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Abstract. We consider the sabotage game presented by van Benthem in an
essay on the occasion of Jörg Siekmann’s 60th birthday. In this game one player
moves along the edges of a finite, directed or undirected multi-graph and the
other player takes out a link after each step. There are several algorithmic tasks
over graphs which can be considered as winning conditions for this game, for
example reachability, Hamilton path or complete search. As the game definitely
ends after at most the number of edges (counted with multiplicity) steps, it is
easy to see that solving the sabotage game for the mentioned tasks takes at
most PSPACE in the size of the graph. We will show that on the other hand
solving this game in general is PSPACE-hard for all conditions. We extend this
result to some variants of the game (removing more than one edge per round
and removing vertices instead of edges). Finally we introduce a modal logic over
changing models to express tasks corresponding to the sabotage games. We will
show that model checking this logic is PSPACE-complete.

1 Introduction

In some fields of computer science, especially the controlling of reactive systems
an interesting sort of tasks arises, which consider temporal changes of a systems
itself. In contrast to the usual tasks over reactive systems, where movements
within a system are considered, an additional process affects: the dynamic change
of the system itself. Hence we have two different processes: a local movement
within the system and a global change of the system.

For example consider a server network such that, during its work, some con-
nections between the servers break down or some servers stop working (caused
by technical malfunction or by wilful damage). We can model this situation by
a network graph where from time to time some edges or vertices (with their
associated edges) are removed. Some natural questions arise for this system: is
it possible – regardless of the removed connections – to interchange information
between two designated servers? Is there a protocol which guarantees that the
destination can be reached?

Another example for a task of this kind was recently given by van Ben-
them [vB02], which can be described as the real Travelling Salesman Problem: is
it possible to find your way between two cities within a railway network where a
malevolent demon starts cancelling connections?

As usual one can model such kind of reactive system as a two-person game,
where one player (the control program, the protocol, the salesman) plays against
the other (the environment, the disturbance, the malevolent demon). As a win-
ning condition one can consider several algorithmic tasks over graphs, for example
reachability, Hamilton path or complete search. Determining the winner of these
games gives us the answers for our original tasks.



In this paper we will show that solving the sabotage games where one player
(the Runner) moves along edges in a multi-graph and the other player (the
Blocker) removes an edge in each round is PSPACE-hard for the three men-
tioned winning conditions. Further we extend this result to some variants of the
game. Finally we consider a modal logic over changing models to express tasks
corresponding to sabotage games and we show that model checking this logic is
PSPACE-complete.

The main aspect of the sabotage game is that the Runner can only act locally
by moving one step further from his actual position whereas the Blocker has the
possibility to behave globally on the arena of the game. So the sabotage game is
in fact a match between a local and a global player.

This paper is organised as follows. In Sect. 2 we introduce the basic notions
of the sabotage game and repeat the definitions of the mentioned winning condi-
tions. In Sect. 3 we show the PSPACE-hardness for the sabotage game with the
reachability condition on undirected graphs. For that we give a polynomial time
reduction from the PSPACE-complete problem of Quantified Boolean Formulas
to these games. In Sect. 4 we modify the construction for directed graphs. The
power of the saboteur is modified in Sect. 5: we consider variants of the game
(removing more than one edge per round and removing vertices instead of edges)
and show that solving these variants has the same complexity. In Sect. 6 we give
polynomial time reductions from sabotage games with reachability condition to
the other winning conditions. In the last section we introduce the extension SML
of modal logic over transitions systems which captures the concept of removing
edges, i.e., SML is a modal logic over changing models. We give the syntax and
the semantics of SML and provide a translation to first order logic. By apply-
ing the results of the first part we will show that model checking this logic is
PSPACE-complete.

2 The sabotage game

In this section we give the definition of the sabotage game and we repeat three
algorithmic tasks over graphs which can be considered as winning conditions for
this game: reachability, Hamilton path and complete search.

A multi-graph is a pair (V, e) where V is a non-empty, finite set of vertices and
e : V × V → N is an edge multiplicity function, i.e., e(u, v) denotes the number
of edges between the vertices u and v. e(u, v) = 0 means that u and v are not
connected. In case of an undirected graph we have in addition e(u, v) = e(v, u) for
all u, v ∈ V . A single-graph is given by a multiplicity function with e(u, v) ≤ 1 for
all vertices u, v ∈ V . The size of a multi-graph (V, e) is given by |V |+ |E|, where
we set |E| :=

∑

u,v∈V e(u, v) for directed graphs and |E| := 1
2

∑

u,v∈V e(u, v) for
undirected graphs.

Let (V, e0) be a multi-graph and v0 ∈ V be an initial vertex. The two-person
sabotage game is played as follows: initially the game arena is A0 = (V, e0, v0).
The two players, which we call Runner and Blocker, move alternatingly, where
the Runner starts his run from vertex v0. At the begin of round n the Runner
moves one step further along an existing edge of the graph, i.e., if vn is his ac-
tual position, he chooses a vn+1 ∈ V with en(vn, vn+1) > 0 an moves to vn+1.
Afterwards the Blocker removes one edge of the graph, i.e., he chooses two ver-
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tices u and v somewhere in the graph with en(u, v) > 0. In the directed case
we define en+1(u, v) := en(u, v) − 1 and en+1(·, ·) := en(·, ·) otherwise. In the
undirected case we let en+1(u, v) := en+1(v, u) := en(u, v) − 1. The multi-graph
An+1 = (V, en+1, vn+1) becomes the arena for the next round. The game ends,
if either the Runner cannot make a move, i.e., there is no link starting from his
actual position or if the winning condition is fulfilled.

As a winning condition for the sabotage game on an undirected or directed
graph one can consider the usual tasks over graphs, for example:

1. Reachability : the Runner wins iff he can reach a given vertex (which we call
the goal)

2. Hamilton Path or Travelling Salesman: the Runner wins iff he can move
along a Hamilton Path, i.e., he visits each vertex exactly once

3. Complete Search: the Runner wins iff he can visit each vertex (possibly more
than once)

For the reachability game with one single goal the use of multi-graphs is
crucial:

Lemma 1. The sabotage game with reachability condition on a single-graph and
one single goal can be solved in linear time.

Proof. The Runner wins the game iff the goal is the initial vertex or a vertex
which is reachable in the first move. Checking this needs at most linear time.
In the other cases the Blocker has a winning strategy: if the Runner moves to
a vertex v such that there is a (single) edge connecting v and the goal then the
Blocker removes this edge. Otherwise he removes an arbitrary edge. ut

Remark 1. With Hamilton path or complete search condition the sabotage game
even can be solved in constant time: the Runner wins iff the graph contains only
one single vertex or two connected vertices. In all other cases the Blocker can
isolate a fixed vertex by the strategy given above.

In the sequel we only consider the sabotage game with reachability condition.
For the representation of game arenas we use the following conventions: the label
of edges gives us the multiplicity e(u, v). If no number is displayed then the link
is a single edge, i.e., it has multiplicity 1. Further we display the goal – the vertex
which has to be reached by the Runner to win the game – as a circled bullet • .
For better readability the goal can be displayed multiple times in a figure, but it
is always meant as one single vertex. Capital letters always denote vertices.

For the reachability condition we can bound the multiplicity uniformly by two
or, if we allow a second goal vertex, we even can transform every multi-graph
game into a single-graph game:

Lemma 2. Let G be a sabotage game with reachability condition on a multi-
graph arena A. Then there are games G′, G′′ on arenas A′,A′′ with a size poly-
nomial in the size of A such that the Runner wins G iff he wins G′, resp. G′′,
and
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1. A′ is a single-graph with two goals
2. A′′ is a multi-graph with one goal and only single or double edges. Moreover

the double edges occur only connected with the goal.

Proof. We only consider directed graphs; undirected graphs are treated analo-
gously. First, we construct A′. For that we start with the original set of vertices
and add a second goal vertex to the arena A′. Single-edges are transferred di-
rectly. For every edge in A with multiplicity > 1 connecting vertices u, v we add
k new vertices and connect each of them with u, v and the new goal vertex as
depicted in Fig. 1(a). Moving from vertex u towards v the Runner has as many
possibilities as in the original game. But the Blocker does not gain an additional
move when the Runner reaches one of the new vertices: he has to delete the
connection to the goal to prevent his loss. Applying the previous lemma it is
clear that we actually need a new goal, if v is the original goal.

The size of the arena A′ = (V ′, e′) is estimated by the inequalities |V |′ ≤
|V | + |E| + 1 and |E|′ ≤ 3 |E|.

The arena A′′ is constructed similarly. If v is not the original goal we apply
the same construction, but reusing the existing goal instead of adding a new one.
If v is the goal then we add double edges from the new vertices to v as depicted
in Fig. 1(b). The estimation of the size of A′′ is the same as above. ut

•

•

•

u · · · v

•

•
(a) For arena A′

•

2•

2
u · · · v

•

2

•

2

(b) For arena A′′

Fig. 1. Transformation of multi-edges

Since edges are only deleted but not added during the play the following fact
is easy to see:

Lemma 3. If the Runner has a winning strategy in the sabotage game with
reachability condition then he can win without visiting any vertex twice.

In the sequel we will introduce several game arenas where we use edges with
a multiplicity ‘high enough’ to ensure that the Blocker cannot win the game
by reducing these edges. In figures these edges are represented by a curly link
• • . For the moment we can consider these links to be ‘unremovable’.
Due to the last lemma we have: if the Runner can win the reachability game
at all, then he can do so within at most |V | − 1 rounds. Hence we can set the
multiplicity of the ’unremovable’ edges to |V | − 1. To bound the multiplicity of
edges uniformly one can apply Lemma 2.
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3 PSPACE-hardness for sabotage reachability games on

undirected graphs

In this section we prove that the PSPACE-complete problem of Quantified Boolean
Formulas, QBF for short, can be reduced by a polynomial time reduction to sab-
otage games on undirected graphs with the reachability condition.

Let ϕ be an instance of QBF, i.e., a formula of the form1

ϕ ≡ ∃x1∀x2∃x3 . . . Qxnψ,

where Q is ∃ for n odd and ∀ otherwise and ψ is a quantifier-free boolean formula
in conjunctive normal form.

We will construct an undirected game arena for a sabotage game Gϕ with a
reachability condition such that the Runner has a winning strategy in the game
iff the formula ϕ is satisfiable, i.e., there is an assignment for x1 such that for all
assignments for x2 there exists ... and ψ is satisfied by the overall assignment.

In the first approach one would like to use a reduction like the classical one
from QBF to the Geography Game,2 but then the Blocker can destroy connections
in a part of the graph which should be visited only later in the game. So possibly
he is able to prevent the intended sequence of choices and block the game in an
unwished manner. One could solve this problem by arranging the ‘choice gadgets’
of the Geography Game with increasing multiplicity. But then one has to blow
up the distance between two successive gadgets to give the Blocker the chance
to remove all necessary edges at each ‘choice point’ before the Runner reaches
these vertices. It is easy to see that this ‘accordion approach’ results in an arena
with a size exponential in the size n of ϕ. So the key to find a reduction which
provides an arena with a size polynomial in the size of ϕ is to restrict the liberty
of the Blocker in a more sophisticated way, i.e., to force him removing edges only
‘locally’.

Similar to the construction of the Geography Game the game arena Gϕ con-
sists of two parts: a chain of n gadgets where first the Runner chooses an assign-
ment for x1, then the Blocker chooses an assignment for x2 before the Runner
chooses an assignment for x3 and so on. The second part gives the Blocker the
possibility to select one of the clauses of ψ. The Runner must certify that this
clause is indeed satisfied by the chosen assignment: he can reach the goal vertex
and win the game iff at least one literal in the clause is true under the assignment.

Figure 15 shows an example of the sabotage game Gϕ for the formula ϕ ≡
∃x1∀x2∃x3 (c1∧c2∧c3∧c4) where we assume that each clause consists of exactly
three literals. In the following we describe in detail the several components of Gϕ

and their arrangement. The main step of the construction is to take care about
the opportunity of the Blocker to remove edges somewhere in the graph.

3.1 The ∃-gadget

The gadget where the Runner chooses an assignment for the xi with i odd is
displayed in Fig. 2. We are assuming that the run reaches this gadget at vertex A
at the first time. Vertex B is intended to be the exit. In the complete construction

1 Without loss of generality we consider only formulas beginning with an existential quantifier.
2 See for [Pap94], p. 460.
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there are also edges from Xi, resp. Xi leading to the last gadget of the graph,
represented as dotted lines labelled by back. We will see later that taking these
edges as a shortcut, starting from the ∃-gadget directly to the last gadget is
useless for the Runner. The only meaningful direction is coming from the last
gadget back to the ∃-gadget. So we temporary assume that the Runner does not
take these edges.

in

A

• •

• •

• • •

Xi

4

back
B

out

Xi

4

back

Fig. 2. The ∃-gadget for xi with i odd

The Runner makes his choice simply by moving from A either to the left or
to the right. Thereby he moves either towards Xi if he wants xi to be false or
towards Xi if he wants xi to be true. We only consider the case that he chooses
the left hand side since the other case is similar. Because of Lemma 3 we can
further assume that he does not move backwards. Then the Blocker has exactly
four steps to remove all the links between Xi and the goal before the Runner can
reach Xi. On the other hand the Blocker must delete these links since otherwise
the Runner can reach the goal directly. So the Blocker cannot remove edges
somewhere else in the graph without loosing the game.

Why we use four steps here will be clarified later on. If the Runner has
reached Xi and he moves towards B then the Blocker has to delete the edge
between B and Xi since otherwise the Runner can reach the goal on this way
(there are still four edges left between Xi and the goal). Altogether we have:

Lemma 4. Suppose that the Blocker wants to isolate the goal and that the Run-
ner does not move backwards. Then the ∃-gadget, when the Runner reaches the
exit, has one of the two appearances displayed in Fig. 3 and it is for the Runner to
decide which case arises. During the run through this gadget the Blocker cannot
delete edges somewhere else in the graph without loosing the game immediately.

3.2 The ∀-gadget

The gadget where the Blocker chooses an assignment for the xi with i even is a
little bit more sophisticated. Figure 4 shows the construction.

In the sequel we are again assuming, due to Lemma 3, that the Runner does
not move backwards. Furthermore, we are assuming as in the last case that he
does not take the dotted back -edges as a shortcut.
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in

•

• •

• •

• • •

Xi
back

•

out

Xi

4

back

in

•

• •

• •

• • •

Xi

4

back
•

out

Xi

back

Fig. 3. The two cases after traversing the ∃-gadget

If the Blocker wants xi to be false he tries to lead the Runner towards Xi.
In this case he simply removes the three edges between C and Xi during the
first three steps. Then the Runner has to move across D and in the meantime
the Blocker deletes the four edges between Xi and the goal to ensure that the
Runner cannot win directly. Just the same way as above he removes in the last
step the link between B and Xi to prevent a premature end of the game (since
the four edges between Xi and the goal are still left).

in

•

D •

• •

• • C

3

Xi

4

back
B

out

Xi

4

back

Fig. 4. The ∀-gadget for xi with i even

On the other hand if the Blocker wants to assign true to xi he should lead
the Runner towards Xi. To achieve this aim he removes three of the four links
between Xi and the goal before the Runner reaches C. Nevertheless the Runner
has the free choice at vertex C whether he moves towards Xi or towards Xi, i.e.,
the Blocker cannot guarantee that the run goes across Xi. But let us consider
the two possible cases: first we assume that the Runner moves as intended and
uses the edge between C and Xi. In this round the Blocker removes the last link
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from Xi to the goal. Then the Runner moves to B and the Blocker deletes the
edge from B to Xi as before.

Now assume that the Runner ‘misbehaves’ and moves from C to D and
further towards Xi. Then the Blocker first removes the four edges between Xi

and the goal. When the Runner now moves from Xi to B the Blocker has to
take care that the Runner cannot reach the goal via the link between B and Xi

(there is still one edge left from Xi to the goal). There are several ways to realise
that: 1) He can delete the last link between Xi and the goal and therefore isolate
the goal completely within this gadget, 2) he cuts the link between B and Xi

such that the Runner has to exit the gadget or 3) he waits for the decision of the
Runner and deletes an edge somewhere in the game graph. Only if the Runner
moves from B to Xi he removes the last link from Xi to the goal. In this way
the Blocker obtains one additional opportunity to remove edges. When we have
introduced the verification gadget in the next subsection it will be clear that all
three alternatives are of no advantage for the Runner : after traversing this last
gadget the way leads back to one of the literal vertices (which one depends on the
formula and on choices of both players) and the Runner will only win if there are
at least two edges left connecting the goal with this literal vertex (the number of
edges depends on the chosen assignment). But if the Runner misbehaves within
the ∀-gadget and the Blocker plays as described above then, if the way leads
back to this gadget there are certainly not enough edges left.

To summarise the traversing of the ∀-gadget we obtain:

Lemma 5. Suppose that the Blocker wants to isolate the goal, that the Runner
does not move backwards, and that he wants to prevent an extra chance for the
Blocker to delete edges. Then the ∀-gadget, when the Runner reaches the exit,
has one of the two appearances displayed in Fig. 5 and it is for the Blocker to
decide which case arises. During the run through this gadget the Blocker cannot
delete edges somewhere else in the graph without loosing the game immediately.

in

•

• •

• •

• • •

Xi
back

•

out

Xi

4

back

in

•

• •

• •

• • •

3

Xi

4

back
•

out

Xi

back

Fig. 5. The two essential cases after traversing the ∀-gadget
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3.3 The verification gadget

The last component of the arena is a gadget where the Blocker can choose one
of the clauses of the formula ψ. Before we give the representation of this gadget
let us explain the idea. If the Blocker chooses the clause c then the Runner can
select for his part one literal xi of c. There is an edge ‘back’ to the ∃-gadget if i is
odd or to the ∀-gadget if i is even, videlicet to Xi if xi is positive in c, resp. to Xi

if xi is negative in c (these are the edges represented by dotted lines and labelled
by back in the two previous gadgets). So if the chosen assignment satisfies ψ, then
for all clauses of ψ there is at least one literal which is true (ψ is in conjunctive
normal form). Since the path through the assignment gadgets visits the opposite
truth values this means that there is at least one edge back to an Xi, resp.
Xi, which itself is connected to the goal by an edge with a multiplicity of four
(assuming that the Runner did not misbehave in the ∀-gadget), see Lemmas 4
and 5. Therefore the Runner can reach the goal and wins the game.

For the converse if the chosen assignment does not satisfy ψ, then there is a
clause c in ψ such that every literal in c is assigned false. If the Blocker chooses
this clause c then every edge back to the assignment gadgets ends in an Xi, resp.
Xi, which is unconnected to the goal (again by Lemmas 4 and 5). If we show
that there is no other way to reach the goal this means that the Runner looses
the game.

But we have to be very careful neither to allow any shortcuts for the Runner
nor to give the Blocker to much liberty. Figure 6 shows the verification gadget
for ψ ≡ c1 ∧ c2 ∧ c3 ∧ c4 where each clause ci has exactly three literals. The curly
edges at the bottom of the gadget lead back to the corresponding literals of each
clause. For example if c1 ≡ x1 ∨ ¬x2 ∨ ¬x4 then the first curly edge under the
vertex C1 leads to X1 in the first gadget (∃), the second to X2 in the second
gadget (∀), and the third to X4 in the fourth gadget (∀).

in

•

A1 A2 A3 A4 •

C1 • C2 • C3 • C4 •

• • • • • • • • • • • •

Fig. 6. The verification gadget with four clauses

The Blocker chooses the clause ck by first removing the edges from Aj to Cj

for j < k one after the other. Then he cuts the link between Ak and Ak+1, resp.
between Ak and the goal if ck is the last clause. By Lemma 3 it is useless for the
Runner to go back, thus he can only follow the given path to Ck. If he reaches
this vertex the Blocker must remove the link from Ck to the goal to prevent the
win for the opponent. In the next step the Runner selects a literal xi, resp. ¬xi in
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ck, moves towards the corresponding vertex and afterwards along the curly edge
back to the assignment gadgets as described above. At this point the Blocker has
exactly two moves left, i.e., he is allowed to remove two edges somewhere in the
graph. But by Lemma 4 and 5 we have: if the ‘right’ assignment for this literal has
been chosen then there are exactly four edges left connecting the corresponding
vertex and the goal. So the Blocker has not the opportunity to isolate the goal
and the Runner wins the game. Otherwise, if the ‘wrong’ assignment has been
chosen then there is no link from Xi, resp. Xi to the goal left. Any continuation
which the Runner could take either leads him back to an already visited vertex
(which is a loss by Lemma 3) or, by taking another back -edge in the ‘wrong’
direction, to another vertex in the verification gadget. We handle the latter case
in general.

What happens if the Runner uses one of the shortcuts starting from a literal
vertex within the assignment gadgets which leads him directly to the bottom of
the verification gadget? In this case the Blocker can prevent the continuation of
the run at the bottom of the verification gadget by removing the corresponding
single edge between the clause vertex Ck and the vertex beneath. So the Runner
has to move back. This cannot be an advantage for him by Lemma 3, i.e., he
wins the game if and only if he wins it without using any shortcut of this kind.

We have to consider more special cases: what happens if the Blocker does
not behave as intended in the verification gadget? First, if the Runner reaches
a vertex Ak and the Blocker removes either the edge between Ak and Ck or the
one between Ck and the goal or one of the edges leading to the vertices beneath
Ck (one for each literal in ck) – in our example, if the Blocker removes one of the
five solid edges displayed in Fig. 7 – then the Runner moves towards Ak+1, resp.
towards the goal if ck is the last clause. The Runner has to do so since, in the
latter two cases, entering the ‘damaged’ area around Ck could be a disadvantage
for him.

Ak Ak+1

Ck •

• • •

Fig. 7. A special case

Finally we consider the case that the Blocker removes an edge somewhere
else in the graph instead. This behaviour is only reasonable if the Blocker cannot
win by the ‘regular’ strategy described above, i.e., only if the chosen assignment
satisfies ψ. So consider the round when the Runner reaches for the first time
an Ak such that the edges from Ak to Ak+1, resp. the goal, as well as all edges
connected to Ck are still left (i.e. all five solid edges in Fig. 7). If ck is the last
clause then the Runner just reaches the goal and wins the game. Otherwise he
moves to Ck, chooses an appropriate literal xi, resp. ¬xi such that the four edges
from the corresponding vertex are still left (the chosen assignment satisfies ϕ,
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so at least one literal of this kind exists in each clause) and moves back to the
assignment gadgets. Since Ak is the first vertex with this property the Blocker
has gained only one additional move, so nevertheless it remains at least one edge
from the vertex Xi, resp. Xi to the goal. So if the Runner can chose a satisfying
assignment at all then the Blocker cannot prevent the win for the Runner by
this behaviour. Since we had to cover this situation it is now clear why we used
the multiplicity of four within the gadgets.

This completes the construction of the game Gϕ. Figure 15 depict the com-
plete arena for the example formula ∃x1∀x2∃x3 (c1 ∧ c2 ∧ c3 ∧ c4). To summarise
the results we obtain:

Lemma 6. The Runner has a winning strategy in the sabotage game Gϕ iff ϕ

is satisfiable.

Since the reduction presented above can easily be done in polynomial time
we therefore obtain:

Theorem 1. There is a polynomial time reduction from QBF to sabotage games
with reachability winning condition on undirected graphs. In particular solving
these games is PSPACE-hard.

4 Modifying the game for directed graphs

Since each edge of the game Gϕ presented in the last section has an ‘intended
direction’, it is straight forward to check that the same construction works for
directed graphs as well: just replace every undirected edge by one directed edge
with the intended direction.

But since we do not have to take care of the shortcuts for the Runner there
are in fact simpler arenas for the directed case. We can omit the ways back
from B to Xi resp. Xi in the assignment gadgets and furthermore the shortcuts
starting from the literal vertices to the bottom of the verification gadget. We
present only the modified gadgets here and leave it to the reader to check that
this arrangement works. Figure 8(a) and Fig. 8(b) show the two assignment
gadgets and Fig. 8(c) the verification gadget with four clauses. To arrange the
gadgets in line connect each out vertex to each in vertex of the next gadget by an
‘unremovable’ edge. The undermost arrows in the verification gadget represent
‘unremovable’ links back to each corresponding literal vertex in the assignment
gadgets.

Therefore we obtain:

Theorem 2. Solving sabotage games with reachability winning condition on di-
rected graphs is PSPACE-hard.

5 Extending the power of the saboteur

Regarding the last theorem a natural question arises: is the PSPACE-hardness
still given if we liberate the movements of the Blocker? In this section we show
how to modify the game graph Gϕ to capture extensions of the sabotage game
such that the reduction from QBF still works. We consider the following libera-
tions for the Blocker for undirected graphs:
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in in

• •

• • •

Xi

3

out

back
Xi

3

out

back

(a) The ∃-gadget

in

• •

• • •

2

Xi

3

out

back
Xi

out

3

back

(b) The ∀-gadget

in

• • • • •

•

to the literals

• •

to the literals

• •

to the literals

• •

to the literals

•

(c) The verification gadget with four clauses

Fig. 8. The gadgets for directed graphs

1. Given a fixed number n he is allowed to remove up to n edges (counted by
their multiplicity) in each round. It is also allowed that he removes none of
them.

2. He removes vertices instead of edges, where the game arena is a single-graph.
First we consider the case that he is allowed to remove one vertex in each
round (together with the connected edges). To obtain a useful game we have
to impose two restrictions: he is not allowed to remove the actual position
where the Runner is and the goal is not affected.

3. The same as 1 for vertices of a single-graph: given a fixed number n he is
allowed to remove up to n vertices in each round.

Variant 1

This extension is captured by the following fact:

Lemma 7. For each of the three winning conditions reachability, Hamilton path
and complete search there is a (polynomial time) reduction from sabotage games
where the Blocker removes single edges to the one where he removes up to n edges
in each round. In particular, solving Variant 1 of the game is PSPACE-hard.

Proof. Just replace the multiplicity e(u, v) of each edge in the original arena by
n · e(u, v). Then the Runner wins the original game iff he wins the new game
where the Blocker removes up to n edges in each round. ut

Variant 2

Although ‘vertix deleting’ can be viewed as a special kind of ‘edge deleting’ where
simply each edge connected to the desired vertex is removed one cannot directly
apply Theorem 1, resp., Theorem 2 for this variant of the game.
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Also, it is not immediately clear that the complexity for ’vertex deleting’
is the same as for ’edge deleting’: for example Even and Tarjan [ET76] proved
that a generalisation of the Hex game to graphs is PSPACE-complete when the
players colour vertices. Surprisingly, the closely related game for edge colouring,
which is known as the Shannon switching game, can be solved in polynomial
time (see [BW70]). For an overview of these games and the corresponding results
see [Dem01].

We have to modify the construction of the game arena for a ’vertex deleting’
saboteur. We first consider this game with the additional restriction that there
are ‘unremovable’ vertices (similar to the curly edges in the previous game).
These vertices are displayed as � if they are unlabelled or as a box containing
the label. Later we will give a method to eliminate them. Further we use the
following abbreviation:

• k • stands for

•

•

• · · · •

•

•











































k vertices

It is clear that Lemma 3 is still valid. The general construction of the game
Gϕ for an instance ϕ of QBF is the same as in the previous section. We only have
to modify the three kinds of gadgets. The new ∃-gadget is displayed in Fig. 9(a).

in

�

� �

� �

� • �

� • �

Xi

5

back
• �

out

• Xi

5

back

(a) The ∃-gadget

in

�

� �

� �

� • C

3� •

Xi

5

back
• �

out

• Xi

5

back

(b) The ∀-gadget

Fig. 9. Gadgets for the ‘vertex removing’ game

The run through this gadget is similar to the previous case: the Runner
decides whether xi should be true, resp. false by moving right, resp. left at
the beginning. We consider the case where he moves towards Xi (letting xi be
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false). In the moment the Runner reaches Xi the Blocker by then has to remove
the five vertices between Xi and the goal. Afterwards, when the Runner moves
towards the exit of the gadget, the Blocker has to remove the two vertices above
and on the right of the exit to keep his chance to win.

The new ∀-gadget is depicted in Fig. 9(b). Again, if the Blocker wants xi

to be false he leads the Runner towards Xi by removing the three vertices
between C and Xi. Afterwards, he has to act like in the ∃-gadget. If he wants xi

to be true he deletes three of the five vertices between Xi and the goal. Again,
he cannot guarantee that the Runner moves towards Xi, but if the Runner does
so, he removes the remaining two vertices. If the Runner reaches the exit the
Blocker has to delete the vertices above and on the left of the goal by then. If
the Runner ‘misbehaves’ and moves from C towards Xi then the Blocker deletes
the five vertices between Xi and the goal, afterwards the vertex above the goal.
If the Runner then reaches the exit, the Blocker has obtained one extra move to
delete a vertex somewhere in the graph, since, if the Runner moves from the exit
towards Xi, he has enough time to delete the remaining two vertices between Xi

and the goal to isolate the goal completely. So ‘misbehaving’ is definitely of no
advantage for the Runner. We leave it to reader to check the details.

in

�

A1

•

• A2

• •

• A3

• •

• A4

• •

• •

C1 2 • C2 2 • C3 2 • C4 2 •

• • •

222

• • •

222

• • •

222

• • •

222

Fig. 10. The verification gadget with four clauses

We finish the construction by the modification of the verification gadget which
is displayed in Fig. 10, again for the case that ϕ consists of four clauses where
each clause has exactly three literals. If the Blocker wants to check clause c1 he
removes the vertex between A1 and A2 in the first step. In the next two steps
he has to remove the two vertices between C1 and the goal. The continuation
is analogous to the previous game: if the ‘right’ assignment has been chosen
then there is a literal in c1 such that there are five connections left between the
corresponding literal vertex and the goal – provided that the Runner has acted
reasonable. Since the Blocker cannot block the the way towards this vertex and
on this way he can only delete three vertices somewhere in the graph the Runner
wins the game. On the other hand, if the ‘wrong’ assignment has been chosen
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then there are no connections left from each literal vertex corresponding to the
literals in c1.

If the Blocker wants to check clause ck for k > 1 he leads the Runner along
the horizontal way. First, he removes the vertex between A1 and C1. In the two
steps where the Runner moves towards A2 he removes the two vertices between
A2 and C2, resp. A2 and the goal. This repeats until the Runner moves from
Ak−1 towards Ak. During the two steps the Blocker now removes the vertices
between the next Ak+1, resp. the goal if ck is the last clause, and between Ak

and the goal. Now the Runner has to turn down and the following movements
are as in the C1-case.

Again we have to consider several special cases: first, if the Runner reaches
Ak and the Blocker does not remove the vertex between Ak and Ck but another
vertex beside or below the vertex Ck, then the Runner moves towards Ak+1, resp.
the goal. If the area around Ck is ‘complete’ then he moves directly towards Ck

and continues his play as above: since the Blocker has gained only on additional
move by this there will be at least one connection from the appropriate literal
vertex to the goal left (this is the reason why we shifted the multiplicity from
four to five). Second, if the Runner at any time uses a shortcut by moving from
a literal vertex to the bottom of the verification gadget the Blocker can prevent
the continuation by removing the appropriate vertex beneath Ck. We leave it to
the reader to check the details.

To get rid of the ‘unremovable’ vertices one has to replace each of them by
five copies of a simple vertex such that in- and outgoing edges are preserved. The
construction is similar to the one for • k • . Two successive vertices of
this kind are replaced by the complete bipartite graph K5,5 as depicted in Fig. 11;
for more than two successive vertices the construction is analogous. The initial
vertex, i.e. the first vertex in the first ∃-gadget where the game starts is left as a
single vertex. It is easy to see that a ‘multiplicity’ of five is sufficient to preserve
all opportunities for the Runner. Since the number of vertices is increased at
most fivefold and the number of edges at most 25-fold the size of the game arena
is still polynomial in the size of ϕ.

• � � •  • K5,5 •

Fig. 11. The replacement for two unremovable vertices

Variant 3

To capture the extension where the Blocker is allowed to remove up to n vertices
at once one has to replace each vertex in the previous game – except the first one
and the goal – by n copies of it and connect them analogously to the construction
above where we replaced the unremovable vertices. This results in a game arena
with O(n|V |) vertices and O(n2|E|) edges, where (V,E) is the original game
arena.
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Directed graphs

Again, since the game played on the constructed arenas for the three variants
has an intended direction the cases for directed graphs are easy to capture by
replacing each original edge by an directed edges with the intended direction, i.e.
from top to bottom and from the bottom of the verification gadget back to the
corresponding literal vertices.

To summarise the results for the extended games we have:

Theorem 3. Solving the variants 1, 2 and 3 of the sabotage game on directed
or undirected graphs with the reachability winning condition is PSPACE-hard.

6 The remaining winning conditions

In this section we give polynomial time reductions from sabotage games with
reachability condition (where the Blocker removes exactly one edge per round)
to the ones with Hamilton path or complete search condition. We only consider
the games on undirected graphs. Each reduction works for the directed case as
well by simply replacing each edge added in the construction by a forth and a
back edge. These reductions are not optimal but it is easy to modify them to
omit some useless edges.

We do not consider Variants 2 or 3 of the game where the Blocker removes
vertices since the Hamilton path or the complete search condition does not make
sense for these conditions. Variant 1 of the game is already captured by Lemma 7.

In the sequel let G be a ‘single edge deleting’ sabotage game on an undirected
graph with the reachability condition.

6.1 Complete search condition

We have to give a sabotage game G′ with complete search condition such that
the Runner wins G iff he wins G′. To obtain G′ we add several vertices to G: one
‘power vertex’ P together with (|V |−2) · (max{|V | , |E|}−1) additional vertices,
see Fig. 12 (the additional vertices are displayed outside the frame). The original
goal vertex in G is connected to P by an edge with multiplicity |V |, whereas all
other vertices in G – except the goal and the initial vertex – are connected to P
by a chain of max{|V | , |E|} new vertices which are linked among each other by
‘unremovable’ edges.

If the Runner can reach the goal in the original game G then by Lemma 3 he
can do so within at most |V |−1 steps. In this case there is at least one edge from
the goal to the power vertex P left which he uses to reach P . Afterwards he visits
one by one all of the remaining vertices in G which have not been visited yet,
using the chains in both directions. Thus the Runner is able to visit all vertices
in G′ and therefore he wins the game G′.

For the converse assume that the Runner cannot reach the goal in G. Then
the only way for him to visit the goal in G′ is to use a shortcut from some vertex
in G to the power vertex P by moving along one of the chains. But on the way
towards P the Blocker can cut all links from P to the goal. On Runner’s way
back from P he can remove all edges in the original game G isolating the goal
completely. Thus the goal cannot be visited in G′ as well and the Runner looses
G′.
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goal•

|V |

• • ... •

G • • ... • P

• • ... •

start•
max{|V |,|E|}

Fig. 12. Game arena G
′ for the reduction to complete search

To determine an adequate multiplicity of the curly edges notice that the
Runner needs at most |V | steps to reach P (provided he can visit the goal
at all). In the worst case it remains to visit |V | − 2 vertices in G (all vertices
except the initial vertex and the goal). Each visitation takes 2 ·max{|V | , |E|} for
traversing the chain in both directions. So a rough estimate gives us a sufficient
multiplicity of 2 · |V | · max{|V | , |E|}.

So we have

Theorem 4. There is a polynomial time reduction from sabotage games with
reachability condition to sabotage games with complete search condition. In par-
ticular solving the latter games is PSPACE-hard.

6.2 Hamilton path condition

The reduction to the Hamilton path condition is quite similar to the last one.
But we have to prevent repeated visitations of P , so we need to ‘unravel’ the
loops. Let m := |V | − 2 and let v1, . . . , vm be an enumeration of all vertices
in G except the initial vertex and the goal. We add a sequence P1, . . . , Pm of
new vertices to G′ together with several chains of new vertices such that each
has length max{|V | , |E|}. We add these chains from Pi as well as from Pi+1 to
vertex vi for i < m and one chain from Pm to vertex vm. Furthermore we add
for i < m shortcuts from the last vertices in the chains between Pi and vi to the
last vertices in the chains between Pi+1 and vi to give the Runner the possibility
to skip the visitation of vi. Additionally there is one link with multiplicity |V |
from P1 to the goal in G, see Fig. 13.

Again we have: if the Runner can reach the goal in G then within at most
|V | − 1 steps without visiting any vertex twice. So there is at least one link
to P1 which he uses to reach P1. He follows the chain to v1. If he had already
visited v1 on his way to the goal he uses the shortcut at the last vertex in the
chain, otherwise he visits v1. Afterwards he moves to P2 using the next chain.
Continuing like this he reaches Pm and moves towards the last vertex vm. If he
had already visited vm he just stops one vertex before. Otherwise he stops at vm.
Moving this way he visits each vertex of G′ exactly once and wins the game.

For the converse: if the Runner cannot reach the goal in G then he cannot do
so in G′ as well. If he tries to use a shortcut via some Pi the Blocker has enough
time on the way to Pi to cut all the links between the goal and P1. On Runner’s
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|V |

v1 • ... • P1

• ... •

G v2 • ... • P2

• ... •

start• v3 • ... • P3

max{|V |,|E|}

Fig. 13. Game arena G
′ for the reduction to Hamilton path

way back from some Pj to a vertex in G he is able to remove all edges in the
original game G to isolate the goal completely. Thus the Runner looses G′.

The estimation of the multiplicity for the ‘unremovable’ edges is the same as
in the previous construction.

Hence we obtain

Theorem 5. There is a polynomial time reduction from sabotage games with
reachability condition to sabotage games with Hamilton path condition. In par-
ticular solving the latter games is PSPACE-hard.

7 A sabotage modal logic

In [vB02] van Benthem considered a ‘sabotage modal logic’,i.e., a modal logic
over changing models to express tasks corresponding to sabotage games. He in-
troduced a cross-model modality referring to submodels from which objects have
been removed. In this section we will give a formal definition of a sabotage
modal logic with a ‘transition-deleting’ modality and we will show how to apply
the results of the previous sections to determine the complexity of uniform model
checking for this logic.

We only treat the ‘transition-deleting’ logic here. We omit the corresponding
‘state-deleting’ logic, since – to apply Theorem 3– one has to introduce additional
semantic requirements to capture the extra game rules (no deletion of the current
position, no deletion of the goal), which seems to be very artificial in the logic
context.

To realise the use of multi-graphs we will interpret the logic over edge-labelled
transition systems. By applying Lemma 2 the complexity results for the reach-
ability game can be obtained for multi-graphs with a uniformly bounded mul-
tiplicity. Hence we can do with a finite alphabet Σ. Let Prop = {p, p′, p′′, . . .}
be a set of unary predicate symbols. A (finite) transition system T is a tuple
(S, {Ra | a ∈ Σ}, L) with binary relations Ra ⊆ S × S for each a ∈ Σ and a
labelling function L : S → 2Prop.

Definition 1. Let p ∈ Prop and a ∈ Σ. Formulae of the relational sabotage
modal logic SML over transition systems are inductively defined by the grammar
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ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ♦aϕ | ♦- aϕ

The dual modalities are denoted by �a, resp. �- a, and are defined by

�aϕ := ¬♦a¬ϕ , resp., �- aϕ := ¬♦- a¬ϕ.

Further we define

♦ϕ :=
∨

a∈Σ

♦aϕ and �ϕ :=
∧

a∈Σ

�aϕ.

The formulae ♦-ϕ and �- ϕ are defined analogously.

Let T = (S, {Ra | a ∈ Σ}, L) be a transition system. For t, t′ ∈ S and a ∈ Σ

we define the submodel T a
(t,t′) := (S, {Rb | b ∈ Σ \ {a}} ∪ Ra \ {(t, t′)}, L). Note

that T a
(t,t′) = T iff (t, t′) 6∈ Ra. For a given state s ∈ S we define the semantics of

SML inductively by
(T , s) |= p iff p ∈ L(s)
(T , s) |= ¬ϕ iff not (T , s) |= ϕ

(T , s) |= ϕ ∨ ψ iff (T , s) |= ϕ or (T , s) |= ψ

(T , s) |= ♦aϕ iff there is s′ ∈ S with (s, s′) ∈ Ra such that
(T , s′) |= ϕ

(T , s) |= ♦- aϕ iff there are t, t′ ∈ S such that (T a
(t,t′), s) |= ϕ

For a transition system T let T̂ be the corresponding first order structure
with an unary relation P for each p ∈ Prop such that P (s) iff p ∈ L(s) for each
s ∈ S. Similar to the usual modal logic one can translate the logic SML into first
order logic. Since FO-model checking is in PSPACE we obtain:

Theorem 6. For every SML-formula ϕ there is an effectively constructible FO-
formula ϕ̂(x) such that for every transition system M and state s of M one
has:

(T , s) |=SML ϕ ⇐⇒ T̂ |=FO ϕ̂[s].

The size of ϕ̂(x) is polynomial in the size of ϕ. In particular, SML-model checking
is in PSPACE.

Proof. By induction on the structure of ϕ.

– ϕ = p. Set ϕ̂(x) := P (x).
– ϕ = ¬ψ. Set ϕ̂(x) := ¬ψ̂(x). Similarly for ϕ = ψ1 ∨ ψ2.
– ϕ = ♦aψ. Choose a fresh variable name x′ which does not occur in ψ̂(x) and

let
ϕ̂(x) := ∃x′ : (x, x′) ∈ Ra ∧ ψ̂(x′).

– ϕ = ♦- aψ. Choose fresh variable names y, y′ which do not occur in ψ̂(x) and
let

ϕ̂(x) := ∃y, y′ : (y, y′) ∈ Ra ∧ Suba
(y,y′)(ψ̂(x)),

where Suba
(y,y′)(χ) is the FO-formula where each occurrence of the subformula

(v, v′) ∈ Ra within the FO-formula χ is substituted by the formula (v, v′) ∈
Ra ∧ ¬(v = y ∧ v′ = y′).

It is easy to see that the size of ϕ̂(x) is polynomial in the size of ϕ. ut
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We can express the winning of the Runner in the sabotage gameG on directed
graphs with the reachability condition by a SML-formula. For that we consider
the game arena as a transition system T (G) such that the multiplicity of edges
is captured by the edge labelling and such that the goal vertex of the game is
viewed as the only state with predicate p. We inductively define the SML-formula
γn by

γ0 := p and γi+1 := (♦�- γi) ∨ p.

Theorem 7. The Runner has a winning strategy from vertex s in the sabotage
game G iff (T (G), s) |= γn where n is the number of edges of the game arena
(counted with multiplicity).

Proof. The proof goes by induction on the number n of edges in the game arena
G. For n = 0 it is obvious that (T (G), s) |= γn iff the predicate p is true in s. By
the definition of T (G) this is the case iff s is the goal vertex in the game arena
G, which is equivalent to Runner having a winning strategy from the vertex s in
a sabotage game without edges.

For the induction step first note that (T (G), s) |= γn for each n if s is the goal
vertex in the game G. Assume that G has n > 0 edges and that Runner has a
winning strategy in G starting from s. If s is the goal vertex, then (T (G), s) |= γn

according to the above remark. Otherwise, there is a vertex s′ that Runner moves
to in his first move according to the winning strategy. Let G′ be the game arena
after Blocker removed some edge. Then Runner has a winning strategy from s′

in G′ and G′ contains n− 1 edges. By induction we get that (T (G′), s′) |= γn−1.
Since the edge that was removed from G to obtain G′ was chosen arbitrarily, we
get that (T (G), s′) |= �- γn−1 and hence (T (G), s) |= ♦�- γn−1 since there is an
edge between s and s′ in G. This obviously implies that (T (G), s) |= γn.

Conversely, assume that (T (G), s) |= γn. If (T (G), s) |= p, then s is the goal
vertex and Runner wins immediately. Otherwise, there exists a vertex s′ such
that (T (G), s′) |= �- γn−1. This means that (T (G), s′) |= γn−1 for all G′ obtained
from G by removing one edge. By induction we get that Runner has a winning
strategy from s′ in all these game arenas G′. Therefore, a winning strategy for
Runner from s in G is to move to s′ and then apply the corresponding winning
strategy in the game arena G′ after the removal of an edge by Blocker. ut

Remark 2. To express the winning of the Runner it is not enough to consider
the formula p ∨

∨n
i=0(♦�- )i♦p: there are transition systems where none of the

disjuncts is satisfied but the Runner still wins the game. For example consider
the transition system displayed in Fig. 14: neither ♦�- ♦p nor ♦�- ♦�- ♦p is satisfied
in s0.

s0

s1

s2 s
p
3

Fig. 14. A counter example
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Combining the last theorem and Theorem 2 we obtain:

Theorem 8. Model checking for the sabotage logic SML is PSPACE-complete.
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