
Aachen
Department of Computer Science

Technical Report

A New Satisfiability Algorithm

With Applications To Max-Cut

Joachim Kneis and Peter Rossmanith

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2005-08

RWTH Aachen · Department of Computer Science · April 2005

The publications of the Department of Computer Science of RWTH Aachen
University are accessible through the World Wide Web in general.

http://aib.informatik.rwth-aachen.de/

A New Satisfiability Algorithm

With Applications To Max-Cut

Joachim Kneis and Peter Rossmanith

Lehr- und Forschungsgebiet Theoretische Informatik
RWTH Aachen, Germany

Email: {kneis,rossmani}@cs.rwth-aachen.de

Abstract. We prove an upper bound of m/5.217 + 3 on the treewidth of a
graph with m edges. Moreover, we can always find efficiently a set of no more
than m/5.217 + 1 nodes whose removal yields a partial 2-tree. As an application,
we immediately get simple algorithms for several problems, including Max-Cut,
Max-2-SAT and Max-2-XSAT. The resulting algorithms have running times of
O∗(2t/5.217), where t is the number of distinct clause types. In particular, this
implies a record-breaking time complexity of O∗(2m/5.217).

1 Introduction

We are currently experiencing a renaissance in the investigation of exponential-
time algorithms. The first subsection will elaborate on this. One example of
obvious importance is testing a boolean formula for satisfiability. Following a
short review of earlier scholarship in this area, the contributions of the paper at
hand will be highlighted.

1.1 Worst-case upper bounds for NP-hard problems

We believe that no polynomial time algorithms exist for NP-hard problems. Still,
there is no doubt as to the practical relevance of many of them. For some of
these problems, there are polynomial-time approximation algorithms that give
solutions within a factor α, usually called the performance ratio, of the optimal
solution. However, for problems that are Max-SNP-hard [1, 29], it is known that
the performance ratio of a polynomial-time algorithm cannot be better than some
constant ζ, called the inapproximability ratio, unless P=NP. For example, the
ratios known for Max-2-SAT are α = 0.931 [10] and ζ = 0.955 [15].

Recently, there has been a wave of effort in proving exponential-time worst-
case upper bounds for NP-hard problems — in particular for the exact solution
of Max-SNP-hard problems. One of the most intensely investigated problems in
this area seems to be SAT, the problem of satisfiability of a propositional formula
in conjunctive normal form — CNF. In the early 1980s, the trivial bound of
O∗(2n) has been improved for formulæ in 3-CNF1, where every clause contains at
most three literals, by Monien and Speckenmeyer [27]. After that, improved upper
bounds for k-SAT [8, 17, 23, 24, 30, 32], Max-SAT [6, 3, 26, 28], Max-2-SAT [3,
28], and other NP-hard problems could be obtained.

1 The O∗-notation was introduced by Woeginger and suppresses all polynomial factors; e.g.,
2kn5 = O∗(2k).

1.2 Related work

Concerning the problems for formulæ in CNF, most authors consider bounds
with respect to three parameters:

– the length l of the input formula (i.e., the number of literal occurrences),
– the number m of its clauses, and
– the number n of the variables occurring in it.

As of today, O∗(2l/9.7) and O∗(2m/3.23) are the best bounds for SAT [17]. In
contrast, with respect to the number of variables, nothing better than the trivial
bound of O∗(2n) is known. For the special case of 3-SAT, the bounds with respect
to l and m are the same as for SAT, whereas a randomized algorithm [18] taking
O∗(1.324n) steps and a deterministic one [8] running in O∗(1.481n) time are
known.

The maximum satisfiability problem — Max-SAT— is an important gener-
alization of SAT. Given a formula in CNF, it asks for the maximum number of
simultaneously satisfiable clauses. The decision variant of this problem is com-
plete for both NP and Max-SNP, even if each clause contains at most two lit-
erals — this restriction is called Max-2-SAT [29]. Max-SAT and Max-2-SAT

are well-studied in the context of approximation algorithms [2, 7, 10, 15, 19, 37].
Recently, numerous results regarding worst-case time bounds for the exact solu-
tion of Max-SAT and Max-2-SAT have been published [3, 7, 14, 16, 26, 28, 12].
The best bounds that have been achieved for Max-SAT [3] are O∗(2l/6.89) and
O∗(2m/2.36). For Max-2-SAT, the considerably better bounds of O∗(2m/2.46),
O∗(2m/2.88) and O∗(2m/3.44) [6, 28, 3] follow from Max-SAT algorithms. The
best algorithm developed particularly for Max-2-SAT [12] has time complexity
O∗(2m/5), which implies O∗(2l/10). With respect to the number of variables, the
trivial O∗(2n) algorithm has not been improved until recently, when Williams
came up with a new algorithm solving Max-2-SAT in O∗(2ωn/3) steps [36] for
an ω < 2.379. More precisely, O∗(nω) is the asymptotic running time of the best
algorithm for matrix product over a ring. For Max-SAT, there is another rele-
vant parameter, namely the number k of satisfiable clauses. An algorithm that
is efficient with respect to k might be faster than one that is good with respect
to m if k is much smaller than m [26, 22].

In general, a Max-SAT-instance is represented by a multiset rather than a
set of clauses, since a clause may occur more than once. In order to account
for this, we let m denote the number of clause occurrences — the total weight.
Furthermore, we declare t to stand for the number of clause types. A clause type
will be understood as a maximum distinct set of variables occuring together in
at least one clause, disregarding negations. It is easy to see that t can be much
smaller than m, even in formulæ that do not have multiple identical clauses.

1.3 Contributions of this paper

In this paper, we present a very simple algorithm for Max-2-SAT that has time
complexity O∗(2t/5), and thus O∗(2m/5) just like the one by Gramm et al. [12].
Moreover, we analyze a slightly more complicated version of the algorithm, low-
ering the bound to O∗(2t/5.217). The latter improves upon the best known upper
bounds for solving Max-2-SAT [13], Max-2-XSAT [25] and Max-Cut [33].

4

Impressive as these new record bounds may seem, they are just the tip of the
iceberg. In fact, they represent little more than mere by-products of a much more
general technique. It relies on our main graph theoretical result, which states that
the treewidth of a graph G = (V,E) is bounded by |E|/5.217+3. Furthermore, a
tree decomposition of this size can be obtained in polynomial time. The method
that stems from this observation enables a narrowing of the search space for
many important NP-hard problems. In particular, a simple application yields
the above-mentioned record-breaking bounds.

2 Preliminaries

In this section we describe the notation we use for Max-Cut and satisfiability
problems. Moreover, we recall the notion of treewidth.

2.1 Maximum satisfiability

Throughout this paper, we adhere to the notation for boolean formulæ used by
Gramm et al. [12]. Let V be a set of boolean variables. A literal is either a
variable or its negation. As usual, the negation of a variable x is denoted by x̄,
and whenever l denotes a negated variable x̄, then l̄ stands for the variable x.

Algorithms for finding the exact solution of Max-SAT are often designed for
the unweighted Max-SAT problem. However, Max-SAT formulæ are generally
represented by multisets, i.e., formulæ in CNF with positive integer weights.
Thus, we consider the weighted Max-SAT problem with positive integer weights.
A (weighted) clause is a pair (ω, S), where ω is a positive integer and S is a
nonempty finite set of literals that does not contain any variable and its negation
simultaneously. We call ω the weight of the clause.

An assignment is a finite set of literals that does not contain any variable
together with its negation. Informally speaking, if an assignment A contains a
literal l, then the literal l has the value True in A. In addition to usual clauses,
we allow a special true clause (ω,T), also called a T-clause, which is satisfied
by every assignment.

The length of a clause (ω, S) is the cardinality of S, or 0 in the case of a
T-clause; a k-clause is a clause of length exactly k. In this paper, a formula —
more precisely a formula in (weighted) CNF — is a finite set of weighted clauses
(ω, S), with at most one clause for each S. A formula is in 2-CNF if it contains
only 2-clauses, 1-clauses and possibly a T-clause. The length of a formula is the
sum of the lengths of all its clauses.

Pairs of the (0, S) variety are not clauses; for simplicity, however, we assume
(0, S) ∈ F for all S and all F when defining the operators + and −:

F +G =
{

(ω1 + ω2, S)
∣

∣ (ω1, S) ∈ F and (ω2, S) ∈ G, and ω1 + ω2 > 0
}

,

F −G =
{

(ω1 − ω2, S)
∣

∣ (ω1, S) ∈ F and (ω2, S) ∈ G, and ω1 − ω2 > 0
}

.

Example 1. If

F = { (2,T), (3, {x, y}), (4, {x̄, ȳ}) }

and

G = { (2, {x, y}), (4, {x̄, ȳ}) },

5

then
F −G = { (2,T), (1, {x, y}) }.

For a literal l and a formula F , the formula F [l] is obtained by setting the
value of l to true. More precisely, we define

F [l] = ({ (ω, S) | (ω, S) ∈ F and l, l̄ /∈ S } +

{ (ω, S \ { l̄ }) | (ω, S) ∈ F and S 6= { l̄ } and l̄ ∈ S } +

{ (ω,T) | ω is the sum of the weights ω′

of all clauses (ω′, S) of F such that l ∈ S }.

Note that no (ω, ∅) or (0, S) is included in F [l], F+G or F−G. For an assignment
A = {l1, . . . , ls} and a formula F , we define F [A] = F [l1][l2] . . . [ls]. Evidently,
F [l][l′] = F [l′][l] for every pair of literals l, l′ with l 6= l̄′. In short, we write
F [l1, . . . , ls] instead of F [{l1, . . . , ls}].

Example 2. If

F = { (1,T), (1, {x, y}), (5, {ȳ}), (2, {x̄, ȳ}), (10, {z̄}), (2, {x̄, z}) },

then
F [x, z̄] = { (12,T), (7, {ȳ}) }.

�

The weight of satisfied clauses for a formula F and an assignment A is defined
as ω where (ω,T) is the T-clause in F [A], or 0 if there is none such. As ex-
pected, the maximum weight of satisfied clauses for a formula F is OptVal(F) =
maxA{ω | (ω,T) ∈ F [A] }, where A is taken over all possible assignments. An
assignment A is optimal iff F [A] only contains (ω,T) and ω = OptVal(F). Note
that when ω = 0, the simplified formula F [A] does not contain any clause. We
say that two formulæ F1 and F2 are equivalent if there is no assignment A such
that the weight of satisfied clauses for F1 and A differs from the one for F2 and A.

2.2 Maximum cut

Let G = (V,E) be an undirected graph. If S
·∪ T is a partition of V , we call the

pair (S, T) a cut. The size of a cut (S, T) is the number of edges connecting S
and T . The Max-Cut problem is to find a cut of maximal size. Its complexity is
well investigated in terms of the number of edges m [9, 12, 14]; the best algorithm
so far [33] has time complexity O∗(2m/5).

It is well known that Max-Cut can be solved by transforming an instance
of Max-Cut into a Max-2-SAT instance as follows: The set of variables corre-
sponds to the set of vertices. For every edge {x, y} in the graph we add the two
clauses {x, y} and {x̄, ȳ} to the formula. It is easy to see that the graph has a cut
of size k iff m+k clauses can be satisfied in the corresponding formula, where m
is the number of edges. In this way, an O∗(2αm) step algorithm for Max-2-SAT

can be employed to solve Max-Cut in O∗(22αm) steps.
Recently, the problem Max-2-XSAT has been investigated. It is defined

similar to Max-2-SAT, but a clause is only considered fulfilled by an assignment
A if A satisfies exactly one of its literals. There is an algorithm that solves

6

a

b

c

d

e

f

g

h

i

ab
d

b
c
d

bde

d
e
h

h
i

efg

e
g
h

Fig. 1. A graph of treewidth four and an optimal tree decomposition.

Max-2-XSAT in O∗(2m/4) steps [25]. The connection between Max-2-XSAT

and Max-Cut is even tighter than the one between Max-2-SAT and Max-Cut:
The Max-2-XSAT-formula containing the clause {x, y} for each edge {x, y} has
m simultaneously satisfiable clauses iff there is a cut of size m in the given graph.
It is thus only fair to say that Max-Cut is a special case of the more general
problem Max-2-XSAT, where negative literals are allowed. Still, the algorithm
for Max-2-XSAT [25] only yields an O∗(2m/4) algorithm for Max-Cut, which
is exactly the same time complexity achieved earlier by Fedin and Kulikov [9].

The results of this paper also imply a simpler algorithm for Max-2-XSAT

whose running time is O∗(2m/5.217). This implies a runtime bound of O∗(2m/5.217)
for Max-Cut. There is, however, another possibility to show the new bound for
Max-Cut in terms of an algorithm for Max-2-SAT itself: We will show that
the new Max-2-SAT-algorithm has a running time of only O∗(2t/5.217), where t
is the number of clause types. Using the above reduction, a graph with m edges
is transformed into a Max-2-SAT-formula with 2m clauses, but only m types of
clauses.

2.3 Treewidth

Treewidth measures how “treelike” a graph is. The notion of treewidth was in-
troduced by Robertson and Seymour [31]. Bodlaender [4] and Kloks [20] give
an introduction to this concept. Many graph problems that are hard in general
can be solved efficiently, i.e., in polynomial and often linear time, for graphs of
bounded treewidth. Well-known examples are Hamiltonian Path, Max-Cut,
Independent Set and Vertex Cover [35]. Formally, we can define treewidth
via tree decompositions:

A pair
(

{Xi ⊆ V | i ∈ I}, T
)

is a tree decomposition of a graph G = (V,E)
if T is a tree with node set I, every edge {u, v} is contained in some Xi (that
is, u, v ∈ Xi), and Xi ∩ Xj ⊆ Xk for every k that lies on the path from i to j
in T . The width of a tree decomposition

(

{Xi | i ∈ I}, T
)

is maxi∈I |Xi| − 1.
The treewidth tw(G) of G is the minimal width of all tree decompositions of G.
Graphs of treewidth k are also called partial k-trees.

There is an immediate analogy to treewidth known as the robber and cops
game [34]. In this game, a robber and some cops move between nodes of a
graph according to simple rules. The robber may move along edges at any speed,
whereas only one cop may slowly jump from his current location to any other
node at a time. The game ends if the cops catch the robber. If and only if there

7

exists a strategy for k + 1 cops to catch a robber on a graph according to these
simple rules, its treewidth is bounded by k.

We can derive all the main results in this paper without resorting to treewidth
at all. It is, however, used as a main ingredient indirectly. Our algorithms can
be seen as finding a tree decomposition of width m/5 + 2 for a graph with m
edges. Unfortunately, there do not seem to exist many results that relate the
number of edges of a graph to its treewidth. The only result known to us shows
that most sparse graphs have large treewidth [21]. In particular, there are graphs
with m = Θ(n) and tw(G) = Θ(m).

Is there a better upper bound on the treewidth than m/5 + 2? Note how
improving the bound of m/5 + 2 (including a polynomial algorithm to find a
tree or path decomposition) improves the running time of our first Max-2-SAT

algorithm without further ado. On the other hand, we are looking for a family
G of graphs, such that tw(G) > αm for all G ∈ G and an α as large as possible.
Results in this vein should enable a clearer sight on the tightness of our upper
bounds.

2.4 Formulæ and graphs

Let F be a formula in 2-CNF whose set of variables will be called V . The corre-
sponding connectivity graph is GF = (V,E) where

E =
{

{x, y} | the distinct variables x and y occur together in a clause
}

,

representing the way variables interact in a formula. Notice that it does not make
a difference in how many clauses a pair of variables occurs, or whether a variable
is negated or not. For instance, the two graphs GF [x] and GF [x̄] are identical. As
a consequence, the formula F cannot be reconstructed from GF .

Still, we can read a lot of information off GF . An edge between x and y
represents a direct dependency between x and y. On the other hand, x is isolated
in GF iff it only occurs in 1-clauses. Similarly, if x has degree one in GF , it lends
itself to simplification by what we will later call the companion rule.

3 An algorithm with only one reduction rule

In what follows, we prove our foundational result: a graph with m edges has
treewidth at most m/5 + 2, and we can quickly find a set of no more than m/5
nodes whose removal leaves a very simply structured graph, namely a special
case of a partial 2-tree. As an application of this technique we can solve several
optimization problems efficiently. These problems need to be expressable in graph
terms as follows: There is a graph G = (V,E) for every instance, and given a
node v in the graph, we can reduce the instance to a smaller one whose graph is
G[V \{v}]. Moreover, the problem must be easy to solve when the corresponding
graphs are partial 2-trees. Finally, reduction steps on nodes of degree two or more
may be expensive, whereas nodes of degree one have to be easy to deal with in
the problem context.

Then, the algorithm derived from our graph-theoretical result takes at most
m/5 expensive operations to reduce any input instance withm egdes to one whose
graph is a special case of a partial 2-tree. Many problems have these properties,

8

where the expensive operations usually originate from case distinctions that lead
to branching in the recursion tree. Consider Max-Cut as an example: Vertices of
degree one can be deleted, since they will increase the overall size of a maximum
cut by one in any case, whereas nodes of higher degree require branching.

The algorithm presented in this section is rather simple and broadly applica-
ble. An even simpler algorithm will emerge in the next section; however, it will
have the additional requirement that nodes of degree two are easy to deal with
as well. Hence, if this condition does not hold for a problem, we have to stick to
the more general algorithm from this section; otherwise, the simpler algorithm
from the next section is preferable.

The special rôle of degree-one nodes in the first algorithm is reflected in the
following definition:

Definition 1. Let G = (V,E) be a graph. Then R(G) is the graph obtained by
deleting vertices v with deg(v) = 1 repeatedly until there are no such vertices left.

Observe that R(G) is well-defined, since it does not make any difference in
what order nodes are chosen for deletion. What is more, the following lemma
shows that even when we delete arbitrary nodes between reductions, the order
is irrelevant. This property greatly simplifies algorithmic application of the rule.
From now on, we shorten G[V \ {v}] to G− v as well as G[V \D] to G−D.

Lemma 1. Let G = (V,E) be a graph and D = {v1, . . . , vk} a set of vertices
from V . Then,

R(G−D) = R(R(. . . (R(R(G− v1) − v2) − v3) · · · − vk−1) − vk).

Proof. Let V1 = V \ D and V2 the vertices from R(. . . (R(R(G − v1) − v2) −
v3) · · · − vk−1) − vk, that is, the sets of nodes on the left and right hand side
of the equation before the final R-reduction is applied. Note that to show the
claim, it suffices to look at the sets of nodes, because edges are only removed
upon deletion of incident nodes. Moreover, the R-operation can only decrease
degrees in the graph. That is why, before the final R-operation, V1 ⊇ V2. This
implies one direction of the set equality.

We show the other inclusion by contradiction. Call v the first node that is
removed on the right hand side but remains on the left. Clearly, v /∈ D, and v
has been deleted because of the reduction rule. As all its predecessors have been
removed in R(G−D), too, v will be deleted by the R-operation on the left hand
side as well. �

In all interesting cases, R-reducing a graph does not affect its treewidth:

Lemma 2. Let G be a graph containing a cycle. Then tw(G) = tw(R(G)).

Proof. Let S be a strategy to catch a robber on R(G). Note that only dead ends
are removed by the reduction rule. A combination of different dead ends results
in a tree. Therefore, the only difference between G and R(G) are trees attached
to nodes in G. If the robber is locked in a part of R(G) by S, the attached trees
in G do not change this. The only advantage the robber can gain from such trees
is the possibility to hide in them, that is, in a tree attached to some node v
guarded by a cop. Hence, in order to adapt S to G, we only need to catch the
robber in such a tree if he really retreats to it. This is easily done by two cops.
�

9

Fig. 2. A (non-cyclic) hot dog graph.

Having investigated the properties of our only reduction rule, we turn our
attention to the simple family of hot dog graphs. Surprisingly, any graph can be
turned into a hot dog graph by deleting a small set of nodes and applying the
R-reduction.

Definition 2. A path of length at least one between two possibly identical nodes
s and t in a graph G is called a leg if all its nodes other than s and t have degree
two in G. A hot dog graph consists of nodes v1, . . . , vk such that vi and vi+1 are
connected by arbitrarily many legs. Additionally, vk and v1 may be connected in
this fashion as well.

Definition 3. Let G = (V,E) be a graph whose nodes have degree at least two.
A 4-spider is a subgraph that consists of a head h ∈ V with degree four, three or
four distinct feet u1, . . . , ul ∈ V \ {h} of degree at least three, and four disjoint
legs connecting head and feet.

A 3-spider is defined similarly for a head of degree three and exactly three
distinct feet connected to it via three legs. In any case, the body of a spider
consists of all its nodes except the feet.

The nice thing about spiders is that their bodies can be removed from a graph
quite easily: First remove the head, which is a node with relatively high degree,
and then remove the remainder of the body by consecutively removing nodes of
degree one.

It is interesting to note that hot dog graphs cannot contain spiders. The
following lemma shows that the converse is also true in a fairly general setting.
This enables us to turn any graph into a hot dog graph using relatively cheap
operations.

Lemma 3. Let G = (V,E) be a connected graph whose nodes have degree be-
tween two and four. G is a hot dog graph iff it does not contain a 3- or 4-spider.

Proof. It is obvious that a hot dog graph cannot contain spiders. On the other
hand, letG be a graph as postulated in the premise that does not contain a spider.
Let H be the set of nodes that do not have exactly two neighbors. Observe that
every v ∈ H may be connected to at most two more nodes from H via legs,
because otherwise vi would be the head of a spider. Thus, we can arrange the
nodes from H in a linear or cyclical fashion as in the definition of a hot dog
graph. �

Interestingly, if a node v has been the head of a spider in G, it keeps this
rôle in the contracted graph. In what follows, we want to estimate the spider
bodycount required to carve out a hot dog graph. In effect, we need to look

10

5

4

5

4

2

2

2

0

0

2

0

0

0

Fig. 3. A graph and the potential of its nodes: Ψ(G) = 10.5 and |E| = 17.

for the number of edges that have to be removed. As it turns out, this feat is
substantially eased if we analyze in terms of a potential function of nodes instead.

Definition 4. Let G = (V,E) be a graph, v ∈ V , and

deg3(v) =
∣

∣{u ∈ V | there is a leg connecting u and v, and deg(u) ≥ 3}
∣

∣.

We define the potential functions ψ : V → N and Ψ : G → N as follows:

ψ(v) =























0 if deg(v) ≤ 2

0 if deg(v) = 3 and deg3(v) = 1

5/4 if deg(v) = 3 and deg3(v) > 1

2 if deg(v) ≥ 4

We extend the definition to graphs via

Ψ(G) =
∑

v∈V

ψ(v).

Lemma 4. Let G = (V,E) be a graph. Then Ψ(G) ≤ |E|.

Proof.

|E| =
1

2

∑

v∈V

deg(v) =
1

2

|V |−1
∑

i=1

∑

v∈V
deg(v)=i

i ≥
∑

v∈V
deg(v)=3

5

4
+

∑

v∈V
deg(v)≥4

2 ≥ Ψ(G).

�

Lemma 5. Let G = (V,E) be a graph whose nodes have degree between two and
four. If G contains a 4-spider with head h, then

Ψ(R(G− h)) ≤ Ψ(G) − 5.

Proof. Let S be a 4-spider with head h. We have to distinguish several cases.
In the first case, S has four different feet u1, . . . , u4 with 3 ≤ deg(ui) ≤ 4.

Removing h and all nodes of degree one consecutively has the following effect:
Because h is erased, the potential decreases by 2. As a consequence, the degree of
each foot is lowered by one. This means that the potential decreases by 2−5/4 =
3/4 or 5/4 − 0 = 5/4 per foot. The total loss of potential thus amounts to at
least 2 + 4(3/4) = 5.

11

z

u1

u2 u3

h

Fig. 4. A 4-spider with only three feet. Removing the spider and consequently erasing all nodes
of degree one also decreases the potential of z by at least 3/4 if deg(u1) = 3.

In the second case, there are only three feet u1, . . . , u3, and the situation is
slightly more complicated. W.l.o.g. two paths are leading to u1 and one path
each to u2 and u3. If deg(u1) = 4, removing the body of S does the following:
The potential of u1 is lowered by 2, the potential of h decreased by 2 as well,
and the potentials of u2 and u3 shrink by 2 − 5/4 = 3/4 or 5/4 − 0 = 5/4 each.
Altogether, these values sum up to a loss of potential greater than 5.

Otherwise, if deg(u1) = 3, only one other leg starts from u1. Let z denote
the node this leg ends in. Note that z and h have to be different, since otherwise
S would not be a spider at all: There would be three paths to u1, but only two
feet. See Figure 4 for an illustration.

If z, u2, u3 are all different, the potential of h decreases by 2, the potential of
u1 by 5/4, and the potentials of z, u2, and u3 by at least 3/4 each, which is again
more than 5 in total. If z, u2, u3 are not all different, say z = u3 6= u2, then the
potential of h is lowered by 2, the potential of u1 by 5/4, the potential of z = u3

by at least 5/4, and the potential of u2 by at least 3/4, which is more than 5
altogether. �

Lemma 6. Let G = (V,E) be a connected graph whose nodes have degree be-
tween two and four. If G does not contain any 4-spider, but a 3-spider with
head h, then Ψ(R(G− h)) ≤ Ψ(G) − 5.

Proof. Let h be the head of a 3-spider with feet u1, u2, u3. Removing this spider
causes the potential to decrease by at least 5, since ψ(h) = 5/4, and we lose
at least 5/4 on each foot, too. To see this, distinguish the following two cases:
Either, deg(ui) = 3 — this leads to a decrease in potential of exactly 5/4 — or,
deg(ui) = 4 for some i. In the latter case, observe that there is exactly one leg
between ui and h, as ui is a foot of the 3-spider with head h. Since ui cannot be
the head of a 4-spider, the three other legs starting in ui end in the same node z.
Then, however, we have that ψ(ui) = 0 in R(G − h) due to the definition of ψ
and deg3. �

Let us now begin putting the pieces together.

12

Theorem 1. Let G = (V,E) be a graph. There is a set D ⊆ V such that R(G−
D) is a hot dog graph and |D| ≤ |E|/5.

Proof. We construct a set of nodes D such that R(G − D) is a hot dog graph.
As long as G contains a node v with degree at least five, remove v from G and
set D := D∪{v}. Now delete the bodies of all 4-spiders from G, and then do the
same for 3-spiders. Add the heads of all these spiders to D. Note that removing a
spider’s body is the same as removing its head and applying the reduction rule R
afterwards.

We obtain a set D such that R(G−D) is a hot dog graph. Using Lemmata
4, 5, and 6, it is easy to see that |D| ≤ m/5. �

Theorem 2. The treewidth of a graph G = (V,E) is at most |E|/5 + 2.

Proof. Let D the set given by Theorem 1. By Lemma 2, R-reducing G−D leaves
its treewidth intact, provided that it contains a cycle. Hence, the treewidth of
G−D is not higher than that of a hot dog graph. It is easy to see that hot dog
graphs constitute a special case of series-parallel graphs, which have treewidth
at most two [5, p. 174]. Otherwise, G − D is but a forest. Altogether, we have
that tw(G) ≤ |D| + 2 = |E|/5 + 2. �

Having thus achieved our graph theoretic main result, we continue with an
application to Max-2-SAT. The interpretation of the above result in the context
of connectivity graphs immediately yields the following corollary:

Corollary 1. Let F be a 2-SAT-formula with t clause types. Then we can find
a set of variables z1, . . . , zr, r ≤ t/5 in polynomial time such that: If A is an
assignment to z1, . . . , zr, then the reduced connectivity graph R(GF [A]) is a hot
dog graph.

Henceforth, when discussing connectivity graphs for formulæ, we do not dis-
tinguish between nodes and the variables they represent, that is we use the same
names for both.

Lemma 7. Let F be a 2-SAT-formula such that GF is a hot dog graph. The
maximum number of satisfiable clauses can be determined in polynomial time.

Proof. Let x1, . . . , xk be the nodes of degree at least three, and let Ci denote the
set of clauses containing a variable that lies on a path between two vertices in
{x1, . . . , xi}. Define c0i as the maximum number of satisfied clauses in Ci when xi

is set to 0 (c1i analogous). Clearly, max(c0k, c
1
k) is the solution to the Max-2-SAT

problem on F .
Both c01 and c11 are easy to calculate. We show how c0i+1 can be computed from

c0i and c1i in polynomial time. Consider for instance the case where xi = xi+1 = 0.
For every leg between xi and xi+1, we compute the optimum assignment to
the variables on this leg. This can be done in polynomial time using dynamic
programming, because every such node has at most two neighbors. Adding up
the values for every leg, we obtain the maximum number of satisfied clauses for
xi = xi+1 = 0. Repeating this procedure for xi = 1 immediately yields c0i+1. �

Definition 5. Let F be a 2-SAT-formula. We call the variable x a companion
(of y) if there is a unique variable y 6= x that occurs together with x in a clause.

13

In terms of the respective connectivity graph GF , the variable x is a com-
panion if and only if the degree of x in GF is one. Again, we may do away with
such appendices in a fashion similar to R-reduction. Insofar, the next lemma is
in analogy to Lemma 2.

Lemma 8 (The companion reduction rule). Let F be a 2-SAT formula. If x
is a companion, we can transform F into an equivalent formula F ′ containing the
same variables except for x, where GF ′ = GF −x. This can be done in polynomial
time.

Proof. Let F be a formula, x a companion of y, F ′ consist of all clauses in
F with an occurrence of the variable x, and F ′′ = F − F ′. Let furthermore
a = OptVal(F ′[y]), b = OptVal(F ′[ȳ]), and

H =

{

{

(b,T), (a− b, {y})
}

if a > b
{

(a,T), (b− a, {ȳ})
}

otherwise

It is easy to see that a = OptVal(H[y]) and b = OptVal(H[ȳ]). We immediately
get

OptVal(H + F ′′) =

max
{

OptVal(H[y]) + OptVal(F ′′[y]),OptVal(H[ȳ]) + OptVal(F ′′[ȳ])
}

=

max
{

OptVal(F ′[y] + OptVal(F ′′[y]),OptVal(F ′[ȳ] + OptVal(F ′′[ȳ])
}

=

= OptVal(F ′ + F ′′) = OptVal(F).

Hence, we can replace F by the equivalent formula H + F ′′. Note that it is very
easy to calculate a and b, and that H + F ′′ does not contain the variable x
anymore. �

Putting together Theorem 1 as well as Lemmata 7 and 8 analogously to
Theorem 2 yields the following runtime bound:

Theorem 3. Max-2-SAT can be solved in O∗(2t/5) steps.

4 A second rule simplifies the algorithm

In this section, we develop a simpler algorithm which employs a second reduction
rule in addition, which replaces a path (u, v, w) with deg(v) = 2 by the path
(u,w). We call this operation contracting v. Notice that this introduces another
constraint on the set of possible applications: Degree-two nodes must be easy to
handle in the problem translation. That is, the way they contribute to a solution
should only depend on their two neighbors.

In short, we trade simplicity for applicability: As we will see in what follows,
the refined method allows for a much simpler implementation, and thus eases
the analysis. Moreover, in the place of hot dog graphs, it leaves a trivial graph
without any edges.

On the other hand, there are problems that do not meet the above extra
constraint, while the technique from the previous section can still be employed.
Again, consider Max-Cut: In the direct approach, it is not clear how to avoid
branching on degree-two nodes. Fortunately, in this case, a different problem
encoding will emerge that enables an application of the more straightforward
second approach.

14

Algorithm A

Input: A graph G = (V,E)
Output: D ⊆ V , |D| ≤ |E|/5, such that R′(G−D) has no edges
D ← ∅;
while there is a node v with deg(v) ≥ 3 do

choose a node v with maximum degree;
D ← D ∪ {v}; G← R′

v(G)
od;
return D

Fig. 5. A simpler algorithm that uses R′ rather than R

Definition 6. Let G = (V,E) be a graph and v ∈ V . Let R′(G) be the graph that
we get from G by repeatedly removing degree one vertices and contracting degree
two vertices until no such operation is possible. Whenever a contraction leads to
a double edge, only a single edge is retained. We also define R′

v(G) := R′(G−v).

Lemma 9. Let G = (V,E) be a graph with minimum degree three and maximum
degree four. If v ∈ V and deg(v) = 4, then Ψ(R′

v(G)) ≤ Ψ(G) − 5.

Proof. Let u1, . . . , u4 be the neighbors of v. We have ψ(v) = 2, and removing v
decreases the degree of each ui by one. In total, the operation lowers the potential
by at least 2 + 4(3/4) = 5. Since neither the removal of a degree one node nor
the contraction of a degree two node can increase the potential, this implies
Ψ(R′

v(G)) ≤ Ψ(G) − 5. �

Lemma 10. Let G = (V,E) be a 3-regular graph. For every v ∈ V we have that
Ψ(R′

v(G)) ≤ Ψ(G) − 5.

Proof. Every node in a 3-regular graph has a potential of Ψ(3) = 5/4. Removing
v hence lowers the potential by 5. �

Theorem 4. Algorithm A finds a set D ⊆ V such that |D| ≤ m/5 and R′(G−D)
has no edges.

Proof. As long as there are nodes of degree at least five, the body of the while-
loop increases the size of D by one while removing at least five edges. As soon as
all nodes have degree at most four, Ψ(G) ≤ |E| by Lemma 4. From then on, the
potential Ψ(G) decreases by at least five in the body of the while-loop according
to Lemmata 9 and 10. Since R′(G) never contains nodes of degree one or two,
the graph cannot have any edges when the algorithm terminates.

It is, however, not obvious that R′(G−D) is the same graph. We only know
that removing the nodes of D in the right order and applying reduction rules in
between yields a graph without edges. However, analogously to Lemma 1, it is
easy to see that indeed R′

xk
(R′

xk−1
(· · ·R′

x1
(G) · · ·)) = R′(G− {x1, . . . , xk}). �

In order to use Algorithm A for solving Max-2-SAT, we must find reduction
rules for formulæ that correspond to removing a node of degree one and con-
tracting a node of degree two. The companion reduction rule can be used on a
formula F to remove a node of degree one from GF . But what do we need to do
with F in order to contract a node of degree two in GF ? It is easy to see that
we have to eliminate a variable x that occurs with exactly two other variables y
and z in 2-clauses, introducing new clauses of the type {y, z} in return.

15

Definition 7. Let F be a 2-SAT-formula. A variable x is a double companion
if and only if the degree of x in GF is two.

To ease the introduction of a double companion reduction rule, we now gen-
eralize the notion of a clause. We defined a clause to be a pair (ω,C) where C
is a set of (non-complementary) literals and ω a positive integer. In this section,
we allow ω to be a negative integer as well. For the following theorem, remember
the definition of our new parameter t, the number of clause types.

Lemma 11 (The double companion reduction rule). Let F be an arbitrary
2-SAT formula. If x is a double companion, then we can transform F into an
equivalent formula F ′ which contains the same variables as F except x, and
possibly clauses of negative weight, in polynomial time. The formula F ′ does not
have more clause types than F . Moreover, GF ′ is the graph obtained from GF by
contracting x.

Proof. Let x be a double companion that occurs together with y and z. Let
F = F ′ + F ′′, where F ′ consists of all the clauses that contain x and F ′′ holds
all the other clauses. We define a = OptVal(F ′[y, z]), b = OptVal(F ′[y, z̄]), c =
OptVal(F ′[ȳ, z]), and d = OptVal(F ′[ȳ, z̄]). Let

G =
{

(a+ b+ c+ d,T), (−d, {y, z}), (−c, {y, z̄}), (−b, {ȳ, z}), (−a, {ȳ, z̄})
}

.

We easily see a = OptVal(G[y, z]), b = OptVal(G[y, z̄]), c = OptVal(G[ȳ, z]), and
d = OptVal(G[ȳ, z̄]). Therefore, OptVal(F ′ + F ′′) = OptVal(G+ F ′′). Moreover,
x does obviously not occur in G+ F ′′. �

Example 3. Let F be the formula

F = { (2, {y, x}), (1, {ȳ, x̄}), (2, {x̄, z̄}), (1, {x, z̄}), (1, {y, z̄}) }

with double companion x. We get

F ′ = { (2, {y, x}), (1, {ȳ, x̄}), (2, {x̄, z̄}), (1, {x, z̄}) }

and thus OptVal(F ′[y, z]) = 2, OptVal(F ′[y, z̄]) = 5, OptVal(F ′[ȳ, z]) = 1, and
OptVal(F ′[ȳ, z̄]) = 4. By the double companion reduction rule, F ′ reduces to

G = {(2 + 5 + 1 + 4,T), (−4, {y, z}), (−1, {y, z̄}), (−5, {ȳ, z}), (−2, {ȳ, z̄})},

and we obtain

G+ F ′′ = { (12,T), (−4, {y, z}), (−5, {ȳ, z}), (−2, {ȳ, z̄}) }.

The optimum assignment y = 1, z = 0 satisfies clauses weighted six in both
G+ F ′′ and F .

We now have reduction rules for formulæ in 2-CNF that enable us to elim-
inate all nodes with degree up to two in the corresponding connectivity graph.
Algorithm B uses this machinery on the connectivity graph of a 2-CNF formula
to find the number of satisfiable clauses. The algorithm can be easily modified
to return an optimal assignment, too. The running time is again O∗(2t/5), where
t ≤ m is the number of different clause types.

16

Algorithm B

Input: A Max-2-SAT-formula F
Output: OptVal(F)
Let D be the result of Algorithm A on GF ;
r ← 0;
for all assignments A on D do

F ′ ← F [A];
Reduce F ′ by the (double) companion reduction rule while possible;
t← OptVal(F ′);
if t > r then r ← t fi

od;
return r

Fig. 6. An algorithm for Max-2-SAT that uses Algorithm A to find a small set of variables for
which all assignments have to be tested.

It turns out that we need not use the connectivity graph explicitly. Instead,
we can employ a recursive procedure as described in Algorithm C. In this form it
corresponds to classical satisfiability algorithms starting with the Davis–Putnam
procedure: Apply reduction rules as long as possible and then choose a variable
for branching. In the past, better and better algorithms included more and more
complicated rules. This involves reduction rules as well as rules for choosing a
variable (or a group of variables) to branch on, combined with clever pruning
of cases that cannot lead to an optimal assignment. In contrast, Algorithm C is
very simple: It is comprised of only two reduction rules and one rule to choose a
variable for branching, none of which are complicated.

Algorithm C

Input: A Max-2-SAT-formula F
Output: OptVal(F)
Reduce F by the (double) companion reduction rule while possible;
if F = {(k,T)} then return k
else

choose a variable x that occurs in a maximum number of clause types;
return max{Algorithm C(F [x]),Algorithm C(F [x̄])}

fi

Fig. 7. A very simple algorithm for Max-2-SAT that does not use the connectivity graph
directly.

5 Improving beyond t/5

In this section, we apply a tiny modification to the algorithm discussed above.
More precisely, we introduce the additional rule to avoid picking a node of degree
four all of whose neighbors have degree four as well, whenever possible.

We begin by looking at a special case for graphs of low degree. This theorem
is of independent interest, and its proof serves to introduce the methods we apply
in Theorem 6.

Theorem 5. Let G = (V,E) be a graph with m edges and maximum degree four.
Then there is a set D ⊆ V , |D| ≤ 3

16m+ 1, such that R′(G−D) has no edges.

17

Proof. Given G = (V,E), construct D ⊆ V as follows. Pick a vertex of maximum
degree, and while choosing vertices of degree four, only take a vertex all of whose
neighbors have degree four if no other type of degree-four node remains. Note that
the latter is only the case if the graph is 4-regular. Remove the chosen vertex,
apply the two reduction rules, and repeat the procedure until the maximum
degree in the remaining graph drops below three.

We redefine the potential function ψ:

ψ(v) =











0 if deg(v) ≤ 2

4/3 if deg(v) = 3

2 if deg(v) ≥ 4

Let 〈n1, . . . , nd〉 denote the case that we pick a node v of degree d whose
neighbors have degree n1 through nd. The respective losses of potential caused
by the removal of such nodes v can be computed easily: the potential of v drops to
zero, whereas the degree of each of its neighbors decreases by one. For instance,
the loss of potential in the case 〈4, 4, 4, 3〉 amounts to 2+3 · (2− 4/3)+4/3. The
resulting values are listed in the following table.

case 〈4, 4, 4, 4〉 〈4, 4, 4, 3〉 〈4, 4, 3, 3〉 〈4, 3, 3, 3〉 〈3, 3, 3, 3〉 〈3, 3, 3〉

loss 42
3 51

3 6 62
3 71

3 51
3

Observe that the special case 〈4, 4, 4, 4〉 can only occur in the first itera-
tion, which causes at most one extra step, or if preceeded by 〈3, 3, 3, 3〉: Clearly,
it cannot be preceeded by 〈3, 3, 3〉, because we always pick a vertex of maxi-
mum degree. Furthermore, a node of degree three is created in all the remaining
cases, preventing the graph from becoming 4-regular and thus excluding the case
〈4, 4, 4, 4〉.

Except for the first step, the good case 〈3, 3, 3, 3〉 countervails against the bad
case 〈4, 4, 4, 4〉. Since the average loss of potential in these two cases amounts to 6,
we have that the potential decreases by an average of at least 5 1

3 per step. Hence,
the overall potential will drop to zero after at most 3

16m additional iterations. �

Note that, analogously to Lemma 4, it is easily checked that Ψ(G) ≤ |E| for
continuations of the potential functions in both the previous and the upcoming
proof.

Theorem 6. Let G = (V,E) be a graph with m edges. Then there is a set D ⊆ V ,
|D| ≤ 23

120m+ 1, such that R′(G−D) has no edges.

Proof. We use both the algorithm and the notation described in the proof to the
previous theorem. Again, we redefine the potential function ψ:

ψ(v) =























0 if deg(v) ≤ 2

30/23 if deg(v) = 3

45/23 if deg(v) = 4

5/2 if deg(v) ≥ 5

Obviously, we get rid of at least six edges per iteration as long as the algorithm
removes nodes of degree at least six. It hence suffices to switch to an analysis via

18

Algorithm A′

Input: A graph G = (V,E)
Output: D ⊆ V , |D| ≤ |E|/5.217 + 1, such that R′(G−D) has no edges
D ← ∅;
while there is a node v with deg(v) ≥ 3 do

choose a node v with maximum degree,
avoiding the case 〈4, 4, 4, 4〉 if possible;
D ← D ∪ {v}; G← R′

v(G)
od;
return D

Fig. 8. A slightly more complicated variant of Algorithm A

potential as soon as the maximum degree in the remaining graph has decreased
to at most five. When a node of degree five is deleted, this lowers the potential
by at least 5/2 + 5 · (5/2 − 45/23) = 5 5

23 . The other cases are listed below.

case 〈4, 4, 4, 4〉 〈4, 4, 4, 3〉 〈4, 4, 3, 3〉 〈4, 3, 3, 3〉 〈3, 3, 3, 3〉 〈3, 3, 3〉

loss 413
23 5 5

23 520
23 612

23 7 4
23 5 5

23

As detailed above, the good case 〈3, 3, 3, 3〉 countervails against the bad case
〈4, 4, 4, 4〉; their average loss of potential is 5 20

23 . Hence, only nodes of degree at
most two remain after at most 23

120m+ 1 iterations. �

Modifiying Algorithm A according to the above result, as depicted in Figure 8,
leads to the following improved running times.

Corollary 2. Max-2-SAT and Max-2-XSAT can be solved in O∗(2t/5.217) and
thus in O∗(2m/5.217) time. Max-Cut can be solved in O∗(2m/5.217) time.

In order to give an upper bound on the treewidth of a graph G = (V,E)
using the above results, it suffices to check that tw(G−D) ≤ 2. This is because
tw(R′(G−D)) = 0, and R′ does not trivialize graphs of treewidth at least three [5,
p. 174].

Corollary 3. The treewidth of a graph G = (V,E) is at most |E|/5.217 + 3.

Acknowledgements. We would like to thank Hans Bodlaender for valuable
pointers on literature.

References

1. S. Arora and C. Lund. Hardness of approximation. In D. Hochbaum, editor, Approximation
algorithms for NP-hard problems, chapter 10, pages 399–446. PWS Publishing Company,
Boston, 1997.

2. T. Asano and D. P. Williamson. Improved approximation algorithms for MAX SAT. In
Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms, 2000.

3. N. Bansal and V. Raman. Upper bounds for MaxSat: Further improved. In Proceedings of
the 10th International Symposium on Algorithms and Computation (ISAAC), number 1741
in Lecture Notes in Computer Science, pages 247–258, Chennai, India, December 1999.
Springer-Verlag.

4. H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–21, 1993.
5. A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. SIAM monographs

on discrete mathematics and applications. SIAM, 1999.

19

6. J. Chen and I. Kanj. Improved exact algorithms for MAX-SAT. In Proceedings of the
5th Symposium on Latin American Theoretical Informatics, number 2286 in Lecture Notes
in Computer Science, pages 341–355, Cancun, Mexico, 2002. Springer-Verlag.

7. E. Dantsin, M. Gavrilovich, E. A. Hirsch, and B. Konev. Approximation algorithms for
Max SAT: A better performance ratio at the cost of a longer running time. Technical
Report PDMI preprint 14/1998, Steklov Institute of Mathematics at St. Petersburg, 1998.
Available at http://logic.pdmi.ras.ru/~hirsch/.

8. E. Dantsin, A. Goerdt, E. A. Hirsch, and U. Schöning. Deterministic algorithms for k-SAT
based on covering codes and local search. In U. Montanari, J. D. P. Rolim, and E. Welzl,
editors, Proceedings of the 27th International Colloquium on Automata, Languages, and
Programming (ICALP), number 1853 in Lecture Notes in Computer Science. Springer-
Verlag, July 2000.

9. S. S. Fedin and A. S. Kulikov. A 2|E|/4-time algorithm for Max-Cut. In Zapiski nauchnyh
seminarov POMI, volume 293, pages 129–138, 2002. English translation is to appear in
Journal of Mathematical Sciences.

10. U. Feige and M. X. Goemans. Approximating the value of two prover proof systems, with
applications to MAX 2SAT and MAX DICUT. In 3d IEEE Israel Symposium on the Theory
of Computing and Systems, pages 182–189, 1995.

11. J. Gramm, E. A. Hirsch, R. Niedermeier, and P. Rossmanith. New worst-case upper bounds
for MAX-2-SAT with application to MAX-CUT. Invited for submission to a special issue
of Discrete Applied Mathematics. Preliminary version available as ECCC Technical Report
R00-037, Trier, Fed. Rep. of Germany, May 2000.

12. J. Gramm, E. A. Hirsch, R. Niedermeier, and P. Rossmanith. New worst-case upper bounds
for MAX-2-SAT with application to MAX-CUT. Discrete Applied Mathematics, 130(2):139–
155, 2003.

13. J. Gramm and R. Niedermeier. Faster exact solutions for Max2Sat. In Proceedings of the
4th Italian Conference on Algorithms and Complexity, number 1767 in Lecture Notes in
Computer Science, pages 174–186, Rome, Italy, March 2000. Springer-Verlag.

14. J. H̊astad. Some optimal inapproximability results. In Proceedings of the 29th ACM Sym-
posium on Theory of Computing, pages 1–10, 1997.

15. E. A. Hirsch. A new algorithm for MAX-2-SAT. In Proceedings of the 17th Symposium
on Theoretical Aspects of Computer Science (STACS), number 1770 in Lecture Notes in
Computer Science. Springer-Verlag, 2000.

16. E. A. Hirsch. New worst-case upper bounds for SAT. Journal of Automated Reasoning,
24(4):397–420, 2000.

17. K. Iwama and S. Tamaki. Improved upper bounds for 3-sat. Technical Report TR03-053,
ECCC Trier, 2003.

18. H. Karloff and U. Zwick. A 7/8-approximation algorithm for MAX 3SAT? In Proceedings
of the 38th IEEE Symposium on Foundations of Computer Science, pages 406–415, 1997.

19. T. Kloks. Treewidth. Number 842 in Lecture Notes in Computer Science. Springer-Verlag,
1994.

20. T. Kloks and H. Bodlaender. Only few graphs have bounded treewidth. Technical Report
RUU-CS-92-35, Utrecht University, Dept. of Comp. Science, 1992.

21. J. Kneis, D. Mölle, S. Richter, and P. Rossmanith. On the parameterized complexity of
exact satisfiability problems. Submitted for publication, 2005.

22. O. Kullmann. New methods for 3-SAT decision and worst-case analysis. Theoretical Com-
puter Science, 223:1–72, 1999.

23. O. Kullmann and H. Luckhardt. Deciding propositional tautologies: Algorithms and
their complexity. Information and Computation, 1997. Submitted. Available at
http://mi.informatik.uni-frankfurt.de/people/kullmann/papers.html.

24. B. A. Madsen and P. Rossmanith. Maximum exact satisfiability: NP-completeness proofs
and exact algorithms. Technical Report RS-04-19, BRICS, October 2004.

25. M. Mahajan and V. Raman. Parameterizing above guaranteed values: MaxSat and MaxCut.
Journal of Algorithms, 31:335–354, 1999.

26. B. Monien and E. Speckenmeyer. Ramsey numbers and an approximation algorithm for
the vertex cover problem. Acta Informatica, 22:115–123, 1985.

27. R. Niedermeier and P. Rossmanith. New upper bounds for maximum satisfiability. Journal
of Algorithms, 36:63–88, 2000.

28. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

20

29. R. Paturi, P. Pudlák, M. Saks, and F. Zane. An improved exponential-time algorithm for
k-SAT. In Proceedings of the 39th IEEE Symposium on Foundations of Computer Science,
pages 628–637, 1998.

30. N. Robertson and P. D. Seymour. Graph minors I. Excluding a forest. Journal on Combi-
natorial Theory Series B, 35:39–61, 1983.

31. U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems.
In Proceedings of the 40th IEEE Symposium on Foundations of Computer Science, pages
410–414, 1999.

32. A. Scott and G. B. Sorkin. Faster algorithms for Max CUT and Max CSP, with polynomial
expected time for sparse instances. In Proc. of 7th RANDOM, number 2764 in Lecture Notes
in Computer Science, pages 382–395. Springer-Verlag, 2003.

33. P. D. Seymour and R. Thomas. Graph searching and a min-max theorem for tree-width.
J. of Combinatorial Theory, 58:22–33, 1993.

34. J. A. Telle and A. Proskurowski. Algorithms for vertex partitioning problems on partial
k-trees. SIAM Journal on Discrete Mathematics, 10(4):529–550, 1997.

35. R. Williams. A new algorithm for optimal constraint satisfaction and its implications. In
Proceedings of the 31st International Colloquium on Automata, Languages, and Program-
ming (ICALP), number 3142 in Lecture Notes in Computer Science, pages 1227–1237.
Springer-Verlag, 2004.

36. M. Yannakakis. On the approximation of maximum satisfiability. Journal of Algorithms,
17:475–502, 1994.

21

22

Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports

please consult http://aib.informatik.rwth-aachen.de/ or send your request

to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email:

biblio@informatik.rwth-aachen.de

1987-01 ∗ Fachgruppe Informatik: Jahresbericht 1986

1987-02 ∗ David de Frutos Escrig, Klaus Indermark: Equivalence Relations of Non-

Deterministic Ianov-Schemes

1987-03 ∗ Manfred Nagl: A Software Development Environment based on Graph

Technology

1987-04 ∗ Claus Lewerentz, Manfred Nagl, Bernhard Westfechtel: On Integration

Mechanisms within a Graph-Based Software Development Environment

1987-05 ∗ Reinhard Rinn: Über Eingabeanomalien bei verschiedenen Inferenzmod-

ellen

1987-06 ∗ Werner Damm, Gert Döhmen: Specifying Distributed Computer Archi-

tectures in AADL*

1987-07 ∗ Gregor Engels, Claus Lewerentz, Wilhelm Schäfer: Graph Grammar En-

gineering: A Software Specification Method

1987-08 ∗ Manfred Nagl: Set Theoretic Approaches to Graph Grammars

1987-09 ∗ Claus Lewerentz, Andreas Schürr: Experiences with a Database System

for Software Documents

1987-10 ∗ Herbert Klaeren, Klaus Indermark: A New Implementation Technique

for Recursive Function Definitions

1987-11 ∗ Rita Loogen: Design of a Parallel Programmable Graph Reduction Ma-

chine with Distributed Memory

1987-12 J. Börstler, U. Möncke, R. Wilhelm: Table compression for tree automata

1988-01 ∗ Gabriele Esser, Johannes Rückert, Frank Wagner: Gesellschaftliche As-

pekte der Informatik

1988-02 ∗ Peter Martini, Otto Spaniol: Token-Passing in High-Speed Backbone

Networks for Campus-Wide Environments

1988-03 ∗ Thomas Welzel: Simulation of a Multiple Token Ring Backbone

1988-04 ∗ Peter Martini: Performance Comparison for HSLAN Media Access Pro-

tocols

1988-05 ∗ Peter Martini: Performance Analysis of Multiple Token Rings

1988-06 ∗ Andreas Mann, Johannes Rückert, Otto Spaniol: Datenfunknetze

1988-07 ∗ Andreas Mann, Johannes Rückert: Packet Radio Networks for Data Ex-

change

1988-08 ∗ Andreas Mann, Johannes Rückert: Concurrent Slot Assignment Protocol

for Packet Radio Networks

1988-09 ∗ W. Kremer, F. Reichert, J. Rückert, A. Mann: Entwurf einer Netzw-

erktopologie für ein Mobilfunknetz zur Unterstützung des öffentlichen

Straßenverkehrs

1988-10 ∗ Kai Jakobs: Towards User-Friendly Networking

1988-11 ∗ Kai Jakobs: The Directory - Evolution of a Standard

1988-12 ∗ Kai Jakobs: Directory Services in Distributed Systems - A Survey

1988-13 ∗ Martine Schümmer: RS-511, a Protocol for the Plant Floor

23

1988-14 ∗ U. Quernheim: Satellite Communication Protocols - A Performance

Comparison Considering On-Board Processing

1988-15 ∗ Peter Martini, Otto Spaniol, Thomas Welzel: File Transfer in High Speed

Token Ring Networks: Performance Evaluation by Approximate Analysis

and Simulation

1988-16 ∗ Fachgruppe Informatik: Jahresbericht 1987

1988-17 ∗ Wolfgang Thomas: Automata on Infinite Objects

1988-18 ∗ Michael Sonnenschein: On Petri Nets and Data Flow Graphs

1988-19 ∗ Heiko Vogler: Functional Distribution of the Contextual Analysis in

Block-Structured Programming Languages: A Case Study of Tree Trans-

ducers

1988-20 ∗ Thomas Welzel: Einsatz des Simulationswerkzeuges QNAP2 zur Leis-

tungsbewertung von Kommunikationsprotokollen

1988-21 ∗ Th. Janning, C. Lewerentz: Integrated Project Team Management in a

Software Development Environment

1988-22 ∗ Joost Engelfriet, Heiko Vogler: Modular Tree Transducers

1988-23 ∗ Wolfgang Thomas: Automata and Quantifier Hierarchies

1988-24 ∗ Uschi Heuter: Generalized Definite Tree Languages

1989-01 ∗ Fachgruppe Informatik: Jahresbericht 1988

1989-02 ∗ G. Esser, J. Rückert, F. Wagner (Hrsg.): Gesellschaftliche Aspekte der

Informatik

1989-03 ∗ Heiko Vogler: Bottom-Up Computation of Primitive Recursive Tree

Functions

1989-04 ∗ Andy Schürr: Introduction to PROGRESS, an Attribute Graph Gram-

mar Based Specification Language

1989-05 J. Börstler: Reuse and Software Development - Problems, Solutions, and

Bibliography (in German)

1989-06 ∗ Kai Jakobs: OSI - An Appropriate Basis for Group Communication?

1989-07 ∗ Kai Jakobs: ISO’s Directory Proposal - Evolution, Current Status and

Future Problems

1989-08 ∗ Bernhard Westfechtel: Extension of a Graph Storage for Software Doc-

uments with Primitives for Undo/Redo and Revision Control

1989-09 ∗ Peter Martini: High Speed Local Area Networks - A Tutorial

1989-10 ∗ P. Davids, Th. Welzel: Performance Analysis of DQDB Based on Simu-

lation

1989-11 ∗ Manfred Nagl (Ed.): Abstracts of Talks presented at the WG ’89 15th

International Workshop on Graphtheoretic Concepts in Computer Sci-

ence

1989-12 ∗ Peter Martini: The DQDB Protocol - Is it Playing the Game?

1989-13 ∗ Martine Schümmer: CNC/DNC Communication with MAP

1989-14 ∗ Martine Schümmer: Local Area Networks for Manufactoring Environ-

ments with hard Real-Time Requirements

1989-15 ∗ M. Schümmer, Th. Welzel, P. Martini: Integration of Field Bus and

MAP Networks - Hierarchical Communication Systems in Production

Environments

1989-16 ∗ G. Vossen, K.-U. Witt: SUXESS: Towards a Sound Unification of Ex-

tensions of the Relational Data Model

24

1989-17 ∗ J. Derissen, P. Hruschka, M.v.d. Beeck, Th. Janning, M. Nagl: Integrat-

ing Structured Analysis and Information Modelling

1989-18 A. Maassen: Programming with Higher Order Functions

1989-19 ∗ Mario Rodriguez-Artalejo, Heiko Vogler: A Narrowing Machine for Syn-

tax Directed BABEL

1989-20 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Graph-based Implementation of a Functional Logic Language

1990-01 ∗ Fachgruppe Informatik: Jahresbericht 1989

1990-02 ∗ Vera Jansen, Andreas Potthoff, Wolfgang Thomas, Udo Wermuth: A

Short Guide to the AMORE System (Computing Automata, MOnoids

and Regular Expressions)

1990-03 ∗ Jerzy Skurczynski: On Three Hierarchies of Weak SkS Formulas

1990-04 R. Loogen: Stack-based Implementation of Narrowing

1990-05 H. Kuchen, A. Wagener: Comparison of Dynamic Load Balancing Strate-

gies

1990-06 ∗ Kai Jakobs, Frank Reichert: Directory Services for Mobile Communica-

tion

1990-07 ∗ Kai Jakobs: What’s Beyond the Interface - OSI Networks to Support

Cooperative Work

1990-08 ∗ Kai Jakobs: Directory Names and Schema - An Evaluation

1990-09 ∗ Ulrich Quernheim, Dieter Kreuer: Das CCITT - Signalisierungssystem

Nr. 7 auf Satellitenstrecken; Simulation der Zeichengabestrecke

1990-11 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Lazy Narrowing in a Graph Machine

1990-12 ∗ Kai Jakobs, Josef Kaltwasser, Frank Reichert, Otto Spaniol: Der Com-

puter fährt mit

1990-13 ∗ Rudolf Mathar, Andreas Mann: Analyzing a Distributed Slot Assign-

ment Protocol by Markov Chains

1990-14 A. Maassen: Compilerentwicklung in Miranda - ein Praktikum in funk-

tionaler Programmierung (written in german)

1990-15 ∗ Manfred Nagl, Andreas Schürr: A Specification Environment for Graph

Grammars

1990-16 A. Schürr: PROGRESS: A VHL-Language Based on Graph Grammars

1990-17 ∗ Marita Möller: Ein Ebenenmodell wissensbasierter Konsultationen - Un-

terstützung für Wissensakquisition und Erklärungsfähigkeit

1990-18 ∗ Eric Kowalewski: Entwurf und Interpretation einer Sprache zur Beschrei-

bung von Konsultationsphasen in Expertensystemen

1990-20 Y. Ortega Mallen, D. de Frutos Escrig: A Complete Proof System for

Timed Observations

1990-21 ∗ Manfred Nagl: Modelling of Software Architectures: Importance, No-

tions, Experiences

1990-22 H. Fassbender, H. Vogler: A Call-by-need Implementation of Syntax Di-

rected Functional Programming

1991-01 Guenther Geiler (ed.), Fachgruppe Informatik: Jahresbericht 1990

1991-03 B. Steffen, A. Ingolfsdottir: Characteristic Formulae for Processes with

Divergence

1991-04 M. Portz: A new class of cryptosystems based on interconnection net-

works

25

1991-05 H. Kuchen, G. Geiler: Distributed Applicative Arrays

1991-06 ∗ Ludwig Staiger: Kolmogorov Complexity and Hausdorff Dimension

1991-07 ∗ Ludwig Staiger: Syntactic Congruences for w-languages

1991-09 ∗ Eila Kuikka: A Proposal for a Syntax-Directed Text Processing System

1991-10 K. Gladitz, H. Fassbender, H. Vogler: Compiler-based Implementation

of Syntax-Directed Functional Programming

1991-11 R. Loogen, St. Winkler: Dynamic Detection of Determinism in Func-

tional Logic Languages

1991-12 ∗ K. Indermark, M. Rodriguez Artalejo (Eds.): Granada Workshop on the

Integration of Functional and Logic Programming

1991-13 ∗ Rolf Hager, Wolfgang Kremer: The Adaptive Priority Scheduler: A More

Fair Priority Service Discipline

1991-14 ∗ Andreas Fasbender, Wolfgang Kremer: A New Approximation Algorithm

for Tandem Networks with Priority Nodes

1991-15 J. Börstler, A. Zündorf: Revisiting extensions to Modula-2 to support

reusability

1991-16 J. Börstler, Th. Janning: Bridging the gap between Requirements Anal-

ysis and Design

1991-17 A. Zündorf, A. Schürr: Nondeterministic Control Structures for Graph

Rewriting Systems

1991-18 ∗ Matthias Jarke, John Mylopoulos, Joachim W. Schmidt, Yannis Vassil-

iou: DAIDA: An Environment for Evolving Information Systems

1991-19 M. Jeusfeld, M. Jarke: From Relational to Object-Oriented Integrity

Simplification

1991-20 G. Hogen, A. Kindler, R. Loogen: Automatic Parallelization of Lazy

Functional Programs

1991-21 ∗ Prof. Dr. rer. nat. Otto Spaniol: ODP (Open Distributed Processing):

Yet another Viewpoint

1991-22 H. Kuchen, F. Lücking, H. Stoltze: The Topology Description Language

TDL

1991-23 S. Graf, B. Steffen: Compositional Minimization of Finite State Systems

1991-24 R. Cleaveland, J. Parrow, B. Steffen: The Concurrency Workbench: A

Semantics Based Tool for the Verification of Concurrent Systems

1991-25 ∗ Rudolf Mathar, Jürgen Mattfeldt: Optimal Transmission Ranges for Mo-

bile Communication in Linear Multihop Packet Radio Networks

1991-26 M. Jeusfeld, M. Staudt: Query Optimization in Deductive Object Bases

1991-27 J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem

1991-28 J. Knoop, B. Steffen: Unifying Strength Reduction and Semantic Code

Motion

1991-30 T. Margaria: First-Order theories for the verification of complex FSMs

1991-31 B. Steffen: Generating Data Flow Analysis Algorithms from Modal Spec-

ifications

1992-01 Stefan Eherer (ed.), Fachgruppe Informatik: Jahresbericht 1991

1992-02 ∗ Bernhard Westfechtel: Basismechanismen zur Datenverwaltung in struk-

turbezogenen Hypertextsystemen

1992-04 S. A. Smolka, B. Steffen: Priority as Extremal Probability

1992-05 ∗ Matthias Jarke, Carlos Maltzahn, Thomas Rose: Sharing Processes:

Team Coordination in Design Repositories

26

1992-06 O. Burkart, B. Steffen: Model Checking for Context-Free Processes

1992-07 ∗ Matthias Jarke, Klaus Pohl: Information Systems Quality and Quality

Information Systems

1992-08 ∗ Rudolf Mathar, Jürgen Mattfeldt: Analyzing Routing Strategy NFP in

Multihop Packet Radio Networks on a Line

1992-09 ∗ Alfons Kemper, Guido Moerkotte: Grundlagen objektorientierter Daten-

banksysteme

1992-10 Matthias Jarke, Manfred Jeusfeld, Andreas Miethsam, Michael Gocek:

Towards a logic-based reconstruction of software configuration manage-

ment

1992-11 Werner Hans: A Complete Indexing Scheme for WAM-based Abstract

Machines

1992-12 W. Hans, R. Loogen, St. Winkler: On the Interaction of Lazy Evaluation

and Backtracking

1992-13 ∗ Matthias Jarke, Thomas Rose: Specification Management with CAD

1992-14 Th. Noll, H. Vogler: Top-down Parsing with Simultaneous Evaluation on

Noncircular Attribute Grammars

1992-15 A. Schuerr, B. Westfechtel: Graphgrammatiken und Graphersetzungssys-

teme(written in german)

1992-16 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Forschungsprojekte

des Graduiertenkollegs Informatik und Technik

1992-17 M. Jarke (ed.): ConceptBase V3.1 User Manual

1992-18 ∗ Clarence A. Ellis, Matthias Jarke (Eds.): Distributed Cooperation in

Integrated Information Systems - Proceedings of the Third International

Workshop on Intelligent and Cooperative Information Systems

1992-19-00 H. Kuchen, R. Loogen (eds.): Proceedings of the 4th Int. Workshop on

the Parallel Implementation of Functional Languages

1992-19-01 G. Hogen, R. Loogen: PASTEL - A Parallel Stack-Based Implementation

of Eager Functional Programs with Lazy Data Structures (Extended

Abstract)

1992-19-02 H. Kuchen, K. Gladitz: Implementing Bags on a Shared Memory MIMD-

Machine

1992-19-03 C. Rathsack, S.B. Scholz: LISA - A Lazy Interpreter for a Full-Fledged

Lambda-Calculus

1992-19-04 T.A. Bratvold: Determining Useful Parallelism in Higher Order Func-

tions

1992-19-05 S. Kahrs: Polymorphic Type Checking by Interpretation of Code

1992-19-06 M. Chakravarty, M. Köhler: Equational Constraints, Residuation, and

the Parallel JUMP-Machine

1992-19-07 J. Seward: Polymorphic Strictness Analysis using Frontiers (Draft Ver-

sion)

1992-19-08 D. Gärtner, A. Kimms, W. Kluge: pi-Redˆ+ - A Compiling Graph-

Reduction System for a Full Fledged Lambda-Calculus

1992-19-09 D. Howe, G. Burn: Experiments with strict STG code

1992-19-10 J. Glauert: Parallel Implementation of Functional Languages Using

Small Processes

1992-19-11 M. Joy, T. Axford: A Parallel Graph Reduction Machine

1992-19-12 A. Bennett, P. Kelly: Simulation of Multicache Parallel Reduction

27

1992-19-13 K. Langendoen, D.J. Agterkamp: Cache Behaviour of Lazy Functional

Programs (Working Paper)

1992-19-14 K. Hammond, S. Peyton Jones: Profiling scheduling strategies on the

GRIP parallel reducer

1992-19-15 S. Mintchev: Using Strictness Information in the STG-machine

1992-19-16 D. Rushall: An Attribute Grammar Evaluator in Haskell

1992-19-17 J. Wild, H. Glaser, P. Hartel: Statistics on storage management in a lazy

functional language implementation

1992-19-18 W.S. Martins: Parallel Implementations of Functional Languages

1992-19-19 D. Lester: Distributed Garbage Collection of Cyclic Structures (Draft

version)

1992-19-20 J.C. Glas, R.F.H. Hofman, W.G. Vree: Parallelization of Branch-and-

Bound Algorithms in a Functional Programming Environment

1992-19-21 S. Hwang, D. Rushall: The nu-STG machine: a parallelized Spineless

Tagless Graph Reduction Machine in a distributed memory architecture

(Draft version)

1992-19-22 G. Burn, D. Le Metayer: Cps-Translation and the Correctness of Opti-

mising Compilers

1992-19-23 S.L. Peyton Jones, P. Wadler: Imperative functional programming (Brief

summary)

1992-19-24 W. Damm, F. Liu, Th. Peikenkamp: Evaluation and Parallelization of

Functions in Functional + Logic Languages (abstract)

1992-19-25 M. Kesseler: Communication Issues Regarding Parallel Functional Graph

Rewriting

1992-19-26 Th. Peikenkamp: Charakterizing and representing neededness in func-

tional loginc languages (abstract)

1992-19-27 H. Doerr: Monitoring with Graph-Grammars as formal operational Mod-

els

1992-19-28 J. van Groningen: Some implementation aspects of Concurrent Clean on

distributed memory architectures

1992-19-29 G. Ostheimer: Load Bounding for Implicit Parallelism (abstract)

1992-20 H. Kuchen, F.J. Lopez Fraguas, J.J. Moreno Navarro, M. Rodriguez

Artalejo: Implementing Disequality in a Lazy Functional Logic Language

1992-21 H. Kuchen, F.J. Lopez Fraguas: Result Directed Computing in a Func-

tional Logic Language

1992-22 H. Kuchen, J.J. Moreno Navarro, M.V. Hermenegildo: Independent

AND-Parallel Narrowing

1992-23 T. Margaria, B. Steffen: Distinguishing Formulas for Free

1992-24 K. Pohl: The Three Dimensions of Requirements Engineering

1992-25 ∗ R. Stainov: A Dynamic Configuration Facility for Multimedia Commu-

nications

1992-26 ∗ Michael von der Beeck: Integration of Structured Analysis and Timed

Statecharts for Real-Time and Concurrency Specification

1992-27 W. Hans, St. Winkler: Aliasing and Groundness Analysis of Logic Pro-

grams through Abstract Interpretation and its Safety

1992-28 ∗ Gerhard Steinke, Matthias Jarke: Support for Security Modeling in In-

formation Systems Design

1992-29 B. Schinzel: Warum Frauenforschung in Naturwissenschaft und Technik

28

1992-30 A. Kemper, G. Moerkotte, K. Peithner: Object-Orientation Axiomatised

by Dynamic Logic

1992-32 ∗ Bernd Heinrichs, Kai Jakobs: Timer Handling in High-Performance

Transport Systems

1992-33 ∗ B. Heinrichs, K. Jakobs, K. Lenßen, W. Reinhardt, A. Spinner: Euro-

Bridge: Communication Services for Multimedia Applications

1992-34 C. Gerlhof, A. Kemper, Ch. Kilger, G. Moerkotte: Partition-Based Clus-

tering in Object Bases: From Theory to Practice

1992-35 J. Börstler: Feature-Oriented Classification and Reuse in IPSEN

1992-36 M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, Y. Vassiliou: Theories Un-

derlying Requirements Engineering: An Overview of NATURE at Gen-

esis

1992-37 ∗ K. Pohl, M. Jarke: Quality Information Systems: Repository Support for

Evolving Process Models

1992-38 A. Zuendorf: Implementation of the imperative / rule based language

PROGRES

1992-39 P. Koch: Intelligentes Backtracking bei der Auswertung funktional-

logischer Programme

1992-40 ∗ Rudolf Mathar, Jürgen Mattfeldt: Channel Assignment in Cellular Radio

Networks

1992-41 ∗ Gerhard Friedrich, Wolfgang Neidl: Constructive Utility in Model-Based

Diagnosis Repair Systems

1992-42 ∗ P. S. Chen, R. Hennicker, M. Jarke: On the Retrieval of Reusable Soft-

ware Components

1992-43 W. Hans, St.Winkler: Abstract Interpretation of Functional Logic Lan-

guages

1992-44 N. Kiesel, A. Schuerr, B. Westfechtel: Design and Evaluation of GRAS,

a Graph-Oriented Database System for Engineering Applications

1993-01 ∗ Fachgruppe Informatik: Jahresbericht 1992

1993-02 ∗ Patrick Shicheng Chen: On Inference Rules of Logic-Based Information

Retrieval Systems

1993-03 G. Hogen, R. Loogen: A New Stack Technique for the Management of

Runtime Structures in Distributed Environments

1993-05 A. Zündorf: A Heuristic for the Subgraph Isomorphism Problem in Ex-

ecuting PROGRES

1993-06 A. Kemper, D. Kossmann: Adaptable Pointer Swizzling Strategies in

Object Bases: Design, Realization, and Quantitative Analysis

1993-07 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Graduiertenkolleg In-

formatik und Technik

1993-08 ∗ Matthias Berger: k-Coloring Vertices using a Neural Network with Con-

vergence to Valid Solutions

1993-09 M. Buchheit, M. Jeusfeld, W. Nutt, M. Staudt: Subsumption between

Queries to Object-Oriented Databases

1993-10 O. Burkart, B. Steffen: Pushdown Processes: Parallel Composition and

Model Checking

1993-11 ∗ R. Große-Wienker, O. Hermanns, D. Menzenbach, A. Pollacks, S. Repet-

zki, J. Schwartz, K. Sonnenschein, B. Westfechtel: Das SUKITS-Projekt:

A-posteriori-Integration heterogener CIM-Anwendungssysteme

29

1993-12 ∗ Rudolf Mathar, Jürgen Mattfeldt: On the Distribution of Cumulated

Interference Power in Rayleigh Fading Channels

1993-13 O. Maler, L. Staiger: On Syntactic Congruences for omega-languages

1993-14 M. Jarke, St. Eherer, R. Gallersdoerfer, M. Jeusfeld, M. Staudt: Con-

ceptBase - A Deductive Object Base Manager

1993-15 M. Staudt, H.W. Nissen, M.A. Jeusfeld: Query by Class, Rule and Con-

cept

1993-16 ∗ M. Jarke, K. Pohl, St. Jacobs et al.: Requirements Engineering: An In-

tegrated View of Representation Process and Domain

1993-17 ∗ M. Jarke, K. Pohl: Establishing Vision in Context: Towards a Model of

Requirements Processes

1993-18 W. Hans, H. Kuchen, St. Winkler: Full Indexing for Lazy Narrowing

1993-19 W. Hans, J.J. Ruz, F. Saenz, St. Winkler: A VHDL Specification of a

Shared Memory Parallel Machine for Babel

1993-20 ∗ K. Finke, M. Jarke, P. Szczurko, R. Soltysiak: Quality Management for

Expert Systems in Process Control

1993-21 M. Jarke, M.A. Jeusfeld, P. Szczurko: Three Aspects of Intelligent Co-

operation in the Quality Cycle

1994-01 Margit Generet, Sven Martin (eds.), Fachgruppe Informatik: Jahres-

bericht 1993

1994-02 M. Lefering: Development of Incremental Integration Tools Using Formal

Specifications

1994-03 ∗ P. Constantopoulos, M. Jarke, J. Mylopoulos, Y. Vassiliou: The Software

Information Base: A Server for Reuse

1994-04 ∗ Rolf Hager, Rudolf Mathar, Jürgen Mattfeldt: Intelligent Cruise Control

and Reliable Communication of Mobile Stations

1994-05 ∗ Rolf Hager, Peter Hermesmann, Michael Portz: Feasibility of Authenti-

cation Procedures within Advanced Transport Telematics

1994-06 ∗ Claudia Popien, Bernd Meyer, Axel Kuepper: A Formal Approach to

Service Import in ODP Trader Federations

1994-07 P. Peters, P. Szczurko: Integrating Models of Quality Management Meth-

ods by an Object-Oriented Repository

1994-08 ∗ Manfred Nagl, Bernhard Westfechtel: A Universal Component for the

Administration in Distributed and Integrated Development Environ-

ments

1994-09 ∗ Patrick Horster, Holger Petersen: Signatur- und Authentifikationsver-

fahren auf der Basis des diskreten Logarithmusproblems

1994-11 A. Schürr: PROGRES, A Visual Language and Environment for PRO-

gramming with Graph REwrite Systems

1994-12 A. Schürr: Specification of Graph Translators with Triple Graph Gram-

mars

1994-13 A. Schürr: Logic Based Programmed Structure Rewriting Systems

1994-14 L. Staiger: Codes, Simplifying Words, and Open Set Condition

1994-15 ∗ Bernhard Westfechtel: A Graph-Based System for Managing Configura-

tions of Engineering Design Documents

1994-16 P. Klein: Designing Software with Modula-3

1994-17 I. Litovsky, L. Staiger: Finite acceptance of infinite words

30

1994-18 G. Hogen, R. Loogen: Parallel Functional Implementations: Graphbased

vs. Stackbased Reduction

1994-19 M. Jeusfeld, U. Johnen: An Executable Meta Model for Re-Engineering

of Database Schemas

1994-20 ∗ R. Gallersdörfer, M. Jarke, K. Klabunde: Intelligent Networks as a Data

Intensive Application (INDIA)

1994-21 M. Mohnen: Proving the Correctness of the Static Link Technique Using

Evolving Algebras

1994-22 H. Fernau, L. Staiger: Valuations and Unambiguity of Languages, with

Applications to Fractal Geometry

1994-24 ∗ M. Jarke, K. Pohl, R. Dömges, St. Jacobs, H. W. Nissen: Requirements

Information Management: The NATURE Approach

1994-25 ∗ M. Jarke, K. Pohl, C. Rolland, J.-R. Schmitt: Experience-Based Method

Evaluation and Improvement: A Process Modeling Approach

1994-26 ∗ St. Jacobs, St. Kethers: Improving Communication and Decision Making

within Quality Function Deployment

1994-27 ∗ M. Jarke, H. W. Nissen, K. Pohl: Tool Integration in Evolving Informa-

tion Systems Environments

1994-28 O. Burkart, D. Caucal, B. Steffen: An Elementary Bisimulation Decision

Procedure for Arbitrary Context-Free Processes

1995-01 ∗ Fachgruppe Informatik: Jahresbericht 1994

1995-02 Andy Schürr, Andreas J. Winter, Albert Zündorf: Graph Grammar En-

gineering with PROGRES

1995-03 Ludwig Staiger: A Tight Upper Bound on Kolmogorov Complexity by

Hausdorff Dimension and Uniformly Optimal Prediction

1995-04 Birgitta König-Ries, Sven Helmer, Guido Moerkotte: An experimental

study on the complexity of left-deep join ordering problems for cyclic

queries

1995-05 Sophie Cluet, Guido Moerkotte: Efficient Evaluation of Aggregates on

Bulk Types

1995-06 Sophie Cluet, Guido Moerkotte: Nested Queries in Object Bases

1995-07 Sophie Cluet, Guido Moerkotte: Query Optimization Techniques Ex-

ploiting Class Hierarchies

1995-08 Markus Mohnen: Efficient Compile-Time Garbage Collection for Arbi-

trary Data Structures

1995-09 Markus Mohnen: Functional Specification of Imperative Programs: An

Alternative Point of View of Functional Languages

1995-10 Rainer Gallersdörfer, Matthias Nicola: Improving Performance in Repli-

cated Databases through Relaxed Coherency

1995-11 ∗ M.Staudt, K.von Thadden: Subsumption Checking in Knowledge Bases

1995-12 ∗ G.V.Zemanek, H.W.Nissen, H.Hubert, M.Jarke: Requirements Analy-

sis from Multiple Perspectives: Experiences with Conceptual Modeling

Technology

1995-13 ∗ M.Staudt, M.Jarke: Incremental Maintenance of Externally Materialized

Views

1995-14 ∗ P.Peters, P.Szczurko, M.Jeusfeld: Oriented Information Management:

Conceptual Models at Work

31

1995-15 ∗ Matthias Jarke, Sudha Ram (Hrsg.): WITS 95 Proceedings of the 5th

Annual Workshop on Information Technologies and Systems

1995-16 ∗ W.Hans, St.Winkler, F.Saenz: Distributed Execution in Functional Logic

Programming

1996-01 ∗ Jahresbericht 1995

1996-02 Michael Hanus, Christian Prehofer: Higher-Order Narrowing with Defi-

nitional Trees

1996-03 ∗ W.Scheufele, G.Moerkotte: Optimal Ordering of Selections and Joins in

Acyclic Queries with Expensive Predicates

1996-04 Klaus Pohl: PRO-ART: Enabling Requirements Pre-Traceability

1996-05 Klaus Pohl: Requirements Engineering: An Overview

1996-06 ∗ M.Jarke, W.Marquardt: Design and Evaluation of Computer–Aided Pro-

cess Modelling Tools

1996-07 Olaf Chitil: The Sigma-Semantics: A Comprehensive Semantics for Func-

tional Programs

1996-08 ∗ S.Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics

1996-09 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP96 - Fifth

International Conference on Algebraic and Logic Programming

1996-09-0 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP 96 -

Fifth International Conference on Algebraic and Logic Programming:

Introduction and table of contents

1996-09-1 Ilies Alouini: An Implementation of Conditional Concurrent Rewriting

on Distributed Memory Machines

1996-09-2 Olivier Danvy, Karoline Malmkjær: On the Idempotence of the CPS

Transformation

1996-09-3 Vı́ctor M. Guĺıas, José L. Freire: Concurrent Programming in Haskell

1996-09-4 Sébastien Limet, Pierre Réty: On Decidability of Unifiability Modulo

Rewrite Systems

1996-09-5 Alexandre Tessier: Declarative Debugging in Constraint Logic Program-

ming

1996-10 Reidar Conradi, Bernhard Westfechtel: Version Models for Software Con-

figuration Management

1996-11 ∗ C.Weise, D.Lenzkes: A Fast Decision Algorithm for Timed Refinement

1996-12 ∗ R.Dömges, K.Pohl, M.Jarke, B.Lohmann, W.Marquardt: PRO-

ART/CE* — An Environment for Managing the Evolution of Chemical

Process Simulation Models

1996-13 ∗ K.Pohl, R.Klamma, K.Weidenhaupt, R.Dömges, P.Haumer, M.Jarke: A

Framework for Process-Integrated Tools

1996-14 ∗ R.Gallersdörfer, K.Klabunde, A.Stolz, M.Eßmajor: INDIA — Intelligent

Networks as a Data Intensive Application, Final Project Report, June

1996

1996-15 ∗ H.Schimpe, M.Staudt: VAREX: An Environment for Validating and Re-

fining Rule Bases

1996-16 ∗ M.Jarke, M.Gebhardt, S.Jacobs, H.Nissen: Conflict Analysis Across Het-

erogeneous Viewpoints: Formalization and Visualization

1996-17 Manfred A. Jeusfeld, Tung X. Bui: Decision Support Components on the

Internet

32

1996-18 Manfred A. Jeusfeld, Mike Papazoglou: Information Brokering: Design,

Search and Transformation

1996-19 ∗ P.Peters, M.Jarke: Simulating the impact of information flows in net-

worked organizations

1996-20 Matthias Jarke, Peter Peters, Manfred A. Jeusfeld: Model-driven plan-

ning and design of cooperative information systems

1996-21 ∗ G.de Michelis, E.Dubois, M.Jarke, F.Matthes, J.Mylopoulos, K.Pohl,

J.Schmidt, C.Woo, E.Yu: Cooperative information systems: a manifesto

1996-22 ∗ S.Jacobs, M.Gebhardt, S.Kethers, W.Rzasa: Filling HTML forms simul-

taneously: CoWeb architecture and functionality

1996-23 ∗ M.Gebhardt, S.Jacobs: Conflict Management in Design

1997-01 Michael Hanus, Frank Zartmann (eds.): Jahresbericht 1996

1997-02 Johannes Faassen: Using full parallel Boltzmann Machines for Optimiza-

tion

1997-03 Andreas Winter, Andy Schürr: Modules and Updatable Graph Views for

PROgrammed Graph REwriting Systems

1997-04 Markus Mohnen, Stefan Tobies: Implementing Context Patterns in the

Glasgow Haskell Compiler

1997-05 ∗ S.Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-

tische Spezifikation inkrementeller Integrationswerkzeuge

1997-06 Matthias Nicola, Matthias Jarke: Design and Evaluation of Wireless

Health Care Information Systems in Developing Countries

1997-07 Petra Hofstedt: Taskparallele Skelette für irregulär strukturierte Prob-

leme in deklarativen Sprachen

1997-08 Dorothea Blostein, Andy Schürr: Computing with Graphs and Graph

Rewriting

1997-09 Carl-Arndt Krapp, Bernhard Westfechtel: Feedback Handling in Dy-

namic Task Nets

1997-10 Matthias Nicola, Matthias Jarke: Integrating Replication and Commu-

nication in Performance Models of Distributed Databases

1997-11 ∗ R. Klamma, P. Peters, M. Jarke: Workflow Support for Failure Manage-

ment in Federated Organizations

1997-13 Markus Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs

1997-14 Roland Baumann: Client/Server Distribution in a Structure-Oriented

Database Management System

1997-15 George Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms

1998-01 ∗ Fachgruppe Informatik: Jahresbericht 1997

1998-02 Stefan Gruner, Manfred Nagel, Andy Schürr: Fine-grained and

Structure-Oriented Document Integration Tools are Needed for Devel-

opment Processes

1998-03 Stefan Gruner: Einige Anmerkungen zur graphgrammatischen Spezifika-

tion von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und

Schürr

1998-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments

1998-05 Martin Leucker, Stephan Tobies: Truth - A Verification Platform for

Distributed Systems

33

1998-06 ∗ Matthias Oliver Berger: DECT in the Factory of the Future

1998-07 M. Arnold, M. Erdmann, M. Glinz, P. Haumer, R. Knoll, B. Paech, K.

Pohl, J. Ryser, R. Studer, K. Weidenhaupt: Survey on the Scenario Use

in Twelve Selected Industrial Projects

1998-08 ∗ H. Aust: Sprachverstehen und Dialogmodellierung in

natürlichsprachlichen Informationssystemen

1998-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am

Beispiel intraoraler Radiographien

1998-10 ∗ M. Nicola, M. Jarke: Performance Modeling of Distributed and Repli-

cated Databases

1998-11 ∗ Ansgar Schleicher, Bernhard Westfechtel, Dirk Jäger: Modeling Dynamic

Software Processes in UML

1998-12 ∗ W. Appelt, M. Jarke: Interoperable Tools for Cooperation Support using

the World Wide Web

1998-13 Klaus Indermark: Semantik rekursiver Funktionsdefinitionen mit Strik-

theitsinformation

1999-01 ∗ Jahresbericht 1998

1999-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version

1999-03 ∗ R. Gallersdörfer, M. Jarke, M. Nicola: The ADR Replication Manager

1999-04 Maŕıa Alpuente, Michael Hanus, Salvador Lucas, Germán Vidal: Spe-

cialization of Functional Logic Programs Based on Needed Narrowing

1999-05 ∗ W. Thomas (Ed.): DLT 99 - Developments in Language Theory Fourth

International Conference

1999-06 ∗ Kai Jakobs, Klaus-Dieter Kleefeld: Informationssysteme für die ange-

wandte historische Geographie

1999-07 Thomas Wilke: CTL+ is exponentially more succinct than CTL

1999-08 Oliver Matz: Dot-Depth and Monadic Quantifier Alternation over Pic-

tures

2000-01 ∗ Jahresbericht 1999

2000-02 Jens Vöge, Marcin Jurdzinski: A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-04 Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 Mareike Schoop: Cooperative Document Management

2000-06 Mareike Schoop, Christoph Quix (eds.): Proceedings of the Fifth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2000-07 ∗ Markus Mohnen, Pieter Koopman (Eds.): Proceedings of the 12th Inter-

national Workshop of Functional Languages

2000-08 Thomas Arts, Thomas Noll: Verifying Generic Erlang Client-Server Im-

plementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

34

2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

35

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: Aachen Summer

School Applied IT Security

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

36

