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Decision Making Based on

Approximate and Smoothed Pareto Curves ⋆

Heiner Ackermann, Alantha Newman, Heiko Röglin, and Berthold Vöcking

Department of Computer Science – RWTH Aachen
{ackermann,alantha,roeglin,voecking}@cs.rwth-aachen.de

Abstract. We consider bicriteria optimization problems and investigate the re-
lationship between two standard approaches to solving them: (i) computing the
Pareto curve and (ii) the so-called decision maker’s approach in which both cri-
teria are combined into a single (usually non-linear) objective function. Previous
work by Papadimitriou and Yannakakis showed how to efficiently approximate
the Pareto curve for problems like Shortest Path, Spanning Tree, and Per-
fect Matching. We wish to determine for which classes of combined objective
functions the approximate Pareto curve also yields an approximate solution to
the decision maker’s problem. We show that an FPTAS for the Pareto curve
also gives an FPTAS for the decision maker’s problem if the combined objective
function is growth bounded like a quasi-polynomial function. If these functions,
however, show exponential growth then the decision maker’s problem is NP-hard
to approximate within any factor. In order to bypass these limitations of approxi-
mate decision making, we turn our attention to Pareto curves in the probabilistic
framework of smoothed analysis. We show that in a smoothed model, we can
efficiently generate the (complete and exact) Pareto curve with a small failure
probability if there exists an algorithm for generating the Pareto curve whose
worst case running time is pseudopolynomial. This way, we can solve the deci-
sion maker’s problem w.r.t. any non-decreasing objective function for randomly
perturbed instances of, e.g., Shortest Path, Spanning Tree, and Perfect
Matching.

1 Introduction

We study bicriteria optimization problems, in which there are two criteria, say
cost and weight, that we are interested in optimizing. In particular, we consider
bicriteria Spanning Tree, Shortest Path and Perfect Matching prob-
lems. For such problems with more than one objective, it is not immediately
clear how to define an optimal solution. However, there are two common ap-
proaches to bicriteria optimization problems.

The first approach is to generate the set of Pareto optimal solutions, also
known as the Pareto set. A solution S∗ is Pareto optimal if there exists no other
solution S that dominates S∗, i.e. has cost and weight less or equal to the cost
and weight of S∗ and at least one inequality is strict. The set of cost/weight
combinations of the Pareto optimal solutions is called the Pareto curve. Often it
is sufficient to know only one solution for each possible cost/weight combination.
Thus we assume that the Pareto set is reduced and does not contain two solutions
with equal cost and equal weight. Under this assumption there is a one-to-one
mapping between the elements in the reduced Pareto set and the points on the
Pareto curve.

⋆ This work was supported in part by the EU within the 6th Framework Programme under
contract 001907 (DELIS) and by DFG grant Vo889/2-1.



The second approach is to compute a solution that minimizes some non-
decreasing function f : R

2
+ → R+. This approach is often used in the field of

decision making, in which a decision maker is not interested in the whole Pareto
set but in a single solution with certain properties. For example, given a graph
G = (V, E) with cost c(e) and weight w(e) on each edge, one could be interested
in finding an s-t-path P that minimizes the value (

∑

e∈P w(e))2 + (
∑

e∈P c(e))2.
For a given function f : R

2
+ → R+ and a bicriteria optimization problem Π we

will denote by f -Π the problem of minimizing f over all solutions of Π.
Note that these two approaches are actually related: for any non-decreasing

function f , there is a solution that minimizes f that is also Pareto optimal. A
function f : R

2
+ → R+ is non-decreasing if for any x1, x2, y1, y2 ∈ R+ where

x1 ≤ x2 and y1 ≤ y2: f(x1, y1) ≤ f(x2, y2). Thus, if for a particular bicriteria
optimization problem, we can find the Pareto set efficiently and it has polyno-
mial size, then we can efficiently find a solution that minimizes any given non-
decreasing function. It is known, however, that there are instances of Spanning
Tree, Shortest Path and Perfect Matching problems such that even the
reduced Pareto set is exponentially large [6]. Moreover, while efficient (i.e. poly-
nomial in the size of the Pareto set) algorithms are known for a few standard
bicriteria optimization problems such as the Shortest Path problem [7, 18],
it is not known how to generate the Pareto set efficiently for other well-studied
bicriteria optimization problems such as the Spanning Tree and the Perfect
Matching problem.

There has been a long history of approximating the Pareto set starting with
the pioneering work of Hansen [7] on the Shortest Path problem. We say a
solution S is ε-approximated by another solution S′ if c(S′)/c(S) ≤ 1 + ε and
w(S′)/w(S) ≤ 1 + ε where c(S) and w(S) denote the total cost and weight
of a solution S. We say that Pε is an ε-approximation of a Pareto set P if
for any solution S ∈ P there is a solution S′ ∈ Pε that ε-approximates it.
Papadimitriou and Yannakakis showed that for any Pareto set P, there is an
ε-approximation of P with polynomially many points [13] (w.r.t. the input size
and 1/ε). Furthermore they gave necessary and sufficient conditions under which
there is an FPTAS to generate Pε. Vassilvitskii and Yannakakis [17] showed how
to compute ε-approximate Pareto curves of almost minimal size.

1.1 Previous Work

There exists a vast body of literature that focuses on f -Π problems. For instance
it is well known that, if f is a concave function, an optimal solution of the f -Π
problem can be found on the border of the convex hull of the solutions [9]. For
some problems there are algorithms generating this set of solutions. In particular,
for the Spanning Tree Problem it is known that there are only polynomially
many solutions on the border of the convex hull [5], and efficient algorithms
for enumerating them exist [1]. Thus, there are polynomial-time algorithms for
solving f -Spanning Tree if f is concave. Katoh has described how one can
use f -Spanning Tree problems with concave objective functions to solve many
other problems in combinatorial optimization [10]. For instance, a well stud-
ied application is the Minimum Cost Reliability Spanning Tree Problem,
where one is interested in finding a spanning tree minimizing the ratio of cost
to reliability. This approach, however, is limited to optimizing the ratio of these



two criteria. It is also known how to solve the f -Shortest Path problem for
functions f being both pseudoconcave and pseudoconvex in polynomial time [8].
Tsaggouris and Zaroliagis [15] investigated the Non-additive Shortest Path
Problem (NASP), which is to find a path P minimizing fc(c(P )) + fw(w(P )),
for some convex functions fc and fw. This problem arises as core problem in
different applications, e.g., in the context of computing traffic equilibria. They
developed exact algorithms with exponential running time using a Lagrangian
relaxation and the so called Extended Hull Algorithm to solve NASP.

We consider bicriteria optimization problems in the smoothed analysis frame-
work of Spielman and Teng [14]. Spielman and Teng consider a semi-random
input model where an adversary specifies an input which is then randomly per-
turbed. Input instances occurring in practice usually possess a certain structure
but usually also have small random influences. Thus, one can hope that semi-
random input models are more realistic than worst case and average case input
models since the adversary can specify an arbitrary input with a certain struc-
ture that is subsequently only slightly perturbed. Since the seminal work of
Spielman and Teng explaining the efficiency of the Simplex method in practical
applications [14], many other problems have been considered in the framework of
smoothed analysis. Of particular relevance to the results in this paper are the re-
sults of Beier and Vöcking [3, 4]. First, they showed that the expected number of
Pareto optimal solutions of any bicriteria optimization problem with two linear
objective functions is polynomial if the coefficients in the objective functions are
randomly perturbed [3]. Then they gave a complete characterization which lin-
ear binary optimization problems have polynomial smoothed complexity, namely
they showed that a linear binary optimization problem has polynomial smoothed
complexity if and only if there exists an algorithm whose running time is pseu-
dopolynomially bounded in the perturbed coefficients [4]. The only way to apply
their framework to multicriteria optimization is by moving all but one of the
criteria from the objective function to the constraints.

1.2 Our Results

We study the complexity of the bicriteria optimization problems f-Shortest
Path, f-Spanning Tree and f -Perfect Matching under different classes of
functions f . Our study begins with an analysis showing that these problems are
NP-hard even under seemingly harmless objective functions of the form Minimize

(
∑

e∈S c(e))a+(
∑

e∈S w(e))b, where a, b are arbitrary natural numbers with a ≥ 2
or b ≥ 2. Thus, we focus on the approximability of these problems. An FPTAS to
approximate the Pareto curve of a problem Π can be transformed into an FPTAS
for f -Π for any polynomial function f easily. We show that this transformation
also works for quasi-polynomial functions and, more generally, for non-decreasing
functions whose first derivative is bounded from above like the first derivative
of a quasi-polynomial function. (A similar result has been shown recently in an
independent work by Tsaggouris and Zaroliagis [16].) Additionally, we show that
the restriction to quasi-polynomial growth is crucial.

In order to bypass the limitations of approximate decision making seen above,
we turn our attention to Pareto curves in the probabilistic framework of smoothed
analysis. We show that in a smoothed model, we can efficiently generate the
(complete and exact) Pareto curve of Π with a small failure probability if there



exists an algorithm for generating the Pareto curve whose worst case running
time is pseudopolynomial (w.r.t. costs and weights). Previously, it was known
that the number of Pareto optimal solutions is polynomially bounded if the input
numbers are randomly perturbed [3]. This result, however, left open the question
of how to generate the set of Pareto-optimal solutions efficiently (except for the
Shortest Path problem). The key result in the smoothed analysis presented
in this paper is that typically the smallest gap (in cost and weight) between
neighboring solutions on the Pareto curve is bounded by n−O(1) from below. This
result enables us to generate the complete Pareto curve by taking into account
only a logarithmic number of bits of each input number. This way, an algorithm
with pseudopolynomial worst-case complexity for generating the Pareto curve
can be turned into an algorithm with polynomial smoothed complexity.

It can easily be seen that, for any bicriteria problem Π, a pseudopolynomial
algorithm for the exact and single objective version of Π (e.g. an algorithm for
answering the question “Does there exist a spanning tree with costs exactly C?”)
can be turned into an algorithm with pseudopolynomial worst-case complexity
for generating the Pareto curve. Therefore, in the smoothed model, there exists
a polynomial-time algorithm for enumerating the Pareto curve of Π with small
failure probability if there exists a pseudopolynomial algorithm for the exact
and single objective version of Π. Furthermore, given the exact Pareto curve
for a problem Π, one can solve f -Π exactly. Thus, in our smoothed model, we
can, for example, find spanning trees that minimize functions that are hard to
approximate within any factor in the worst case.

2 Approximating Bicriteria Optimization Problems

In this section, we consider bicriteria optimization problems in which the goal is
to minimize a single objective function that takes two criteria as inputs. We con-
sider functions of the form f(x, y) where x represents the total cost of a solution
and y represents the total weight of a solution. In Section 2.1, we present NP-
hardness and inapproximability results for the f -Spanning Tree, f -Shortest
Path, and f -Perfect Matching problems for general classes of functions. In
Section 2.2, we show that we can give an FPTAS for any f -Π problem for a
large class of quasi-polynomially bounded non-decreasing functions f if there is
an FPTAS for generating an ε-approximate Pareto curve for Π. Papadimitriou
and Yannakakis showed how to construct such an FPTAS for approximating
the Pareto curve of Π given an exact pseudopolynomial algorithm for the prob-
lem [13]. For the exact s-t-Path problem, dynamic programming yields a pseu-
dopolynomial algorithm [18]. For the exact Spanning Tree problem, Barahona
and Pulleyblank gave a pseudopolynomial algorithm [2]. For the exact Match-
ing problem, there is a fully polynomial RNC scheme [12, 11]. Thus, for any
quasi-polynomially bounded non-decreasing objective function, these problems
have an FPTAS.

2.1 Some Hardness Results

In this section we present NP-hardness results for the bicriteria f -Spanning
Tree, f -Shortest Path and f -Perfect Matching problems in which the



goal is to find a feasible solution S that minimizes an objective function in the
form f(x, y) = xa + yb, where x = c(S), y = w(S), and a, b ∈ N are constants
with a ≥ 2 or b ≥ 2. Note that the NP-hardness of such functions when a = b
follows quite directly from a simple reduction from Partition. When a and b
differ, one can modify this reduction slightly by scaling the weights.

Lemma 1 Let f(x, y) = xa + yb with a, b ∈ N and a ≥ 2 or b ≥ 2. Then the
f-Spanning Tree, f-Shortest Path, and f-Perfect Matching problems
are NP -hard.

We will now have a closer look at exponential functions f(x, y) = 2xδ
+2yδ

for
some δ > 0. In the following, we assume that there is an oracle, which given two
solutions S1 and S2, decides in constant time whether f(c(S1), w(S1)) is larger
than f(c(S2), w(S2)) or vice versa. We show that even in this model of com-
putation there is no polynomial time approximation algorithm with polynomial
approximation ratio, unless P = NP . (The proofs of Lemma 1 and Lemma 2
can be found in a full version of this paper.)

Lemma 2 Let f(x, y) = 2xδ
+ 2yδ

with δ > 0. There is no approximation algo-
rithm for the f-Spanning Tree, f-Shortest Path, and f-Perfect Match-
ing problem with polynomial running time and approximation ratio less than 2Bd

for any constant d > 0 and B =
∑

e∈E c(e) + w(e), unless P = NP .

2.2 An FPTAS for a Large Class of Functions

In this section we present a sufficient condition for the objective function f under
which there is an FPTAS for the f -Spanning Tree, the f -Shortest Path and
the f -Perfect Matching problem. In fact, our result is not restricted to these
problems but applies to every bicriteria optimization problem Π with an FPTAS
for approximating the Pareto curve.

We begin by introducing a restricted class of functions f .

Definition 3 We call a non-decreasing function f : R
2
+ → R+ quasi-polynomially

bounded if there exist constants c > 0 and d > 0 such that for every x, y ∈ R+

∂f(x, y)

∂x
· 1

f(x, y)
≤ c · lnd x · lnd y

x

and
∂f(x, y)

∂y
· 1

f(x, y)
≤ c · lnd x · lnd y

y
.

Observe that every non-decreasing polynomial is quasi-polynomially bounded.
Furthermore the sum of so-called quasi-polynomial functions of the form f(x, y) =
xpolylog(x) + ypolylog(y) is also quasi-polynomially bounded, whereas the sum of
exponential functions f(x, y) = 2xδ

+2yδ
is not quasi-polynomially bounded. We

are now ready to state our main theorem for this section.

Theorem 4 There exists an FPTAS for any f-Π problem in which f is mono-
tone and quasi-polynomially bounded if there exists an FPTAS for approximating
the Pareto curve of Π.



Proof (Sketch). Our goal is to find a solution for the f -Π problem in question
with value no more than (1+ε) times optimal. The FPTAS for the f -Π problem of
relevance is quite simple. It uses the FPTAS for approximating the Pareto curve
to generate an ε′-approximate Pareto curve Pε′ and tests which solution in Pε′

has the lowest f -value. Recall that the number of points in Pε′ is polynomial in
the size of the input and 1/ε′ [13]. The only question to be settled is how small
ε′ has to be chosen to obtain an ε-approximation for f -Π by this approach.
Moreover, we have to show that 1/ε′ is polynomially bounded in 1/ε and the
input size since then, an ε′-approximate Pareto curve contains only polynomially
many solutions and, thus, our approach runs in polynomial time.

Let S∗ denote an optimal solution to the f -Π problem. Since f is non-
decreasing we can w.l.o.g. assume S∗ to be Pareto optimal. We denote by C∗

the cost and by W ∗ the weight of S∗. We know that an ε′-approximate Pareto
curve contains a solution S′ with cost C ′ and weight W ′ such that C ′ ≤ (1+ε′)C∗

and W ′ ≤ (1 + ε′)W ∗. We have to choose ε′ > 0 such that f(C ′, W ′) ≤
(1 + ε)f(C∗, W ∗) holds, in fact, we will choose ε′ such that

f((1 + ε′) · C∗, (1 + ε′) · W ∗) ≤ (1 + ε) · f(C∗, W ∗). (1)

A technical calculation shows that choosing

ε′ =
ε2

c2d+4 · lnd+1 C · lnd+1 W
,

where C denotes sum of all costs c(e) and W denotes the sum of all weights
w(e), satisfies (1). Observe that 1/ε′ is polynomially bounded in 1/ε and lnC∗

and lnW ∗, i.e. the input size. �

Observe that Theorem 4 is almost tight since for every δ > 0 we can construct
a function f for which the quotients of the partial derivatives and f(x, y) are lower
bounded by δ/x1−δ respectively by δ/y1−δ and for which the f -Π problem does

not posses an FPTAS, namely f(x, y) = 2xδ
+ 2yδ

.

3 Smoothed Analysis of Bicriteria Problems

In the previous section we have shown that f -Π problems are NP-hard even
for simple polynomial objective functions, and we have also shown that it is
even hard to approximate them for rapidly increasing objective functions, if Π is
either the bicriteria Spanning Tree, Shortest Path or Perfect Matching
problem. In this section we will analyze f -Π problems in a probabilistic input
model rather than from a worst-case viewpoint. In this model, we show that,
for every p > 0 for which 1/p is polynomial in the input size, the f -Π problem
can be solved in polynomial time for every non-decreasing objective function with
probability 1−p, if there exists a pseudopolynomial time algorithm for generating
the Pareto set of Π. It is known that for the bicriteria graph problems we deal
with the expected size of the Pareto set in the considered probabilistic input
model is polynomially bounded [3]. Thus, if we had an algorithm for generating
the set of Pareto optimal solutions whose running time is bounded polynomially
in the input size and the number of Pareto optimal solutions then we could,



for any non-decreasing objective function f , devise an algorithm for the f -Π
problem that is efficient on semi-random inputs.

For a few problems, e.g. the Shortest Path [18, 7] problem, efficient (w.r.t.
the input size and the size of the Pareto set) algorithms for generating the Pareto
set are known. But it is still unknown whether such an algorithm exists for the
Spanning Tree or the Perfect Matching problem, whereas it is known that
there exist for, e.g., the Spanning Tree and the Perfect Matching problem
pseudopolynomial time algorithms (w.r.t. cost and weight) for generating the
reduced Pareto set. This follows since the exact versions of the single objective
versions of these problems, i.e. the question, “Is there a spanning tree/perfect
matching with cost exactly c?”, can be solved in pseudopolynomial time (w.r.t to
the costs) [2, 12, 11]. We will show how such pseudopolynomial time algorithms
can be turned into algorithms for efficiently generating the Pareto set of semi-
random inputs.

3.1 Probabilistic Input Model

Usually, the input model considered in smoothed analysis consists of two stages:
First an adversary chooses an input instance then this input is randomly per-
turbed in the second stage. For the bicriteria graph problems considered in this
paper, the input given by the adversary is a graph G = (V, E, w, c) with weights
w : E → R+ and costs c : E → R+ and in the second stage these weights and
costs are perturbed by adding independent random variables to them.

We can replace this two-step model by a one-step model where the adversary
is only allowed to specify a graph G = (V, E) and, for each edge e ∈ E, two
probability distributions, namely one for c(e) and one for w(e). The costs and
weights are then independently drawn according to the given probability distri-
butions. Of course, the adversary is not allowed to specify arbitrary distributions
since this would include deterministic inputs as a special case. We place two re-
strictions upon the distributions concerning the expected value and the maximal
density. To be more precise, for each weight and each cost, the adversary is only
allowed to specify a distribution which can be described by a piecewise continu-
ous density function f : R+ → R+ with expected value at most 1 and maximal
density at most φ, i.e. supx∈R+

f(x) = φ, for a given φ ≥ 1.

Observe that restricting the expected value to be at most 1 is without loss of
generality, since we are only interested in the Pareto set which is not affected by
scaling weights and costs. The parameter φ can be seen as a parameter specifying
how close the analysis is to a worst case analysis. The larger φ the more concen-
trated the probability distribution can be. Thus, the larger φ, the more influence
the adversary has. We will call inputs created by this probabilistic input model
φ-perturbed inputs.

Note that the costs and weights are irrational with probability 1 since they
are chosen according to continuous probability distributions. We ignore their
contribution to the input length and assume that the bits of these coefficients
can be accessed by asking an oracle in time O(1) per bit. Thus, in our case only
the representation of the graph G = (V, E) determines the input length. In the
following let m denote the number of edges, i.e. m = |E|.



We assume that there do not exist two different solutions S and S′ with either
w(S) = w(S′) or c(S) = c(S′). We can assume this without loss of generality since
in our probabilistic input model two such solutions exist only with probability 0.

3.2 Generating the Pareto set

In this section we will show how a pseudopolynomial time algorithm A for gen-
erating the Pareto set can be turned into a polynomial time algorithm which
succeeds with probability at least 1 − p on semi-random inputs for any given
p > 0 where 1/p is polynomial in the input size. In order to apply A efficiently it
is necessary to round the costs and weights, such that they are only polynomi-
ally large after the rounding, i.e., such that the length of their representation if
only logarithmic. Let ⌊c⌋b and ⌊w⌋b denote the costs and weights rounded down
to the b-th bit after the decimal point. We denote by P the Pareto set of the
φ-perturbed input G = (V, E, w, c) and by Pb the Pareto set of the rounded
φ-perturbed input G = (V, E, ⌊w⌋b, ⌊c⌋b).

Theorem 5 For b = Θ
(

log
(

mφ
p

))

it holds that P ⊆ Pb with probability at least

1 − p.

This means, we can round the coefficients after only a logarithmic number of
bits and use the pseudopolynomial time algorithm, which runs on the rounded
input in polynomial time, to obtain Pb. With probability at least 1−p the set Pb

contains all Pareto optimal solutions from P but it can contain solutions which
are not Pareto optimal w.r.t. to w and c. By removing these superfluous solutions
we obtain with probability at least 1 − p the set P.

Corollary 6 There exists an algorithm for generating the Pareto set of Π on φ-
perturbed inputs with failure probability at most p and running time poly(m, φ, 1/p)
if there exists a pseudopolynomial time algorithm for generating the reduced
Pareto set of Π.

In this extended abstract we will only try to give intuition why Theorem 5
is valid. Details of the proof can be found in a full version of this paper. From
the definition of a Pareto optimal solution, it follows that the optimal solution
S of a constrained problem, i.e. the weight-minimal solution among all solutions
fulfilling a cost constraint c(S) ≤ t, is always a Pareto optimal solution. This
is because if there were a solution S′ that dominates S, then S′ would also
be a better solution to the constrained problem. We will show that, for every
S ∈ P, with sufficiently large probability we can find a threshold t such that S is
the optimal solution to the constrained problem min⌊w⌋b(S) w.r.t. ⌊c⌋b(S) ≤ t,
i.e. with sufficiently large probability every S ∈ P is Pareto optimal w.r.t. the
rounded coefficients.

In the proof we will, for an appropriate z, consider z many constrained prob-
lems each with weights ⌊w⌋b and costs ⌊c⌋b. The thresholds we consider are
ti = i · ε, for i ∈ [z] := {1, 2, . . . , z}, for an appropriately chosen ε. By ∆min

we will denote the minimal cost difference between two different Pareto optimal
solutions, i.e.

∆min = min
S1,S2∈P
S1 6=S2

|c(S1) − c(S2)|.



If ∆min is larger than ε, then P consists only of solutions to constrained problems
of the form minw(T ), w.r.t. c(t) ≤ ti, since, if ε < ∆min we do not miss a
Pareto optimal solution by our choice of thresholds. Based on results by Beier
and Vöcking [4] we will prove that, for each i ∈ [z], the solution S(i) to the

constrained problem minw(S) w.r.t. c(S) ≤ ti is the same as the solution S
(i)
b to

the constrained problem min⌊w⌋b(S) w.r.t. ⌊c⌋b(S) ≤ i · ε with sufficiently large

probability. Thus, if ε < ∆min and S(i) = S
(i)
b for all i ∈ [z], then P ⊆ Pb.

We do not know how to determine ∆min in polynomial time but we can show
a lower bound ε for ∆min that holds with a certain probability. Based on this
lower bound, we can appropriately choose ε. We must choose z sufficiently large
so that c(S) ≤ z · ε holds with sufficiently high probability for every solution S.
Thus, our analysis fails only if one of the following three failure events occurs:

F1: ∆min is smaller than the chosen ε.
F2: For one i ∈ [z] the solution S(i) to minw(S) w.r.t. c(S) ≤ ti does not equal

the solution S
(i)
b to min⌊w⌋b(S) w.r.t. ⌊c⌋b(S) ≤ i · ε.

F3: There exists a solution S with c(S) > z · ε.

For appropriate values of z, ε and b we can show that these events are unlikely,
yielding Theorem 5.
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A Reductions from Partition to the bicriteria Spanning Tree,
Shortest Path and Perfect Matching problem

By simple reductions from Partition ([6]) one can prove that it is NP-hard
to decide whether a graph with edge costs and weights has a spanning tree (or
s-t-path or perfect matching) with cost at most C and weight at most W , where
C, W ∈ R. For the sake of completeness we reproduce these reductions here.

We use these reductions in Appendix B to show that f -Spanning Tree, f -
Shortest Path and f -Perfect Matching are NP-hard for f(x, y) = xa +yb,
where a, b ∈ N and a, b are constants with a ≥ 2 or b ≥ 2. A Partition instance
consists of n natural numbers {a1, . . . , an} and the goal is to decide whether
there is a partition A1∪̇A2 = {a1, . . . , an} of the ai’s such that

∑

ai∈A1
ai =

∑

aj∈A2
aj = A/2. The graphs used in these reductions posses the property that

for every solution S it holds c(S) + w(S) ≥ A and that there is a solution S
with c(S) = w(S) = A/2 if and only if the corresponding Partition instance
has a solution. Observe that if a solution S with c(S) = w(S) = A/2 exists it is
an optimal solution to the function f(x) = xa + ya for a ≥ 2. Thus, minimizing
f is as difficult as solving Partition. Note that similar arguments can also be
applied to other families of functions f such as f(x, y) = (xy)−1.

Given an instance {a1, . . . , an} of Partition we describe reductions from
Partition to the bicriteria Spanning Tree, Shortest Path and Perfect
Matching problems already given in [6]. We show how to construct instances
G = (V, E, c, w) of these problems. We start with a reduction to the Shortest
Path problem and refer to Figure 1 to show the topology of G. The cost and
the weight of an edge are given in brackets. Let s = v1 and t = vn+1 and let
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Fig. 1. A reduction from Partition to the s-t-Path problem.

P be any s-t-path in G. Observe that c(P ) + w(P ) =
∑n

i=1 ai. We denote by
Vupper(P ) the set of nodes vi, such that P takes the upper path from vi to vi+1

and by Vlower(P ) the set of nodes, such that P takes the lower path from vi to
vi+1. Using these sets we can easily construct a partition A1,A2 of the ai’s:

A1 = {ai | vi ∈ Vupper(P )}
A2 = {ai | vi ∈ Vlower(P )}

Observe now if there is a path P with c(P ) ≤ C and w(P ) ≤ W , then there is
also a partition A1,A2 of the ai’s such that

∑

ai∈A1
ai ≤ C and

∑

ai∈A2
ai ≤ W .



We continue with the reduction to the Spanning Tree problem and refer to
Figure 2 to show the topology of G. Let T be any spanning tree of G. Observe
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Fig. 2. A reduction from Partition to the Spanning Tree problem.

that c(T )+w(T ) ≥∑n
i=1 ai since there might by a vertex vi, 1 ≤ i ≤ n such that

the edges (vi, vn+1) and (vi, vn+2) belong to T . In this case the edge (vn+1, vn+2)
does not belong to T . If we assume that ai ≥ 0 for all 1 ≤ i ≤ n than we can
remove either edge (vi, vn+1) or (vi, vn+2) and use the edge (vn+1, vn+2) instead
without increasing the cost or the weight of T . Thus we can always assume that
there is no vertex vi such that both edges (vi, vn+1) and (vi, vn+2) belong to T .
We denote by Vleft(P ) the set of nodes vi, 1 ≤ i ≤ n such that the edge (vi, vn+1)
and not (vi, vn+2) belongs to T . Furthermore we denote by Vright(P ) the set of
nodes vi, 1 ≤ i ≤ n such that the edge (vi, vn+2) and not (vi, vn+1) belongs to
T . Using these sets we can easily construct a partition A1,A2 of the ai’s:

A1 = {ai | vi ∈ Vright(P )}
A2 = {ai | vi ∈ Vleft(P )}

Observe now if there is a spanning tree T with c(T ) ≤ C and w(T ) ≤ W ,
then there is also a partition A1,A2 of the ai’s such that

∑

ai∈A1
ai ≤ C and

∑

ai∈A2
ai ≤ W .

Finally we give a reduction from Partition to the Perfect Matching
problem. The graph G consists of n gadgets gi as presented in Figure 3. Let M
by any perfect matching of G. Observe that c(M)+w(M) =

∑n
i=1 ai. We denote

by G1,2(M) the set of gadgets gi of G, such that the edge (v1,i, v2,i) belongs to M
and by G1,3(M) the set of gadgets gi of G, such that the edge (v1,i, v3,i) belongs
to M . Again using these sets we can easily construct a partition A1,A2 of the
ai’s.

A1 = {ai | gi ∈ G1,2(M)}
A2 = {ai | gi ∈ G1,3(M)}

Observe now if there is a perfect matching M with c(M) ≤ C and w(M) ≤ W ,
then there is also a partition A1,A2 of the ai’s such that

∑

ai∈A1
ai ≤ C and

∑

ai∈A2
ai ≤ W .
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Fig. 3. A reduction from Partition to the Perfect Matching problem.

B Proofs of Hardness Results

Proof (Proof of Lemma 1). We use the reductions from Partition to the bicri-
teria Spanning Tree, Shortest Path and Perfect Matching problems as
presented above, except that we scale the cost of each edge (but not its weight)
by a factor of α. Thus for any solution S, we have that c(S)/α + w(S) = A. Let
x = w(S), then c(S) = α(A−x). Define g(x) := f(α(A−x), x) = α(A−x)a +xb.
Our goal is to choose α such that the function g(x) is minimized when x = A/2.
Thus, we want to show that g′(A/2) = 0 and g′′(A/2) > 0. We take the derivative
of g(x) and obtain, g′(x) = −a · αa(A − x)a−1 + bxb−1. Now we have:

g′
(

A

2

)

= 0 ⇐⇒ −a · αa

(

A

2

)a−1

+ b

(

A

2

)b−1

= 0

⇐⇒ αa =
b

a

(

A

2

)b−a

⇐⇒ α =

(

b

a

(

A

2

)b−a
)

1

a

Now we evaluate the second derivative of g(x) at point A/2 and show that it is
positive. We have, g′′(x) = a(a−1)αa(A−x)a−2+b(b−1)xb−2. Thus, g′′(A/2) > 0
when a > 1 or b > 1. Observe that, in general, α is irrational but rounding α
after a polynomial number of bits preserves the desired property. �

Proof (Proof of Lemma 2). We use the reductions of Partition to the problems
we consider as presented in Appendix A. Assume that we are given an instance
{a1, . . . , an} of Partition. Assume that we scale the natural numbers ai by a
factor of b > 0 before constructing the graphs. If there is a desired partition in
the original instance, then there is also a solution in the scaled instance with
f(S) = 2(b·a)δ+1. If there is no desired partition, then f(S) ≥ 2(b·a+b)δ

for any

solution S. Obviously this is a (2(b·a)δ+1, 2(b·a+b)δ
) gap problem for which no

polynomial time approximation algorithm with approximation ratio less than
2(b·a+b)δ

/2(b·a)δ+1 = 2(b·a+b)δ−(b·a)δ−1 exists, unless P = NP . Now choosing

b >

(

Bd + 1

(a + 1)δ − aδ

)1/δ



yields

2(b·a+b)δ

2(b·a)δ+1
> 2Bd

.

Note that the length of the representation of B =
∑

e∈E c(e)+w(e) is polynomi-
ally bounded in the input size. The same holds for b as well. Thus, if there were
a polynomial time approximation algorithm for f -Π with approximation ratio
less than 2Bd

, P would be equal to NP . �

C Additions to the Proof of Theorem 4

We start by rewriting f((1 + ε′)C∗, (1 + ε′)W ∗) as follows

f((1 + ε′) · C∗, (1 + ε′) · W ∗) =







f(C∗, W ∗) + f((1 + ε′) · C∗, W ∗)
−f(C∗, W ∗) + f((1 + ε′) · C∗, (1 + ε′) · W ∗)
−f((1 + ε′) · C∗, W ∗).

Now, it is enough to find ε′ such that

f((1 + ε′) · C∗, W ∗) − f(C∗, W ∗) ≤ ε

2
· f(C∗, W ∗) (2)

and

f((1 + ε′) · C∗, (1 + ε′)W ∗) − f((1 + ε′) · C∗, W ∗) ≤ ε

2
· f(C∗, W ∗). (3)

We have to prove that setting

ε′ =
ε2

c2d+4 · lnd+1 C∗ · lnd+1 W ∗

fulfilles the conditions (2) and (3). Before we estimate the terms in (2) and (3) we
remind the reader of a version of Bernoulli’s inequality which we will use later.

Lemma 7 Let x > −1, x ∈ R and n ∈ N. Then

1 +
x

n(1 + x)
≤ n

√
1 + x ≤ 1 +

x

n
.

Estimating f((1 + ε′)C∗,W∗) − f(C∗,W∗) We start by estimating the term
f((1 + ε′)C∗, W ∗) − f(C∗, W ∗). Therefore we define a function g : R+ → R+

by g(x) = f(x, W ∗). Then we can express the difference we are interested in as
g((1 + ε′)C∗) − g(C∗). Furthermore, for all x ∈ R+, we know

g′(x)

g(x)
≤ c · lnd x · lnd W ∗

x
(4)

and g(C∗) = z∗. The difference g((1+ε′)C∗)−g(C∗) becomes maximal when the
derivative of g is as large as possible. Thus, we assume w.l.o.g that inequality (4)
is satisfied with equality, i.e.

g′(x)

g(x)
=

c · lnd x · lnd W ∗

x
.



This differential equation with the additional condition g(C∗) = z∗ has a unique
solution, namely

g(x) =
z∗

e
c

d+1
·lnd+1 C∗·lnd W ∗

e
c

d+1
·lnd+1 x·lnd W ∗

.

We want to show g((1 + ε′)C∗) − g(C∗) ≤ ε/2 · g(C∗) which is equivalent to
g((1 + ε′)C∗)/g(C∗) ≤ 1 + ε/2. For the sake of simplicity, we assume w.l.o.g.
ε′ < 1, C∗ ≥ e and W ∗ ≥ e which implies ln(1 + ε′) < 1, lnC∗ > 1 and
lnW ∗ > 1. Then we have the following

g((1 + ε′)C∗)

g(C∗)
= exp

(

c

d + 1
· lnd W ∗(lnd+1((1 + ε′)C∗) − lnd+1 C∗)

)

≤ exp

(

c

d + 1
· lnd W ∗ ·

d+1
∑

i=1

(

d + 1

i

)

lni(1 + ε′) lnd+1−i C∗

)

≤ exp

(

c

d + 1
· lnd W ∗ · d2d+1 ln(1 + ε′) lnd+1 C∗

)

≤ (1 + ε′)⌈c2
d+1·lnd+1 C∗·lnd W ∗⌉

It holds

ε′ ≤
(

1 +
ε

2

)
1

⌈c2d+1·lnd+1 C∗·lnd W∗⌉ − 1

⇒ (1 + ε′)⌈c2
d+1·lnd+1 C∗·lnd W ∗⌉ ≤ 1 +

ε

2
.

We can apply Lemma 7 to obtain

ε′ ≤ ε/2

⌈c2d+1 · lnd+1 C∗ · lnd W ∗⌉(1 + ε/2)

⇒ ε′ ≤
(

1 +
ε

2

)
1

⌈c2d+1·lnd W∗·lnd+1 C∗⌉ − 1.

Thus, choosing

ε′ =
ε

c2d+4 · lnd+1 C∗ · lnd W ∗
(5)

yields g((1 + ε′)C∗) − g(C∗) ≤ ε/2 · g(C∗).

Estimating f((1 + ε′)C∗, (1 + ε′)W∗) − f((1 + ε′)C∗,W∗) Now define h : R+ →
R+ by h(y) = f((1+ε′)C∗, y). Observe that we can use the arguments in the pre-
vious paragraph to show h((1+ε′)W ∗)−h(W ∗) ≤ ε/2 ·h(W ∗) for an analogously
chosen ε′ but this is not enough since h(W ∗) = f((1 + ε′)C∗, W ∗) ≥ f(C∗, W ∗).

Following the arguments of the last paragraph we can show that setting

ε′ =
ε2

c2d+4 · lnd C∗ · lnd+1 W ∗
(6)

yields

f((1 + ε′)C∗, (1 + ε′)W ∗) − f((1 + ε′)C∗, W ∗) ≤ ε2

2
f((1 + ε′)C∗, W ∗).



We assume w.l.o.g. ε < 0.7. Then, a second application of the result of the last
paragraph shows

f((1 + ε′)C∗, W ∗) − f(C∗, W ∗) ≤ ε

2
f(C∗, W ∗)

⇒ f((1 + ε′)C∗, W ∗) ≤ 2 + ε

2
f(C∗, W ∗)

⇒ 2
2+εf((1 + ε′)C∗, W ∗) ≤ f(C∗, W ∗)

⇒ εf((1 + ε′)C∗, W ∗) ≤ f(C∗, W ∗),

where the last inequality follows from the assumption ε < 0.7. Putting it together
yields

f((1 + ε′)C∗, (1 + ε′)W ∗) − f((1 + ε′)C∗, W ∗) ≤ ε2

2
f((1 + ε′)C∗, W ∗)

≤ ε

2
f(C∗, W ∗).

Observe that the choice of ε′ in (5) and (6) is dependent on the cost C∗ and
the weight W ∗ of an optimal solution. These values are unknown but can be
upper bounded by C and W the sum of all costs c(e) respectively all weights
w(e). Thus, in (5) and (6) we can replace C∗ by C and W ∗ by W and choose

ε′ =
ε2

c2d+4 · lnd+1 C · lnd+1 W
.

D Proof of Theorem 5
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Fig. 4. Illustration of the definition of ∆min. S1, S2, S3, S6 are Pareto optimal. Each of them
is an optimal solution to at least one of the constrained problems.

Bounding Pr [F1] First, we write Π as binary program. We introduce a variable
xe ∈ {0, 1} for every edge e ∈ E and we denote by S ⊆ {0, 1}m the set of all
solutions of Π for input G, e.g. the set of all spanning trees of G. For bounding
∆min it is not necessary that the weights are chosen at random since the bound
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Fig. 5. ∆4 = ∆5 = 0.

we will prove holds for every deterministic choice of the weights. Thus, we assume
the weights to be fixed arbitrarily.

Now let S1, . . . , Sl denote a sequence containing all elements from S ordered
such that w(S1) ≤ . . . ≤ w(Sl) holds. For j ∈ {2, . . . , l}, we define ∆j =
mini∈[j−1] c(Si) − mini∈[j] c(Si). Observe that a solution Sj , for j ∈ {2, . . . , l},
is Pareto optimal if and only if ∆j > 0 and that ∆j describes how much less Sj

costs compared to the cheapest solution Si with i < j (see Figure 5). Thus, we
can write ∆min as follows

∆min = min
j∈[l]\{1}

{∆j |∆j > 0}.

We want to bound the probability that ∆min lies below a given value ε.
Therefore, we rewrite ∆min as follows:

Pr [∆min < ε] = Pr [∃j ∈ [l]\{1} : 0 < ∆j < ε]

≤
∑

j∈[l]\{1}

Pr [∆j > 0] · Pr [∆j < ε|∆j > 0] . (7)

Assume, we could bound Pr [∆j < ε|∆j > 0] from above for every j by some
term a. Then we would have

Pr [∆min < ε] ≤ a ·
∑

j∈[l]\{1}

Pr [∆j > 0] ≤ a · E [q] ,

where q denotes the number of Pareto optimal solutions.

In this scenario we can apply the analysis of Beier and Vöcking [3] to obtain
a polynomial upper bound on the expected number of Pareto optimal solutions.
The crucial point in their analysis is a lower bound on E [∆j |∆j > 0] for every
j ∈ [l] \ {1}. Unfortunately, we cannot apply their results directly to bound
the conditional probability Pr [∆j < ε|∆j > 0] since, in general, a bound on the
conditional expectation does not imply a bound on the conditional probability.
In Appendix E we prove the following result.



Theorem 8 Assume the costs to be independent random variables whose expec-
tations are bounded by 1 and whose densities are bounded by φ, i.e. for all x ∈ R+

and for all e ∈ E it holds fe(x) ≤ φ. Then, for ε ≤ (4m8φ2)−1,

Pr [∆min < ε] ≤ 2(4εm5φ2)1/3.

Bounding Pr [F2] For i ∈ [z], let F (i)
2 denote the event that the solution S(i)

does not equal the solution S
(i)
b . In [4] the following result is proven.

Theorem 9 ([4]) For every i ∈ [z], Pr
[

F (i)
2

]

≤ 2−b+2m3φ.

Applying a union bound yields.

Corollary 10 Pr [F2] ≤ z · 2−b+2m3φ.

Now we will use these results to prove Theorem 5.

Proof (Proof of Theorem 5). We want to choose ε, z and b in such a way that each
of the failure probabilities Pr [Fi] is bounded by p/3. By Theorem 8 choosing
ε = p3(864m8φ2)−1 yields Pr [F1] ≤ p/3. By a simple application of Markov’s
bound we obtain that choosing

z =
2592m9φ2

p4

implies Pr [F2] ≤ p/3. With Corollary 10 we obtain that setting b = log(αm12φ3/p5),
for an appropriate constant α, yields Pr [F3] ≤ p/3.

This proves the theorem since for b = log(αm12φ3/p5) = Θ(log(mφ/p)) the
failure probability is at most p. �

E Proof of Theorem 8

Analogously to the analysis in [3] we will also look at long-tailed distributions
first and, after that, use the results for long-tailed distributions to analyze the
general case.

Long-tailed Distributions One can classify continuous probability distributions
by comparing their tails with the tail of the exponential distribution. In principle,
if the tail function of a distribution can be lower bounded by the tail function of
an exponential function, then we say the distribution has a ”long tail”.

Of special interest to us is the behavior of the tail function under a logarithmic
scale. Given any continuous probability distribution with density g : R+ → R+,
the tail function T : R+ → [0, 1] is defined by T (t) =

∫∞
t g(x)dx. We define the

slope of T at x ∈ R+ to be the first derivative of the function − ln(T (·)) at x,
i.e. slopeT (x) = −[ln(T (x))]′. For example, the tail function of the exponential
distribution with parameter λ is T (x) = exp(−λx) so that the slope of this
function is slopeT (x) = λ, for every x ≥ 0. The tail of a continuous probability
distribution is defined to be long if there exists a constant α > 0 such that
slopeT (x) ≤ α, for every x ≥ 0.

We denote by Te the tail function of c(e) and by fe the corresponding density.



Lemma 11 ([3]) Assume c(e) to be a long-tailed random variable with expected
value at most µ, for each e ∈ E, and let α be a positive real number satisfying
slopeTe

(x) ≤ α, for every x ≥ 0 and every e ∈ E. Finally, let q denote the
number of Pareto optimal solutions. Then

E [q] ≤ αµm2 + 1 ≤ 2αµm2

In order to bound the conditional probability Pr [∆j < ε|∆j > 0] we have to
take a closer look at the proof of Lemma 11. The following lemma is implicitly
contained in this proof.

Lemma 12 ([3]) Let α and µ as in Lemma 11 then, for every j ∈ [l], it holds

Pr [∆j < ε|∆j > 0] ≤ 1 − exp(−mαε).

Let ε < 1/(mα) be fixed arbitrarily. Combining Lemma 11 and 12 with
equation (7) yields

Pr [∆min < ε] ≤
∑

j∈[l]\{1}

Pr [∆j > 0] · Pr [∆j < ε|∆j > 0]

≤ (1 − exp(−mαε)) · E [q]

≤ ε · mα · E [q]

≤ ε · 2m3α2µ.

Thus, we obtain the following lemma.

Lemma 13 Assume c(e) to be a long-tailed random variable with expected value
at most µ, for each e ∈ E, and let α be a positive real number satisfying
slopeTe

(x) ≤ α, for every x ≥ 0 and every e ∈ E. Then, for every ε ∈ [0, 1/(mα)),
it holds

Pr [∆min < ε] ≤ ε · 2m3α2µ.

General distributions with bounded mean and bounded density For general distri-
butions, a statement like Lemma 12 is not true any more. Nonetheless, Beier and
Vöcking were able to bound the expected number of Pareto optimal solutions for
any continuous distribution with bounded mean and bounded density.

Lemma 14 ([3]) Assume the costs to be independent random variables whose
expectations are bounded by µ and whose densities are bounded by φ, i.e. for all
x ∈ R+ and for all e ∈ E it holds fe(x) ≤ φ. Then

E [q] = O(φµm4).

We will use Lemma 14 to prove the following bound for ∆min which contains
Theorem 8 as a special case.

Theorem 15 Let µ and φ as in Lemma 14. Then, for ε ≤ (4m8φ2µ)−1,

Pr [∆min < ε] ≤ 2(4εm5φ2µ)1/3.



Proof. For every e ∈ E we define a random variable xe = Te(c(e)). For any a > 0,
let Fa denote the event that, for at least one e ∈ E, it holds xe ≤ a. We will
show that we can apply the analysis for long-tailed distributions if Fa does not
occur. We obtain

Pr [∆min < ε] ≤ Pr [Fa] + Pr [∆min < ε ∧ ¬Fa] . (8)

Observe that the xe’s are uniformly distributed over [0, 1], thus, we obtain

Pr [Fa] = Pr [∃e ∈ E : xe ≤ a] ≤ ma. (9)

We would like to estimate Pr [∆min < ε ∧ ¬Fa] in such a way that we get rid
of the event ¬Fa since, under the condition ¬Fa, the random variables c(e) are
short-tailed instead of long-tailed. If the event Fa does not occur the distribution
of c(e) for values larger than T−1

e (a) is not important, thus, we can replace the
tail function Te by the tail function T ∗

e with

T ∗
e (x) =

{

Te(x) if x ≤ T−1
e (a)

a · exp(−φm(x − T−1
e (a)) otherwise

.

We denote by ∆∗
min the random variable equivalent to ∆min but w.r.t. costs drawn

according to the tail functions T ∗
e instead of Te and obtain

Pr [∆min < ε ∧ ¬Fa] = Pr [∆∗
min < ε ∧ ¬Fa] ≤ Pr [∆∗

min < ε] . (10)

We can apply Lemma 13 to the random variable ∆∗
min since it is long-tailed

because an easy calculation shows

slopeT ∗
e
(x) ≤

{

φ/a if x ≤ T−1
e (a)

φm otherwise
.

For a ≤ 1/m we obtain
slopeT ∗

e
(x) ≤ φ/a.

Before we can apply Lemma 13 we have to calculate the expectation of random
variables drawn according to the tail function T ∗

e , for every e ∈ E. Let f∗
e denote

a density corresponding to the tail function T ∗
e . It holds

∫ ∞

−∞
f∗

e (x)dx =

∫ T−1
e (a)

−∞
fe(x)dx +

∫ ∞

T−1
e (a)

f∗
e (x)dx

≤ µ + aφm

∫ ∞

T−1
e (a)

exp(−φm(x − T−1
e (a)))dx

≤ µ + [−a exp(−φnx)]∞0

= µ + a ≤ µ + 1.

Applying Lemma 13 with α′ = φ/a and µ′ = µ+1 ≤ 2µ yields, for ε ∈ [0, a/(mφ))

Pr [∆∗
min < ε] ≤ 4εm3φ2µ

a2
. (11)

For ε ∈ [0, a/(mφ)), equations (8) to (11) result in the following bound

Pr [∆min < ε] ≤ ma +
4εm3φ2µ

a2
.



We choose a = (4εm2φ2µ)1/3 and obtain

Pr [∆min < ε] ≤ 2(4εm5φ2µ)1/3.

We assumed a to be less or equal to 1/m, thus, we have to choose ε such that
(4εm5φ2µ)1/3 ≤ 1/m holds. This is equivalent to ε ≤ (4m8φ2µ)−1. Furthermore,
because of Lemma 13 we have to choose ε such that ε ≤ 1/(mα′). This is already
implied by ε ≤ (4m8φ2µ)−1. �
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terstützung für Wissensakquisition und Erklärungsfähigkeit

1990-18 ∗ Eric Kowalewski: Entwurf und Interpretation einer Sprache zur Beschrei-

bung von Konsultationsphasen in Expertensystemen

1990-20 Y. Ortega Mallen, D. de Frutos Escrig: A Complete Proof System for

Timed Observations

1990-21 ∗ Manfred Nagl: Modelling of Software Architectures: Importance, No-

tions, Experiences

1990-22 H. Fassbender, H. Vogler: A Call-by-need Implementation of Syntax Di-

rected Functional Programming

1991-01 Guenther Geiler (ed.), Fachgruppe Informatik: Jahresbericht 1990

1991-03 B. Steffen, A. Ingolfsdottir: Characteristic Formulae for Processes with

Divergence

1991-04 M. Portz: A new class of cryptosystems based on interconnection net-

works



1991-05 H. Kuchen, G. Geiler: Distributed Applicative Arrays

1991-06 ∗ Ludwig Staiger: Kolmogorov Complexity and Hausdorff Dimension

1991-07 ∗ Ludwig Staiger: Syntactic Congruences for w-languages

1991-09 ∗ Eila Kuikka: A Proposal for a Syntax-Directed Text Processing System

1991-10 K. Gladitz, H. Fassbender, H. Vogler: Compiler-based Implementation

of Syntax-Directed Functional Programming

1991-11 R. Loogen, St. Winkler: Dynamic Detection of Determinism in Func-

tional Logic Languages

1991-12 ∗ K. Indermark, M. Rodriguez Artalejo (Eds.): Granada Workshop on the

Integration of Functional and Logic Programming

1991-13 ∗ Rolf Hager, Wolfgang Kremer: The Adaptive Priority Scheduler: A More

Fair Priority Service Discipline

1991-14 ∗ Andreas Fasbender, Wolfgang Kremer: A New Approximation Algorithm

for Tandem Networks with Priority Nodes

1991-15 J. Börstler, A. Zündorf: Revisiting extensions to Modula-2 to support

reusability

1991-16 J. Börstler, Th. Janning: Bridging the gap between Requirements Anal-

ysis and Design
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Structure-Oriented Document Integration Tools are Needed for Devel-

opment Processes

1998-03 Stefan Gruner: Einige Anmerkungen zur graphgrammatischen Spezifika-

tion von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und

Schürr
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2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation



2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-
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