(u,t,h,c)

end do

Here, the state vectoru contains the system state at timet before the call ofTVDRK(...)
and the system state at timet +h after the call ofTVDRK(...) has been completed. The
variablet is updated correspondingly.

2 Optimal Control

The mere simulation of physical systems described in Sect. 1forms even nowadays an
active research area. However, we want to go one step furtherin optimizing the transition
from an initial stateu0 to a steady state ˜u at timete. Because of physical reasons, we aim
at keeping the temperature in the whole domain close to the wall temperature, i.e., the
regularized objective function becomes

J(u,c) =
∫ te

0

∫

Ω
|T(u,c)−Tw|

2dxdt+ µ
∫ te

0
c2dt (3)

with a small penalty factorµ ∈ IR. Throughout the paper, we assume that equation (3)
admits a unique solutionu(c) for every controlc. Hence, we can derive a reduced cost
function

Ĵ(c) =
∫ te

0

∫

Ω
|T(u(c),c)−Tw|

2dxdt+ µ
∫ te

0
c2dt (4)

depending only on the controlc. For our discretization of the model problem, the eval-
uation of the objectivêJ(c) can be incorporated easily in the time integration:

obj = 0

do i = 1,n
call TVDRK(u,t,h,c,o)
obj = obj+o+mu∗ c(i)∗ c(i)

end do



Here, the time step routineTVDRK(...) computes in addition to the state transition the
integral of the temperature difference at the timet, i.e. an approximation of the inner
integral in (4). After the call, the contributions ofo and c are added to the objective
value approximating the outer integration in (4).

We want to apply a calculus-based optimization algorithm for computing an opti-
mal controlc such that (4) is minimized. For this purpose, we need at leastthe gra-
dient ∂ Ĵ(c)/∂c. Obviously, one could derive the continuous adjoint partial differential
equation belonging to (1) together with an appropriate discretization approach for the
gradient calculation. However, we want to exploit the already existing code for the state
equation as much as possible by applying AD to compute the corresponding discrete
gradient information for our discretization of the state equation.

3 Automatic Differentiation

Over the last few decades, extensive research activities have led to a thorough under-
standing and analysis of the basic modes of AD. The theoretical complexity results
obtained here are typically based on the operation count of the considered vector-valued
function. Using the forward mode of AD, one Jacobian-vectorproduct can be calculated
with an average operation count of no more than five times the operation count of the
pure function evaluation5 [5]. Similarly, one vector-Jacobian product, e.g. the gradient
of a scalar-valued component function, can be obtained using the reverse mode in its
basic form at a cost of no more than five times the operation count of the pure function
evaluation [5]. It is important to note that the latter boundis completely independent
of the number of input variables. Hence, AD provides a very efficient way to compute
exact adjoint values which form a very important ingredientfor solving optimal control
problems of the kind considered in this paper.

The AD-enabled NAGWare Fortran Compiler AD-enabled research prototypes of
the NAGWare Fortran compiler are developed as part of the CompAD project6 by the
University of Hertfordshire and RWTH Aachen University. The compiler provides for-
ward [16] and reverse modes [15] by operator overloading as well as by source trans-
formation [13] – the latter for a limited but constantly growing subset of the Fortran
language standard. Second-order adjoints can be computed by overloading the adjoint
code in forward mode as described in [14] or by generating a tangent-linear version of
the compiler-generated adjoint code in assembler format [4].

Support for operator overloading is provided through automatic type changes. All
active7 [10] program variables are redeclared ascompad type by the compiler. Run-
time support modules are included. Various further transformations are required to en-
sure semantic correctness of the resulting code. See [14] for details.

5The computational graph of the original function contains one vertex for everyelementalfunction
(arithmetic operations and intrinsic functions) with at most two incoming edges (labeled with the local par-
tial derivatives). Assuming that elemental functions are evaluated at unit cost, that local partial derivatives
are evaluated at unit cost, and that the propagation of the directional derivatives is performed at unit costs
per edge, the computational cost factor adds up to five.

6wiki.stce.rwth-aachen.de/bin/view/Projects/CompAD/WebHome
7Currently, all floating-point variables are considered to be active – thus forming a conservative over-

estimation of the set of active variables. A computational overhead depending on the size of the overestima-
tion is introduced. Static activity analysis [10] should beused to reduce the number of activated variables.
This capability is currently being added to the compiler.



In the given context the reverse mode is implemented as an interpretation of a vari-
ant of the computational graph (also referred to as thetape) that is built by overloading
the elemental functions appropriately. This solution is inspired by the approach taken
in ADOL-C [6]. The result of each elemental function is associated with a unique tape
entry. All tape entries are indexed. They store opcode8, value, adjoint value, and indices
of the corresponding arguments. The independent variablesare registered with the tape
through a special subroutine call. The tape entries of dependent variables can be ac-
cessed via the respective index stored incompad type. Their adjoint values need to
beseededby the user. Knowing the opcode of each elemental function and the values
of its arguments, local partial derivatives can be computedand used subsequently in the
reverse propagation of adjoints through the tape. By the endof the interpretive reverse
tape traversal the adjoints of the independent variables can be harvestedby the user
through accessing the corresponding tape entries.

Use of revolve We are interested in the optimization of an evolutionary process run-
ning for at leastn = 5000 time steps, each evaluating the same computational kernel
TVDRK(u, t, h, c) (see Sect. 1). Because reverse propagation of a time step re-
quires the state of the system at the end of that time step, adjoining the complete time
evolution needs the computational graph of the complete system. The adjoint propaga-
tion through the complete system implies the inversion of the order of the time steps. If
we assume that for a specific time stepi with 1≤ i ≤ n the adjoint propagation through
all subsequent time stepsn,n−1, . . . , i + 1 is already done, only the tape of time stepi
is required to propagate the adjoints through that time step. Thus the tapes of the time
steps are required in opposite order, one at a time only.

Variouscheckpointingstrategies have been developed to overcome the drawbacks of
the two most obvious techniques:STORE ALLstores the complete tape at once avoiding
any reevaluation of time steps, whereasRECOMPUTE ALLevaluatesn∗(n−1)/2 times
the computational kernelTVDRK from the program’s inputs. Checkpointing strategies
use a small number of memory units (checkpoints) to store states of the system at distinct
time steps. The computational complexity will be reduced dramatically in comparison
to RECOMPUTE ALLby starting the recomputation of other required states fromthe
checkpoints (see Fig. 2).

A simple checkpointing is called windowing in the PDE-related literature (see [1]).
Here, the checkpointing strategy is based on a uniform distribution of checkpoints. How-
ever, for a fixed number of checkpoints there exists an upper bound on the number of
time steps whose adjoint can be calculated. More advanced checkpointing strategies, as
e.g., the binary checkpointing approach [12], had been proposed in the literature. How-
ever, only the binomial checkpointing strategy yields a provable optimal, i.e. minimal,
amount of recomputations ([8],[7]). A detailed comparisonof different checkpointing
strategies can be found in [19]. The binomial checkpointingapproach is implemented
in the C++ packagerevolve [7].

If the number of time steps performed during the integrationof the state equation
is known a-priori, one can compute (optimal) binomial checkpointing schedules in ad-
vance to achieve for a given number of checkpoints an optimal, i.e. minimal, runtime
increase [7]. This procedure is referred to as offline checkpointing and implemented in
the C++ packagerevolve [7]. We use a C-wrapperwrap revolve(..., intmode, ...) to
call the relevant library routine from within the Fortran 90code. Therein an instance

8A unique number representing the type of the elemental function (e.g., addition, sine, . . . )



t of class Revolve is created whose membert → revolve(...,mode, ...) returns the inte-
germode that is used for steering the reversal of the time-stepping loop. Its value is a
function of the total number of loop iterations performed and the number of checkpoints
used in the reversal scheme. The following five modes are possible.

1. mode == TAKESNAPSHOT: A checkpoint is stored allowing for numerically cor-
rect out-of-context (no evaluations of prior loop iterations) evaluation of the remain-
ing loop iterations.

2. mode == RESTORESNAPSHOT: A previously stored checkpoint is restored to
restart the computation from the current time step.

3. mode == ADVANCE: Run a given number of time steps (this number is computed
by wrap revolve(...) alongside withmode) from the last restored checkpoint.

4. mode == FIRSTTURN: Compute the adjoint of the last time step, that is, generate
a tape for the last time step and call the tape interpreter after initializing the adjoint
of the objective (our sole dependent variable) with one.

5. mode == TURN: Compute the adjoint of a single (not the last one) time step,sim-
ilarly to the previous case. The correct communication of the adjoints computed by
interpretation of the tape of the following time step (tapei+1) into that of the current
one (tapei) needs to be taken care of.

The two special modesTERMINATE and ERROR indicate success or failure of the
adjoint computation.

More specifically, our time step consists of a single call to the time-integration rou-
tine TVDRK(u,t,h,c,o) followed by incrementing the objectiveob j = Ĵ(c) ∈ IR by
o∈ IR and the appropriate weighted component ofc∈ IRn as described in Sect. 2. Fur-
ther arguments of the called subroutine are the state vectoru∈ R4×m, wherem= 72 is
the number of grid points, the current timet ∈ IR, the size of a single time steph∈ IR,
and the control vectorc∈ IRn with the following i/o pattern

TVDRK(
↓
u
↓
,
↓
t
↓
,
↓

h,
↓
c, o

↓
) .

Overset down-arrows mark inputs. Outputs are marked by underset down-arrows. Any
single checkpoint consists ofu, t, andob j. The corresponding adjoints ofu, t andob j
need to be communicated fromtapei+1 to tapei .

4 Numerical Results. Conclusion. Outlook

From a theoretical point of view, the optimization problem is easily solved just by set-
ting the control to unity. In practice, however, the situation is not trivial when starting
the iteration process with zero control. Because the initial contribution to the objective
is always zero (or very small) implied by the initial conditions and the explicit time
integration, it is difficult (if possible) for a gradient-based method to adjust the control
parameter correctly. As a consequence a (temperature) perturbation develops, which re-
sults in an unavoidable increase in the objective until a newequilibrium is established.

For our numerical tests, we computed for 5000 time steps in advance the velocity
and the temperature for the controlq equal to one. We refer to this setting as the un-
perturbed situation. For the optimization task, we considered the following perturbed
situation: We took the velocity and temperature obtained for q(t) ≡ 1 as initial state but
set the current control equal to zero. That is, our initial value for the control isq0(t)≡ 0.
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Fig. 1. Development of the values of the control vector: Substantial changes can be observed during the
first 100 optimization steps. A good approximation to the asymptotically expected solution(1, . . . ,1)T is
obtained after 1270 steps. Only the first 80% of the control vector are modified.

state space dimension 288 time steps 5000
independent variables 5000 dependent variables 1

size of a tape entry 36 Byte tape size per time step 12 MB
STORE ALLwould need 60 GB

variables in checkpoint 288 + 1 size of a checkpoint 2.3 KB
number of checkpoints 400 memory for checkpoints 920 KB

Recomputations per optimization step:
revolve 9.598 RECOMPUTE ALL 12.497.500

Line-search, function evaluations:
total ≈ 15600 average per iteration 12.3
minimum 4 maximum 16

Line-search, step length:

average 3.33 · 10−3

minimum 3.05 · 10−5 maximum 0.125

Fig. 2.Test Case Characteristics. The state vectorU consists of 288 elements. A checkpoint consists of the
stateU and the value of the objective function.
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Fig. 3.Development of the value of the objective function over 1270optimization steps.Outer figure: The
most substantial advances are made during the first 100 optimization steps. The gap in the logged data
between step 450 and 930 is caused by a technical problem (disc space quota exceeded). The computation
itself ran uninterrupted with logging resumed after 930 optimization steps. Gradual improvement can be
observed throughout the (logged) optimization process.Inner figure : During the last 300 out of 1270 steps
a continuous (but rather small) improvement of the value of the objective function can be observed.
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Hence, we start the optimization with a severely disturbed system yielding the objective
value 134 and a comparatively high norm of the gradient‖∇q‖ ≈ 4303. Refer to Fig. 2
for further characteristics of this test case.

As the optimization algorithm we apply a simple steepest descent method with back-
tracking as line search to determine the step size. Because of the chosen discretization
the last components of the control have either no or only verysmall influence on the
objective. Therefore, we perform the optimization only forthe first 80 % of the consid-
ered time interval as illustrated in Fig. 1. This approach can be interpreted as steering
the process over a certain time horizon with a second time interval where the system can
converge to a certain state. Using this simplification, the objective could be reduced to
10.346, i.e., a value less than 10.560, which was obtained for the unperturbed situation.
The development of the value of the objective is shown graphically in Fig. 3. Because
we are interested in the overall performance of the optimization, we do not enforce a
strong termination criterion. As can be seen also from the inner figures of Fig. 3 and
Fig.4, the development of the objective and the norm of the gradient show a typical be-
havior as expected for a simple steepest descent method. After 1270 gradient steps, the
optimization yields a recovery strategy for the perturbed system. Caused by the severe
disturbance of the system, the norm of the gradient in the last optimizations steps is
considerably reduced compared to the starting point, but not equal to or very close to
zero. See Fig. 4 for illustration.

Nevertheless, the numerical results show that AD-based optimization is feasible for
such complicated optimization tasks. Future work will be dedicated to the usage of
higher-order derivatives in the context of more sophisticated optimization algorithms.
Here, one has to distinguish time-dependent problems as ourmodel example and pseudo-
time-dependent methods frequently used for example in aerodynamics. To this end, the
currently used derivative calculation will be adapted for the usage in so-called SAND
methods or one-shot approaches depending on the problem at hand [9]. Furthermore,
our example will be adapted to more realistic scenarios as for example a plasma spray-
ing problem.

The NAGWare compiler’s capabilities to generate adjoint code (as opposed to chang-
ing the types of all floating-point variables and using operator overloading for the gen-
eration of a tape) will be enhanced to be able to handle the full code. All these measures
in addition to the exploitation of internal structure of theproblem [18] are expected to
result in a considerably decreased overall runtime. We expect savings of at least a factor
of 50 driving the current runtime of 2 weeks on a state-of-the-art PC down to a couple
of hours.
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