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Abstract. The use of discrete adjoints in the context of a hard timesddpnt optimal
control problem is considered. Gradients required for theest descent method are com-
puted by code that is generated automatically by the difteaton-enabled NAGWare
Fortran compiler. Single time steps are taped using an aaging approach. The entire
evolution is reversed based on an efficient checkpointifgedigle that is computed by
r evol ve. The feasibility of nonlinear optimization based on diser&djoints is supported
by our numerical results.

1 Background

Controlling and optimizing flow processes is a matter of éaging importance that
includes a wide range of applications, such as drag mintimizatransition control,
noise reduction, and the enhancement of mixing or combugtiocesses [3, 11]. The
intention of the present work is to demonstrate the suitgtwf an approach to optimal
control of transient flow problems based on automatic diffiiation (AD) [5]. As an
example we consider the impulsive flow of a compressibleouisdluid between two
parallel walls. The objective is to determine a time depahdeoling rate that com-
pensates the heat release caused by internal friction asddahds to a nearly constant
temperature distribution.
The flow is governed by the Navier-Stokes equations (seg¢le].
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du=7(u) (1)

wherep is the densityy velocity, T temperaturee = ¢, T + %vz total energyp= pRT
pressureR gas constant, = R/(y— 1) specific heat at constant volunmiepody force,
g heat source, andrepresents the state vector. The fluid is confined by two ésothl
walls located ay = +a and driven by a constant body forde= fex. The asymptotic
solution for the casgq = 0 is given byu, = U(pw, Ve, Tw) Wherep,, is a constant,
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andT,, is the wall temperature. We remark that, alternativély= T,, can be achieved
by choosingy = . := —nV2. In the following we assume that the heat source is given
by

q(c) = cok 2

wherec is a time-dependent control parameter.

The model problem is discretized in the truncated dongair (0,1) x (—a,a) using
a discontinuous Galerkin method in space and a TVD Rungé&HKuéthod of order 3
in time (see [2]). The time integration is performed on therwal [0, te] with an a-priori
fixed step sizédn € R resulting inn = to/h time steps. The control is distributed over the
whole time interval. For our discretization, it can be reyarged by a finite dimensional
vectorc € R™1, where thdéth component ot acts only on the time step that transfers
the statay, € R™ at timet; to the statey ; € R™at timet;j, 1 fori =0,...,n— 1. Hence,
the development of the complete system for a given inititlerap is computed by a
Runge-Kutta integration of the following form

doi=1,n
call TVDRK(u,t, h,c)
end do

Here, the state vectarcontains the system state at titigefore the call of VDRK(...)
and the system state at tirhe h after the call ofTVDRK(...) has been completed. The
variablet is updated correspondingly.

2 Optimal Control

The mere simulation of physical systems described in Sdormis even nowadays an
active research area. However, we want to go one step funtbptimizing the transition
from an initial statauy to a steady statedt timet.. Because of physical reasons, we aim
at keeping the temperature in the whole domain close to tigtevaperature, i.e., the
regularized objective function becomes

te te
I(uc) = /O /Q IT(U,€) — T 2dxdt+ /0 2dt 3)

with a small penalty factop € R. Throughout the paper, we assume that equation (3)
admits a unique solution(c) for every controlc. Hence, we can derive a reduced cost
function

Je) = /O te./Q IT(U(C), €) — Tw|2dxdt+ 1 /o © 2t )

depending only on the control For our discretization of the model problem, the eval-

uation of the objectivd(c) can be incorporated easily in the time integration:

obj=0
doi=1,n

call TVDRK(u,t,h,c,0)

obj = obj+ o+ muxc(i) *c(i)
end do



Here, the time step routinEVDRK(...) computes in addition to the state transition the
integral of the temperature difference at the timee. an approximation of the inner
integral in (4). After the call, the contributions ofand c are added to the objective
value approximating the outer integration in (4).

We want to apply a calculus-based optimization algorithmcfamputing an opti-
mal controlc such that (4) is minimized. For this purpose, we need at lesgra-
dientdJ(c)/dc. Obviously, one could derive the continuous adjoint phditierential
equation belonging to (1) together with an appropriaterdistation approach for the
gradient calculation. However, we want to exploit the adgeaxisting code for the state
equation as much as possible by applying AD to compute thegoonding discrete
gradient information for our discretization of the stateaipn.

3 Automatic Differentiation

Over the last few decades, extensive research activities lled to a thorough under-
standing and analysis of the basic modes of AD. The theatetiemplexity results
obtained here are typically based on the operation couhieofdnsidered vector-valued
function. Using the forward mode of AD, one Jacobian-veptoduct can be calculated
with an average operation count of no more than five times preeation count of the
pure function evaluatiof [5]. Similarly, one vector-Jacobian product, e.g. the gratl
of a scalar-valued component function, can be obtainedyutia reverse mode in its
basic form at a cost of no more than five times the operationtooiuthe pure function
evaluation [5]. It is important to note that the latter bouadtompletely independent
of the number of input variables. Hence, AD provides a vefigieht way to compute
exact adjoint values which form a very important ingredi@ntsolving optimal control
problems of the kind considered in this paper.

The AD-enabled NAGWare Fortran Compiler AD-enabled research prototypes of
the NAGWare Fortran compiler are developed as part of the g@dnprojecf by the
University of Hertfordshire and RWTH Aachen University.efbompiler provides for-
ward [16] and reverse modes [15] by operator overloading elsag by source trans-
formation [13] — the latter for a limited but constantly griogy subset of the Fortran
language standard. Second-order adjoints can be compyutededoading the adjoint
code in forward mode as described in [14] or by generatingngaiat-linear version of
the compiler-generated adjoint code in assembler formjat [4

Support for operator overloading is provided through auwatiiertype changes. All
active/ [10] program variables are redeclaredcasypad_t ype by the compiler. Run-
time support modules are included. Various further traimsé&dions are required to en-
sure semantic correctness of the resulting code. See [dLdEfails.

5The computational graph of the original function containg wertex for everyelementaffunction
(arithmetic operations and intrinsic functions) with atshtwo incoming edges (labeled with the local par-
tial derivatives). Assuming that elemental functions arw@ated at unit cost, that local partial derivatives
are evaluated at unit cost, and that the propagation of tieetiinal derivatives is performed at unit costs
per edge, the computational cost factor adds up to five.
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“Currently, all floating-point variables are considered écalstive — thus forming a conservative over-
estimation of the set of active variables. A computatiowarbead depending on the size of the overestima-
tion is introduced. Static activity analysis [10] shouldused to reduce the number of activated variables.
This capability is currently being added to the compiler.



In the given context the reverse mode is implemented as arpietation of a vari-
ant of the computational graph (also referred to addpe) that is built by overloading
the elemental functions appropriately. This solution spired by the approach taken
in ADOL-C [6]. The result of each elemental function is asatexd with a unique tape
entry. All tape entries are indexed. They store op&pudalue, adjoint value, and indices
of the corresponding arguments. The independent variabbegegistered with the tape
through a special subroutine call. The tape entries of dig@nvariables can be ac-
cessed via the respective index stored @mpad_t ype. Their adjoint values need to
be seededyy the user. Knowing the opcode of each elemental functiahthe values
of its arguments, local partial derivatives can be compatatiused subsequently in the
reverse propagation of adjoints through the tape. By theoérige interpretive reverse
tape traversal the adjoints of the independent variablasbedharvestedby the user
through accessing the corresponding tape entries.

Use ofrevolve We are interested in the optimization of an evolutionarycpss run-
ning for at leasin = 5000 time steps, each evaluating the same computationag¢lker
TVDRK(u, t, h, c) (see Sect. 1). Because reverse propagation of a time step re-
quires the state of the system at the end of that time stepinauj the complete time
evolution needs the computational graph of the completsysThe adjoint propaga-
tion through the complete system implies the inversion efdtder of the time steps. If
we assume that for a specific time stepith 1 <i < n the adjoint propagation through
all subsequent time stepsn—1,...,i+ 1 is already done, only the tape of time step
is required to propagate the adjoints through that time. Sibps the tapes of the time
steps are required in opposite order, one at a time only.

Variouscheckpointingstrategies have been developed to overcome the drawbacks of
the two most obvious techniqueSTORE AlLlstores the complete tape at once avoiding
any reevaluation of time steps, wher€&SCOMPUTE ALlevaluatesix (n—1)/2 times
the computational kerndlVDRK from the program'’s inputs. Checkpointing strategies
use a small number of memory units (checkpoints) to stotestd the system at distinct
time steps. The computational complexity will be reduceahthtically in comparison
to RECOMPUTE ALLby starting the recomputation of other required states ftioen
checkpoints (see Fig. 2).

A simple checkpointing is called windowing in the PDE-rel&titerature (see [1]).
Here, the checkpointing strategy is based on a uniformiloligion of checkpoints. How-
ever, for a fixed number of checkpoints there exists an uppendb on the number of
time steps whose adjoint can be calculated. More advaneazkphinting strategies, as
e.g., the binary checkpointing approach [12], had beenqs®gh in the literature. How-
ever, only the binomial checkpointing strategy yields avalide optimal, i.e. minimal,
amount of recomputations ([8],[7]). A detailed comparisdrdifferent checkpointing
strategies can be found in [19]. The binomial checkpoinapgroach is implemented
in the C++ packageevol ve [7].

If the number of time steps performed during the integratibthe state equation
is known a-priori, one can compute (optimal) binomial chmmikting schedules in ad-
vance to achieve for a given number of checkpoints an optingalminimal, runtime
increase [7]. This procedure is referred to as offline cherkmg and implemented in
the C++ packageevol ve [7]. We use a C-wrappekrap_revolve(...,intmode,...) to
call the relevant library routine from within the Fortran 80de. Therein an instance

8A unique number representing the type of the elemental fomge.g., addition, sine, .. .)



t of class Revolve is created whose member— revolve(...,mode, ...) returns the inte-

germode that is used for steering the reversal of the time-stepmog.|Its value is a

function of the total number of loop iterations performed #me number of checkpoints
used in the reversal scheme. The following five modes arelpess

1. mode == TAKESNAPSHOT: A checkpoint is stored allowing for numerically cor-
rect out-of-context (no evaluations of prior loop iterasd evaluation of the remain-
ing loop iterations.

2. mode == RESTORESNAPSHOT: A previously stored checkpoint is restored to
restart the computation from the current time step.

3. mode == ADVANCE: Run a given number of time steps (this number is computed
by wrap_revolve(...) alongside withmode) from the last restored checkpoint.

4. mode == FIRSTTURN: Compute the adjoint of the last time step, that is, generate
a tape for the last time step and call the tape interpreter gtffitializing the adjoint
of the objective (our sole dependent variable) with one.

5. mode == TURN: Compute the adjoint of a single (not the last one) time stip;
ilarly to the previous case. The correct communication efalljoints computed by
interpretation of the tape of the following time steagg, ;) into that of the current
one tape) needs to be taken care of.

The two special mode$ERMINATE and ERROR indicate success or failure of the
adjoint computation.

More specifically, our time step consists of a single calhitime-integration rou-
tine TVDRK(u,t,h,c,0) followed by incrementing the objectivebj = J(c) € R by
o € R and the appropriate weighted component &f R" as described in Sect. 2. Fur-
ther arguments of the called subroutine are the state vaed®*™, wherem= 72 is
the number of grid points, the current time R, the size of a single time stdpe R,
and the control vectar € R" with the following i/o pattern

]
TVDRK(u, E, h, ¢, (l))

— O

Overset down-arrows mark inputs. Outputs are marked byrsatddown-arrows. Any
single checkpoint consists af t, andobj. The corresponding adjoints af t andobj
need to be communicated frai@pg, ; to tape.

4 Numerical Results. Conclusion. Outlook

From a theoretical point of view, the optimization problesreasily solved just by set-
ting the control to unity. In practice, however, the sitaatis not trivial when starting
the iteration process with zero control. Because the Irgbatribution to the objective
is always zero (or very small) implied by the initial condits and the explicit time
integration, it is difficult (if possible) for a gradient-ed method to adjust the control
parameter correctly. As a consequence a (temperaturelyipation develops, which re-
sults in an unavoidable increase in the objective until a eguilibrium is established.
For our numerical tests, we computed for 5000 time steps varazk the velocity
and the temperature for the contpkequal to one. We refer to this setting as the un-
perturbed situation. For the optimization task, we comnsidehe following perturbed
situation: We took the velocity and temperature obtainedjft) = 1 as initial state but
set the current control equal to zero. That is, our initidigdor the control igj(t) = 0.
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Fig. 1. Development of the values of the control vector: Substantianges can be observed during the
first 100 optimization steps. A good approximation to thengstptically expected solutioft,...,1)T is
obtained after 1270 steps. Only the first 80% of the controtareare modified.

state space dimensiory 288 || time steps 5000
independent variables 5000 || dependent variables 1
size of a tape entry 36 Byte || tape size per time step 12 MB
STORE ALlwould need 60 GB

variables in checkpoint 288 + 1 || size of a checkpoint 2.3KB
number of checkpoints 400 (| memory for checkpoints 920 KB
Recomputations per optimization step:

revol ve | 9.598 || RECOMPUTE ALL| 12.497.500
Line-search, function evaluations:

total ~ 15600 average per iteration 12.3

minimum 4 maximum 16
Line-search, step length:

average 3.33.10°3

minimum 3.05-10°° maximum 0.125

Fig. 2. Test Case Characteristics. The state vedtopnsists of 288 elements. A checkpoint consists of the
stateU and the value of the objective function.
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Fig. 3. Development of the value of the objective function over 18@mization steputer figure: The
most substantial advances are made during the first 100 iaption steps. The gap in the logged data
between step 450 and 930 is caused by a technical problemsfohi€e quota exceeded). The computation
itself ran uninterrupted with logging resumed after 930rofation steps. Gradual improvement can be
observed throughout the (logged) optimization prockseer figure : During the last 300 out of 1270 steps
a continuous (but rather small) improvement of the valuénefdbjective function can be observed.
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Fig. 4. Development of the value of the-norm of the gradient over 1270 optimization st€psger figure:
The value is reduced significantly from over 4000 down to thas 2.75Inner figure: Over the last 300
out of 1270 optimization steps we observe significant chaungthe value of the norm of the gradient even
at this later stage of the optimization process. Neverfisela reduction of the objective is obtained.
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Fig. 5. Development of the value of the objective function (uppeurf&) and gradient (lower figure) over
5000 time steps.



Hence, we start the optimization with a severely disturlyestiesn yielding the objective
value 134 and a comparatively high norm of the gradjem|| ~ 4303. Refer to Fig. 2
for further characteristics of this test case.

As the optimization algorithm we apply a simple steepestel@smethod with back-
tracking as line search to determine the step size. Becdube ohosen discretization
the last components of the control have either no or only gemgll influence on the
objective. Therefore, we perform the optimization only tloe first 80 % of the consid-
ered time interval as illustrated in Fig. 1. This approach lba interpreted as steering
the process over a certain time horizon with a second tineeviat where the system can
converge to a certain state. Using this simplification, thigctive could be reduced to
10.346, i.e., a value less than 10.560, which was obtainetthéounperturbed situation.
The development of the value of the objective is shown gighlyi in Fig. 3. Because
we are interested in the overall performance of the optitiirawe do not enforce a
strong termination criterion. As can be seen also from theridigures of Fig. 3 and
Fig.4, the development of the objective and the norm of tlaglignt show a typical be-
havior as expected for a simple steepest descent methaat. X470 gradient steps, the
optimization yields a recovery strategy for the perturbgstem. Caused by the severe
disturbance of the system, the norm of the gradient in thiedpsmizations steps is
considerably reduced compared to the starting point, bueqoal to or very close to
zero. See Fig. 4 for illustration.

Nevertheless, the numerical results show that AD-baseathizattion is feasible for
such complicated optimization tasks. Future work will belidated to the usage of
higher-order derivatives in the context of more sophiséideoptimization algorithms.
Here, one has to distinguish time-dependent problems asodel example and pseudo-
time-dependent methods frequently used for example irdgiaeomics. To this end, the
currently used derivative calculation will be adapted fog tisage in so-called SAND
methods or one-shot approaches depending on the probleamdt[8]. Furthermore,
our example will be adapted to more realistic scenarios rasxample a plasma spray-
ing problem.

The NAGWare compiler’s capabilities to generate adjoimtec(as opposed to chang-
ing the types of all floating-point variables and using opmraverloading for the gen-
eration of a tape) will be enhanced to be able to handle thedde. All these measures
in addition to the exploitation of internal structure of f@blem [18] are expected to
result in a considerably decreased overall runtime. Weabgaings of at least a factor
of 50 driving the current runtime of 2 weeks on a state-ofdhePC down to a couple
of hours.
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