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Abstract. We prove an upper bound of m/5.217 + 3 on the treewidth of a
graph with m edges. Moreover, we can always find efficiently a set of no more
than m/5.217 + 1 nodes whose removal yields a partial 2-tree. As an application,
we immediately get simple algorithms for several problems, including Max-Cut,
Max-2-SAT and Max-2-XSAT. The resulting algorithms have running times of
O∗(2t/5.217), where t is the number of distinct clause types. In particular, this
implies a record-breaking time complexity of O∗(2m/5.217).

1 Introduction

We are currently experiencing a renaissance in the investigation of exponential-
time algorithms. The first subsection will elaborate on this. One example of
obvious importance is testing a boolean formula for satisfiability. Following a
short review of earlier scholarship in this area, the contributions of the paper at
hand will be highlighted.

1.1 Worst-case upper bounds for NP-hard problems

We believe that no polynomial time algorithms exist for NP-hard problems. Still,
there is no doubt as to the practical relevance of many of them. For some of
these problems, there are polynomial-time approximation algorithms that give
solutions within a factor α, usually called the performance ratio, of the optimal
solution. However, for problems that are Max-SNP-hard [1, 29], it is known that
the performance ratio of a polynomial-time algorithm cannot be better than some
constant ζ, called the inapproximability ratio, unless P=NP. For example, the
ratios known for Max-2-SAT are α = 0.931 [10] and ζ = 0.955 [15].

Recently, there has been a wave of effort in proving exponential-time worst-
case upper bounds for NP-hard problems — in particular for the exact solution
of Max-SNP-hard problems. One of the most intensely investigated problems in
this area seems to be SAT, the problem of satisfiability of a propositional formula
in conjunctive normal form — CNF. In the early 1980s, the trivial bound of
O∗(2n) has been improved for formulæ in 3-CNF1, where every clause contains at
most three literals, by Monien and Speckenmeyer [27]. After that, improved upper
bounds for k-SAT [8, 17, 23, 24, 30, 32], Max-SAT [6, 3, 26, 28], Max-2-SAT [3,
28], and other NP-hard problems could be obtained.

1 The O∗-notation was introduced by Woeginger and suppresses all polynomial factors; e.g.,
2kn5 = O∗(2k).



1.2 Related work

Concerning the problems for formulæ in CNF, most authors consider bounds
with respect to three parameters:

– the length l of the input formula (i.e., the number of literal occurrences),
– the number m of its clauses, and
– the number n of the variables occurring in it.

As of today, O∗(2l/9.7) and O∗(2m/3.23) are the best bounds for SAT [17]. In
contrast, with respect to the number of variables, nothing better than the trivial
bound of O∗(2n) is known. For the special case of 3-SAT, the bounds with respect
to l and m are the same as for SAT, whereas a randomized algorithm [18] taking
O∗(1.324n) steps and a deterministic one [8] running in O∗(1.481n) time are
known.

The maximum satisfiability problem — Max-SAT— is an important gener-
alization of SAT. Given a formula in CNF, it asks for the maximum number of
simultaneously satisfiable clauses. The decision variant of this problem is com-
plete for both NP and Max-SNP, even if each clause contains at most two lit-
erals — this restriction is called Max-2-SAT [29]. Max-SAT and Max-2-SAT

are well-studied in the context of approximation algorithms [2, 7, 10, 15, 19, 37].
Recently, numerous results regarding worst-case time bounds for the exact solu-
tion of Max-SAT and Max-2-SAT have been published [3, 7, 14, 16, 26, 28, 12].
The best bounds that have been achieved for Max-SAT [3] are O∗(2l/6.89) and
O∗(2m/2.36). For Max-2-SAT, the considerably better bounds of O∗(2m/2.46),
O∗(2m/2.88) and O∗(2m/3.44) [6, 28, 3] follow from Max-SAT algorithms. The
best algorithm developed particularly for Max-2-SAT [12] has time complexity
O∗(2m/5), which implies O∗(2l/10). With respect to the number of variables, the
trivial O∗(2n) algorithm has not been improved until recently, when Williams
came up with a new algorithm solving Max-2-SAT in O∗(2ωn/3) steps [36] for
an ω < 2.379. More precisely, O∗(nω) is the asymptotic running time of the best
algorithm for matrix product over a ring. For Max-SAT, there is another rele-
vant parameter, namely the number k of satisfiable clauses. An algorithm that
is efficient with respect to k might be faster than one that is good with respect
to m if k is much smaller than m [26, 22].

In general, a Max-SAT-instance is represented by a multiset rather than a
set of clauses, since a clause may occur more than once. In order to account
for this, we let m denote the number of clause occurrences — the total weight.
Furthermore, we declare t to stand for the number of clause types. A clause type
will be understood as a maximum distinct set of variables occuring together in
at least one clause, disregarding negations. It is easy to see that t can be much
smaller than m, even in formulæ that do not have multiple identical clauses.

1.3 Contributions of this paper

In this paper, we present a very simple algorithm for Max-2-SAT that has time
complexity O∗(2t/5), and thus O∗(2m/5) just like the one by Gramm et al. [12].
Moreover, we analyze a slightly more complicated version of the algorithm, low-
ering the bound to O∗(2t/5.217). The latter improves upon the best known upper
bounds for solving Max-2-SAT [13], Max-2-XSAT [25] and Max-Cut [33].
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Impressive as these new record bounds may seem, they are just the tip of the
iceberg. In fact, they represent little more than mere by-products of a much more
general technique. It relies on our main graph theoretical result, which states that
the treewidth of a graph G = (V,E) is bounded by |E|/5.217+3. Furthermore, a
tree decomposition of this size can be obtained in polynomial time. The method
that stems from this observation enables a narrowing of the search space for
many important NP-hard problems. In particular, a simple application yields
the above-mentioned record-breaking bounds.

2 Preliminaries

In this section we describe the notation we use for Max-Cut and satisfiability
problems. Moreover, we recall the notion of treewidth.

2.1 Maximum satisfiability

Throughout this paper, we adhere to the notation for boolean formulæ used by
Gramm et al. [12]. Let V be a set of boolean variables. A literal is either a
variable or its negation. As usual, the negation of a variable x is denoted by x̄,
and whenever l denotes a negated variable x̄, then l̄ stands for the variable x.

Algorithms for finding the exact solution of Max-SAT are often designed for
the unweighted Max-SAT problem. However, Max-SAT formulæ are generally
represented by multisets, i.e., formulæ in CNF with positive integer weights.
Thus, we consider the weighted Max-SAT problem with positive integer weights.
A (weighted) clause is a pair (ω, S), where ω is a positive integer and S is a
nonempty finite set of literals that does not contain any variable and its negation
simultaneously. We call ω the weight of the clause.

An assignment is a finite set of literals that does not contain any variable
together with its negation. Informally speaking, if an assignment A contains a
literal l, then the literal l has the value True in A. In addition to usual clauses,
we allow a special true clause (ω,T), also called a T-clause, which is satisfied
by every assignment.

The length of a clause (ω, S) is the cardinality of S, or 0 in the case of a
T-clause; a k-clause is a clause of length exactly k. In this paper, a formula —
more precisely a formula in (weighted) CNF — is a finite set of weighted clauses
(ω, S), with at most one clause for each S. A formula is in 2-CNF if it contains
only 2-clauses, 1-clauses and possibly a T-clause. The length of a formula is the
sum of the lengths of all its clauses.

Pairs of the (0, S) variety are not clauses; for simplicity, however, we assume
(0, S) ∈ F for all S and all F when defining the operators + and −:

F +G =
{

(ω1 + ω2, S)
∣

∣ (ω1, S) ∈ F and (ω2, S) ∈ G, and ω1 + ω2 > 0
}

,

F −G =
{

(ω1 − ω2, S)
∣

∣ (ω1, S) ∈ F and (ω2, S) ∈ G, and ω1 − ω2 > 0
}

.

Example 1. If

F = { (2,T), (3, {x, y}), (4, {x̄, ȳ}) }

and

G = { (2, {x, y}), (4, {x̄, ȳ}) },
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then
F −G = { (2,T), (1, {x, y}) }.

For a literal l and a formula F , the formula F [l] is obtained by setting the
value of l to true. More precisely, we define

F [l] = ({ (ω, S) | (ω, S) ∈ F and l, l̄ /∈ S } +

{ (ω, S \ { l̄ }) | (ω, S) ∈ F and S 6= { l̄ } and l̄ ∈ S } +

{ (ω,T) | ω is the sum of the weights ω′

of all clauses (ω′, S) of F such that l ∈ S }.

Note that no (ω, ∅) or (0, S) is included in F [l], F+G or F−G. For an assignment
A = {l1, . . . , ls} and a formula F , we define F [A] = F [l1][l2] . . . [ls]. Evidently,
F [l][l′] = F [l′][l] for every pair of literals l, l′ with l 6= l̄′. In short, we write
F [l1, . . . , ls] instead of F [{l1, . . . , ls}].

Example 2. If

F = { (1,T), (1, {x, y}), (5, {ȳ}), (2, {x̄, ȳ}), (10, {z̄}), (2, {x̄, z}) },

then
F [x, z̄] = { (12,T), (7, {ȳ}) }.

�

The weight of satisfied clauses for a formula F and an assignment A is defined
as ω where (ω,T) is the T-clause in F [A], or 0 if there is none such. As ex-
pected, the maximum weight of satisfied clauses for a formula F is OptVal(F ) =
maxA{ω | (ω,T) ∈ F [A] }, where A is taken over all possible assignments. An
assignment A is optimal iff F [A] only contains (ω,T) and ω = OptVal(F ). Note
that when ω = 0, the simplified formula F [A] does not contain any clause. We
say that two formulæ F1 and F2 are equivalent if there is no assignment A such
that the weight of satisfied clauses for F1 and A differs from the one for F2 and A.

2.2 Maximum cut

Let G = (V,E) be an undirected graph. If S
·∪ T is a partition of V , we call the

pair (S, T ) a cut. The size of a cut (S, T ) is the number of edges connecting S
and T . The Max-Cut problem is to find a cut of maximal size. Its complexity is
well investigated in terms of the number of edges m [9, 12, 14]; the best algorithm
so far [33] has time complexity O∗(2m/5).

It is well known that Max-Cut can be solved by transforming an instance
of Max-Cut into a Max-2-SAT instance as follows: The set of variables corre-
sponds to the set of vertices. For every edge {x, y} in the graph we add the two
clauses {x, y} and {x̄, ȳ} to the formula. It is easy to see that the graph has a cut
of size k iff m+k clauses can be satisfied in the corresponding formula, where m
is the number of edges. In this way, an O∗(2αm) step algorithm for Max-2-SAT

can be employed to solve Max-Cut in O∗(22αm) steps.
Recently, the problem Max-2-XSAT has been investigated. It is defined

similar to Max-2-SAT, but a clause is only considered fulfilled by an assignment
A if A satisfies exactly one of its literals. There is an algorithm that solves
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Fig. 1. A graph of treewidth four and an optimal tree decomposition.

Max-2-XSAT in O∗(2m/4) steps [25]. The connection between Max-2-XSAT

and Max-Cut is even tighter than the one between Max-2-SAT and Max-Cut:
The Max-2-XSAT-formula containing the clause {x, y} for each edge {x, y} has
m simultaneously satisfiable clauses iff there is a cut of size m in the given graph.
It is thus only fair to say that Max-Cut is a special case of the more general
problem Max-2-XSAT, where negative literals are allowed. Still, the algorithm
for Max-2-XSAT [25] only yields an O∗(2m/4) algorithm for Max-Cut, which
is exactly the same time complexity achieved earlier by Fedin and Kulikov [9].

The results of this paper also imply a simpler algorithm for Max-2-XSAT

whose running time is O∗(2m/5.217). This implies a runtime bound of O∗(2m/5.217)
for Max-Cut. There is, however, another possibility to show the new bound for
Max-Cut in terms of an algorithm for Max-2-SAT itself: We will show that
the new Max-2-SAT-algorithm has a running time of only O∗(2t/5.217), where t
is the number of clause types. Using the above reduction, a graph with m edges
is transformed into a Max-2-SAT-formula with 2m clauses, but only m types of
clauses.

2.3 Treewidth

Treewidth measures how “treelike” a graph is. The notion of treewidth was in-
troduced by Robertson and Seymour [31]. Bodlaender [4] and Kloks [20] give
an introduction to this concept. Many graph problems that are hard in general
can be solved efficiently, i.e., in polynomial and often linear time, for graphs of
bounded treewidth. Well-known examples are Hamiltonian Path, Max-Cut,
Independent Set and Vertex Cover [35]. Formally, we can define treewidth
via tree decompositions:

A pair
(

{Xi ⊆ V | i ∈ I}, T
)

is a tree decomposition of a graph G = (V,E)
if T is a tree with node set I, every edge {u, v} is contained in some Xi (that
is, u, v ∈ Xi), and Xi ∩ Xj ⊆ Xk for every k that lies on the path from i to j
in T . The width of a tree decomposition

(

{Xi | i ∈ I}, T
)

is maxi∈I |Xi| − 1.
The treewidth tw(G) of G is the minimal width of all tree decompositions of G.
Graphs of treewidth k are also called partial k-trees.

There is an immediate analogy to treewidth known as the robber and cops
game [34]. In this game, a robber and some cops move between nodes of a
graph according to simple rules. The robber may move along edges at any speed,
whereas only one cop may slowly jump from his current location to any other
node at a time. The game ends if the cops catch the robber. If and only if there
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exists a strategy for k + 1 cops to catch a robber on a graph according to these
simple rules, its treewidth is bounded by k.

We can derive all the main results in this paper without resorting to treewidth
at all. It is, however, used as a main ingredient indirectly. Our algorithms can
be seen as finding a tree decomposition of width m/5 + 2 for a graph with m
edges. Unfortunately, there do not seem to exist many results that relate the
number of edges of a graph to its treewidth. The only result known to us shows
that most sparse graphs have large treewidth [21]. In particular, there are graphs
with m = Θ(n) and tw(G) = Θ(m).

Is there a better upper bound on the treewidth than m/5 + 2? Note how
improving the bound of m/5 + 2 (including a polynomial algorithm to find a
tree or path decomposition) improves the running time of our first Max-2-SAT

algorithm without further ado. On the other hand, we are looking for a family
G of graphs, such that tw(G) > αm for all G ∈ G and an α as large as possible.
Results in this vein should enable a clearer sight on the tightness of our upper
bounds.

2.4 Formulæ and graphs

Let F be a formula in 2-CNF whose set of variables will be called V . The corre-
sponding connectivity graph is GF = (V,E) where

E =
{

{x, y} | the distinct variables x and y occur together in a clause
}

,

representing the way variables interact in a formula. Notice that it does not make
a difference in how many clauses a pair of variables occurs, or whether a variable
is negated or not. For instance, the two graphs GF [x] and GF [x̄] are identical. As
a consequence, the formula F cannot be reconstructed from GF .

Still, we can read a lot of information off GF . An edge between x and y
represents a direct dependency between x and y. On the other hand, x is isolated
in GF iff it only occurs in 1-clauses. Similarly, if x has degree one in GF , it lends
itself to simplification by what we will later call the companion rule.

3 An algorithm with only one reduction rule

In what follows, we prove our foundational result: a graph with m edges has
treewidth at most m/5 + 2, and we can quickly find a set of no more than m/5
nodes whose removal leaves a very simply structured graph, namely a special
case of a partial 2-tree. As an application of this technique we can solve several
optimization problems efficiently. These problems need to be expressable in graph
terms as follows: There is a graph G = (V,E) for every instance, and given a
node v in the graph, we can reduce the instance to a smaller one whose graph is
G[V \{v}]. Moreover, the problem must be easy to solve when the corresponding
graphs are partial 2-trees. Finally, reduction steps on nodes of degree two or more
may be expensive, whereas nodes of degree one have to be easy to deal with in
the problem context.

Then, the algorithm derived from our graph-theoretical result takes at most
m/5 expensive operations to reduce any input instance withm egdes to one whose
graph is a special case of a partial 2-tree. Many problems have these properties,
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where the expensive operations usually originate from case distinctions that lead
to branching in the recursion tree. Consider Max-Cut as an example: Vertices of
degree one can be deleted, since they will increase the overall size of a maximum
cut by one in any case, whereas nodes of higher degree require branching.

The algorithm presented in this section is rather simple and broadly applica-
ble. An even simpler algorithm will emerge in the next section; however, it will
have the additional requirement that nodes of degree two are easy to deal with
as well. Hence, if this condition does not hold for a problem, we have to stick to
the more general algorithm from this section; otherwise, the simpler algorithm
from the next section is preferable.

The special rôle of degree-one nodes in the first algorithm is reflected in the
following definition:

Definition 1. Let G = (V,E) be a graph. Then R(G) is the graph obtained by
deleting vertices v with deg(v) = 1 repeatedly until there are no such vertices left.

Observe that R(G) is well-defined, since it does not make any difference in
what order nodes are chosen for deletion. What is more, the following lemma
shows that even when we delete arbitrary nodes between reductions, the order
is irrelevant. This property greatly simplifies algorithmic application of the rule.
From now on, we shorten G[V \ {v}] to G− v as well as G[V \D] to G−D.

Lemma 1. Let G = (V,E) be a graph and D = {v1, . . . , vk} a set of vertices
from V . Then,

R(G−D) = R(R(. . . (R(R(G− v1) − v2) − v3) · · · − vk−1) − vk).

Proof. Let V1 = V \ D and V2 the vertices from R(. . . (R(R(G − v1) − v2) −
v3) · · · − vk−1) − vk, that is, the sets of nodes on the left and right hand side
of the equation before the final R-reduction is applied. Note that to show the
claim, it suffices to look at the sets of nodes, because edges are only removed
upon deletion of incident nodes. Moreover, the R-operation can only decrease
degrees in the graph. That is why, before the final R-operation, V1 ⊇ V2. This
implies one direction of the set equality.

We show the other inclusion by contradiction. Call v the first node that is
removed on the right hand side but remains on the left. Clearly, v /∈ D, and v
has been deleted because of the reduction rule. As all its predecessors have been
removed in R(G−D), too, v will be deleted by the R-operation on the left hand
side as well. �

In all interesting cases, R-reducing a graph does not affect its treewidth:

Lemma 2. Let G be a graph containing a cycle. Then tw(G) = tw(R(G)).

Proof. Let S be a strategy to catch a robber on R(G). Note that only dead ends
are removed by the reduction rule. A combination of different dead ends results
in a tree. Therefore, the only difference between G and R(G) are trees attached
to nodes in G. If the robber is locked in a part of R(G) by S, the attached trees
in G do not change this. The only advantage the robber can gain from such trees
is the possibility to hide in them, that is, in a tree attached to some node v
guarded by a cop. Hence, in order to adapt S to G, we only need to catch the
robber in such a tree if he really retreats to it. This is easily done by two cops.
�
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Fig. 2. A (non-cyclic) hot dog graph.

Having investigated the properties of our only reduction rule, we turn our
attention to the simple family of hot dog graphs. Surprisingly, any graph can be
turned into a hot dog graph by deleting a small set of nodes and applying the
R-reduction.

Definition 2. A path of length at least one between two possibly identical nodes
s and t in a graph G is called a leg if all its nodes other than s and t have degree
two in G. A hot dog graph consists of nodes v1, . . . , vk such that vi and vi+1 are
connected by arbitrarily many legs. Additionally, vk and v1 may be connected in
this fashion as well.

Definition 3. Let G = (V,E) be a graph whose nodes have degree at least two.
A 4-spider is a subgraph that consists of a head h ∈ V with degree four, three or
four distinct feet u1, . . . , ul ∈ V \ {h} of degree at least three, and four disjoint
legs connecting head and feet.

A 3-spider is defined similarly for a head of degree three and exactly three
distinct feet connected to it via three legs. In any case, the body of a spider
consists of all its nodes except the feet.

The nice thing about spiders is that their bodies can be removed from a graph
quite easily: First remove the head, which is a node with relatively high degree,
and then remove the remainder of the body by consecutively removing nodes of
degree one.

It is interesting to note that hot dog graphs cannot contain spiders. The
following lemma shows that the converse is also true in a fairly general setting.
This enables us to turn any graph into a hot dog graph using relatively cheap
operations.

Lemma 3. Let G = (V,E) be a connected graph whose nodes have degree be-
tween two and four. G is a hot dog graph iff it does not contain a 3- or 4-spider.

Proof. It is obvious that a hot dog graph cannot contain spiders. On the other
hand, letG be a graph as postulated in the premise that does not contain a spider.
Let H be the set of nodes that do not have exactly two neighbors. Observe that
every v ∈ H may be connected to at most two more nodes from H via legs,
because otherwise vi would be the head of a spider. Thus, we can arrange the
nodes from H in a linear or cyclical fashion as in the definition of a hot dog
graph. �

Interestingly, if a node v has been the head of a spider in G, it keeps this
rôle in the contracted graph. In what follows, we want to estimate the spider
bodycount required to carve out a hot dog graph. In effect, we need to look
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Fig. 3. A graph and the potential of its nodes: Ψ(G) = 10.5 and |E| = 17.

for the number of edges that have to be removed. As it turns out, this feat is
substantially eased if we analyze in terms of a potential function of nodes instead.

Definition 4. Let G = (V,E) be a graph, v ∈ V , and

deg3(v) =
∣

∣{u ∈ V | there is a leg connecting u and v, and deg(u) ≥ 3}
∣

∣.

We define the potential functions ψ : V → N and Ψ : G → N as follows:

ψ(v) =























0 if deg(v) ≤ 2

0 if deg(v) = 3 and deg3(v) = 1

5/4 if deg(v) = 3 and deg3(v) > 1

2 if deg(v) ≥ 4

We extend the definition to graphs via

Ψ(G) =
∑

v∈V

ψ(v).

Lemma 4. Let G = (V,E) be a graph. Then Ψ(G) ≤ |E|.

Proof.

|E| =
1

2

∑

v∈V

deg(v) =
1

2

|V |−1
∑

i=1

∑

v∈V
deg(v)=i

i ≥
∑

v∈V
deg(v)=3

5

4
+

∑

v∈V
deg(v)≥4

2 ≥ Ψ(G).

�

Lemma 5. Let G = (V,E) be a graph whose nodes have degree between two and
four. If G contains a 4-spider with head h, then

Ψ(R(G− h)) ≤ Ψ(G) − 5.

Proof. Let S be a 4-spider with head h. We have to distinguish several cases.
In the first case, S has four different feet u1, . . . , u4 with 3 ≤ deg(ui) ≤ 4.

Removing h and all nodes of degree one consecutively has the following effect:
Because h is erased, the potential decreases by 2. As a consequence, the degree of
each foot is lowered by one. This means that the potential decreases by 2−5/4 =
3/4 or 5/4 − 0 = 5/4 per foot. The total loss of potential thus amounts to at
least 2 + 4(3/4) = 5.
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Fig. 4. A 4-spider with only three feet. Removing the spider and consequently erasing all nodes
of degree one also decreases the potential of z by at least 3/4 if deg(u1) = 3.

In the second case, there are only three feet u1, . . . , u3, and the situation is
slightly more complicated. W.l.o.g. two paths are leading to u1 and one path
each to u2 and u3. If deg(u1) = 4, removing the body of S does the following:
The potential of u1 is lowered by 2, the potential of h decreased by 2 as well,
and the potentials of u2 and u3 shrink by 2 − 5/4 = 3/4 or 5/4 − 0 = 5/4 each.
Altogether, these values sum up to a loss of potential greater than 5.

Otherwise, if deg(u1) = 3, only one other leg starts from u1. Let z denote
the node this leg ends in. Note that z and h have to be different, since otherwise
S would not be a spider at all: There would be three paths to u1, but only two
feet. See Figure 4 for an illustration.

If z, u2, u3 are all different, the potential of h decreases by 2, the potential of
u1 by 5/4, and the potentials of z, u2, and u3 by at least 3/4 each, which is again
more than 5 in total. If z, u2, u3 are not all different, say z = u3 6= u2, then the
potential of h is lowered by 2, the potential of u1 by 5/4, the potential of z = u3

by at least 5/4, and the potential of u2 by at least 3/4, which is more than 5
altogether. �

Lemma 6. Let G = (V,E) be a connected graph whose nodes have degree be-
tween two and four. If G does not contain any 4-spider, but a 3-spider with
head h, then Ψ(R(G− h)) ≤ Ψ(G) − 5.

Proof. Let h be the head of a 3-spider with feet u1, u2, u3. Removing this spider
causes the potential to decrease by at least 5, since ψ(h) = 5/4, and we lose
at least 5/4 on each foot, too. To see this, distinguish the following two cases:
Either, deg(ui) = 3 — this leads to a decrease in potential of exactly 5/4 — or,
deg(ui) = 4 for some i. In the latter case, observe that there is exactly one leg
between ui and h, as ui is a foot of the 3-spider with head h. Since ui cannot be
the head of a 4-spider, the three other legs starting in ui end in the same node z.
Then, however, we have that ψ(ui) = 0 in R(G − h) due to the definition of ψ
and deg3. �

Let us now begin putting the pieces together.

12



Theorem 1. Let G = (V,E) be a graph. There is a set D ⊆ V such that R(G−
D) is a hot dog graph and |D| ≤ |E|/5.

Proof. We construct a set of nodes D such that R(G − D) is a hot dog graph.
As long as G contains a node v with degree at least five, remove v from G and
set D := D∪{v}. Now delete the bodies of all 4-spiders from G, and then do the
same for 3-spiders. Add the heads of all these spiders to D. Note that removing a
spider’s body is the same as removing its head and applying the reduction rule R
afterwards.

We obtain a set D such that R(G−D) is a hot dog graph. Using Lemmata
4, 5, and 6, it is easy to see that |D| ≤ m/5. �

Theorem 2. The treewidth of a graph G = (V,E) is at most |E|/5 + 2.

Proof. Let D the set given by Theorem 1. By Lemma 2, R-reducing G−D leaves
its treewidth intact, provided that it contains a cycle. Hence, the treewidth of
G−D is not higher than that of a hot dog graph. It is easy to see that hot dog
graphs constitute a special case of series-parallel graphs, which have treewidth
at most two [5, p. 174]. Otherwise, G − D is but a forest. Altogether, we have
that tw(G) ≤ |D| + 2 = |E|/5 + 2. �

Having thus achieved our graph theoretic main result, we continue with an
application to Max-2-SAT. The interpretation of the above result in the context
of connectivity graphs immediately yields the following corollary:

Corollary 1. Let F be a 2-SAT-formula with t clause types. Then we can find
a set of variables z1, . . . , zr, r ≤ t/5 in polynomial time such that: If A is an
assignment to z1, . . . , zr, then the reduced connectivity graph R(GF [A]) is a hot
dog graph.

Henceforth, when discussing connectivity graphs for formulæ, we do not dis-
tinguish between nodes and the variables they represent, that is we use the same
names for both.

Lemma 7. Let F be a 2-SAT-formula such that GF is a hot dog graph. The
maximum number of satisfiable clauses can be determined in polynomial time.

Proof. Let x1, . . . , xk be the nodes of degree at least three, and let Ci denote the
set of clauses containing a variable that lies on a path between two vertices in
{x1, . . . , xi}. Define c0i as the maximum number of satisfied clauses in Ci when xi

is set to 0 (c1i analogous). Clearly, max(c0k, c
1
k) is the solution to the Max-2-SAT

problem on F .
Both c01 and c11 are easy to calculate. We show how c0i+1 can be computed from

c0i and c1i in polynomial time. Consider for instance the case where xi = xi+1 = 0.
For every leg between xi and xi+1, we compute the optimum assignment to
the variables on this leg. This can be done in polynomial time using dynamic
programming, because every such node has at most two neighbors. Adding up
the values for every leg, we obtain the maximum number of satisfied clauses for
xi = xi+1 = 0. Repeating this procedure for xi = 1 immediately yields c0i+1. �

Definition 5. Let F be a 2-SAT-formula. We call the variable x a companion
( of y) if there is a unique variable y 6= x that occurs together with x in a clause.

13



In terms of the respective connectivity graph GF , the variable x is a com-
panion if and only if the degree of x in GF is one. Again, we may do away with
such appendices in a fashion similar to R-reduction. Insofar, the next lemma is
in analogy to Lemma 2.

Lemma 8 (The companion reduction rule). Let F be a 2-SAT formula. If x
is a companion, we can transform F into an equivalent formula F ′ containing the
same variables except for x, where GF ′ = GF −x. This can be done in polynomial
time.

Proof. Let F be a formula, x a companion of y, F ′ consist of all clauses in
F with an occurrence of the variable x, and F ′′ = F − F ′. Let furthermore
a = OptVal(F ′[y]), b = OptVal(F ′[ȳ]), and

H =

{

{

(b,T), (a− b, {y})
}

if a > b
{

(a,T), (b− a, {ȳ})
}

otherwise

It is easy to see that a = OptVal(H[y]) and b = OptVal(H[ȳ]). We immediately
get

OptVal(H + F ′′) =

max
{

OptVal(H[y]) + OptVal(F ′′[y]),OptVal(H[ȳ]) + OptVal(F ′′[ȳ])
}

=

max
{

OptVal(F ′[y] + OptVal(F ′′[y]),OptVal(F ′[ȳ] + OptVal(F ′′[ȳ])
}

=

= OptVal(F ′ + F ′′) = OptVal(F ).

Hence, we can replace F by the equivalent formula H + F ′′. Note that it is very
easy to calculate a and b, and that H + F ′′ does not contain the variable x
anymore. �

Putting together Theorem 1 as well as Lemmata 7 and 8 analogously to
Theorem 2 yields the following runtime bound:

Theorem 3. Max-2-SAT can be solved in O∗(2t/5) steps.

4 A second rule simplifies the algorithm

In this section, we develop a simpler algorithm which employs a second reduction
rule in addition, which replaces a path (u, v, w) with deg(v) = 2 by the path
(u,w). We call this operation contracting v. Notice that this introduces another
constraint on the set of possible applications: Degree-two nodes must be easy to
handle in the problem translation. That is, the way they contribute to a solution
should only depend on their two neighbors.

In short, we trade simplicity for applicability: As we will see in what follows,
the refined method allows for a much simpler implementation, and thus eases
the analysis. Moreover, in the place of hot dog graphs, it leaves a trivial graph
without any edges.

On the other hand, there are problems that do not meet the above extra
constraint, while the technique from the previous section can still be employed.
Again, consider Max-Cut: In the direct approach, it is not clear how to avoid
branching on degree-two nodes. Fortunately, in this case, a different problem
encoding will emerge that enables an application of the more straightforward
second approach.

14



Algorithm A

Input: A graph G = (V,E)
Output: D ⊆ V , |D| ≤ |E|/5, such that R′(G−D) has no edges
D ← ∅;
while there is a node v with deg(v) ≥ 3 do

choose a node v with maximum degree;
D ← D ∪ {v}; G← R′

v(G)
od;
return D

Fig. 5. A simpler algorithm that uses R′ rather than R

Definition 6. Let G = (V,E) be a graph and v ∈ V . Let R′(G) be the graph that
we get from G by repeatedly removing degree one vertices and contracting degree
two vertices until no such operation is possible. Whenever a contraction leads to
a double edge, only a single edge is retained. We also define R′

v(G) := R′(G−v).

Lemma 9. Let G = (V,E) be a graph with minimum degree three and maximum
degree four. If v ∈ V and deg(v) = 4, then Ψ(R′

v(G)) ≤ Ψ(G) − 5.

Proof. Let u1, . . . , u4 be the neighbors of v. We have ψ(v) = 2, and removing v
decreases the degree of each ui by one. In total, the operation lowers the potential
by at least 2 + 4(3/4) = 5. Since neither the removal of a degree one node nor
the contraction of a degree two node can increase the potential, this implies
Ψ(R′

v(G)) ≤ Ψ(G) − 5. �

Lemma 10. Let G = (V,E) be a 3-regular graph. For every v ∈ V we have that
Ψ(R′

v(G)) ≤ Ψ(G) − 5.

Proof. Every node in a 3-regular graph has a potential of Ψ(3) = 5/4. Removing
v hence lowers the potential by 5. �

Theorem 4. Algorithm A finds a set D ⊆ V such that |D| ≤ m/5 and R′(G−D)
has no edges.

Proof. As long as there are nodes of degree at least five, the body of the while-
loop increases the size of D by one while removing at least five edges. As soon as
all nodes have degree at most four, Ψ(G) ≤ |E| by Lemma 4. From then on, the
potential Ψ(G) decreases by at least five in the body of the while-loop according
to Lemmata 9 and 10. Since R′(G) never contains nodes of degree one or two,
the graph cannot have any edges when the algorithm terminates.

It is, however, not obvious that R′(G−D) is the same graph. We only know
that removing the nodes of D in the right order and applying reduction rules in
between yields a graph without edges. However, analogously to Lemma 1, it is
easy to see that indeed R′

xk
(R′

xk−1
(· · ·R′

x1
(G) · · · )) = R′(G− {x1, . . . , xk}). �

In order to use Algorithm A for solving Max-2-SAT, we must find reduction
rules for formulæ that correspond to removing a node of degree one and con-
tracting a node of degree two. The companion reduction rule can be used on a
formula F to remove a node of degree one from GF . But what do we need to do
with F in order to contract a node of degree two in GF ? It is easy to see that
we have to eliminate a variable x that occurs with exactly two other variables y
and z in 2-clauses, introducing new clauses of the type {y, z} in return.
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Definition 7. Let F be a 2-SAT-formula. A variable x is a double companion
if and only if the degree of x in GF is two.

To ease the introduction of a double companion reduction rule, we now gen-
eralize the notion of a clause. We defined a clause to be a pair (ω,C) where C
is a set of (non-complementary) literals and ω a positive integer. In this section,
we allow ω to be a negative integer as well. For the following theorem, remember
the definition of our new parameter t, the number of clause types.

Lemma 11 (The double companion reduction rule). Let F be an arbitrary
2-SAT formula. If x is a double companion, then we can transform F into an
equivalent formula F ′ which contains the same variables as F except x, and
possibly clauses of negative weight, in polynomial time. The formula F ′ does not
have more clause types than F . Moreover, GF ′ is the graph obtained from GF by
contracting x.

Proof. Let x be a double companion that occurs together with y and z. Let
F = F ′ + F ′′, where F ′ consists of all the clauses that contain x and F ′′ holds
all the other clauses. We define a = OptVal(F ′[y, z]), b = OptVal(F ′[y, z̄]), c =
OptVal(F ′[ȳ, z]), and d = OptVal(F ′[ȳ, z̄]). Let

G =
{

(a+ b+ c+ d,T), (−d, {y, z}), (−c, {y, z̄}), (−b, {ȳ, z}), (−a, {ȳ, z̄})
}

.

We easily see a = OptVal(G[y, z]), b = OptVal(G[y, z̄]), c = OptVal(G[ȳ, z]), and
d = OptVal(G[ȳ, z̄]). Therefore, OptVal(F ′ + F ′′) = OptVal(G+ F ′′). Moreover,
x does obviously not occur in G+ F ′′. �

Example 3. Let F be the formula

F = { (2, {y, x}), (1, {ȳ, x̄}), (2, {x̄, z̄}), (1, {x, z̄}), (1, {y, z̄}) }

with double companion x. We get

F ′ = { (2, {y, x}), (1, {ȳ, x̄}), (2, {x̄, z̄}), (1, {x, z̄}) }

and thus OptVal(F ′[y, z]) = 2, OptVal(F ′[y, z̄]) = 5, OptVal(F ′[ȳ, z]) = 1, and
OptVal(F ′[ȳ, z̄]) = 4. By the double companion reduction rule, F ′ reduces to

G = {(2 + 5 + 1 + 4,T), (−4, {y, z}), (−1, {y, z̄}), (−5, {ȳ, z}), (−2, {ȳ, z̄})},

and we obtain

G+ F ′′ = { (12,T), (−4, {y, z}), (−5, {ȳ, z}), (−2, {ȳ, z̄}) }.

The optimum assignment y = 1, z = 0 satisfies clauses weighted six in both
G+ F ′′ and F .

We now have reduction rules for formulæ in 2-CNF that enable us to elim-
inate all nodes with degree up to two in the corresponding connectivity graph.
Algorithm B uses this machinery on the connectivity graph of a 2-CNF formula
to find the number of satisfiable clauses. The algorithm can be easily modified
to return an optimal assignment, too. The running time is again O∗(2t/5), where
t ≤ m is the number of different clause types.
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Algorithm B

Input: A Max-2-SAT-formula F
Output: OptVal(F )
Let D be the result of Algorithm A on GF ;
r ← 0;
for all assignments A on D do

F ′ ← F [A];
Reduce F ′ by the (double) companion reduction rule while possible;
t← OptVal(F ′);
if t > r then r ← t fi

od;
return r

Fig. 6. An algorithm for Max-2-SAT that uses Algorithm A to find a small set of variables for
which all assignments have to be tested.

It turns out that we need not use the connectivity graph explicitly. Instead,
we can employ a recursive procedure as described in Algorithm C. In this form it
corresponds to classical satisfiability algorithms starting with the Davis–Putnam
procedure: Apply reduction rules as long as possible and then choose a variable
for branching. In the past, better and better algorithms included more and more
complicated rules. This involves reduction rules as well as rules for choosing a
variable (or a group of variables) to branch on, combined with clever pruning
of cases that cannot lead to an optimal assignment. In contrast, Algorithm C is
very simple: It is comprised of only two reduction rules and one rule to choose a
variable for branching, none of which are complicated.

Algorithm C

Input: A Max-2-SAT-formula F
Output: OptVal(F )
Reduce F by the (double) companion reduction rule while possible;
if F = {(k,T)} then return k
else

choose a variable x that occurs in a maximum number of clause types;
return max{Algorithm C(F [x]),Algorithm C(F [x̄])}

fi

Fig. 7. A very simple algorithm for Max-2-SAT that does not use the connectivity graph
directly.

5 Improving beyond t/5

In this section, we apply a tiny modification to the algorithm discussed above.
More precisely, we introduce the additional rule to avoid picking a node of degree
four all of whose neighbors have degree four as well, whenever possible.

We begin by looking at a special case for graphs of low degree. This theorem
is of independent interest, and its proof serves to introduce the methods we apply
in Theorem 6.

Theorem 5. Let G = (V,E) be a graph with m edges and maximum degree four.
Then there is a set D ⊆ V , |D| ≤ 3

16m+ 1, such that R′(G−D) has no edges.
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Proof. Given G = (V,E), construct D ⊆ V as follows. Pick a vertex of maximum
degree, and while choosing vertices of degree four, only take a vertex all of whose
neighbors have degree four if no other type of degree-four node remains. Note that
the latter is only the case if the graph is 4-regular. Remove the chosen vertex,
apply the two reduction rules, and repeat the procedure until the maximum
degree in the remaining graph drops below three.

We redefine the potential function ψ:

ψ(v) =











0 if deg(v) ≤ 2

4/3 if deg(v) = 3

2 if deg(v) ≥ 4

Let 〈n1, . . . , nd〉 denote the case that we pick a node v of degree d whose
neighbors have degree n1 through nd. The respective losses of potential caused
by the removal of such nodes v can be computed easily: the potential of v drops to
zero, whereas the degree of each of its neighbors decreases by one. For instance,
the loss of potential in the case 〈4, 4, 4, 3〉 amounts to 2+3 · (2− 4/3)+4/3. The
resulting values are listed in the following table.

case 〈4, 4, 4, 4〉 〈4, 4, 4, 3〉 〈4, 4, 3, 3〉 〈4, 3, 3, 3〉 〈3, 3, 3, 3〉 〈3, 3, 3〉

loss 42
3 51

3 6 62
3 71

3 51
3

Observe that the special case 〈4, 4, 4, 4〉 can only occur in the first itera-
tion, which causes at most one extra step, or if preceeded by 〈3, 3, 3, 3〉: Clearly,
it cannot be preceeded by 〈3, 3, 3〉, because we always pick a vertex of maxi-
mum degree. Furthermore, a node of degree three is created in all the remaining
cases, preventing the graph from becoming 4-regular and thus excluding the case
〈4, 4, 4, 4〉.

Except for the first step, the good case 〈3, 3, 3, 3〉 countervails against the bad
case 〈4, 4, 4, 4〉. Since the average loss of potential in these two cases amounts to 6,
we have that the potential decreases by an average of at least 5 1

3 per step. Hence,
the overall potential will drop to zero after at most 3

16m additional iterations. �

Note that, analogously to Lemma 4, it is easily checked that Ψ(G) ≤ |E| for
continuations of the potential functions in both the previous and the upcoming
proof.

Theorem 6. Let G = (V,E) be a graph with m edges. Then there is a set D ⊆ V ,
|D| ≤ 23

120m+ 1, such that R′(G−D) has no edges.

Proof. We use both the algorithm and the notation described in the proof to the
previous theorem. Again, we redefine the potential function ψ:

ψ(v) =























0 if deg(v) ≤ 2

30/23 if deg(v) = 3

45/23 if deg(v) = 4

5/2 if deg(v) ≥ 5

Obviously, we get rid of at least six edges per iteration as long as the algorithm
removes nodes of degree at least six. It hence suffices to switch to an analysis via
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Algorithm A′

Input: A graph G = (V,E)
Output: D ⊆ V , |D| ≤ |E|/5.217 + 1, such that R′(G−D) has no edges
D ← ∅;
while there is a node v with deg(v) ≥ 3 do

choose a node v with maximum degree,
avoiding the case 〈4, 4, 4, 4〉 if possible;
D ← D ∪ {v}; G← R′

v(G)
od;
return D

Fig. 8. A slightly more complicated variant of Algorithm A

potential as soon as the maximum degree in the remaining graph has decreased
to at most five. When a node of degree five is deleted, this lowers the potential
by at least 5/2 + 5 · (5/2 − 45/23) = 5 5

23 . The other cases are listed below.

case 〈4, 4, 4, 4〉 〈4, 4, 4, 3〉 〈4, 4, 3, 3〉 〈4, 3, 3, 3〉 〈3, 3, 3, 3〉 〈3, 3, 3〉

loss 413
23 5 5

23 520
23 612

23 7 4
23 5 5

23

As detailed above, the good case 〈3, 3, 3, 3〉 countervails against the bad case
〈4, 4, 4, 4〉; their average loss of potential is 5 20

23 . Hence, only nodes of degree at
most two remain after at most 23

120m+ 1 iterations. �

Modifiying Algorithm A according to the above result, as depicted in Figure 8,
leads to the following improved running times.

Corollary 2. Max-2-SAT and Max-2-XSAT can be solved in O∗(2t/5.217) and
thus in O∗(2m/5.217) time. Max-Cut can be solved in O∗(2m/5.217) time.

In order to give an upper bound on the treewidth of a graph G = (V,E)
using the above results, it suffices to check that tw(G−D) ≤ 2. This is because
tw(R′(G−D)) = 0, and R′ does not trivialize graphs of treewidth at least three [5,
p. 174].

Corollary 3. The treewidth of a graph G = (V,E) is at most |E|/5.217 + 3.
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2000-02 Jens Vöge, Marcin Jurdzinski: A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-04 Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 Mareike Schoop: Cooperative Document Management

2000-06 Mareike Schoop, Christoph Quix (eds.): Proceedings of the Fifth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2000-07 ∗ Markus Mohnen, Pieter Koopman (Eds.): Proceedings of the 12th Inter-

national Workshop of Functional Languages

2000-08 Thomas Arts, Thomas Noll: Verifying Generic Erlang Client-Server Im-

plementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

34



2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic
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