
Aachen
Department of Computer Science

Technical Report

Temporal Assertions for Sequential and Con-
current Programs

Volker Stolz

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2007-15

RWTH Aachen · Department of Computer Science · August 2007

The publications of the Department of Computer Science of RWTH Aachen (Aachen
University of Technology) are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

http://aib.informatik.rwth-aachen.de/

Temporal Assertions for Sequential and
Concurrent Programs

Von der Fakultät für Mathematik, Informatik und

Naturwissenschaften der Rheinisch-Westfälischen

Technischen Hochschule Aachen zur Erlangung des

akademischen Grades eines Doktors der

Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker

Volker Stolz

aus

Würselen

Berichter: Prof. em. Dr. Klaus Indermark

Prof. Bernd Finkbeiner, Ph. D.

Tag der mündlichen Prüfung: 20.7.2006

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

Temporal Assertions for Sequential and
Concurrent Programs

Dipl.-Inform. Volker Stolz

Abstract

In this thesis, we present an extension to the well-known concept of assertions:

temporal assertions allow the specification and validation of modal safety properties

of an application at runtime. We see this as a necessary step in enforcing the growing

number of implicit requirements of software specifications, which are often only

informally defined in the documentation of application program interfaces (API)

and are beyond the reach of type checkers, compilers, or model checkers. Also, we

show how our techniques can be applied to existing programs without modifying

the source code. Although, like assertions, our approach cannot prove the absence

of errors, it gives the programmer a more powerful means of automatically checking

assumptions about his program at runtime.

It can also be used to look for behaviour that indicates the potential for problems,

that is, that might be used to predict future errors. An example is the Lock-order

Reversal pattern which indicates a potential deadlock in a concurrent program.

Our parametrised propositions approach gives us a convenient way to handle dy-

namic systems: in real-world programs, almost always dynamic data is used, for

example, new objects are instantiated, or new threads created. While there is al-

ready a plethora of work on checking some properties of those systems, they are

usually concerned with the boundedness of the number of resources, and not nec-

essarily with the interaction of those objects. Especially, they are often limited to

either non-recursive examples or some coarse finite abstraction.

Propositions in our practical examples are certain events which we can observe in

the execution of a program: method invocation with caller/callee and arguments,

object attribute access, or actions related to concurrency.

If we have a property which has to be checked on a per-object basis (that is,

instantiated for each object or set of objects), our template mechanism dynamically

instantiates a given formula based on observers, so-called existence predicates. In

a static approach, this would have to be solved by generating all instances of the

property beforehand and checking each of them against the model, leading again to

a finitary abstraction.

As application, we see two kinds of properties: firstly, properties over the universal

behaviour of data structures. For example, it universally holds that a pop from a

stack should not be performed unless something has actually been pushed onto

it. Data structures and their respective functionality are usually accumulated in

libraries. Thus, a test facility implemented in the library should be available to any

application using it. Furthermore, the corresponding formula can be used very much

like a design pattern from Software Engineering and new implementations of some

previously specified behaviour can be checked against the temporal specification of

the pattern.

Secondly, there are application specific properties. These can be based, for exam-

ple, on the specification that defined the application. Or they can be derived from

informal requirements, stated in the documentation. Rather than being invariants

of a structure like above, they may not be evident and need to be “developed”

as much as the source code for the application has to be developed. As a lot of

current research also focuses on documenting and enforcing such specifications, we

later comment on the necessity and advantages of storing such semantic annotations

about the application in a machine-readable format.

Naturally, the additional level of possible checks comes at a penalty: runtime

overhead. In the most general case, for every event, the set of affected state ma-

chines (the automaton-based representation of the property) must be determined.

This also includes possibly instantiating new ones. Then, in each machine, a state

transition must be triggered. As the underlying framework of our mechanism is

based on alternating finite automata, we already incur an exponential blow-up in

the size of the automaton when moving to nondeterministic automata. The addi-

tional determinisation of said nondeterministic automata will make this approach

infeasible in practice.

Instead, we will resolve the nondeterminism at runtime at the cost of performance:

after statically generating an alternating finite automaton from the formula and

eventually pre-calculating the (nondeterministic) outgoing edges for each state, we

use a breadth-first approach over the branches for checking the acceptance condition

of the input. We will see that this solution has double-exponential overhead, but

we still consider it as a useful tool, since the average behaviour might prove not to

be as harsh as this complexity might suggest. Also, using our algorithm offline, on

a recorded trace, is an option that does not slow down the actual application.

Practical examples from object-based and concurrent programs written in Haskell,

C, and Java underline the general usefulness of the approach. A proof-of-concept

prototype developed in Java confirmed the practicality of our approach.

Acknowledgments

My sincerest thanks go to my supervisor Prof. Dr. Klaus Indermark, who
gave me the opportunity as a teaching and research assistant to find my
bearings in a rapidly advancing scientific world. His rigorous lectures on
subjects that elsewhere are only taught as practical courses will sorely
be missed.

I thank Prof. Bernd Finkbeiner, Ph. D., for kindly agreeing to be a
member on the examination board.

I am indebted to Prof. Dr. Ir. Joost-Pieter Katoen, who, after taking over
I2, provided unquestioned infrastructural support until this thesis could
be finished and whose activism provided many additional last-minute
insights into formal methods.

Both old and new colleagues at I2 formed an amiable group that made
our department a pleasurable place to work on a day to day basis. I shall
miss the friendly environment and their helpful contributions.

As for my office mate and invaluable friend Dr. Michael Weber, his suf-
fering for (willingly or unwillingly) participating in my research and soft-
ware development should not be underestimated. Thank you!

Finally, I also thank my friends in Aachen and abroad, for all their advice
and making sure that there is in fact life outside of The Thesis.

Volker Stolz
Aachen, May 2006

Contents

1 Introduction 1
1.1 Runtime Verification . 1
1.2 Model Checking . 3
1.3 Temporal Assertions . 4
1.4 Outline . 6

2 Reasoning about Programs 7
2.1 Properties of Programs . 7
2.2 An Object-based Programming Language 9
2.3 Execution Semantics . 13
2.4 Static Analysis . 17
2.5 Assertions . 19
2.6 Extension to Concurrency . 19
2.7 Obtaining a Trace Model . 23

3 Parametrised LTL Formulae 27
3.1 LTL . 27
3.2 Extension to Parametrised Propositions and their Semantics 30

3.2.1 Variables and their Domains 33
3.2.2 Parametrised Propositions . 35
3.2.3 Negation in pLTL . 44

3.3 Predicates . 47
3.4 Translating LTL Formulae into Alternating Finite Automata 50
3.5 Parametrised Automaton Construction 56

3.5.1 Handling Quantified Propositions 56
3.5.2 Parametrised Automaton . 60

3.6 Alternative Approaches . 73

4 Evaluating Parametrised Formulae at Runtime 77
4.1 Trace Extraction . 77
4.2 Example: Lock-order Reversal . 80

5 Applications and Implementations 87
5.1 General Remarks . 87
5.2 Runtime Verification of Concurrent Haskell Programs 89
5.3 C programs and compiled programs 92

ii Contents

5.4 Instrumenting Java programs . 96
5.5 Using Metadata to Record Semantic Wisdom 99

6 Conclusion 101
6.1 Related Work . 101
6.2 Summary . 107

1 Introduction

Assertions are a common feature of modern programming languages. They test
assumptions about the program state at specific locations in the source code. An
assertion contains a Boolean expression that should be true if execution is to pro-
ceed. If the expression is not true at runtime, the system will throw an error. Thus,
an assertion confirms the programmers’ assumption about the behaviour of the pro-
gram, increasing confidence that the program is free of errors or at least terminates
with an error description instead of returning incorrect results.

As assertions are tied to a specific source code location, they are only verified if
execution reaches this point. Common usages for assertions are, for example, tests
on the integrity of data structures by checking for null pointers, or out-of-bounds
indices.

Some interesting properties of programs however are not limited to a specific
location, but rather involve sequences of program points that must not occur. For
example, the property that a file must not be used after it has been closed already
involves two such locations (unless some state about the file is available). We call
such properties spanning more than one source code location Temporal Assertions.

An advantage would be if the occurrence of such a sequence of locations was stati-
cally decidable. Unfortunately, for non-trivial programs this is not even decidable for
a single source location under a specific variable assignment. With static techniques
like abstract interpretation and model checking usually only an over-approximation
can be computed, giving rise to false positives if the abstraction is to coarse. But
still, at runtime, Temporal Assertions can be checked, and appropriate action be
taken, like for plain assertions.

In this thesis, we present an extension to the well-known concept of assertions:
temporal assertions allow the specification and validation of modal properties of an
application at runtime. We see this as a necessary step in enforcing the growing
number of implicit requirements of software specifications, which are often only
informally defined in the documentation of application program interfaces (API)
and are beyond the reach of type checkers, compilers, or model checkers. Also, we
show how our techniques can be applied to existing programs without modifying the
source code.

1.1 Runtime Verification

Our framework was developed in the context of Runtime Verification (for the work-
shop series see [72, 73, 112, 76]). Runtime Verification is about monitoring, analysing,

2 Chapter 1. Introduction

and guiding the execution of programs, and especially interested in whether formal
techniques can be applied at the runtime of a program to improve monitoring tech-
niques such as (performance) monitoring, or distributed debugging.

Another focus is on runtime application of formal methods as a viable complement
to the traditional methods that try to prove programs to be correct before their
execution, such as model checking and theorem proving.

In dynamic program analysis, data is recorded during the execution of a program
to subject it to analysis with regard to properties about the program. Often this
has a severe impact on performance and is usually only applied in the development
phase of a program. It can also be applied conditionally to investigate only certain
behaviour.

Finding a specification language and suitable semantics for properties goes hand
in hand with operational constraints, such as, what kind of trace data can sensibly
be generated and reasoned about. Often this will be a formal model where singleton
events indicate state transitions in the program. Also, the underlying logic may
be closely interwoven with an operational semantics since it may require additional
evaluation of predicates in the context of the application. Or the program semantics
may be independent from the trace semantics, so that offline analysis on a recorded
trace is possible. As a trace is a sequence of events or sets of propositions, most
formal models use some temporal logic which often has its origin in model checking,
like the Linear Time Logic LTL.

Traces are usually obtained through program instrumentation, that is, an existing
program, either in source code format or as a compiled executable, must be adapted
to generate the relevant data.

This thesis covers the concepts above in varying depths. An additional field of
investigation which is out of the scope of our work is program guidance, where based
on (intermediate) analysis results, the program is directed to, for example, paths
which might be prone to violate the specification. In a multi-threaded system, the
process scheduler could be of use to produce a certain behaviour by following a
certain strategy when choosing the next thread to execute.

For us, an error message and a witness, that is, (a part of) the trace up to the
position where a violation occurred are sufficient. A related topic is contributing
behaviour, that is, specifying an action that is to be executed when dynamic analysis
detects a failure. Techniques for this range from simply raising an exception to
gracefully handling the problem.

In the last five years, popularity of Runtime Verification tools has surged due to
the success of some initial prototypes. These tools have been refined to be more
efficient and designed in a modular way to support input from various sources and
intermediate representations so that different (temporal) formalisms can be imple-
mented on a single back end. This has been pursued by the MaC framework [88] or
the expressively rich and efficiently monitorable EAGLE logic [13].

Automata-based techniques have also been used recently in the Intrusion Detec-
tion System ORCHIDS [100]. MONID [97] is an Intrusion Detections System that
uses the EAGLE logic to check safety formulae of known attack patterns.

1.2. Model Checking 3

Why Runtime Verification? On a first glance, if we have model checking or other
static analysis tools being able to verify important properties about a program, why
should we have to implement checks at runtime?

Unfortunately, for real-world applications written in real-world programming lan-
guages like Java or C, static verification still poses some fundamental problems:
the reachability of a specific line of code somewhere in the program in a concrete
run is only a semi-decidable property. In many cases, an over-approximation gives
adequate results. For example, the flow graph of a program is decidable, but also
contains paths which cannot actually occur in a concrete run (see Section 2.4). With
respect to verification, every such path might thus trigger a false positive, that is,
the property at hand to check might indeed not hold on a path in the model, but
this does not matter if the path is never taken by an actual execution. Nevertheless,
the tool doing the verification would have to emit a warning to the user who has to
decide whether it is significant.

In practice, such warnings occur very often, for example, the static C checker
Splint [51, 50] literally spews forth warnings on a plain program. To get rid of the
warnings, either the code has to be modified, or the source has to be enriched with
annotations to provide more information to the checker. In fact, it is recommended
practice to iterate the process of running Splint and annotating the code until all
warnings are fixed and possible errors flushed out. Due to the general undecidability
of static program analysis, there will always be a remainder of warnings that cannot
be eliminated.

The authors admit that annotating code is in fact the greatest obstacle to adoption
of their checker. This holds especially true for legacy code, both in the form of
libraries or applications. Clearly, getting spurious warnings that have to be sorted
out is not a desirable feature, although in practice, a certain number of false positives
can surely by acceptable.

Static verification is marketed with apparent success by Coverity, a Stanford Uni-
versity spin-off [47], despite also suffering from spurious warnings if no additional
annotations to the program are provided.

The properties we are interested in in this thesis depend on both the control flow
of the application and the values of program variables. This includes, for example,
object references in the form of arguments to method invocations (which object
invokes some method), or primitives for concurrency control, like thread identifiers
and semaphores (which lock is taken).

1.2 Model Checking

Naturally we are interested in whether such properties can be determined statically.
This could be achieved through model checking, a verification technique that ex-
plores all possible system states. It can be applied to both hardware and software if
an appropriate model for the system can be derived. Its origins go back to indepen-
dent research by Clarke and Emerson [32], and Queille and Sifakis [105]. A survey

4 Chapter 1. Introduction

on model checking can be found in [107]. Monographs covering the subject include
[33] and [79].

Properties to check are specified in linear- or branching-time logic like LTL or
CTL∗. For example, “Is this state reachable from a given start state?”, “Is this
state infinitely often reachable?”, and, “Can this multi-threaded program dead-
lock?”. The SPIN model checker by Holzmann [78] is probably the best known
implementation of a model checker and has successfully been applied to protocol
and software verification. Errors discovered through model checking have led to
revisions and improvements in industrial protocols and safety-critical applications
like air traffic control and medical appliances.

Even big companies like Microsoft (SLAM/Static Driver Verifier [12]), HP (thread-
ing tools [66]), or IBM through its Formal Verification and Testing Technologies
group are investing in this trend. Other high-profile users includes NASA, which ver-
ified several components of spacecraft software for different Mars missions through
model checking techniques [69]. Also, timed or stochastic properties of systems are
studied [3, 9], that is, where properties like “Will a leader in a group be elected in
under 1 second”, or “What is the probability of electing a leader in n rounds of a
probabilistic protocol?” are verified.

We will see later in Chapter 2 that model checking for software programs with
dynamic data structures and recursion poses some problems due to the infinite na-
ture of the models, although several fruitful results have been obtained in restricted
settings for real-world programming languages like Java, C, or C++, for example,
by Godefroid [62] or Dwyer et al. [67].

1.3 Temporal Assertions

The framework we introduce shall provide the user or developer with a new style
of assertions for sequential and concurrent programs: instead of simply asserting a
Boolean expression at a specific location, we provide a convenient way of specifying
monitors that check modal safety properties of the dynamic control flow
expressed in Linear Time Logic (LTL). It can also be used to look for behaviour
that indicates the potential for problems, that is, that might be used to predict
future errors. This is effectively what the Lock-order Reversal pattern captures (see
Section 4.2).

Our parametrised propositions approach gives us a convenient way to handle
dynamic systems: in real-world programs, almost always dynamic data is used,
for example, new objects are instantiated, or new threads created. While there
is already a plethora of work on checking some properties of those systems, they
are usually concerned with the boundedness of the number of resources, and not
necessarily with the interaction of those objects [40, 41]. Especially, they are often
limited to either non-recursive examples or some coarse finite abstraction.

Propositions in our practical examples are certain events which we can observe in
the execution of a program: method invocation with caller/callee and arguments,

1.3. Temporal Assertions 5

object attribute access, or actions related to concurrency.

If we have a property which has to be checked on a per-object basis (that is,
instantiated for each object or set of objects), our template mechanism dynamically
instantiates a given formula based on observers, so-called existence predicates.
In a static approach, this would have to be solved by generating all instances of the
property beforehand and checking each of them against the model, leading again to
a finitary abstraction.

As application, we see two kinds of properties: firstly, properties over the univer-
sal behaviour of data structures. For example, it universally holds that a pop
from a stack should not be performed unless something has actually been pushed
onto it. Data structures and their respective functionality are usually accumulated
in libraries. Thus, a check implemented in the library should be available to any
application using it. Furthermore, the corresponding formula can be used very much
like a design pattern from Software Engineering and new implementations of some
previously specified behaviour can be checked against the temporal specification of
the pattern.

Secondly, there are application specific properties. These can be based, for
example, on the specification that defined the application. Or they can be derived
from informal requirements, stated in the documentation. Rather than being invari-
ants of a structure like above, they may not be evident and need to be “developed”
as much as the source code for the application has to be developed. As a lot of cur-
rent research also focuses on documenting and enforcing such specifications, we later
comment on the necessity and advantages of storing such semantic annotations
about the application in a machine-readable format in Section 5.5.

Naturally, the additional level of possible checks comes at a penalty: runtime
overhead. In the most general case, for every event, the set of affected state
machines (the automaton-based representation of the property) must be determined.
This also includes possibly instantiating new ones. Then, in each machine, a state
transition must be triggered. As the underlying framework of our mechanism is
based on alternating finite automata, we already incur an exponential blow-up in the
size of the automaton when moving to nondeterministic automata. The additional
determinisation of said nondeterministic automata will make this approach infeasible
in practice.

Instead, we will resolve the nondeterminism at runtime at the cost of perfor-
mance: after statically generating an alternating finite automaton from the formula
and eventually pre-calculating the (nondeterministic) outgoing edges for each state,
we use a breadth-first approach over the branches for checking the acceptance con-
dition of the input. We will see that this solution has double-exponential overhead,
but we still consider it as a useful tool, since the average behaviour might prove not
to be as harsh as this complexity might suggest. Also, using our algorithm offline,
on a recorded trace, is an option that does not slow down the actual application.

6 Chapter 1. Introduction

1.4 Outline

First, we introduce a very simple object-based language in Chapter 2, which is
expressive enough to be comparable to existing real-world programming languages
like Java or C. Using this language, we comment on the current limitations of model
checking programs with recursion and dynamic data structures based on results from
program analysis.

In Chapter 3, we recapitulate the Linear-time Logic LTL and how LTL properties
can be checked on finite paths through alternating finite automata. The conven-
tional framework is then extended by our parametrised propositions which offer an
additional degree of conciseness in the representation.

The mapping from events to a trace over sets of propositions is discussed in
Chapter 4 which gives examples for the evaluation of traces and also presents several
use cases where LTL properties can be used.

Chapter 5 focuses on applying our technique to existing programs, most notably
written in Haskell, C, and Java. Advanced programming concepts are discussed
that help with efficiently deploying the necessary instrumentation.

Finally, we conclude with related work and a summary in Chapter 6.

2 Reasoning about Programs

In this section, we motivate the need for being able to check certain properties of the
program with respect to a specification through some examples from object-oriented
and concurrent programming.

We introduce an object-based, dynamically typed language that allows us to rea-
sonably set the stage for a formal framework without having to model complex
languages like Java or C. After giving its execution semantics, we take a look at
different ways of obtaining a model which might be suitable for verification. We
point out certain limitations to a static, sound approach.

Given a set of actions occurring during the execution of an object-based program
(read/write-access to object attributes and method calls), we show how to obtain
a path where each element contains an event. Such a path resembles the observed
execution trace of the running program.

2.1 Properties of Programs

To avoid misbehaviour, many software products include assertions which check that
certain states on the execution path satisfy given constraints and otherwise either
abort execution or execute specific error handling. These assertions are usually
limited to testing the values of variables. However, often it would be convenient not
only to reason about a single state but also about a sequence of states.

Frequently it happens that certain functionality is only available at certain points
during the time when an application executes, or in other words: at certain times
at runtime, certain features like certain methods or objects should not be allowed
to be accessed for the sake of a safe and stable application.

For example, nothing should be written to a file, if the file has been closed already.
Such errors may be documented in the API in the form of comments, but still the
user of the file has to remember to obey this rule in order to get a safely working
application. We argue that given an appropriate framework of temporal assertions,
such properties can be checked and enforced automatically at runtime. To further
emphasize this dynamic view we give an example.

Safe Iterator Usage

Commonly, a large set of libraries is available to application programmers which offer
a variety of often needed functionality. Generic implementations on sets, lists, and

8 Chapter 2. Reasoning about Programs

other data structures are shipped together with their respective API documentation.
They often have dynamic requirements that pose certain obligations on consumers.

For example, we find the following comment in the Java 1.5 API documentation
for Iterator.remove():

“The behaviour of an iterator is unspecified if the underlying
collection is modified while the iteration is in progress in any

way other than by calling this method.”

Apart from being necessary at all, we find it puzzling that a rather general point
about the (temporal) interface is made in a subordinate location in the documenta-
tion.

The requirement of the safe iterator design pattern above for object-oriented
languages such as Java can be reformulated in the following way:

For each Iterator i obtained from a Collection c, there must
never be an access to the iterator (that is, i.next() or
i.remove()) after the collection has been modified.

This is a universal statement about all iterators and all collections.
The pattern is in fact enforced in the Java5 library implementation: the Iterator

implementation contains a mechanism to track modifications of the underlying col-
lection by means of a modification counter. If the collection c is updated, the
modification-count obtained by the iterator i on instantiation time and the current
counter of the collection disagree and lead to an exception on the next access to the
iterator. In this case, the specification has crept into the implementation of both the
iterator and the collection. There is no way for users to turn the additional check
off if they have made sure that they obey the rule. Fortunately in this case, the
overhead both in terms of memory and computation is unnoticeable: the overhead
amounts to a single integer variable for each collection and iterator, an increment
instruction on each collection access and the corresponding test on each iterator
access.

Stacks

A similar problem is checking the safe use of stacks:

For every stack s, there must not be a pop through s.pop()

until some item x has been pushed onto it through s.push(x).

2.2. An Object-based Programming Language 9

This statement also makes a general claim about the data structure. An advanced
feature would be asserting that never more items are popped from the stack than
have been pushed onto it.

Note the subtle difference between these two very similar descriptions of erroneous
behaviour: in the first case, we are only talking about some initial access to the stack.
The latter property however describes the context-free nature of stack accesses since
we must match corresponding push and pop actions.

A More General Approach

Instead of forcing developers to encode such properties in their implementations,
we wish to provide a more reasonable way of declaratively specifying safe (or, by
complement, unsafe) behaviour of applications.

Such properties over patterns of source code locations in the control flow of an
application can be a way to specify safety patterns in the sense of “something bad
never happens” which can then be checked at runtime. In the previous exam-
ples, the patterns consist of method invocations, for example, Iterator.next(),
Iterator.remove(), Stack.pop(), or Stack.push().

Before providing a theoretical framework for checking such properties, we want
to set the stage by introducing a small object-based programming language and its
semantics. We shall see that we can collect the sequence of events (like method
enter and exit) with their respective valuations for arguments/variables induced by
an execution of the program. We can then subject such a trace to formal verification
techniques.

2.2 An Object-based Programming Language

Our main interest is to be able to handle a large part of programs developed using
current programming languages like Java, C, or C++.

We need to choose an appropriate representation of programs that will work for
large classes of programs in those languages. Since we are going to observe a running
program, we are not interested in high-level control structures of the languages like
while or for-next, but only in some instructions modifying the program state.
For an object-based program, the program state consists of a program counter, the
current call stack and a heap. Objects reside in the heap, local variables in the
stack frame. The stack frame also contains runtime information such as the return
address.

Intermediate-level Language ��int

Our object-based intermediate-level language ��int provides the following features:

– data types containing void, bool, nat, and object references

10 Chapter 2. Reasoning about Programs

– atomic operations on said data types

– classes with attributes (fields) and methods

– method invocation with return values

– method-local variables

– conditional and unconditional branching

– object creation

The data type void is the unit type with the trivial value nil. bool is the type
of Boolean values true and false, nat is the type of natural numbers.
C is a set of classes. Each class C ∈ C has an associated set of attributes AC ,

methods MC , and objects OC . We define the set of all attributes A, methods M,
and objects O accordingly:

A :=
⋃
C∈C
AC , M :=

⋃
C∈C
MC , O :=

⋃
C∈C
OC .

Let V be a countable set of (untyped) variables containing at least the special
member this. The set of attribute expressions is defined as

AExps := {v.a | v ∈ V, a ∈ A}.

F denotes the set of operator symbols. Let F (n) denote the functions of arity n
(M(n)

C and M(n) are defined respectively). F (0) ⊆ F denotes the set of constants
with at least representations for values of the above data types excluding object
references, that is, {nil,true, false} ∪ � ⊆ F (0).

We assume that high-level language constructs for structured programming like
while or for-next have already been eliminated through the standard techniques
of compiler construction. We limit our language to conditional branches and un-
conditional jumps. Furthermore, we also assume that complex expressions in an
original program have already been broken down in code with expressions only con-
taining at most one operator with only variables or constants as arguments. Note
that this means that we forbid attribute access and method invocation in a function
application: values must be assigned to local variables first. The rationale behind
this is to obtain an explicit ordering of such accesses in the execution of a program.
This allows us to keep the language and latter definitions concise without loosing
expressiveness.

Definition 1 (Method)
Let M denote a method with M = 〈MId ,VM , IListM 〉, where MId is a method
name, VM = 〈LocsM , IVarsM 〉 ∈ 2V × 2V disjoint sets of local variables and formal
parameters, respectively, and IListM ∈ �����

∗ a sequence of instructions (see Table
2.1 for the syntax of instructions). We shall use the assignment operators := (in
source code) and ← (in the semantics) interchangeably for better readability.

2.2. An Object-based Programming Language 11

x ← o.a x ∈ V, o.a ∈ AExps : load attribute into variable
x ← vc x ∈ V, vc ∈ V ∪ F (0): assign value to variable
o.a ← vc o.a ∈ AttrExps, vc ∈ V ∪ F (0): assign value to attribute
x ← new C x ∈ V, C ∈ C: create object of class C

and bind object to variable/attribute
x ← f(arg1, . . . , argn) Function application f ∈ F (n), x ∈ V, argi ∈ V ∪ F (0)

x ← o.m(arg1 , . . . , argn) Call n-ary method m on object o ∈ V ∪ {this},
m ∈M(n), argi ∈ V ∪ F (0), store return value in x ∈ V

return vc Return from method with result vc ∈ V ∪ F (0)

jmp n Unconditional jump to specified instruction, n ∈ �

jmf x n Conditional jump if x ∈ V bound to false, n ∈ �

Table 2.1: Low-level instructions �����

Each instruction is prefixed with its line number in the method, starting with 1.
For convenience, let a location α = C.m.i denote the ith instruction of method m
in class C. A location may be used interchangeably with or without the instruction
corresponding to this location. Line numbers are omitted in listings if not necessary;
we will use symbolic labels as jump-targets for better readability.

Definition 2 (Class)
A class C = 〈CId ,AC,MC〉 has a unique name CId , a set of attributes AC =
{aC,1, . . . , aC,n}, and a set of methods MC = {MC,1, . . . ,MC,m}.

Definition 3 (Object, Dynamic type)
Objects are unique numbered instances of classes:

O := {〈C, n〉 | C ∈ C, n ∈ �}

The class of an object (its dynamic type) can be obtained through

τ : O → C
τ(〈C, n〉) := C.

Definition 4 (Program)
A program π := 〈Cπ, (arg1, . . . , argn)〉 consists of a set of classes Cπ = {C1, . . . , Cm}
and formal parameters arg1, . . . , argn. We require the existence of a class Main ∈ Cπ
which contains at least a method main ∈M(n)

Main. The formal parameters of a program
are defined by those of the distinguished method Main.main.

Additionally, we require that the last instruction of each potential execution shall
be a return statement.

A small application that creates an empty stack, pushes an element of some type
O unto it, and then iterates over the contents of the stack is given in Figure 2.2. The
implementation uses an empty dummy element for maintaining the current head of
the stack. Subsequent elements are kept in a singly linked list. The corresponding
��int program can be found in the Appendix as Figure 6.1.

12 Chapter 2. Reasoning about Programs

〈
Program

〉
::=

〈
Class

〉
+〈

Class

〉
::= class classname [var attrname+]

〈
Method

〉∗〈
VC

〉
::= var | constant | nil〈

AExp

〉
::= (var | this).attrname〈

FExp

〉
::= f (

〈
VC

〉∗)〈
Method

〉
::= method methodname(var∗) [var var+] [

〈
Instr

〉∗]〈
Instr

〉
::= var ←

〈
VC

〉
|
〈
AExp

〉
|
〈
FExp

〉
| new classname

| var ← (var|this).methodname(
〈
VC

〉∗)
|

〈
AExp

〉
←

〈
VC

〉
| jmp �

| jmf var �

| return
〈
VC

〉
Figure 2.1: Grammar for ��int programs

class Main
method main

var s tack v o
stack :=new Stack
o:=new O
stack . push (o)
v:= stack . next // head
whi le (v != n i l) {

o:=v . o
. . .
v:=v . next

}
return n i l

// main
// Main

class Stack
var o // Container

next // Link

method push (v)
var t
t :=new Stack
t . o:=v
t . next := th i s . next
t h i s . next := t
return n i l

method pop ()
var t
t := t h i s . next
t h i s . next := t . next
return t . o

Figure 2.2: High-level program using an object-based stack

2.3. Execution Semantics 13

class Main

method main (bool)
var t o

i f bool then
o := new Duck

else
o := new Grouse

t := o . quack ()
return void

// quack
// Bird

Listing 2.1: Static type of variable

class Main

method main (bool)
var t o

jmf bool L1
o := new Duck
jmp L2

L1 : o := new Grouse
L2 : t := o . quack ()

return void
// quack

// Bird

Listing 2.2: Static typing in ��Int

Remark 5 (Structural typing)
Note that our language in that sense permits more behaviour than a corresponding
Java (bytecode) program. The example in Listing 2.1 is permitted in our language
even though Duck and Grouse cannot have a common superclass, since our language
is only object-based, but not object-oriented. In the Java programming language,
the type of object o would have to be declared as said superclass.

This behaviour is implemented in many dynamically typed programming lan-
guages such as Smalltalk, Ruby, or Python. A similar paradigm is available in the
Common LISP Object System CLOS.

2.3 Execution Semantics

We can now establish an execution semantics for a program based on an interpreta-
tion for values and function symbols. Program arguments are passed via the main

method.

Definition 6 (Interpretation)
An interpretation I := 〈Dom, ξ〉 consists of a value domain Dom and a mapping ξ
of the constant and function symbols into functions over Dom:

ξ : F →
∞⋃
i=0

{δ | δ : Dom i → Dom} with

ξ(f) : Domr → Dom for every f ∈ F (r)

ξ(c) ∈ Dom for every c ∈ F (0)

In the following, we assume that Dom contains at least representations for the
Boolean truth values true, false and ⊥ for the undefined value nil (for example,
on access to uninitialised variables).

14 Chapter 2. Reasoning about Programs

Definition 7 (Heap)
Since we use an object-based language, a heap is modelled as a partial mapping h
from objects O to valuation functions Val of their attributes AC :

ODom := Dom ∪O
Val := {λ | λ : AC → ODom,C ∈ C}
H := {h : O � Val | o = 〈C, n〉 ∈ Def (h) such that h(o) : AC → ODom}

Let h(o).[a] := (h(o))(a) return the attribute a ∈ Aτ(o) from an object o ∈ O, if it
is in the heap h ∈ H. h(o).[a/value] returns a modified heap where the attribute a
of object o has been updated to value ∈ ODom:

h(o).[a/value] := h ′, with h ′(o ′) :=

{
h(o′), if o
= o′

λ′, otherwise

where λ′(a′) :=

{
value, if a = a′

(h(o))(a′), otherwise

Definition 8 (Frame, Active frame, Runtime stack)
The runtime stack is a colon delimited sequence of frames f1 : f2 : . . . : fn ∈ F∗,
where each frame contains as first component an object reference o ∈ O into the
heap for the currently active object, a return address α ∈ Loc, an indirection to a
storage location in the previous frame where the return value should be stored, and
entries for local variables and arguments of type ODom:

F := O × Loc × �×
local variables︷ ︸︸ ︷

ODom × . . .×ODom ×
parameters︷ ︸︸ ︷

ODom × . . .× ODom

The frame stack grows to the left, the left-most frame is the active frame.
Often, access to the topmost frame is denoted by t : st, where t is the active frame

and st is the remainder of frames. Local variables are separated by · from arguments.
Storage locations for method arguments and local variables can be accessed by
name through t[var], updates to local variables are denoted by t[var/value], where
var ∈ V, value ∈ ODom. Furthermore, t[this] := proj

1
(t), where proj

i
denotes

projection to the ith component of a tuple. We shall use this : O as a synonym
for the currently active object. An actual implementation would translate variable
names to offsets in the stack frame.

For convenience, we define the interpretation function also with respect to vari-
ables bound in a stack frame:

ξ : F × (V ∪ F (0))→ ODom

ξ(t, x) :=

{
t[x] ∈ ODom, if x ∈ V
ξ(x), if x ∈ F (0).

2.3. Execution Semantics 15

Size and layout of each object and frame are known at compile time. Many
well-known extensions to programming languages such as dynamic data structures
can be easily added to the language and its semantics, but have been omitted for
conciseness.

Definition 9 (Single-instruction semantics)
The semantics of a single instruction given a program π and interpretation I yields
the next location to execute and a transformation of the current stack (split into
the active frame t and the remaining frames st) and heap h:

execπI : Loc × F∗ ×H → Loc × F∗ ×H

We assume that variables are used correctly with regard to their visibility, that
is, generally v ∈ Locsm and o, x ∈ Locsm ∪ IVarsm.

1. Atomic operations over value domain

execπI(C.m.i : v ← f(x1, . . . , xn), t : st, h),
with v ∈ V, f ∈ F (n), xj ∈ V ∪ F (0), n ≥ 0
= (C.m.(i+ 1)︸ ︷︷ ︸

next instruction

, t[v/ ξ(f)(ξ(t, x1), . . . , ξ(t, xn))︸ ︷︷ ︸
evaluation w.r.t. current stack

] : st, h).

2. Object instantiation

execπI(C.m.i : v ← new D, t : st, h) = (C.m.(i+ 1), t[v/o] : st, h′}), where
o = 〈D, j〉 ∈ O is a fresh instance of class D, that is, h(o) is undefined, and

h′(o′) :=

{
λ⊥, if o = o′

h(o′), otherwise

where λ⊥ denotes the entirely undefined attribute mapping where all attributes
are mapped to the undefined value.

3. Assignment from attribute to a local variable

execπI(C.m.i : v ← o.a, t : st, h), with v, o ∈ V, a ∈ AD, and
D = τ(t[o]) is the dynamic type of the object reference by variable o
= (C.m.(i+ 1), t[v/h(t[o]).[a]] : st, h)

4. Assignment to attribute

execπI(C.m.i : o.a← x, t : st, h), with o ∈ V, D = τ(t[o]), a ∈ AD, x ∈ V ∪ F (0)

= (C.m.(i+ 1), t : st, h(t[o]).[a/ξ(t , x)]).

5. Method invocation

execπI(C.m.i : v ← o.m′(x1, . . . , xn), t : st, h), o, v ∈ V, D = τ(t[o]), m′ ∈M(n)
D ,

n ≥ 0, xj ∈ V ∪ F (0), t = (this , ra, off , l1, . . . , lk−1, l[v], lk+1, . . . · args)
= (D.m′.1, (t[o], C.m.(i+ 1), k, l′1 . . . l

′
|LocsD.m′ | · ξ(t, x1) . . . ξ(t, xn))︸ ︷︷ ︸

new frame

: t : st, h).

k denotes the location l[v] of the local variable v in the original stack frame.

16 Chapter 2. Reasoning about Programs

6. Return from method

The kth local variable in the caller’s frame t′ is updated to the computed value.

execπI(C.m.i : return v, t : t′ : st, h), v ∈ V ∪ F (0),
t = (o, α, k, . . .), t′ = (o′, α′, k′, l1, . . . , lk, . . . · args)

= (α, t′[lk/ξ(t, v)] : st, h)

7. Unconditional jump

Jumps are only allowed inside of the same method.

execπI(C.m.i : jmp j, st, h) = (C.m.j, st, h)

8. Conditional jump on false

execπI(C.m.i : jmf v j, t : st, h) =

{
(C.m.j, t : st, h), if ξ(t, v) = false,

(C.m.(i+ 1), t : st, h) otherwise

Definition 10 (Iteration semantics)
execIπI : Loc×F∗×H → F∗ is the iteration semantics of an instruction that yields
the final stack on termination which may contain the computed values:
execIπI(α, st, h) :=

– st iff α = Main.main.0 (program termination), or

– execIπI(exec
π
I(α, st, h)) otherwise

(single step semantics of an instruction)

Definition 11 (Semantics of a program)
Given a program π and an interpretation I := 〈Dom, ξ〉, we define the execution
semantics ExecπI : Domn → Dom with respect to the arguments as required by
Main.main. Note that objects can only occur inside the program, but neither be
arguments nor the result of a program.

ExecπI : Domn → Dom
ExecπI(args) := proj

4
(execIπI(Main.main.1, initialStack , {〈Main, 1〉})), with

initialStack := (〈Main, 1〉, Main.main.0, 1, locs · args) : (⊥,⊥,⊥,�)

Accordingly, the initial stack consists of two frames: The active frame for the main

method where execution starts, and a frame with just a place holder (�) for the
return value of the ultimate return statement when execution terminates.

In the active frame, the this reference points to the first instance of the Main class
in the otherwise empty heap. The return address points to a nonexistent instruction
to halt execution.

2.4. Static Analysis 17

2.4 Static Analysis

In the context of verification, a question naturally arises, namely whether some
property can be statically decided for the programming language just presented.
Before proceeding with some additional features, we take the time to highlight some
properties and problems of checking programs statically.

The properties we wish to reason about relate different points in the execution of
a program. A single such dynamic execution point can be split in two parts: firstly,
a specific line of code (for example, a method call), and secondly, its context, that
is the runtime information, comprising the call stack with variable assignments.

In order to decide whether a specific source code location is reachable under some
variable assignment, we need to consider all possible execution paths of the program
for every possible input.

Clearly determining the set of all execution paths of a non-trivial program is not
practicable due to the enormous size of possible inputs. Even for a program with
only one integer parameter we would still have to check 232 programs. Real-world
programs would even have unlimited input throughout the program, for example,
from the disk, or the network.

Consequently, a static analysis of the program would have to abstract from the
concrete input. Alas, this means that the analysis must proceed with some arbi-
trary, possibly symbolic, value for unknown/“don’t know” for all input parameters.
Generally the execution of a non-trivial program will in some way always depend
on its input, since otherwise the program (or parts thereof) would represent some
constant expression.

Hence, every time an instruction on the execution path encounters such an un-
known value, the uncertainty is propagated: for expressions like arithmetic, if one
of the arguments is unknown, the analysis can only infer an unknown result.

In Boolean expressions necessary for conditional branches like if-then-else,
imprecise information gives rise to non-determinism: when we are uncertain which
branch to take, we need to proceed in both branches.

With respect to the soundness of the result, up until here, we note the following:

1. By abstracting from the input, we need an appropriate data abstraction to
analyse the program with respect to unknown values for variables. If we then
determine that we can reach an instruction which resembles the static part of
a property we want to check, we may do so with only imprecise information
about the variable bindings. Consequently, with respect to the property, we
will not be able to determine the exact valuations for the variables in the gen-
eral case. For the example from the motivation, this may mean that although
we are popping an item from some stack, we may not know whether this is one
of the stacks we previously recorded a push action for. Thus, the correctness
property cannot be guaranteed.

2. The non-deterministic branches also introduce paths that might never be taken
for an actual program run. So even if we reach a program location with a

18 Chapter 2. Reasoning about Programs

concrete variable binding, this path might pose a false positive if the analysis
leading to this path is to coarse.

Additionally, we must model recursion through method invocation. This is
naturally modelled through a context-free set of program paths [99], although
for the concrete system there will usually be some fixed upper bound on the
stack size because of the available memory. While this would be a precise
abstraction, unfortunately it has to be combined with the above result on
non-determinism of conditional branches: this augments the set of paths in
the model but not in an actual execution and thus may lead to false positives.

Context-free control-flow properties and memory allocation of Java Card Applets
have been investigated by Fredlund et al. in [31] and [54]. The latter also introduces
the technique of adding runtime monitors to the applet in the case that its properties
could not be verified statically. Properties are expressed in LTL and verified through
pushdown (that is, context-free) systems with the Moped model checker [48]. The
abstracted model is a safe over-approximation of context-free call graphs as discussed
above.

The temporal logic of calls and returns CaRet [4] allows to check some non-
regular properties of pushdown systems with the same complexity as the LTL model
checking problem (polynomial in the size of the model and exponential in the size
of the formula), although checking context-free properties in general is undecidable
for pushdown systems.

In the verification community, the full-featured abstraction of programming lan-
guages has proved problematic, for a survey on model checking C see [109]. Some
success for Java has been achieved through the Java PathFinder [125], although
without additional instrumentation the state-space exhausts available memory.

Predicate abstraction [64] (for example used in Microsofts SLAM toolkit [11, 12])
is another promising approach that preserves some information about abstracted
input, for example, that although the concrete value for some x is unknown, it may
be less than some n on one path of an if-then-else for the Boolean expression
x < n, and greater or equal on the other path.

We conclude that there is no static verification toolkit at the moment that could
serve as a “silver bullet” due to the huge variety of necessary techniques, and that the
only time when we can reliably decide whether a property is fulfilled is at runtime,
although this naturally precludes us from drawing any conclusions about results
obtained under other inputs. As Dijkstra already noted [39]:

“Program testing can be a very effective way to show the presence of
bugs, but is hopelessly inadequate for showing their absence”.

We continue our discussion of our programming language with additional features.

2.5. Assertions 19

2.5 Assertions

Assertions are statements in the program that test assumptions about the program.
An assertion contains a Boolean expression that should be true if execution is to
proceed. If the expression is not true at runtime, the system will throw an error.
Thus, an assertion confirms the programmer’s assumption about the behaviour of
the program, increasing confidence that the program is free of errors, or at least that
it terminates with an error description instead of returning incorrect results.

During debugging, additional output is generated for violated assertions. For
example, the Java programming language since JDK 1.4 offers such an instruction
and will throw an AssertionError exception. This output usually contains details
like the location of the assertion and an error message, which should preferably
contain the values of all variables occurring in the asserted expression.

In our language, we can easily add a new instruction with the desired effect:

Definition 12 (Assertion)
We extend the set of instructions ����� by assert name,v, x1, . . . , xn where name
is a unique name to identify the assertion, v a local variable containing a Boolean
value, and x1, . . . , xn a set of variables and object attributes.

execπI(C.m.i : assert(name, v , x1 , . . . , xn), t : st , h)

=

{
(C.m.(i+ 1), t : st, h), if ξ(t, v) = true,

(Main.main.0, (⊥,⊥,⊥,⊥), h) otherwise, which will stop the execution.

The arguments x1, . . . , xn are only informational.

Note that due to our definition of the execution semantics Exec, we can only com-
municate an assertion error by returning an undefined value. A concrete implemen-
tation should output the name of the assertion and all arguments when encountering
a failed assertions before terminating.

2.6 Extension to Concurrency

Our operational setting is still that of a sequential application. As one of the major
sources for potential bugs is the interaction of threads in a concurrent setting, we now
modify our environment to accommodate interleaved execution of threads, so that
we can investigate their behaviour. We will see that on the level of events not much
will change, since a trace obtained from the interleaved execution of a multi-threaded
application does not differ from a trace of a sequential program, except that each
event is augmented with the thread identifier of the thread currently executing the
instruction. The runtime system requires some more elaborate extension, though.

A thread has little nonshared state. According to [110], “[an] individual thread
has at least its own register state, and usually its own stack”.

Here, each thread has its own program counter and control stack with local vari-
ables. The heap is globally visible to all threads. We use an interleaving execution

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/AssertionError.html

20 Chapter 2. Reasoning about Programs

. . .
t := o . a

t := t+1
o . a := t
. . .

Thread 1

. . .

o . a := 5

. . .

Thread 2

a=0

a=1 a=5

a=5 a=1 a=6

Figure 2.3: Interleaved object access

thread o.m(args) The method invocation o.m(args) is started concurrently,
the return value is ignored

lock o Try to lock object o, suspend if already locked
unlock o Unlock object o. Threads already waiting on this object

will become eligible for scheduling

Figure 2.4: Concurrency primitives

semantics where non-deterministically a thread is chosen by the scheduler and one
instruction executed. This also means that the value of an attribute which is stored
in a local variable in step n may no longer reflect the actual value of the attribute
after step n+1 if another thread wrote a different value into the attribute (see Figure
2.3; liberally white-spaced to highlight the important detail). The diagram shows
all possible evolutions of the object’s attribute a through the different schedulings,
and starts out with a value of 0. We conclude that for concurrency, some primitive
for mutual exclusion is strongly desired.

Concurrency Primitives

A new thread is created by invoking a method call concurrently. The return value
shall be ignored. An implementation might consider only allowing calls to methods
return void. Figure 2.4 summarises the new instructions.

Apart from thread creation, we also introduce two primitives for locking and
unlocking objects. Locks are advisory locks, that is, if a thread does not explicitly
use locking, it can still interfere with a thread which has a lock on the object by
modifying its attributes. Locking an already locked object will suspend the thread
trying to acquire the lock, until the previous lock is released. A thread may hold
more than one lock at a time. If more than one thread is waiting on a lock, after
unlocking, a thread to activate will be chosen non-deterministically.

2.6. Extension to Concurrency 21

Concurrent Execution Semantics

The threaded runtime needs to implement two additional features: firstly, the map-
ping λT from threads to their respective stacks, and secondly, management of locks.
In the following, ts is the thread list, that is, the set of all threads. ls is the lock set
of a thread and contains all currently locked objects.

Definition 13 (Function space)
We introduce function spaces both for total and for partial functions:

[A→ B] := {f | f : A→ B}
[A� B] := {f | f : A� B}

Definition 14 (Concurrent single-instruction semantics)
Let T ⊆ � be the set of thread identifiers. We define the concurrent single instruc-
tion semantics

execπI : T × [T � (Loc ×
ls︷︸︸︷
2O ×F∗)]︸ ︷︷ ︸

λT

× 2T︸︷︷︸
ts

×H → [T � (Loc×2O×F∗)]×2T ×H

as follows:

1. Lifted sequential instruction

execπI(tId , λT , ts, h) = (λ′T , ts, h
′),

if for λT (tId) = (α, ls, st): α is a sequential instruction, and

λ′T (u) :=

{
(α′, ls, st′), where (α′, st′, h′) = execπI(α, st, h) if u = tId ,

λ′T (u) := λT (u) otherwise.

2. Thread creation

execπI(tId , λT , ts, h) = (λ′T , ts ∪ {tId ′}, h), if
λT (tId) = (C.m.i : thread o.m′(args), ls, t : st), where D = τ(t[o]),
tId ′ ∈ T is a fresh thread identifier, that is, tId ′
∈ ts, and

λ′T (u) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(C.m.(i+ 1), ls, t : st) if u = tId ,

(D.m′.1,∅, newStack) if u = tId ′, with

newStack := (t[o], Main.main.0, 1, locsD.m′ · args) : (⊥,⊥,⊥,�),

λT (u) otherwise.

A new stack has to be initialised for the new thread like on program startup,
see Definition 11.

3. Obtaining a lock

execπI(tId , λT , ts, h) = (λ′T , ts, h), if λT (tId) = (C.m.i : lock o, ls, t : st),

where λ′T (u) :=

{
(C.m.(i+ 1), ls ∪ {t[o]}, t : st) if u = tId ,

λT (u), otherwise.

22 Chapter 2. Reasoning about Programs

4. Releasing a lock

execπI(tId , λT , ts, h) = (λ′T , ts, h), λT (tId) = (C.m.i : unlock o, ls, t : st),

where λ′T (u) :=

{
(C.m.(i+ 1), ls \ {t[o]}, t : st) if u = tId ,

λT (u), otherwise.

(The behaviour of unlocking an already unlocked object could also remain
undefined.)

Note that the single-instruction semantics only implements the maintenance com-
ponent of locking, that is, handling of the per-thread sets of locked objects. The
actual scheduling based on whether a lock is available or not, is done in the following
iteration semantics.

Definition 15 (Concurrent iteration semantics)
The scheduler non-deterministically selects a thread to run. Here, only one instruc-
tion is executed. Threads wanting to acquire a lock are not eligible to scheduling, if
the respective object is already locked. To check this, the scheduler can peek into
all threads’ lock sets.

execIπI : [T � Loc × 2O ×F∗]× 2T ×H → F∗

execIπI(λT , ts, h) :=

– st, iff λT (1) = (α, ls, st), and α = Main.main.0
(program termination by termination of the initial thread), or

– execIπI(exec
π
I(tId , λT , ts, h)) otherwise, where λT (tId) = (α, ls, t : st) for some

tId ∈ ts with either

• α = C.m.i : lock o, and t[o]
∈
⋃

i∈ts\{tId}

proj
2
(λT (i))

(object not locked by another thread), or

• α
= C.m.i : lock o (regular instruction)

Observe that no runnable process might exist and that this function behaves non-
deterministically.

Definition 16 (Concurrent program semantics)
For the concurrent program semantics, we now only have to set up an initial thread.
Again, refer to Definition 11 to compare this to the sequential version and calculation
of the initial stack.

ExecπI(args) := proj
4
(execIπI(λT , {1}, {〈Main, 1〉})), with

λT (u) := (Main.main.1,∅, initialStack), if u = 1.

2.7. Obtaining a Trace Model 23

2.7 Obtaining a Trace Model

The execution of a program traverses a sequence of instructions of the program.
Each instruction modifies the state of the program, either by modifying the stack
(assignments to local variables, method call or return), or the heap (object creation,
attribute assignment).

As our logic will be concerned with control flow properties (method invocation,
but not, for example, iteration), and values of arguments and object attributes, the
trace contains events from the dynamic control flow, that is, some action together
with a valuation for any variables in the expression. Local computations involving
only local variables remain invisible on the trace.

Definition 17 (Events)
An event is either

– τ on an invisible event, that is, function application, inter-variable assignment,
or jumps inside a single method,

– method enter(tId , this ,Class .method , o, args) on method invocation,

– method exit(tId , this ,Class .method , o, args, x) on return,

– set(tId , this,Class .attrib, o, x) on attribute access (write),

– get(tId , this,Class .attrib, o, x) on attribute access (read),

– new(tId , this,Class , o) on object creation,

– assert(tId , this , name, args) on a passed assertion,

– lock(tId , this , o) on obtaining a lock, or

– unlock(tId , this , o) on releasing a lock,

where tId ∈ T , Class ∈ C, method ∈ M(n)
Class, attrib ∈ AClass, this , o ∈ O, x ∈

ODom, args ∈ ODomn . We denote the set of these events by Evt.

this is always the object performing the action, while o is the target of some action,
that is, the object a method is invoked on, or the object whose attribute is accessed
either for reading or writing.

Failed assertions are not made explicit in the trace, since execution stops any-
way. Although the class can always be determined based on the target object o
dynamically, it is encoded in the event label. Otherwise we would always need to
dereference the object in the heap to obtain its class.

Also note that events do not contain any information about where it originates
except from the this reference: neither the exact source code location nor the cur-
rently executing method are available. In Chapter 5 we will see that this very closely
models the reality when instrumenting applications, as usually only arguments are
available, but no easily accessible information about the context.

24 Chapter 2. Reasoning about Programs

Execution Model

Next, we extend our execution semantics to generate those events. All arguments
will either be local variables or arguments of the currently executing method and
thus have their valuation available in the active stack frame.

Definition 18 (Execution trace)
The single-instruction semantics is augmented through the trace component :

execTπI : T × [T � Loc × 2O × F∗]× 2T ×H×Evt
∗

→ [T � Loc × 2O × F∗]× 2T ×H×Evt
∗

Let (α′, ls′, st′) = λ′T (tId), with (λ′T , ts
′, h′) = execπI(tId , λT , ts, h) and

execTπI(tId , λT , ts, h, ρ) := (execπI(tId , λT , ts, h), (ρ; ev(tId , α, st)))

where (α, ls, st) = λT (tId) and ev : T × (Loc × F∗) → Evt a mapping from the
dynamic semantics to an event:

1. Invisible action

ev(tId , (α, t : st)) = τ ,
if instruction α involves only local variables, constants and/or functions.

2. Object instantiation

ev(tId , (α : o← new D, t : st))
= new(tId , t [this],D , t [o]),

3. Assignment from attribute to temporary variable

ev(tId , (α : v ← o.a, t : st)), o ∈ V, D = τ(t[o]), a ∈ AD, v ∈ V
= get(tId , t [this],D .a, t [o], ξ(t , o.a))

4. Assignment to attribute

ev(tId , (α : o.a← v, t : st)), o ∈ V, D = τ(t[o]), a ∈ AD, v ∈ V ∪ F (0)

= set(tId , t [this],D .a, t [o], ξ(t , v))

5. Method invocation

ev(tId , (α : v ← o.m′(args), t : st)),
v, o ∈ V, D = τ(t[o]), m′ ∈MD, xj ∈ V ∪ F (0)

= method enter(tId , t [this],D .m ′, t [o], ξ̄(t , args)),

where ξ̄ : F × Vn → ODomn is the natural extension of ξ. Note that v takes
no part in the event.

6. Return from method

ev(tId , (C.m.i : return v,

t︷ ︸︸ ︷
(this , D.m′.j, k, lvars · args) : t′ : st)), v ∈ V ∪ F (0)

= method exit(tId , t ′[this],C .m, t [this], ξ̄(t , args), ξ(t, v))
Observe that here, t′[this]
= t[this] = this .

2.7. Obtaining a Trace Model 25

7. Assertion

ev(tId , (α : assert(name, v, args), t : st)), args ∈ (V ∪ F (0))n , v ∈ V
= assert(tId , t [this], name, ξ̄(t , args)) where name is some identifier

8. Lock/Unlock

ev(tId , (α : lock o, t : st)), o ∈ V
= lock(tId , t [this], t [o]) (unlock respectively)

Definition 19 (Trace semantics of a program)
The trace iteration semantics is then defined along the same lines as the concurrent
iteration semantics:

execIπI : [T � Loc × 2O × F∗]× 2T ×H×Evt
∗ → Evt

∗

execIπI(λT , ts, h, ρ) :=

– ρ , iff λT (1) = (α, ls, st), and α = Main.main.0

– execIπI(execT
π
ItId , λT , ts, h, ρ) otherwise, for some tId ∈ ts under the same

condition for blocked threads as in Definition 15.

For the trace program semantics, we obtain:

ExecTIπ : Domn → Evt
∗

ExecTIπ(args) := execIπI(λT , {1}, {〈Main, 1 〉}, ε), with

λT (tId) := (Main.main.1,∅, initialStack), if tId = 1, n = |IVarsMain.main|,
and the initially empty trace ε.

Again, note that both semantics are non-deterministic due to multiple threads.

Summary

We conclude the discussion of our simple object-based language. We have intro-
duced concepts of method invocation and concurrency. For the trace model, each
instruction together with the dynamic information about the current thread, object,
and eventual arguments or return values are accumulated. Concurrent execution is
resolved in an interleaving manner, that is, the scheduler non-deterministically re-
peatedly selects a thread which is allowed to execute a single instruction.

3 Parametrised LTL Formulae

In the following we start with an introduction to the Linear Time Logic LTL. After
giving a motivation for parametrised propositions based on a real-world example,
the logic is then extended to handle dynamic bindings for parameters and filtering
expressions that quantify over the current state.

As Temporal Assertions are concerned with a single execution path, we do not
need the more general approach of branching time logic which is often used in the
context of Model Checking. Also, we will look into some subtle differences between
the usual notion of checking infinite paths in finite models and the approach we
chose here.

In this section we introduce a finite-path variant of LTL. This semantics has two
distinct features: on the one hand, we handle finite, non-empty paths. On the other
hand, for practical purposes, we will consider the so-called next-free subset of LTL,
where we only permit formulae using the temporal operators Release and Until (and
the derived operators Globally and Finally), but not the explicit Next operator.

The automaton construction we subsequently provide will accept exactly the lan-
guage of paths that satisfy the respective formula. It requires that any formula is
normalized first into an equivalent representation, where negation has been pushed
down to the propositional level, that is, the “leaves” of a formula.

While negation can be pushed through the Release and Until operator and to
the quantifiers we will introduce, following some basic principle, this solution is not
sound for the Next operator, as we will illustrate with Example 27 after introducing
the temporal operators. Thus, we do not consider formulae with an explicit Next-
operator.

In practice, we have not found this to be a limitation: Next is often not used
explicitly and thus this is no big limitation. In fact, our examples like the Lock-order
Reversal in Section 4.2 do not require the Next operator. The EAGLE logic (see
Section 6.1) permits a minimal and a maximal interpretation of temporal operators
at the end of the path, somewhat alleviating the situation.

3.1 LTL

Linear-time temporal logic LTL [104] extends propositional logic over a set of atomic
propositions AP with operators which describe events along a computation path.

28 Chapter 3. Parametrised LTL Formulae

LTL ::= tt | ff | p ∈ AP

| F LTL

| G LTL

| LTL U LTL

| LTL R LTL

| LTL ∨ LTL

| LTL ∧ LTL

| ¬LTL

Figure 3.1: LTL syntax

Finite Path Semantics for LTL

Figure 3.1 gives the syntax of next-free LTL formulae. The temporal operators have
the following meaning for formulae ϕ, ψ:

– “Eventually” (F ϕ): ϕ will hold at some state now or in the future
(also: “in the future”,“finally”)

– “Globally” (G ϕ): at every state on the path φ holds

– “Until” (ϕ U ψ): combines two properties in the sense that
ϕ has to hold until finally ψ holds.

– “Release” (ϕ R ψ): dual of U; expresses that the second property holds along
the path up to and including the first state where the first property holds,
although the first property is not required to hold eventually.

Definition 20 (Finite path semantics of LTL)
Let AP be a set of atomic propositions and w = w[0]...w[n− 1] ∈ (2AP)n for n > 0
a finite path. For each path position w[j] (0 ≤ j < n), a proposition p ∈ AP , and
formulae ϕ, ψ:

w[j] |= tt, w[j]
|= ff ,
w[j] |= p iff p ∈ w[j]

|= ¬ϕ iff w[j]
|= ϕ
|= F ϕ iff ∃k (j ≤ k < n) s.th. w[k] |= ϕ
|= G ϕ iff ∀k (j ≤ k < n)→ w[k] |= ϕ
|= ϕ U ψ iff ∃k (j ≤ k < n) s.th. w[k] |= ψ

∧ ∀l (j ≤ l < k)→ w[l] |= ϕ
|= ϕ R ψ iff ∀k (j ≤ k < n)→ w[k] |= ψ

∨ ∃l (j ≤ l < k) s.th. w[l] |= ϕ
|= ϕ⊕ ψ iff w[j] |= ϕ⊕ w[j] |= ψ,⊕ ∈ {∨,∧}

3.1. LTL 29

We write w |= ϕ iff w[0] |= ϕ.

Definition 21 (LTL-induced language)
The language of paths accepted by an LTL formula ϕ is defined by

Lϕ := {w | w |= ϕ,w ∈ (2AP)+}.

Definition 22 (Equivalence of LTL formulae)
Equivalence of formulae is defined through equality of the set of accepted paths,
that is, the respective languages:

ϕ ≡ ψ :⇐⇒ Lϕ = Lψ.

Theorem 23 (Relation between temporal operators)
The following well-known equivalences to express Finally and Globally hold:

F ϕ ≡ tt U ϕ G ϕ ≡ ff R ϕ

As an example we consider the formula p U q over propositions AP := {p, q}. It
is valid on the path {p}{p}{q} but it is neither valid on the path {p}{p}∅{q} nor
on the path {p}{p}{p}

Remark 24 (Finite path semantics)
Regarding the end of a path we observe the following behaviour: due to the quan-
tification in the |= relation for a Release formula, such a formula is satisfied if ψ
holds on the last state. Conversely, since the Until formula depends on existential
quantification over positions in the trace, it fails if ψ does not hold.

Definition 25 (Positive form)
An LTL formula is converted to positive form by pushing down negations by repeat-
edly applying the following rewriting rules (see [93]):

¬¬ϕ −→ ϕ
¬(ϕ ∨ ψ) −→ ¬ϕ ∧ ¬ψ
¬(ϕ ∧ ψ) −→ ¬ϕ ∨ ¬ψ
¬(G ϕ) −→ F (¬ϕ)
¬(F ϕ) −→ G (¬ϕ)
¬(ϕ U ψ) −→ (¬ϕ) R (¬ψ)
¬(ϕ R ψ) −→ (¬ϕ) U (¬ψ)

In the following, we assume that ϕ+ refers to the positive form for an arbitrary LTL
formula ϕ if this distinction is required.

Lemma 26 (Equivalence of positive form)
For all ϕ ∈ LTL we have ϕ ≡ ϕ+ (without proof).

30 Chapter 3. Parametrised LTL Formulae

Remark 27 (Soundness of positive form of formulae with Next operator)
For certain paths, the semantics of LTL formulae containing the Next operator is not
preserved with regard to normalisation to positive form where negation is pushed
down to the propositional level. Assume the usual notion of the finite path semantics
of the Next operator for a path w of length n:

w[j] |= X ϕ iff j < n− 1 and w[j + 1] |= ϕ

When we consider a path w with |w| = 1 and some formula ϕ, we observe the
following behaviour:

w |= ¬X ϕ ≡ w
|= X ϕ

≡ w
|= ff

≡ tt

Yet on the other hand, for the normal form, we apply the following rewriting rule:

w |= ¬X ϕ −→ w |= X ¬ϕ
≡ ff

Remark 28 (Complexity of LTL model checking on infinite words)
LTL formulae model star-free ω-regular properties [119]. The space and time com-
plexity of LTL model checking is linear in the size of the model, but exponential in
the size of the formula (PSPACE-hard) [111].

3.2 Extension to Parametrised Propositions and their
Semantics

Already in the introduction to Chapter 2 we gave examples where some property
should hold for each instance of data structure (iterators and stacks), that is, objects
of a specific type. We complete the motivation for parametrised propositions by the
following example: for a software product, the specification might require that every
opened file is eventually closed.

The number of files a program opens or closes can be dynamic. Since references
to files may be stored in variables, any static verification would have already to deal
with aliasing. Dynamic data-structures further complicate the picture, as we have
seen previously. The program could, for example, contain an array of file handles and
access the entries based on offset or pointer arithmetic. Without data structures,
that is, where file handles are only referenced through variables, the problem could
be solved statically by showing that every program path that opens a file passes
through its corresponding closing instruction with respect to variable aliasing.

To further illustrate this point, we show some source code from the Apache web
server (http://httpd.apache.org). The web server supports several backends to

http://httpd.apache.org

3.2. Extension to Parametrised Propositions and their Semantics 31

distribute incoming requests to a set of processes which in turn may pass it to one
of several threads. A configurable amount of processes/threads can be initialised at
startup, with a maximum cap on additionally created processes/threads at runtime.
On Unix systems, threads in the Apache library are implemented in an abstrac-
tion layer on top of pthreads (see Section 5.3 for details on the instrumentation).
Source code used in examples refers to version 2.0.49 of the original Apache software
distribution.

Since the limits for the amount of concurrency are configurable, data pertaining
to concurrency control is stored in dynamic data structures. For example, in the
worker module, processes and threads are stored in arrays, which are dynamically
allocated. Listing 3.1 gives parts of the source code, where start threads shows
how the thread identifiers are stored in an array, and startup children invokes via
make child the system call fork() to generate processes, whose process identifiers
are likewise stored in arrays (not shown), as is the dynamic storage allocation for
said data. Semaphores for concurrent access are also allocated dynamically on a
per-queue basis (see Listing 3.2).

Coming back to our file example, let’s assume that opening or closing triggers
the events method exit open(name, i) or method exit close(j), with i, j ∈ �

and name the file name. For clarity, we will omit the file name argument in the
following since it does not contribute to the motivation. It can be assumed as
universally quantified.

As for the file handles, for example, in the C runtime system, they are simply
consecutive integers starting from zero, where the first three usually refer to the
standard input, standard output, and standard error output of the application.
When using the higher-level abstraction of streams, file references are pointers to
data structures in memory, but can nevertheless be interpreted as integer values.
Given a model where states contain propositions indicating which files have been
opened or closed, in a first attempt, we can capture the specification as follows (we
do not consider reusing the same file handle on the trace):

∀x : G [open(x)→ F close(x)]

≡ ∀x : G [¬open(x) ∨ F close(x)]

To complete the picture, for the iterator and stack examples, the formulae assert-
ing correct use might look as follows:

ϕ1 := ∀c, i : G [makeIterator(c, i)→ G (modify(c)→ G¬next(i))]

ϕ2 := ∀s∃e : push(s , e) R ¬pop(s)

This brings us to the question of what actually the domain of a variable is, so that we
can syntactically expand the formula into a clause of instantiated formulae. Again,
for the C runtime system, values could stretch over the whole range of integers. But
in fact for Runtime Verification, we only need to consider those values which we
actually observe in a run.

32 Chapter 3. Parametrised LTL Formulae

stat ic void ∗ APR THREAD FUNC s t a r t t h r e ad s
(ap r th r ead t ∗thd , void ∗dummy)

{
t h r e ad s t a r t e r ∗ t s = dummy;
ap r th r ead t ∗∗ threads = ts−>threads ;
. . .
rv = ap r th r ead c r ea t e (&threads [i] , th r ead at t r ,

worker thread , my info , p ch i ld) ;
. . .

}

/∗ s t a r t up a bunch o f c h i l d r en ∗/
stat ic void s t a r t u p ch i l d r e n (int number to star t)
{

int i ;

for (i = 0 ; number to s tar t && i < ap daemons l imit ; ++i) {
i f (ap scoreboard image−>parent [i] . pid != 0) {

continue ;
}
i f (make chi ld (ap s e r v e r con f , i) < 0) {

break ;
}
−−number to star t ;

}
}

Listing 3.1: httpd-2.0.49/server/mpm/worker/worker.c

/∗∗
∗ I n i t i a l i z e the f d q u e u e t .
∗/

ap r s t a t u s t ap qu eu e in i t (fd queue t ∗queue ,
int queue capac i ty , ap r poo l t ∗a)

{
int i ;
a p r s t a t u s t rv ;
char ∗ l b l ;

i f ((rv = apr th r ead mutex cr eate (&queue−>one big mutex ,
APR THREAD MUTEX DEFAULT, a)) != APR SUCCESS) {

return rv ;
}

Listing 3.2: httpd-2.0.49/server/mpm/worker/fdqueue.c

3.2. Extension to Parametrised Propositions and their Semantics 33

3.2.1 Variables and their Domains

From a purely mathematical logic point of view, the domain of a variable needs to
be clearly defined. Then, formulae using quantification can be expanded to con-
junctions and disjunctions where the variables have been instantiated with concrete
values. This holds in the modal setting if we consider that, for example, all possible
file handles are known in advance.

For practical means, it would be very inefficient even for the formulae above for
file access, with only one variable corresponding to the file handle, to instantiate
this formula for all possible values in 232, or, for more recent processors even 264,
as the domain of quantification. The same holds for object references which will
usually be pointers to memory locations, thus in the same range.

What could we do to limit the domain to the subset of values actually necessary
to validate or invalidate a formula on a run? For programs, the objects we want to
reason about do not appear out of the blue sky. In object-oriented languages, objects
are explicitly created. Even for C programs, there is usually some initialisation. In
the above case, this would be the open event which makes the object “interesting”
for us.

This also has the advantage that we do not have to know the entire domain
beforehand, but can rather rely on quantification just working on the current state.
Another possibility would be making quantification work over all known objects
up until now. After all, for example in Java, we could iterate over the objects in
the heap. Of course, this will lead to similar scalability problems like above for
large programs. To efficiently solve the problem of quantification in our Runtime
Verification approach, we need quantification to be as concise (in the sense that we
pick up just the valuations interesting to us and not more) as possible.

As change in a program is driven by statements, which in turn can be considered
as events or propositions, we shall associate quantifiers and their variables directly
to a parametrised proposition in the formula.

Instead of using some previously known domain, we will observe the program (the
trace), for events which will indicate that an object “has become interesting” for
us, that is, that it should be subject to an instantiation of a formula. Although all
our use cases are in fact from event-based systems, our formal framework permits
states with more than one proposition/event per state.

In the example above, the event making a file handle “interesting” for us can be
clearly identified: although many other unused file handles may exist, we want to
observe this property for actually opened files. Thus we wish to reformulate the
property in the way the we only need to contemplate the trace from state to state.
This is easily accomplished through the formula

G [∀x : ¬open(x) ∨ F close(x)].

Unfortunately, this formula also has no explicit constructive proposition which would
tell us only about the currently opened file and still requires us to know all possible
files: it only explicitly mentions files not being opened and files which get closed.

34 Chapter 3. Parametrised LTL Formulae

An ideal framework would allow us to select only pertinent values from the current
state and assert some property which should hold on the rest of the trace. Thus,
we need to make the event which binds the value explicit. This goes hand in hand
with changing the scope of the quantifier, which now only needs to reason about the
current state:

G [∀x : open(x) ∧ F close(x)]

This also already hints at the fact that there exists a special relationship between the
quantified proposition which binds the value and the remainder of the formula which
only uses it. We will see that this is solved by introducing a new (non-commutative)
operator which ties together both sides.

State-based Quantification

One of the foundations of our framework is that each instantiation of a variable
must be a consequence of an observed state. That is, the domain of a variable is
only defined through the trace. This has thorough implications for the handling of
negated propositions containing unbound variables. In fact, we will limit negation
to ground propositions in our framework, but also show that negation can be pushed
through, thus not imposing any limitation on the user (see Theorem 46).

In first-order temporal logic, the quantifiers also give us yet another degree of
freedom: quantification may also be used to enumerate entities present in the current
state only through an explicit existence predicate. This view has been put forth in
[122]. We will use this approach by splitting formulae in two parts: one part contains
the (positive) existence predicate with the quantifiers for variables occurring free in
the parametrised proposition. The second part is a formula where those variables
may only be referenced, but no new valuations for the quantified variables may be
induced. In a state where a proposition p does not hold for any valuation, universal
quantification will short-cut evaluation to tt, while existential quantification will
result in ff .

State-based quantification thus means that quantified variables inside temporal
operators will have potentially disjoint domains. Without presuming too much about
the actual semantics of our extension to LTL that we will define shortly, we shall
consider a small example to illustrate this point. Although the two propositions in
the following formula use the same constructor p, the domains for the variables x
and y are distinct on the trace:

w := {p(1)} {p(2)}
ϕ := (∀x : p(x)) ∧G (∃y : p(y))

If we consider both states separately, we clearly see that in each state, there is
exactly one valuation for the variables: x/1, y/1 in state w[0] and x/2, y/2 in w[1].
As evaluation of temporal formula proceeds along the trace, a possible approach is to
look at a formula and generate the corresponding instances of quantified formulae,

3.2. Extension to Parametrised Propositions and their Semantics 35

in this case based on the initial state:

ϕ ≡ p(1) ∧G p(1)

However, this would neglect the fact that the existential quantifier is contained
within the temporal operator. We might as well consider all possible valuations for
a variable looking at the entire path: in the first step, we accumulate all propositions
occurring on the path, obtaining {p(1), p(2)}. Then, under the same consideration
as above, the instantiation of the quantified variables with respect to this step yields:

ϕ ≡ (p(1) ∧ p(2)) ∧G (p(1) ∨ p(2))

This approach has two drawbacks: on the one hand, it requires collecting the en-
tire path before starting evaluation, which, in the scope of Runtime Verification,
is problematic as we want to detect possible misbehaviour of an application with
regard to some temporal specification immediately, and we might also want to check
continuously running programs. On the other hand, during evaluation, it is hard
to find a suitable meaning for a temporal formula with instantiations of values that
have not occurred yet and will only manifest themselves in future computations.

Instead of the previous all-or-nothing approach, there is also another alternative
to treat quantifiers within temporal operators. Just as the finite path semantics for
the Globally operator refers to the contained subformula, which in this case contains
the quantification, we see that the possible substitutions are applied repeatedly on
subsequent states, that is, using this approach we obtain:

w |= ϕ ⇐⇒ w[0] |= p(1) ∧G p(1)

∧ w[1] |= G p(2)

As a last remark, let us point out that the result of verifying a quantified formula
against a path yields a tt/ff result with a single valuation for the state which
(in)validated the formula. On each state of the trace however, potentially different
valuations have been used if quantification occurs inside temporal operators. For
example, the formula

(∃x : p(x)) U q

requires at least one proposition p(1) to hold in each state up to the state where the
right-hand side q holds. If this formula fails or succeeds, there may be no value for x
available. Previous valuations for x may have been recorded in the trace, but are not
accessible to any posterior state due to inner quantification (also see Example 45).

Next, we will define the underlying mechanisms of our parametrised framework
and then illustrate the provided functionality with examples.

3.2.2 Parametrised Propositions

In the extended framework, a proposition occurring in a formula consists of a con-
structor with a given arity and the corresponding number of variables as arguments.

36 Chapter 3. Parametrised LTL Formulae

In a state, the arguments to the constructor are values from some fixed object do-
main. A state defines a mapping of a parametrised proposition to a set of currently
defined valuations. When matching against a parametrised proposition which con-
tains quantified and already bound variables, each unbound variable in the proposi-
tion may get a value from the underlying domain. This mechanism is closely related
to unification in the Prolog system [114], although we only handle constants, and
not arbitrary terms.

Syntactically, we will enforce by construction that a quantifier is tied to the propo-
sition that binds valuations. In the remainder of the formula, the variable is only
used but does not generate any new bindings.

Definition 29 (Parametrised proposition, Ground proposition)
Let PN be a set of proposition names, where p ∈ PN (n) denotes a constructor of
arity n ∈ �. Then, the set of all propositions P given a fixed value domain D and
a set of variables V is defined as:

P :=
⋃
n∈�

⋃
p∈PN (n)

{p(v1, . . . , vn) | vk ∈ D ∪ V, 1 ≤ k ≤ n}

The set of ground propositions P⊥ is the subset of all propositions where each position
is instantiated with an element of D, that is, no position contains a variable:

P⊥ := {p(d1, . . . , dn) ∈ P | ∀i : di ∈ D, n ∈ �}

The operators of LTL formulae in the extended framework are virtually the same
as in the previous section. But since propositions may now contain variables, we
must introduce quantification. Moreover, we will permit quantifiers also inside sub-
formulae shadowed by temporal operators. We will limit ourselves to sentences,
where every variable is quantified. Syntactically, we restrict formulae to the form
where quantifiers occur only together with a positive proposition.

The introduction of a special operator makes it easier for us to specify and enforce
semantic constraints already on a syntactical level: a quantified existence predicate
(selector) may be the left-hand side of a special type of non-commutative implication

denoted by
·→, where the right-hand side is another temporal formula that refers

to the bound values. The following definition of pLTL formulae adheres to the
syntax definition of LTL (see Figure 3.1), where we replace the atomic propositions
by binding expressions.

Definition 30 (Existence predicate, Selector, pLTL formula)
The set pLTL of parametrised LTL formulae over a set of variables V and a value
domain D is defined by the following attribute grammar where quantified variables
are propagated top-down:

3.2. Extension to Parametrised Propositions and their Semantics 37

pLTL ::= LTL(∅)

LTL(V ⊂ V) ::= tt | ff
| p(u1, . . . , un) ∈ P(n), u1, . . . , un ∈ V ∪ D
| Q1x1 . . . Qmxm : p(u1, . . . , un)

·→ LTL(V ′),

∀i : xi ∈ V, ∃j : xi = uj, Qi ∈ {∀, ∃},
V ′ := V � {x1, . . . , xm}, ∀k : uk ∈ V ′ ∪ D

| F LTL(V)

| G LTL(V)

| LTL(V) U LTL(V)

| LTL(V) R LTL(V)

| LTL(V) ∨ LTL(V)

| LTL(V) ∧ LTL(V)

| ¬LTL(V)

For clarity, we require that quantifiers always use fresh variables, that is, variables
which are not yet contained in V . We use LTL(V) for some V ⊂ V to denote
the set of pLTL formulae with free variables V . Also, examples may omit the
implication and the right-hand side in the leaf of a formula if it implies tt. Note
that each quantified variable must occur at least once in the existence predicate to
avoid vacuous quantification.

Remark 31 (Existence predicate)

A formula Q1x1 . . . Qmxm : p(u1, . . . , un)
·→ ψ can be understood as:

“There exists a set of valuations derived from the current state (depend-
ing on the quantifiers) satisfying both p(u1, . . . , un) and ψ with the bound
values.

Otherwise the outermost quantifier indicates whether evaluation should
succeed (universal quantification over the empty domain) or fail (exis-
tential quantification).”

The formal definition will be given below. We define the finite paths semantics for
a pLTL formula over a set of variables with respect to a given valuation (binding)
β : V � D and a path w = w[0] . . . w[n− 1] ∈ (2P⊥)n.

38 Chapter 3. Parametrised LTL Formulae

Definition 32 (Valuation function, Binding)
Let β̂ be the natural extension of β : U → D over pLTL propositions and formulae
ϕ ∈ LTL(V), U, V ⊂ V, bound(ϕ) ∩ U = ∅:

β̂ : LTL(V)→ LTL(V)

β̂(p(v1, . . . , vm)) := p(u1, . . . , um), where

ui :=

{
β(vi), if vi ∈ V and β(vi) defined

vi, otherwise

β̂(tt) := tt, β̂(ff) = ff

β̂(¬ϕ) := ¬β̂(ϕ)

β̂(Q1x1 . . . Qmxm : p(u1, . . . , un)
·→ ψ) := Q1x1 . . . Qmxm : β̂(p(u1, . . . , un))

·→ β̂(ψ)

β̂(F ϕ) := F β̂(ϕ), β̂(G ϕ) := G β̂(ϕ)

β̂(ϕ⊕ ψ) := β̂(ϕ)⊕ β̂(ψ), ⊕ ∈ {R,U,∧,∨} (binary operators)

We use β∅ to denote the empty valuation which does not assign a value to any
variable. When representing valuations in the text, we will use a set of tuples
consisting of variable/value pairs, for example, {x/3, y/4}, resembling the function
that maps x to 3 and y to 4.

Definition 33 (Specialisation of valuations)
The � operator specialises a valuation. We will later only use it in an environment
where the two bindings are disjoint and thus one binding extends the previous one.

� : (V � D)× (V � D)→ (V � D)

β2 � β1 := λx.

{
β1(x), if x ∈ V bound in β1

β2(x), otherwise

Corollary 34 (Composition of valuations)

It is easy to see that γ̂ ◦ β̂ ≡ ̂(γ � β). (Without proof.)

Definition 35 (Unifiable parametrised propositions)
Two parametrised propositions with the same proposition name are called unifi-
able, iff there exist substitutions for all variables occurring in them such that both
propositions are identical under these substitutions:

↓: P × P → 	

p(u1, . . . , un) ↓ p(v1, . . . , vn) (ui, vi ∈ V ∪ D, 1 ≤ i ≤ n) :⇐⇒
∃σ1, σ2 : V � D such that σ̂1(p(u1, . . . , un)) = σ̂2(p(v1, . . . , vn))

Definition 36 (Valuations of a parametrised proposition)
Given a (partially instantiated) parametrised proposition p(u1, . . . , un) ∈ P and a
state a ∈ 2P⊥ , we obtain all possible valuations for a variable x ∈ {u1, . . . , un}:

vals : P × 2P⊥ × V → 2D

vals(p(u1, . . . , un), a, x) := {d ∈ D | ∃p(d1, . . . , dn) ∈ a :

({̂x/d})(p(u1, . . . , un)) ↓ p(d1, . . . , dn)}

3.2. Extension to Parametrised Propositions and their Semantics 39

Definition 37 (Extended finite path semantics)
We define the extended finite path satisfaction relation (w[j], β) |= ϕ for a non-
empty path w = w[0] . . . w[n − 1] ∈ (2P⊥)n, 0 ≤ j < n, β : V � D, and a formula
ϕ ∈ LTL(V), V ⊂ V by induction on the structure of ϕ.

First, we define the model satisfaction relation where no existence predicates
occur. The only difference to the plain LTL semantics (Definition 20) is that the
already accumulated valuation β is threaded through:

(w[j], β) |= tt, (w[j], β)
|= ff ,

|= p(u1, . . . , um) iff β̂(p(u1, . . . , um)) ∈ w[j],
|= ¬ϕ iff w[j]
|= ϕ
|= F ϕ iff ∃k (j ≤ k < n) s.th. (w[k], β) |= ϕ
|= G ϕ iff ∀k (j ≤ k < n)→ (w[k], β) |= ϕ
|= ϕ U ψ iff ∃k (j ≤ k < n) s.th. (w[k], β) |= ψ

∧ ∀l (j ≤ l < k)→ (w[l], β) |= ϕ
|= ϕ R ψ iff ∀k (j ≤ k < n)→ (w[k], β) |= ψ

∨ ∃l (j ≤ l < k) s.th. (w[l], β) |= ϕ
|= ϕ⊕ ψ iff (w[j], β) |= ϕ⊕ (w[j], β) |= ψ,⊕ ∈ {∨,∧}

In the presence of existence predicates with quantifiers, we first derive the set of all
possible valuations for each variable and are obliged to prove the remaining formula
with respect to these bindings. We need to be aware that quantification over an
empty set D′ results in either ff or tt, depending on the quantifier. This is achieved
through the disjunctive normal form (DNF), where we calculate the set of sets of
valuations, where for at least one item in the outer set, all valuations of the inner
set must satisfy the formula on the remaining path:

(w[j], β) |= Q1x1 . . . Qkxk : p(u1, . . . , um)
·→ ψ,

iff ∃θ ∈ Θ such that ∀σ ∈ θ : (w[j], σ � β) |= ψ

which we can reformulate to

∨
θ∈Θ

∧
σ∈θ

(w[j], σ � β) |= ψ

40 Chapter 3. Parametrised LTL Formulae

where

Θ := valid(valsx1 ⊗1 (. . . (valsxk ⊗k {{β∅}}) . . .)),
or {{β∅}} if k = 0 (no quantifiers)

valsxi := vals(β̂(p(u1, . . . , um)), w[j], xi)

⊗i : 2D × 22V�D → 22V�D

D ⊗i Θ′ :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⋃
θ′∈Θ′

{ ⋃
σ′∈θ′
{ {xi/d} � σ′}

∣∣∣∣∣ d ∈ D
}

, if Qi = ∃

⊗
d∈D
{{{ {xi/d} � σ′ | σ′ ∈ θ′}| θ′ ∈ Θ′}} , if Qi = ∀

with
⊗
{Θ1, . . . ,Θn} := Θ1 ⊗ . . .⊗Θn, where

S ⊗ T := {s ∪ t | s ∈ S, t ∈ T}
and valid(Ω) :=

{
{σ | σ ∈ θ, (σ̂ � β)(p(d1, . . . , dm)) ∈ w[j]}

∣∣∣ θ ∈ Ω
}

The above calculation is thus the extension of the vals function (Definition 36) to
multiple quantifiers and shall be referred to in the future as the function

spec : (V � D)× 2P⊥ × LTL(V)→ 22V�D
,

that is, here
Θ = spec(β, w[j], Q1x1 . . . Qkxk : p(u1, . . . , um)).

Observe that although β is passed in to the function, the resulting valuations are
calculated modulo the pre-existing binding. Old and new bindings are composed
through the expression σ � β in the consumer. The right-hand side of the existence-
predicate passed into the evaluation of spec takes no part in the result and is therefore
omitted where convenient.

We define two shorthands for convenience. Like for plain LTL, for a given path
w we consult the above semantics starting at the first item in the path:

(w, β) |= ϕ :⇐⇒ (w[0], β) |= ϕ.

A path is a model for a pLTL formula, if the formula can be proved for the initially
empty valuation β∅:

w |= ϕ :⇐⇒ (w, β∅) |= ϕ.

β̂∅ is thus the identity function id .

Theorem 38
For all non-empty paths w ∈ (2P⊥)+, ϕ ∈ LTL(V) in positive form, V ⊂ V, and
valuations β : V � D it holds that:

(w, β) |= ϕ ⇐⇒ (w, β∅) |= β̂(ϕ)

3.2. Extension to Parametrised Propositions and their Semantics 41

Proof:

This property clearly holds on the propositional level. For the Boolean and temporal
operators, evaluation just proceeds into the respective branches. Next, we look at
the proof for the case where a valuation is actually applied to a proposition with an
existence predicate. For the left-hand side with �u = u1, . . . , um, we obtain:

(w, β) |= Q1x1 . . . Qkxk : p(�u)
·→ ψ

≡ (w[0], β) |= Q1x1 . . . Qkxk : p(�u)
·→ ψ

≡ ∃θ ∈ Θ s.th. ∀σ ∈ θ : (w[0], σ � β) |= ψ
with Θ := spec(β, w[0], Q1x1 . . . Qkxk : p(�u))

Looking at the right-hand side of the theorem according to the definition:

(w, β∅) |= β̂(Q1x1 . . . Qkxk : p(�u)
·→ ψ)

≡ (w[0], β∅) |= β̂(Q1x1 . . . Qkxk : p(�u)
·→ ψ)

≡ ∃θ ∈ Θ′ s.th. ∀σ ∈ θ : (w[0], σ � β∅) |= β̂(ψ),

with Θ′ := spec(β∅, w[0], Q1x1 . . . Qkxk : β̂(p(�u)))

As β∅ is the empty valuation function, it holds that

≡ ∃θ ∈ Θ′ s.th. ∀σ ∈ θ : (w[0], σ) |= β̂(ψ)

Since by the induction above (w[0], σ � β) |= ψ ≡ (w[0], β∅) |= ̂(σ � β)(ψ) ≡
(w[0], σ) |= β̂(ψ) (ψ will eventually be a leaf of a formula), it remains to be shown
that Θ = Θ′. For both, the derivations are obtained with respect to the same state
and the same set of free variables. For Θ := spec(β, w[0], Q1x1 . . . Qkxk : p(�u)) the
per-variable instantiation is by definition:

valsΘ
xi

= vals(β̂(p(�u)), w[0], xi),

while Θ′ := spec(β∅, w[0], Q1x1 . . . Qkxk : β̂(p(�u))) applies the current valuations
first:

valsΘ′

xi
= vals((β̂∅ ◦ β̂)(p(�u)), w[0], xi)

= vals(β̂(p(�u)), w[0], xi).

We conclude that for each quantified variable xi on a state w[0] the same instances
are computed. Thus we are free to move substitutions from either side to the other.

Corollary 39
It follows that

(w, β) |= ϕ ⇐⇒ (w, β∅) |= β̂(ϕ) ⇐⇒ w |= β̂(ϕ).

(Without proof.)

42 Chapter 3. Parametrised LTL Formulae

Remark 40 (Fallback to propositional logic)
Observe that in the absence of quantifiers and thus parametrised propositions with
variables, always the empty valuation will be propagated. Applying it (or any other)

valuation to ground propositions results simply in the proposition again. The
·→

operator is then equivalent to the Boolean “and”.

Corollary 41 (Semantics of non-ground propositions)
From the declarative semantics it follows that partially instantiated propositions,
that is, propositions which have at least one free variable, never satisfy any state.

Theorem 42 (Upwards compatibility of disjoint bindings)
For independently quantified formulae ϕ, ψ ∈ pLTL with bound(ϕ)∩bound(ψ) = ∅,
the bindings obtained from both branches of a binary ∨ operator can be combined
by set union.

Proof:

(w, β) |= ϕ ∨ ψ
≡ (w, β) |= ϕ or (w, β) |= ψ
≡ (∃θ ∈ spec(β, w[0], ϕ) : ∀σ ∈ θ : (w[0], σ � β) |= ϕ̄)

or (∃θ ∈ spec(β, w[0], ψ) : ∀σ ∈ θ : (w[0], σ � β) |= ψ̄)
≡ ∃θ ∈ (spec(β, w[0], ϕ) ∪ spec(β, w[0], ψ)) : ∀σ ∈ θ : (w[0], σ � β) |= ϕ̄ ∨ ψ̄

with

Q1x1 . . . Qmxm : p(u1, . . . , un)
·→ ψ := p(u1, . . . , un) ∧ ψ
ψ := ψ, otherwise

as bindings obtained from separate branches involve disjoint sets of variables and
thus can never affect the evaluation of the opposite branch.

Since the namespaces of ϕ and ψ are disjoint and therefore any branch will fail
under a substitution obtained from the opposite branch because of Corollary 41.

A similar result can be obtained for the temporal U operator, while ∧ requires
the combination of bindings through the crossproduct as both branches must find
valuations. R is special since it is a combination of both: satisfaction requires both
sides to hold, but evaluation can also proceed with bindings obtained only from the
left-hand side.

This property gives us an alternative means of deriving the set of valuations that
are inferred for a parametrised formula from the current state. As in predicate logic,
if both branches use the same bound variable, a renaming can first be applied to
obtain disjoint sets without changing the semantics of the formula.

Also, this is a convenient location to remind the reader that any obtained valuation
can still be refuted on the current state, as evaluation of the right-hand side may
still fail for that binding. Consider for example the trivial case of ∃x : p(x)

·→ ff
where many valuations can be derived, but all will be dropped after evaluation of
the right-hand side.

3.2. Extension to Parametrised Propositions and their Semantics 43

Example 43 (Valuations)
We exemplify the mechanism of valuations: let

ϕ := ∀x∃y : p(x, y)
·→ ψ, and

w := {p(1, 1), p(1, 2), p(2, 1), p(2, 3)}, |w| = 1.

We obtain the following valuations for p(x, y):

β1 = {x/1, y/1}, β2 = {x/1, y/2}, β3 = {x/2, y/1}, β4 = {x/2, y/3}

Observe that neither {x/1, y/3} nor {x/2, y/2} are inferred bindings, since no val-
uations are generated which do not produce instances of the active proposition in
the current state. The resulting proof obligations are:

w |= ϕ ⇐⇒ [(w, β1) |= ψ ∨ (w, β2) |= ψ]

∧ [(w, β3) |= ψ ∨ (w, β4) |= ψ]

Resolving this into Disjunctive Normal Form, we get:

Θ = { {{x/1, y/1}, {x/2, y/1}}, {{x/1, y/1}, {x/2, y/3}},
{{x/1, y/2}, {x/2, y/1}}, {{x/1, y/2}, {x/2, y/3}} }

w |= ϕ ⇐⇒
∨
θ∈Θ

∧
β∈θ

(w, β) |= ψ

For further clarify the mechanism, we show the effect of two other quantifications:

∀x∀y � Θ = { {{x/1, y/1}, {x/1, y/2}, {x/2, y/1}, {x/2, y/3}} }
∃y∀x� Θ = { {{x/1, y/1}, {x/2, y/1}}, {{x/1, y/2}}, {{x/2, y/3}} }

In the case of the same quantified variable occurring several times in the existence
predicate, on the same state as above, {x/1} is the only derived valuation:

ϕ := Qx : p(x, x)
·→ ψ

Remark 44 (Temporal assertions in J-LO)
The formal model of the “Java Logical Observer” J-LO [18, 115] (see Section 5.4)
only permitted quantification over events. It did not contain overlapping proposi-
tions, that is, in each state, exactly one proposition did hold. Quantification was
implicit: the Globally-operator induced universal quantification, while a Finally
resulted in existential quantification.

Example 45 (Error witness, path of valuations)
In case a formula is refuted, we are naturally interested in the concrete bindings ob-
tained during its evaluation, for example, as a debugging aid. Consider the formula:

ϕ := G ∀x : p(x)
·→ ψ.

44 Chapter 3. Parametrised LTL Formulae

On every state, we need to find a fresh instantiation σ for the variable x such

that σ̂ � β(ψ) holds. Because of the unwinding when Globally is expressed through
Release (see Definition 20), we may obtain a new valuation for x in each state on a
path w of length n given some initial binding β:

(w, β) |= G ∀x : p(x)
·→ ψ ⇐⇒ ∀k < n→ (w[k], β) |= ∀x : p(x)

·→ ψ.

If we eventually refute the formula, we do so for a specific binding, which we can
consider as a witness to the error. This binding will of course contain the previous
valuations β. But in the case of the Globally formula above, in some state w[i],
the obtained binding will not include any valuations bound previously to x, for
example, on state w[i − 1], which might be helpful information to a user tracking
down a particular problem. The semantics of the Globally operator requires us to
”restart” evaluation based on β in each state.

As a formula refuted in state w[j] will only contain bindings β obtained before
starting evaluation of w and some value of x obtained at some state w[i], i < j, the
combined valuation σ�β does not contain information about the bound values that
allowed evaluation to proceed thus far, that is, states w[0], . . . , w[i− 1].

If such information should be provided to the user, the implementation can provide
a record of all instantiations in the past or compute them again on demand from the
beginning of the trace. As an example, assume that ψ = p(2), which should hold
when x is bound to the value of 2. On the trace

w = {p(2)}∅∅{p(1)}{p(3)}

the formula will be refuted on state w[3] = {p(1)}, yielding only the valuation {x/1}
(the previous states have been accepted because of quantification over the empty
set). It holds no indication of the valuations obtained in previous states ({x/2} in
w[0], the empty valuation in states w[1] and w[2]), although they are material for
not making the formula fail earlier. We also note that the path up to w[3] is the
shortest trace which refutes the formula.

3.2.3 Negation in pLTL

In a general framework of first order logic, negation is usually pushed through quan-
tifiers, toggling them as it passes them. In temporal formulae, a similar behaviour
occurs for temporal operators, that is, F/G or R/U, respectively (see Definition
25 for positive form of plain LTL formulae). This is especially necessary for the
automaton based construction as it assures that a normal form is attained.

In our setting with existence predicates, though, quantifiers are closely tied to the
selector which enumerates the current objects that the right-hand side should affect.
Thus, we do not have the notion of a negated selector. Accordingly, negations can
only appear on the right-hand side of the existence predicate.

Let’s consider the pLTL formula

ϕ := ¬∀x : p(x)
·→ F q(x).

3.2. Extension to Parametrised Propositions and their Semantics 45

Figure 3.2 shows the result of evaluating the formula on three different traces.
Naively pushing down the negation, we obtain the formula

ϕ′ := ∃x : p(x)
·→ ¬F q(x)

≡ ∃x : p(x)
·→ G ¬q(x)

Clearly, ϕ′ shows the desired behaviour.

Trace Result for ϕ/ϕ′

{p(1),p(2)};{q(1),q(2)} ff
{p(1),p(2)};{q(1)} tt
∅;{q(1),q(2)} ff

Figure 3.2: Negation in pLTL

Definition 46 (Positive form of a pLTL formula)
Given a pLTL formula ϕ, we extend the rewriting rules for plain LTL formulae from
Definition 25 through the rule:

¬Q1x1 . . . Qnxn : p(y1, . . . , ym)
·→ ψ

−→ Q1x1 . . . Qnxn : p(y1, . . . , ym)
·→ ¬ ψ,

where

Qi :=

{
∃, iff Qi = ∀
∀, iff Qi = ∃.

Theorem 47 (Equivalence of positive form of a pLTL formula)
For each path w, valuation β, and formula ϕ, we show that

(w, β) |= ¬ϕ ⇐⇒ (w, β) |= (¬ϕ)+.

Proof:

As for formulae that do not begin with an existence predicate, we know that we
can apply the substitution simply to the right-hand side and obtain a partially
instantiated formula. For this the regular finite path semantics holds on each sub-
formula, so we restrict our consideration to the newly introduced quantified existence
predicate with a single quantifier. By construction, the result can be lifted. Let

ϕ := Qx : p(y1, . . . , yn)
·→ ψ

and
ΘQ := spec(β, w[0], Qx : p(y1, . . . , yn)).

Since in both the original and the normalised cases the bindings are calculated
with respect to the same initial binding on the same state, on the one hand bindings
(if any) are conjoined, while on the other hand they are disjoint:

46 Chapter 3. Parametrised LTL Formulae

Θ∀ := { {σ1, . . . , σk} }
Θ∃ := { {σ1}, . . . , {σk} }

We branch over the quantifier:

1. Q = ∀:
(w, β) |= ¬ϕ

= (w, β)
|= ∀x : p(y1, . . . , yn)
·→ ψ

≡ ¬[∃θ ∈ Θ∀ s.th. ∀σ ∈ θ : (w, σ � β) |= ψ]

This gives rise to two further cases: either there are some p(n) in the current
state which allow specialisation of the current binding or not. For the latter,
by definition of Θ∀, we know that ∀ succeeds on no valuation, yielding an
overall result of ff due to the negation in this case.

If valuations exist, by definition we only obtain conjuncts, that is, |Θ∀| = 1.

¬
[∨
θ∈Θ∀

∧
σ∈θ

(w, σ � β) |= ψ

]

≡ ¬
[∧
σ∈θ

(w, σ � β) |= ψ, with Θ∀ = {θ}
]

≡
∨
σ∈θ

(w, σ � β)
|= ψ, with Θ∀ = {θ}

≡
∨

σ∈{σ1,...,σk}

(w, σ � β)
|= ψ

We will now take a look at the positive expansion and see that we indeed
obtain the same result.

(w, β) |= (¬ϕ)+

= (w, β) |= (¬∀x : p(y1, . . . , yn)
·→ ψ)+

= (w, β) |= ∃x : p(y1, . . . , yn)
·→ (¬ψ)+ (rewriting rule)

≡ ∃θ ∈ Θ∃ s.th. ∀σ ∈ θ : (w[0], σ � β) |= (¬ψ)+

≡
∨
θ∈Θ∃

∧
σ∈θ

(w, σ � β) |= (¬ψ)+

≡
∨

σ∈{σ1,...,σk}

(w, σ � β) |= (¬ψ)+ (|Θ∃| = k, |θi| = 1)

≡
∨

σ∈{σ1,...,σk}

(w, σ � β)
|= ψ (induction)

By induction, the right-hand side will eventually reach an unquantified sub-
formula. We conclude that positive normal form does not affect overall evalu-
ation.

3.3. Predicates 47

2. Q = ∃:
A similar argument can be given for existential quantification.

3.3 Predicates

As propositions in the trace allow access to values from the underlying domain, we
might as well make use of them: values are bound to variables, and given an inter-
pretation, we can easily introduce relations over values into our logic. Furthermore,
allowing also functions, we can construct Boolean terms over variables which can
be evaluated.

Definition 48 (Terms)
Given a signature Σ of n-ary function symbols (including constants)

Σ :=
⋃
{F (n) | n ∈ �}

and variables V ⊆ V, we define the set of terms TΣ(V) inductively:

1. F (0) ⊆ TΣ(V)

2. V ⊆ TΣ(V)

3. f(t1, . . . , tn) ∈ TΣ(V) if t1, . . . , tn ∈ TΣ(V) and f ∈ F (n).

Definition 49 (Predicate syntax)
Syntactically, a predicate has the same structure as a proposition, the arguments
are terms with variables. Let PrN (n) denote the predicate names of arity n ≥ 1.
The arguments are variables which must already have been bound by an existence
predicate and its corresponding quantifier:

LTL(V ⊂ V) ::= . . .

| q(t1, . . . , tn), q ∈ PrN (n), t1, . . . , tn ∈ TΣ(V)
| . . .

Observe that variables and functions can only occur within a predicate and not
directly in a formula.

We shall use the same notion of all predicates Pr and ground predicates Pr⊥ as
we do for propositions, that is, that no variables may occur. Also, we deliberately
confuse the constants with the elements from D, that is F (0) = D.

Definition 50 (Predicate semantics)
Given an interpretation I := 〈D, ξ〉 (see Definition 6) extended to predicate names
by ξ(q) : D(n) → {tt,ff} for each q ∈ PrN (n) and n ≥ 1, the finite path semantics
of pLTL for a predicate q(t1, . . . , tn) ∈ Pr, where ti ∈ TΣ(V) is extended through
the following rules for predicates

(w, β) |= q(t1, . . . , tn) iff (ξ, β)(q(t1, . . . , tn)) = tt
(w, β) |= ¬q(t1, . . . , tn) iff (ξ, β)(q(t1, . . . , tn)) = ff

48 Chapter 3. Parametrised LTL Formulae

where I yields with regard to β : V → D the usual interpretation (ξ, β) of a term
t ∈ TΣ(V) with

1. (ξ, β)(c) = ξ(c), for c ∈ F (0)

2. (ξ, β)(v) = β(v) for v ∈ V,

3. (ξ, β)(f(u1, . . . , un)) = ξ(f)((ξ, β)(u1), . . . , (ξ, β)(un)), for f ∈ F (n),

and in the same way for a predicate

(ξ, β)(q(t1, . . . , tn)) = ξ(q)((ξ, β)(t1), . . . , (ξ, β)(tn)).

Example 51 (Predicates over natural numbers)
Let D = � and ξ be the standard semantics of functions and relations on natural
numbers. Let

ϕ := G [∀o, y : set(o, y)
·→ G ∀z : set(o, z)

·→ (y ≤ z)]

Here we have set ∈ PN (2), (≤) ∈ PrN (2). Consider now that set might correspond
to an event where an object (or object attribute) o gets assigned some value (object
reference could be represented as a natural number). Then this formula states that
the value must only monotonically be incremented, otherwise it fails.

Remark 52 (Predicates and temporal operators)
Since predicates are evaluated with respect to bound values and functions are side-
effect free, certain invariants hold which may be used to optimise formulae in the
sense of eliminating temporal sub-formulae in favour of a simple predicate: for all
instances of x, y it holds that

G q(x, y) ⇐⇒ q(x, y)

G ¬q(x, y) ⇐⇒ ¬q(x, y)

since without rebinding, which can only be caused through occurrence of quantifi-
cation within the temporal operator, the result cannot change. This is similar to
simplifying temporal formulae such as G tt.

Next, we show that for ground formulae, we can first evaluate the predicates and
then apply the finite path semantics.

Definition 53 (Evaluation of predicates in formulae)
Given a pLTL formula over ground propositions P⊥ and predicates Pr⊥, we define
the evaluation of predicates with regard to an interpretation I = 〈D, ξ〉 as follows:

3.3. Predicates 49

evalI : pLTL→ pLTL

evalI(q(�d)) := ξ(q)(�d), q(�d) ∈ Pr⊥
evalI(¬q(�d)) := ¬ξ(q)(�d), q(�d) ∈ Pr⊥

evalI(ϕ ∨ ψ) := evalI(ϕ) ∨ evalI(ψ)

evalI(ϕ ∧ ψ) := evalI(ϕ) ∧ evalI(ψ)

evalI(ϕ U ψ) := evalI(ϕ) U evalI(ψ)

evalI(ϕ R ψ) := evalI(ϕ) R evalI(ψ)

evalI(ϕ) := ϕ, otherwise (tt, ff , propositions)

The temporal formula remains unchanged except that all predicates have been eval-
uated to their Boolean results. It can then be subjected to checking with respect to
the finite path semantics.

Theorem 54 (Correctness of evaluation)
Given a ground formula φ ∈ pLTL, an interpretation I, and a path w,

w |= φ ⇐⇒ w |= evalI(φ).

(Without proof.)

Example 55 (Singleton pattern)
Consider a variant of the Singleton design pattern [57]:

“Ensure a class has only one instance, and
provide a global point of access to it”

The informal contract for such a class prescribes that, after creating an object with
new, the consumer must additionally invoke an explicit instantiation method and
use the returned handle instead of the object created by new. The instantiation
method would, for example, use a class variable (opposed to an instance variable)
to look up a previously created instance or create a new one if none exists yet.

We want to observe whether a class adheres to this principle. Every invocation
of Singleton.instantiate should return the same object identifier. The event
method exit(Singleton.instantiate, this,C .m, target , args, r) captures this method
call and its return value. As the only relevant information in this event is the instance
returned r (the return value of the method call), for convenience we abstract this into
a proposition inst(r). This abstraction will later be formalised in Chapter 4. We
can express this pattern in an event-based setting without overlapping propositions
as follows:

G ∀x : inst(x)
·→ G (inst(x) ∨ �y : inst(y)

·→ tt)

≡ G ∀x : inst(x)
·→ G (inst(x) ∨ ∀y : inst(y)

·→ ff)

50 Chapter 3. Parametrised LTL Formulae

Observe that this is equivalent to

G ∀x : inst(x)
·→ G (∀y : inst(y)

·→ inst(x))

After seeing any instantiation, either no subsequent instantiation inst(y) occurs
(universal quantification yields tt, thus accepting that state), or, if it occurs, we
assert that the returned handle is the same one we have observed previously (there
will only be a single instantiation for the universally quantified variable y due to
the event-based setting): the inner Globally will fail for an event inst(y) that has
x
= y.

Remark 56 (Predicates and equality)
Of course relations may also be specified statically: for example, equality can be
expressed as a binary predicate (=) with the natural semantics:

ξ(=) := λ x y.

{
tt, if x = y

ff , otherwise
, ∀x, y ∈ D

that is, each member of the domain is in this relation with only itself. That way, it
can be used to compare bound variables.

3.4 Translating LTL Formulae into Alternating Finite
Automata

In the following, we introduce alternating finite automata and recapitulate how
LTL formulae can be translated into them such that the language induced by an
LTL formula ϕ is exactly the language accepted by an appropriately constructed
alternating automaton Aϕ. That way, we can use Aϕ to decide if an input w (a
path) is a model for ϕ.

The automaton construction is then extended in the next section to collect the
bindings of our parametrised formalism.

Alternating finite automata are due to Chandra, Kozen, and Stockmeyer [25, 26].
In the classical, that is, propositional setting, alternating finite automata generated
from LTL formula consume finite words and produce as result a run in the form of
a tree; we paraphrase [124].

Definition 57 (Alternating finite automaton)
An alternating finite automaton is a tuple A := 〈Σ, Q, q0, δ, F 〉. Σ is the finite
nonempty input alphabet, Q a finite nonempty set of states, q0 ∈ Q a unique initial
state, a transition function δ : Q × Σ → 22Q where we consider 22Q as a Boolean
formula over states in DNF, and a set F ⊆ Q of accepting states. Due to universal
choice, a run of an alternating automaton yields a tree. Existential choice allows
non-deterministic choice between all trees.

3.4. Translating LTL Formulae into Alternating Finite Automata 51

A run tree of A for a finite word w = a0, a1, . . . , an−1 is a tree where each node x is
assigned a label λ(x) ∈ Q. Every node in a run tree of the automaton has a unique
predecessor, except for the root of the tree, denoted by ε, which has no parent. The
level of a node |x| is its distance from the root node, where |ε| = 0.

The labelling has the following properties: λ(ε) = q0, and a node x with |x| = i has
a set {x1, . . . , xk} of successor nodes, if {λ(x1), . . . , λxk} ∈ δ(λ(x), ai). Consequently,
there are two possibilities for a sink node, that is, a node without successor nodes:
a true node if ∅ ∈ δ(λ(x), ai) and a false node if δ(λ(x), ai) = ∅.

The run of an alternating finite automaton is accepting, if all nodes on depth n
are in the automaton’s acceptance set and it does not contain any ff-nodes.

We say w ∈ Aϕ, iff there exists an accepting run tree for Aϕ on w.

For a node x of a run tree with |x| = i and a non-empty set of successors
{x1, . . . , xk} with ∅ ∈ δ(λ(x), ai), without loss of generality, we can treat x as a
true-node and eliminate the subtree with root x. Accordingly, delta shall have the
following property:

∅ ∈ δ(q, a)⇒ δ(q, a) = {∅}

Next, based on a formula ϕ, we construct an alternating automaton Aϕ that
accepts the same language LAϕ as the language of the formula Lϕ (see Defini-
tion 21). For the construction of the alternating automaton from a formula, we
need the closure of a formula where negations only occur on the propositional level
(see Lemma 26).

For the remainder of this section, we also assume that all occurrences of the unary
temporal operators F and G have been rewritten into their counterparts using U
and R (see Definition 23).

Definition 58 (Closure of a formula)
The closure cl : LTL→ 2LTL of a formula φ in positive form, is defined through all
(syntactical) subformulae of φ.

– φ ∈ cl(φ)

– tt,ff ∈ cl(φ)

– if ϕ ∨ ψ ∈ cl(φ) then ϕ, ψ ∈ cl(φ)

– if ϕ ∧ ψ ∈ cl(φ) then ϕ, ψ ∈ cl(φ)

– if ϕ R ψ ∈ cl(φ) then ϕ, ψ ∈ cl(φ)

– if ϕ U ψ ∈ cl(φ) then ϕ, ψ ∈ cl(φ)

Definition 59 (Alternating finite automaton for an LTL formula)
By induction on the structure of a positive LTL formula φ, we obtain the corre-
sponding alternating automaton, where each element of the closure of φ is a state

52 Chapter 3. Parametrised LTL Formulae

in Aφ = 〈2AP , cl(φ), φ, δ, F 〉. The set of final states contains the tt state and all
Release nodes:

F := {tt} ∪ {q ∈ cl(φ) | q = ϕ R ψ}
The transition relation is defined as follows.

– δ(tt, a) = {∅}

– δ(ff , a) = ∅ (tt and ff can be considered sinks)

For propositions p ∈ AP :

– δ(p, a) = {{tt}}, if p ∈ a

– δ(¬p, a) = {{ff}}, if p ∈ a

– δ(p, a) = {{ff}}, if p
∈ a

– δ(¬p, a) = {{tt}}, if p
∈ a

Binary Boolean operators, ϕ, ψ ∈ LTL:

– δ(ϕ ∧ ψ, a) = δ(ϕ, a)⊗ δ(ψ, a)

– δ(ϕ ∨ ψ, a) = δ(ϕ, a) ∪ δ(ψ, a)

Temporal operators:

– δ(ϕ U ψ, a) = δ(ψ, a) ∪ ({{ϕ U ψ}} ⊗ δ(ϕ, a)) }

– δ(ϕ R ψ, a) = (δ(ϕ, a)⊗ δ(ψ, a)) ∪ ({{ϕ R ψ}} ⊗ δ(ψ, a))

We note that the explicit Boolean disjunction and the disjunction implicit in the
Until and Release definitions introduce non-determinism into the automaton.

Theorem 60 (Equivalence of Aϕ and ϕ)
Given a formula ϕ ∈ LTL in positive form, it holds that

Aϕ ≡ ϕ.

Proof:

We show equivalence of the formula and the respective automaton construction by
showing equality of their corresponding languages, that is

LAϕ = Lϕ.

We outline the proof based on the inductive construction of the transition function:
on the propositional level, it is easy to see that the automaton accepts an input
corresponding to the semantics of propositional formula by transiting from the initial

3.4. Translating LTL Formulae into Alternating Finite Automata 53

state to a Boolean formula of conjunctions where propositions have been evaluated
to tt based on the input. Non-determinism resolves the choice between disjuncts.

On the temporal level, we take a look at the Until operator. We recall the finite
path semantics from Definition 20 for a path w of length n:

w[j] |= ϕ U ψ iff ∃k (j ≤ k < n) s.th. w[k] |= ψ
∧ ∀l (j ≤ l < k)→ w[l] |= ϕ

The induced language is

LϕUψ :=
⋃
k∈�

((Σk · Lψ) ∩ (
⋂

0≤l<k
(Σl · Lϕ)))

(· is language concatenation; for k = l = 0 we assume the right-hand side of the
intersection to return the neutral element of intersection, that is, Σ∗ here). We call

the language for a given k L
(k)
ϕUψ.

On the automaton side, we obtain by construction

LAϕUψ
:= LAψ ∪ (LAϕ ∩ Σ · LAϕUψ

)

Unwinding the recursive definition, we obtain

LAϕUψ
= LAψ (0)
∪ LAϕ ∩ (Σ · LAψ) (1)
∪ LAϕ ∩ (Σ · (LAϕ ∩ (Σ · LAψ))) (2)
∪ . . .

The term on row (2) can be transformed into

LAϕ ∩ (Σ · (LAϕ ∩ (Σ · LAψ))) = LAϕ ∩ (Σ · LAϕ) ∩ (Σ · Σ · LAψ)

Generalising this, for each disjunction i, we obtain i conjuncts of the form Σj · LAϕ ,
0 ≤ j < i and a final conjunct Σi · LAψ . We define:

L
(i)
AϕUψ

:= (
⋂

0≤j<i
(Σj · LAϕ)) ∩ (Σi · LAψ)

Forming the disjunction over all rows, and assuming that Lϕ = LAϕ and Lψ = LAψ
for the induction, we obtain:

LAϕUψ
:=

⋃
k∈�

L
(k)
AϕUψ

=
⋃
k∈�

((
⋂

0≤j<k
(Σj · LAϕ)) ∩ (Σk · LAψ))

=
⋃
k∈�

((
⋂

0≤j<k
(Σj · Lϕ)) ∩ (Σk · Lψ)),

thus completing the proof for LϕUψ = LAϕUψ
. The corresponding proof for Release

formulae is left as an exercise to the reader.

54 Chapter 3. Parametrised LTL Formulae

Remark 61 (Size of the construction)
Observe that there is a fixed number of states of the automaton depending only on
the formula. Since the transition function of an alternating automaton is a power
set construction over the closure of the formula, this limits also the maximum size
of those successor formulae with respect to standard Boolean optimisations (for
example, ϕ∧ϕ = ϕ). Because we handle these formulae as sets, we get part of those
optimisations for free.

Some issues like having the states for the same proposition both in positive and
negative form in the same clause are not covered by the construction above but
rather deferred to evaluation of a run. An implementation of the algorithm above
might want to short-cut those right at construction time, as might be done with
conjoined edges leading to the tt node.

Example 62 (Sample construction)
We illustrate the construction with an example taken from [53]. Let

φ := G (¬a→ ¬b U c)

and the input alphabet Σ := 2{a,b,c}. First, we eliminate the implication and express
the globally using Release:

φ = ff R (a ∨ ¬b U c)

As the formula is already in positive form, we can directly derive the closure of the
formula:

cl(φ) = { ff R (a ∨ ¬b U c), a ∨ ¬b U c, a,¬b U c,¬b, c, tt,ff }

The automaton will thus have two accepting states: the initial state since it is a
Release state and of course tt.

F := { tt,ff R (a ∨ ¬b U c) }

Instead of giving the transition table as an eight by eight matrix (23 input characters
and |cl(φ)| = 8 states), we illustrate the resulting automaton graphically in Figure
3.3 (conjoined edges with a dot indicate a conjunction). Observe that in the absence
of a Next operator only temporal nodes, that is, nodes containing a temporal outer-
most operator, and tt/ff are reachable. The other nodes, like a ∨ ¬b U c, are only
used during construction, but take no part in a run. As a further simplification for
presentation, we do not label edges with the entire input letter, but only give the
propositional formulae which have to hold in DNF, treating non-specified propo-
sitions as wildcards. Since no conjunctions with atomic propositions are present,
all labels have only one proposition set—multiple labels also indicate disjunctions.
That is, the label {a}, {c} stands for all inputs where either the proposition a or the
proposition c is set. The complete construction will be discussed in detail in Section
3.5.2 in the context of parametrised automata.

3.4. Translating LTL Formulae into Alternating Finite Automata 55

q0: ff R (a ∨ ¬bUc)

a ∨ ¬bUc q1: ¬bUc

tt

a ¬b c

ff

{a},{c}

{¬b}

{¬b}

{¬b}

{¬b}

{¬a} {¬c}

{b}

{a} {c}

{c}
{a},{c}

Figure 3.3: Sample alternating finite automaton

56 Chapter 3. Parametrised LTL Formulae

Example 63 (Sample run)
Consider the following input

w := {a, b}∅{a}{b, c}{a}

to the automaton in Figure 3.3 where we label the two reachable non-trivial states
(that is, excluding propositional formulae) as follows:

q0 = ff R (a ∨ ¬b U c)
q1 = ¬b U c

The automaton starts in the initial state q0, yielding successively the following ac-
cepting runtree where each set lists the labels corresponding to the conjoined nodes
on the corresponding level:

{q0} accepting
{a, b} −→ {q0, tt} accepting
∅ −→ {q0, q1, tt} rejecting
{a} −→ {q0, q1, tt} rejecting
{b, c} −→ {q0, tt} accepting
{a} −→ {q0, tt} accepting

Every clause containing q1 is rejecting since this state is not an accepting state.

Complexity

The membership problem for an arbitrary alternating finite automaton A with input
alphabet Σ and an arbitrary word w ∈ Σ∗ is P-complete [82]. Conversion of an
alternating finite automaton to a nondeterministic automaton incurs an exponential
blowup. We conclude this recapitulation by stating that alternating automata are
as expressive as nondeterministic automata, but exponentially more succinct.

3.5 Parametrised Automaton Construction

We now proceed to extend the automata with respect to valuations. In the following,
we first present a naive expansion with regard to an arbitrary but fixed domain. This
expansion will also illustrate the worst-case behaviour of our construction. Then, we
proceed with an implementation which statically calculates the abstract successor
states, and instantiates concrete successors on the fly.

3.5.1 Handling Quantified Propositions

When we take a look at the structure of the extension from propositional LTL to
parametrised pLTL in Definition 37, we can observe that the basic formalism for
checking the trace remains unchanged from the moment on when we instantiate

3.5. Parametrised Automaton Construction 57

an existence predicate: we take a ground (parametrised) proposition as an atomic
proposition.

The set of all ground propositions is countable for a countable domain, as para-
metrised propositions can be seen as vectors of fixed size n over countable sets. Since
we bind variables to, for example, object references, which are defined through a
countable set of classes and a countable set of instances, the principle is sound.

Depending on their position in the automaton, states may also be labelled with
(possibly negated) unquantified parametrised propositions. By construction, due
to the syntactical limits already imposed on the pLTL formula, such a state can
only be reached through a path where all occurring variables have been matched
previously by existence predicates.

When leaving a node that is labelled with an existence predicate, we have to
branch into the sub-automata corresponding to the respective instantiations from
the current input. For an n-ary predicate, there can be at most |D|n instances in the
current state. Depending on whether we have existential or universal quantification,
these successor states are either disjoint or conjoined. This effect is independent of
the quantification: conjoined edges have to be resolved within the same run, while
disjoint edges are resolved by non-deterministically picking an accepting run-tree.
As we have to treat the non-determinism algorithmically to find an accepting run,
we have to visit all successors states, whether resulting from universal or existential
children.

Remember from the introduction to parametrised propositions (see Section 3.2)
that only a potentially minimal number of valuations actually occur on the trace,
although the underlying domain is bigger. Even then, not all input states may
contribute to new bindings. This holds especially true for event-based system, that
is, where the underlying model corresponds to a program, where only a singleton
proposition holds in each state. We will see that an explicit, flat construction based
on the set of ground propositions is not practicable and will later provide an on-the-
fly construction.

Example 64 (Sample derivation of flat states)
Let V = {x, y}, D = {1, 2, 3}, PN = {p(1), q(2)}, and {p(x), q(x, y)} ⊆ cl(φ). It
follows that

P⊥ = {p(1), p(2), p(3)} ∪
{q(1, 1), q(1, 2), q(1, 3), q(2, 1), q(2, 2), q(2, 3), q(3, 1), q(3, 2), q(3, 3)}

The size of P⊥ is thus 12, yielding already 212 = 4096 possible inputs that the
flattened automaton should accept. For an existence predicate ∀x∃y : q(x, y)

·→ ψ
we have at most 33 successors if all q-propositions above are set in a state.

Definition 65 (Ground closure clI⊥)
Let clI⊥ : pLTL → 2pLTL denote the ground closure of φ with respect to some
interpretation I of predicates. It includes formulae with quantifiers and all ground

58 Chapter 3. Parametrised LTL Formulae

instances of subformulae with free variables:

clI⊥(φ) :=
⋃

ϕ∈cl ′(φ)

{ (evalI ◦ σ̂)(ϕ) | σ ∈ [V → D]}

free(σ̂(ϕ)) = ∅ since σ is a total function

where cl ′ : pLTL → 2LTL(V) for V = bound(φ) is the extension of cl to pLTL

through rule (∗):

– φ ∈ cl ′(φ)

– tt,ff ∈ cl ′(φ)

– if ϕ ∨ ψ ∈ cl ′(φ) then ϕ, ψ ∈ cl ′(φ)

– if ϕ ∧ ψ ∈ cl ′(φ) then ϕ, ψ ∈ cl ′(φ)

– if ϕ R ψ ∈ cl ′(φ) then ϕ, ψ ∈ cl ′(φ)

– if ϕ U ψ ∈ cl ′(φ) then ϕ, ψ ∈ cl ′(φ)

– if Q1x1 . . . Qnxn : p(u1, . . . , um)
·→ ψ ∈ cl ′(φ) then ψ ∈ cl ′(φ) (∗)

The construction of cl ′ can be seen as a purely syntactical extension of cl .

Predicates will have been eliminated in that phase. Note that contrary to fully
instantiated propositions, the left-hand side of a binding expression is not an explicit
state in the construction since it is not a syntactically valid sub-formula.

Definition 66 (Expanded alternating automaton)
The expanded (flat) alternating automaton A⊥(φ) := 〈2P⊥, Q, q0, δ⊥, F 〉 for a pLTL

formula φ and an interpretation I is constructed as follows:

Q := clI⊥(φ)

q0 := φ

F := {tt} ∪ {q ∈ clI⊥(φ) | q = ϕ R ψ}

The behaviour of the transition function must handle the case when we encounter
an empty set of bindings for the parametrised proposition at hand: for existential
quantification, this means we move to the sink, thus rejecting this branch of the run.
In the case of universal quantification, we short-cut to the accepting tt state.

The transition relation δ⊥ behaves like that of the plain alternating automaton
introduced in Definition 59. For an existence predicate, it is defined as follows for
{u1, . . . , um} ⊆ {x1, . . . , xn} ∪ D and {x1, . . . , xn} ⊆ {u1, . . . , um} (the ui not in the
set of quantified variables have been bound previously; all quantified variables xi

3.5. Parametrised Automaton Construction 59

must occur in the selector):

δ⊥(Q1x1 . . . Qnxn : p(u1, . . . , um)
·→ ψ, a)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{{tt}}, iff Q1 = ∀ and �p(d1, . . . , dm) ∈ a,
such that p(d1, . . . , dm) ↓ p(u1, . . . , um)

{{ff}}, iff Q1 = ∃ and �p(d1, . . . , dm) ∈ a, ditto⋃
θ∈Θ

{ ⊗
{δ⊥(σ̂(ψ), a) | σ ∈ θ}

}
, otherwise

Θ := spec(β∅, a, Q1x1 . . . Qnxn : p(u1, . . . , um))⊗
is again the conjunction of clauses (product, see Definition 37) applied as a

folding over sets (the inner set will never be empty: it contains at least the empty
set). Θ is derived like in the extended finite-path semantics, where the valuations
of the variables x1, . . . , xn are based on the input a instead of w[j]. Remember
that σ̂ will only replace the now free occurrences of the quantified variables on the
right-hand side.

For all other nodes (propositions, Boolean functions, U/R), δ⊥ structurally be-
haves like the transition function δ of the normal alternating automaton (recursive
invocations call to δ⊥, naturally).

Theorem 67 (Equivalence of expanded automaton and finite path semantics)
For a pLTL formula φ and the corresponding expanded automaton A⊥(φ), it holds
that:

φ ≡ A⊥(φ).

Proof:

Again, we prove the equivalence by way of the languages of the formula and the au-
tomaton and show that Lφ ≡ LA⊥(φ). Having previously discussed formulae without
parametrised propositions (see Theorem 60), we now only need to consider the new

rules in both formalisms. Let φ = Q1x1 . . . Qnxn : p(u1, . . . , um)
·→ ψ. The finite

path semantics from Definition 37 was given as:∨
θ∈Θ

∧
σ∈θ

(w[j], σ � β) |= ψ

≡
∨
θ∈Θ

∧
σ∈θ

(w[j], β∅) |= (σ̂ � β)(ψ) (∗)

≡
∨
θ∈Θ

∧
σ∈θ

w[j] |= (σ̂ � β)(ψ) (Cor . 39)

with
Θ = spec(β , w[j], Q1x1 . . . Qkxk : p(u1, . . . , um))

= spec(β∅, w[j], Q1x1 . . . Qkxk : β̂(p(u1, . . . , um)))

60 Chapter 3. Parametrised LTL Formulae

Both for the finite path semantics and the automaton, we know that all variables
on the left-hand side of the existence predicate are already instantiated apart from
variables quantified in φ, which also implies β = β∅ and j = 0 on the start of the
trace, and, due to (∗) on the subsequent trace (see Theorem 38). Thus for every
valuation σ in

⋃
Θ: σ̂(p(u1, . . . , um)) ∈ P⊥. We remind the reader that spec will

yield ∅ if there is no valuation for outermost existential quantification and {∅} for
a universal quantifier. We obtain for the finite paths semantics with β = β∅:

Lφ :=
⋃
θ∈Θ

⋂
σ∈θ

Lσ̂(ψ)

For the three distinct cases of δ⊥(φ, w[0]) above we may obtain either:

1. {{tt}}: accepting configuration, thus any word with prefix w[0] in LA⊥(φ) and
also in Lφ due to Θ = {∅}.

2. {{ff}}: rejecting configuration, thus words with prefix w[0] not in LA⊥(φ) and
also not in Lφ due to Θ = ∅.

3. Otherwise, we obtain Θ′ = Θ = spec(β∅, w[0], Q1x1 . . . Qnxn : p(u1, . . . , um)).
The automaton yields:

LAφ :=
⋃
θ∈Θ

⋂
σ∈θ

LAσ̂(ψ)

Size of the Construction

Clearly, neither calculating the ground closure with a worst-case size of |clI⊥(φ)| ≤
|cl ′(φ)|×|D||V | (exponential in the number of variables, since each state is replicated
once for each instantiation of its free variables) nor explicitly defining the transition
function for 2|P⊥| possible inputs for each such state is practicable for a sufficiently
large set of parametrised propositions.

Next, we will give a bottom-up approach (in the sense that evaluation first de-
scends into the non-temporal leaves and propagates propositions upwards) which
statically calculates parametrised edges to successor states. Variable bindings will
be instantiated on the fly.

3.5.2 Parametrised Automaton

If we take a closer look at the flat automaton A⊥, it is easy to see that the sub-nodes
hanging below an existence predicate all share the same structure. After all, they
have been generated from the corresponding pLTL formula.

While the above expansion is instructive to get a grasp of the capabilities of our
approach, operationally we want to tackle this differently. Especially, since the above
construction relies on knowing the domain beforehand for the expansion. This is
not actually a problem since at least for integer values real-world programs have
a fixed range. Even seemingly continuous ranges like floating point numbers have

3.5. Parametrised Automaton Construction 61

a finitary representation in a program. But choosing the domain too broad would
create many states which will never be visited at all in a concrete run.

The following construction preserves the abstract structure of the original formula
and stores the active bindings in a separate component instead of branching into an
instantiated sub-automaton on each quantification.

Definition 68 (Parametrised automaton)
The parametrised automaton of a pLTL formula φ is an AFAAI(φ):=〈2P⊥, Q, q0, δ, F 〉
where the states of the automaton are pairs where the first component is an element
of the (unflattened) closure of a corresponding pLTL formula φ in positive form,
and has bindings in its second component:

Q := cl ′(φ)× [V � D]
q0 := (φ, β∅)

Again, the final states are the tt state and all Release nodes:

F := ({tt} ∪ {q ∈ cl ′(φ) | q = ϕ R ψ})× [V � D]

The major difference now is that we do not generate the entire flattened automa-
ton statically. Rather, we statically determine the parametrised, static structure,
and explore it through instantiation on the fly. The number of states has shrunk
again to only linear in the size of the formula, independently from the domain of
quantification, as we only use the syntactic closure of the formula. However, the
binding function now carries the burden of dynamically tracking the valuations. The
transition function is then defined through:

δ((tt, β), a) := {∅}
δ((ff , β), a) := ∅

Propositions:

δ((p(�u), β), a) :=

{
{{(tt, β)}}, iff β̂(p(�u)) ∈ a
{{(ff , β)}}, otherwise

δ((¬p(�u), β), a) :=

{
{{(tt, β)}}, iff β̂(p(�u))
∈ a, free(β̂(p(�u))) = ∅

{{(ff , β)}}, otherwise

Predicates:

δ((q(u1, . . . , uk), β), a) :=

{
{∅}, iff ξ̂(q)(β(u1), . . . , β(uk)) = tt

∅, otherwise

δ((¬q(u1, . . . , uk), β), a) :=

{
{∅}, iff ξ̂(q)(β(u1), . . . , β(uk)) = ff

∅, otherwise

δ((ϕ ∨ ψ, β), a) := δ((ϕ, β), a) ∪ δ((ψ, β), a)
δ((ϕ ∧ ψ, β), a) := δ((ϕ, β), a)⊗ δ((ψ, β), a)
δ((ϕ U ψ, β), a) := δ((ψ, β), a) ∪ ({{(ϕ U ψ, β)}} ⊗ δ((ϕ, β), a))
δ((ϕ R ψ, β), a) := (δ((ϕ, β), a)⊗ δ((ψ, β), a)) ∪ ({{(ϕ R ψ, β)}} ⊗ δ((ψ, β), a))

62 Chapter 3. Parametrised LTL Formulae

As before, the only occasion that we modify the bindings is on states prefixed with an
existence predicate. For correct behaviour with respect to universal quantification
over an empty domain we introduce a separate short-cut rules. Observe that we only
have to consider the first quantifier, as due to the definition of spec, it is not possible
to have valuations for some of the quantified variables in the same parametrised
proposition but not for others. Existential quantification coincides with the general
case as Θ will be empty, thus producing no successor states.

δ((Q1x1 . . . Qnxn : p(u1, . . . , um)
·→ ψ, β), a)

:=

⎧⎨
⎩
{∅}, iff Q1 = ∀ and Θ = ∅⋃
θ∈Θ

{ ⊗
{δ((ψ, σ � β), a) | σ ∈ θ}

}
,

Θ := spec(β, a,Q1x1 . . . Qnxn : p(u1, . . . , um))

A run of the parametrised automaton is a tree where nodes are labelled with tuples
from (Q×[V � D]). The run is accepting, if all leaves are labelled with tuples where
the state component is in F . Note that each leaf may be labelled with a different
binding function. The incremental nature of the bindings is still visible in the tree:
The valuation of a child node is always at least as specific (in the sense that it binds
at least the same variables) as its parent.

In [53], a variety of algorithms for checking finite paths (breadth-first, depth-first,
and backwards) with alternating finite automata has been presented. Since we are
interested in checking a trace as it grows, backwards traversal is not interesting
to us. Depth-first search needs to traverse the same trace several times. We will
first give an implementation of the single-step evaluation very much like the finite
path semantics but based on the automaton construction, and then a breadth-first
algorithm.

Definition 69 (Implementation of a parametrised automaton)
For each state in the parametrised automaton AI(φ) = 〈2P⊥ , Q, q0, δ, F 〉, we split
evaluation of the current subformula into two steps: firstly, we calculate the proposi-
tional part of the formula that must be satisfied for the formula to be satisfied in the
current state or in the future. If the propositional part is refuted, no further evalu-
ation is necessary. Only then we consider the future temporal part of the formula:
if it is empty, this means the formula is completely satisfied iff the propositional
formula from the previous step was satisfied. If it contains a singleton formula, this
formula must either be proved on the remaining trace, or, if this is the last state of
the trace, must be in the accepting set of the automaton. It is sufficient to consider
only the static part of the automaton, without the bindings, since whether a state
is accepting only depends on the formula, and not a specific binding. Existence
predicates in the first component indicate that new bindings have to be obtained
from the current state.

3.5. Parametrised Automaton Construction 63

We will then show that this is just an alternative view on the previous automaton
construction. During evaluation, we may need to combine results from different
branches of the alternating automaton, as each branch produces an intermediate
result. The outer set maintains the distinct run-trees, while the inner sets are
conjoined children in a single tree. As a shorthand notation for the following
definitions, we introduce

C := cl ′(φ)

for the static part of the automaton.

split : C → 22(C×2C)

split(tt) := {{(tt,∅)}}
split(ff) := {{(ff ,∅)}}

split(p(�u)) := {{(p(�u),∅)}}, p(�u) ∈ P (propositions)

split(¬p(�u)) := {{(¬p(�u),∅)}}, p(�u) ∈ P
split(q(�u)) := {{(q(�u),∅)}}, q(�u) ∈ Pr (predicates)

split(¬q(�u)) := {{(¬q(�u),∅)}}, q(�u) ∈ Pr
split(ϕ ∨ ψ) := split(ϕ) ∪ split(ψ)

split(ϕ ∧ ψ) := split(ϕ)⊗ split(ψ)

split(ϕ U ψ) := split(ψ) ∪ combine(split(ϕ), ϕ U ψ)

split(ϕ R ψ) := (split(ϕ)⊗ split(ψ)) ∪ combine(split(ψ), ϕ R ψ)

where
combine : 22(C×2Q) × C → 22(C×2C)

combine(s, φ) := s⊗ {{(tt, {φ})}}
augments the successor state set by another conjoined formula. This is designed to
avoid that any bindings spill from the left-hand side of an Until (right-hand side of
Release) into the evaluation of the recurrent part of the formula.

For quantified propositions, we need to collect the current quantification and any
quantification on the temporal top-level from the right-hand side (for example, for

∀x : p(x)
·→ ∃y : q(x, y)

·→ ψ, where both x and y are quantified in the current
state, albeit in two subformulae):

split(Q1x1 . . . Qmxm : p(u1, . . . , un)
·→ ψ)

:=
{
{(Q1x1 . . . Qmxm : p(u1, . . . , un)

·→ nowψ, nextψ)
| (nowψ, nextψ) ∈ qs} | qs ∈ split(ψ)

}
In the split function for propositions, predicates, and tt/ff we use an empty set as
successor state (the second component), indicating that no future obligations have
to hold.

By construction, the first component of the result of split will always contain
singletons, that is tt/ff or a (negated) proposition unless quantifiers are involved.

64 Chapter 3. Parametrised LTL Formulae

For that case, we need a function which descends the chain of existence predicates
with quantifiers and collects the resulting sets of bindings, for formulae like above:

collect : 2P⊥ × pLTL→ 22[V�D]

collect(a,Q1x1 . . . Qmxm : p(�u)
·→ ψ)

:=
⋃
{
⊗
{collect(a, σ̂(ψ)) | σ ∈ θ} | θ ∈ spec(β∅, a, Q1x1 . . . Qmxm : p(�u))}

collect(a, ϕ) := {{β∅}}, otherwise (propositional formulae)

Theorem 70 (Equivalence of finite path semantics and successive evaluation)
We obtain a way to check the acceptance of an input w = w[0] . . . w[n− 1] ∈ (2P⊥)n

with w[1> = w[1], . . . , w[n − 1] based on a propositional formula which is checked
against the current state only and obligations on the remainder of the path:

(w, β)|=φ ⇐⇒ (|w| > 1→ ∃qs ∈ split(φ) : ∀(ϕ, cs) ∈ qs :

∃θ ∈ collect(w[0], β̂(ϕ)) : ∀σ ∈ θ :

(w[0], σ � β) |= evalI(ϕ) ∧ ∀c ∈ cs : (w[1>, σ � β) |= c)
∧ (|w| = 1→ ∃qs ∈ split(φ) : ∀(ϕ, cs) ∈ qs :

∃θ ∈ collect(w[0], β̂(ϕ)) : ∀σ ∈ θ :
(w[0], σ � β) |= evalI(ϕ) ∧ ∀c ∈ cs : (c, σ � β) ∈ F

(*)

where ϕ removes the quantifiers from a chain of nested existence predicate if present
(no name clashes can occur since we required the input formula to use fresh variables
for every quantification):

Q1x1 . . . Qmxm : p(u1, . . . , un)
·→ ψ := ψ

ψ := ψ, otherwise

(propositions, predicates, tt/ff)

We remind the reader that the test (c, σ � β) ∈ F above can be answered by
simply looking at the static component c.

Proof:

We prove the equivalence of successive evaluation (*) with regard to the finite path
semantics (Definition 37) for the end of the path, that is, for a path of length 1.

Singleton Path |w| = 1

1. Boolean formulae (tt,ff) correspond in both semantics as they remain un-
touched in the first component of split .

2. A (negated) unquantified proposition or predicate is completely instantiated
through β (σ = β∅ as there are no new bindings) by construction and evaluated
in both semantics through the non-temporal rules: in the stepwise evaluation,
this means split will move them into the first component, while the second
component will be accepted by default since it is empty.

3.5. Parametrised Automaton Construction 65

3. Disjunction and conjunction are split into their respective DNF form by split
and evaluation proceeds in both branches recursively, just like in the finite
path semantics.

4. ϕ U ψ succeeds at the end of the path in the finite path semantics iff w[0] |= ψ
since there is no l < k for k = 0. This implies that during evaluation ψ must
be satisfied which is reflected in the recursive invocation of split(ψ). Since the
second component of an U-formula will always contain the same U-formula
in the combined part, it can never be an accepting configuration as it is not
contained in F .

5. A similar argument holds for ϕ R ψ, where at the end of the path acceptance
of ψ is sufficient due to the fact that the second component in each combined
subformula will be an accepting R-state in F .

6. If φ is a quantified existence predicate, recursively for each subformula of the
right-hand side a separate instance prefixed with the quantification is gener-
ated in the first component of split ; the chain of existence predicates is then
traversed by collect to accumulate the corresponding bindings based on the
current state. The finite path semantics traverses the chain in the same order.
The ground propositional formula in the first component is evaluated, and
any temporal formula stemming from the right-hand side of φ in the second
component is checked against the set of accepting states.

Path w = w[0]w[1] . . .w[n− 1]

1. Boolean formula tt/ff : trivial result from split ; collect returns the identity
valuation; the successor relation is trivially satisfied by universal quantification
over the empty set and thus corresponds to the finite path semantics.

2. (Negated) unquantified propositions/predicates do not contribute new bind-
ings in collect ; same argument as for tt/ff after the state-part in the first
component of split is satisfied.

3. The Boolean operations generate distinct branches in split , for which the new
valuations are collected from the propositional part. As different branches
represent different, disjoint namespaces for quantified variables, they are both
checked independently (collect is applied separately to each branch).

4. For an Until, we obtain two components: the first one is a set of obligations
that might satisfy the right-hand side, the second one tries to prove the left-
hand side with the additional implication of having to prove the recurrent
formula from the next state on (second component of split). Due to the in-
troduction of the separate clause with the tt in the first component of split ,
no new variables will be instantiated and thus the recurrent formula will be
proved with unchanged valuation.

66 Chapter 3. Parametrised LTL Formulae

5. A similar argument holds for Release, where proof obligations for satisfaction
on the current state are conjoined, each with its own bindings derived from
the current state. As for Until, the recurrent part is in a separate disjunct
with unpolluted bindings.

6. Quantified propositions on “temporal top level”, that is, in the first component
of split , contribute their bindings through the first and the last rule of collect
in the same way that the declarative semantics for a propositional formula does
(like in the previous argument for a singleton path). Also, any non-temporal
components are accumulated and evaluated with respect to the bindings.

Future behaviour can only have been contributed by the three temporal oper-
ators above and is distributed between the two components accordingly.

This concludes our proof of correctness of the operational semantics. Algorithm 1
gives the breadth-first algorithm derived from the operational semantics for checking
a path against a pLTL formula. Before proceeding with a sample application, we
point out that the split function does not depend on the actual input and can
thus be precomputed and the results stored in a table for quick lookup through the
algorithm.

3.5. Parametrised Automaton Construction 67

Algorithm 1 Parametrised automaton, breadth-first search up to last state

Check input trace w breadth-first against a positive pLTL formula φ by keeping a
list of configurations.

config := {{(q0, β0)}}; i := 0
while i < |w| and config
= ∅ do

tempConfig := ∅
for each S ∈ config do

S′ := {∅} // all successors of a state
for each (q, β) ∈ S do

T := ∅
for each qs ∈ split(q) do

t′ := {∅}
for each (ϕ, cs) ∈ qs do

Θ := collect(w[i], β̂(ϕ))
if Θ = ∅ then

t′ := ∅; break // refuted: no bindings at all
else

t := ∅ // conjunction
for each θ ∈ Θ do

if θ
= ∅ then
temp := ∅
for each σ ∈ θ do

if ([i], σ � β) |= evalI(ϕ) then
temp := temp ∪ {(c, σ � β) | c ∈ cs}

else
temp := ∅; break // refuted: bindings no good

end if
end for // end for σ
if temp
= ∅ then

t := t ∪ {{temp}}
end if

else
t := {∅} // ∀ satisfied by absence

end if
end for // end for θ
t′ := t′ ⊗ t

end if
end for // end for (ϕ, cs))
T := T ∪ t′

end for // end for qs
S′ := S′ ⊗ T

end for // end for (q, β)
tempConfig := tempConfig ∪ S′

end for
config := tempConfig ; i := i + 1

end while
acceptFinal(config)

68 Chapter 3. Parametrised LTL Formulae

Algorithm 2 acceptFinal : 22
(C,[V�D])

: evaluation of parametrised automaton, on
the last state only

T := ff // input non-empty?
if i > 0 then

for each S ∈ config do
T ′ := tt
for each (q, β) ∈ S do
T ′ := T ′ ∧ ((q, β) ∈ F) // accepting state?

end for
T := T ∨ T ′ // at least one accepting configuration?

end for
end if
return T

3.5. Parametrised Automaton Construction 69

Example 71 (Run of parametrised automaton)
To illustrate the behaviour of the implementation, we take a look at an example.

∀x : p(x)
·→ ((∃y : q(y)

·→ F r(x, y)) U ∃z : s(x, z))

We shall construct the static part of the parametrised automaton as it will be used
by the split construction graphically: edges will be labelled with (quantified) propo-
sitional formula from the first component of split to indicate under which (abstract)
input the edge is taken. Without formal introduction, we will use dashed ε edges
which correspond to those steps in the construction in the split function where “no
time passes”, that is, where recursive invocations of split on existence predicates
are involved. To bring across the point that a specific sub-automaton should only
be executed under a specific binding obtained through quantification, we shall add
such information also to ε (dashed) edges. It serves only as a reminder that any
concrete edges should be conjoined under that quantification. They correspond to
an element in a chain of quantifications in the first component of split (see initial
edge from the root to the first node for an example). These edges will be eliminated
subsequently so that successor states can be looked up with a single comparison.

If an edge is labelled with tt, it shall be taken under any input. To keep the graph
readable, we use several final tt nodes, although in practice there is only one.

∀x : p(x)
·→ ((∃y : q(y)

·→ F r(x, y)) U ∃z : s(x, z))

(∃y : q(y)
·→ F r(x, y)) U ∃z : s(x, z)

∀x : p(x)

∃y : q(y)
·→ F r(x, y)

F r(x, y)

∃y : q(y)

r(x, y)

tt

r(x, y)

∃z : s(x, z)

tt

∃z : s(x, z)

tt

tt

70 Chapter 3. Parametrised LTL Formulae

Now we can collapse intermediate nodes which are only pointed to by an unlabelled
ε edge with their parent:

∀x : p(x)
·→ ((∃y : q(y)

·→ F r(x, y)) U ∃z : s(x, z))

(∃y : q(y)
·→ F r(x, y)) U ∃z : s(x, z)

∀x : p(x)

F r(x, y)

∃y : q(y)

tt

r(x, y)

tt

∃z : s(x, z)tt

tt

The resulting automaton clearly shows how the ordering of quantifiers in the for-
mula is preserved: on descent into a subformula via a labelled ε edge, the value is
bound and only available to the subformula. Any self-loops, which are by construc-
tion the only edges not pointing to a sub-formula of the current node label, stem
from application of the combine function.

Next, we eliminate the labelled ε edges successively, starting from the bottom.
This step basically corresponds to the combination of conjuncts in the definition of
the transition function. We start with the edge leading into the Finally node. We
unroll the subtree once, propagating the quantified formula into the leaves:

3.5. Parametrised Automaton Construction 71

∀x : p(x)
·→ ((∃y : q(y)

·→ F r(x, y)) U ∃z : s(x, z))

(∃y : q(y)
·→ F r(x, y)) U ∃z : s(x, z)

∀x : p(x)

∃y : q(y)
·→ F r(x, y)

F r(x, y)

∃y : q(y)

tt

r(x, y)

tt

∃y : q(y) ∧ r(x, y)

tt

∃z : s(x, z)tt

tt

Next, we eliminate the unlabelled ε edge leaving the conjunction below the Until
node. Since the node below has two alternative (disjoint!) branches, they propagate
into the preceding Until node:

∀x : p(x)
·→ ((∃y : q(y)

·→ F r(x, y)) U ∃z : s(x, z))

(∃y : q(y)
·→ F r(x, y)) U ∃z : s(x, z)

∀x : p(x)

F r(x, y)

∃y : q(y)

tt

r(x, y)

tt

∃z : s(x, z)

tt

∃y : q(y) ∧ r(x, y)

tt

tt

tt

The only (labelled) ε edge to eliminate is now the one from the root node, which
we eliminate in a similar fashion.

72 Chapter 3. Parametrised LTL Formulae

∀x : p(x)
·→ ((∃y : q(y)

·→ F r(x, y)) U ∃z : s(x, z))

(∃y : q(y)
·→ F r(x, y)) U ∃z : s(x, z)

∀x∃y : p(x) ∧ q(y) ∧ r(x, y)

F r(x, y)

∃y : q(y)

tt

r(x, y)

tt

∃z : s(x, z)

tt

∃y : q(y) ∧ r(x, y)

tt

∀x∃z : p(x) ∧ s(x, z)

tt

tt

tt

∀x : p(x)

∀x∃y : p(x) ∧ q(y)

Observe that all ε edges have now been removed (except those we chose for de-
picting conjoined nodes). This allows us to determine the successors of each node
with a simple lookup. Note that the propositional formulae on disjoint branches
originating from the same node may still overlap.

We now wish to evaluate the formula on the trace

w := {p(1), q(1)}; {q(2)}; {s(1, 2)}; {r(1, 1), r(1, 2)}.

In the following, we will refer to the three non-trivial states of the automaton as q0, q1,
and q2, numbering them top-down. The automaton starts in its initial configuration
s0, that is, the start state q0 with the empty binding. As we will generally work
with the power-set structure of alternating automata and their run trees, we already
denote this configuration as a singleton conjunct:

s0 : {{(q0, β0)}}, where β0 = β∅

For the first state w[0] = {p(1), q(1)}, only the first (left-most) edge can be taken,
leading into the configuration

s1 : {{(q1, β1), (q2, β2)}}, where β1 = {x/1} � β0, and β2 = {x/1, y/1} � β0

which, when interpreted again as formula reads

[(∃y : q(y)
·→ F r(1, y)) U ∃z : s(1, z)] ∧ F r(1, 1)

3.6. Alternative Approaches 73

Note that y does not occur free in q1, we will see in the next step with w[1] = {q(2)}
that the desired behaviour is captured by the new binding y/2.

s2 : {{
successors of q1︷ ︸︸ ︷

(q1, β1), (q2, β3), (q2, β2)︸ ︷︷ ︸
. . . of q2

}}, β3 = {y/2} � β1 = {x/1, y/2}

With w[2] = {s(1, 2)}, we will satisfy the ∃z : s(1, z) for {z/2} � β1. Since the
tt true state in an otherwise nonempty subformula is redundant according to the
semantics, we prune this configuration. Remember that alternating automata for
the finite path semantics do not need any exiting edges from a tt state to accept a
prefix of the trace. The remaining states are stationary due to tt edges:

s3 : {{(q2, β3), (q2, β2)}}

The last state in the trace will then validate the formula: both pending Finally
states are satisfied and pruned:

s4 : {∅}
If the trace would have ended after w[3], the configuration would inform us that

two eventualities in s3 with their respective bindings have not been fulfilled.

3.6 Alternative Approaches

Büchi Automata and Finite Paths

Model Checking is usually concerned with checking ω-regular properties [63] on
paths in a Kripke structure. Such a structure is a state-labelled transition system
with directed edges. LTL formulae represent the star-free, non-counting subset of
ω-regular languages [119, 120].

A substantial complexity of model checking comes from the exponential over-
head of converting the alternating finite automaton for the negated formula into
a (generalised) Büchi automaton which accepts as input infinite words, and then
computing the product of the languages recognised by the two automata to check
it for emptiness.

This almost naturally raises the question whether Büchi automata would provide a
viable solution for the problem of checking finite paths. [60] reports on an optimised
construction of nondeterministic automata from LTL formulae that is based on
a well-known tableau-like translation [59]. We also considered whether automata
generated by the popular tool ltl2ba by Gastin and Oddoux [58] could be used. It
turned out that for infinite words, the exact position of an accepting state of the
automaton in the cycle of a “lasso” does not matter, since any automaton state in
the cycle will be visited infinitely often.

However, for a finite run, we need to know exactly whether we are on an accepting
state or not. In the case of ltl2ba, we found that especially for formulae containing

74 Chapter 3. Parametrised LTL Formulae

the explicit Next operator this was a problem. Also, we note that different tools
place the accepting states differently for the same LTL formula as has been observed
by others before. Other peculiarities of trying to use Büchi automata on finite paths
are detailed in [77].

We conclude that on one hand we would either have to find an existing algorithm
to convert LTL formulae to Büchi automata which exhibits the desired behaviour
with regard to accepting states, or develop our own. On the other hand, we have
seen that directly using alternating finite automata does not have any particular
problems in the general case.

Algebraic Alternating Automata

Finkbeiner, Sankaranarayanan, and Sipma proposed algebraic alternating automata
[52] (inspired by extended alternating automata used in Query Checking [22, 24]),
which collect statistics over runtime executions. Their framework allows to evalu-
ate queries over finite traces like “what is the average number of retransmissions”
or “what is the maximum packet delay”. Basic observations on the trace consti-
tute experiments, which are then aggregated with the help of algebraic alternating
automata.

Each symbol in a formula gets an additional function corresponding to its arity,
that is, propositions and the X operator carry a unary function, Boolean functions
∨,∧, and U a binary function. These functions are used to combine results from both
branches. Similarly, for aggregate statistics interval and unconditional collection can
be used to compute, for example, the maximum number of times that a predicate
holds in a specific interval.

The collection mechanism of this framework could surely be used to “accumulate”
the variable bindings used in our approach instead of some statistics. Unfortunately,
the overall approach makes this rather impractical, since the overall result does not
influence the acceptance condition of the automaton, as our mechanism does. Accep-
tance is still defined through the standard semantics of alternating finite automata,
and the statistics are rather a byproduct. This means that there is no way to short-
cut evaluation—additionally to the trace of variable bindings, a separate pass for
checking the input with respect to such a binding would be required. This could
be achieved inline by crafting special functions for each position in the alternat-
ing automaton which include some knowledge about their position in the formula to
produce a Boolean decision along the same lines as succ from Section 3.5.2. We have
not investigated this approach in detail because of this unorthogonalness and the
necessary influence of the aggregate on the acceptance of the automaton. Neverthe-
less, we feel that nothing should impede a joint implementation of our parametrised
framework with the collection of statistics.

3.6. Alternative Approaches 75

Alternatives to LTL

In [74], an algorithm that generates efficient dynamic programming algorithms from
past time LTL formulae is presented. They test whether the formula is satisfied by
a finite trace of events and run in linear time. The constant factor depends on the
size of the LTL formula. Memory consumption is constant and also depends only
on the formula size.

It also offers a few non-standard operators which the authors found useful like
a property ending or starting in the current state, which largely contribute to the
conciseness of formulae. The algorithm was implemented in the Java PathExplorer
architecture [71].

However, there seems to be a common agreement that generally future time LTL
is much more suitable for human specification and usually the option of choice.
Other formalisms like past time LTL are then only provided as an add-on.

It has also been noted in [56] that past time operators do not contribute additional
expressiveness to a future time-only logic, although formulae are more succinct.
Algorithms for eliminating one kind of temporal operators are known since [55], and
recently complexity results and the exponential cost for certain properties when only
future or past are available have been well studied [94, 95].

In general, we do not expect any difficulties in adapting our mechanism to past
time LTL while profiting from the benefits mentioned above.

Of course it is arguable whether LTL in general is an appropriate specification
language. Especially for novices, a more familiar syntax might be provided by
regular expressions or even a graphical specification language. The former has been
pursued by the Tracematch implementation [2] that we extensively compared our
Tracechecks formalism [19] with. As the underlying framework will usually resemble
a finite automaton, it should be possible to devise frontends that map quantification
and instantiation into our framework. Also, [45] provides a survey of specification
patterns and provides a comprehensive guide on how to express different properties
in varying formalism.

It should be noted that some properties, like for example, that an event has
to happen every n steps cannot be expressed in temporal logic but with regular
expressions [127]. Parametrised regular queries have recently been discussed in [91].

In the static verification community, several other specification languages like
Sugar [15] and ForSpec [5] exist, which also contain additional syntactic sugar
hiding the temporal logics in the semantic layer to make the input languages more
user-friendly.

4 Evaluating Parametrised Formulae
at Runtime

In this chapter, we tie the knot between the operational model of a program that
generates a trace and the verification of pLTL formulae on said trace. First, we will
discuss how to map the event trace into a path for the runtime checker. While there
exists an apparent one-to-one correspondence, we will look into filtering the trace
with respect to a given signature, which could, for example, be derived from the
propositions in the formula. The filtering can influence the evaluation of formulae,
especially with respect to triggering redundant evaluation in the automaton.

4.1 Trace Extraction

Let’s look back at the operational trace semantics of a ��Int program π from the
Definition 19:

Execρ,Iπ : Domn → Evt
∗

for some value domain Dom, and I = 〈Dom, ξ〉 some interpretation. Although the
trace is the final result of the execution of a program, it is easy to see from our
definition of the iteration semantics that the trace is a monotonically growing list.
That is, it grows with each instruction, and already generated items on the trace
are never modified.

On the one hand, this allows us to consume the trace in a lazy fashion, where
we read the trace incrementally as it is generated. On the other hand, this does
not inhibit us from considering the entire trace, for example, in an offline checking
setup. Consequently, we will not model this formally, but rather assume that the
trace is accessible to us in a subsequent fashion.

Filtering Paths

Recall from Section 2.7 that an item on the trace will either be a τ action or an
event. Thus, we can literally take an event as a fully instantiated parametrised
proposition. Because object identifiers occur in events, the domain of the logic must
encompass both the values of the program domain and the object identifiers:

PN := {method enter(5), method exit(6), set(5), get(5), new(4),
assert(4), lock(3), unlock(3)}

D := ODom = Dom ∪O

78 Chapter 4. Evaluating Parametrised Formulae at Runtime

Observe that some mapping of thread identifiers, classes, methods, and attributes
into the underlying domain must be provided. They will usually be mapped to
strings or integers.

Since only one event may happen at a time, this naturally translates to a state
with only a singleton set labelling. The τ action is mapped to the empty set of
propositions. It is clear that this model has the following basic properties:

– a state is either labelled with the empty set, or exactly one proposition,

– each event corresponds to a program state transformation which is visible
either in the control flow as a method call/return, or in the heap,

– the model may contain proposition names which do not occur in the formula.

This mapping from events to states has an effect on the evaluation of formulae
with respect to quantifiers: as for each state, there exists at most one valuation for
any variables in a parametrised proposition in the formula, universal and existential
quantification coincide for singleton states. Due to the way how the quantifiers differ,
however, handling of empty sets induced by a τ action is distinct: a subformula
with a primary universal quantifier will use the short-cut rule from Definition 66
and default to accept, while it would fail in the presence of an existential quantifier.

If by looking at the formula, we can determine that some events (for example, τ
actions) do not have any effect on the evaluation of a formula, we can speed up the
computation by telling the framework that we are not interested in some events and
save ourselves some work by filtering them out from the trace. Also, by eliminating
as many “superfluous” states as possible from the model, we can cut down the
memory consumption of a trace if we can trim non-relevant states.

When checking a specific property, we observed that the formula is often invariant
to propositions with constructors that do not occur in the formula at all (but could
nonetheless occur in the trace).

For example, formulae may prohibit future behaviour through G ¬p(x1, . . . , xn)
(“Never”). Or, they require some eventuality which is specified through a singleton
positive proposition or a set of positive propositions: F p(x1, . . . , xn). We invite the
reader to consider what the effect of the dual behaviour is on program traces, that
is, requiring some event in every state through G q(x1, . . . , xn), or accepting absence
of some event F ¬q(x1, . . . , xn). Although these are surely valid formulae, we think
that they are not very common on program traces where only a single proposition
holds at most in each state, which is certainly confirmed by our examples.

We observe a similar effect for more general formulae with Release or Until oper-
ators, which is to be expected as Globally and Finally are special cases of Release
and Until after all: “something (bad) does not happen until a certain event” is
expressed through ¬p(x1, . . . , xn) U q(y1, . . . , ym). The dual Release usually has
the form p(x1, . . . , xn) R ¬q(y1, . . . , ym). As above, any propositions except those
occurring in the formula do not influence the result as they are subsumed by the
negated propositions: the negated propositions guard the recurrent formula which

4.1. Trace Extraction 79

defers evaluation until the next step, while the positive propositions indicate the
successful evaluation.

We now generalise this concept through signatures and give the user the oppor-
tunity to influence the set of propositions which will occur during evaluation of a
formula.

Definition 72 (Signature of a formula)
The signature of a pLTL formula φ is defined through the set of used proposition
names:

S : pLTL→ 2PN

S(φ) := {p ∈ PN | ∃p(u1, . . . , un) ∈ cl ′(φ)}

Definition 73 (Consistent filtering function)
Given a filtering function λe : Evt

∗ → (2P⊥)∗ that translates a stream of events into
a stream of ground propositions over ODom, we call the filtering function λe and a
formula φ consistent, iff

∀p ∈ S(φ) : ∃x ∈ Evt : λe(x) = p(d1, . . . , dn), d1, . . . , dn ∈ ODom.

Otherwise, some propositions would never be able to occur at all in the trace, which
usually indicates some problem in the specification.

Note that the input and output streams do not necessarily have to have the same
length. For example, this function may choose to eliminate τ steps completely from
the trace.

Definition 74 (Runtime verification of temporal assertions)
Given a program π = 〈Cπ, args〉, an interpretation I = 〈ODom, ξ〉 for functions and
predicates (although a formula does not actually have to use them), a consistent
filtering function λe, and a positive pLTL formula φ over P⊥, we state the following:

A program π satisfies a temporal specification φ, if

(λe ◦ Execρ,Iπ)(args) |= φ.

In the following, we give a sample mapping, although other mappings are possible:

Definition 75 (Mapping)
We define the mapping of a trace through the following domain

PN := {method enter(5), method exit(6), set(5), get(5), new(4),
assert(4), lock(3), unlock(3)}

D := ODom

and the filtering function

λ : Evt→ 2P⊥

λ(τ) := ∅
λ(ev) := {ev}, otherwise

λe(w[0]; . . . ;w[k]) := λ(w[0]) . . . λ(w[k])

80 Chapter 4. Evaluating Parametrised Formulae at Runtime

Remark 76
Let’s recall the stack example from the introduction to Chapter 2: there must never
be an attempt to take an item from the initially empty stack via Stack.pop until at
least one item has been pushed onto it through Stack.push. (Note that LTL is not
powerful enough of checking the more general, but context-free, property of never
taking an item from any empty stack.) We can express this property through the
following filtering function and formula:

λ(ev) :=

⎧⎪⎨
⎪⎩
{push(s, x)}, if ev = method exit(tId , this, Stack .push, s , x , r)

{pop(s)}, if ev = method enter(tId , this, Stack .pop, s)

∅, otherwise

λe(x;w) := λ(x);λe(w)

φ := ∀s∃x : push(s, x) R ¬pop(s).

An alternative which illustrates the interaction between filter and formula would be
the following mapping where we only employ a unary push proposition

λ(ev) :=

⎧⎪⎨
⎪⎩
{push(s)}, if ev = method exit(tId , this, Stack .push, s , x , r)

{pop(s)}, if ev = method enter(tId , this, Stack .pop, s)

∅, otherwise

with the formula
φ := ∀s : push(s) R ¬pop(s).

Since it does not matter which element exactly is pushed onto the stack (elements are
existentially quantified), we might as well abstract it already in the filter instead of
binding it explicitly in the formula, if it is not going to be used deeper in the formula,
anyway. This does not reduce the number of evaluation steps, but eliminates a
variable binding.

Next, we present an example for a concurrency property of a program. It joins all
components we have visited so far, that is, the program, the specification in form of
a pLTL formula, and a filtering function.

4.2 Example: Lock-order Reversal

As an example for a refutation, we shall consider an actual concurrent programming
problem we reported in [117]: to avoid the problem of Lock-order Reversal (LOR)
(see also [68, 16]), we would like to assert through an LTL formula that if two locks
are taken in a given order (with no unlocking in between), the system should warn
the user if he also uses these locks in swapped order because in concurrent programs
this would mean that two threads could deadlock when their execution is scheduled
in an unfortunate order.

4.2. Example: Lock-order Reversal 81

class Main

method main
var lockA lockB

lockA := new ()
lockB := new ()
thread t h i s . take (lockA , lockB)
t h i s . take (lockB , lockA)

method take (l1 , l 2)

L1 : l o ck l 1
l o ck l 2
/∗ c r i t i c a l s e c t i o n ∗/
unlock l 2
unlock l 1
jmp L1

Figure 4.1: Sample code exhibiting potential Lock-order Reversal

It should be noted that this warning might not be adequate as it is always possible
to construct a program which takes the locks in reverse order and will never deadlock.
This can be achieved by adding another lock, a so-called gate lock, to the program
which assures mutual exclusion and prevents the system from deadlocking. An
algorithm which avoids this kind of false warnings in the presence of gate locks is
detailed in [68].

This particular technique of noticing inadvertent lock-reversal at runtime is em-
ployed in the development phase of the recent FreeBSD operating system kernel
under the name of witness [10]. In [68] the same technique is used in the Java
PathFinder [125], a model checker for Java applications.

We consider two concurrent threads competing repeatedly for two locks A and B.
It is not possible to acquire several locks in one go, so both locks have to be obtained
sequentially. If we assume that the first thread tries to obtain them in the order A,B
and the second one in B,A, we can see that sooner or later the system ends up in a
state where thread 1 holds lock A and waits for B to become available while thread
2 holds B waiting on A! This situation is exactly the circular holding pattern which
indicates a deadlock (see Chapter 7 of [110]). In small programs the bug might be
easy to spot. For larger applications we can conclude that it is very hard to prevent
this error from simply perusing the source code. Even when testing the program
the error might not occur for various runs. For example it may be possible that
threads 1 and 2 are never executed interleaved but rather in a sequential manner,
thus giving no rise to the erroneous behaviour at all.

The trace data we will be interested in are just the lock and unlock operations
(refer to Section 2.7 for the propositions available to our framework). We need both
the information as to which lock is affected and which thread is taking the action.

The program in Figure 4.1 will generate a trace containing the above propositions,
possibly in the order indicating the erroneous behaviour. We can detect this and
warn the developer that his application has the potential to enter a deadlock under
certain conditions.

Notice that we do not want to abort the execution in this example: we are here
also interested in mere warnings, as a violation of the formula might not coincide

82 Chapter 4. Evaluating Parametrised Formulae at Runtime

with a deadlock. To observe the behaviour of the whole execution path (of which
the erroneous behaviour might only be a sub-path), we wrap the formula into the
temporal Globally.

Thus, we obtain for two threads ti, tj and two locks lx, ly the following formula (the
this component of the events is not interesting to us and therefore replaced by the
wildcard to match anything, which can be considers as a fresh unique instantiation
of an existentially quantified variable):

G [∀ti∀lx : lock(ti , , lx)
·→ ([¬unlock(ti , , lx) U ∃lz ′ : lock(ti , , lz ′)]

→ [¬unlock(ti , , lx) U ∃lz : lock(ti , , lz)
·→

∀ly : lock(ti , , ly)
·→ G ¬(∃tj : lock(tj , , ly)

·→
(¬unlock(tj , , ly) U lock(tj , , lx)))])], ti
= tj , lx
= ly , lz
= lx , l

′
z
= lx

The formula has several parameters: two locks and two threads. The lock lz is
necessary because there cannot be any information transfer from the right-hand
side of an Until to any “subsequent” formula in pLTL. We use an implication to
rebind the same event, but now to the proposition with the variable ly. For this
formula, ∃lz : lock(ti , , lz) and ∀ly : lock(ti , , ly) will always coincide1 .

Using the conventional approach, we would have to pre-generate all possible for-
mula instantiations. This pre-generation could either be based on a fixed maximum
number of locks and threads, or on lock/thread creation at runtime. Both ap-
proaches have drawbacks. The first one will obviously miss anything with values
larger than the specified upper bounds. Also, additional abstractions might be re-
quired since for many programming languages, the object identifiers will be arbitrary
non-monotonic 32 or 64 bit values. The latter requires additional instrumentation
of object creation and the current trace, which for memory reasons will usually be
limited to only a suffix of the run.

Take a close look at the formula: once ti, lx, and ly have been bound and evalua-
tion proceeds to the “Never” (G ¬ . . .), we have partially instantiated the right-hand
side for the remainder of the formula. Only the thread id of the concurring thread
remains free.

The constraints on the identifiers are predicates (see Section 3.3), which, if this
formula is going to be used in practice, need to be moved to more appropriate places.
Their position in the formula should be immediately after the respective event which
will cause the variables mentioned in the constraint to become fully instantiated.
That is, the lz
= lx should be integrated with the event binding the lz (respectively,
the constraint for ly and tj). With the appropriate filter function (see Figure 4.2)
which also eliminates any states which do not relate to locking we obtain:

1In the J-LO implementation, this was not necessary, see the formula we reported in [115].

4.2. Example: Lock-order Reversal 83

λ(ev) :=

⎧⎪⎨
⎪⎩
{lock(t, lo)}, if ev = lock(t , this, lo),

{unlock(t, lo)}, if ev = unlock(t , this, lo),

∅, otherwise

λe(ev;w) :=

{
λ(ev);λe(w), if λ(ev)
= ∅

λe(w), otherwise

Figure 4.2: Filter function for Lock-order Reversal

G [∀ti∀lx : lock(ti, lx)
·→ ([¬unlock(ti, lx) U ∃lz′ : lock(ti, lz′)

·→ lz′
= lx]

→ ¬unlock(ti, lx) U ∃lz : lock(ti, lz)
·→ [lz
= lx

∧ ∀ly : lock(ti, ly)
·→ (ly
= lx ∧G ¬(∃tj : lock(tj , ly)

·→ [ti
= tj
∧ (¬unlock(tj , ly) U lock(tj, lx))]))])]

A sample run shall illustrate how the formula behaves. Before proceeding, we will
assign names to the different subformulae so that we can refer easier to a config-
uration in the evaluation. We will also push down the negation to obtain positive
normal form (see Definition 25):

Ψ := G [∀ti∀lx : lock(ti, lx)
·→ (ϕR(ti, lx) ∨ ϕU(ti, lx))]

ϕR(ti, lx) := unlock(ti, lx) R ∀lz′ : lock(ti, lz′)
·→ ¬(lz′
= lx)

ϕU(ti, lx) := ¬unlock(ti, lx) U ∃lz : lock(ti, lz)
·→ [lz
= lx

∧ ∀ly : lock(ti, ly)
·→ (ly
= lx ∧ ϕ′(ti, lx, ly))]

ϕ′(ti, lx, ly) := G ∀tj : lock(tj, ly)
·→ [¬(ti
= tj) ∨ ϕ′′(ti, tj , lx, ly)]

ϕ′′(ti, tj , lx, ly) := unlock(tj , ly) R ¬lock(tj , lx)

We remind the reader that thus Ψ, ϕR, ϕ′, and ϕ′′ are accepting states of the
automaton at the end of the trace, while ϕU is not. This means that any clause
containing ϕU will not accept at the end of the trace either. Figure 4.3 gives the
schematic structure of the corresponding automaton.

The sequence of events that we want to use is:

Thread 1: lock(t1, lA) lock(t1, lB) unlock(t1, lB)
Thread 2: lock(t2, lB) lock(t2, lA)

Evaluation starts from the initial configuration:

s0 = {{(Ψ, β∅)}}

On taking the first lock, ti and lx are bound as evaluation descends both branches
from the root. We obtain partially instantiated formulae, waiting for the second

84 Chapter 4. Evaluating Parametrised Formulae at Runtime

Ψ

ϕR

∀ti∀lx : lock(ti, lx)

tt

unlock(ti, lx)

ϕU

∀ti∀lx : lock(ti, lx)

ϕ′

∀ly : lock(ti, ly)

ϕ′′

∀tj : lock(tj , ly)

tt

unlock(tj , ly)

tt tt

∀lz′ : lock(ti, lz′)

tt

¬unlock(ti, lx)

¬lock(tj , lx)

Figure 4.3: Automaton for Lock-order Reversal

4.2. Example: Lock-order Reversal 85

lock event by the same thread while the first lock is held. The right-hand side of
the Until defers since the lock event does not fulfil the constraint. Remember that
we also remain in the initial configuration due to the outer Globally.

The configuration of the parametrised automaton is thus:

s1 := { {(Ψ, β∅), (ϕR, {ti/1, lx/A})},
{(Ψ, β∅), (ϕU, {ti/1, lx/A})} }

The second event lock(t1,lB) disproves the ϕR in the first clause since it is no unlock
event. In the second clause, the left-hand side of the Until fails, thus requiring us
to check the right-hand side. There is in fact a locking statement, satisfying the
constraints so evaluation descends into ϕ′. The Ψ in the second clause is expanded
similarly to the previous step. The following table shows the set of successors of
each component:

(Ψ, β∅) � { {(Ψ, β∅), (ϕR, {ti/1, lx/B})},
{(Ψ, β∅), (ϕU, {ti/1, lx/B})} }

(ϕR, {ti/1, lx/A}) � ff = ∅

(ϕU, {ti/1, lx/A}) � {{(ϕ′, {ti/1, lx/A, ly/B})}}

Combining the two resulting clause sets using the ⊗ operator, we obtain two new
clauses due to the two disjuncts produced from the initial state:

s2 := { {(Ψ, β∅), (ϕR, {ti/1, lx/B}), (ϕ′, {ti/1, lx/A, ly/B})},
{(Ψ, β∅), (ϕU, {ti/1, lx/B}), (ϕ′, {ti/1, lx/A, ly/B})} }

The third event unlock(t1, lB) will cause the following successors to be calculated:

(Ψ, β∅) � {{(Ψ, β∅)}}
(ϕR, {ti/1, lx/B}) � tt = {∅}
(ϕU, {ti/1, lx/B}) � ff

(ϕ′, {ti/1, lx/A, ly/B}) � {{(ϕ′, {ti/1, lx/A, ly/B})}}

Composing the results, we get:

s3 := { {(Ψ, β∅), (ϕ′, {ti/1, lx/A, ly/B})} }

The first lock event in the second thread will cause a new instantiation from Ψ with
ti/2 and lx/B. For ϕR and ϕ′ we obtain:

(Ψ, β∅) � { {(Ψ, β∅), (ϕR, {ti/2, lx/B})},
{(Ψ, β∅), (ϕU, {ti/2, lx/B})} }

(ϕ′, {ti/1, lx/A, ly/B}) � { {(ϕ′, {ti/1, lx/A, ly/B}),
(ϕ′′, {ti/1, tj/2, lx/A, ly/B})} }

86 Chapter 4. Evaluating Parametrised Formulae at Runtime

s4 := { {(Ψ, β∅), (ϕR, {ti/2, lx/B}), (ϕ′, {ti/1, lx/A, ly/B}), (ϕ′′, {ti/1, tj/2, lx/A, ly/B})} }
{(Ψ, β∅), (ϕU, {ti/2, lx/B}), (ϕ′, {ti/1, lx/A, ly/B}), (ϕ′′, {ti/1, tj/2, lx/A, ly/B})} }

Triggering lock(t2, lA):

(Ψ, β∅) � { {(Ψ, β∅), (ϕR, {ti/2, lx/A})},
{(Ψ, β∅), (ϕU, {ti/2, lx/A})} }

(ϕR, {ti/2, lx/B}) � ff
(ϕU, {ti/2, lx/B}) � (ϕU, {ti/2, lx/B})
(ϕ′, {ti/1, lx/A, ly/B}) � { {(ϕ′, {ti/1, lx/A, ly/B})} }
(ϕ′′, {ti/1, tj/2, lx/A, ly/B}) � ff

The resulting configuration is
s5 := ∅

which corresponds to an overall refutation since the empty set of disjunctions re-
sembles ff . The mechanism has thus correctly detected the Lock-order Reversal.

5 Applications and Implementations

In this section we discuss how event data can be obtained from real-world programs
which are available either as source code or as a compiled binary.

For the primitive object-based language proposed in the motivation of this the-
sis, events had already been integrated into the execution model, so no additional
instrumentations need to take place.

In the following, we discuss how instrumentation of target applications written
in modern programming languages can be achieved. The three programming lan-
guages Haskell, C, and Java will be treated in detail. Additionally, we point out
general techniques and requirements to efficiently support obtaining traces. Some
implications of online versus offline trace checking are discussed.

5.1 General Remarks

For best adoption of our tool, as few hurdles as possible should be in the way of a
prospective user. In Runtime Verification, usage boils down to two stages: firstly, to
obtain the necessary events, instrumentation of the application under test (AUT),
possibly already with respect to a specific property to verify. This step is almost
always required. Only under very specific circumstances no source modification will
be required (for example, shared libraries in the C setting may be sufficient to cover
all locations to instrument, see Section 5.3 below). Manipulation of the original
application can then be done through the dynamic linker of the operating system.
Secondly, the application is run with some input to obtain a trace and the results
is interpreted.

Usually, this will be done by a developer who has access to the full source code of
the application and tools required to build it from scratch (the so-called tool chain,
consisting often of at least a pre-processor, compiler, and linker). For interpreted
languages, instrumentation of the interpreter might be an option.

Under some circumstances, not all components of the application may be equally
accessible: for example, some required libraries may be available only in binary
executable format, or even the whole AUT. In that case, only a limited subset may
effectively be instrumented.

For the actual instrumentation, the points of interest for generation of events in
the source must be identified, that is, in the coarsest approximation we suggest the
same events (method calls, field access) as outlined in our motivation.

With the appropriate tool support, instrumentation can be easily automated: in
the field of software engineering many tools for refactoring have been developed,

88 Chapter 5. Applications and Implementations

which basically is what a developer is doing if he analyses the structure of his
program and manipulates its behaviour in a structured way. We will outline how to
use the powerful technique of Aspect-oriented Programming in the Java setting (see
Section 5.4) to define the set of interesting events and then automatically insert both
the actual event collection and the engine for verifying our parametrised formula into
an existing Java application.

Online versus offline checking

Instrumenting method calls will thus require additional code at the beginning and
the end of each method (or at least those methods of interest): data for each event
must be collected and passed to the engine doing the verification. As in our simple
language, all necessary values will usually be present in locally visible object at-
tributes or variables. The engine may either verify the specification synchronously
(online), that is, the application generating the event will be suspended until the
verifier has decided that this event will not trigger a specification violation, or offline,
where the checker runs asynchronously to the application.

In online checking, if a violation occurs, the user should be informed, including as
many details of the trace that led up to the violation as possible, although practical
considerations like memory consumption will put limits on, for example, the size of
the available trace. Depending on the concrete setting, this information may also
pinpoint the exact location of the instruction in the source code and other data
usually available for debugging (for example, the current call stack).

Often, the verifier introduces unacceptable delays into the application through
the computational overhead of checking the properties: during online verification,
it may either become unresponsive or behave differently due to timing issues. This
holds especially true for real-time and interactive applications. In this case, offline
checking can be used, where instead of running the verification engine, event or trace
data should only be collected and stored. Then, verification can occur in a separate
step. Of course, the invalidation of a specification formula can then no longer be
mapped to a specific program state, as only the abstract event data is available.
Another advantage of offline checking is that trace data from multiple sources may
be integrated to achieve broader coverage of possible behaviour [29].

An offline checker can be easily used as an online checker without having to think
about integrating the software using standard interprocess communication facilities
of modern operating system like sockets and TCP/IP network communication. For
example, a checker implemented in Haskell can analyse traces from a C program.
If a simple protocol is implemented between the data aggregation side in the ap-
plication and the checker, the checker can suspend the application while evaluating
the next step. Since the checker should not care much where its input is coming
from (either a file or a network connection), almost no additional logic except being
able to handle the handshake protocol is required. The instrumentation in the ap-
plication then handles only event aggregation at its side of the handshake protocol.
In fact this was implemented in the Haskell prototype (see below). Note that the

5.2. Runtime Verification of Concurrent Haskell Programs 89

evaluation of predicates over bound values is usually only effectively possible in the
context of the instrumented application, though.

Path Coverage

It is commonly agreed on that testing can never provide as reliable results as formal
verification. Dijkstra’s quote about testing versus verification is even 30 years later
still applicable. However, for the various reasons detailed in Chapter 2, practical
static verification of arbitrary programs is still only a future goal. Nonetheless, we
have observed that assertions are an integral part of software products (at least of
their development versions). Often, they are controlled by compile-time flags to
disable them once the final version is prepared for release.

Clearly there is a market for dynamic analysis of program properties, as the
Design by Contract community shows [96]. We hope to have convinced the reader
that a parametrised, temporal framework enables developers to specify high-level
properties, which cannot be easily asserted without hard-coding some property-
specific finite state machine-based mechanism into the product.

Unfortunately, the advantage of verification of these advanced properties has to
be bought with a sometimes substantial runtime and memory overhead (see [19] for
some of our measurements, and [8] for a comparison of different implementations
related to matching traces in a program). Therefore, based on the observations
above, we recommend for the application of the temporal assertion framework to
use temporal assertions at development time and use adequate (automated) test
suites to cover as many possible execution paths as possible. An automated way
of generating test cases and verifying corresponding properties has been studied for
example in [6].

We proceed to give some details on our experience with applying our technique.

5.2 Runtime Verification of Concurrent Haskell
Programs

Our work on Runtime Verification [116, 117, 118] eventually started out with an
implementation for testing applications in the same language like the checker: the
functional programming language Haskell [102] was and still is our language of
choice for implementing algorithms since it is well suited to manipulate lists or sets.
Functional programming lends itself naturally to any kind of stream processing.

Haskell is a lazy language, that is, an application is generally a computation
of a term, where evaluation is data-driven: it might be deferred until the value
is required for subsequent calculations. This leads to an evaluation order which
cannot be derived easily from program source code (for example, it is not feasible to
single-step through program execution as you would in C or Java). So from that
perspective, one would not expect it to be subject to Runtime Verification with a
focus on control flow and method (function) invocation. In fact, we have limited our

90 Chapter 5. Applications and Implementations

analysis to the imperative part of the language, where interleaved I/O operations
and processes are involved [101].

Concurrent Haskell [103] integrates lightweight threads into Haskell’s IO
framework. As threads can communicate via shared data structures, different sched-
ules can lead to different results. Communication takes place by means of MVars
(mutable variables). These MVars also take the role of semaphores protecting critical
sections which makes them especially interesting to analyse.

In the IO environment, threads can create MVars (newEmptyMVar), read values
from MVars (takeMVar), and write values to MVars (putMVar). If a thread tries
to read from an empty MVar or write to a full MVar, then it suspends until the
MVar is filled respectively emptied by another thread. MVars can be used as simple
semaphores, for example to assure mutual exclusion, or for simple inter-thread com-
munication. Based on MVars, higher-level communication objects are built but are
out of the scope of this thesis.

For triggering state transitions, two possible ways of instrumentation are pro-
vided: the checker API is able to set and release propositions over arbitrary (thus
user-definable) Haskell data types. A separate instruction triggers evaluation,
allowing to accumulate multiple modifications to a state before calculating the suc-
cessors. Evaluation proceeds in a separate thread and can be configured to be either
synchronous or asynchronous (see above). We also experimented with fluent-based
propositions [61], where a proposition holds until it is explicitly released.

For convenience, the Concurrent Haskell primitives for concurrent program-
ming have been overloaded to emit generic events through a wrapper library. This
allows simple recompilation of the application under test without having to place
explicit annotations into the source if one is only interested in the concurrent be-
haviour of the application.

The library also provides a formula for checking the Lock-order Reversal pat-
tern, which can thus be activated through a single instructions without having to
understand neither LTL nor the verifier.

The implementation of the “staged” binding mechanism for partially instantiated
properties that we reported in [117] as a precursor to our current framework is
illustrated through the source code fragment in Listing 5.1.

The template function takes a list of propositions as argument. The template
engine will generate the input from the current state and passes it to the function.
The example uses the ThreadProp proposition type which is triggered on MVar access
and contains information about the current thread identifier and the affected MVar.

We use pattern matching to extract the arguments from the list of parameters
and discard the rest through the “_”-placeholder. If the arguments do not fulfil the
dynamic constraints, the second definition of lock tells the template engine that
the propositions were unsuitable for instantiation by returning Nothing1: the guard
tests if we are really instantiating the pattern with one thread and two different

1The predefined Haskell data type Maybe is defined as follows:
data Maybe a = Nothing | Just a

5.2. Runtime Verification of Concurrent Haskell Programs 91

newtype TemplateF a = TF −− new data type f o r t emp la t e s
([Prop a] −> Maybe (Either (TemplateF a) (LTL a)))

l ock : : Ord a => [Prop a] −>
Maybe (Either (TemplateF a) (LTL a))

l ock (p1@(ThreadProp i 1 x1) : p2@(ThreadProp i 2 y1) :)
| i 1 == i2 && x1 /= y1 = (Just . Left . TF)

(\ xs −> l ock2 (p1 : p2 : xs)) −− re turn anonymous func t i on
| otherwise = Nothing −− with p a r t i a l a p p l i c a t i on

l o ck = Nothing

l ock2 : : Ord a => [Prop a] −>
Maybe (Either (TemplateF a) (LTL a))

lock2 (p1@(ThreadProp i 1 x1) : p2@(ThreadProp i 2 y1) :
p3@(ThreadProp j1 y2) : p4@(ThreadProp j2 x2) :)

| x1 == x2 && j1 == j2 && y1 == y2 && i1 /= j1 =
(Just . Right) $ (phi p1 p2) −−> g (Not (phi p3 p4))

| otherwise = Nothing
l ock2 = Nothing

−− he l p e r f unc t i on :
phi u v = (u : / \ : (Not v)) : / \ : (u ‘U‘ v)

Listing 5.1: Staged template mechanism for partial instantiation of the Lock-order
Reversal pattern in Haskell

92 Chapter 5. Applications and Implementations

locks. It is not possible to use the same variable multiple times in pattern matching
expression like it is in the framework presented in this thesis, so we have to use
fresh variables for each thread and each lock and explicitly test in the guard those
variables which have to coincide.

After the tests succeed, we use the saved expressions in p1,p2 to enter the second
part of the formula, waiting for the two remaining propositions. Notice that the
complete template can be instantiated for the first time only after at least four
(different) propositions fulfilling the necessary requirements have been set by the
program. At this point, we can add the instantiated formula to the formulas already
present and begin checking it, starting from the current state, or some suffix of the
trace.

The verifier is able to read data (in a specific format) from an external resource,
and, if connected via a socket, implements the proposed protocol to synchronously
evaluate formulae. This allows us to reuse the verifier engine written in Haskell

to verify traces from C programs online.
Like its Java counterpart J-LO, it supports only implicit quantification and does

not implement overlapping propositions.

5.3 C programs and compiled programs

Instrumenting a C application proceeds along the same lines as the manual instru-
mentation in Haskell: first, the set of “interesting” instructions in the source code
must be identified. Then, instructions which resemble events and pass the required
data on to the verifier’s runtime system (which will usually be linked into the re-
sulting application) must be inserted. Tool support to provide a more declarative
means of transforming existing source code is scarce and is usually limited to pre-
processing. Thus, if a reasonable layer of abstraction is not already provided through
a modular design of the application at hand, collecting events will mean adding many
interceptions and call-backs into the verifier in many different locations, spread over
different files.

For C++ applications, AspectC++ [113] could probably be used for instrumen-
tation along the same lines which we will present in the section on Aspect-oriented
Programming used in Java, although we have not used this tool in practice. As-
pectC++ has already been considered in the context of monitoring in [92].

For binary instrumentation, it is possible to take advantage of the runtime linking
of compiled applications: since many programs will usually use the same set of
libraries, it does not make sense to statically replicate this same set of functionality
in every binary. Instead, shared libraries, also called dynamic link libraries (DLLs)
on Microsoft Windows, exist in a shared directory on the machine and programs
only contain references to those libraries together with, for example, versioning
information in case different generations of APIs are available.

On loading such a dynamically linked application, the runtime linker will use the
reference to open the appropriate shared library at most once: if another running

5.3. C programs and compiled programs 93

program is already using the same library, the static part of the library is already
present in memory and can be shared by both programs. Only fresh local storage
for, for example, static variables used by library functions must be allocated on a
per-application basis.

Function calls in the program use a symbol table to resolve the addresses of the
functions in the shared library. They are resolved at load time. Since the early days
of shared libraries, ways of influencing the resolution mechanism have been available.
For example, before using the default references to shared libraries in the program,
the user can pre-load specific libraries by listing them in the environment variable
LD PRELOAD, so that function names will be resolved from those first by the runtime
linker before falling back to the system-wide libraries. As the namespace of functions
is generally flat, this provides a convenient way of intercepting function calls on an
individual basis without having to recompile it. Once inside an intercepted function
call, an event can be generated, and special functions of the runtime linker like
dlopen() can be used to pass control to the library the application was originally
linked with. This technique has been used in the past, for example, for dynamically
putting a security layer in top of network communication without having to change
the original application.

The limitations of this approach are clear: the library used for replacing the
original functions must provide exactly the same API. Also, only calls to shared
libraries can be intercepted. Plain function calls in the original application will
already have been translated to jumps to raw addresses within the resulting binary
and can thus not be intercepted or instrumented without modifying the binary.
Another limitation is that the interception cannot be scoped easily: all references to
the affected functions are overloaded, making targeted instrumentation of only parts
of the application impossible. Our approach in the thesis at least allowed information
about the calling context in the form of the this argument to the method enter/exit

event. This especially holds true when instrumenting standard functions from the
system libraries which are also used in dependant libraries, although one is only
interested in targeting the base application. Too much trace data will be generated,
even to an amount of making it impossible to use the application at all.

Although also other programming languages compile into code which uses shared
libraries, usually the functions use complex data structures as arguments, so this
approach is not easily applicable to other settings.

The program supervision tool Valgrind (see Section 6.1) allows interception of
almost each machine code instruction of a binary program. The upcoming instruc-
tion is decoded into an internal representation and the approriate hooks are triggered
before executing the original instruction. Thus it allows for a much finer granularity.
Triggered actions are generally more lightweight and concerned with, for example,
memory access or cache performance.

As a case-study for the Lock-order Reversal Problem, we developed a shared li-
brary which uses the LD PRELOAD-mechanism described above to overload the thread-
ing primitives from the POSIX specification which are pulled in from a shared system
library. After a short description of the API, we summarise our experience with this

94 Chapter 5. Applications and Implementations

Function name Primitive
pthread create Thread creation
pthread mutex lock/unlock Semaphores for mutual exclusion
pthread cond wait/signal Condition variables
Augmented API
pthread name Associate thread to name mapping

Figure 5.1: POSIX Threading API

approach and discuss manual instrumentation of the Apache web server.

Shared library instrumentation for threaded application

The POSIX Threading Specification [83] defines the pthread * API, which amongst
other things, provides thread creation and mutex-based synchronisation (see Figure
5.1). In addition to mutexes, condition variables are used avoid polling when check-
ing for a condition.

As outlined above, we intercept calls to the API and pass the events through the
means of interprocess communication to the Haskell program implementing the
checker. Whether validation should be synchronous or asynchronous is configurable.
If source code instrumentation is possible, our extended API also includes a function
to assign human-readable names to threads which are used in the output.

One severe problem we observed is the problem of applying instrumentation only
to parts of the base application (or rather, only the base application, and not depen-
dant libraries): the symbol namespace of C applications is flat, so that on preloading,
all library calls will be redirected to the new library. For the FreeBSD 4.11 operating
systems, this means that also calls to the pthread-functions from the standard C

runtime libc, which it needs for internal reasons, will be instrumented. In our case
study, we found that a lot of time was required to separate threads of the application
from the internal managment threads. These managment threads were also created
in different orders depending on the functions invoked from libc.

Not all functions of the C runtime library such as fprintf() (to send debugging
data to the connected debugger) could be used until the runtime had set itself up
properly, since those functions would also require calls to the threading API—which
then would again try to send data to the debugger! A deadlock would occur, and
much detail had to be put into tracking those (undocumented) dependencies and
defer using any such function until it was safe to do so. Furthermore, we expect
those dependencies to be different from runtime system to runtime system, that is,
even on more recent version of the FreeBSD operating system they may be different.
On Linux or Solaris, there might be yet other pecularities to be observed.

For manual instrumentation of C applications, we provide a naming API to assign
names to threads and mutexes. They can be used to interpret the traces, as thread
identifiers are only 32 bit integer values, which additionally change from run to run of
an application. The names have been used for example in the visualisation through

5.3. C programs and compiled programs 95

the Concurrent Haskell Debugger [20, 30]. When investigating the Apache webserver
(see our motivation for parametrised propositions in Section 3.2), sensible names
had to be generated from the apparent function of the object. Since the number
of threads and locks in the server is configurable, fresh names are instantiated from
templates (for example, child 1, child 2, lock 1).

Another peculiarity of some C compared to Java is that some data structured
do not necessarily need to be explicitly initialised. The mutex data structure of the
pthread-API for example does not require initialisation (like threads do through
pthread create), but may be initialised from the runtime library on first use. In
such cases, we had to identify the (sometimes presumed) location where this data
structure would be used for the first time and insert the calls to our augmented
naming API.

Alas, the web server has a rather conservative use of locks, so we have not been
able to detect any problematic behaviour with respect to the Lock-order Reversal
pattern.

Once an application is running in synchronous mode with the Haskell checker,
we are able to obtain a stack dump through use of the gcore library when a temporal
assertion was violated. Together with the recorded trace, this dump of the call
stack can then be investigated by the user to find out more about the origin of the
violation, for example, by inspecting global variables or variables in the local or
preceeding stack frames in the GNU Debugger gdb. This is also the primary way of
mapping the event triggering the assertion to a specific line of code in the program,
as events itself do not carry any source code information. Often, many locations
may generate the same event, so it is not obvious from the event itself from which
part of the application it is coming from.

Our tool discovered a possible Lock-order Reversal in the graphical Qt plugin for
the instant messaging client licq, but it proved infeasible without major invest-
ments to track down the exact location in the library since no debugging symbols
were compiled into it. Unfortunately, for a sufficient large project like the Qt li-
brary, it is very time-consuming to set up an appropriate debugging environment.
Almost an arbitrary amount of time can be invested into understanding a third-
party application. We expect it to be much easier to use our framework integrated
into the development process, combined with understanding of the internals of the
application.

Another use case derived from the POSIX specification relates to the use of so-
called “async-safe calls”: in a multi-threaded application, not all functions from the
threading API may be invoked after a call to the heavy-weight fork() function from
the runtime library which starts a new process. In fact, the new process is limited to
single-threaded behaviour and may no longer invoke any functions of the threading
API. To enforce this at runtime and providing a helpful error message instead of
making the runtime system fail ungracefully because of inconsistent C runtime data
structures, the following pattern can be employed:

G (fork→ G ¬async unsafe)

96 Chapter 5. Applications and Implementations

where async unsafe is the set of forbidden events. Observe that this formula does
not need any quantification since fork() does not take any parameters and the
property needs to be checked for the whole application, and not only a specific
object.

5.4 Instrumenting Java programs

In [115] we investigated the possibility of automatic instrumentation of an existing
Java program through the use of Aspect-oriented Programming (AOP) [46].

In the programming languages community, it was understood very early that
programming methodologies that go beyond object-oriented programming can be
useful and gave also rise to meta-programming or reflective programming, to name
just two. The term “AOP” was coined by Gregor Kiczales in 1996 while at the
Xerox Corporation research facility, where also AspectJ, one of the first practical
implementations of AOP, was developed in the late 1990s.

AOP allows to separate crosscutting concerns, where a concern is usually a logical
component of the application, which is implemented throughout the application
(often truly crosscutting through several source files and modules). Probably the
most cited examples are logging, tracing, authentication, caching, or transactions.
For literature specific to AspectJ, the variant of AOP pertinent to Java, see for
example [90] or [34].

The perceived advantage of AOP is being able to maintain the code implementing
a concern in a single location and offering a way of addressing the locations in the
program that make use of the offered functionality. Any changes to the implemen-
tation of a concern can then be done independently from the application, without
having to thread source code changes through to all call sites.

The aspect offers a new unit of modularisation: it bundles the logic (implemen-
tation of concerns) and the weaving rules that specify how to integrate the concern
with the application to obtain the final application. For example, if we consider an
ATM interface, we might specify that every function manipulating the account total
should verify that the session is authenticated, and, if that is not the case, prompt
for authorisation. The weaving rules could then consist of a list of all API methods
which in fact debit or credit the account.

Then, the weaver uses this information and automatically manipulates the pro-
gram, so that manually inserting code for the logic in the addressed methods is
not necessary. Static crosscutting is the first step, which does not yet modify the
behaviour of the application. It usually just inserts callbacks and hooks into ex-
isting classes or methods. These can then be used in dynamic crosscutting, where
behaviour is in fact changed by augmenting or even replacing the core program
execution flow.

The rules that specify where modifications should take place need a specification
language. This language must be able to address states in the dynamic execution of
a program. In AspectJ, this is achieved through pointcuts, which select join points

5.4. Instrumenting Java programs 97

that identify single events. This includes method calls, or attribute or variable
access. For a detailed discussion of the AspectJ join point model, we refer the
interested reader to Chapter 2.4 of [90].

The actual behaviour that is to be executed when a pointcut matches is specified
in the advice, which is usually a program fragment in the same language as the
application. It is very much like a method body. Advice also carries a specification
of whether it should be executed before, instead, or after the matched join point.

As the join points expose a subset of the current state (for example, for before
advice they expose for method calls the arguments, and for after advice also the
result), these bound values can be used in the advice. This also allows modification
of return values through around advice, which is executed instead of a method.

Dynamic matching can also make use of an if() pointcut. This pointcut captures
join points based on some conditional check in the form of a Boolean expression
on the join point. It can refer to any variable that is exposed by a pointcut or is
otherwise visible. Naturally evaluation of this pointcut has a highly dynamic notion.
An if() pointcut not guarded by an event-based join point like a method call will
incur a severe performance penalty since it will be checked at every join point, that
is, on every single step of the execution again and again.

Furthermore, AspectJ offers pointcuts which go beyond events: lexical scop-
ing is available via within()/withincode(), and there are even the context-aware
pointcuts cflow()/cflowbelow() which take other pointcuts as arguments and se-
lect all join points within the execution of the inner pointcut. This can be used,
for example, to capture all join points in the dynamic context of a method call,
including proper handling of recursion through counters. We will not elaborate on
those advanced constructs since they are beyond the scope of this thesis. However,
we note that cflow exposes a somewhat temporal behaviour and we conclude that
this is not an entirely perpendicular feature to temporal logic.

The similarity between join points and the events generated by our underlying
programming language are of course not only incidental. They both stem from the
same need to be able to reason (or at least talk) about points in the execution of
an application. Every such point corresponds to a state change in the application,
which in turn closely corresponds to the abstracted trace we use for verification.

The motivation for designing our events was to obtain a trace which resembles
the execution path of the application as close as possible. The same need drives the
join point model, where finer granularity means being more expressive, in the sense
that there are more locations where advice can be attached to and executed.

Our motivation for Runtime Verification centred around reasoning about dynamic
control flow, especially method calls. So for Java applications, we can simply use
pointcuts to intercept the execution (at points very similar to those in our modelling
language) and trigger evaluation of a set of formulae with respect to the current
event/state.

98 Chapter 5. Applications and Implementations

The Java-Logical Observer (J-LO)

In the Java-Logical Observer J-LO (presented in detail in [18, 115]), we followed
this approach and, instead of using some intermediate events, directly used As-

pectJ pointcuts as propositions. It is event-based, that is, there are no overlapping
propositions on the trace. Quantification is determined through the operator (for
example, Finally implies existential quantification, while Globally implies universal
quantification.

A major difference from J-LO to the framework proposed in this thesis is that the
set of overall events is derived from the propositions occurring in the formula: in the
first step, the formula, which is stored as a Java5 annotation [84], is extracted from
a Java bytecode file. A formula may also contain a body that shall be executed
whenever the formula is violated. If no body is present, a generic message is printed
on violation.

Then, through the AspectBench Compiler (abc) [7], callbacks from the instru-
mented application into the verifier are generated by means of AspectJ for each
pointcut in the formula. The weaver has already a limited means of pointing out
(statically) unmatched pointcuts which could in principle be used to short-cut eval-
uation of the affected propositions since they can never be true in any run. if()

pointcuts are handled separately and have to be evaluated within the verifier advice,
as in our extension they may refer to previously bound objects which are no longer
in the current scope. If object references are used, pointcuts and the advice will refer
to the current object attributes only. Any previous object attribute values have to
be bound to variables exposed in the pointcut explicitly if they are required in alter
stages of the temporal evaluation. In [115], we also introduced the notion of joining
pointcuts in temporal formulae by binding values in logical variables that may occur
in multiple pointcut expressions.

At execution time, advice will be triggered every time a pointcut matches. The
verifier performs its task, either executing the advice attached to the formula with
the current bindings in case of a refutation, or changing state and proceeding with
the execution of the original application. Change state means that new values may
be bound to free variables and evaluation proceeds with the unwound partially
instantiated remaining formula.

At program termination, the remaining formulae are resolved according to their
finite paths semantics, that is, eventualities (U formulae) fail since they have not
been fulfilled, and safety properties are evaluated to tt (R formulae).

The careful reader will have noticed that by choosing appropriate AspectJ points
and their exposed parameters, a mechanism similar to the filtering described in
Section 4.1 is available.

By relying on the propositions actually occurring in the formula, it is possible to
influence the model that the formula is checked against. This means that proposi-
tions occurring in tautological sub-formulae will select additional join points from
the execution path that may affect the evaluation result of other subformulae.

With respect to garbage collection, the J-LO implementation uses only weak ref-

5.5. Using Metadata to Record Semantic Wisdom 99

erences to objects. This means that the Java garbage collector can reclaim objects
from the heap if the verifier is the only entity holding a reference to it. Objects which
have disappeared but are still bound in the context of a formula can be detected in
the next transition of the verifier. All propositions referring to such an object are
refuted: they will never occur on the trace again.

We have successfully tested our implementation with various assertions over data
structures as well as on an instance of the Lock-order Reversal pattern from Section
4.2.

The work of Allan et al. [2] discusses an instance of the safe iterator pattern in
the Java drawing package JHotDraw2, which is often used as a proving ground for
aspect-oriented techniques. We were able to capture the requirement in a formula
(see Listing 5.2, slightly edited due to the awkwardness of the annotation syntax)
and reproduce their results by executing a sequence of events violating the pattern in
the graphical user interface. The error was properly picked up. If no instrumentation
had been present, the error would probably have gone unnoticed.

5.5 Using Metadata to Record Semantic Wisdom

In [19], we investigated a more user-friendly approach of storing interface-specific
properties in a standardised way together with the interface in a so-called Tracecheck
as an extension to the meta data-based approach already presented in [115].

By specifying otherwise usually only loosely documented properties and usage-
constraints of interfaces in a machine-readable way, they can be consumed both by
humans as additional documentation and automated tools such as J-LO to verify
them at runtime. Especially for object-oriented systems with inheritance, runtime
verification can be inherited top-down, for example, from an abstract interface to a
concrete implementation.

As an additional advantage, keeping such semantic properties like the “temporal
interface” of a class separate from the code actually implementing the necessary
mechanism to verify them, we hope to be able to analyse different such specifica-
tions with respect to conflicts or potential for interference. This would not be as
easily possible if, like in the Java iterator example, some home-grown mechanism
is implemented.

Tracechecks use a syntax similar to Tracematches (see “Related Work” in Section
6.1), but allow a more flexible use of free variables in formulae. Listing 5.3 shows
how the “safe iterator usage” is specified as a Tracecheck together with a body that
is to be executed whenever the temporal assertion is violated.

2http://www.jhotdraw.org/

http://www.jhotdraw.org/

100 Chapter 5. Applications and Implementations

public class FailSafeEnumJLO {

@LTL(” java . u t i l . Vector c , java . u t i l . Enumeration i :
G((

exit (cal l (java . u t i l . Enumeration+.new (. .))
&& args (c)) returning i

) −> (
X(

G(
(

entry ((cal l (∗ java . u t i l . Vector . add ∗ (. .))
| | cal l (∗ java . u t i l . Vector . remove ∗ (. .))
| | cal l (∗ java . u t i l . Vector . c l e a r ())
| | cal l (∗ java . u t i l . Vector . r e t a i nA l l (. .))
| | cal l (∗ java . u t i l . Vector . s e t ∗ (. .))
| | cal l (∗ java . u t i l . Vector . insertElementAt (. .)))

&& target (c))
) −> (

G(! (
entry (cal l (java . lang . Object
java . u t i l . Enumeration . nextElement ()) && target (i))
)

)
)

)
)

)
)”
. . .
}

Listing 5.2: Fail-safe iterator annotation applied in the JHotDraw use case

tracecheck (Co l l e c t i on c , I t e r a t o r i) {

sym i t e r a t o r (Co l l e c t i on c , I t e r a t o r i) after returning (i) :
ca l l (Co l l e c t i on +. i t e r a t o r ()) && target (c)

sym modify (Co l l e c t i on c) after returning :
(ca l l (Co l l e c t i on +.add (. .)) | |
ca l l (Co l l e c t i on +.remove (. .))) && target (c)

sym next (I t e r a t o r i) before :
ca l l (I t e r a t o r . next ()) && target (i)

G(i t e r a t o r (c , i) −> G(modify (c) −> G(! next (i)))) {
throw new ConcurrentModi f i cat ionExcept ion

(” Co l l e c t i on ”+c+” modi f i ed ! ”) ;
}
}

Listing 5.3: Safe iterator Tracecheck

6 Conclusion

6.1 Related Work

Monitoring Frameworks

HAWK and EAGLE

HAWK [36] is a (not publicly available) Java-oriented extension of the rule-based
EAGLE logic [13, 14] that has been shown capable of defining and implementing
a range of finite trace monitoring logics, including future and past time temporal
logic, metric (real-time) temporal logics, interval logics, forms of quantified temporal
logics, extended regular expressions, state machines, and others.

A monitor for a HAWK formula checks if a finite trace of program events satisfies
the formula. Monitoring is achieved on a state-by-state basis avoiding any need
to store the input trace. HAWK extends EAGLE with constructs for capturing
parametrised program events such as method calls and returns. Parameters can
be the executing thread, the objects that methods are called upon, arguments to
methods, and return values. HAWK allows to refer to these events in formulae. As
it is targeted to event-based systems, only implicit quantification is available. The
tool synthesises monitors from formulae and automates program instrumentation.
In [8], some performance measurements have been provided that indicate that at
least the current version suffers from excessive memory consumption.

Definitions of HAWK logic observer specifications are written in a separate lan-
guage. From this, an equivalent EAGLE specification and an AspectJ aspect are
generated. The following sample states that if a file is ever written, it must have
been opened before:

Always([file?.write(∗)] Previously(〈file.open()〉 true))
The authors proposed an even tighter integration of their tool chain within a Java

program through AspectJ, so that temporal formulae become part of the AspectJ

pointcut language. We believe that the implementation of our Java prototype J-LO
is a sufficient proof of concept that this is indeed a practicable solution.

Java PathExplorer

JavaPathExplorer [75] due to Havelund and Roşu reasons about traces. They use
similar semantics of LTL over finite paths, although their approach to instrumen-
tation of Java programs is not AOP based. Not to be confused with the Java
PathFinder [125], the explicit state model checker for Java programs.

102 Chapter 6. Conclusion

Tracecuts and tracematches

Walker and Viggers [126] proposed a language extension to AspectJ, tracecuts.
Tracecuts do not match on events in the execution flow as AspectJ pointcuts do,
but instead match on traces of such events. Those traces are specified by means of
context-free expressions over pointcuts. Since this approach provides a language ex-
tension, it cannot be used in combination with ordinary Java compilers. Tracecuts
do not provide automatic tracking of state. No implementation has been provided.
Inspired by this work, Allan et al. [2] extended the abc compiler with tracematches
which allow to bind free variables in pointcut expressions. The implementation in
abc follows similar thoughts as the approach we proposed in [117]. Allan et al.
however do not employ alternating automata in their model.

Java-Mac

Java-MaC [88] is a runtime-assurance tool for Java. The Meta Event Definition
Language (MEDL) is used to specify safety properties. As the MaC architecture
is designed to be language-independent, a Primitive Event Definition Language
(PEDL) provides the binding to the target language, here Java. While Java-PEDL
has been designed to closely correspond to Java, it is not as comfortable to use
as AspectJ where expressions are not modelled after Java, but in fact are Java

expression. Also, state in MEDL seems to be limited to primitive types.

Java-MOP

The MOP (Monitor Oriented Programming) framework [27] is designed to build
monitors for object-oriented programs. A monitor is divided into a logic engine and
a logic plugin. The engine generates the code that checks the trace. The plugin is
concerned with extracting trace data from the program and submitting it to the en-
gine. Java-MOP [28] is the corresponding framework for Java. It offers future- and
past-time linear temporal logic, as well es extended regular expressions. Properties
are specified as comments in the source code. It does not support quantification.

Temporal Rover

Temporal Rover [44] is a commercial product by Time Rover, Inc. It handles future
and past time metric temporal logic requirements embedded in comments by manual
source-to-source transformation.

Gamma

Klose and Ostermann [89] discuss how temporal relations can be expressed in Gamma,
an aspect-oriented language on top of a minimal object-oriented core language.
Pointcuts are specified in a Prolog-like language and include timestamps that can
be compared using the predicates isbefore/after. Their prototype requires an

6.1. Related Work 103

already existing trace to apply aspects to and is not applicable to an existing lan-
guage. Although overlapping propositions could probably be implemented through
overlapping timestamps, Gamma targets event-based systems.

Alloy/Embee

The Embee framework [35] checks whether the runtime state of a program at certain
user-specified locations conforms to a given object model with the help of the Alloy
Analyzer [81]. It uses the Java Platform Debugger Architecture (JPDA) from Sun
Microsystems to insert breakpoints into the application under test. Object-model
conformance is then checked using the Alloy analyser when such a breakpoint is
reached. It is concerned with structural rather than temporal properties of objects.

Instrumentation techniques

Valgrind

Valgrind [98] is a system for profiling x86 programs by instrumenting them at run-
time. Tools for detecting memory management and cache performance are provided.
It has been applied to such notable projects as Open/StarOffice and even Nasa Mars
lander software. Extending Valgrind should be the natural choice if applications
compiled to native code (for example, code compiled from C or C++) should be
instrumented. In fact, an earlier version contained a tool implementing the Eraser-
algorithm which detects data-races in multi-threaded programs [108]. But due to
the limitations of using shared libraries for interception as we have pointed out in
Section 5.3, this feature has been removed from the current version of Valgrind.

Bytecode engineering libraries like BCEL1 or Soot [121] can also be used to in-
strument Java bytecode. They allow to insert arbitrary code into an existing class
or otherwise modify it. The current implementation of the weaver in the AspectJ
compiler ajc is based on BCEL. The extensible AspectJ research compiler abc we
use for our research employs Soot for analysis and weaving.

AOP-based approaches

Temporal logics have already been used together with AOP: In [1], rules based on
temporal logics are used to describe sequences of instructions where events should
be inserted. The instrumentation happens on a static level and does not consider
free variables.

Douence, Fradet and Südholt [42] developed an aspect calculus where advice can
be triggered not only via a single joinpoint but via sequences. Their work is targeted
towards a formal model of joinpoint matching and advice execution, and less on an
actual implementation. Their formalism describes regular sequences of joinpoints,
so it can rather be compared to the sequential model of tracematches than to ours.

1BCEL - The Byte Code Engineering Library, http://jakarta.apache.org/bcel/

http://jakarta.apache.org/bcel/

104 Chapter 6. Conclusion

Consequently, they cannot express overlapping events. It is implemented in the
Arachne system [43], a dynamic weaver for C applications.

Vanderperren et al. [123] propose the stateful pointcut language JAsCo. Point-
cuts trigger transitions in a deterministic finite automaton and advice can be at-
tached to each pointcut. JAsCo does not provide a means of quantification or
dynamic bindings, but still it could be a suitable platform to implement Temporal
Assertions on top of.

jassda framework

The jassda framework [21] uses the Java Debug Interface (JDI). Thus, it presents
a solution where no instrumentation is required due to the use of an interpreter (the
Java Virtual Machine) that already offers event-generation (see Section 5.1). The
events roughly correspond to the ones we discussed earlier, although return values
from method calls are not easily available.

Before use, the debuggees are configured with respect to the events that are in-
teresting to the debugger. jassda does this based on a symbol alphabet of events
retrieved from the debug module. Then, CSP-like specifications are checked on the
fly on the incoming trace.

Solaris DTrace

DTrace [23] is an event-based tracing mechanism for Sun’s Solaris operating sys-
tem. Trace data is generated by so-called providers, where many are already shipped
with the default operating system installation. They include events about locking,
file access, and system calls. Events and counters expose internal state.

Consumers can dynamically enable or disable kernel or user-land probes. DTrace

allows for tens of thousands of instrumentation points, with already 30.000 provided
just by the kernel. The high-level control language D (loosely based on C) allows to
specify predicates and actions. Sun took care to implement this feature as efficiently
as possible, so that no instrumentation indeed translates directly to no overhead.
Also, safeguards to accidental system failure through misuse have been devised. In
fact, DTrace has rather been designed as not being able to influence the system
at all, (one potential of the Runtime Verification approach in the sense that it also
might contribute behaviour to the system).

Data structures for aggregation can be specified in-kernel for maximal efficiency.
Consumers can poll these periodically. Common applications usually include perfor-
mance analysis, for example, lock contention or (frequency of) memory allocation.

DTrace itself does not directly offer any way of usefully interpreting obtained
data, it is rather just the instrumentation framework. We expect that DTrace

can be used to monitor many safety properties on the running operating system,
although the wealth and frequency of events will surely pose a huge computational
burden on consumers and will prohibit complex operations on the data.

6.1. Related Work 105

jMonitor

jMonitor [86] is a pure Java library and runtime utility for specifying event patterns
and associating them with user provided monitors that get called when the specified
runtime events occur during the execution of Java applications. The instrumenta-
tion works at the Java bytecode level and does not require the presence of source
code for the Java application that is being monitored.

It is more lightweight than applying AOP since it is applied at class-loader level,
but monitors have to be programmed in Java, and no declarative specification
language is provided. State machines for regular or temporal behaviour (that is,
sequences of events expressed as regular expressions or LTL formulae over events),
could be implemented on top of jMonitor. The same holds for quantification which
must be programmatically handled in the monitor.

Verification

The following tools are usually not directly applicable to a concrete program or
programming language and require the necessary (usually non-trivial) abstraction
of the program into the input language of the tool.

Parametric Regular Path Queries

Recently in [91] parametric regular path queries have been investigated. They declar-
atively express queries queries on graphs as regular-expression-like patterns that are
matched against paths in the graph. Their use is motivated through use in program
analysis and model checking. The authors provide comprehensive benchmarks and
complexity results.

SPIN

SPIN [78] is a popular model checker that has been applied to an enormous variety
of closed systems, that is, self-contained models without any input. The high-level
specification language PROMELA (PROcess MEta LAnguage) allows for a bounded
number of processes and channels for communication. Control-structures are non-
deterministic, and loosely based on Dijkstra’s guarded command language notation.
I/O operations resemble Hoare’s CSP language. Models can be checked for omega-
regular properties, which includes LTL.

Model Checking Java

In [80] Iosif and Sisto define a formal specification technique for expressing properties
related to object-oriented source code, and particularly concurrent and distributed
code, taking as a reference the Java language. They propose a division into interface
and implementation properties. Propositions used in interface properties address
control flow and allow reasoning about method calls (method name and arguments)

106 Chapter 6. Conclusion

and returns (with return value). The specification language is modelled around LTL
and also allows quantification.

Actual translations of Java into PROMELA, the input language of SPIN, to
check for deadlocks in concurrent programs have been presented in [37, 125].

dSPIN

The dSPIN model checker [38] is an extension to SPIN, that offers efficient means
for the verification of concurrent high-level programs. It features dynamic memory
allocation, memory references, recursion, and garbage collection.

Verification/Checking of Locking

In [85], Kahlon et al. show that for threads with nested access to locks the model
checking problem is decidable through pushdown systems with respect to a fixed set
of locks and no communication. (It has been shown that, for example, reachability
is undecidable even for two threads if they communicate using CCS-style pairwise
rendezvous [106].)

6.2. Summary 107

6.2 Summary

In this thesis we have presented a framework for the verification of Temporal Asser-
tions for sequential and concurrent programs at runtime. These assertions use the
Linear Time Logic LTL to express valid sequences of propositions which correspond
to events in the control flow of an application in a simple object-based programming
language. Events are, for example, method enter and exit.

In the dynamic control flow of an application, these events occur for specific ar-
guments and return values. To capture the dynamic valuations, we have introduced
parametrised propositions with quantified variables that bind values based on the
current state only. This state-based quantification avoids having to quantify over
potentially huge domains like object references (pointers), or integers.

For event-based systems, like traces obtained from programs where there can be
no overlapping of propositions, the effects of quantifiers only differ in their results
if the quantified proposition is not present in the current state. This leads in our
experience to formulae where a Globally operator implies universal, and Finally
existential quantification.

Since LTL properties under some variable assignment are statically generally not
efficiently decidable for real-world programs with input (nor even reachability of spe-
cific source code locations), we have proposed an algorithm to check the properties
on the fly for an actual execution trace.

Our algorithm is based on a breadth-first traversal of the run trees of the alter-
nating finite automaton corresponding to an LTL formula, which incurs a double-
exponential overhead in the size of the formula due to the conciseness of alternating
finite automata compared to nondeterministic finite automata. We resolve the non-
determinism at runtime: a configuration of the breadth-first evaluation can be rep-
resented as a set of sets of automaton states together with a valuation for variables,
where the number of states of the automaton is linear in the size of the closure of
the LTL formula. The abstract outgoing edges and successor states can be statically
computed, but have to be checked against the input under the concrete binding in
the configuration in each step. An accepting configuration is one such inner set
where all states are in the acceptance set of the alternating automaton.

Although, like assertions, our approach cannot prove the absence of errors, it
gives the programmer a more powerful means of automatically checking assumptions
about his program at runtime.

Practical examples from object-based and concurrent programs underlined the
general usefulness of the approach. A proof-of-concept prototype developed in Java

confirmed the practicality of our approach.

Bibliography

[1] R. A. Åberg, J. L. Lawall, M. Südholt, G. Muller, and A.-F. L. Meur. On the
automatic evolution of an OS kernel using temporal logic and AOP. In Proc.
of Automated Software Engineering (ASE’03). IEEE, 2003.

[2] C. Allan, P. Avgustinov, A. Simon, L. Hendren, S. Kuzins, O. Lhoták,
O. de Moor, D. Sereni, G. Sittamplan, and J. Tibble. Adding Trace Matching
with Free Variables to AspectJ. In OOPSLA ’05, San Diego, California, USA,
October 2005.

[3] R. Alur. Timed Automata. In N. Halbwachs and D. Peled, editors, 11th
International Conference of Computer Aided Verification (CAV’99), volume
1633 of Lecture Notes in Computer Science, pages 8–22. Springer, 1999.

[4] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls
and returns. In K. Jensen and A. Podelski, editors, Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2004), volume 2988 of
Lecture Notes in Computer Science. Springer, 2004.

[5] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver,
S. Mador-Haim, E. Singerman, A. Tiemeyer, M. Y. Vardi, and Y. Zbar. The
ForSpec Temporal Logic: A new Temporal Property-Specification Language.
In Katoen and Stevens [87].

[6] C. Artho, D. Drusinsky, A. Goldberg, K. Havelund, M. R. Lowry, C. S. Pasare-
anu, G. Rosu, and W. Visser. Experiments with test case generation and
runtime analysis. In E. Börger, A. Gargantini, and E. Riccobene, editors,
Abstract State Machines, volume 2589 of Lecture Notes in Computer Science,
pages 87–107. Springer, 2003.

[7] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhoták, O. Lhoták,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. abc: an extensible
AspectJ compiler. In AOSD’05: Proceedings of the Fourth international con-
ference on Aspect-oriented software development. ACM Press, 2005.

[8] P. Avgustinov, J. Tibble, E. Bodden, O. Lhoták, L. Hendren, O. de Moor,
N. Ongkingco, and G. Sittampalam. Efficient trace monitoring. Technical
Report abc-2006-1, The abc Group, 2006.

110 Bibliography

[9] C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen, and M. Siegle, editors.
Validation of Stochastic Systems, volume 2925 of Lecture Notes in Computer
Science. Springer, 2004.

[10] J. Baldwin. Locking in the Multithreaded FreeBSD Kernel. In S. J. Leffler,
editor, Proceedings of BSDCon 2002, February 11-14, 2002, San Francisco,
California, USA. USENIX, 2002.

[11] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic Pred-
icate Abstraction of C Programs. In Proceedings of the ACM SIGPLAN 2001
conference on Programming language design and implementation (PLDI’01),
pages 203–213. ACM Press, 2001.

[12] T. Ball and S. K. Rajamani. The SLAM Toolkit. In Berry et al. [17], pages
260–264.

[13] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Program Monitoring
with LTL in EAGLE. In 18th International Parallel and Distributed Processing
Symposium (IPDPS 2004). IEEE Computer Society, 2004.

[14] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime
verification. In B. Steffen and G. Levi, editors, 5th International Conference
on Verification, Model Checking, and Abstract Interpretation, (VMCAI 2004),
volume 2937 of Lecture Notes in Computer Science, pages 44–57. Springer,
2004.

[15] I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh.
The Temporal Logic Sugar. In Berry et al. [17].

[16] S. Bensalem and K. Havelund. Dynamic deadlock analysis of multi-threaded
programs. In S. Ur, E. Bin, and Y. Wolfsthal, editors, Haifa Verification
Conference, volume 3875 of Lecture Notes in Computer Science, pages 208–
223. Springer, 2005.

[17] G. Berry, H. Comon, and A. Finkel, editors. 13th International Conference
on Computer Aided Verification (CAV’01), volume 2102 of Lecture Notes in
Computer Science. Springer, 2001.

[18] E. Bodden. J-LO, a Tool for Runtime Checking Temporal Assertions. Mas-
ter’s thesis, RWTH Aachen University, Germany, 2005. Available from
http://www-i2.informatik.rwth-aachen.de/JLO/.

[19] E. Bodden and V. Stolz. Tracechecks: Defining semantic interfaces with tem-
poral logic. In W. Löwe and M. Südholt, editors, 5th International Symposium
on Software Composition (SC’06), volume 4089 of Lecture Notes in Computer
Science. Springer, 2006.

Bibliography 111

[20] T. Böttcher and F. Huch. A Debugger for Concurrent Haskell. In Draft.
Proc. of the 14th International Workshop on the Implementation of Functional
Languages (IFL’02), Madrid, Spain, Sept. 2002.

[21] M. Brörkens and M. Möller. Dynamic Event Generation for Runtime Checking
using the JDI. In Havelund and Roşu [73].

[22] G. Bruns and P. Godefroid. Temporal logic query checking. In Proc. of the
16th IEEE Symp. on Logic in Computer Science (LICS 2001), pages 409–417.
IEEE Computer Society, 2001.

[23] B. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic instrumentation
of production systems. In USENIX Annual Technical Conference, General
Track, pages 15–28. USENIX, 2004.

[24] W. Chan. Temporal-logic queries. In Proceedings of the 11th Conference on
Computer Aided Verification (CAV 1999), volume 1855 of Lecture Notes in
Computer Science. Springer, 1999.

[25] A. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the
ACM, 28:114–133, 1981.

[26] A. K. Chandra and L. J. Stockmeyer. Alternation. In 17th Annual Symposium
on Foundations of Computer Science, pages 98–108. IEEE, 1976.

[27] F. Chen, M. d’Amorim, and G. Roşu. A formal monitoring-based framework
for software development and analysis. In J. Davies, W. Schulte, and M. Bar-
nett, editors, ICFEM, volume 3308 of Lecture Notes in Computer Science,
pages 357–372. Springer, 2004.

[28] F. Chen and G. Roşu. Java-MOP: A Monitoring Oriented Programming En-
vironment for Java. In Halbwachs and Zuck [65], pages 546–550.

[29] T. M. Chilimbi. Asymptotic Runtime Verification through Lightweight Con-
tinous Program Analysis (invited talk). In Fifth Workshop on Runtime Veri-
fication (RV’05). To be published in ENTCS, Elsevier, 2005.

[30] J. Christiansen and F. Huch. Searching for deadlocks while debugging Concur-
rent Haskell programs. In C. Okasaki and K. Fisher, editors, Proceedings of the
Ninth ACM SIGPLAN International Conference on Functional Programming
(ICFP 2004), pages 28–39. ACM Press, 2004.

[31] G. Chugunov, L.-Å. Fredlund, and D. Gurov. Model Checking of Multi-Applet
JavaCard Applications. In Proceedings of the Fifth Smart Card Research and
Advanced Application Conference, (CARDIS’02), pages 87–96. USENIX, 2002.

112 Bibliography

[32] E. Clarke and E. Emerson. Design and synthesis of synchronisation skeletons
using branching time temporal logic. In Logic of Programs, volume 131 of
Lecture Notes in Computer Science, pages 52–71. Springer, 1981.

[33] E. Clarke Jr, O. Grumberg, and D. Peled. Model Checking. MIT Press,
Cambridge, Massachusetts, 1999.

[34] A. Colyer, A. Clement, G. Harley, and M. Webster. Eclipse AspectJ: Aspect-
Oriented Programming with AspectJ and the Eclipse AspectJ Development
Tools. Pearson Education, 2005.

[35] M. L. Crane and J. Dingel. Runtime Conformance Checking of Objects Using
Alloy. In Sokolsky and Viswanathan [112].

[36] M. d’Amorim and K. Havelund. Event-Based Runtime Verification of Java
Programs. In WODA ’05: Proceedings of the third international workshop on
Dynamic Analysis, pages 1–7, New York, NY, USA, 2005. ACM Press.

[37] C. Demartini, R. Iosif, and R. Sisto. A deadlock detection tool for concurrent
java programs. Softw., Pract. Exper., 29(7):577–603, 1999.

[38] C. Demartini, R. Iosif, and R. Sisto. dSPIN: A Dynamic Extension of SPIN.
In D. Dams, R. Gerth, S. Leue, and M. Massink, editors, SPIN, volume 1680
of Lecture Notes in Computer Science, pages 261–276. Springer, 1999.

[39] E. W. Dijkstra. The humble programmer. ACM Turing Lecture, 1972.

[40] D. Distefano. On Model Checking the Dynamics of Object-based Software: a
Fundamental Approach. Twente University Press, The Netherlands, 2003.

[41] D. Distefano, A. Rensink, and J.-P. Katoen. Model checking birth and death.
In R. Baeza-Yates, U. Montanari, and N. Santoro, editors, Foundations of
Information Technology in the Era of Networking and Mobile Computing. In
2nd IFIP International Conference on Theoretical Computer Science (TCS),
pages 435–447. Kluwer, 2002.

[42] R. Douence, P. Fradet, and M. Südholt. Composition, reuse and interac-
tion analysis of stateful aspects. In G. C. Murphy and K. J. Lieberherr,
editors, Proc. of the 3rd Intl. Conf. on Aspect-oriented software development
(AOSD’04). ACM, 2004.

[43] R. Douence, T. Fritz, N. Loriant, J.-M. Menaud, M. Ségura-Devillechaise,
and M. Südholt. An expressive aspect language for system applications with
Arachne. In Proc. of the 4th Intl. Conf. on Aspect-oriented software develop-
ment (AOSD’05). ACM Press, 2005.

[44] D. Drusinsky. The Temporal Rover and the ATG Rover. In Havelund et al.
[70], pages 323–330.

Bibliography 113

[45] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property speci-
fications for finite-state verification. In Proceedings of the 21st Intl. Conf. on
Software engineering (ICSE’99). IEEE Computer Society Press, 1999.

[46] T. Elrad, S. Clarke, and M. Akşit. Aspect-oriented Software Development.
Addison-Wesley, 2004.

[47] D. R. Engler. Static analysis versus model checking for bug finding. In
M. Abadi and L. de Alfaro, editors, CONCUR, volume 3653 of Lecture Notes
in Computer Science, page 1. Springer, 2005.

[48] J. Esparza and S. Schwoon. A BDD-based Model Checker for Recursive Pro-
grams. In Berry et al. [17], pages 324–336.

[49] K. Etessami and S. K. Rajamani, editors. 17th Intl. Conf. on Computer Aided
Verification, (CAV 2005), volume 3576 of Lecture Notes in Computer Science.
Springer, 2005.

[50] D. Evans, J. Guttag, J. Horning, and Y. M. Tan. Lclint: A Tool for Using
Specifications to Check Code. In ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering. ACM Press, December 1994.

[51] D. Evans and D. Larochelle. Improving security using extensible lightweight
static analysis. IEEE Software, 19(1):42–51, 2002.

[52] B. Finkbeiner, S. Sankaranarayanan, and H. Sipma. Collecting statistics over
runtime executions. In Havelund and Roşu [73].

[53] B. Finkbeiner and H. Sipma. Checking Finite Traces using Alternating Au-
tomata. Formal Methods in System Design, 24(2):101–127, 2004.

[54] L.-Å. Fredlund. Guaranteeing Correctness Properties of a Java Card Applet.
In Havelund and Roşu [76], pages 217–233.

[55] D. M. Gabbay. The Declarative Past and Imperative Future: Executable
Temporal Logic for Interactive Systems. In B. Banieqbal, H. Barringer, and
A. Pnueli, editors, Temporal Logic in Specification, volume 398 of Lecture
Notes in Computer Science, pages 409–448. Springer, 1987.

[56] D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the Temporal Basis
of Fairness. In ACM Symposium on Principles of Programming Languages
(POPL’80), pages 163–173. ACM Press, 1980.

[57] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Ab-
straction and reuse of object-oriented design. In O. M. Nierstrasz, editor,
ECOOP’93—Object-Oriented Programming, volume 707 of Lecture Notes in
Computer Science. Springer, 1993.

114 Bibliography

[58] P. Gastin and D. Oddoux. Fast LTL to Büchi Automata Translation. In Berry
et al. [17], pages 53–65.

[59] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In P. Dembinski and M. Sredniawa, edi-
tors, PSTV, volume 38 of IFIP Conference Proceedings, pages 3–18. Chapman
& Hall, 1995.

[60] D. Giannakopoulou and K. Havelund. Automata-based Verification of Tempo-
ral Properties on Running programs. In 16th IEEE International Conference
on Automated Software Engineering (ASE 2001). IEEE Computer Society,
2001.

[61] D. Giannakopoulou and J. Magee. Fluent model checking for event-based
systems. In ESEC / SIGSOFT FSE, pages 257–266, 2003.

[62] P. Godefroid. Model checking for programming languages using Verisoft. In
ACM Symposium on Principles of Programming Languages (POPL’97), pages
174–186. ACM Press, 1997.

[63] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infi-
nite Games: A Guide to Current Research [outcome of a Dagstuhl seminar,
February 2001], volume 2500 of Lecture Notes in Computer Science. Springer,
2002.

[64] S. Graf and H. Säıdi. Construction of Abstract State Graphs with PVS.
In O. Grumberg, editor, 9th International Conference on Computer Aided
Verification (CAV’97), volume 1254 of Lecture Notes in Computer Science,
pages 72–83. Springer, 1997.

[65] N. Halbwachs and L. D. Zuck, editors. Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’05), volume 3440 of Lecture Notes in
Computer Science. Springer, 2005.

[66] J. Harrow. Runtime Checking of Multithreaded Applications with Visual
Threads. In Havelund et al. [70].

[67] J. Hatcliff and M. B. Dwyer. Using the Bandera tool set to model-check
properties of concurrent Java software. In K. G. Larsen and M. Nielsen, editors,
12th International Conference Concurrency Theory (CONCUR 2001), volume
2154 of Lecture Notes in Computer Science, pages 39–58. Springer, 2001.

[68] K. Havelund. Using Runtime Analysis to Guide Model Checking of Java
Programs. In Havelund et al. [70].

[69] K. Havelund, M. R. Lowry, and J. Penix. Formal Analysis of a Space-Craft
Controller Using SPIN. IEEE Trans. Software Eng., 27(8):1000–9999, 2001.

Bibliography 115

[70] K. Havelund, J. Penix, and W. Visser, editors. SPIN Model Checking and Soft-
ware Verification (7th International SPIN Workshop), volume 1885 of Lecture
Notes in Computer Science, Stanford, CA, USA, August/September 2000.
Springer.

[71] K. Havelund and G. Roşu. Monitoring Java Programs with Java PathExplorer.
In Proceedings of the First Workshop on Runtime Verification (RV’01) [72].

[72] K. Havelund and G. Roşu, editors. Proceedings of the First Workshop on
Runtime Verification (RV’01), volume 55 of Electr. Notes in Theor. Comput.
Sci. Elsevier, 2001.

[73] K. Havelund and G. Roşu, editors. Proceedings of the Second Workshop on
Runtime Verification (RV’02), volume 70 of Electr. Notes in Theor. Comput.
Sci. Elsevier, 2002.

[74] K. Havelund and G. Roşu. Synthesizing Monitors for Safety Properties. In
Katoen and Stevens [87], pages 342–356.

[75] K. Havelund and G. Roşu. An Overview of the Runtime Verification Tool
Java PathExplorer. Form. Methods Syst. Des., 24(2):189–215, 2004.

[76] K. Havelund and G. Roşu, editors. volume 113 of Electr. Notes in Theor.
Comput. Sci. Elsevier, 2005.

[77] K. Havelund and G. Roşu. Testing linear temporal logic formulae on finite
execution traces. Technical Report TR 01-08, RIACS, May 2001. Written 20
December 2000.

[78] G. J. Holzmann. The SPIN model checker: primer and reference manual.
Addison-Wesley, Boston, Massachusetts, USA, September 2003.

[79] M. Huth and M. Ryan. Logic in Computer Science. Cambridge University
Press, second edition, 2004.

[80] R. Iosif and R. Sisto. Temporal logic properties of Java objects. Journal of
Systems and Software, 68(3):243–251, 2003.

[81] D. Jackson. Alloy: a lightweight object modelling notation. ACM Trans.
Softw. Eng. Methodol., 11(2):256–290, 2002.

[82] T. Jiang and B. Ravikumar. A note on the space complexity of some decision
problems for finite automata. Information Processing Letters, 40:25–31, 1991.

[83] A. Josey, editor. The single Unix specification. The Open Group, Reading,
UK, 2002.

[84] Java specification request for metadata annotations (JSR175).
http://jcp.org/en/jsr/detail?id=175.

http://jcp.org/en/jsr/detail?id=175

116 Bibliography

[85] V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads communicating
via locks. In Etessami and Rajamani [49], pages 505–518.

[86] M. Karaorman and J. Freeman. jMonitor: Java Runtime Event Specification
and Monitoring Library. In Havelund and Roşu [76], pages 181–200.

[87] J. Katoen and P. Stevens, editors. Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2002), volume 2280 of Lecture Notes in
Computer Science. Springer, 2002.

[88] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: A
Run-time Assurance Approach for Java Programs. Formal Methods in System
Design, 24(2):129–155, 2004.

[89] K. Klose and K. Ostermann. Back to the future: Pointcuts as predicates over
traces. In Foundations of Aspect-Oriented Languages workshop (FOAL’05),
2005.

[90] R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming. Man-
ning Publications Co., 2003.

[91] Y. A. Liu, T. Rothamel, F. Yu, S. D. Stoller, and N. Hu. Parametric regu-
lar path queries. In Proceedings of the ACM SIGPLAN 2004 conference on
Programming language design and implementation (PLDI’04), pages 219–230,
New York, NY, USA, 2004. ACM Press.

[92] D. Mahrenholz, O. Spinczyk, and W. Schröder-Preikschat. Program Instru-
mentation for Debugging and Monitoring with AspectC++. In Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC’02), pages 249–
256. IEEE, 2002.

[93] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer, 1995.

[94] N. Markey. Past is for free: on the complexity of verifying linear temporal
properties with past. In 9th International Workshop on Expressiveness in
Concurrency (EXPRESS’02), volume 68 of Electr. Notes in Theor. Comput.
Sci. Elsevier, 2002.

[95] N. Markey. Temporal logic with past is exponentially more succinct. Bulletin
of the EATCS, 79:122–128, 2003.

[96] B. Meyer. Applying ”Design by Contract”. Computer, 25(10):40–51, 1992.

[97] P. Naldurg, K. Sen, and P. Thati. A temporal logic based framework for intru-
sion detection. In D. de Frutos-Escrig and M. Núñez, editors, 24th IFIP WG
6.1 Intl. Conf. on Formal Techniques for Networked and Distributed Systems
(FORTE 2004), volume 3235 of Lecture Notes in Computer Science, pages
359–376. Springer, 2004.

Bibliography 117

[98] N. Nethercote and J. Seward. Valgrind: A Program Supervision Framework.
In Sokolsky and Viswanathan [112].

[99] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 1999.

[100] J. Olivain and J. Goubault-Larrecq. The Orchids Intrusion Detection Tool.
In Etessami and Rajamani [49], pages 286–290.

[101] S. Peyton Jones. Tackling the Awkward Squad: monadic input/output, con-
currency, exceptions, and foreign-language calls in Haskell. In T. Hoare,
M. Broy, and R. Steinbrüggen, editors, Engineering theories of software con-
struction. IOS Press, 2001.

[102] S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised
Report. Cambridge University Press, 2003.

[103] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In 23rd ACM
Symposium on Principles of Programming Languages (POPL’96), pages 295–
308. ACM Press, 1996.

[104] A. Pnueli. The Temporal Logics of Programs. In Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, 1977.

[105] J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems
in CESAR. In M. Dezani-Ciancaglini and U. Montanari, editors, Symposium
on Programming, volume 137 of Lecture Notes in Computer Science, pages
337–351. Springer, 1982.

[106] G. Ramalingam. Context-sensitive synchronization-sensitive analysis is unde-
cidable. ACM Trans. Program. Lang. Syst., 22(2):416–430, 2000.

[107] T. C. Ruys and E. Brinksma. Managing the verification trajectory. STTT,
4(2):246–259, 2003.

[108] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A
Dynamic Data Race Detector for Multithreaded Programs. ACM Transactions
on Computer Systems, 15(4), 1997.

[109] B. Schlich and S. Kowalewski. Model Checking C Source Code for embed-
ded Systems. In Proceedings of the IEEE/NASA Workshop on Leveraging
Applications of Formal Methods, Verification, and Validation (ISoLA 2005),
2005.

[110] A. Silberschatz and P. Galvin. Operating System Concepts. Addison-Wesley,
4th edition, 1994.

118 Bibliography

[111] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3):733–749, 1985.

[112] O. Sokolsky and M. Viswanathan, editors. Proceedings of the Third Work-
shop on Runtime Verification (RV’03), volume 89 of Electr. Notes in Theor.
Comput. Sci. Elsevier, 2003.

[113] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++: an aspect-
oriented extension to the C++ programming language. In Proceedings of the
40th International Conference on Technology of Object-Oriented Languages
and Systems (TOOLS Pacific, pages 53–60, Darlinghurst, Australia, 2002.
Australian Computer Society, Inc.

[114] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

[115] V. Stolz and E. Bodden. Temporal Assertions using AspectJ. In H. Barringer,
B. Finkbeiner, Y. Gurevich, and H. Sipma, editors, Fifth Workshop on Run-
time Verification (RV’05), volume 144 of Electr. Notes in Theor. Comput. Sci.
Elsevier, 2005.

[116] V. Stolz and F. Huch. Runtime Verification of Concurrent Haskell (work
in progress). Proceedings of the 12th International Workshop on Functional
and (Constraint) Logic Programming (WFLP’03), Technical Report DSIC-
II/13/03, Universidad Politécnica de Valencia, Spain, 2003.

[117] V. Stolz and F. Huch. Runtime Verification of Concurrent Haskell Programms.
In Havelund and Roşu [76], pages 201–216.

[118] R. Theisen. Überprüfung von LTL Eigenschaften zur Laufzeit. Master’s thesis,
RWTH Aachen University, Germany, 2005.

[119] W. Thomas. Star-free regular sets of omega-sequences. Information and Con-
trol, 42(2):148–156, 1979.

[120] W. Thomas. A combinatorial approach to the theory of ω-automata. Infor-
mation and Control, 48(3):261–283, 1981.

[121] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co.
Soot - a Java Optimization Framework. In S. A. MacKay and J. H. Johnson,
editors, Proceedings of the 1999 conference of the Centre for Advanced Studies
on Collaborative Research (CASCON 1999), pages 125–135. IBM, 1999.

[122] J. van Benthem. Temporal logic. In Handbook of Logic in Artificial Intelligence
and Logic Programming, volume 4, chapter 7. Oxford University Press, 1995.

[123] W. Vanderperren, D. Suvée, M. A. Cibrán, and B. De Fraine. Stateful Aspects
in JAsCo. In T. Gschwind and U. Aßmann, editors, Workshop on Software
Composition 2005 (SC’05), volume 3628 of Lecture Notes in Computer Sci-
ence. Springer, 2005.

Bibliography 119

[124] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In
F. Moller and G. Birtwistle, editors, Logics for Concurrency: Structure versus
Automata, volume 1043 of Lecture Notes in Computer Science. Springer, 1996.

[125] W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs.
In 15th IEEE International Conference on Automated Software Engineering
(ASE 2000). IEEE CS Press, September 2000.

[126] R. J. Walker and K. Viggers. Implementing protocols via declarative event
patterns. In R. Taylor and M. Dwyer, editors, Proc. of the 12th ACM SIG-
SOFT Intl. Symp. on Foundations of Software Engineering. ACM Press, 2004.

[127] P. Wolper. Temporal logic can be more expressive. Information and Control,
56:72–99, 1983.

Bibliography 121

class Main
method main

var s tack v o
stack :=new Stack
o:=new O
stack . push (o)
v:= stack . next // head

L1 : b :=(v != n i l)
jmf b L2
o:=v . o
. . .
v:=v . next
jmp L1

L2 : return n i l
// main

// Main

class Stack
var o // Container

next // Link

method push (v)
var t p
t :=new Stack
t . o:=v
p:= th i s . next
t . next :=p
th i s . next := t
return n i l

method pop ()
var t p o
t := th i s . next
p:= t . next
t h i s . next :=p
o:= t . o
return o

Figure 6.1: Flat source code for stack example in ��int

List of Symbols

α source code location . 11
τ dynamic type . 11
O object identifier . 11
ξ interpretation . 13
H heap . 14
O object identifier/reference . 14
F∗ stack . 14
F stack frame . 14
[] function space . 21
T thread type . 21
λT thread-to-stack mapping . 21
ρ event trace . 25
AP atomic propositions in LTL 27
P all propositions . 36
P⊥ ground propositions . 36
PN proposition names (constructors) 36
·→ binding operation . 36
β Valuation . 38
β̂ Extension of valuation to term 38
� Specialisation of valuation 38
↓ matching propositions . 38
β∅ empty valuation . 40
β̂∅ empty valuation, identity . 40
Pr Predicate names (constructors) 47
Pr⊥ Ground predicates . 47
I Interpretation . 47
ξ Interpretation function . 47
cl closure . 51
clI⊥ ground closure . 57
A⊥ expanded (flat) alternating automaton 58
λe trace filtering function . 79

Index

Σ-term, see term
ω-regular, 48
SPIN, 101
pLTL formula, 36

alternating automaton
algebraic, 70
expanded (flat), 57
finite, 45

Apache web server, 30
Aspect-oriented Programming (AOP),

92
AspectC++, 88
AspectJ, 92
assertion, 19

Büchi automaton, 48
binding, see valuation

C, 88
C++, 88
class, 11
closure, 46

ground, 56
Concurrent Haskell, 85
Concurrent Haskell Debugger, 91

event, 23
event label, 23
execution trace, 24
existence predicate, 36
expanded alternating automaton, 57

filtering expression, 75
finite path semantics, 27

extended, 38
frame, 14

ground closure, 56

Haskell, 85
heap, 14

identity, 55
interpretation, 13

LD PRELOAD, 89
Linear Time Logic (LTL), 27
location (source code location), 11
lock, 20
Lock-order Reversal, 76
locking, 21
LTL, see Linear Time Logic

mapping, 76
naive, 75

method, 10

negation, 52

object, 11
operational semantics, 58, 60

parametrised automaton, 58
positive form, 29
predicate semantics, 44
predicates, 43
program, 11
proposition

atomic, 27
ground, 36
parametrised, 36

pthread API, 90

runtime stack, see stack

semantics

126 Index

concurrent iteration, 22
concurrent program, 22
concurrent single-instruction, 21
finite path

pLTL, 38
LTL, 27

iteration, 16
operational, 58
predicate, 44
program, 16
single-instruction, 15
trace (of a program), 25

signature, 75
specialisation, 37
stack, 14
succ function, 60

term, 43
thread, 21
thread, 20
trace semantics, 25
typing, 13

unlock, 20

valuation, 37

Index 127

Lebenslauf Volker Stolz

Doverack 74 Geburtsdatum: 10.12.1974
41836 Hückelhoven Geburtsort: Würselen

Familienstand: ledig

Zeitraum Ausbildung/Beschäftigung

10.12.1974 Geboren in Würselen, Deutschland
1985–1994 städtisches Gymnasium Baesweiler, Abiturnote: 2,2
1994–1995 Zivildienst bei der Regionalstelle des Bistums Aachen
1995–2001 Student der Informatik an der RWTH Aachen
20.3.2001 Abschluss als Diplom-Informatiker an der RWTH Aachen,

Gesamtnote: sehr gut, Diplomarbeitsthema:
“Robuste Verteilte Programmierung in Haskell”

21.3.2001–30.4.2001 Wissenschaftliche Hilfskraft am Lehrstuhl für Informatik II
an der RWTH Aachen

1.5.2001–28.2.2006 Wissenschaftlicher Mitarbeiter am Lehrstuhl für Informatik II
an der RWTH Aachen

seit 1.8.2006 Post-doc Fellow an der United Nations University,
Institute for Software Technology

Index 129

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years. A complete
list of reports dating back to 1987 is available from
http://aib.informatik.rwth-aachen.de/. To obtain copies consult the above
URL or send your request to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55,
52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2001-01 ∗ Jahresbericht 2000
2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces
2001-03 Thierry Cachat: The power of one-letter rational languages
2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus
2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages
2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic
2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem
2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication
Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of
term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures
2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung
2002-01 ∗ Jahresbericht 2001
2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems
2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages
2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting
2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines
2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic
Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-
ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java
2002-09 Markus Mohnen: Interfaces with Default Implementations in Java
2002-10 Martin Leucker: Logics for Mazurkiewicz traces
2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

http://aib.informatik.rwth-aachen.de/

130 Index

2003-01 ∗ Jahresbericht 2002
2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting
2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations
2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs
2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is

PSPACE-hard
2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates
2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-
wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:
Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003
2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic
2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting
2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming
2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on

Functional and (Constraint) Logic Programming
2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming
2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination
2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information
2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity
2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules
2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004
2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer
School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-
proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for
the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing
Honeypots

Index 131

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Infor-
mation

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking:
Exploring a Root-Cause Methodology to Prevent Distributed Denial-of-
Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With
Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General
Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts
2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture
2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-
tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting
Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization
2005-15 Uwe Naumann: The Complexity of Derivative Computation
2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)
2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraproce-

dural Adjoint Code)
2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,
Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-
Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented
LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-
dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-
bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-
gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit
BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-
ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-
ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:
Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering
with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005
2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

132 Index

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated
by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static
Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,
Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint
Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-
and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set
interpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-
Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic
Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,
Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid
MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:
Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:
Replaying Play in and Play out: Synthesis of Design Models from Sce-
narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling
Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,
Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli
Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the
GI Work Group “Requirements Management Tools for Product Line
Engineering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical
sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for
Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-
ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006
2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-
ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-
Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A
System to Support Collaborative Jazz Improvisation

Index 133

2007-05 Uwe Naumann: On Optimal DAG Reversal
2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking
2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications
2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches
2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler
Assumption

2007-11 Klaus Wehrle: 6. Fachgespräch Sensornetzwerke
2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code
2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-
grams

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,
Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modu-
lar, Open-Source Tool for Automatic Differentiation of Fortran Codes

∗ These reports are only available as a printed version.
Please contact biblio@informatik.rwth-aachen.de to obtain copies.

	Introduction
	Runtime Verification
	Model Checking
	Temporal Assertions
	Outline

	Reasoning about Programs
	Properties of Programs
	An Object-based Programming Language
	Execution Semantics
	Static Analysis
	Assertions
	Extension to Concurrency
	Obtaining a Trace Model

	Parametrised LTL Formulae
	LTL
	Extension to Parametrised Propositions and their Semantics
	Variables and their Domains
	Parametrised Propositions
	Negation in pLTL

	Predicates
	Translating LTL Formulae into Alternating Finite Automata
	Parametrised Automaton Construction
	Handling Quantified Propositions
	Parametrised Automaton

	Alternative Approaches

	Evaluating Parametrised Formulae at Runtime
	Trace Extraction
	Example: Lock-order Reversal

	Applications and Implementations
	General Remarks
	Runtime Verification of Concurrent Haskell Programs
	C programs and compiled programs
	Instrumenting Java programs
	Using Metadata to Record Semantic Wisdom

	Conclusion
	Related Work
	Summary

