
Aachen
Department of Computer Science

Technical Report

SAT Solving for Termination Analysis
with Polynomial Interpretations

Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-
Kamp, René Thiemann, and Harald Zankl

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2007-02

RWTH Aachen · Department of Computer Science · March 2007 (revised version)

1

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

2

SAT Solving for Termination Analysis with
Polynomial Interpretations?

Carsten Fuhs1, Jürgen Giesl1, Aart Middeldorp2, Peter Schneider-Kamp1,
René Thiemann1, and Harald Zankl2

1 LuFG Informatik 2, RWTH Aachen, Germany,
{fuhs,giesl,psk,thiemann}@informatik.rwth-aachen.de

2 Institute of Computer Science, University of Innsbruck, Austria,
{aart.middeldorp,harald.zankl}@uibk.ac.at

Abstract. Polynomial interpretations are one of the most popular techniques for
automated termination analysis and the search for such interpretations is a main
bottleneck in most termination provers. We show that one can obtain speedups
in orders of magnitude by encoding this task as a SAT problem and by applying
modern SAT solvers.

1 Introduction

Termination is one of the most important properties of programs and therefore,
there is a need for techniques and tools that analyze the termination behavior
of programs automatically. In particular, there has been intensive research on
methods for termination analysis of term rewrite systems (TRSs) [4]. Instead
of developing several separate termination techniques for different programming
languages, a promising approach is to transform programs from different lan-
guages into TRSs instead. Then termination tools for TRSs can be used for
termination analysis of many different programming languages, cf. e.g. [13, 22].

The increasing interest in termination analysis for TRSs is also shown by the
annual International Competition of Termination Tools.3 In 2006, for the first
time some tools used SAT solvers to automate certain termination techniques,
cf. [1, 5, 6, 11, 18, 25, 26]. But although polynomial interpretations [20] are one of
the most popular techniques in these tools, up to now there has not been any
paper on using SAT solvers for finding polynomial interpretations automatically.

In this paper, we show that SAT solving is extremely useful for this task. We
recapitulate TRSs in Sect. 2. Sect. 3 shows how to encode the search for polyno-
mial interpretations as a SAT problem. Sect. 4 extends our approach to negative
polynomial interpretations [17]. Sect. 5 presents our implementation in the tool
AProVE [14], which was the most powerful termination prover for TRSs in all
the competitions 2004 - 2006. Our experiments show that our approach improves
dramatically over previous methods for generating polynomial interpretations.

2 Termination of TRSs and Polynomial Interpretations

A TRSR is a set of rules `→ r where ` and r are terms. A rule `→ r applies to a
term t if ` matches a subterm u of t with some substitution σ (namely, u = σ(`)).

? Supported by the DFG (Deutsche Forschungsgemeinschaft) grant GI 274/5-1 and the FWF
(Austrian Science Fund) project P18763.

3 See http://www.lri.fr/~marche/termination-competition/

The rule is applied by replacing the subterm u by σ(r), resulting in a new term v
(a so-called rewrite step, denoted “t→R v”). A reduction is a sequence of rewrite
steps. A TRS is terminating if all its reductions are finite. For example, consider
the following TRS where s represents the successor function, half(x) computes
bx2 c, and bits(x) is the number of bits needed to represent all numbers up to x.

half(0)→ 0 (i) bits(0)→ 0 (iv)
half(s(0))→ 0 (ii) bits(s(0))→ s(0) (v)

half(s(s(x)))→ s(half(x)) (iii) bits(s(s(x)))→ s(bits(s(half(x)))) (vi)

So we have half(s(s(0))) →R s(half(0))→R s(0), i.e., half(s(s(0)))→∗R s(0).

One of the most powerful termination methods is the dependency pair (DP)
technique [2], implemented in virtually all current termination tools for TRSs.

Definition 1 (Dependency Pairs [2]). For a TRS R, the defined symbols
are the root symbols of the left-hand sides of rules. For every defined symbol f ,
we extend the signature by a fresh tuple symbol f] with the same arity as f .
If t = f(t1, . . . , tn) and f is a defined symbol, we write t] for f](t1, . . . , tn). If
`→ r ∈ R and t is a subterm of r with defined root symbol, then the rule `] → t]

is a dependency pair of R. The set of all dependency pairs of R is denoted
DP(R).

In our example, half and bits are defined symbols and DP(R)={(vii), (viii), (ix)}:

half](s(s(x)))→ half](x) (vii)

bits](s(s(x)))→ half](x) (viii) bits](s(s(x)))→ bits](s(half(x))) (ix)

Intuitively, a DP corresponds to a (possibly recursive) function call. To prove
termination, we have to show that there cannot be infinitely many function calls
in any reduction. More precisely, one has to prove that there is no infinite chain

σ1(u1)→DP (R) σ1(v1) →∗R σ2(u2)→DP (R) σ2(v2) →∗R σ3(u3)→DP (R) σ3(v3) . . .

where ui → vi ∈ DP (R) and σi are substitutions. To this end, the DP method4

requires u � v for all u→ v ∈ DP (R) and ` % r for all rules `→ r ∈ R:

∧
u→v ∈ DP(R)

u � v ∧
∧

`→r ∈ R
` % r (1)

A popular method to search for relations � and % automatically are polyno-
mial interpretations [20]. A polynomial interpretation Pol maps each n-ary func-
tion symbol f to a polynomial fPol over n variables x1, ..., xn with coefficients
from N = {0, 1, 2, ...}. This mapping is extended to terms by defining [x]Pol = x
for all variables x and [f(t1, ..., tn)]Pol = fPol([t1]Pol, ..., [tn]Pol). If the interpre-
tation Pol is clear from the context, we also write [t] instead of [t]Pol.

For example, consider Pol1 with halfPol1 = half]Pol1 = x1, bitsPol1 = bits]Pol1 =

4 For further refinements of the DP method we refer to [2, 12, 15–17], for example.

4

sPol1 = x1 + 1, 0Pol1 = 0. Then [half(s(s(x)))] = x + 2 and [s(half(x))] = x + 1.
Now a term u is considered to be greater (resp. greater-equal) than v iff [u] > [v]
(resp. [u] ≥ [v]) holds for all instantiations of the variables with natural numbers.
So with Pol1 we obtain half(s(s(x))) � s(half(x)). In fact, all DPs (vii) - (ix) are
strictly decreasing and the rules (i) - (vi) are at least weakly decreasing, i.e., the
requirement (1) holds. Thus, termination of the TRS (i) - (vi) is proved.

To find such interpretations automatically, one starts with an abstract poly-
nomial interpretation. It maps each n-ary symbol f to a polynomial of the form

a0 + a1 x
e11
1 . . . xen1

n + . . . + am xe1m1 . . . xenmn (2)

Here, the eij are actual numbers (i.e., one has to determine the degree and
the shape of the polynomials), but the coefficients ai are left open (i.e., they
are variable or abstract coefficients). For example, we could use the abstract
polynomial interpretation Pol2 with halfPol2 = a x1 + b, sPol2 = c x1 + d, etc.

Every inequality u � v (resp. u % v) can be transformed into the constraint
[u]− [v] > 0 (resp. [u]− [v] ≥ 0). Here, [u]− [v] is a polynomial of the form

p0 + p1 x
e11
1 . . . xen1

n + · · ·+ pk x
e1k
1 . . . xenkn (3)

where pi are polynomials over abstract coefficients. So with Pol2, half(s(s(x)))�
s(half(x)) is transformed to a c2 x+ a c d + a d+ b− c a x− c b− d > 0, i.e. to

p0 + p1 x > 0 where p0 = a c d + a d+ b− c b− d and p1 = a c2 − c a (x)

If p is a polynomial like (3), then instead of inequalities or equalities of the
form p > 0, p ≥ 0, p = 0, it suffices5 to require the following constraints [19]:

αp>0 = (p0 > 0 ∧ p1 ≥ 0 ∧ . . . ∧ pk ≥ 0) (4)

αp≥0 = (p0 ≥ 0 ∧ p1 ≥ 0 ∧ . . . ∧ pk ≥ 0) (5)

αp=0 = (p0 = 0 ∧ p1 = 0 ∧ . . . ∧ pk = 0) (6)

So instead of (x), it is sufficient to demand p0 > 0 and p1 ≥ 0:

a c d + a d+ b− c b− d > 0 ∧ a c2 − c a ≥ 0 (xi)

Such constraints can be transformed further such that they do not contain
subtractions and “≥” anymore. For example, (xi) can be transformed into

a c d + a d+ b > c b+ d ∧ (a c2 > ca ∨ a c2 = c a) (xii)

Now to prove termination one has to show the satisfiability of such Diophan-
tine constraints over the naturals. Def. 2 introduces their syntax and semantics.

Definition 2 (Diophantine Constraints). Let A be a set of Diophantine vari-
ables. The set of polynomials P is the smallest set with

• A ⊆ P and N ⊆ P
• If {p, q} ⊆ P then {p+ q, p ∗ q} ⊆ P

The set of Diophantine constraints C is the smallest set with

5 Of course, αp>0 and αp≥0 are sufficient, but not necessary for p > 0 and p ≥ 0.

5

• {true , false} ⊆ C
• If {p, q} ⊆ P then {p > q, p = q} ⊆ C
• If {α, β} ⊆ C then {¬α, α ∧ β, α ∨ β, α→ β, α↔ β, α⊕ β} ⊆ C

A Diophantine interpretation D is a mapping D : A → N. It can be extended
to polynomials by defining D(n) = n for all n ∈ N, D(p + q) = D(p) + D(q),
and D(p ∗ q) = D(p) ∗ D(q). It can also be extended to Diophantine constraints
as follows (i.e., we then have D : C → {0, 1}, where 0 stands for “false” and 1
stands for “true”). As usual, D is called a model of a constraint α iff D(α) = 1.

• D(true) = 1, D(false) = 0

• D(p > q) = 1 if D(p) > D(q) and D(p > q) = 0, otherwise

• D(p = q) = 1 if D(p) = D(q) and D(p = q) = 0, otherwise

• D(¬α) = 1 if D(α) = 0 and D(¬α) = 0, otherwise,

and similarly for the other Boolean connectives, where ⊕ is exclusive-or

For example, let a ∈ A and let D with D(a) = 2. Then D(2 ∗ a) = D(2) ∗
D(a) = 2 ∗ 2 = 4 and D(1 + a) = 3. Thus, D(2 ∗ a > 1 + a) = 1, since 4 > 3.

Similarly, the constraint (xii) is satisfied by the interpretation D(a) = 1,
D(b) = 0, D(c) = 1, and D(d) = 1. This Diophantine interpretation instantiates
the abstract polynomial interpretation Pol2 with halfPol2 = a x1 + b and sPol2 =
c x1 + d to the concrete polynomial interpretation Pol1 with halfPol1 = x1 and
sPol1 = x1 + 1 (i.e., we also write6 D(Pol2) = Pol1).

To summarize, to prove termination we proceed as follows:

1. Transform the termination problem into inequalities u � v or u % v between
terms. If one uses the DP method, then one obtains a requirement like (1).

2. Fix an abstract polynomial interpretation and transform the inequalities into
[u]− [v] > 0 or [u]− [v] ≥ 0, respectively.

3. Replace [u] − [v] > 0 and [u] − [v] ≥ 0 by α[u]−[v]>0 and α[u]−[v]≥0, cf. (4), (5).

4. Transform the obtained constraint into a Diophantine constraint containing
only > and = and no subtractions.

5. Check the satisfiability of the resulting Diophantine constraint. In the next
section, we will show how to perform this check using SAT solvers.

3 Encoding Diophantine Constraints to SAT

We have shown that to prove termination, it suffices to prove the satisfiability
of a Diophantine constraint. Now we reduce this problem to a SAT problem. We
first give the syntax and semantics of propositional logic. Here, we also regard
tuples of formulas which are interpreted as binary representations of numbers.

Definition 3 (Propositional Logic). Let V be a set of propositional variables.
Then the set of propositional formulas F is the smallest set with

• V ⊆ F and {0, 1} ⊆ F
• If {ϕ, ψ} ⊆ F then {¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ, ϕ↔ ψ, ϕ⊕ ψ} ⊆ F

6 D only instantiates abstract coefficients like a, b, c, d. For variables xi we define D(xi) = xi.
Thus D(a x1 + b) = 1 ∗ x1 + 0 = x1.

6

A propositional interpretation I : V → {0, 1} can be extended to formulas as
follows (i.e., we then have I : F → {0, 1}). I is called a model of ϕ iff I(ϕ) = 1.

• I(0) = 0, I(1) = 1
• I(¬ϕ) = 1 if I(ϕ) = 0 and I(¬ϕ) = 0, otherwise (similarly for ∧,∨,→,↔,⊕)

Finally, a propositional interpretation can also be extended to tuples of n propo-
sitional formulas (with n ≥ 1) by defining I : Fn → N where

I(〈ϕ1, . . . , ϕn〉) = 2n−1 ∗ I(ϕ1) + 2n−2 ∗ I(ϕ2) + . . . + 2 ∗ I(ϕn−1) + I(ϕn)

As an example, let a1, a2 ∈ V with I(a1) = 1 and I(a2) = 0. Then we have
I(〈a1,¬a2 ∧ 1, a2〉) = 4 ∗ I(a1) + 2 ∗ I(¬a2 ∧ 1) + I(a2) = 4 ∗ 1 + 2 ∗ 1 + 0 = 6.

Note that one can always delete zeros at the beginning of a tuple since
I(〈0, . . . , 0, ϕ1, . . . , ϕn〉) = I(〈ϕ1, . . . , ϕn〉) for any interpretation I. Moreover,
we identify one-element-tuples with the element itself since I(〈ϕ〉) = I(ϕ).

Satisfiability of Diophantine constraints is undecidable (it corresponds to
Hilbert’s 10th problem). Therefore, we restrict the search to Diophantine inter-
pretations of the form D : A → {0, . . . , 2k − 1} for a fixed k ≥ 1. Then variables
are only instantiated by numbers that can be represented by k bits. Satisfiability
of Diophantine constraints by such restricted interpretations is NP-complete.

We now introduce a mapping ||.|| : C → F from Diophantine constraints to
propositional formulas such that a constraint α is satisfiable by an interpretation
D : A → {0, . . . , 2k − 1} iff the propositional formula ||α|| is satisfiable.

We first define ||.|| on Diophantine variables. Every Diophantine variable is
mapped to a tuple of k propositional variables, i.e., we have ||.|| : A → V k:

||a|| = 〈a1, . . . , ak〉 for every Diophantine variable a ∈ A (7)

The idea is that 〈a1, . . . , ak〉 should be the binary representation of a. For any
propositional interpretation I we define the corresponding interpretation DI.

Definition 4 (Corresponding Interpretations). Let V contain a1, . . . , ak for
any Diophantine variable a ∈ A. For any propositional interpretation I, we define
the corresponding Diophantine interpretation as DI(a) = I(〈a1, . . . , ak〉).

So if k = 2, then ||a|| = 〈a1, a2〉. The propositional interpretation I(a1) = 1
and I(a2) = 0 corresponds to the interpretation with DI(a) = I(〈a1, a2〉) = 2.

Now we define ||.|| for natural numbers. Again, ||.|| maps numbers to their
binary representation, i.e., we have ||.|| : N→ {0, 1}+:

||n|| = 〈b1, . . . , b`〉 for every n ∈ N (8)

where all bi ∈ {0, 1} and n = 2`−1 ∗ b1 + 2`−2 ∗ b2 + . . . + 2 ∗ b`−1 + b`. To avoid
unnecessary long encodings with zeros at the beginning, we require b1 = 1 for
all n > 0 (i.e., we require that as few bits as possible are used for representing
n > 0). So for example, we have ||2|| = 〈1, 0〉. For the representation of the
number 0 we define ||0|| = 〈0〉. Note that DI(n) = n = I(||n||) for all n ∈ N.

Next we define ||.|| for polynomials. As before, every polynomial is mapped
to a tuple of propositional formulas, i.e., ||.|| : P → F+. The goal is to obtain
the following correspondence for all polynomials p and all interpretations I:

DI(p) = I(||p||) (9)

7

To handle addition and multiplication, we introduce operations B+ : F+×F+ →
F+ and B∗ : F+×F+ → F+ on tuples of propositional formulas. We then define

||p+ q|| = B+(||p||, ||q||) and ||p ∗ q|| = B∗(||p||, ||q||) (10)

for all polynomials p and q. We first give the definition of B+.

• B+(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉) = B+(〈ϕ1, ..., ϕn〉, 〈 0, ..., 0| {z }
n−m times

, ψ1, ..., ψm〉) if n > m

• B+(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉) = B+(〈 0, ..., 0| {z }
m−n times

, ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉) if n < m

• B+(〈ϕ〉, 〈ψ〉) = 〈ϕ ∧ ψ, ϕ ⊕ ψ〉
• B+(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψn〉) = 〈B2or3(ϕ1, ψ1, ξ1), B1or3(ϕ1, ψ1, ξ1), ξ2, ..., ξn〉

if B+(〈ϕ2, ..., ϕn〉, 〈ψ2, ..., ψn〉) = 〈ξ1, ..., ξn〉

Thus, ξ1 is the carry resulting from adding 〈ϕ2, ..., ϕn〉 and 〈ψ2, ..., ψn〉. Here
“B1or3(ϕ1, ψ1, ξ1)” abbreviates ϕ1 ⊕ ψ1 ⊕ ξ1 (i.e., either one or all three of the
formulas ϕ1, ψ1, and ξ1 must be true). Similarly, “B2or3(ϕ1, ψ1, ξ1)” abbreviates
(ϕ1 ∧ ψ1) ∨ (ϕ1 ∧ ξ1) ∨ (ψ1 ∧ ξ1). For example, we have7

B+(〈1〉, 〈a2〉) = 〈1 ∧ a2, 1⊕ a2〉 = 〈a2,¬a2〉
B+(〈0, 1〉, 〈a1, a2〉) = 〈B2or3(0, a1, a2), B1or3(0, a1, a2),¬a2〉 = 〈a1 ∧ a2, a1 ⊕ a2, ¬a2〉

Therefore, we obtain ||1 + a||=B+(||1||, ||a||)=B+(〈1〉, 〈a1, a2〉)= 〈a1 ∧ a2, a1 ⊕
a2, ¬a2〉. Indeed, if I(a1) = 1 and I(a2) = 0 (i.e., DI(a) = 2), then DI(1 + a) = 3
and I(||1 + a||) = I(〈a1 ∧ a2, a1 ⊕ a2,¬a2〉) = 3. Hence, DI(1 + a) = I(||1 + a||),
as desired in (9). Next we give the definition of B∗ : F+ ×F+ → F+.

• B∗(〈ϕ1, ..., ϕn〉, 〈ψ〉) = 〈ϕ1 ∧ ψ, ..., ϕn ∧ ψ〉
• B∗(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉) = B+(〈ϕ1 ∧ ψ1, ..., ϕn ∧ ψ1, 0, ..., 0| {z }

m−1 times

〉,

B∗(〈ϕ1, ..., ϕn〉, 〈ψ2, ..., ψm〉)), if m ≥ 2.

E.g., ||2 ∗ a|| = B∗(||2||, ||a||) = B∗(〈1, 0〉, 〈a1, a2〉)
= B+(〈1 ∧ a1, 0 ∧ a1, 0〉, B∗(〈1, 0〉, 〈a2〉)) = B+(〈a1, 0, 0〉, 〈a2, 0〉)
= B+(〈a1, 0, 0〉, 〈0, a2 , 0〉) = 〈0, a1, a2, 0〉 = 〈a1, a2, 0〉.

Indeed, if I(a1) = 1 and I(a2) = 0 (i.e., DI(a) = 2), then DI(2 ∗ a) = 4 =
I(〈a1, a2, 0〉) = I(||2 ∗ a||), as desired in (9). We state (9) as a general lemma.

Lemma 5 (Correctness of Encoding Polynomials). For every polynomial
p ∈ P and every propositional interpretation I, we have DI(p) = I(||p||).8

Now we extend the mapping ||.|| to ||.|| : C → F . Thus, every Diophantine
constraint is mapped to a formula (not to a tuple). Obviously, we define

||true || = 1 and ||false || = 0 (11)

For Diophantine constraints that are polynomial inequalities or equalities, we
introduce operations B> : F+ ×F+ → F and B= : F+ ×F+ → F and define

||p > q|| = B>(||p||, ||q||) and ||p = q|| = B=(||p||, ||q||) (12)

for all polynomials p and q. To define B> and B=, we first handle the case where
the argument tuples have different lengths. For ◦ ∈ {=, >} we define

7 For readability, we perform Boolean simplifications like replacing 1 ∧ a2 by a2, etc.
8 All proofs can be found in the appendix.

8

• B◦(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉) = B◦(〈ϕ1, ..., ϕn〉, 〈 0, ..., 0| {z }
n−m times

, ψ1, ..., ψm〉) if n > m

• B◦(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉) = B◦(〈 0, ..., 0| {z }
m−n times

, ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉) if n < m

Now we define B> and B= for tuples of equal length.

• B=(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψn〉) = (ϕ1 ↔ ψ1) ∧ . . . ∧ (ϕn ↔ ψn)
• B>(〈ϕ〉, 〈ψ〉) = ϕ ∧ ¬ψ
• B>(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψn〉) = (ϕ1 ∧ ¬ψ1) ∨

((ϕ1 ↔ ψ1) ∧ B>(〈ϕ2, ..., ϕn〉, 〈ψ2, ..., ψn〉)), if n ≥ 2

For example, ||2 ∗ a > 1 + a|| = B>(||2 ∗ a||, ||1 + a||)
= B>(〈a1, a2, 0〉, 〈a1 ∧ a2, a1 ⊕ a2,¬a2〉)
= (a1 ∧ ¬a2) ∨ ((a1 ↔ a2) ∧ ((a2 ∧ ¬(a1 ⊕ a2)) ∨ . . .))
= a1

So ||2 ∗a > 1 +a|| only holds for the propositional interpretations where I(a1) =
1. Indeed, the corresponding Diophantine interpretations with DI(a) = 2 or
DI(a) = 3 are the only ones satisfying the constraint 2 ∗ a > 1 + a (if we are
restricted to D(a) ∈ {0, . . . , 3}). Finally, we define ||.|| on non-atomic constraints:

||¬α|| = ¬||α|| and ||α ◦ β|| = ||α|| ◦ ||β|| for all ◦ ∈ {∧,∨,→,↔,⊕} (13)

By Thm. 6, our encoding defined in (7), (8), (10), (11), (12), (13) is correct.

Theorem 6 (Correctness of Encoding Diophantine Constraints). For
every α ∈ C and every propositional interpretation I, we have DI(α) = I(||α||).

So to determine the satisfiability of a Diophantine constraint α by a Dio-
phantine interpretation with numbers from {0, . . . , 2k − 1}, we now encode α as
a propositional formula ||α|| and then use a SAT solver to find a model I of ||α||.
Thm. 7 shows that the size of our encoding is polynomial.

Theorem 7 (Size of Encoding). Let α ∈ C such that every number in α is
≤ 2k − 1. Then the size of ||α|| is in O(|α|2 ∗ k2), where |α| is the size of α.

4 Polynomials with Negative Constant

Now we regard polynomials fPol which may have a negative constant coefficient
(i.e., in (2) one may have a0 < 0). All other coefficients still have to be natural
numbers. As demonstrated by the tools TTT [17] and AProVE [14] in the termi-
nation competitions, such polynomials (in connection with the DP method) are
very helpful in practice. We show how to extend our approach in order to use
SAT solvers also for such polynomial interpretations.

As in [3, Ex. 4.28], we replace the rules (v) and (vi) of our TRS by

bits(s(x))→ s(bits(half(s(x)))).

9

Instead of (viii) and (ix) we get the DPs bits](s(x))→ half](s(x)) and bits](s(x))
→ bits](half(s(x))). Now there is no polynomial interpretation with non-negative
coefficients where the DPs are strictly and the rules are weakly decreasing.

Thus, we use a polynomial interpretation Pol3 with halfPol3 = x1 − 1. How-
ever, if one extends such interpretations to terms naively, then terms could be
mapped to negative numbers and thus, the resulting order would not be well
founded. Hence, [17] proposed the following modification in the definition of [.]:
[x] = x for all variables x and [f(t1, . . . , tn)] = max(fPol([t1], . . . , [tn]), 0). So if
sPol3 = x1 + 1, then [s(half(x))]Pol3 = max(max(x − 1, 0) + 1, 0). Now one can
again replace inequalities u � v (resp. u % v) by [u] > [v] (resp. [u] ≥ [v]).

We are interested in abstract polynomial interpretations with variable coef-
ficients. To find suitable values for the coefficients, up to now inequalities like
[u] > [v] were transformed into Diophantine constraints by building α[u]−[v]>0

etc., cf. (4) and (5). Here, we simply required all coefficients of the polynomial
[u]− [v] to be non-negative resp. positive. However, now [u]− [v] contains “max”
(i.e., it is no longer a polynomial). Thus, it is unclear how to transform [u] > [v]
into a satisfiability problem of a Diophantine constraint.

To solve this problem, let us first regard concrete polynomial interpretations
(where the coefficients are actual numbers). Here, the occurrences of “max” in
inequalities [u] > [v] could be eliminated by case analyses. But to increase ef-
ficiency, [17] presented an alternative approach to transform inequalities like
[u] > [v] into ordinary polynomial inequalities without “max”. The idea is to de-
fine an under-approximation [.]left and an over-approximation [.]right which do not
contain “max” anymore. Then instead of [u] > [v] one requires [u]left > [v]right .

Definition 8 ([.]left and [.]right for Concrete Interpretations [17]). For
every polynomial p we denote its constant part by con(p) and the non-constant
part p− con(p) by ncon(p). For any concrete polynomial interpretation Pol and

any term t, we define the polynomials [t]left
Pol and [t]right

Pol as follows:9

[t]left =




t if t is a variable
0 if t = f(t1, . . . , tn), ncon(p1) = 0, and 0 > con(p1)
p1 if t = f(t1, . . . , tn), otherwise

[t]right =




t if t is a variable
ncon(p2) if t = f(t1, . . . , tn) and 0 > con(p2)
p2 if t = f(t1, . . . , tn), otherwise

where p1 = fPol([t1]left , . . . , [tn]left) and p2 = fPol([t1]right , . . . , [tn]right).

As shown in [17], we have [t]left ≤ [t] ≤ [t]right for all terms t. Moreover, if the
polynomial interpretation has no negative constants, then we have [t] left = [t] =
[t]right . For the polynomial interpretation with halfPol3 = x1 − 1, we obtain

[half(x)]left
Pol3 = x− 1 [half(x)]Pol3 = max(x− 1, 0) [half(x)]right

Pol3 = x (xiii)

The reason is that for both i ∈ {1, 2}, we have pi = halfPol3(x) = x− 1 and thus
ncon(pi) = x and con(pi) = −1. If Pol3 is defined like our previous interpretation
Pol1 on all remaining function symbols except half, then we obtain [u]left >

9 If Pol is clear from the context we again omit the subscript “Pol”.

10

[v]right for all DPs u → v and [`]left ≥ [r]right for all rules ` → r. Thus, the
termination of our modified example can now easily be shown.

The disadvantage of Def. 8 is that one can only compute [t]left and [t]right for
concrete polynomial interpretations.10 However, if one wants to find the coeffi-
cients of the polynomial interpretations automatically, then it would be better
to start with abstract polynomial interpretations again where the coefficients ai
in (2) are left open (i.e., they are variable coefficients).

For example, we would use an abstract interpretation Pol2 with halfPol2 =
a x1+b. Here, a may only be instantiated by natural numbers, whereas we denote
Diophantine variables like b that may be instantiated by integers in bold face.
However, to compute [half(x)]left

Pol2 and [half(x)]right
Pol2 we would have to decide

whether ncon(pi) = a x and con(pi) = b are equal to resp. less than 0. This of
course depends on the instantiation of the variable coefficients a and b.

Therefore, we now modify Def. 8 to make it suitable for abstract polynomial
interpretations. The idea is to introduce new variables b left

t and bright
t for any

term t and to create Diophantine constraints αleft
t and αright

t which guarantee that

b left
t and bright

t are instantiated correctly. To this end, we express the conditions
ncon(p1) = 0 and 0 > con(pi) from Def. 8 as Diophantine constraints.

Definition 9 ([.]left and [.]right for Abstract Interpretations). For any ab-
stract polynomial interpretation Pol and any term t, we define:

• If t is a variable, then [t]left = t, [t]right = t, αleft
t = true, and αright

t = true.

• If t = f(t1, . . . , tn), then11 [t]left =ncon(p1) + b left
t , [t]right =ncon(p2) + bright

t ,

αleft
t = αleft

t1 ∧ ... ∧ α
left
tn ∧ (αncon(p1)=0 ∧ 0>con(p1) → b left

t =0)

∧ (¬(αncon(p1)=0 ∧ 0>con(p1))→ b left
t =con(p1))

αright
t = αright

t1 ∧ ... ∧ αright
tn ∧ (0>con(p2) → bright

t =0)

∧ (¬(0>con(p2))→ bright
t =con(p2))

Here, p1 and p2 are defined as in Def. 8 and αncon(pi)=0 is defined as in (6).

For halfPol2 = a x1+b and t = half(x), we have ncon(pi) = a x, con(pi) = b ,

[half(x)]left
Pol2 = ax+ b

left
t and [half(x)]right

Pol2 = a x+ bright
t (xiv)

αleft
t = ((a = 0 ∧ 0 > b)→ b

left
t = 0) ∧ (¬(a = 0 ∧ 0 > b)→ b

left
t = b) (xv)

αright
t = ((0 > b)→ bright

t = 0) ∧ (¬(0 > b)→ bright
t = b) (xvi)

Thm. 10 shows that Def. 9 extends Def. 8 to abstract interpretations correctly.

Theorem 10 (Correspondence of Def. 8 and 9). Let D be a Diophantine
interpretation (which may also map bold variables to integers). Let Pol be an

abstract polynomial interpretation, and let t be a term. Then D(αleft
t) = 1 implies

D([t]left
Pol) = [t]left

D(Pol) and D(αright
t) = 1 implies D([t]right

Pol) = [t]right
D(Pol).

10 Thus, current implementations for negative polynomials like TTT and AProVE simply test
several choices for the coefficients. More sophisticated algorithms for systematically finding
coefficients like [8] only work for non-negative coefficients.

11 Note that according to Def. 8, [t]left = ncon(p1) if ncon(p1) = 0 and 0 > con(p1).

11

For example, let D be an interpretation which turns the abstract polynomial
interpretation Pol2 into the concrete interpretation Pol3. Thus, we have D(a) = 1
and D(b) = −1 and indeed, D(halfPol2) = D(a x1+b) = x1 − 1 = halfPol3 . To

satisfy the Diophantine constraints αleft
t and αright

t in (xv) and (xvi), we must

have D(b left
t) = −1 and D(bright

t) = 0. Then by (xiii) and (xiv) we indeed obtain

D([half(x)]left
Pol2) = D(ax+ b left

t) = x− 1 = [half(x)]left
Pol3

D([half(x)]right
Pol2) = D(ax+ bright

t) = x = [half(x)]right
Pol3

So we generate Diophantine constraints containing bold variables like b and
b left

t which may be instantiated by integers. However, our encoding to propo-
sitional formulas in Sect. 3 only handles instantiations with natural numbers.
Therefore, we now show how to remove bold variables from constraints α.

In the encoding ||α||, we restricted ourselves to interpretations D where for
all (non-bold) variables a we have D(a) ∈ {0, . . . , 2k − 1} for some fixed k ≥ 1.
Now one has to fix an additional number n ≥ 0 and for all bold variables a , we
restrict ourselves to D(a) ∈ {−n, . . . , 2k−1−n}. Hence, to encode a Diophantine
constraint α with bold variables, we first replace every bold variable a in α by
“a − n” for a fresh (non-bold) variable a. Then (after removing subtractions),
one can again use our encoding ||.|| from Sect. 3.

To summarize, the procedure from the end of Sect. 2 to transform a termi-
nation problem into a satisfiability problem is now modified as follows:

1. Transform the termination problem to inequalities u � v or u % v, cf. (1).

2. Fix an abstract polynomial interpretation and transform the inequalities into
[u]left − [v]right > 0 or [u]left − [v]right ≥ 0, respectively. Add the conjunction

of all corresponding constraints αleft
u and αright

v .

3. Replace [u]left − [v]right
(
≥

)
0 by α[u]left−[v]right

(
≥

)
0.

4. Fix a number n ≥ 0 and replace all Diophantine variables a that may be
instantiated by integers by “a− n” for a fresh variable a.

5. Remove “≥” and subtractions from the obtained constraint and check its
satisfiability using SAT solving as in Sect. 3.

5 Implementation, Experiments, and Conclusion

We implemented our new SAT-based approach for polynomial interpretations
in the termination prover AProVE [14]. We used the MiniSAT solver [9] and to
convert formulas to CNF, we applied SAT4J’s [21] implementation of Tseitin’s
algorithm [24]. For efficiency, our implementation uses several optimizations:

(a) Simplification: In addition to standard simplifications for Diophantine con-
straints and for propositional formulas, we developed a new graph-based ap-
proach to detect possible simplifications of Diophantine constraints quickly. We
build a graph whose nodes consist of all occurring Diophantine variables and of
all possible values they can take (e.g., {0, ..., 2k −1}). An edge from a node n1 to
n2 denotes that D(n1) ≥ D(n2) for any Diophantine model D of the given Dio-
phantine constraint. This graph is constructed and maintained while performing
the other simplifications. Whenever there is a non-trivial strongly connected com-
ponent (SCC) in the graph, we can deduce that all its nodes must take the same

12

value under any Diophantine model. If there is more than one number in the
SCC, then the Diophantine constraint is not satisfiable. If there is one number in
the SCC, we instantiate all Diophantine variables in the SCC by that number. If
the SCC only consists of Diophantine variables, we choose an arbitrary one and
replace all other variables in the SCC by the chosen one.

(b) Sharing: We use sharing for common subexpressions, both on the level of
Diophantine constraints and on the level of propositional formulas.

(c) Tracking maximum values: By taking into account that Diophantine
variables are only instantiated by values from a certain set (e.g., {0, ..., 2k − 1}),
one can keep track of the maximum possible values for all polynomials occurring
in the Diophantine constraint. This can help to improve the conversion from
Diophantine constraints to tuples of propositional formulas. The reason is that
we can detect cases where the most significant bits are equivalent to 0.

As an example, suppose that all Diophantine variables can take values from
{0, ..., 3} and that consequently, the conversion ||.|| transforms Diophantine vari-
ables into tuples of two propositional variables (i.e., k = 2). Note that by defini-
tion, B∗(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉) is always a tuple of length n+m, if m ≥ 2. So
if a, b, c ∈ A, then ||a|| and ||b|| have length 2, ||a∗ b|| has length 4, and ||a∗ b∗ c||
has length 6. However, if one takes the ranges of the coefficients into account,
then one can determine that a ∗ b ∗ c has at most the value 3 ∗ 3 ∗ 3 = 27. Thus,
only 5 bits are needed for ||a ∗ b ∗ c||, i.e., the most significant bit of ||a ∗ b ∗ c|| is
always equivalent to 0. Therefore, it can be omitted (i.e., one should delete the
leftmost formula in the 6-tuple ||a ∗ b ∗ c||, resulting in a 5-tuple).

This optimization is particularly helpful when using other ranges than {0, ...,
2k−1} (e.g., when using {0, 1, 2} instead of {0, 1, 2, 3}). Then we have to introduce
subformulas that prohibit certain values for the Diophantine variables, but this
usually pays off due to the reduced search space.

To evaluate our new SAT-based implementation of polynomial interpreta-
tions (AProVE-SAT), we compared it with the non-SAT-based implementations
in the termination tools AProVE 1.2 and TTT [17]. In addition, we experimented
with a version of AProVE which uses the Diophantine solver of the CiME-tool
[7] (AProVE-CiME). The implementations in AProVE 1.2 and AProVE-CiME solve
Diophantine constraints by a specialized finite domain constraint satisfaction pro-
cedure [8], while TTT uses a “generate-and-test” approach instead. Moreover, we
considered a variant AProVE-CLP which applies the constraint logic programming
engine of SICStus Prolog to find polynomial interpretations.

Finally, we also implemented a variant AProVE-PB which uses the pseudo-
boolean solver Pueblo [23]. Here, instead of encoding Diophantine constraints
to propositional formulas, we adapted the encoding ||.|| from Sect. 3 in order
to yield pseudo-boolean constraints: For Diophantine variables a over {0, . . . ,
2k − 1} we now define ||a|| = 2k−1 a1 + . . .+ 2 ak−1 + ak, and we define ||n|| = n
for n ∈ N and ||p ◦ q|| = ||p|| ◦ ||q|| for polynomials p, q ∈ P and ◦ ∈ {+, ∗}.
Afterwards, the resulting constraints are linearized.

We tested the six tools on all 865 TRSs from the Termination Problem Data
Base 3.2.12 This is the collection of examples used in the International Competi-

12 The data base is available from http://www.lri.fr/~marche/tpdb/.

13

tion of Termination Tools 2006. For our experiments, the tools were run on an
AMD Athlon 64 at 2.2 GHz. To measure the effect of the different implementa-
tions for polynomial interpretations, we configured all tools to use only a basic
version of the DP method and no other termination technique.13

For each example, we imposed a time limit of 60 seconds (corresponding to the
way tools are evaluated in the annual competition) or of 10 minutes, indicated by
“Limit” in the following table. The columns “Yes” and “TO” show the number
of TRSs for which proving termination with the given configuration succeeds or
times out. Finally, “Time” gives the total time in seconds needed for analyzing
all 865 examples. The column “Range” specifies the range of the coefficients
of polynomials (i.e., if the “Range” is n, then we only searched for coefficients
from {0, ..., n}). The column “Degree” gives the degree of the polynomials. If the
“Degree” is 1, then we used linear polynomials and “sm” means that we used
simple-mixed14 polynomials (these are not available in TTT).

AProVE-SAT AProVE-PB AProVE 1.2
Limit Range Degree Yes TO Time Yes TO Time Yes TO Time
60s 1 1 421 0 45.5 421 0 61.6 421 1 151.8
60s 2 1 431 0 91.8 431 0 158.5 414 48 3633.2
60s 3 1 434 0 118.6 434 1 222.1 408 81 5793.2
60s 3 sm 440 51 5585.9 427 82 7280.3 404 171 11608.1

10m 1 1 421 0 45.5 421 0 61.6 421 1 691.8
10m 2 1 431 0 91.8 431 0 158.5 418 41 27888.4
10m 3 1 434 0 118.6 434 0 689.6 415 53 38286.4

AProVE-CLP AProVE-CiME TTT
Limit Range Degree Yes TO Time Yes TO Time Yes TO Time
60s 1 1 420 16 1357.8 408 1 168.3 326 32 2568.5
60s 2 1 420 37 3558.3 408 43 3201.0 335 83 5677.6
60s 3 1 407 91 6459.5 402 67 5324.1 338 110 7426.9
60s 3 sm 367 145 10357.4 361 147 10107.7

10m 1 1 421 11 7852.2 408 0 332.7 328 16 14007.8
10m 2 1 423 25 18795.6 412 33 22190.4 337 68 45046.6
10m 3 1 420 51 41493.8 407 46 33873.6 340 91 61209.2

The comparison of the SAT-based configurations AProVE-SAT and AProVE-
PB with the non-SAT-based configurations shows that the provers based on SAT
solving with our proposed encoding are faster by orders of magnitude. This holds
in particular if one considers a higher time limit or polynomials with higher co-
efficients or degrees (which are needed to increase the number of “Yes”-results,
i.e., to increase the power of automated termination proving). Note that for
Degree = 1, there are no timeouts in the configuration AProVE-SAT, whereas
the non-SAT-based configurations have many timeouts. Due to the increased
efficiency, the number of examples where termination can be proved within the
time limit is considerably higher in the SAT-based configurations. To indicate the
size of the SAT problems obtained, the largest resulting propositional formula
contained almost 3.5 million variables and more than 12 million clauses. Compar-
ing the SAT-based configurations AProVE-SAT and AProVE-PB shows that the
approach of converting termination problems to propositional formulas is cur-
rently preferable to the related approach of converting them to pseudo-boolean
constraints.

13 Such a configuration was not possible for other tools beside AProVE, TTT, and CiME.
14 A non-unary polynomial (with n > 1 in (2)) is simple-mixed if we have eij ≤ 1 for all its

exponents. A unary polynomial is simple-mixed if it has the form a+ b x1 + c x2
1.

14

We also ran experiments with higher ranges but it turned out that they
are rarely needed. For Degree = 1 and Limit = 10 minutes, a range of 6 would
increase the number of “Yes”-results from 434 to 436 while the runtime increases
from 118.6 to 748.1 seconds. Even if one uses a range of 63, the number of “Yes”-
results does not increase further, but the runtime goes up to 56235.5 seconds.

The next table shows the effect of our optimizations (with linear polynomials
and a 60 seconds time limit). While AProVE-SAT uses all optimizations (a) - (c),
we also give the results obtained if one omits any one of these optimizations. The
table demonstrates that each optimization has a considerable positive effect, in
particular if one regards higher ranges for the coefficients.

AProVE-SAT no optimization (a) no optimization (b) no optimization (c)
Range Yes TO Time Yes TO Time Yes TO Time Yes TO Time

1 421 0 45.5 421 0 56.6 421 0 49.7 421 0 50.1

2 431 0 91.8 431 0 107.5 431 0 93.9 431 0 114.7

3 434 0 118.6 434 1 159.4 434 0 202.8 434 0 138.7

The last table demonstrates the use of SAT solving for negative linear polyno-
mials with a time limit of 60 seconds. If the “Range” is n, then now the constant
coefficient may take values from {−n, ..., n}.

AProVE-SAT AProVE 1.2 TTT
Range Yes TO Time Yes TO Time Yes TO Time

1 440 0 98.0 441 22 1863.7 341 106 7307.3

2 479 1 305.4 460 126 8918.3 360 181 12337.3

3 483 4 1092.4 434 221 15570.9 361 247 16927.7

Again, the SAT-based configuration is much faster and substantially more
powerful than the non-SAT-based ones. Compared to the results for non-negative
polynomials, a few timeouts occur for larger ranges, but negative polynomials
increase the power significantly whereas the runtimes only increase moderately.
In future work, we will extend our SAT encoding in order to deal also with
polynomials where other (non-constant) coefficients can be negative [17].

As mentioned in Sect. 1, the SAT-based implementation of polynomial inter-
pretations was used by AProVE in the International Competition of Termination
Tools 2006. Here, AProVE was configured to use several other termination tech-
niques in addition to polynomial interpretations. Due to the speed of our new
SAT-based approach, AProVE could try polynomial interpretations (also with
higher ranges) as one of the first termination techniques. In case of failure, there
was still enough time to try other termination techniques afterwards. With a
time limit of 60 seconds for each example, AProVE could prove termination of
633 TRSs and thereby it was the winner of the competition.

To summarize, automated termination analysis is a field where SAT solving
has turned out to be extremely useful. At the same time, this field also poses
new challenges for SAT solving, since for higher ranges and higher degrees of the
polynomials, one sometimes obtains SAT problems which are hard for current
SAT solvers.15 To experiment with our implementation and for further details
on our experiments (also with other SAT solvers), please see [10].

Acknowledgments. We thank Daniel Le Berre for helpful comments.

15 We have therefore submitted some of these problems to the SAT competition 2007.

15

References

1. E. Annov, M. Codish, J. Giesl, P. Schneider-Kamp, and R. Thiemann. A SAT-based
implementation for RPO termination. In Short Papers of LPAR ’06, 2006.

2. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical
Computer Science, 236:133-178, 2000.

3. T. Arts and J. Giesl. A collection of examples for termination of term rewriting using
dependency pairs. Technical Report AIB-2001-09, RWTH Aachen, 2001.

4. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge, 1998.
5. M. Codish, V. Lagoon, and P. Stuckey. Solving partial order constraints for LPO termina-

tion. In Proc. RTA ’06, LNCS 4098, p. 4-18, 2006.
6. M. Codish, P. Schneider-Kamp, V. Lagoon, R. Thiemann, and J. Giesl. SAT solving for

argument filterings. In Proc. LPAR ’06, LNAI 4246, p. 30-44, 2006.
7. E. Contejean, C. Marché, B. Monate, and X. Urbain. CiME. http://cime.lri.fr.
8. E. Contejean, C. Marché, A. P. Tomás, and X. Urbain. Mechanically proving termination

using polynomial interpretations. J. Aut. Reason., 34(4):325-363, 2005.
9. N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. SAT ’03, LNCS 2919, p.

502-518, 2004.
10. Empirical evaluation of “SAT solving for termination analysis with polynomial interpreta-

tions”. http://aprove.informatik.rwth-aachen.de/eval/SATPOLO.
11. J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination

of term rewriting. In Proc. IJCAR ’06, LNAI 4130, p. 574-588, 2006.
12. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The DP framework: Combining Techniques

for Automated Termination Proofs. In Proc. LPAR’04, LNAI 3452, p. 301-331, 2005.
13. J. Giesl, S. Swiderski, P. Schneider-Kamp, and R. Thiemann. Automated termination

analysis for Haskell: From term rewriting to programming languages. In Proc. RTA ’06,
LNCS 4098, p. 297-312, 2006.

14. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termination proofs
in the DP framework. Proc. IJCAR ’06, LNAI 4130, p. 281-286, 2006.

15. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving
dependency pairs. Journal of Automated Reasoning, 37(3): 155-203, 2006.

16. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. Information
and Computation, 199(1,2):172-199, 2005.

17. N. Hirokawa and A. Middeldorp. Tyrolean termination tool: Techniques and features.
Information and Computation, 205(4):474-511, 2007.

18. D. Hofbauer and J. Waldmann. Termination of string rewriting with matrix interpretations.
In Proc. RTA ’06, LNCS 4098, p. 328-342, 2006.

19. H. Hong and D. Jakuš. Testing positiveness of polynomials. JAR, 21(1):23-38, 1998.
20. D. Lankford. On proving term rewriting systems are Noetherian. Technical Report MTP-3,

Louisiana Technical University, Ruston, LA, USA, 1979.
21. D. Le Berre et al. SAT4J satisfiability library for Java. http://www.sat4j.org.
22. P. Schneider-Kamp, J. Giesl, A. Serebrenik, R. Thiemann. Automated termination analysis

for logic programs by term rewriting. In Proc. LOPSTR ’06, LNCS, 2007.
23. H. M. Sheini and K. A. Sakallah. Pueblo: A hybrid pseudo-boolean SAT solver. Journal

on Satisfiability, Boolean Modeling and Computation, 2:61-96, 2006.
24. G. Tseitin. On the complexity of derivation in propositional calculus. In Studies in Con-

structive Mathematics and Mathematical Logic, p. 115-125, 1968.
25. H. Zankl, N. Hirokawa, and A. Middeldorp. Constraints for argument filterings. In Proc.

SOFSEM ’07, LNCS 4362, p. 579-590, 2007.
26. H. Zankl and A. Middeldorp. KBO as a satisfaction problem. Proc. WST’06, 2006.

16

A Proofs

Lemma 5 (Correctness of Encoding Polynomials). For every polynomial
p ∈ P and every propositional interpretation I, we have DI(p) = I(||p||).

Proof. We perform structural induction on p. If p is a Diophantine variable a ∈ A,
then we have

DI(a) = I(〈a1, . . . , ak〉) by Def. 4
= I(||a||) by (7)

If p is a number n, then we have

DI(n) = n by Def. 4
= I(||n||) by (8)

Now we regard the case of a polynomial of the form p+ q. Here, we show the
following claim for all tuples of propositional formulas:

I(〈ϕ1, ..., ϕn〉) + I(〈ψ1, ..., ψm〉) = I(B+(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉)) (14)

This suffices for the lemma, because then we have

DI(p+ q) = DI(p) +DI(q) by Def. 2
= I(||p||) + I(||q||) by the induction hypothesis
= I(B+(||p||, ||q||)) by (14)
= I(||p+ q||) by (10)

To prove the claim (14), note that it is sufficient to regard the case where n = m.
The reason is that we obviously have I(〈ψ1, ..., ψm〉) = I(〈0, ..., 0, ψ1 , ..., ψm〉)
and I(〈ϕ1, ..., ϕn〉) = I(〈0, ..., 0, ϕ1 , ..., ϕn〉). We now use induction on n. If n = 1,
then we clearly have

I(ϕ) +I(ψ) = 2∗I(ϕ∧ψ) +I(ϕ⊕ψ) = I(〈ϕ∧ψ,ϕ⊕ψ〉) = I(B+(〈ϕ〉, 〈ψ〉)).

If n > 1, then we obtain the following. Here, let B+(〈ϕ2, ..., ϕn〉, 〈ψ2, ..., ψn〉) =
〈ξ1, ..., ξn〉.

I(〈ϕ1, ..., ϕn〉) + I(〈ψ1, ..., ψn〉)
= 2n−1 ∗ (I(ϕ1) + I(ψ1)) + I(〈ϕ2, ..., ϕn〉) + I(〈ψ2, ..., ψn〉)
= 2n−1 ∗ (I(ϕ1) + I(ψ1)) + I(B+(〈ϕ2, ..., ϕn〉, 〈ψ2, ..., ψn〉)) by ind. hyp.
= 2n−1 ∗ (I(ϕ1) + I(ψ1)) + I(〈ξ1, ..., ξn〉)
= 2n−1 ∗ (I(ϕ1) + I(ψ1) + I(ξ1)) + I(〈ξ2, ..., ξn〉)
= 2n−1 ∗ I(〈B2or3(ϕ1, ψ1, ξ1), B1or3(ϕ1, ψ1, ξ1)〉) + I(〈ξ2, ..., ξn〉)
= 2n ∗ I(B2or3(ϕ1, ψ1, ξ1)) + 2n−1 ∗ I(B1or3(ϕ1, ψ1, ξ1)) + I(〈ξ2, ..., ξn〉)
= I(〈B2or3(ϕ1, ψ1, ξ1), B1or3(ϕ1, ψ1, ξ1), ξ2, ..., ξn〉)
= I(B+(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψn〉))

Finally we regard the case of a polynomial of the form p ∗ q. Here, we show
the following claim for all tuples of propositional formulas:

I(〈ϕ1, ..., ϕn〉) ∗ I(〈ψ1, ..., ψm〉) = I(B∗(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉)) (15)

17

This suffices for the lemma, because then we have

DI(p ∗ q) = DI(p) ∗ DI(q) by Def. 2
= I(||p||) ∗ I(||q||) by the induction hypothesis
= I(B∗(||p||, ||q||)) by (15)
= I(||p ∗ q||) by (10)

To prove the claim (15), we use induction on m. If m = 1, then we clearly have

I(〈ϕ1, ..., ϕn〉) ∗ I(ψ) = I(〈ϕ1 ∧ ψ, ..., ϕn ∧ ψ〉) = I(B∗(〈ϕ1, ..., ϕn〉, 〈ψ〉)).

If m > 1, then we obtain

I(〈ϕ1, ..., ϕn〉) ∗ I(〈ψ1, ..., ψm〉)
= 2m−1 ∗ I(〈ϕ1, ..., ϕn〉) ∗ I(ψ1) + I(〈ϕ1, ..., ϕn〉) ∗ I(〈ψ2, ..., ψm〉)
= 2m−1 ∗ I(〈ϕ1, ..., ϕn〉) ∗ I(ψ1) + I(B∗(〈ϕ1, ..., ϕn〉, 〈ψ2, ..., ψm〉)) by ind. hyp.

= I(〈ϕ1 ∧ ψ1, ..., ϕn ∧ ψ1, 0, ..., 0︸ ︷︷ ︸
m−1 times

〉) + I(B∗(〈ϕ1, ..., ϕn〉, 〈ψ2, ..., ψm〉))

= I(B+(〈ϕ1 ∧ ψ1, ..., ϕn ∧ ψ1, 0, ..., 0︸ ︷︷ ︸
m−1 times

〉, B∗(〈ϕ1, ..., ϕn〉, 〈ψ2, ..., ψm〉))) by (14)

= I(B∗(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉))

ut

Theorem 6 (Correctness of Encoding Diophantine Constraints). For
every α ∈ C and every propositional interpretation I, we have DI(α) = I(||α||).

Proof. We perform structural induction on α. If α is true, then we have

DI(true) = 1 by Def. 2
= I(1) by Def. 3
= I(||true ||) by (11)

The case where α is false is analogous.
Now we regard the case where α has the form p > q. Here, we show the

following claim for all tuples of propositional formulas:

I(〈ϕ1, ..., ϕn〉) > I(〈ψ1, ..., ψm〉) iff I(B>(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉)) = 1 (16)

This suffices for the theorem, because then we have

DI(p > q) = 1 iff DI(p) > DI(q) by Def. 2
iff I(||p||) > I(||q||) by Lemma 5
iff I(B>(||p||, ||q||)) = 1 by (16)
iff I(||p > q||) = 1 by (12)

To prove the claim (16), note that it is sufficient to regard the case where n = m.
The reason is that again we have I(〈ψ1, ..., ψm〉) = I(〈0, ..., 0, ψ1 , ..., ψm〉) and
I(〈ϕ1, ..., ϕn〉) = I(〈0, ..., 0, ϕ1 , ..., ϕn〉). We now use induction on n. If n = 1,
then we clearly have

I(ϕ) > I(ψ) iff I(ϕ ∧ ¬ψ) = 1 iff I(B>(〈ϕ〉, 〈ψ〉)) = 1.

18

If n > 1, then we obtain

I(〈ϕ1, ..., ϕn〉) > I(〈ψ1, ..., ψn〉)
iff I(ϕ1 ∧ ¬ψ1) = 1 or (I(ϕ1 ↔ ψ1) = 1 and I(〈ϕ2, ..., ϕn〉) > I(〈ψ2, ..., ψn〉))
iff I(ϕ1 ∧ ¬ψ1) = 1 or (I(ϕ1 ↔ ψ1) = 1 and I(B>(〈ϕ2, ..., ϕn〉, 〈ψ2, ..., ψn〉)))

by ind. hyp.
iff I((ϕ1 ∧ ¬ψ1) ∨ ((ϕ1 ↔ ψ1) ∧ B>(〈ϕ2, ..., ϕn〉, 〈ψ2, ..., ψn〉))) = 1
iff I(B>(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψn〉)) = 1

Next we regard the case where α has the form p = q. Note that by the
definition of B=, we obviously have the following for all tuples of propositional
formulas:

I(〈ϕ1, ..., ϕn〉) = I(〈ψ1, ..., ψm〉) iff I(B=(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉)) = 1 (17)

This suffices for the theorem, because then we have

DI(p = q) = 1 iff DI(p) = DI(q) by Def. 2
iff I(||p||) = I(||q||) by Lemma 5
iff I(B=(||p||, ||q||)) = 1 by (17)
iff I(||p = q||) = 1 by (12)

Finally, we regard non-atomic Diophantine constraints α. Here, the theorem
follows immediately from the induction hypothesis. ut

Now we will show that the size of our encoding is indeed polynomial. For poly-
nomials and for Diophantine constraints, we measure their size by the number
of symbols, i.e.

• |true| = |false| = |a| = |n| = 1 for every a ∈ A and every n ∈ N
• |p+ q| = |p ∗ q| = |p = q| = |p > q| = 1 + |p|+ |q| for every p, q ∈ P
• |¬α| = 1 + |α| for every α ∈ C
• |α ◦ β| = 1 + |α|+ |β| for every α, β ∈ C and every ◦ ∈ {∧,∨,→,↔,⊕}

To store propositional formulas we use directed acyclic graphs (DAGs) where
we can easily share common sub-formulas. We will share every node for the
Boolean constants 0, 1 and for the propositional variables V. These nodes do not
have any outgoing edges, i.e., they are leaves of the DAG. For every Boolean
operator ◦ ∈ {¬,∧,∨,→,↔,⊕} we obtain nodes which have one (¬) or two
outgoing edges. Thus, the number of edges in the DAG is at most twice the
number of nodes. Therefore, it is sensible to define the size of a propositional
formula ϕ as the numberN (ϕ) of nodes of the DAG. Similarly, N (〈ϕ1, . . . , ϕn〉) is
the number of nodes needed for the DAG(s) representing the formulas ϕ1, . . . , ϕn,
where these DAGs may of course share common subformulas. The following
lemma shows how to approximate the size of the formulas resulting from our
encoding.

Lemma 11 (Sizes and Lengths of the Encodings). Let n,m ∈ N with
n,m ≥ 1, let p ∈ P, and let x ∈ P ∪ C such that every number in x is ≤ 2k − 1.
W.l.o.g., whenever we encode a product B∗(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉), then we
assume n ≥ m.

19

For any tuple of formulas, let L compute its length, i.e., L(〈ϕ1, ..., ϕn〉) = n.
For ◦ ∈ {+, ∗} let L◦(n,m) be the length of the tuple B◦(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉).
For ◦ ∈ {+, ∗,=, >} we define N ◦(n,m) such that

N (||B◦(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉)||) = N (||〈ϕ1, ..., ϕn〉||) +N (||〈ψ1, ..., ψm〉||) +N ◦(n,m).

In other words, N ◦(n,m) is the number of additional nodes required to encode
B◦(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉). Here, “additional” means that the number of nodes
required to represent the inputs 〈ϕ1, ..., ϕn〉 and 〈ψ1, ..., ψm〉 is not counted.

Then we have:

(i) L+(n,m) = max(n,m) + 1
(ii) L∗(n,m) ≤ n+m

(iii) L(||p||) ≤ |p| ∗ k
(iv) N+(n,m) ≤ 7 ∗max(n,m)
(v) N ∗(n,m) ≤ 16 ∗ n ∗m

(vi) N=(n,m) ≤ 2 ∗max(n,m)
(vii) N>(n,m) ≤ 5 ∗max(n,m)
(viii) N (||x||) ≤ 8 ∗ |x|2 ∗ k2

Proof. (i) We perform induction on the recursive definition of B+. If n > m
then L+(n,m) = L+(n, (n−m)+m) = L+(n, n)

(ind.)
= n+1 = max(n,m)+1.

The case n < m is similar. For n = m = 1 we obtain L+(n,m) = 2 =
max(n,m) + 1. Finally, for n = m ≥ 2 we conclude L+(n,m) = 1 + 1 +
(L+(n− 1,m− 1)− 1)

(ind.)
= 1 + (max(n− 1,m− 1) + 1) = 1 +max(n,m).

(ii) We perform induction on m. If m = 1 then L∗(n,m) = n < n+ 1 = n+m.
Otherwise, if m ≥ 2 we obtain L∗(n,m) = L+(n+m− 1,L∗(n,m− 1))

(i)
=

max(n+m−1,L∗(n,m−1))+1
(ind.)

≤ max(n+m−1, n+m−1)+1 = n+m.
(iii) We perform induction on p. If p is a number or a variable then by def-

inition of k we obtain L(||p||) ≤ k = 1 ∗ k = |p| ∗ k. Otherwise, if p =
p1 + p2 then L(||p||) = L+(L(||p1||),L(||p2||)) (i)

= max(L(||p1||),L(||p2||)) +
1

(ind.)

≤ max(|p1|∗k, |p2|∗k)+1 ≤ (|p1|+|p2|+1)k = |p|∗k. Finally, if p = p1∗p2

then L(||p||) = L∗(L(||p1||),L(||p2||))
(ii)

≤ L(||p1||)+L(||p2||)
(ind.)

≤ |p1|∗k+|p2|∗
k ≤ (|p1|+ |p2|+ 1)k = |p| ∗ k.

(iv) We first show N+(n, n) < 7n by induction on n. For n = 1 we obtain
N+(n, n) = 2 < 7n. And for n ≥ 2 we conclude N+(n, n) = 5 + 2 +
N+(n− 1, n− 1)

(ind.)

< 7 + 7(n− 1) = 7n.
Finally, if n > m thenN+(n,m) = 1+N+(n, (n−m)+m) = 1+N+(n, n) <
1 + 7n = 1 + 7 ∗max(n,m). Thus, N+(n,m) ≤ 7 ∗ max(n,m). The case
n < m is similar.

(v) We perform induction on m. By the requirements of the lemma we can
assume n ≥ m. If m = 1 then N ∗(n,m) = n < 16 ∗ n ∗ m. Otherwise, if
m ≥ 2 we obtain

N ∗(n,m) = N+(n+m− 1,L∗(n,m− 1)) +N ∗(n,m− 1) + n+ 1
(iv)

≤ 7 ∗max(n+m− 1,L∗(n,m− 1)) +N ∗(n,m− 1) + n+ 1
(ii)

≤ 7 ∗ (n+m− 1) +N ∗(n,m− 1) + n+ 1
(ind.)

≤ 7 ∗ (n+m− 1) + 16 ∗ n ∗ (m− 1) + n+ 1

= 16 ∗ n ∗m− 8 ∗ n+ 7 ∗m− 6

≤ 16 ∗ n ∗m, since n ≥ m

20

(vi) The proof is completely similar to (iv).

(vii) The proof is completely similar to (iv).

(viii) We perform structural induction on x.

For x ∈ A∪N∪{true, false} we obviously have N (||x||) ≤ k ≤ 8 ∗ |x|2 ∗k2.

If x = p ◦ q with ◦ ∈ {+, ∗, >,=} then

N (||x||) = N ◦(L(||p||),L(||q||)) +N (||p||) +N (||q||)
≤ N ∗(L(||p||),L(||q||)) +N (||p||) +N (||q||), by (iv) - (vii)
(v)

≤ 16 ∗ L(||p||) ∗ L(||q||) +N (||p||) +N (||q||)
(iii)

≤ 16 ∗ |p| ∗ |q| ∗ k2 +N (||p||) +N (||q||)
(ind.)

≤ 16 ∗ |p| ∗ |q| ∗ k2 + 8 ∗ |p|2 ∗ k2 + 8 ∗ |q|2 ∗ k2

= 8 ∗ (|p|2 + 2 ∗ |p| ∗ |q|+ |q|2) ∗ k2

= 8 ∗ (|p|+ |q|)2 ∗ k2

< 8 ∗ |x|2 ∗ k2

If x = ¬α then N (||x||) = 1 +N (||α||)(ind.)

≤ 1 + 8 ∗ |α|2 ∗ k2 < 8 ∗ k2 + 8 ∗
|α|2 ∗ k2 ≤ 8 ∗ (1 + |α|)2 ∗ k2 = 8 ∗ |x|2 ∗ k2.

Finally, if x = α◦β with ◦ ∈ {∧,∨,→,↔,⊕} then N (||x||) = 1+N (||α||)+
N (||β||)(ind.)

≤ 1+8∗|α|2∗k2+8∗|β|2∗k2 < 8∗(1+|α|+|β|)2∗k2 = 8∗|x|2∗k2.
ut

Now we can present the desired theorem which shows that the size of our
encoding is polynomial.

Theorem 7 (Size of Encoding). Let α ∈ C such that every number in α is
≤ 2k − 1. Then the size of ||α|| is in O(|α|2 ∗ k2), where |α| is the size of α.

Proof. The theorem is an immediate consequence of Lemma 11 (viii). ut

Theorem 10 (Correspondence of Def. 8 and 9). Let D be a Diophantine
interpretation (which may also map bold variables to integers). Let Pol be an

abstract polynomial interpretation, and let t be a term. Then D(αleft
t) = 1 implies

D([t]left
Pol) = [t]left

D(Pol) and D(αright
t) = 1 implies D([t]right

Pol) = [t]right
D(Pol).

Proof. We use structural induction on t and only prove the part D([t]left
Pol) =

[t]left
D(Pol). The part D([t]right

Pol) = [t]right
D(Pol) is proved in an analogous way.

If t is a variable, then we have

D([t]left
Pol) = D(t) by Def. 9

= t cf. Footnote 6

= [t]left
D(Pol)

Next we regard the case t = f(t1, . . . , tn), ncon(p1D(Pol)) = 0, and 0 >

con(p1D(Pol)) where p1D(Pol) = fD(Pol)([t1]left
D(Pol), . . . , [tn]left

D(Pol)). As D(αleft
t) = 1,

we also have D(αleft
ti

) = 1 for all i ∈ {1, . . . , n}. So the induction hypothesis

implies D([ti]
left
Pol) = [ti]

left
D(Pol). Hence for p1Pol = fPol([t1]left

Pol, . . . , [tn]left
Pol), we

21

have

D(p1Pol) = D(fPol([t1]left
Pol, . . . , [tn]left

Pol))
= fD(Pol)(D([t1]left

Pol), . . . ,D([tn]left
Pol))

= fD(Pol)([t1]left
D(Pol), . . . , [tn]left

D(Pol)) by the induction hypothesis

= p1D(Pol)

Therefore, we also have

D(ncon(p1Pol)) = ncon(p1D(Pol)) and D(con(p1Pol)) = con(p1D(Pol)).

This implies16

ncon(p1D(Pol)) = 0 iff D(ncon(p1Pol) = 0) iff D(αncon(p1Pol)=0) = 1

and
0 > con(p1D(Pol)) iff D(0 > con(p1D(Pol))) = 1.

Therefore, D(αleft
t) = 1 implies D(b left

t) = 0. Thus,

D([t]left
Pol) = D(ncon(p1Pol) + b left

t)

= D(ncon(p1Pol)) +D(b left
t)

= ncon(p1D(Pol)) + 0

= 0

= [t]left
D(Pol)

Finally, we regard the case t = f(t1, . . . , tn), where ncon(p1D(Pol)) 6= 0 or

0 ≤ con(p1D(Pol)). Similar to the previous case, one can show that D(αleft
t) = 1

implies
D(b left

t) = D(con(p1Pol)) = con(p1D(Pol)).

Hence,

D([t]left
Pol) = D(ncon(p1Pol) + b left

t)

= D(ncon(p1Pol)) +D(b left
t)

= ncon(p1D(Pol)) + con(p1D(Pol))
= p1D(Pol)
= [t]left

D(Pol)

ut

16 Note that by (6), αp=0 requires that all coefficients of p must be 0. Thus, we indeed have
D(αp=0) = D(p = 0) for all Diophantine interpretations D.

22

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years.

A complete list of reports dating back to 1987 is available from http://aib.

informatik.rwth-aachen.de/. To obtain copies consult the above URL or

send your request to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55,

52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

23

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

24

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

25

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling

Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,

Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli

Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI

Work Group “Requirements Management Tools for Product Line Engi-

neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical

sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for

Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-

ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-

ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

26

