
Aachen
Department of Computer Science

Technical Report

Counterexamples in

Probabilistic Model Checking

Tingting Han and Joost-Pieter Katoen

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2006-09

RWTH Aachen · Department of Computer Science · August 2006

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Counterexamples in

Probabilistic Model Checking

Tingting Han and Joost-Pieter katoen

Lehrstuhl für Informatik 2
RWTH Aachen, Germany

Email: {tingting.han, katoen}@informatik.rwth-aachen.de

Abstract. This paper considers algorithms and complexity results for the gen-
eration of counterexamples in model checking of probabilistic until-formulae in
discrete-time Markov chains (DTMCs). It is shown that finding the strongest ev-
idence (i.e, the most probable path) that violates a (bounded) until-formula can
be found in polynomial time using single-source (hop-constrained) shortest path
algorithms. We also show that computing the smallest counterexample that is
mostly deviating from the required probability bound can be found in a pseudo-
polynomial time complexity by adopting a certain class of algorithms for the
(hop-constrained) k shortest paths problem.

1 Introduction

A major strength of model checking is the possibility to generate counterexam-
ples in case a property is violated. The shape of a counterexample depends on
the temporal logic used. For LTL and the universal fragment of CTL, a single
path through the system model suffices to indicate the refutation of the property.
For existentially quantified path-formulae in logics such as CTL, either witnesses
are provided (to indicate why the property holds), or more advanced structures
such as trees of paths [10] or annotated paths [28] are provided as counterexam-
ple. Counterexamples are of utmost importance in model checking: they provide
diagnostic feedback (also in cases where only a fragment of the entire model
can be searched), they constitute the key to successful abstraction-refinement
techniques [9], and are at the core of obtaining (optimal) schedules in e.g. timed
model checking [7]. As a result, advanced counterexample generation and analysis
techniques have intensively been investigated, see e.g., [23, 6, 12].

In probabilistic model checking, however, counterexample generation is al-
most not developed [2, 3]. Probabilistic model checking is a technique to verify
system models in which transitions are equipped with randomness. Popular mod-
els are discrete- and continuous-time Markov chains (DTMCs and CTMCs), and
variants thereof which exhibit nondeterminism. Efficient model-checking algo-
rithms have been developed for these models, and have been applied to case
studies from various application areas. The crux of probabilistic model checking
is to combine techniques from numerical mathematics with standard reachability
analysis. In this way, properties such as “the probability to reach a set of goal
states is at most 0.6” can be automatically checked (up to a certain precision).

In the probabilistic setting, typically there is no single trace (but rather a set
of them) that indicates why a given property is refuted. In case of a property
refutation, current probabilistic model checkers produce a log file that shows the
computed probability for all states. This information is too detailed to aid as a

useful support in finding the cause(s). This paper considers algorithms and com-
plexity results for the generation of counterexamples in model checking of (a safe
fragment of) probabilistic CTL [20] on DTMCs. We concentrate on properties of
the form P6p(ΦU

6hΨ). In case s refutes this formula, the probability of all paths
in s satisfying ΦU6hΨ exceeds p. We first consider the generation of strongest
evidences for violation, i.e., paths satisfying ΦU6hΨ that have the largest proba-
bility mass. Strongest evidences “contribute” mostly to the property refutation.
For unbounded until (i.e., h=∞), determining strongest evidences is equivalent
to a standard shortest path (SP) problem; in case h is bounded, we obtain a
special case of the (resource) constrained shortest path (CSP) problem [1] that
can be solved in O(hm) where m is the number of transitions in the DTMC.

As most probable paths may have a very small probability mass, their infor-
mation may be limited. As a next step, therefore, we consider the problem of
determining most probable subtrees. Whereas in traditional model checking one
is interested in the shortest counterexample, we consider trees of smallest size
that exceed the probability bound maximally. The problem of generating such
smallest, most indicative counterexamples can be casted as a k shortest paths
problem. For unbounded-until formulae (i.e., h=∞), it is shown that the gener-
ation of such smallest counterexamples can be found in pseudo-polynomial time
by adopting k shortest path algorithms [14, 17, 26] that can compute k on the
fly. For bounded until-formulae, we propose a variant of the recursive enumera-
tion algorithm of Jiménez and Marzal [22]. The time complexity of this adapted
algorithm is O(hm+hk log(m

n
)), where n is the number of states in the DTMC.

2 Preliminaries

This section introduces DTMCs and the logic PCTL-safety.

2.1 DTMCs

Definition 1 (DTMCs). A (labelled) discrete-time Markov chain (DTMC) is
a tuple D = (S,P, L) where:

– S is a finite set of states;

– P : S × S → [0, 1] is a probability matrix satisfying
∑

s′∈S P(s, s′) = 1 for all
s ∈ S;

– L : S → 2AP is a labelling function which assigns to each state s ∈ S the set
L(s) of atomic propositions that are valid in s.

A state s in D is called absorbing if P(s, s) = 1. W.l.o.g. we assume a DTMC
to have a unique initial state.

Definition 2 (Paths). Let D = (S,P, L) be a DTMC.

– An infinite path σ in D is an infinite sequence s0·s1·s2·... of states such that
P(si, si+1) > 0 for all i > 0.

– A finite path in D is a finite prefix of an infinite path.

For state s and path σ, σ·s denotes the path obtained by extending σ by s. Let
|σ| denote the length of the path σ, i.e., |s0·s1·...·sn| = n, |s0| = 0 and |σ| = ∞ for

4

infinite σ. For 0 6 i 6 |σ|, σ[i] = si denotes the i-th state in σ. Path(s) denotes
the set of infinite paths that start in state s, formally, Path(s) = {σ | σ[0] = s}.
Let Pathfin(s) denotes the set of finite paths that start in state s.

A DTMC D enriched with an initial state s0 induces a probability space.
The underlying σ-algebra from the basic cylinders is induced by the finite paths
starting in s0. The probability measure PrDs0

(briefly Pr) induced by (D, s0) is
the unique measure on this σ-algebra where:

Pr{σ ∈ Path(s0) | s0·s1·...·sn is a prefix of σ
︸ ︷︷ ︸

basic cylinder of the finite path s0·s1·...·sn

} =
∏

06i<n

P(si, si+1).

Example 1. Fig. 1 illustrates a simple DTMC consisting of 10 states. s is the
initial state, AP = {a, b} and L is given through the subsets of AP labelling the
states as L(s) = L(si) = {a}, for 1 6 i 6 4; L(t1) = L(t2) = L(t3) = {b} and
L(u1) = L(u2) = ∅. The DTMC contains no absorbing states. σ1 = s ·u1 ·u2 · s1 ·
t1 ·s3 is a finite path in this DTMC with Pr{σ1} = 0.1×0.4×0.8×0.1×1 = 0.0032
and |σ1| = 5, σ1[3] = s1. σ2 = s·s3·(s4·t3)

ω is an infinite path, |σ2| = ∞.

s

u1

s1

s3

u2

s2 t2

t3

0.1

0.5

0.3

0.6

0.4

0.8

0.3 0.8

0.5

0.2

0.2

0.6 0.4

0.3

0.1

t1

s4

0.2

0.4

0.1

1

0.1

1

0.6

0.1

0.4
a

a

a a

a

b

b

b

∅∅

Fig. 1. An example DTMC

2.2 PCTL-safety

In this paper, counterexamples are explored when properties specified in the
safety fragment of PCTL [5] are violated. The syntax and semantics of PCTL-
safety are given and its expressiveness is illustrated by some examples.

Syntax. Let p ∈ [0, 1] and let AP denote a fixed, finite set of atomic propositions
ranged over by a, b, c, The syntax of PCTL-safety state formulae (in positive
normal form, i.e., negations can only occur adjacent to atomic propositions.) is
defined as follows:

Φ ::= tt | ff | a | ¬a | Φ ∧ Φ | Φ ∨ Φ | P6p(φ)

5

where φ is path-formula defined by

φ ::= ΦU6hΦ,

where h ∈ N ∪ {∞}. We call the operator U6h unbounded until if h = ∞ and
abbreviate it as U ; and call it bounded until otherwise. For the sake of simplicity,
we do not consider the next-operator. Note that the main distinction with PCTL
[20] is that the probability bounds are upper bounds, and formulae are required
to be in positive normal form.

As for CTL, the temporal operator ♦6h (eventually) can be derived as

P6p(♦
6hΦ) = P6p(tt U6h Φ)

The dual form is defined as P>p(�
6hΦ) = P61−p(♦

6h¬Φ). Note that the nega-
tion can be “pushed” inside Φ until finally it is adjacent to an atomic proposition
(see [5])1. For the more general case, P>p(ΦW

6hΨ) = P61−p(¬ΨU6h¬(Φ ∨ Ψ)).
Thus in the PCTL-safety fragment, four forms P6p(ΦU

6hΨ), P>p(ΦW
6hΨ),

P6p(♦
6hΦ) and P>p(�

6hΦ) are allowed.

Semantics. Let DTMC D = (S,P, L). The semantics of PCTL-safety is defined
by a satisfaction relation, denoted |=, which is characterized as the least relation
over the states in S (infinite paths in D, respectively) and the state formulae
(path formulae). The semantics of the propositional fragment is identical to that
for CTL. The meaning of the probabilistic operator is formalized as follows [20].
The semantics of PCTL-safety state formulae is defined for path formula φ as:

s |= tt iff true s |= Φ ∨ Ψ iff s |= Φ or s |= Ψ
s |= ff iff false s |= Φ ∧ Ψ iff s |= Φ and s |= Ψ
s |= a iff a ∈ L(s) s |= P6p(φ) iff Prob(s, φ) 6 p
s |= ¬a iff a /∈ L(s)

Let Path(s, φ) denote the set of infinite paths that start in state s and satisfy
φ. Formally, Path(s, φ) = {σ ∈ Path(s) | σ |= φ}. Here, Prob(s, φ) = Pr{σ ∈
Path(s, φ)} denotes the probability of Path(s, φ). Let σ be an infinite path in D.
The semantics of PCTL-safety path formulae is defined as:

σ |= ΦU6hΨ iff ∃i 6 h such that σ[i] |= Ψ and ∀j : 0 6 j < i.(σ[j] |= Φ).

For finite path σ, |= is defined in a similar way by changing the range of i to
i 6 max{h, |σ|}. Let Pathfin(s, φ) denote the set of finite paths starting in s that
fulfill φ.

Example 2. We give some examples to illustrate how the PCTL-safety formulae
are utilized to specify system properties.

– In Fig. 1, P60.27(aUb) asserts that the probability of reaching a b-state via
an a-path is at most 0.27.

1 During the transformation, arbitrary PCTL-formulae can occur, but the result is again a
PCTL-safety formula.

6

– Let error be an atomic proposition that characterizes any state in which a
system error has occurred. Then P60.001(♦

650error) asserts that the proba-
bility for a system error to occur within 50 steps is at most 0.001. Dually,
P>0.999(�

650¬error) states that the probability for not having a system error
(running successfully) within 50 steps exceeds 0.999.

– Let red and green be two atomic propositions. P>0.8(green W red) asserts
that the probability of either being green forever, or reaching a red state
via a green path, is greater than 0.8. Stated differently, with probability at
most 0.2, a state is reached that is neither red nor green via a path that
does not contain a red state, which can be specified by the dual formula
P60.2((¬red)U(¬green ∧ ¬red)).

3 Counterexamples in a probabilistic setting

Let us first consider what a counterexample actually is. To that end, consider
the formula P6p(φ), where φ is a path-formula. If state s refutes P6p(φ):

s 2 P6p(φ)
iff not (Prob(s, φ) 6 p)
iff Prob(s, φ) > p
iff Pr{σ | σ ∈ Path(s, φ)} > p

So, P6p(φ) is refuted by state s whenever the total probability mass of all φ-paths
that start in s exceeds p. This indicates that a counterexample for P6p(φ) is in
general a set of paths satisfying φ. As φ is an until-formula and can be witnessed
by finite state sequences, finite paths do suffice in counterexamples. As a coun-
terexample should exceed p, a maximally probable φ-path is a strong evidence
for the violation of P6p(φ). For counterexamples that are as small as possible,
i.e., that contain the smallest possible set of paths indicating the refutation, such
maximally probable paths are essential.

Definition 3 (Strongest evidence). A strongest evidence for violating P6p(φ)
in state s is a finite path σ ∈ Pathfin(s, φ) such that Pr{σ} > Pr{σ′} for any
σ′ ∈ Pathfin(s, φ).

Dually, a strongest evidence for violating P6p(φ) is a strongest witness for P>p(φ) 2.
Note that a strongest evidence does not need to be a counterexample as its prob-
ability mass may be (far) below p. A counterexample is defined as follows:

Definition 4 (Counterexample). A counterexample for P6p(φ) in state s is
a set C of paths such that C ⊆ Pathfin(s, φ) and Pr(C) > p.

Note that counterexamples are always finite as we consider non-strict upper-
bounds in the probability operator3. Let CXp(s, φ) be the set of counterexam-
ples for P6p(φ) in state s. For C ∈ CXp(s, φ) and C’s superset C ′: C ⊆ C ′ ⊆

2 P>p(φ) is a PCTL-formula, not necessarily a safe one.
3 For strict upper bounds in the probability operator, i.e., P<p(φ), a counterexample C may

contain infinite paths, since Pr(C) = p is a counterexample. The limit of the sum of path
probabilities obeying a geometric distribution may equal p, but the limit requires infinite
paths.

7

Pathfin(s, φ), it follows that C ′ ∈ CXp(s, φ), since Pr(C ′) > Pr(C) > p. A coun-
terexample is called minimal if it is minimal w.r.t. ⊆. Note that a counterexample
for state s is a set of finite paths that all start in s, and thus can be considered
as a finite tree rooted at s.

As in conventional model checking, we are not interested in generating ar-
bitrary counterexamples, but those that are easy to comprehend, and provide a
clear evidence of the refutation of the formula. So, akin to shortest counterex-
amples we define the notion of a smallest, most indicative counterexample. Such
smallest counterexamples should contain as few paths as possible—allowing eas-
ier analysis of the cause of refutation—but whose probability is clearly exceeding
p.

Definition 5 (Smallest counterexample). C ∈ CXp(s, φ) is a smallest (most
indicative) counterexample if:

1. |C| 6 |C ′|, for any C ′ ∈ CXp(s, φ) and

2. Pr(C) > Pr(C ′′), for any C ′′ ∈ CXp(s, φ) and |C| = |C ′′|.

Intuitively, a smallest counterexample is mostly deviating from the required prob-
ability bound given that it has the smallest number of paths. Any smallest coun-
terexample is minimal, but not necessarily the reverse. Note that the strongest ev-
idence, minimal counterexample or smallest counterexample may not be unique,
as paths may have equal probability. As a result, not every strongest evidence
is contained in a minimal (or smallest) counterexample. However, any smallest
counterexample contains at least one strongest evidence.

Example 3. In the DTMC in Fig. 1, we have s 6|= P60.27(aUb). Let σ1 = s·s1·s2·t2,
σ2 = s·s1·s3·s4·t1, σ3 = s·s1·s3·s4·t2, σ4 = s·s3·s4·t1, σ5 = s·s3·s4·t2, σ6 =
s·s3·s4·t3, where:

Pr{σ1} = 0.12, Pr{σ2} = Pr{σ3} = Pr{σ4} = Pr{σ5} = 0.072, Pr{σ6} = 0.018.

Path σ1 is a strongest evidence, as it is the maximally probable path from
s to {t1, t2, t3}, i.e., b-states. The set C1 = {σ2, σ3, σ4, σ5, σ6} with Pr(C1) =
0.306 is a counterexample, but neither a minimal counterexample, nor a smallest
counterexample, as C2 = {σ2, σ3, σ4, σ5} ⊂ C1 with Pr(C2) = 0.288 is also a
counterexample. C2 is a minimal counterexample, since the probability of any
proper subset of C2 is less than 0.27. But C2 is not a smallest counterexample,
as C3 = {σ1, σ2, σ3, σ4} with Pr(C3) = 0.336 is a counterexample too and |C2| =
|C3| but Pr(C3) > Pr(C2). In fact, any set containing the strongest evidence and
any three paths in C2 is a smallest counterexample.

In the remainder of the paper, we first consider the computation of strongest
evidences. Formally, we consider the strongest evidence problem (SE), that for
a given state s with s 6|= P6p(φ), determines the strongest evidence for this
violation. Subsequently, we consider the corresponding smallest counterexample
problem (SC). For both cases, we distinguish between until-formulae for which
h=∞ (unbounded until) and h ∈ N (bounded until) as distinctive algorithms are
used for these cases.

8

4 From DTMC to a weighted digraph

Prior to finding strongest evidences or shortest counterexamples, we first modify
the DTMC and turn it into a weighted directed graph. Let φ = ΦU6hΨ , h = ∞
or h ∈ N and Sat(Φ) = {s ∈ S | s |= Φ} for any state-formula Φ. Due to the
bottom-up traversal of the model-checking algorithm over the formula φ, we may
assume that Sat(Φ) and Sat(Ψ) are known.

Step 1: Adapting the DTMC. First, we make all states in the DTMC D =
(S,P, L) that neither satisfy Φ nor Ψ absorbing. Then we add an extra state t
so that all the Ψ -states are equipped with a transition to t with probability 1
(all other outgoing transitions of Ψ -states are omitted). State t can thus only
be reached via a Ψ -state. The thus obtained DTMC D′ = (S′,P′, L′) has state
space S ∪ {t} for t 6∈ S. The transition probabilities in D′ are defined as follows:







P′(s′, s′) = 1 and P′(s′, s′′) = 0 for s′′ 6= s′ if s′ /∈ Sat(Φ) ∪ Sat(Ψ) or s′ = t
P′(s′, t) = 1 and P′(s′, s′′) = 0 for s′′ 6= t if s′ ∈ Sat(Ψ)
P′(s′, s′′) = P(s′, s′′) for s′′ ∈ S and P′(s′, t) = 0 otherwise

L′(s′) = L(s′) for s′ ∈ S and L′(t) = {at t}, where at t /∈ L(s′) for any s′ ∈ S,
i.e., at t uniquely identifies being at state t. Remark that all the (¬Φ∧¬Ψ)-states
could be collapsed into a single state, but this is not further explored here. The
time complexity of this transformation is O(n) where n = |S|.

It is evident that the validity of ΦU6hΨ is not affected by this amendment
of the DTMC. All paths in D′ of length at most h + 1 that end in t satisfy
ΦU6hΨ in D. More precisely, any finite path satisfying (Φ ∨ Ψ)U6h+1at t in D′

has a finite path in D satisfying ΦU6hΨ . The following lemma guarantees that
the later results in D′ also hold in D.

Lemma 1. Let σ′ = σ·t be a path in Pathfin(s) in D′. Then:

1. σ′ |= (Φ ∨ Ψ)U6h+1at t in DTMC D′;

2. σ |= ΦU6hΨ in DTMC D;

3. Pr{σ} = Pr{σ′}.

For the rest of the technical report, we suppose that all the DTMCs are the
results of Step 1, and the logic formula considered is (Φ ∨ Ψ)U6h+1at t.

Step 2: Conversion into a weighted digraph. As a second preprocessing step, the
DTMC obtained in the first phase is transformed into a weighted digraph. Recall
that a weighted digraph is a tuple G = (V,E,w) where V is a finite set of vertices,
E : V × V is a set of edges, and w : E → R>0 ∪ {∞} is a function assigning
non-negative weights to edges.

Definition 6 (Weighted digraph of a DTMC). For DTMC D = (S,P, L),
the weighted digraph GD = (V,E,w) where:

– V = S and (v, v′) ∈ E iff P(v, v′) > 0, and

– w(v, v′) =

{
log(P(v, v′)−1) if P(v, v′) > 0,
∞ otherwise.

9

Note that in any DTMC, P(s, s′) ∈ [0, 1], thus P(s, s′)−1 ∈ [1,+∞), and con-
sequently, log(P(s, s′)−1) ∈ [0,+∞). Thus, we indeed obtain a non-negatively
weighted digraph. Note that this transformation can be done in O(m), where
m = |P|.

Example 4. The transformation from DTMC in Fig. 1 to a weighted digraph is
illustrated in Fig. 2. For the path formula φ = aUb, in Fig. 2(a) all the b-states
(i.e., t1, t2, t3) are made absorbing and take a transition with probability 1 into
the new state t (indicated by a double circle). All the (¬a∧¬b)-states (i.e., u1, u2)
are made absorbing and then (to simplify the figure) collapsed into one state u. In
Fig. 2(b), the resulting weighted digraph is depicted where all the states remain
the same, however the edge weights are obtained by taking the logarithm of the
reciprocal of the corresponding transition probabilities.

s

u

s1

s3

s2 t2

t30.1

0.5

0.3

0.3 0.8

0.6 0.4

0.1

t1

s4

0.2

0.4

0.1

0.1

0.6

0.1

0.4
a

a

a a

a

b

b

b

∅

t

1

1

1
1

att1

(a) result of Step 1

s

u

s1

s3

s2 t2

t3log 10

log 2

log 10

3

log 10

3
log 5

4

log 5

3
log 5

2

log 10

t1

s4

log 5

log 5

3

log 10

log 10

log 5

3

log 10

log 5

2

t

0

0

0
0

0

(b) result of Step 2

Fig. 2. Transformation from DTMC to weighted digraph

A path σ from s to t in G is a sequence σ = v0·v1·...·vj ∈ V +, where v0 =
s, vj = t and (vi, vi+1) ∈ E, for 0 6 i < |σ|. As for paths in DTMCs, |σ|
denotes the length of σ. The distance of finite path σ = v0·v1·...·vj in graph G is

d(σ) =
∑j−1

i=0 w(vi, vi+1). Due to the fact that multiplication of probabilities in D
corresponds to addition of weights in GD, and that weights are based on taking

10

the logarithm of the reciprocal of the transition probabilities in D, distances in
G and path-probabilities in DTMC D are related as follows.

Lemma 2. Let σ and σ′ be finite paths in DTMC D and its graph GD. Then:

Pr{σ′} > Pr{σ} iff d(σ′) 6 d(σ).

Proof. Consider the following finite path σ in D:

σ = s0
P(s0,s1)
−−−−−→ s1

P(s1,s2)
−−−−−→ s2 · · · sn−1

P(sn−1,sn)
−−−−−−−→ sn

By definition, its probability is:

Pr{σ} = P(s0, s1) ·P(s1, s2) · · ·P(sn−1, sn) =

n−1∏

i=0

P(si, si+1)

Consider an alternative path σ′:

σ′ = s′0
P(s0,s′1)−−−−−→ s′1

P(s′1,s′2)−−−−−→ s′2 · · · s
′
m−1

P(s′m−1,s′m)
−−−−−−−−→ s′m

Pr{σ′} = P(s′0, s
′
1) ·P(s′1, s

′
2) · · ·P(s′m−1, s

′
m) =

m−1∏

i=0

P(s′i, s
′
i+1)

If Pr{σ′} > Pr{σ}, we have:

∏m−1
i=0 P(s′i, s

′
i+1) >

∏n−1
i=0 P(si, si+1)

⇐⇒
1

∏m−1
i=0 P(s′i, s

′
i+1)

6
1

∏n−1
i=0 P(si, si+1)

⇐⇒ log(
1

∏m−1
i=0 P(s′i, s

′
i+1)

) 6 log(
1

∏n−1
i=0 P(si, si+1)

)

⇐⇒
∑m−1

i=0 log(
1

P(s′i, s
′
i+1)

) 6
∑n−1

i=0 log(
1

P(si, si+1)
)

⇐⇒
∑m−1

i=0 w(s′i, s
′
i+1) 6

∑n−1
i=0 w(si, si+1)

⇐⇒ d(σ∗) 6 d(σ)

⊓⊔

Note that Lemma 2 also holds for infinite paths. The following lemma specifies
the correspondence between paths in DTMC D and its weighted digraph.

Lemma 3. For any path σ from s to t in DTMC D and k > 0:

1. σ is a k-th most probable path in D iff σ is a k-th shortest path in GD;

2. σ is a k-th most probable path of at most h hops in D iff σ is a k-th shortest
path of at most h hops in GD;

The correspondence between path probabilities in the DTMC and distances
in its weighted digraph constitutes the basis for the remaining algorithms.

11

5 Finding strongest evidences

This section considers algorithms for determining strongest evidences, i.e., max-
imally probable paths.

5.1 Unbounded until

Based on the results of Lemma 3.1 where k = 1, we consider the shortest path
problem.

Definition 7 (SP problem). Given a weighted digraph G = (V,E,w) and s, t ∈
V , the shortest path (SP) problem is to determine a path σ from s to t such that
d(σ) 6 d(σ′) for any path σ′ from s to t in G.

From Lemma 3.1 together with the transformation of a DTMC into a weighted
digraph, it follows that there is a polynomial reduction from the SE problem
for unbounded until to the SP problem. As the SP problem is known to be in
PTIME, it follows:

Theorem 1. The SE problem for unbounded until is in PTIME.

Various efficient algorithms [13, 8, 15, 11] exist for the SP problem, e.g., when
using Dijkstra’s algorithm, the SE problem for unbounded until can be solved in
time O(m + n log n) when using appropriate data structures such as Fibonacci
heaps.

5.2 Bounded until

Lemma 3.2 when k = 1 applies when considering maximally probable paths
of a certain maximal hop count. This suggests to consider the hop-constrained
shortest path problem.

Definition 8 (HSP problem). Given a weighted digraph G = (V,E,w), s, t ∈
V and h ∈ N, the hop-constrained SP (HSP) problem is to determine a path σ
in G from s to t with |σ| 6 h such that d(σ) 6 d(σ′) for any path σ′ from s to t
with |σ′| 6 h.

The HSP problem is a special case of the constrained shortest path (CSP) prob-
lem [27, 1], where the only constraint is the hop count.

Definition 9 (CSP problem). Given a weighted digraph G = (V,E,w), s, t ∈
V and resource constraints λi, for 1 6 i 6 c. Edge e ∈ E uses ri(e) > 0
units of resource i. The (resource) constrained shortest path problem (CSP) is
to determine a shortest path σ in G from s to t such that

∑

e∈σ ri(e) 6 λi for
1 6 i 6 c.

The CSP problem is NP-complete, even for a single resource constraint [1]. How-
ever, if each edge uses a constant unit of that resource (such as the hop count),
the CSP problem can be solved in polynomial time, cf. [18], problem ND30. Thus:

Theorem 2. The SE problem for bounded until is in PTIME.

12

For h > n−1, it is possible to use Dijkstra’s SP algorithm (as for unbounded
until), as a shortest path does not contain cycles. If h < n−1, however, Dijkstra’s
algorithm does not guarantee to obtain a shortest path of at most h hops. We,
therefore, adopt the Bellman-Ford (BF) algorithm [8, 15, 11] which fits well to
our problem as it proceeds by increasing hop count. It can be readily modified
to generate a shortest path within a given hop count. In the sequel of the paper,
this algorithm is generalised for computing shortest counterexamples. The BF-
algorithm is based on a set of recursive equations; we extend these with the hop
count h. For v ∈ V , let π(v, h) denote the shortest path from s to v of at most
h hops (if it exists). Then:

π(v, h) =







s if v = s and h > 0; (1a)
⊥ if v 6= s and h = 0; (1b)
arg minu{d(π(u, h−1) · v) | (u, v) ∈ E} if v 6= s and h > 0. (1c)

where ⊥ denotes undefined. The last clause states that π(v, h) consists of the
shortest path to v’s predecessor u, i.e., π(u, h−1), extended with edge (u, v).
Note that minu{d(π(u, h−1) · v) | (u, v) ∈ E} is the distance of the shortest
path; by means of arg, the path is obtained. It follows (cf. [24]) that equation (1)
characterizes the shortest path from s to v in at most h hops, and can be solved
in time O(hm). As h < n−1, this is indeed in PTIME. Recall that for h > n−1,
Dijkstra’s algorithm has a favorable time complexity.

Remark 1. Note that the self-loop of vertex t is neglected when computing the
hop-constrained shortest path using BF algorithm. This is because the logic
operator is the bounded until U6h instead of point interval until U=h, so that
once it reaches t within the hop bound, the path formula holds and the self-loop
does not change the path probability.

Example 5. To illustrate the BF algorithm, we compute the shortest path in
at most 4 hops from s to t in our example in Fig.2(b), i.e., π(t, 4). In or-
der to compute π(t, 4), three predecessors of t are considered so that π(t1, 3),
π(t2, 3), π(t3, 3) are invoked. Again, to compute π(t1, 3), two predecessors of
t1 are considered so that π(s1, 2), π(s4, 2) are invoked. In sequel, π(s, 1) and
π(s3, 1) are invoked for π(s1, 2), where π(s, 1) is s, defined by equation (1a).
π(s3, 1) is derived by invoking its two predecessors π(s, 0), which is s (by (1a))
and π(s1, 0) which is ⊥ (by (1b)). The computation is given in Fig. 3. Note
that π(s4, 2), π(s3, 1), π(s, 0), π(s1 , 0), π(s3, 0) are indicated more than once (with
more than one incoming edge), but are (like in dynamic programming) computed
only once.

Remark 2. Alternatively, the Viterbi algorithm [16, 29] for probabilistic automata
can be applied to our problem. The Viterbi algorithm determines the most prob-
able path that generates a given trace. Let D′ be a DTMC that is obtained after
the first step described in Section 4, and suppose that L′(s) contains the set of
atomic propositions that are valid in s and all subformulae of the formula under
consideration. (Note that these labels are known due to the recursive descent
nature of the PCTL model checking algorithm.) Let tr(σ) denote the projection
of a path σ = s0·s1·...·sh on its trace γ, i.e., γ = tr(σ) = L′(s0)L

′(s1) · · ·L
′(sh).

σ↓i denotes the prefix of path σ truncated at length i (thus ending in si), for-
mally, σ↓i = σ[0]·σ[1]·...·σ[i]. Thus, tr(σ↓i) = L′(s0)L

′(s1) · · ·L
′(si). γ↓i denotes

13

π(t1, 3) π(s1, 2)

π(s2, 2)

π(s4, 2)

π(s, 0) = s

π(s1, 0) = ⊥

π(s3, 1)

π(s1, 1) π(s3, 0) = ⊥

π(s2, 1) π(s2, 0) = ⊥

π(s4, 1) π(s4, 0) = ⊥

π(t2, 3)

π(t3, 3)

π(t, 4)

π(s, 1) = s

Fig. 3. An example run of the Bellman-Ford algorithm

the prefix of trace γ with length i. Let ρ(γ, i, v) denote the probability of the
most probable path σ↓i whose trace equals γ↓i and reaches state v. ρ(γ, i, v) can
be formally defined as follows:

ρ(γ, i, v) = max
tr(σ↓i)=γi

i−1∏

j=0

P(sj, sj+1) · 1v(si),

where 1v(si) is the characteristic function of v, i.e., 1v(si) returns 1, if si = v; 0,
else.

The Viterbi algorithm provides an algorithmic solution to compute ρ(γ, i, v):

ρ(γ, i, v) =







1 if s = v and i = 0;
0 if s 6= v and i = 0;
maxu∈S ρ(γ, i − 1, u) ·P(u, v) otherwise.

By computing ρ(ΦhΨ, h, sh), the Viterbi algorithm determines the most prob-
able h-hop path σ = s0·s1·...·sh that generates the trace γ = L′(s0)L

′(s1)...L
′(sh)

= ΦhΨ with length (h+1). For our SE problem for bounded until, the trace of the
most probable hop-constrained path from s to t is among {Ψat t, ΦΨat t, ..., Φ

hΨat t}.
The self-loop at vertex t with probability 1 can make sure that all these paths
have length h+1 but not change their probabilities, e.g., the path with trace
Ψat t can be extended so that the trace becomes Ψat t

h+1. We obtain the most
probable path for ΦU6hΨ by computing ρ((Φ∨Ψ∨at t)

h+1at t, h+1, t) using the
Viterbi algorithm. The time complexity of the Viterbi algorithm is O(hm), as
for the BF algorithm.

6 Finding smallest counterexamples

Recall that a smallest (most indicative) counterexample is a counterexample
of minimal cardinality, whose probability deviates maximally from the required

14

probability bound. In this section, we investigate algorithms for computing such
smallest counterexamples. First observe that any smallest counterexample that
contains, say k paths, contains the k most probable paths. This follows from the
fact that any non-k most probable path can be exchanged with a more probable
path, without changing the size of the counterexample, but by increasing its
probability.

6.1 Unbounded until

Lemma 3.1 is applicable here. This suggests to consider the k shortest paths
problem.

Definition 10 (KSP problem). Given a weighted digraph G = (V,E,w), s, t ∈
V , and k ∈ N, the k shortest paths (KSP) problem is to find k distinct shortest
paths between s and t in G, if such paths exist.

Theorem 3. The SC problem for unbounded until is a KSP problem.

Proof. We prove that a smallest counterexample of size k, contains k most prob-
able paths. It is proven by contradiction. Let C be a smallest counterexample
for φ with |C| = k, and assume C does not contain the k most probable paths
satisfying φ. Then there is a path σ /∈ C satisfying φ such that Pr{σ} > Pr{σ′}
for some σ′ ∈ C. Let C ′ = C \ {σ′} ∪ {σ}. Then C ′ is a counterexample for φ,
|C| = |C ′| and Pr(C) > Pr(C ′). This contradicts C being a smallest counterex-
ample. ⊓⊔

The question remains how to obtain k. Various algorithms for the KSP prob-
lem require k to be known a priori. This is inapplicable in our setting, as the
number of paths in a shortest counterexample is implicitly provided by the prob-
ability bound in the PCTL-formula. We therefore consider algorithms that allow
to determine k on the fly, i.e., that can halt at any k and resume if necessary.
A good candidate is Eppstein’s algorithm [14]. Although this algorithm has the
best known asymptotic time complexity, viz. O(m+n log n+k), in practice the re-
cursive enumeration algorithm (REA) by Jiménez and Marzal [22] prevails. This
algorithm has a time complexity in O(m+kn log m

n
) and is based on a generalisa-

tion of the recursive equations for the BF-algorithm, and is readily adaptable to
the case for bounded h, as we demonstrate below. Note that the time complexity
of KSP algorithms depends on k, and as k may be exponential, their complexity
is pseudo-polynomial.

6.2 Bounded until

Similar to the bounded until case for strongest evidences, we now consider the
KSP problem where the length of paths is constrained, as Lemma 3.2 is applicable
here.

Definition 11 (HKSP problem). Given a weighted digraph G = (V,E,w),
s, t ∈ V and h, k ∈ N, the hop-constrained KSP (HKSP) problem is to determine
k shortest paths each of length at most h between s and t.

Similar to Theorem 3 we obtain:

15

Theorem 4. The SC problem for bounded until is a HKSP problem.

To our knowledge, algorithms for the HKSP problem do not exist. In order
to solve the HKSP problem, we propose a new algorithm that is strongly based
on Jiménez and Marzal’s REA algorithm [22]. The advantage of adapting this
algorithm is that k can be determined on the fly, an essential characteristic for
our setting. The algorithm is a conservative extension of the REA algorithm.

For v ∈ V , let πk(v, h) denote the k-th shortest path from s to v of length at
most h (if it exists). As before, we use ⊥ to denote the non-existence of a path.
We establish the following equations:

πk(v, h) =







s if k = 1, v = s and h > 0 (2a)
⊥ if (k > 1, v = s, h = 0) or (v 6= s, h = 0) (2b)
arg minσ{d(σ) | σ ∈ Qk(v, h)} otherwise (2c)

where Qk(v, h) is a set of candidate paths among which πk(v, h) is chosen. The
candidate sets are defined by:

Qk(v, h) =







{π1(u, h−1)·v | (u, v) ∈ E}
if k = 1, v 6= s or k = 2, v = s

(Qk−1(v, h) − {πk′

(u, h−1)·v}) ∪ {πk′+1(u, h−1)·v}
if k > 1 and u, k′ are the node and index,

such that πk−1(v, h) = πk′

(u, h−1)·v

(3)

Assume that the path πk′+1(u, h−1)·v=⊥ if it does not exist, which happens
when Qk′+1(u, h−1)=∅. Note that ⊥·v=⊥ for any v ∈ V . Qk(v, h)=∅ if it only
contains ⊥.

If k=1, the shortest path to v′s predecessor u is extended with the edge to
v. In the latter clause, πk′

(u, h−1) denotes the selected (k−1)-st shortest path
from s to u, where u is the direct predecessor of v. Paths in Qk(v, h) for k > 1
are thus either candidate paths for k−1 where the selected path is eliminated
(first summand) or the (k′+1)-st shortest path from s to u extended with edge
(u, v) (second summand). Note that for the source state s, there is no need to
define Qk(s, h) as πk(s, h) is defined by equations (2a) and (2b), which act as
termination conditions.

Proposition 1. The equations (2a)-(2c) and (3) characterize the hop-constrained
k shortest paths from s to v in at most h hops.

Proof. Let Rk(v, h) denote the set of the k shortest paths from s to v in at most
h hops. Each path in Rk(v, h) reaches v from some vertex u ∈ Pred(v)={w ∈
V | (w, v) ∈ E}. In order to compute πk(v, h), we should consider for every
u ∈ Pred(v), all paths from s to u that do not yield a path in Rk−1(v, h). However,
since k1<k2 implies that d(πk1(u, h−1))+w(u, v) 6 d(πk2(u, h−1))+w(u, v), only
the shortest of these paths needs to be taken into account when computing
πk(v, h). Thus we can associate to (v, h) a set of candidate paths Qk(v, h) among
which πk(v, h) can be chosen, that contains at most one path for each predecessor
u ∈ Pred(v). This set Qk is recursively defined by equation (3). ⊓⊔

16

The adapted REA. The adapted REA for computing the k shortest paths from
s to t which each consist of at most h hops is sketched as follows. The algorithm
is based on the recursive equations given just above.

i Compute π1(t, h) by the BF algorithm and set k := 1.

ii Repeat until πk(t, h) does not exist or
k

X

i=1

Pr{πi(t, h)} > p:

(a) Set k := k+1 and compute πk(t, h) by invoking NextPath(v, h, k).

For k>1, and once π1(v, h), . . . , πk−1(v, h) are available, NextPath(t, h, k) computes πk(v, h) as
follows:

1. If h60, goto step 4.
2. If k=2, then set Q[v, h] := {π1(u, h−1)·v | (u, v) ∈ E and π1(v, h) 6= π1(u, h−1)·v}.

3. Let u and k′ be the node and index such that πk−1(v, h) = πk′

(u, h−1)·v.

(a) If πk′
+1(u, h−1) has not yet been computed, invoke NextPath(u, h−1, k′+1).

(b) If πk′
+1(u, h−1) exists, then insert πk′

+1(u, h−1)·v in Q[v, h].
4. If Q[v, h] 6= ∅, then select and delete a path with minimum weight from Q[v, h] and assign

it to πk(v, h), else πk(v, h) does not exist.

In the main program, first the shortest path from s to t is determined using,
e.g., the BF-algorithm. The intermediate results are recorded, e.g., all the paths
in Fig. 3. Then, the k shortest paths are determined iteratively using the sub-
routine NextPath. The computation terminates when the k-th shortest path does
not exist, or the total probability mass of the k shortest paths so far exceeds the
bound p. Recall that p is the lower bound of the PCTL formula to be checked.
Note that Q[v, h] in the algorithm corresponds to Qk(v, h), where k is the pa-
rameter of the program. In steps 2 through 3, the set Qk(v, h) is determined from
Qk−1(v, h) according to equation (3). In the final step, πk(v, h) is selected from
Qk(v, h) according to equation (2c).

Example 6. We illustrate how the algorithm progresses by computing 3 shortest
paths in Fig. 2 (b) with hop count h = 4, i.e., π1(t, 4), π2(t, 4) and π3(t, 4).

By BF algorithm, we compute π1(t, 4) = s·s1·s2·t2·t, several shortest paths to
different destinations with different hop constraints are derived as a by-product
as we showed in Example 5, where π(v, h) in the previous example is π1(v, h)
here. We summarize the paths below:

h = 3 h = 2 h = 1 h = 0

π1(s, 1) = s·s π1(s, 0) = s

π1(t1, 3) = s·s1·t1 π1(s1, 2) = s·s1 π1(s1, 1) = s·s1 π1(s1, 0) = ⊥
π1(t2, 3) = s·s1·s2·t2 π1(s2, 2) = s·s1·s2 π1(s2, 1) = ⊥ π1(s2, 0) = ⊥
π1(t3, 3) = s·s3·s4·t3 π1(s4, 2) = s·s3·s4 π1(s3, 1) = s·s3 π1(s3, 0) = ⊥

π1(s4, 1) = ⊥ π1(s4, 0) = ⊥

The algorithm for π2(t, 4) is running in Fig. 4.

Note that in order to compute π2(t, 4), the vertices along π1(t, 4) = s·s1·s2·t2·t
are computed successively, i.e., π2(t2, 3), π2(s2, 2), π2(s1, 1) and π2(s, 0), by re-
cursively invoking NextPath. The hop count of each invocation is decreased by 1,
so that NextPath is invoked 5 times when h = 4 and k = 2. Similarly, to compute
π3(t, 4), the vertices along π2(t, 4) = s·s3·s4·t1·t (π2(t1, 3), π2(s4, 2), π2(s3, 1) and
π2(s, 0)) are needed. Actually, in this particular example, π3(t, 4) can be easily
derived, since in Step 3(b)∗, d(π1(t1, 3)·t) = d(π2(t3, 3)·t), then π3(t, 4) definitely
equals π2(t3, 3)·t.

17

k = 2, invoke NextPath(t, 4, 2):
2. set Q[t, 4] = {π1(t1, 3)·t, π1(t3, 3)·t}. /*t1, t2, t3 are predecessors of t*/
3. u = t2, k′ = 1, h = 3. /* π1(t, 4) = π1(t2, 3)·t = s·s1·s2·t2·t*/
3(a). compute π2(t2, 3) by invoking NextPath(t2, 3, 2):

2. (k = 2) set Q[t2, 3] = {π1(s4, 2)·t2}.
3. u = s2, k′ = 1, h = 2. /* π1(t2, 3) = π1(s2, 2)·t2 = s·s1·s2·t2 */
3(a). compute π2(s2, 2) by invoking NextPath(s2, 2, 2):

2. (k = 2) set Q[s2, 2] = ∅.
3. u = s1, k′ = 1, h = 1. /* π1(s2, 2) = π1(s1, 1)·s2 = s·s1·s2 */
3(a). compute π2(s1, 1) by invoking NextPath(s1, 1, 2):

2 (k = 2) set Q[s1, 1] = ∅.
3. u = s, k′ = 1, h = 0. /* π1(s1, 1) = π1(s, 0)·s1 = s·s1 */
3(a). compute π2(s, 0) by invoking NextPath(s, 0, 2):

1. Goto 4.
4. π2(s, 0) = ⊥.

3(b). Q[s1, 1] = ∅.
4. π2(s1, 1) = ⊥.

3(b). Q[s2, 2] = ∅.
4. π2(s2, 2) = ⊥.

3(b). Q[t3, 3] = {π1(s4, 2)·t2}.
4. π2(t2, 3) = s·s3·s4·t2.

3(b)∗. Q[t, 4] = {π1(t1, 3)·t, π1(t3, 3)·t, π2(t3, 3)·t}. /*d(π1(t1, 3)·t) = d(π2(t3, 3)·t)*/
4. π2(t, 4) = π1(t1, 3)·t = s·s3·s4·t1·t. /* π1(t1, 3)·t is the shortest in Q[t, 4] */

Fig. 4. An example of the adapted REA

Time complexity. Before we analyze the algorithm time complexity, we first prove
that the recursive calls to NextPath to compute πk(t, h) visit, in the worst case,
all the vertices in πk−1(t, h), which is at most h.

Lemma 4. For k>1 and for all v ∈ V , the computation of πk(v, h) by means of
NextPath(v, h, k) may recursively generate calls to NextPath(u, h−1, j) only for
vertices u in πk−1(v, h).

Proof. Suppose πk−1(v, h) = u1·u2·...·up, where u1=s and up=t. For every i =
1, ..., p, let ki be the index such that πki(ui) = u1·u2·...·ui. Since πk−1(v, h) =
πkp−1(up−1, h−1)·v, NextPath(v, h, k) may require a recursive call to NextPath(up−1,
h−1, kp−1+1) in case πkp−1+1(up−1, h−1) has not been already computed; since
πkp−1(up−1, h−1) = πkp−2(up−2, h−2)·up−1, NextPath(up−1, h−1, kp−1 + 1) may
require a recursive call to NextPath(up−2, h−2, kp−2 +1); and so on. In the worst
case, the recursive calls extend through the nodes up, up−1, ..., u1. If the recursion
reaches π1(s, h′)(06h′6h) or πk′

(v, 0)(k′>0, v 6=s) or πk′′

(s, 0)(k′′ > 1) so that the
termination conditions in equation (2a) and (2b) or Algorithm Step 1 hold, then
no more recursive calls are performed. ⊓⊔

To determine the computational complexity of the algorithm, we assume the
candidate sets to be implemented by heaps (as in [22]). The k shortest paths to
a vertex v can be stored in a linked list, where each path πk(v, h) = πk′

(u)·v is
compactly represented by its length and a back pointer to πk′

(u). Using these
data structures, we obtain:

Proposition 2. The time complexity of the adapted REA is O(hm+hk log(m
n

)).

Proof. The computation of the first step takes O(hm) using the BF-algorithm.
Due to Lemma 4, the number of recursive invocations to NextPath is bounded by

18

h, the maximum length of πk−1(t, h). At any given time, the set Qk(v, h) contains
at most |Pred(v)| paths where Pred(v) = {u | (u, v) ∈ E}, i.e., one path for each
predecessor vertex of v. By using heaps to store the candidate sets, a minimal
element can be determined and deleted (cf. Step4) in O(log |Pred(v)|) time. In-
sertion of a path (as in Steps 2 and 3(b)) takes the same time complexity. Since
∑

v∈V |Pred(v)| = m,
∑

v∈V log |Pred(v)| is maximized when all vertices have an
equal number of predecessors, i.e., |Pred(v)| = m

n
. Hence, it takes O(h log(m

n
)) to

compute πk(v, h). We have k such paths to compute, yielding O(hm+hk log(m
n

)).

Note that the time complexity is pseudo-polynomial due to the dependence
on k which may be exponential in n. As in our setting, k is not known in advance,
this can not be reduced to a polynomial time complexity.

7 Conclusion

Summary of results. We have investigated the computation of strongest ev-
idences (maximally probable paths) and smallest counterexamples for PCTL
model checking of DTMCs. Relationships to various kinds of shortest path prob-
lems have been established. Summarizing we have obtained:

shortest
counterexample path time complexity

problem problem

SE (until) SP O(m + n log n)
SE (bounded until) HSP O(hm)

SC (until) KSP O(m + n log n + k)
SC (bounded until) HKSP O(hm + hk log(m

n
))

where n and m are the number of states and transitions, h is the hop bound,
and k is the number of shortest paths.

For DTMCs with rewards, we can establish along the same lines as in this pa-
per that determining strongest evidences for violating reward- and hop-bounded
until-formulae boils down to solving a non-trivial instance of the CSP problem.
As this problem is NP complete, efficient algorithms for finding counterexamples
for PRCTL [4] will be hard to obtain.

Further research. Topics for further research are: experimental research of the
proposed algorithms in probabilistic model checking, considering loopless paths
(see e.g., [21, 25, 19]), and extension towards continuous-time models.

Related work. With the notable exception of [2, 3], counterexample generation
for probabilistic model checking has not been addressed before. Aljazzar et al. [2]
consider the generation of a most probable path for timed reachability in CTMCs.
They map this onto a bounded-until problem on DTMCs, and use heuristics (Z∗)
for determining the most probable path. Unbounded until is not considered, and
neither a correctness proof nor complexity results are provided. Recently, [3]
generalises this heuristic-based approach for CTMCs to obtain failure subgraphs,
i.e., counterexamples. To our knowledge, smallest counterexamples have not been
considered yet.

Acknowledgement. This research has been performed as part of the QUPES project that is

financed by the Netherlands Organization for Scientific Research (NWO). David N. Jansen
is kindly acknowledged for remarks on an earlier version of this paper.

19

References

1. R.K. Ahuja, T.L. Magnanti and J.B. Orlin. Network Flows: Theory, Algorithms and Ap-
plications, Prentice Hall, Inc., 1993.

2. H. Aljazzar, H. Hermanns and S. Leue. Counterexamples for timed probabilistic reachabil-
ity. FORMATS 2005, LNCS 3829: 177-195, 2005.

3. H. Aljazzar and S. Leue. Extended directed search for probabilistic timed reachability.
FORMATS 2006. (to appear)

4. S. Andova, H. Hermanns and J.-P. Katoen. Discrete-time rewards model-checked. FOR-
MATS 2003, LNCS 2791: 88-104, 2003.

5. C. Baier, J.-P. Katoen, H. Hermanns and V. Wolf. Comparative branching-time semantics
for Markov chains. Inf. Comput. 200(2): 149-214 (2005).

6. T. Ball, M. Naik and S. K. Rajamani. From symptom to cause: localizing errors in coun-
terexample traces. POPL: 97-105, 2003.

7. G. Behrmann, K. G. Larsen and J. I. Rasmussen. Optimal scheduling using priced timed
automata. ACM SIGMETRICS Perf. Ev. Review 32(4): 34-40 (2005).

8. R. Bellman. On a routing problem. Quarterly of Appl. Math., 16(1): 87-90 (1958).
9. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith: Counterexample-guided abstraction

refinement. CAV, LNCS 1855: 154-169, 2000.
10. E.M. Clarke, S. Jha, Y. Lu and H. Veith. Tree-like counterexamples in model checking.

LICS: 19-29 (2002).
11. T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein. Introduction to Algorithms, 2001.

Section 24.1: The Bellman-Ford algorithm, pp.588-592.
12. L. de Alfaro, T.A. Henzinger and F. Mang. Detecting errors before reaching them. CAV,

LNCS 2725: 186-201, 2000.
13. E.W. Dijkstra. A note on two problems in connection with graphs. Num. Math., 1:395-412

(1959).
14. D. Eppstein. Finding the k shortest paths. SIAM J. Comput. 28(2): 652-673 (1998).
15. L.R. Ford jr. and D.R. Fulkerson. Flows in Networks, Princeton Univ. Press, 1962.
16. G.D. Forney. The Viterbi algorithm. Proc. of the IEEE 61(3): 268-278 (1973).
17. B. L. Fox. k-th shortest paths and applications to the probabilistic networks. In

ORSA/TIMS National Mtg, volume 23, page B263. Bull. Operations Research Soc. of Amer-
ica, 1975.

18. M.R. Garey and D.S. Johnson. Computers and Intractability, A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, 1979.

19. E. Hadjiconstantinou and N. Christofides. An efficient implementation of an algorithm for
finding K shortest simple paths. Networks 34(2): 88-101 (1999).

20. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Asp.
Comput. 6(5): 512-535 (1994).

21. J. Hershberger, M. Maxel and S. Suri. Finding the k shortest simple paths: A new algo-
rithm and its implementation. ALENEX 2003, in Proc. of the Fifth Workshop on Algorithm
Engineering and Experiments, Baltimore, USA, pp. 26-36, 2003.

22. V.M. Jiménez and A. Marzal. Computing the K shortest paths: A new algorithm and an
experimental comparison. WAE 1999, LNCS 1668: 15-29, 1999.

23. H. Jin, K. Ravi and F. Somenzi. Fate and free will in error traces. STTT 6(2): 102-116
(2004).

24. E.L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Reinhart, and
Winston, 1976.

25. E.Q.V. Martins and M.M.B. Pascoal. A new implementation of Yen’s ranking loopless paths
algorithm. 4OR 1(2): 121-133 (2003).

26. E.Q.V. Martins, M.M.B. Pascoal and J.L.E. Dos Santos. Deviation algorithms for ranking
shortest paths. Int. J. Found. Comput. Sci. 10(3): 247-262 (1999).

27. K. Mehlhorn and M. Ziegelmann. Resource constrained shortest paths. ESA 2000, LNCS
1879: 326-337, 2000.

28. S. Shoham and O. Grumberg. A game-based framework for CTL counterexamples and
3-valued abstraction-refinement. CAV, LNCS 2725: 275-287, 2003.

29. E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta and R.C. Carrasco. Probabilistic
finite-state machines-Part I. IEEE Trans. Pattern Anal. Mach. Intell. 27(7): 1013-1025
(2005).

20

Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports

please consult http://aib.informatik.rwth-aachen.de/ or send your request

to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email:

biblio@informatik.rwth-aachen.de

1987-01 ∗ Fachgruppe Informatik: Jahresbericht 1986

1987-02 ∗ David de Frutos Escrig, Klaus Indermark: Equivalence Relations of Non-

Deterministic Ianov-Schemes

1987-03 ∗ Manfred Nagl: A Software Development Environment based on Graph

Technology

1987-04 ∗ Claus Lewerentz, Manfred Nagl, Bernhard Westfechtel: On Integration

Mechanisms within a Graph-Based Software Development Environment

1987-05 ∗ Reinhard Rinn: Über Eingabeanomalien bei verschiedenen Inferenzmod-

ellen

1987-06 ∗ Werner Damm, Gert Döhmen: Specifying Distributed Computer Archi-

tectures in AADL*

1987-07 ∗ Gregor Engels, Claus Lewerentz, Wilhelm Schäfer: Graph Grammar En-

gineering: A Software Specification Method

1987-08 ∗ Manfred Nagl: Set Theoretic Approaches to Graph Grammars

1987-09 ∗ Claus Lewerentz, Andreas Schürr: Experiences with a Database System

for Software Documents

1987-10 ∗ Herbert Klaeren, Klaus Indermark: A New Implementation Technique

for Recursive Function Definitions

1987-11 ∗ Rita Loogen: Design of a Parallel Programmable Graph Reduction Ma-

chine with Distributed Memory

1987-12 J. Börstler, U. Möncke, R. Wilhelm: Table compression for tree automata

1988-01 ∗ Gabriele Esser, Johannes Rückert, Frank Wagner Gesellschaftliche As-

pekte der Informatik

1988-02 ∗ Peter Martini, Otto Spaniol: Token-Passing in High-Speed Backbone

Networks for Campus-Wide Environments

1988-03 ∗ Thomas Welzel: Simulation of a Multiple Token Ring Backbone

1988-04 ∗ Peter Martini: Performance Comparison for HSLAN Media Access Pro-

tocols

1988-05 ∗ Peter Martini: Performance Analysis of Multiple Token Rings

1988-06 ∗ Andreas Mann, Johannes Rückert, Otto Spaniol: Datenfunknetze

1988-07 ∗ Andreas Mann, Johannes Rückert: Packet Radio Networks for Data Ex-

change

1988-08 ∗ Andreas Mann, Johannes Rückert: Concurrent Slot Assignment Protocol

for Packet Radio Networks

1988-09 ∗ W. Kremer, F. Reichert, J. Rückert, A. Mann: Entwurf einer Netzw-

erktopologie für ein Mobilfunknetz zur Unterstützung des öffentlichen

Straßenverkehrs

1988-10 ∗ Kai Jakobs: Towards User-Friendly Networking

1988-11 ∗ Kai Jakobs: The Directory - Evolution of a Standard

1988-12 ∗ Kai Jakobs: Directory Services in Distributed Systems - A Survey

1988-13 ∗ Martine Schümmer: RS-511, a Protocol for the Plant Floor

21

1988-14 ∗ U. Quernheim: Satellite Communication Protocols - A Performance

Comparison Considering On-Board Processing

1988-15 ∗ Peter Martini, Otto Spaniol, Thomas Welzel: File Transfer in High Speed

Token Ring Networks: Performance Evaluation by Approximate Analysis

and Simulation

1988-16 ∗ Fachgruppe Informatik: Jahresbericht 1987

1988-17 ∗ Wolfgang Thomas: Automata on Infinite Objects

1988-18 ∗ Michael Sonnenschein: On Petri Nets and Data Flow Graphs

1988-19 ∗ Heiko Vogler: Functional Distribution of the Contextual Analysis in

Block-Structured Programming Languages: A Case Study of Tree Trans-

ducers

1988-20 ∗ Thomas Welzel: Einsatz des Simulationswerkzeuges QNAP2 zur Leis-

tungsbewertung von Kommunikationsprotokollen

1988-21 ∗ Th. Janning, C. Lewerentz: Integrated Project Team Management in a

Software Development Environment

1988-22 ∗ Joost Engelfriet, Heiko Vogler: Modular Tree Transducers

1988-23 ∗ Wolfgang Thomas: Automata and Quantifier Hierarchies

1988-24 ∗ Uschi Heuter: Generalized Definite Tree Languages

1989-01 ∗ Fachgruppe Informatik: Jahresbericht 1988

1989-02 ∗ G. Esser, J. Rückert, F. Wagner (Hrsg.): Gesellschaftliche Aspekte der

Informatik

1989-03 ∗ Heiko Vogler: Bottom-Up Computation of Primitive Recursive Tree

Functions

1989-04 ∗ Andy Schürr: Introduction to PROGRESS, an Attribute Graph Gram-

mar Based Specification Language

1989-05 J. Börstler: Reuse and Software Development - Problems, Solutions, and

Bibliography (in German)

1989-06 ∗ Kai Jakobs: OSI - An Appropriate Basis for Group Communication?

1989-07 ∗ Kai Jakobs: ISO’s Directory Proposal - Evolution, Current Status and

Future Problems

1989-08 ∗ Bernhard Westfechtel: Extension of a Graph Storage for Software Doc-

uments with Primitives for Undo/Redo and Revision Control

1989-09 ∗ Peter Martini: High Speed Local Area Networks - A Tutorial

1989-10 ∗ P. Davids, Th. Welzel: Performance Analysis of DQDB Based on Simu-

lation

1989-11 ∗ Manfred Nagl (Ed.): Abstracts of Talks presented at the WG ’89 15th

International Workshop on Graphtheoretic Concepts in Computer Sci-

ence

1989-12 ∗ Peter Martini: The DQDB Protocol - Is it Playing the Game?

1989-13 ∗ Martine Schümmer: CNC/DNC Communication with MAP

1989-14 ∗ Martine Schümmer: Local Area Networks for Manufactoring Environ-

ments with hard Real-Time Requirements

1989-15 ∗ M. Schümmer, Th. Welzel, P. Martini: Integration of Field Bus and

MAP Networks - Hierarchical Communication Systems in Production

Environments

1989-16 ∗ G. Vossen, K.-U. Witt: SUXESS: Towards a Sound Unification of Ex-

tensions of the Relational Data Model

22

1989-17 ∗ J. Derissen, P. Hruschka, M.v.d. Beeck, Th. Janning, M. Nagl: Integrat-

ing Structured Analysis and Information Modelling

1989-18 A. Maassen: Programming with Higher Order Functions

1989-19 ∗ Mario Rodriguez-Artalejo, Heiko Vogler: A Narrowing Machine for Syn-

tax Directed BABEL

1989-20 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Graph-based Implementation of a Functional Logic Language

1990-01 ∗ Fachgruppe Informatik: Jahresbericht 1989

1990-02 ∗ Vera Jansen, Andreas Potthoff, Wolfgang Thomas, Udo Wermuth: A

Short Guide to the AMORE System (Computing Automata, MOnoids

and Regular Expressions)

1990-03 ∗ Jerzy Skurczynski: On Three Hierarchies of Weak SkS Formulas

1990-04 R. Loogen: Stack-based Implementation of Narrowing

1990-05 H. Kuchen, A. Wagener: Comparison of Dynamic Load Balancing Strate-

gies

1990-06 ∗ Kai Jakobs, Frank Reichert: Directory Services for Mobile Communica-

tion

1990-07 ∗ Kai Jakobs: What’s Beyond the Interface - OSI Networks to Support

Cooperative Work

1990-08 ∗ Kai Jakobs: Directory Names and Schema - An Evaluation

1990-09 ∗ Ulrich Quernheim, Dieter Kreuer: Das CCITT - Signalisierungssystem

Nr. 7 auf Satellitenstrecken; Simulation der Zeichengabestrecke

1990-11 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Lazy Narrowing in a Graph Machine

1990-12 ∗ Kai Jakobs, Josef Kaltwasser, Frank Reichert, Otto Spaniol: Der Com-

puter fährt mit

1990-13 ∗ Rudolf Mathar, Andreas Mann: Analyzing a Distributed Slot Assign-

ment Protocol by Markov Chains

1990-14 A. Maassen: Compilerentwicklung in Miranda - ein Praktikum in funk-

tionaler Programmierung (written in german)

1990-15 ∗ Manfred Nagl, Andreas Schürr: A Specification Environment for Graph

Grammars

1990-16 A. Schürr: PROGRESS: A VHL-Language Based on Graph Grammars

1990-17 ∗ Marita Möller: Ein Ebenenmodell wissensbasierter Konsultationen - Un-

terstützung für Wissensakquisition und Erklärungsfähigkeit

1990-18 ∗ Eric Kowalewski: Entwurf und Interpretation einer Sprache zur Beschrei-

bung von Konsultationsphasen in Expertensystemen

1990-20 Y. Ortega Mallen, D. de Frutos Escrig: A Complete Proof System for

Timed Observations

1990-21 ∗ Manfred Nagl: Modelling of Software Architectures: Importance, No-

tions, Experiences

1990-22 H. Fassbender, H. Vogler: A Call-by-need Implementation of Syntax Di-

rected Functional Programming

1991-01 Guenther Geiler (ed.), Fachgruppe Informatik: Jahresbericht 1990

1991-03 B. Steffen, A. Ingolfsdottir: Characteristic Formulae for Processes with

Divergence

1991-04 M. Portz: A new class of cryptosystems based on interconnection net-

works

23

1991-05 H. Kuchen, G. Geiler: Distributed Applicative Arrays

1991-06 ∗ Ludwig Staiger: Kolmogorov Complexity and Hausdorff Dimension

1991-07 ∗ Ludwig Staiger: Syntactic Congruences for w-languages

1991-09 ∗ Eila Kuikka: A Proposal for a Syntax-Directed Text Processing System

1991-10 K. Gladitz, H. Fassbender, H. Vogler: Compiler-based Implementation

of Syntax-Directed Functional Programming

1991-11 R. Loogen, St. Winkler: Dynamic Detection of Determinism in Func-

tional Logic Languages

1991-12 ∗ K. Indermark, M. Rodriguez Artalejo (Eds.): Granada Workshop on the

Integration of Functional and Logic Programming

1991-13 ∗ Rolf Hager, Wolfgang Kremer: The Adaptive Priority Scheduler: A More

Fair Priority Service Discipline

1991-14 ∗ Andreas Fasbender, Wolfgang Kremer: A New Approximation Algorithm

for Tandem Networks with Priority Nodes

1991-15 J. Börstler, A. Zündorf: Revisiting extensions to Modula-2 to support

reusability

1991-16 J. Börstler, Th. Janning: Bridging the gap between Requirements Anal-

ysis and Design

1991-17 A. Zündorf, A. Schürr: Nondeterministic Control Structures for Graph

Rewriting Systems

1991-18 ∗ Matthias Jarke, John Mylopoulos, Joachim W. Schmidt, Yannis Vassil-

iou: DAIDA: An Environment for Evolving Information Systems

1991-19 M. Jeusfeld, M. Jarke: From Relational to Object-Oriented Integrity

Simplification

1991-20 G. Hogen, A. Kindler, R. Loogen: Automatic Parallelization of Lazy

Functional Programs

1991-21 ∗ Prof. Dr. rer. nat. Otto Spaniol: ODP (Open Distributed Processing):

Yet another Viewpoint

1991-22 H. Kuchen, F. Lücking, H. Stoltze: The Topology Description Language

TDL

1991-23 S. Graf, B. Steffen: Compositional Minimization of Finite State Systems

1991-24 R. Cleaveland, J. Parrow, B. Steffen: The Concurrency Workbench: A

Semantics Based Tool for the Verification of Concurrent Systems

1991-25 ∗ Rudolf Mathar, Jürgen Mattfeldt: Optimal Transmission Ranges for Mo-

bile Communication in Linear Multihop Packet Radio Networks

1991-26 M. Jeusfeld, M. Staudt: Query Optimization in Deductive Object Bases

1991-27 J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem

1991-28 J. Knoop, B. Steffen: Unifying Strength Reduction and Semantic Code

Motion

1991-30 T. Margaria: First-Order theories for the verification of complex FSMs

1991-31 B. Steffen: Generating Data Flow Analysis Algorithms from Modal Spec-

ifications

1992-01 Stefan Eherer (ed.), Fachgruppe Informatik: Jahresbericht 1991

1992-02 ∗ Bernhard Westfechtel: Basismechanismen zur Datenverwaltung in struk-

turbezogenen Hypertextsystemen

1992-04 S. A. Smolka, B. Steffen: Priority as Extremal Probability

1992-05 ∗ Matthias Jarke, Carlos Maltzahn, Thomas Rose: Sharing Processes:

Team Coordination in Design Repositories

24

1992-06 O. Burkart, B. Steffen: Model Checking for Context-Free Processes

1992-07 ∗ Matthias Jarke, Klaus Pohl: Information Systems Quality and Quality

Information Systems

1992-08 ∗ Rudolf Mathar, Jürgen Mattfeldt: Analyzing Routing Strategy NFP in

Multihop Packet Radio Networks on a Line

1992-09 ∗ Alfons Kemper, Guido Moerkotte: Grundlagen objektorientierter Daten-

banksysteme

1992-10 Matthias Jarke, Manfred Jeusfeld, Andreas Miethsam, Michael Gocek:

Towards a logic-based reconstruction of software configuration manage-

ment

1992-11 Werner Hans: A Complete Indexing Scheme for WAM-based Abstract

Machines

1992-12 W. Hans, R. Loogen, St. Winkler: On the Interaction of Lazy Evaluation

and Backtracking

1992-13 ∗ Matthias Jarke, Thomas Rose: Specification Management with CAD

1992-14 Th. Noll, H. Vogler: Top-down Parsing with Simultaneous Evaluation on

Noncircular Attribute Grammars

1992-15 A. Schuerr, B. Westfechtel: Graphgrammatiken und Graphersetzungssys-

teme(written in german)

1992-16 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Forschungsprojekte

des Graduiertenkollegs Informatik und Technik

1992-17 M. Jarke (ed.): ConceptBase V3.1 User Manual

1992-18 ∗ Clarence A. Ellis, Matthias Jarke (Eds.): Distributed Cooperation in

Integrated Information Systems - Proceedings of the Third International

Workshop on Intelligent and Cooperative Information Systems

1992-19-00 H. Kuchen, R. Loogen (eds.): Proceedings of the 4th Int. Workshop on

the Parallel Implementation of Functional Languages

1992-19-01 G. Hogen, R. Loogen: PASTEL - A Parallel Stack-Based Implementation

of Eager Functional Programs with Lazy Data Structures (Extended

Abstract)

1992-19-02 H. Kuchen, K. Gladitz: Implementing Bags on a Shared Memory MIMD-

Machine

1992-19-03 C. Rathsack, S.B. Scholz: LISA - A Lazy Interpreter for a Full-Fledged

Lambda-Calculus

1992-19-04 T.A. Bratvold: Determining Useful Parallelism in Higher Order Func-

tions

1992-19-05 S. Kahrs: Polymorphic Type Checking by Interpretation of Code

1992-19-06 M. Chakravarty, M. Köhler: Equational Constraints, Residuation, and

the Parallel JUMP-Machine

1992-19-07 J. Seward: Polymorphic Strictness Analysis using Frontiers (Draft Ver-

sion)

1992-19-08 D. Gärtner, A. Kimms, W. Kluge: pi-Redˆ+ - A Compiling Graph-

Reduction System for a Full Fledged Lambda-Calculus

1992-19-09 D. Howe, G. Burn: Experiments with strict STG code

1992-19-10 J. Glauert: Parallel Implementation of Functional Languages Using

Small Processes

1992-19-11 M. Joy, T. Axford: A Parallel Graph Reduction Machine

1992-19-12 A. Bennett, P. Kelly: Simulation of Multicache Parallel Reduction

25

1992-19-13 K. Langendoen, D.J. Agterkamp: Cache Behaviour of Lazy Functional

Programs (Working Paper)

1992-19-14 K. Hammond, S. Peyton Jones: Profiling scheduling strategies on the

GRIP parallel reducer

1992-19-15 S. Mintchev: Using Strictness Information in the STG-machine

1992-19-16 D. Rushall: An Attribute Grammar Evaluator in Haskell

1992-19-17 J. Wild, H. Glaser, P. Hartel: Statistics on storage management in a lazy

functional language implementation

1992-19-18 W.S. Martins: Parallel Implementations of Functional Languages

1992-19-19 D. Lester: Distributed Garbage Collection of Cyclic Structures (Draft

version)

1992-19-20 J.C. Glas, R.F.H. Hofman, W.G. Vree: Parallelization of Branch-and-

Bound Algorithms in a Functional Programming Environment

1992-19-21 S. Hwang, D. Rushall: The nu-STG machine: a parallelized Spineless

Tagless Graph Reduction Machine in a distributed memory architecture

(Draft version)

1992-19-22 G. Burn, D. Le Metayer: Cps-Translation and the Correctness of Opti-

mising Compilers

1992-19-23 S.L. Peyton Jones, P. Wadler: Imperative functional programming (Brief

summary)

1992-19-24 W. Damm, F. Liu, Th. Peikenkamp: Evaluation and Parallelization of

Functions in Functional + Logic Languages (abstract)

1992-19-25 M. Kesseler: Communication Issues Regarding Parallel Functional Graph

Rewriting

1992-19-26 Th. Peikenkamp: Charakterizing and representing neededness in func-

tional loginc languages (abstract)

1992-19-27 H. Doerr: Monitoring with Graph-Grammars as formal operational Mod-

els

1992-19-28 J. van Groningen: Some implementation aspects of Concurrent Clean on

distributed memory architectures

1992-19-29 G. Ostheimer: Load Bounding for Implicit Parallelism (abstract)

1992-20 H. Kuchen, F.J. Lopez Fraguas, J.J. Moreno Navarro, M. Rodriguez

Artalejo: Implementing Disequality in a Lazy Functional Logic Language

1992-21 H. Kuchen, F.J. Lopez Fraguas: Result Directed Computing in a Func-

tional Logic Language

1992-22 H. Kuchen, J.J. Moreno Navarro, M.V. Hermenegildo: Independent

AND-Parallel Narrowing

1992-23 T. Margaria, B. Steffen: Distinguishing Formulas for Free

1992-24 K. Pohl: The Three Dimensions of Requirements Engineering

1992-25 ∗ R. Stainov: A Dynamic Configuration Facility for Multimedia Commu-

nications

1992-26 ∗ Michael von der Beeck: Integration of Structured Analysis and Timed

Statecharts for Real-Time and Concurrency Specification

1992-27 W. Hans, St. Winkler: Aliasing and Groundness Analysis of Logic Pro-

grams through Abstract Interpretation and its Safety

1992-28 ∗ Gerhard Steinke, Matthias Jarke: Support for Security Modeling in In-

formation Systems Design

1992-29 B. Schinzel: Warum Frauenforschung in Naturwissenschaft und Technik

26

1992-30 A. Kemper, G. Moerkotte, K. Peithner: Object-Orientation Axiomatised

by Dynamic Logic

1992-32 ∗ Bernd Heinrichs, Kai Jakobs: Timer Handling in High-Performance

Transport Systems

1992-33 ∗ B. Heinrichs, K. Jakobs, K. Lenßen, W. Reinhardt, A. Spinner: Euro-

Bridge: Communication Services for Multimedia Applications

1992-34 C. Gerlhof, A. Kemper, Ch. Kilger, G. Moerkotte: Partition-Based Clus-

tering in Object Bases: From Theory to Practice

1992-35 J. Börstler: Feature-Oriented Classification and Reuse in IPSEN

1992-36 M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, Y. Vassiliou: Theories Un-

derlying Requirements Engineering: An Overview of NATURE at Gen-

esis

1992-37 ∗ K. Pohl, M. Jarke: Quality Information Systems: Repository Support for

Evolving Process Models

1992-38 A. Zuendorf: Implementation of the imperative / rule based language

PROGRES

1992-39 P. Koch: Intelligentes Backtracking bei der Auswertung funktional-

logischer Programme

1992-40 ∗ Rudolf Mathar, Jürgen Mattfeldt: Channel Assignment in Cellular Radio

Networks

1992-41 ∗ Gerhard Friedrich, Wolfgang Neidl: Constructive Utility in Model-Based

Diagnosis Repair Systems

1992-42 ∗ P. S. Chen, R. Hennicker, M. Jarke: On the Retrieval of Reusable Soft-

ware Components

1992-43 W. Hans, St.Winkler: Abstract Interpretation of Functional Logic Lan-

guages

1992-44 N. Kiesel, A. Schuerr, B. Westfechtel: Design and Evaluation of GRAS,

a Graph-Oriented Database System for Engineering Applications

1993-01 ∗ Fachgruppe Informatik: Jahresbericht 1992

1993-02 ∗ Patrick Shicheng Chen: On Inference Rules of Logic-Based Information

Retrieval Systems

1993-03 G. Hogen, R. Loogen: A New Stack Technique for the Management of

Runtime Structures in Distributed Environments

1993-05 A. Zündorf: A Heuristic for the Subgraph Isomorphism Problem in Ex-

ecuting PROGRES

1993-06 A. Kemper, D. Kossmann: Adaptable Pointer Swizzling Strategies in

Object Bases: Design, Realization, and Quantitative Analysis

1993-07 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Graduiertenkolleg In-

formatik und Technik

1993-08 ∗ Matthias Berger: k-Coloring Vertices using a Neural Network with Con-

vergence to Valid Solutions

1993-09 M. Buchheit, M. Jeusfeld, W. Nutt, M. Staudt: Subsumption between

Queries to Object-Oriented Databases

1993-10 O. Burkart, B. Steffen: Pushdown Processes: Parallel Composition and

Model Checking

1993-11 ∗ R. Große-Wienker, O. Hermanns, D. Menzenbach, A. Pollacks, S. Repet-

zki, J. Schwartz, K. Sonnenschein, B. Westfechtel: Das SUKITS-Projekt:

A-posteriori-Integration heterogener CIM-Anwendungssysteme

27

1993-12 ∗ Rudolf Mathar, Jürgen Mattfeldt: On the Distribution of Cumulated

Interference Power in Rayleigh Fading Channels

1993-13 O. Maler, L. Staiger: On Syntactic Congruences for omega-languages

1993-14 M. Jarke, St. Eherer, R. Gallersdoerfer, M. Jeusfeld, M. Staudt: Con-

ceptBase - A Deductive Object Base Manager

1993-15 M. Staudt, H.W. Nissen, M.A. Jeusfeld: Query by Class, Rule and Con-

cept

1993-16 ∗ M. Jarke, K. Pohl, St. Jacobs et al.: Requirements Engineering: An In-

tegrated View of Representation Process and Domain

1993-17 ∗ M. Jarke, K. Pohl: Establishing Vision in Context: Towards a Model of

Requirements Processes

1993-18 W. Hans, H. Kuchen, St. Winkler: Full Indexing for Lazy Narrowing

1993-19 W. Hans, J.J. Ruz, F. Saenz, St. Winkler: A VHDL Specification of a

Shared Memory Parallel Machine for Babel

1993-20 ∗ K. Finke, M. Jarke, P. Szczurko, R. Soltysiak: Quality Management for

Expert Systems in Process Control

1993-21 M. Jarke, M.A. Jeusfeld, P. Szczurko: Three Aspects of Intelligent Co-

operation in the Quality Cycle

1994-01 Margit Generet, Sven Martin (eds.), Fachgruppe Informatik: Jahres-

bericht 1993

1994-02 M. Lefering: Development of Incremental Integration Tools Using Formal

Specifications

1994-03 ∗ P. Constantopoulos, M. Jarke, J. Mylopoulos, Y. Vassiliou: The Software

Information Base: A Server for Reuse

1994-04 ∗ Rolf Hager, Rudolf Mathar, Jürgen Mattfeldt: Intelligent Cruise Control

and Reliable Communication of Mobile Stations

1994-05 ∗ Rolf Hager, Peter Hermesmann, Michael Portz: Feasibility of Authenti-

cation Procedures within Advanced Transport Telematics

1994-06 ∗ Claudia Popien, Bernd Meyer, Axel Kuepper: A Formal Approach to

Service Import in ODP Trader Federations

1994-07 P. Peters, P. Szczurko: Integrating Models of Quality Management Meth-

ods by an Object-Oriented Repository

1994-08 ∗ Manfred Nagl, Bernhard Westfechtel: A Universal Component for the

Administration in Distributed and Integrated Development Environ-

ments

1994-09 ∗ Patrick Horster, Holger Petersen: Signatur- und Authentifikationsver-

fahren auf der Basis des diskreten Logarithmusproblems

1994-11 A. Schürr: PROGRES, A Visual Language and Environment for PRO-

gramming with Graph REwrite Systems

1994-12 A. Schürr: Specification of Graph Translators with Triple Graph Gram-

mars

1994-13 A. Schürr: Logic Based Programmed Structure Rewriting Systems

1994-14 L. Staiger: Codes, Simplifying Words, and Open Set Condition

1994-15 ∗ Bernhard Westfechtel: A Graph-Based System for Managing Configura-

tions of Engineering Design Documents

1994-16 P. Klein: Designing Software with Modula-3

1994-17 I. Litovsky, L. Staiger: Finite acceptance of infinite words

28

1994-18 G. Hogen, R. Loogen: Parallel Functional Implementations: Graphbased

vs. Stackbased Reduction

1994-19 M. Jeusfeld, U. Johnen: An Executable Meta Model for Re-Engineering

of Database Schemas

1994-20 ∗ R. Gallersdörfer, M. Jarke, K. Klabunde: Intelligent Networks as a Data

Intensive Application (INDIA)

1994-21 M. Mohnen: Proving the Correctness of the Static Link Technique Using

Evolving Algebras

1994-22 H. Fernau, L. Staiger: Valuations and Unambiguity of Languages, with

Applications to Fractal Geometry

1994-24 ∗ M. Jarke, K. Pohl, R. Dömges, St. Jacobs, H. W. Nissen: Requirements

Information Management: The NATURE Approach

1994-25 ∗ M. Jarke, K. Pohl, C. Rolland, J.-R. Schmitt: Experience-Based Method

Evaluation and Improvement: A Process Modeling Approach

1994-26 ∗ St. Jacobs, St. Kethers: Improving Communication and Decision Making

within Quality Function Deployment

1994-27 ∗ M. Jarke, H. W. Nissen, K. Pohl: Tool Integration in Evolving Informa-

tion Systems Environments

1994-28 O. Burkart, D. Caucal, B. Steffen: An Elementary Bisimulation Decision

Procedure for Arbitrary Context-Free Processes

1995-01 ∗ Fachgruppe Informatik: Jahresbericht 1994

1995-02 Andy Schürr, Andreas J. Winter, Albert Zündorf: Graph Grammar En-

gineering with PROGRES

1995-03 Ludwig Staiger: A Tight Upper Bound on Kolmogorov Complexity by

Hausdorff Dimension and Uniformly Optimal Prediction

1995-04 Birgitta König-Ries, Sven Helmer, Guido Moerkotte: An experimental

study on the complexity of left-deep join ordering problems for cyclic

queries

1995-05 Sophie Cluet, Guido Moerkotte: Efficient Evaluation of Aggregates on

Bulk Types

1995-06 Sophie Cluet, Guido Moerkotte: Nested Queries in Object Bases

1995-07 Sophie Cluet, Guido Moerkotte: Query Optimization Techniques Ex-

ploiting Class Hierarchies

1995-08 Markus Mohnen: Efficient Compile-Time Garbage Collection for Arbi-

trary Data Structures

1995-09 Markus Mohnen: Functional Specification of Imperative Programs: An

Alternative Point of View of Functional Languages

1995-10 Rainer Gallersdörfer, Matthias Nicola: Improving Performance in Repli-

cated Databases through Relaxed Coherency

1995-11 ∗ M.Staudt, K.von Thadden: Subsumption Checking in Knowledge Bases

1995-12 ∗ G.V.Zemanek, H.W.Nissen, H.Hubert, M.Jarke: Requirements Analy-

sis from Multiple Perspectives: Experiences with Conceptual Modeling

Technology

1995-13 ∗ M.Staudt, M.Jarke: Incremental Maintenance of Externally Materialized

Views

1995-14 ∗ P.Peters, P.Szczurko, M.Jeusfeld: Oriented Information Management:

Conceptual Models at Work

29

1995-15 ∗ Matthias Jarke, Sudha Ram (Hrsg.): WITS 95 Proceedings of the 5th

Annual Workshop on Information Technologies and Systems

1995-16 ∗ W.Hans, St.Winkler, F.Saenz: Distributed Execution in Functional Logic

Programming

1996-01 ∗ Jahresbericht 1995

1996-02 Michael Hanus, Christian Prehofer: Higher-Order Narrowing with Defi-

nitional Trees

1996-03 ∗ W.Scheufele, G.Moerkotte: Optimal Ordering of Selections and Joins in

Acyclic Queries with Expensive Predicates

1996-04 Klaus Pohl: PRO-ART: Enabling Requirements Pre-Traceability

1996-05 Klaus Pohl: Requirements Engineering: An Overview

1996-06 ∗ M.Jarke, W.Marquardt: Design and Evaluation of Computer–Aided Pro-

cess Modelling Tools

1996-07 Olaf Chitil: The Sigma-Semantics: A Comprehensive Semantics for Func-

tional Programs

1996-08 ∗ S.Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics

1996-09 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP96 - Fifth

International Conference on Algebraic and Logic Programming

1996-09-0 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP 96 -

Fifth International Conference on Algebraic and Logic Programming:

Introduction and table of contents

1996-09-1 Ilies Alouini: An Implementation of Conditional Concurrent Rewriting

on Distributed Memory Machines

1996-09-2 Olivier Danvy, Karoline Malmkjær: On the Idempotence of the CPS

Transformation

1996-09-3 Vı́ctor M. Guĺıas, José L. Freire: Concurrent Programming in Haskell

1996-09-4 Sébastien Limet, Pierre Réty: On Decidability of Unifiability Modulo

Rewrite Systems

1996-09-5 Alexandre Tessier: Declarative Debugging in Constraint Logic Program-

ming

1996-10 Reidar Conradi, Bernhard Westfechtel: Version Models for Software Con-

figuration Management

1996-11 ∗ C.Weise, D.Lenzkes: A Fast Decision Algorithm for Timed Refinement

1996-12 ∗ R.Dömges, K.Pohl, M.Jarke, B.Lohmann, W.Marquardt: PRO-

ART/CE* — An Environment for Managing the Evolution of Chemical

Process Simulation Models

1996-13 ∗ K.Pohl, R.Klamma, K.Weidenhaupt, R.Dömges, P.Haumer, M.Jarke: A

Framework for Process-Integrated Tools

1996-14 ∗ R.Gallersdörfer, K.Klabunde, A.Stolz, M.Eßmajor: INDIA — Intelligent

Networks as a Data Intensive Application, Final Project Report, June

1996

1996-15 ∗ H.Schimpe, M.Staudt: VAREX: An Environment for Validating and Re-

fining Rule Bases

1996-16 ∗ M.Jarke, M.Gebhardt, S.Jacobs, H.Nissen: Conflict Analysis Across Het-

erogeneous Viewpoints: Formalization and Visualization

1996-17 Manfred A. Jeusfeld, Tung X. Bui: Decision Support Components on the

Internet

30

1996-18 Manfred A. Jeusfeld, Mike Papazoglou: Information Brokering: Design,

Search and Transformation

1996-19 ∗ P.Peters, M.Jarke: Simulating the impact of information flows in net-

worked organizations

1996-20 Matthias Jarke, Peter Peters, Manfred A. Jeusfeld: Model-driven plan-

ning and design of cooperative information systems

1996-21 ∗ G.de Michelis, E.Dubois, M.Jarke, F.Matthes, J.Mylopoulos, K.Pohl,

J.Schmidt, C.Woo, E.Yu: Cooperative information systems: a manifesto

1996-22 ∗ S.Jacobs, M.Gebhardt, S.Kethers, W.Rzasa: Filling HTML forms simul-

taneously: CoWeb architecture and functionality

1996-23 ∗ M.Gebhardt, S.Jacobs: Conflict Management in Design

1997-01 Michael Hanus, Frank Zartmann (eds.): Jahresbericht 1996

1997-02 Johannes Faassen: Using full parallel Boltzmann Machines for Optimiza-

tion

1997-03 Andreas Winter, Andy Schürr: Modules and Updatable Graph Views for

PROgrammed Graph REwriting Systems

1997-04 Markus Mohnen, Stefan Tobies: Implementing Context Patterns in the

Glasgow Haskell Compiler

1997-05 ∗ S.Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-

tische Spezifikation inkrementeller Integrationswerkzeuge

1997-06 Matthias Nicola, Matthias Jarke: Design and Evaluation of Wireless

Health Care Information Systems in Developing Countries

1997-07 Petra Hofstedt: Taskparallele Skelette für irregulär strukturierte Prob-

leme in deklarativen Sprachen

1997-08 Dorothea Blostein, Andy Schürr: Computing with Graphs and Graph

Rewriting

1997-09 Carl-Arndt Krapp, Bernhard Westfechtel: Feedback Handling in Dy-

namic Task Nets

1997-10 Matthias Nicola, Matthias Jarke: Integrating Replication and Commu-

nication in Performance Models of Distributed Databases

1997-11 ∗ R. Klamma, P. Peters, M. Jarke: Workflow Support for Failure Manage-

ment in Federated Organizations

1997-13 Markus Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs

1997-14 Roland Baumann: Client/Server Distribution in a Structure-Oriented

Database Management System

1997-15 George Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms

1998-01 ∗ Fachgruppe Informatik: Jahresbericht 1997

1998-02 Stefan Gruner, Manfred Nagel, Andy Schürr: Fine-grained and

Structure-Oriented Document Integration Tools are Needed for Devel-

opment Processes

1998-03 Stefan Gruner: Einige Anmerkungen zur graphgrammatischen Spezifika-

tion von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und

Schürr

1998-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments

1998-05 Martin Leucker, Stephan Tobies: Truth - A Verification Platform for

Distributed Systems

31

1998-06 ∗ Matthias Oliver Berger: DECT in the Factory of the Future

1998-07 M. Arnold, M. Erdmann, M. Glinz, P. Haumer, R. Knoll, B. Paech, K.

Pohl, J. Ryser, R. Studer, K. Weidenhaupt: Survey on the Scenario Use

in Twelve Selected Industrial Projects

1998-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am

Beispiel intraoraler Radiographien

1998-10 ∗ M. Nicola, M. Jarke: Performance Modeling of Distributed and Repli-

cated Databases

1998-11 ∗ Ansgar Schleicher, Bernhard Westfechtel, Dirk Jäger: Modeling Dynamic

Software Processes in UML

1998-12 ∗ W. Appelt, M. Jarke: Interoperable Tools for Cooperation Support using

the World Wide Web

1998-13 Klaus Indermark: Semantik rekursiver Funktionsdefinitionen mit Strik-

theitsinformation

1999-01 ∗ Jahresbericht 1998

1999-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version

1999-03 ∗ R. Gallersdörfer, M. Jarke, M. Nicola: The ADR Replication Manager

1999-04 Maŕıa Alpuente, Michael Hanus, Salvador Lucas, Germán Vidal: Spe-

cialization of Functional Logic Programs Based on Needed Narrowing

1999-05 ∗ W. Thomas (Ed.): DLT 99 - Developments in Language Theory Fourth

International Conference

1999-06 ∗ Kai Jakobs, Klaus-Dieter Kleefeld: Informationssysteme für die ange-

wandte historische Geographie

1999-07 Thomas Wilke: CTL+ is exponentially more succinct than CTL

1999-08 Oliver Matz: Dot-Depth and Monadic Quantifier Alternation over Pic-

tures

2000-01 ∗ Jahresbericht 1999

2000-02 Jens Vöge, Marcin Jurdzinski A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-03 D. Jäger, A. Schleicher, B. Westfechtel: UPGRADE: A Framework for

Building Graph-Based Software Engineering Tools

2000-04 Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 Mareike Schoop: Cooperative Document Management

2000-06 Mareike Schoop, Christoph Quix (eds.): Proceedings of the Fifth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2000-07 ∗ Markus Mohnen, Pieter Koopman (Eds.): Proceedings of the 12th Inter-

national Workshop of Functional Languages

2000-08 Thomas Arts, Thomas Noll: Verifying Generic Erlang Client-Server Im-

plementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

32

2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

33

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

34

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-03 Uwe Naumann: Intraprocedural Adjoint Code Generated by the

Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulution

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding:: Transforming structures by set

interpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

35

