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Abstract. This paper is concerned with bridging the gap between reménts, provided
as a set of scenarios, and conforming design models. The aswect of our approach is
to exploitlearningfor the synthesis of design models. In particular, we preagmocedure
that infers a message-passing automaton (MPA) from a gieeafpositive and negative
scenarios of the system’s behavior provided as messagersagioharts (MSCs). The paper
investigates which classes of regular MSC languages amespmnding MPAs can (not) be
learned, and presents a dedicated tool based on the ledibremy LearnLibthat supports
our approach.

1 Introduction

The elicitation of requirements is the main initial phaseiatypical software engineer-
ing development cycle. A plethora of elicitation technigf@ requirement engineering
exist. Popular requirement engineering methods, suctedadiiry Cycle and CREWS
[27], exploit use cases and scenarios to specify the systemuirements. Sequence di-
agrams are also at the heart of the UML. A scenario is a prdighent of the system’s
behavior, describing the system components, their messadange and concurrency.
Their intuitive yet formal nature has resulted in a broadegtance. Scenarios can be
either positive or negative, indicating a possible desgednwanted system behavior,
respectively. Different scenarios together form a more @ete description of the sys-
tem behavior.

The following design phase in software engineering is a n@jallenge as it is con-
cerned with a paradigm shift between teguiremenspecification—a partial, overlap-
ping and possibly inconsistent description of the systdmalsavior—and a conforming
design modela complete behavioral description of the system (at a heghl lof ab-
straction). During the synthesis of such design modelsaliysautomata-based models
that are focused on intra-agent communication, conflictemuirements will be de-
tected and need to be resolved. Typical resulting changesjtorements specifications
include adding or deleting scenarios, and fixing errorsahatound by a thorough anal-
ysis (e.g., model checking) of the design model. Obtainiograplete and consistent set
of requirements together with a related design model is @thighly iterative process.

This paper proposes a novel technique that is aimed to be poriamt stepping
stone towards bridging the gap between scenario-basedesmnt specifications and
design models. The novel aspect of our approach is to exp#itingalgorithms for the
synthesis of design models from scenario-based spedadifitatSince message-passing
automata (MPA, for short) [11] are a commonly used model &dize the behavior
as described by scenarios, we adopt MPA as design model rlicipar, we present



a procedure that interactively infers an MPA from a givendgtositive and negative
scenarios of the system’s behavior provided as messagersegjgharts (MSCs). This
is achieved by generalizing Angluin’s learning algorithom Eeterministic finite-state
automata (DFA) [4] towards specific classes of bounded MRA, MPA that can be
used to realize MSCs with channels of finite capacity. An irtgrat distinctive aspect
of our approach is that it naturally supports theremental generatioof design models.
Learning of initial sets of scenarios is feasible. On addindeletion of scenarios, MPA
are adapted accordingly in an automated manner. Thus,esiathhases and analysis
phases, supported by simulation or analysis tools sudfiSSan[7], complement each
other in a natural fashion. Furthermore, on establishimgiticonsistency of a set of
scenarios, our approach mechanically providiegnostic feedbackin the form of a
counterexample) that can guide the engineer to evolve isnaments.

The paper investigates which classes of regular MSC lareguand corresponding
MPA can (not) be learned, and preseB8tayle a dedicated tool based on the learning
library LearnLib[28], which supports our approach.

Generating automata-based models from scenarios hasedaeiot of attention.
These works include algorithms to generate statechart iméden MSCs [21], formal-
ization and undecidability results for the synthesis foinapde variant of live sequence
charts (LSCs) [10], and Harel’s play-in, play-out appro&mhLSCs [12, 13]. Another
approach is proposed by Alet al.in [2, 3]. Uchitelet al. [30] present an algorithm for
synthesizing transition systems from high-level MSCs. Aecaitable variant of LSCs,
triggered MSCs, are presented in [29]. All approaches asedan a rather complete,
well-elaborated specification of the system to be, such a€d&ith loops or condi-
tions, high-level MSCs, triggered MSCs, or LSCs, wherea®tw synthesis approach
only simple MSCs have to be provided as examples, simptifttie requirements spec-
ification task. The novel aspect of our technique is that weaxlearning algorithms
for synthesisvhich are based on positive andgativescenarios. Existing approaches
to synthesizing design models are based on completelyrelfféechniques and only
consider positive examples. Applying learning yields arrémental approach, and fa-
cilitates the generation of diagnostic feedback.

In the setting of model-based testing, Angluin’s learnitgpathm has successfully
been used for inferring models of system’s behavior [20thkir setting, examples are
words and models are DFA, while we work with the more compdidastructures of
MSCs (in fact, partial orders) and MPA.

After an introduction into MSCs and MPA (Sections 2 and 3),farenally define
the general learning setting and describe the extensiomglfuin’s learning algorithm,
cf. Section 4. We then consider existentially and univéydadbunded MPA, i.e., MPA
for which some (all) possible event orderings can be redlizigh finite channels. It
is shown (in Section 5) that universally bounded MPA and pafeluct MPA, as well
as existentially bounded MPA with an a priori fixed channgbamaty are learnable.
Section 6 presents the basic functionality of our tool ad a®kome initial case study
results.



2 Message Sequence Charts

Let X* denote the set of finite words over a finite alphabef X'-labeled partial order
is atriple? = (E, <,/¢) whereFE is a finite set< is a partial-order relation of, i.e.,
it is reflexive, transitive, and antisymmetric, ahd £ — X is alabeling function A
linearizationof P is an extensiofF, <'. /) of P = (E, <, /) such thatl’ O < is a total
order. As we will consider partial orders up to isomorphigine, set of linearizations of
P, denotedLin(P), is a subset of*.

Let Proc be a finite set of at least twmarocesseswhich exchange messages from
a finite setMsg. Communication proceeds through channels via executingrami-
cation actions. LeCh denote the sef(p,q) | p,q € Proc, p # q} of reliable FIFO
channelsFor procesp € Proc, Act, denotes the set of (communication) actiong,of
i.e., {!{(p,q,a) | (p,q) € Chanda € Msg} U {?(p,q,a) | (p,q) € Ch anda € Msg}.
The action!(p, q,a) is to be read asp'sends the messageto ¢”, while ?(q,p,a) is
the complementary action of receiviagent fromp to ¢ (which is thus executed hy).

Moreover, letAct = [, pyo. Actp-

Definition 1 (Message Sequence Chart (MSC)An MSC (overProc and Msg) is a

structure(E, { <, }pe Proc, <msg £) With:
— F'is afinite set okvents

— {: E — Actis alabeling function,
— for anyp € Proc, <, is a total order onE,, = £~ (Act,),
— <msg € E x E suchthat, forany € E, e <msg€e' Or ¢/ <msg € for somee’ € E,
and, for any(ei, €}) € <msg there arep, g € Proc anda € Msg satisfying:
e l(e1) =!(p.q,a) andf(ell) = (¢, p,a),
e forany(eg,e)) € <msgWith £(e2) = !(p, ¢,b) for someb € Msg: e1 <, ey iff
e} <, €5 (which guarantees FIFO behavior), and
o <= (<msgU U,eproe <p)" is a partial-order relation onk.

Let M = (E,{<p}peProc; <msg £) be an MSC. Aprefixof M is a structur¢ E’, { <,
}peProc; <msg ') Such thatE’ C E with e ¢ E" ande’ < e impliese’ € FE/,
<, = <p N (E' x E')foranyp € Proc, <psg = <msg N (E' x E'), and?' is
the restriction of to E’. We write P < M if P is a prefix of the MSQ\/.

The set of MSCs is denoted IBC.* A set of MSCs,£ C MSC, is called arMISC
language For £ C MSC, we let Pref(L£) denote{P | P < M for someM € L} (a
similar notation will be used in the context of words). NdiattMSC C Pref (MSC).

Let M = (E,{<p}peProc, <msg £) € MSC. We setLin(M) to be Lin((E, <,))
(canonically extended for prefixes &f); the linearizations ofZ C MSC are defined
by Lin(L) = Uy Lin(M). Note thatZ C MSC is uniquely determined byin (L),
i.e., foranyl, £’ C MSC, Lin(L) = Lin(L') impliesL = L. Awordw € Act* is an
MSC wordif w € Lin(M) for someM € MSC; for B € IN, w is B-boundedf, for any
prefixv of w and any(p, q) € Ch, 3_ e psg [VN(p.g.a) — 2oacmsg [V]2(gpa) < B Where
lv|, denotes the number of occurrencessoh v. For B € IN, let Lin® (M) denote
{w € Lin(M) | wis B-bounded, andLin® (L) = ;e Lin® (M) for £ C MSC.

4 As Proc and Msg are supposed to be fixed, they are omitted.



Definition 2 (Boundedness)Let M € MSC.

1. M is universallyB-boundedi.e.,VB-bounded) ifLin(M) = Lin®(M).
2. M is existentiallyB-bounded.e., 3B-bounded), ifl.in(M) N Lin® (M) # 0.

The set ofv B-bounded MSCs andB-bounded MSCs is denoted MSCy 5 and
MSC3p, respectively. In amB-bounded MSC, the events can be scheduled such that,
during its execution, any channel contains at ni®shessages. InaB-bounded MSC,
any scheduling is within the channel boud £ C MSC is VB-bounded if£ C
MSCyp, and3B-bounded if£L C MSC3p. Moreover, L is V-/3-bounded if it isVB-
/AB-bounded for som& € IN, respectively.

Example 1.Let M be the MSC in Fig. 1c, where five messages are sent froon2.
The wordw = (1,2, req) (1(1,2,req) 7(2,1,req))* ?(2, 1, req) is in Lin(M), and thus
is an MSC word. It is2-bounded, but not-bounded.}M, however, has d-bounded
linearization, andLin! (M) = {(!(1,2,req) ?(2,1,req))®}. In fact, MSC M is 31-
bounded ant/ B-bounded forB > 5. The MSC in Fig. 1a i¥4-bounded and thus also
J4-bounded; in fact, it is eveA2-bounded. However, it is natl-bounded, as there is
no possible schedule such that any channel always carrim@sttone message. The
MSC in Fig. 1b isv2-andd1-bounded, but not1-bounded. Finally, we note that the set
of MSCs where an arbitrary number of messages is sent frtm2 is 31-bounded, but
notVv-bounded.

3 Message-Passing Automata

An MPA [11]is a collection of finite-state machines (calledgesses) that share a single
global initial state and a set of global final states. Bilat@mommunication between
the processes takes place via unbounded reliable FIFOrbuHeocess transitions are
labeled with send or receive actions. Actildp, ¢, a) puts the messageat the end of

the channel fromp to ¢q. Receive actions are enabled only if the requested message i
found at the head of the channel. The expressive power of idAtended by allowing
components to exchanggnchronization messages

Definition 3 (Message-passing automaton (MPA)AN MPAA is a tuple((Ay,) pe Proc
Sync,3™, F) with:

— Sync is a nonempty finite set afynchronization messages

— for eachp € Proc, A, is a pair (S,, 4,) wheresS, is a finite set ofocal statesind
A, €8, x Acty, x Sync x S is a set oflocal transitions

— 5" € S4 = [ eproc Sp is theglobal initial stateand

— F C S, is a set ofglobal final states

As in [19, 25], we consider the linearizations of MSCs tha abtained from the
global automaton induced by an MPA. For an MPA= ((A,)peProc, Sync, 5", F),
where A, = (Sp, 4,), this global automaton is defined as follows. The sataffigu-
rations of A, denoted byConf 4, consists of pairgs, x) withs € S4 andy : Ch —
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Fig. 1. Example message sequence charts

(Msg x Sync)*, indicating the channel contents. Thkbal transition relationof A4,
=4 C Conf 4 x Act x Sync x Conf 4, is defined by the following two inference rules
(3[p] refers to ther--component of a global stakec S4):

5lpl, (p,q,a),m,5'[p])) € A, A forallr # p,s[r] =5r]
((5,%):/(p, q.a),m, (5", X)) € =>a

wherex’ = x[(p,q) := (a,m) - x((p,q))], i.e.,x’ maps(p, ¢) to the concatenation of
(a,m) andx((p, q)); for all other channels, it coincides with

5lpl, ?(p,q,a),m,S'[p]) € 4, A forallr = p,35[r] =5[r]
(5%, ?(p,a:@),m, (5, X)) € =

wherex((¢,p)) = w - (a,m) andy’ = x[(¢,p) := w]. The initial and final configura-
tions of the global automaton af&™, y.) andF x {x.}, respectively, wherg. maps
each channel onto the empty word.

Now MPA A defines the word language(A) C Act*, i.e., the set of words ac-
cepted by the global automaton gf while ignoring synchronization messages. The
MSC language ofd, denoted byC(.A), is the (unique) sef of MSCs such thakin (L) =
L(A). The notions of boundedness on MSCs carry over to MPA in aralaiay, e.g.,
MPA A is V-bounded if its MSC language i&-bounded. The set of-bounded and
3B-bounded MPA is denoted by MRAand MPA;z, respectively.

Example 2.Fig. 2a shows a nat-bounded MPA with set of synchronization messages
{m;, my} (and simplified action alphabet). The only global final siatedicated by a
dashed line. The MSC language cannot be recognized withHasswo synchroniza-
tion messages, which help to separate two request phasgeaiflength, as illustrated

in Fig. 1a. For the MPA in Fig. 2b, specifying a part of the aisting-bit protocol
(ABP), a single synchronization message suffices (whichdeefore omitted). It i¥/2-
bounded (cf. Fig. 1b). The MPA in Fig. 2c has no synchrontrathessages either. Its
accepted MSCs are as in Fig. 1c and formdarbounded MSC language that, however,
is notV-bounded.
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Fig. 2. Example message-passing automata

An MPA A = ((Ap)pe Proc, Synec, 3™, F), with A, = (S,, 4,), is aproduct MPA
if |Sync| =1andF =[] cp,, I} for somer, C Sy, p € Proc. The acceptance con-
dition is thuslocal, i.e., any process autonomously decides to halt. More@veduct
MPA cannot distinguish between synchronization messag&€ languages of prod-
uct MPA are referred to agalizable[23, 25]. The MPA in Figs. 2b and 2c are product
MPA, whereas the MPA in Fig. 2a is not, as it employs two syonfration messages.
Actually, the latter has no equivalent product MPA [6, 8].fasordinary MPA, the no-
tions of boundedness carry over to product MPA; let I\@I%@nd MPAQB denote the set
of V-bounded product anélB-bounded product MPA, respectively. The MPA in Fig. 2b
is in MPAL , whereas the MPA in Fig. 2c is in MEA, but not in MPA,.

An MPA is calleddeadlock-freeor safeif, from any configuration that is reach-
able from the initial configuration, one can reach a final gurftion. The MPA from
Figs. 2b and 2c are safe, whereas the MPA depicted in Fig. 2at isafe. The class of
V-bounded safe product MPA is denoted by l\@??A

4 An Extension of Angluin’s algorithm

Angluin’s algorithmL* [4] is a well-known algorithm for learning deterministic ifi@
state automata (DFA). In this section, we recall the alparitand extend it towards
learning objects that can lrepresentecby DFA in a way made precise shortly. This
extension allows us to learn various classes of MPA, as iiestbelow.

Let us first recall some basic definitions. Lébe an alphabet. A deterministic finite
automaton (DFA) ovel is a tupled = (Q, qo, 6, F'), whereQ is its finite set ofstates
qo € Q is theinitial state, 6 : Q x X — (@ is itstransition functionandF C @ is the
set offinal states The language a# is defined as usual and denoted/byA).

Angluin’s learning algorithm is designed for learning auteg languagd.(A) C
2* in terms of a minimal DFAA.

4.1 The Basic Algorithm

In this algorithm, a so-calledearner, who initially knows nothing about, is trying
to learnL(.A) by asking queries to deacher, who knowsA. There are two kinds of
queries:
— A membership quergonsists in asking whether a stringe Y™ is in L(A).
— An equivalence quergonsists in asking whetherrgpothesize®FA H is correct,
i.e., whetherL(H) = L(.A). The Teacher will answeryesif H is correct, or else
supply a counterexampte, either inL(A) \ L(H) orin L(H) \ L(.A).
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The Learner maintains a prefix-closed sét C X* of prefixes, which are candidates
for identifying states, and a suffix-closed $&tC X* of suffixes, which are used to dis-
tinguish such states. The séfsandV are increased when needed during the algorithm.
The Learner makes membership queries for all wordg@huU X))V, and organizes the
results into dableT which maps each € (UUU X)) toamappind'(u) : V — {+, -}
where+ represents accepted andnhot accepted. In [4], each functidi(u) is called a
row. WhenT is

— closed meaning that, for each € U anda € X, there is av’ € U such that
T(ua) = T(u'), and
— consistentmeaning thatforeach € U anda € X, T'(u) = T'(u') impliesT (ua) =
T (v a),
the Learner constructs a hypothesized DRA = (Q, qo, 5, Q*), where

- Q={T(u) | u € U} is the set of distinct rows,

— qo is the rowT'(¢) (with € denoting the empty word),

— ¢ is defined by (T'(u),a) = T(ua), and

- Q" ={T(u) | v e UandT(u)(e) = +},
and submitg{ in an equivalence query. If the answelyiss the learning procedure is
completed, otherwise the returned counterexample is usexténdl/ andV, and sub-
sequent membership queries are performed until arrivirgregw hypothesized DFA.

4.2 Learning Objects represented by Subclasses of Regularditl Languages

Our goal is to learn MPA from examples given as MSCs. To availain’s algorithm,

we need to establish a correspondence between MPA and reguid languages. As
we will consider several classes of MPA with correspondipresentations in the next
section, let us first elaborate on general properties obsgmtations for learningpjects

of a fixed arbitrary set of object§. These objects might be classified into equivalence
classes of an equivalence relationC O x O. In our setting, the objects will be MPA,
and two MPA are considered to be equivalent if they recogihieesame MSC language.

We now have taepresentlements fron© (or, rather, their equivalence classes) by
regular word languages, say over an alphabdtor MPA A, we might consider regular
languaged. over Act such thatl corresponds to the séin(L(.A)). Unfortunately, not
every regular word language ovdict gives rise to an MPA. In particular, it might
contain words that are not MSC words, i.e., do not correspiorsdme MSC. Thus, in
general, it is necessary to work within a sub®ebf X*, i.e., we learn regular word
languages that contain at most words frémFor learning MPA, e.g., it is reasonable
to setD = Lin(MSC).

It is, however, not always sufficient to restrict I in order to obtain a precise
correspondence betweéhand regular word languages. Often, regular word languages
are required to be closed under soeagiivalence relatioand/orinference ruleE.g., an
MPA always gives rise to an MSC word language that contaithereany linearization
of some given MSC, or none. Similarly, languages of produB¥Mare closed under
inference (to be made precise in the next section) imposinides requirements on the
representing regular language. So let us consider an dguoarelationrs C D x D

7



and, moreover, a relation C 22 x 2*" whereL; + L intuitively means thaf; still
requires at least one element frdm.

We say thatl. C D is ~-closed(or, closed under) if, for any w,w’ € D with
w ~ w', we havew € L iff w' € L. Moreover,L is said to be--closed(or, closed
undert-) if, for any (L1, L) € I, we have thal.; C L impliesL N Ly # ). °

Regular Languages —_— Naturally, D, =, and determine a particu-
obi lar classRminpra(X, D, ~,F) = {L C D | L

\OQ is regular and closed under bothandt} of
N N i regular word languages ovér (where any lan-

a2 guage is understood to be given by its min-
imal DFA). Suppose a language of this class
Rminora(X, D, ~,F) can be learned in some
sense that will be made precise. For learning
Fig. 3. Representing objects by reguelements of0, we still need to derive an ob-
lar languages ject from a language iMRminpra(X, D, =, F).

To this aim, we suppose a computable bijec-
tive mappingobj : Rminpra(X, D, =) — [O]~ = {[o]~ | o € O} (where
[o]. = {0 € O | o ~ o}). A typical situation is depicted in Fig 3, where the larger
ellipse is closed undee (w ~ w’) and undet- (assuming{w, w'} - {w"}), whereas
the smaller circle is not, as it containdut notw’'.

As Angluin’s algorithm works within the class of arbitraryFB over Y, its Learner
might propose DFA whose languages are neither a subsetrufr satisfy the closure
properties fore andt-. To rule out and fix such hypotheses, the language inclusiin p
lem and the closure properties in question are required wohstructively decidable
meaning that they are decidable and if the property faileagonof its failure can be
computed.

Let us be more precise and define what we understanddgraing setup

Sl

Definition 4. Let O be a set ofobjectsand~ C O x O be an equivalence relation. A
learning setugor (O, ~) is a quintuple(X', D, =, -, 0bj) where
— XY is an alphabet,
— D C X* is thedomain
— =~ C D x D is an equivalence relation such that, for amyc D, [w]~ is finite,
— - C 2P x 2% such that, for any Ly, L,) € I, L1 is both finite andv-closed, and
L is a nonempty decidable language,
— obj : Rminora(X, D, ~,F) — [O]~ is a bijective effective mapping in the sense
that, for L € Rminpea(X, D, =, ), a representative afb;j (L) can be computed.

Furthermore, we require that the following hold for DEAover X

(D1) The problem whetheE(A) C D is decidable. If, moreover,(A) Z D, one can
computew € L(A) \ D. We then say thaktNCLUSION(X, D) is constructively
decidable

5 Technically,~ andF could be encoded as a single relation. As they serve a differgpose in the next
section, we separate them in the general framework, to gintpe forthcoming explanations.



(D2) If L(A) C D, it is decidable whetheL.(.A) is ~-closed. If not, one can compute
w,w’ € D such thatw =~ w', w € L(A), andw’ ¢ L(A). We then say that the
problemEQCLOSURE Y, D, =) is constructively decidable

(D3) If L(A) C D is closed under, it is decidable whetheL (A) is F-closed. If not,
we can computéL;, Ls) € F (hereby,Ls shall be given in terms of a decision
algorithm that checks a word for membership) such thatC L(.A) and L(.A) N
Ly = (. We then say thdNFCLOSURE Y, D, =, ) is constructively decidable

So let us slightly generalize Angluin’s algorithm to copahwihe extended setting,
and let(X, D, ~, -, obj) be alearning setup fd©, ~). The main changes in Angluin’s
algorithm concern the processing of membership queriesedlsas the treatment of
hypothesized DFA:

— Once a membership query has been processed for a wvordD, queriesw’ €
[w]~ must be answered equivalently. They are thus not forwardé¢let Teacher
anymore. We might think of ad ssistant in between thd earner and theTeacher
that checks if an equivalent query has already been perthriviembership queries
for w ¢ D are not forwarded to th&eacher either but answered negatively by the

Assistant.
— When the tabldl’ is both closed and consistent, the hypothesized D& com-

puted as usual. After this, we proceed as follows:
1. If L(H) € D, compute a wordv € L(H) \ D, declare it a counterexam-

ple, and modify the tabl& accordingly (possibly involving further membership
queries).

2. If L(H) C D but L(H) is not ~-closed, then compute, w’ € D such that
w~w,we L(H),andw’ ¢ L(H); perform membership queries fap]~.

3. If L(H) is the union of=-equivalence classes but neiclosed, then compute
(L1, Lg) € Fsuch thatL; C L(H) andL(H) N Ly = 0; perform membership
queries for any word frond.q; if all these membership queries are answered
positively, the Teacher is asked to specify a word from Lo, which will be

declared “positive”.
Actually, a hypothesized DFAL undergoes an equivalence test only.{fH) C D

and L(H) is both~- andt-closed. l.e., if, in the context of the extended learning
algorithm, we speak of a hypothesized DFA, we actually adgherassumption that
L('H) is the union of~-equivalence classes and closed under

Let the extension of Angluin’s algorithm wrt. a learningugeas sketched above be
called EXTENDEDANGLUIN.® A careful analysis shows:

Theorem 1. Let (¥, D, ~, I, obj) be a learning setup fofO, ~). If o € O has to be
learned, then invokingEXTENDEDANGLUIN((O, ~), (X, D, ~,F, obj)) returns, after
finitely many steps, an objec¢te O such that’ ~ o.

The theorem suggests the following definition:

Definition 5. Let O be a set ofobjectsand~ C O x O be an equivalence relation. We
say that(O, ~) is learnable if there is some learning setup {@?, ~).

6 The pseudo code offEFENDEDANGLUIN is included in Appendix A



]\/[1: J\/fz: ]\13: ]\/[4:
(1]
a a a a a
a

Fig.4.Some MSCs

5 Learning Message-Passing Automata

This section identifies some learnable classes of MPA,egylar word languages that
can be learned and generated by an MPA. It seems unlikelyd@firasonable learning
approach for arbitrary MPA, which is suggested by negatesuits from [6, 9]. We
therefore propose to considé+ andV-regular MSC languages and study learnability
for the class of MPA and product MPA.

5.1 Regular MSC Languages

A word language is said to represent an MSC languagehenever it contains a lin-
earization for eacld/ € £, and no linearizations fak/’ ¢ £. Formally,

Definition 6 (Representative).I. C Act* is arepresentativéor £ C MSC if L. C
Lin(L) and, forany MSQVf, M € Liff Lin(M) N L # 0.

Example 3.Let M; - M5 denote the concatenation of MSEE andMos, i.e., the unique
MSC M such that{w1w2 ’ w] € Lm(Ml),wQ S Li’n(Mg)} - Lm(M) {]\4}”<
denotes the Kleene closure ofThe MSC languagd M; }* for MSC M; in Fig. 4
is not regular in the sense of [18], dsn({M;}*) is not a regular word language.
However, { M, }* can be represented by the regular word langubge ({M;}*) =
{((1,2,a) 7(2,1,a))" | n € IN}. Considering the MSQ//» in Fig. 4, we even have
that Lin({ M2}*) is a regular representative foi/s}*.

The interesting case occurs when representatives arearegfldwever, some MSCs
cannot be generated by MPA as their regular representaégese infinite channels.

Example 4.The31-bounded MSC languadé\/s }* for MSC M3 in Fig. 4 has the reg-
ular representativé(!(1,2,a) 7(2,1,a) 1(3,4,a) ?(4,3,a))"™ | n € IN}, but there is
no B € IN such thatLin®({ M3}*) is regular. Thus, according to results from [17], it
cannot be the language of some MPA.

Definition 7 (V- and 3-regular). £ C MSC is V-regularif Lin(L) C Act* is regular.
L is 3-regularif, for someB € IN, Lin® (L) is a regular representative fof.

Any V-regular MSC language ig-bounded and any-regular MSC language is-
bounded. Moreover, any-regular MSC language i8-regular. An MPA is calledv-
regular,3-regular, etc., if so is its MSC language.

Example 5.The MPA in Fig. 2a is not-regular, whereas the MPA in Fig. 2b ¥&
regular. In particular, only finitely many global configticats are reachable from the
initial configuration. The MPA in Fig. 2c iS-regular, but not/-regular.
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Regular MSC languages in the sense of Def. 7 are of interabegsare realizable by
MPA.

Theorem 2 ([17, 18, 22])Regular MSC languages versus bounded MPA:

(a) For any 3-regular MSC languagel (given as a regular representative), one can
effectively compute an MPA such thatC(A4) = L. If £ is V-regular, thenA can
be assumed to t@eterministic

(b) LetB € IN. For A € MPAsp, Lin®(L(A)) is a regular representative fof (A)
and L(.A) is 3-regular. For A € MPAy, Lin(L(.A)) is a regular representative for
L(A) andL(.A) is V-regular.

5.2 Product MSC Languages

A realization of{ M1, My} (cf. Fig. 4) also infers\/5 provided the bilateral interaction
between the processes is completely independent. A set @fsMisat is closed under
such an inference isgroductMSC language (it is calledeakly realizablen [2]). For

M = (E,{<p}peProc, <msg £) € Pref(MSC), the behavior of\/ can be split into its
components\ [ p = (E,, SP,E‘EP), p € Proc, each of which represents the behavior
of a single agent, which can be seen as a word okef,. For finite set. C MSC
and M € MSC, let £ Fyge M if, for any p € Proc, there isM' € £ such that

M'[p=M/p.

Definition 8 (Product MSC language [2]).£ € MSC is a product MSC languag,
for any M € MSC and any finitel’ C £, £’ Fjysc M impliesM € L.

For practical applications, it is desirable to considercatted safe product lan-
guages. Those languages are implementable in terms of areafect MPA, thus one
that is deadlock-free. For a finite s&tC MSC and P € Pref (MSC), we write £ Fysc
P if, for any p € Proc, there isM € L such thatP | p is a prefix ofM | p.

Definition 9 (Safe product MSC language [2]) A product MSC languag€ C MSC
is calledsafeif, for any finite£’ C £ and anyP € Pref(MSC), L' Fysc P implies
P < M for someM < L.

Lemmal ([2]). £L C MSC is aV-regular safe product MSC language (given in terms
of Lin(L)) iff it is accepted by somd € MPAF. Both directions are effective.

5.3 LearningV-bounded Message-Passing Automata
Towards a learning setup forbounded MPA, we let

-~y ={(A,A") € MPA, x MPAy | L(A) = L(A")},

- ~mw = {(w,w’) € Lin(M) x Lin(M) | M € MSC}, and

— objy : Rminora(Act, Lin(MSC), =uw, ) — [MPAy]., be an effective bijective

mapping whose existence is stated by Theordn).2

To prove that(Act, Lin(MSC), ~mw, 0, 0bjy) is indeed a learning setup for the pair
(MPAy, ~v), we recall and establish some decidability results coriegrMSC lan-
guages.
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Proposition 1. INCLUSION(Act, Lin(MSC)) andEQCLOSURK Act, Lin(MSC), ~mw )
are constructively decidable.

Proof: The decidability part stems from [18, Prop. 2.4] and [26}t Me= (@, 0,0, F))

be aminimalDFA over Act. A states € @ is calledproductiveif there is a path froms to
some final state. We successively label productive statixgpwssible channel contents.
If there is such a labeling that is consistent in some sense;am assume both that
L(A) C Lin(MSC) and thatL(.A) is the union of~uw-equivalence classes. Let us
be more precise. Any statewill be associated with a functiogs : Ch — Msg* as
follows:

1. The initial state and any final state are equipped witlimapping any channel to
the empty word).
2. If 5,8’ € Q are productive states ands, !(p,q,a)) = ¢/, thenxy = xs[(p,q) :=

a - xs((p; q))]-
3. If 5,8’ € @ are productive states ards, ?(¢,p,a)) = s, then we havey, =

Xs (P q) = xs (P, q)) - al.

In fact, we haveL(A) C Lin(MSC) iff a labeling of productive states with channel
functions according to 1.-3. is possible. Moreover, we htheeL(.A) is the union of
~pmw-equivalence classes iff this labeling satisfies the fathgicondition:

4. (Diamond property Supposei(s,o) = sy andd(si,7) = sp with o € Act,, and
T € Act, for somep, ¢ € Proc satisfyingp # ¢. If not (c = !(p,q,a) andt =
?(q,p,a) for somea € Msg) or 0 < |xs((p,q))|, then there exists a statgé € @
such that botld (s, 7) = s} andd(s), o) = sa.

Now suppose that labeling the state space with channelitunsctiolates 1.—3. at some
point. But this immediately yields a word that is not conerin Lin(MSC). For ex-
ample, a clash in terms of productive states’ € @ such thati(s,!(p,q,a)) = §

and xy((p,q)) # a - xs((p,q)) gives rise to a path from the initial state to a fi-

nal state vias ' 2%% ¢ that is not labeled with an MSC word. Similarly, provided

L(A) C Lin(MSC) and property 4. is violated, we specifyandw’ (as required in the
proposition) as words of the formw7v andurov, respectively. O
The above decision algorithm runs in time linear in the sizihe transition function of
the DFA. It is easy to see that counterexamples can be comhputimear time as well.
Note that the question if thepyw-closure of a regular set of MSC words is a regular
language, too, is undecidable. For our learning approamheter, this problem does
not play any role. For arbitrary finite automataover Act with L(A) C Lin(MSC)
(which are not necessarily deterministic), it was shown26] [(for Blichi automata)
that deciding ifL(.A) is ~uw-closed is PSPACE complete. In the context of minimal
DFA, however, the problem becomes much simpler.

Proposition 2. (Act, Lin(MSC), ~uw, 0, objy) is a learning setup fofMPAy, ~v).
Theorem 3. (MPAy, ~v) is learnable.
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5.4 Learning 3-bounded Message-Passing Automata

In this subsection, we are aiming at a learning setupdfbounded MPA. As stated in
Def. 7, we now have to provide a channel bound. SdBlet IN and set

— ~3p = {(A,A") € MPA3p x MPAgp | L(A) = L(A')},

— ~a3p = {(w,w') € Lin®(M) x Lin®(M) | M € MSC}, and

— objsp : Rminora(Act, Lin®(MSC), ~3p,0) — [MPAsp].., to be an effective
bijective mapping whose existence is stated by Theorem 2.

In the following, we will show that Act, Lin” (MSC), ~3p, 0, obj5;) is indeed a learn-
ing setup fo MPA3, ~35). Again, we have to establish the corresponding decidgbilit
results:

Proposition 3. For any B € IN, the problems$NncLUSION(Act, Lin®(MSC)) and
EQCLOSURK Act, Lin®(MSC), ~5p) are constructively decidable.

Proof: We need to adapt the universal case accordingly (Prop. Iyesyuire that, asso-
ciating a states with a channel functiorys : Ch — Msg*, we have|x;(ch)| < B for
any channeth. Moreover, the diamond property is replaced with the foltayv

4. Suppose(s,o) = s; andd(sy, 7) = so With o € Act, andr € Act, for some
p,q € Proc satisfyingp # q. If not (|xs((¢q,4¢"))| = B andr = !(q, ¢, a) for some
¢’ € Procanda € Msg) and, moreovero = !(p, ¢,a) andr = ?(q, p, a) for some
a € Msg) implies0 < |xs((p, q))|, then there exists a state € @ such that both
d(s,7) = s} andd(s), o) = sa. O

Proposition 4. For any B € IN, (Act, Lin®(MSC), ~3p, 0, obj5) is a learning setup
for (MPAHB, NgB).

Theorem 4. For any B € IN, (MPA3p, ~3p) is learnable.

5.5 LearningV-bounded Safe Product Message-Passing Automata

Let us set the scene for learnigbounded safe product MPA. In this case, we have to
create an inference rule # () (cf. Definitions 8 and 9). We first define reIatioin%W
andry for word languages, which correspond-fjsc and-3sc, respectively:

- Fhow = {(Zin(L£), {w}) | £ € MSC is finite and3 M € MSC: £ Fyge M A
w € Lin(M)}

— Fuw = {(Lin(L), L) | £L C MSC is finite anddP € Pref(MSC) andu € Lin(P)
such thatl Fysc P andLy = {w € Lin(MSC) | w = uv for somev € Act*}}
(note thatl, is a decidable language).

Given these relations, we can define our learning setup lasvial

-~ ={(A,A) € MPAY x MPAY | £L(A) = L(A")},
- ~uw = {(w,w’) € Lin(M) x Lin(M) | M € MSC} (as before),
— Faw = Fow Y Faws
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— 0bj3P : Rminora(Act, Lin(MSC), ~mw, Faw) — [MPAY s be an effective bijec-
tive mapping, as guaranteed by Lemma 1.

We now establish thatAct, Lin(MSC), ~mw. Fyw» 0075 is a learning setup for
(MPASP, ~3P):
VooV

Proposition 5. INFCLOSURE Act, Lin(MSC), ~mw, Frny ) IS COnstructively decidable.

Proof: Decidability of INFCLOSURE Act, Lin(MSC), ~mw, Fw ) has been shown in
[3, Theorem 3], where an EXPSPACE-algorithm for boundetifidyel MSCs is given,
which reduces the problem to a decision problem for finitelmatta with a~yw-closed
language. The first step is to construct from the gisgfy-closed DFAH a (compo-
nentwise) minimal and deterministic product MBA by simply taking the projections
of H onto Act), for anyp € Proc, minimizing and determinizing them. Then, the MSC
languagel associated withH is a safe product language i is a safe product MPA
realizing L. From’H, we can moreover compute a bouBdsuch that any run ofl ex-
ceeding the buffer siz& cannot correspond to a prefix of some MSC word.ifH).
Thus, a run through (in terms of a prefix of an MSC word) that either

— exceeds the buffer siz8 (i.e., it is notB-bounded), or
— does not exceed the buffer si#e but results in a deadlock configuration

gives rise to a prefix. (of an MSC word) that is implied b§{ wrt. 3y, i.e., L(H)
must actually contain a completianv € Lin(MSC) of u. Obviously, one can decide if
aword is such a completion af The completions ofi form one possibld.,. It remains
to specify a corresponding sét for u. By means ofH, we can, for anyp € Proc,
compute a wordv, € L(H) such that the projection af onto Act,, is a prefix of the
projection ofw, onto Act,,. We setL1 = U, proe[Wp)rpw -

Finally, suppose that, isl, we could neither find a prefix exceeding the buffer size
B nor a reachable deadlock configuration in théounded fragment. Then, we still
have to check ifA recognizesC. If not, one can compute aBtbounded) MSC word
w € L(A) \ L(H) whose MSC is implied byC wrt. Fyoc. SettingLy = {w}, a
corresponding seft; can be specified as the union of seis|~,,,, as above. O
Together with Prop. 1, we obtain the following two results:

Proposition 6. The quintuple( Act, Lin(MSC), 2w, Faw 0bjvr) is a learning setup
for (MPASP, ~).

Theorem 5. (MPAYP, ~3F) is learnable.

5.6 LearningV-bounded Product Message-Passing Automata

Finally, we study the problem of learningbounded product MPA. Unfortunately, we
are in the situation that the canonical definition of a leagrsetup does not work. For
~b = {(A, A) € MPAY x MPAD | L(A) = L(A")}, we obtain:

Proposition 7 ([3]). INFCLOSURK Act, Lin(MSC), ~mw, Fyyy) iS NOt constructively
decidable. More specifically, it is undecidable if the laaga of a~uw-closed DFA
over Act is closed under}y,, -
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Similar decision problems were considered in [2, 3, 23, RE]st of them, however,
are concerned with the question ithigh-level MSC rather than a regular MSC lan-
guage, can be translated into a product MPA.

6 Tool Description

We have implemented the learning approach presented inréloeging sections in the
tool Smyle(Synthesizing Models bY Learning from Examples), which tenfreely
downloaded aht t p: // snyl e. i n. t um de. It is written in Java and makes use of
theLear nLi b library [28], which implementsAngluin’s algorithm and the libraries
Gr appa [5] andJG aph [24] for visualization purposes. For computing lineariaas
of MSCs we use the algorithm given in [31] running@in - e(P)) time, wheren is the
number of elements of the partial ordBrande(P) = |E(P)| is the number of linear
extensions ofP. The tool is capable of learning universally regular andseexitially
regular MSC languages.

The framework contains the following three main comporents

— the Teacherrepresenting the interface between the GUI (user) ands$lsestant

— theLearner, containing the_ear nLi b part

— theAssistantkeeping track of membership queries that were not yet askedking
for B-boundedness as well as the language tyié) (

The learning chain: Initially the user is asked to specify the learning setupteAf
having selected a language type (existentially/univirsahd a channel boun#, the
user provides a set of MSCs. These MSC specifications must libedivided into
positive(i.e., MSCs contained in the language to learn) andative(i.e., MSCs not
contained in the language to learn). After submitting theesemples, all linearizations
are checked for consistency with
respect to the properties of the
learning setup. Violating lineariza-
tions are stored as negative exam-
ples. Now the learning algorithm
starts. TheLearner continuously
communicates with thAssistanin
order to gain answers to member-
ship queries. This procedure halts
as soon as a query cannot be an-
swered by theAssistant In this
case, theAssistanforwards the in-
quiry to the user, displaying the
Fig. 5. Smylescreenshot MSC in question on the screen. The
user must classify the message se-
guence chart as positive or negative
(cf. Fig. 5 (1)). The classification for validity wrt. the learning setupepending on
the outcoméAssistantchecks the of this check, the linearizations of the curre8Qvi
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are assigned to the positive or negative set of future gsiekl@reover, the user’s an-
swer is passed to tHeearnerwhich then continues his question-and-answer game with
the Assistant If the Lear nLi b proposes a possible automaton, #esistantchecks
whether the learned model is consistent with all querieshthae been categorized but
not yet been asked. If he encounters a counter-example gsengs it to the learning
algorithm which, in turn, continues the learning procedumél the next possible solu-
tion is found. In case there is no further evidence for cahttang samples, a new frame
appears (cf. Fig. 52, 3)). Among others, it visualizes the currently learned atgtom
(2, 4) as well as a panel for displaying MSC3) (of runs of the system described by the
automaton. The user is then asked if he agrees with the @olatid may either stop or
introduce a new counter-example proceeding with the lagrpiocedure.

Case studies:We appliedSmyleto thesimple negotiation protocdtom [14], thecon-
tinuous update protocdtom [15] and a protocol being part of USB 1.1 mentioned in
[16]. For the first oneSmylewas provided with 6 positive MSCs and performed 9675
membership and 65 user-queries. It resulted in an autoneatwsisting of 9 states. The
second protocol (giving 4 sample MSCs as input) was learfted 3235 membership
and 43 user queries resulting in an automaton containingt®8sstAnd the last proto-
col was learned after 1373 membership and 12 user-quer@msding it with 4 sample
MSCs. In this case, the inferred automaton was composedtaté&ssFor further details
we refer to Appendix B where we list two of these protocols afl as the input MSCs
and the corresponding learned automata.

7 Conclusion and Future Work

This paper presented a procedure that interactively isfengssage-passing automaton
(MPA) from given positive and negative scenarios of the eyg$ behavior provided
as message sequence charts (MSCs). In doing so, we geedrAliluin’s learning
algorithm for deterministic finite-state automata (DFAy&wds learning specific classes
of bounded MPA.

It was shown that elements of the classe¥-oégular (safe product) MPA can be
learned and that elements of the classlotgular MPA can be learned provided an a
priori bound is given. A similar approach for learnabiliyséregular product MPA fails.

It is left open whethefMPAP, Ng) is learnable. Note that there are other interesting
classes of learnable MPA. For example, our setting easijiepto the causal closure
as defined by Adsul et al., which has the nice property thatthesal closure of any
regular MSC language is regular [1].

We developedmyleas a prototype supporting the inference of design modets fro
scenario-based specifications to validate our approacheaictipe. As future work, we
plan to integrateMSCan[7] into Smyleto support the formal analysis of a suggested
model.

Smyleis freely available for exploration &tt t p: // snyl e. i n. t um de.
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A ExtendedAngluin

The extension of Angluin’s algorithm wrt. a learning setup D, ~, -, obj) for (O, ~)
is sketched in Table 1. Note that in this table we do not ekplideal with the A ssistant
keeping track of membership queries to avoid queries tleateatundant due te.

B Case Studies

In the following we describe two of the protoc@snylewas applied to. In the first one
(thesimple negotiation protocdtom [14]) clientp sends a equest to the server. The
server may either directlgccept orr ef use the client’s request or entechal lenge-

j ust ify phase in which he asks for more information from the dieks long as the
server is not satisfied with the information provided by thiert he stays in this phase.
Once the server collected enough information he decidethehtaccept orr ef use
the client’s initial request.

Thesimple negotiation protocdtepresented as high-level MSC):

?j ust ?chal
myl
S:’Qe é!req > ?req 3

Iref lacc

e ?ref ?acc e

The six example MSCSmylewas provided with:

Lr I | Lr T |

Lr J e ] [ I | req req

Lr J Lo ] e ][] req req chal chal
req req chal chal j ust j ust
acc ref j ust j ust chal chal
acc ref j ust j ust
acc ref

The second protocol is part of the USB 1.1 specification. Tis fhessage sent
from thehost informs thef unct i on that the isochronous mode (USB distinguishes
between three kinds of modes: isochronous, bulk and setiliewused and also in-
forms whether thé unct i on has to play the role of the receiver or the transmitter.
Depending on this decision, the protocol either turns tdefteor the right node of the
HMSC and stays there until the transmission is complete.
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Table 1. The extension of Angluin’s algorithm

EXTENDEDANGLUIN((O,~), (X, D, =, +, obj)):
2 initialize (U, V, T') by asking membership queries forallc {¢} U ¥

3 repeat

while T is not (closed and consistent)
do
if T'is not consistenthen
findu,u’ € U,a € X, andv € V such that
T(u) = T(v') andT (ua)(v) # T(v'a)(v)
addavtoV
extendT to (U U U X))V by membership queries
if T is not closedhen
findu € U andv € V such thatl'(ua) # T'(u') for anyu’ € U
addua toU
extendI to (U U U X)V by membership queries
/% T is both closed and consistent
from T', construct the hypothesized DBA
if L(H) L D
then
computew € L(H) \ D
addw and all its prefixes td/
extendI to (U U UX)V by membership queries
where the query fow is answered negatively
else
if L(H) is not ~-closed
then
computew, w’ € D such thatw ~ w’, w € L(H), andw’ & L(H)
add anyu € [w]~ and all its prefixes té@/
extendT to (U U U X)V by membership queries
else
if L(H) is not +-closed
then

compute(Li, Ly) € -such thatl; C L(H)andL(H) N Ly =0

add anyu € L, and all its prefixes td/
extendT to (U U U X))V by membership queries
if any membership query fdr; is answered positivelthen
ask forw € L (as positive example)
addw and all its prefixes td/
extendI to (U U UX)V by membership queries
where the query fow is answered positively
else
computeobj (H) and do equivalence test
if equivalence test failshen
counterexamplev is provided
w and all its prefixes are added &b
extendI to (U U UX)V by membership queries

46 until equivalence test succeeds
47 returnobj(L(H))
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A protocol being part of the USB 1.1 protocol (representekdigk-level MSC):

The four example MSCSmylewas provided with:

[host | [Fer ] [host | [Fer ] [(host ] [fet. | host | [fet.
snd snd

snd snd
snd ack

snd ack
snd ack
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