
Aachen
Department of Computer Science

Technical Report

Deciding Inductive Validity of

Equations

Jürgen Giesl and Deepak Kapur

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2003-3

RWTH Aachen · Department of Computer Science · July 2003 (revised version)

The publications of the Department of Computer Science of RWTH Aachen
(Aachen University of Technology) are in general accessible through the World
Wide Web.

http://aib.informatik.rwth-aachen.de/

Deciding Inductive Validity of Equations???

Jürgen Giesl1 and Deepak Kapur2

1 LuFG Informatik II, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany
giesl@informatik.rwth-aachen.de

2 Computer Science Dept., University of New Mexico, Albuquerque, NM 87131, USA
kapur@cs.unm.edu

Abstract. Kapur and Subramaniam [11] defined syntactical classes of equations
where inductive validity can be decided automatically. However, these classes are
quite restrictive, since defined function symbols with recursive definitions may
only appear on one side of the equations. In this paper, we expand the decidable
class of equations significantly by allowing both sides of equations to be expressed
using defined function symbols. The definitions of these function symbols must
satisfy certain restrictions which can be checked mechanically. These results are
crucial to increase the applicability of decision procedures for induction.

1 Introduction

Mechanized induction often requires user interaction and is incomplete (provers
fail for many valid conjectures). This is especially daunting to an application
expert trying to use an induction prover in cases when conjectures are simple.

Recently, there has been a surge of interest in the role of decision procedures
in tools for reasoning about computations, especially because of the success of
BDD-based tools and model checkers in hardware verification. However, because
of the above-mentioned challenges in automating induction proofs, such tools
lack support for inductive reasoning on recursively defined data structures.

In [11], Kapur and Subramaniam proposed a methodology for integrating
induction with decision procedures. In this way, they defined a syntactical class
of equations where inductive validity is decidable. For example, an induction
prover like RRL [9, 10, 14] using the cover set method is guaranteed to terminate
with a “yes” or “no” answer on equations in this class. Similar statements also
hold for other inductive theorem provers, e.g., NQTHM [4], ACL-2 [12], CLAM
[5, 6], INKA [1, 13], SPIKE [3]. In [8], these results are extended to quantifier-free
formulas built from such equations. However, the class of equations defined in
[11] is quite restrictive, since defined function symbols (i.e., functions defined by
algorithms) may only appear on certain positions in one side of the equations.

Example 1 Let TC be the theory of the free constructors 0, s for natural num-
bers and nil, cons for linear lists. We regard the algorithms “+”, min, dbl, len,
and app.

? Extended version of a paper from the Proceedings of the 19th International Conference on
Automated Deduction (CADE-19), Miami, FL, USA, LNAI 2741, Springer-Verlag.

?? This research was partially supported by an NSF IT award CCR-0113611.

α+
1 : 0 + y → y

α+
2 : s(x) + y → s(x + y)

αdbl
1 : dbl(0) → 0

αdbl
2 : dbl(s(x)) → s(s(dbl(x)))

αmin
1 : min(0, y) → 0

αmin
2 : min(s(x), 0) → 0

αmin
3 : min(s(x), s(y)) → s(min(x, y))

αlen
1 : len(nil) → 0

αlen
2 : len(cons(n, x)) → s(len(x))

αapp
1 : app(nil, y) → y

αapp
2 : app(cons(n, x), y) → cons(n, app(x, y))

The following conjectures should be checked for inductive validity.

dbl(u + v) = u + dbl(v) (1)

dbl(u + v) = dbl(u) + dbl(v) (2)

(u + v) + w = u + (v + w) (3)

min(u + v, u + w) = u + min(v, w) (4)

len(app(u, v)) = len(u) + len(v) (5)

s(len(app(u, v))) = len(app(u, cons(n, v))) (6)

Such equations are not permitted in [11], since both sides have defined sym-
bols. The restrictions in [11] ensure that each subgoal generated in an induction
proof attempt simplifies to a formula with function symbols from a decidable
theory. Indeed, if one attempts to prove (1) by induction on u, then the formula
dbl(x + v) = x + dbl(v) ⇒ dbl(s(x) + v) = s(x) + dbl(v) in the induction step
case simplifies to the following formula. It contains “+” and dbl, i.e., its symbols
are not from the signature of the (decidable) theory of free constructors.

s(s(x + dbl(v))) = s(x + dbl(v)) (7)

Example 2 We consider the (decidable) theory TPA of Presburger Arithmetic
with constructors 0, 1, “+”. Regard an algorithm “∗” with the rules α∗

1 : 0∗y → 0
and α∗

2 : (x + 1) ∗ y → x ∗ y + y. We want to prove the distributivity law.

u ∗ (v + w) = u ∗ v + u ∗ w (8)

Again, a defined symbol “∗” is on both sides of (8). In a proof by induction on u,
the step case x∗(v+w) = x∗v+x∗w ⇒ (x + 1)∗(v+w) = (x + 1)∗v+(x + 1)∗w
simplifies to a formula with “∗” (i.e., it is not from the signature of TPA):

(x ∗ v + x ∗ w) + (v + w) = (x ∗ v + v) + (x ∗ w + w) (9)

4

In this paper, the class of equations handled in [11] is extended by allowing
arbitrary terms involving defined function symbols on arbitrary positions of both
sides of an equation. The main idea is to develop criteria for safe generalizations
of equations. As shown above, in a proof attempt by induction, the resulting
equation (subgoal) may not be from the signature of a decidable theory since it
includes defined function symbols. In that case, the equation is generalized by
replacing subterms with defined root symbols by new variables. For example, the
subgoal (7) can be generalized to an (invalid) formula over TC ’s signature

s(s(z)) = s(z) (10)

by replacing x+dbl(v) with a new variable z. Similarly, Equation (9) is generalized
to a valid formula of the decidable theory of Presburger Arithmetic.

(z1 + z2) + (v + w) = (z1 + v) + (z2 + w) (11)

In general, such a generalization (i.e., the replacement of a subterm with
defined symbols by a new variable) can transform an inductively valid formula
into a formula that is not inductively valid. To obtain a decision procedure for
inductive validity, we have to guarantee that all generalizations performed are
safe (i.e, the original formula is inductively valid if and only if the generalized
formula is inductively valid). To this end we develop a no-theory condition which
is sufficient for safe generalizations. Essentially, this means that if a subterm
satisfies the no-theory condition, then its replacement by a fresh variable does
not change the inductive validity of the equation.

Our induction proof procedure proceeds by applying induction to the original
equation and by simplifying the resulting induction formulas afterwards. During
this simplification, one can also apply the induction hypotheses. Finally, the
resulting proof obligations are generalized by replacing all remaining subterms
with defined symbols by fresh variables. Then one uses the decision procedure of
the underlying theory.

To guarantee that the final proof obligations that result from induction and
simplification really are of the form where generalizations are safe, we have to
determine the subterms with defined symbols which may appear in these proof
obligations and require that they must satisfy the no-theory condition. After
introducing the required notions in Sect. 2, in Sect. 3 we present a technique to
estimate which subterms with defined symbols can occur in subgoals during an
induction proof attempt (without actually performing the induction proof). The
basic idea of the technique is to keep track of those positions in a term which
may be propagated into the final proof obligations.

Then in Sect. 4, we present the no-theory condition, i.e., we define a syntacti-
cal class of terms where generalizations are safe. Thus, if the generalized subgoal
is not inductively valid, then so is the original subgoal. For example, without
performing the proof attempts of (1) or (8), our syntactic criteria ensure that all
generalizations in their proofs will be equivalence-preserving. So the generalized

5

subgoals (10) (resp. (11)) are inductively valid iff the original subgoals (7) (resp.
(9)) are valid. With these results, in Sect. 5 we define a large class DEC of equa-
tional conjectures whose inductive validity can be decided. For instance, DEC
contains equations like (1) – (6) and (8). Checking whether an equation belongs
to DEC is easy and fast, since it mainly relies on pre-compiled information about
the algorithms of defined functions.

2 Background

We use many-sorted first-order logic where “=” is the only predicate symbol and
“=” is reflexive, symmetric, transitive, and congruent. For a signature F and
an infinite set of variables V we denote the set of (well-typed) terms over F
by Terms(F ,V) and the set of ground terms by Terms(F). A theory T is given
by a finite signature FT and a set of axioms (i.e., closed formulas) AXT over
the signature FT . The theory T is defined to be the set of all closed formulas
ϕ over FT such that AXT |= ϕ (then we also say that ϕ is valid). Here, “|=”
is the usual (semantic) first-order consequence relation. We often omit leading
universal quantifiers and we write s =T t as a shorthand for AXT |= ∀ . . . s = t.

For the theory TC of free constructors, AXTC
consists of the following formu-

las.

¬c(x1, . . . , xn) = c′(y1, . . . , ym) for all c, c′ ∈ FTC
where c 6= c′

c(x1, . . . , xn) = c(y1, . . . , yn) ⇒
x1 = y1 ∧ . . . ∧ xn = yn for all c ∈ FTC

∨

c∈FTC
∃y1, . . . , yn. x = c(y1, . . . , yn)

¬ (c1(. . . c2(. . . cn(. . . x . . .) . . .) . . .) = x) for all sequences c1, . . . , cn with ci ∈ FTC

Note that the last type of axioms usually results in infinitely many formulas.
Here, “. . . ” in the arguments of ci stands for pairwise different variables. The
above axioms state that all different constructor ground terms denote different
objects and that every object starts with a constructor (still there may be models
whose carrier contains objects which do not correspond to constructor ground
terms).

We use the following definition for the theory TPA of Presburger Arithmetic:
FTPA

= {0, 1,+} and AXTPA
consists of the following formulas:

(x + y) + z = x + (y + z) ¬ (1 + x = 0)
x + y = y + x x + y = x + z ⇒ y = z
0 + y = y x = 0 ∨ ∃y. x = y + 1

For t ∈ Terms(FTPA
,V) with V(t) = {x1, . . . , xm}, there exist ai ∈ IN such

that t =TPA
a0 + a1 ·x1 + . . .+ am ·xm. Here, “a ·x” denotes the term x+ . . .+x

(a times) and “a0” denotes 1+ . . . + 1 (a0 times). We often write flattened terms
(i.e., without parentheses) since “+” is associative and commutative. For s =TPA

b0+b1 ·x1+. . .+bm ·xm and t as above, we have s =TPA
t iff a0 = b0, . . . , am = bm.

6

A formula is inductively valid if all its ground instantiations are valid. In
applications like program verification one is usually interested in inductive va-
lidity and not in validity, since one wants to know how a program behaves when
started with actual data. This data corresponds to ground instantiations of the
variables. We often write x∗ to denote a tuple of pairwise different variables.

Definition 3 (Inductive Validity) A universal formula ∀x∗. ϕ is inductively
valid in the theory T (denoted AXT |=ind ϕ) iff AXT |= ϕσ for all ground sub-
stitutions σ, i.e., σ substitutes all variables of ϕ by ground terms of Terms(FT).

In general, validity implies inductive validity, but not vice versa. We restrict
ourselves to theories like TC and TPA which are decidable and inductively com-
plete (i.e., inductive validity of an equation r1 = r2 (over FT) also implies its
validity, cf. e.g. [7]). Then inductive validity of r1 = r2 can be checked by a
decision procedure for T . Of course, validity and inductive validity do no longer
coincide if we introduce additional function symbols which are defined by algo-
rithms.

We use term rewrite systems (TRSs) over a signature F ⊇ FT as our pro-
gramming language [2] and require that all left-hand sides of rules have the form
f(s∗) for a tuple of terms s∗ from Terms(FT ,V) and f /∈ FT . Thus, all our TRSs
are constructor systems. Let Fd = F \ FT denote the set of defined symbols.

In order to perform evaluations with the TRS R and the underlying theory
T , we use the concept of rewriting modulo a theory (→R/T). As usual, we define
s →R/T t iff there exist s′ and t′ such that s =T s′ →R t′ =T t. To ensure that our
class of equations DEC is decidable, we have to require that the rewrite relation
→R/T must also be decidable. In other words, for two terms s and t it must be
decidable whether s →R/T t holds. For example, →R/T is decidable whenever T
is a theory where T -equivalence classes of terms are finite and computable.

We restrict ourselves to terminating, confluent, and sufficiently complete
TRSs. A TRS R is terminating iff →R/T is well founded, it is confluent if →R/T

is confluent, and it is sufficiently complete if for all (well-typed) ground terms
t ∈ Terms(F) there exists a q ∈ Terms(FT) such that t →∗

R/T q. The term q is
called a normal form and is often denoted as t↓R/T . When regarding →∗

R/T and
↓R/T , we usually do not distinguish between terms that are equal w.r.t. =T .

The rules in R are considered as equational axioms extending the underlying
theory T . This results in a new theory with the signature F and the axioms
AXT ∪ {l = r | l → r ∈ R}. To ease readability, we write AXT ∪ R instead of
AXT ∪ {l = r | l → r ∈ R}. It turns out that this extension is conservative, i.e.,
it does not change inductive validity of equations over FT .

Theorem 4 (Inductive Validity of Equations over FT) For all r1, r2 ∈
Terms(FT ,V), we have AXT |=ind r1 = r2 iff AXT ∪R |=ind r1 = r2.

Proof. The “only if” direction is trivial. For the “if” direction, we assume
AXT 6|=ind r1 = r2. Since we are only interested in inductive validity, it suffices

7

to regard Herbrand interpretations (i.e., interpretations I such that for every
element a in the universe there is a ground term t with I(t) = a).

Let I be a Herbrand interpretation such that I |= AXT and I 6|= r1 = r2.
Due to sufficient completeness and confluence, for every ground term t there is
a unique ground term q ∈ Terms(FT) (up to equivalence under T) such that
t ↓R/T = q. Hence, since R is a constructor system, we can extend I to an
interpretation of F such that I(lσ) = I(lσ↓R/T) for all left-hand sides of rules l
and all ground substitutions σ. But then I is a also model of {l = r | l → r ∈ R}
which means AXT ∪R 6|=ind r1 = r2. ut

Decision procedures for theories T are integrated in many theorem provers.
In this paper, we extend such decision procedures in order to handle functions
defined by recursive rewrite rules as well. More precisely, we give syntactic con-
ditions for equations whose inductive validity w.r.t. AXT ∪R is decidable. These
conditions ensure that the induction proof attempt will reduce the original equa-
tion to equations over the signature FT of the underlying theory T . Then by
Thm. 4, their inductive validity (over the extended theory of T and R) can be
decided by a decision procedure for T .1

In a proof attempt, induction is usually performed on inductive positions,
since rewriting can only move a context outwards if it is on an inductive position.

Definition 5 (Inductive Positions) For f ∈ Fd, a position i with 1 ≤ i ≤
arity(f) is non-inductive if for all f -rules f(s1, . . . , sm) → C[f(t11, . . . , t

1
m), . . . ,

f(tn1 , . . . , tnm)] where C is a context over FT , we have si ∈ V, tki = si, and
si /∈ V(sj) ∪ V(tkj) for all j 6= i and all 1 ≤ k ≤ n. Otherwise, the position is
inductive.

For “+”, dbl, len, app (Ex. 1) and “∗” (Ex. 2), only the first argument posi-
tions are inductive. Without loss of generality, we assume that for every func-
tion f , the arguments 1, . . . , j are inductive and j + 1, . . . , arity(f) are non-
inductive for some 0 ≤ j ≤ arity(f). We often write rules in the form f(s∗, y∗) →
C[f(t∗1, y

∗), . . . , f(t∗n, y∗)] to denote that C is a context over FT and s∗, t∗1, . . . , t
∗
n

are the arguments on f ’s inductive positions. Most induction provers generate
schemes for induction proofs (cover sets) from function definitions [4, 6, 13, 14].

Definition 6 (Cover Set) Let f ∈ Fd. Its cover set is Cf = {〈s∗, {t∗1, . . . , t
∗
n}〉|

f(s∗, y∗) → C[f(t∗1, y
∗), . . . , f(t∗n, y∗)] ∈ R}.

An induction on f transforms a conjecture ϕ[x∗] with pairwise different vari-
ables x∗ into the following induction formulas for every 〈s∗, {t∗1, . . . , t

∗
n}〉 ∈ Cf .

ϕ[t∗1] ∧ . . . ∧ ϕ[t∗n] ⇒ ϕ[s∗] (12)

If all induction formulas (12) are inductively valid, then by Noetherian induc-
tion the original formula ϕ[x∗] is also inductively valid. The induction relation

1 Thm. 4 and the restriction to theories where inductive validity of equations over FT implies
their validity are also fundamental for the method of [11], but they are not mentioned there.

8

corresponds to the recursion structure of f and its well-foundedness follows from
termination of R.

In this paper, we develop criteria for equations r1 = r2 such that inductive
validity is decidable. They ensure that there is a cover set C such that for every
〈s∗, {t∗1, . . . , t

∗
n}〉 ∈ C, the induction conclusion r1[s

∗] = r2[s
∗] can be simplified to

C[r1[t
∗
i1

], . . . , r1[t
∗
ik

]] = D[r2[t
∗
j1

], . . . , r2[t
∗
jl
]] for contexts C,D and i1, . . . , jl ∈ {1,

. . . , n}. Here, r[s∗] denotes that the induction variables are instantiated with the
terms s∗. Thus, one can then apply the induction hypotheses r1[t

∗
i] = r2[t

∗
i] to

replace all occurrences of r1 in the left-hand side by r2. In the resulting conjecture

C[r2[t
∗
i1], . . . , r2[t

∗
ik

]] = D[r2[t
∗
j1], . . . , r2[t

∗
jl
]], (13)

all remaining terms with defined root symbol can be generalized to fresh vari-
ables. We introduce a technique to estimate which subterms of r1 and r2 with
defined symbols may occur in (13) without actually performing this induction
proof attempt. Moreover, we present conditions on these subterms which guar-
antee that this generalization is safe. Finally, the decision procedure of the un-
derlying theory can be used to decide the validity of the resulting formulas.

3 Compatibility Among Function Definitions

Our criteria for decidable equations rely on the notion of compatibility between
T -based functions.

Definition 7 (T -based Function [11]) A function f ∈ F is T -based iff f ∈
FT or if all rules l → r ∈ R with root(l) = f have the form f(s∗) → C[f(t∗1),
. . . , f(t∗n)], where s∗, t∗1, . . . , t

∗
n are from Terms(FT ,V) and C is a context over

FT .

For instance, all algorithms in Ex. 1 are TC -based and in Ex. 2, “∗” is TPA-based.
We will require that equations must have compatible sequences of T -based

functions on both sides. A function g is compatible with f on argument j if in
any term g(. . . , f(. . .), . . .), where f is on the j-th argument of g, every context
created by rewriting f will move outside the term by rewriting g. So if f has a
rule α : f(s∗, y∗) → C[f(t∗1, y

∗), . . . , f(t∗n, y∗)] with n ≥ 0, then rewriting f can
create the context C. Compatibility means that

g(x1, . . . , xj−1, C[z1, . . . , zn], xj+1, . . . , xm) (14)

for x1, . . . , xm, z1, . . . , zn ∈ V will rewrite (in several steps) to some term

D[g(x1, ..., xj−1, zi1 , xj+1, ..., xm), . . . , g(x1, ..., xj−1, zik , xj+1, ..., xm)] (15)

where i1, . . . , ik ∈ {1, . . . , n} and D is a context over FT . Hence, if induction
on f is performed within a term of the form g(. . . f(. . .) . . .), then in the in-
duction conclusion, the resulting term g(. . . f(s∗...) . . .) can be rewritten to a

9

term D′[g(. . . f(t∗i1 ...) . . .), . . . , g(. . . f(t∗ik ...) . . .)]. Here, the induction hypothe-
ses g(. . . f(t∗i ...) . . .) occur within a context D′ (where D′ is an instantiation of
D).

For any f -rule α, let Ruleg,f (α) be the set of those g-rules used to rewrite
(14) to (15) and let Var g,f (α) = {i |xi occurs in D}.2 We make these rules and
variable positions explicit to estimate which subterms with defined symbols may
occur in subgoals during induction proofs. The reason is that the original term
g(. . . f(. . .) . . .) may have defined symbols on positions from Var g,f (α). These
will be propagated outwards to the context D ′ during the induction proof.

In Ex. 1, “+” is compatible with dbl on argument 1. For αdbl
1 : dbl(0) → 0,

C is 0 (a context without holes), and 0+x2 rewrites to x2 using α+
1 , i.e., D = x2,

Rule+,dbl(α
dbl
1) = {α+

1 }, and Var+,dbl(α
dbl
1) = {2}, since D contains the variable

x2. For αdbl
2 : dbl(s(x)) → s(s(dbl(x))), C is s(s(�)) and s(s(z1)) + x2 rewrites

to s(s(z1 + x2)) by the rule α+
2 , i.e., D = s(s(�)), Rule+,dbl(α

dbl
2) = {α+

2 }, and
Var+,dbl(α

dbl
2) = ∅. Similarly, the function “+” is compatible with min and len

on the argument 1.
Now we check whether “+” is compatible with itself on argument 1. For α+

2 :
s(x) + y → s(x + y), we have C = s(�) and s(z1) + x2 rewrites to s(z1 + x2),
i.e., D = s(�), Rule+,+(α+

2) = {α+
2 }, and Var+,+(α+

2) = ∅. For α+
1 : 0 +

y → y, we have C = y, but y + x2 does not rewrite to a term D over FT . In
general, for compatibility of g with f on argument j, we now permit that the
compatibility requirement may be violated for some non-recursive rules Exc g,f

of f (“exceptions”). However, the set Excg,f should be as small as possible, i.e.,
a rule α should only be in Excg,f if (14) does not rewrite to (15). Then, “+” is
compatible with itself on argument 1 and Exc+,+ = {α+

1 }.

Definition 8 (Compatible Functions) Let g, f be T -based, f /∈ FT , and 1 ≤
j ≤ m = arity(g). We say that g is compatible with f on argument j iff for all
rules α : f(s∗, y∗) → C[f(t∗1, y

∗), . . . , f(t∗n, y∗)], either n = 0 and α ∈ Excg,f , or

g(x1, . . . , xj−1, C[z1, . . . , zn], xj+1, . . . , xm) →∗
R/T

D[g(x1, . . . , xj−1, zi1 , xj+1, . . . , xm), . . . , g(x1, . . . , xj−1, zik , xj+1, . . . , xm)]

for a context D over FT , i1, ..., ik ∈ {1, ..., n}, and zi /∈ V(D) for all i. Let
Ruleg,f (α) be the set of rules used in this reduction and let Var g,f (α) = {i |xi ∈
V(D)}.

With exceptions, in Ex. 1 dbl is also compatible with “+” and len is compati-
ble with app. Note that in Def. 8, g can also be a symbol of FT . For instance, s is
compatible with len. We obtain C = 0 and D = s(0) for αlen

1 and C = D = s(�)
for αlen

2 . So for both len-rules α, Rule s,len(α) = ∅ and Var s,len(α) = ∅. Similarly,
in Ex. 2, “+” is compatible with “∗” on argument 1 and on argument 2.

2 For a T -based function f , Ruleg,f (α) is unique if R is non-overlapping. Otherwise, Ruleg,f (α)
may be any set of g-rules which suffice to rewrite (14) to (15). Ruleg,f and Varg,f also depend
on the position j of g where the f -term occurs. But to ease the presentation we write Ruleg,f

and Var g,f instead of Rulej
g,f and Var j

g,f .

10

Now we show that if g is compatible with f , then g cannot only process the
context produced by one single defining equation of f , but it can also deal with
repeated f -contexts. Such contexts are produced when several recursive calls of
f are performed after another.

Definition 9 (Repeated f-Contexts) Let f be a T -based function and let
Rf be a set of f -rules from R. A context C is an f -context from the rules Rf

iff there exists a rule f(s∗, y∗) → C[f(t∗1, y
∗), . . . , f(t∗n, y∗)] ∈ Rf where C is a

context over FT . A context C is a repeated f -context from the rules Rf iff C is
an f -context from the rules Rf or if there are repeated f -contexts D,C1, . . . , Cm

from the rules Rf such that C = D[C1, . . . , Cm].

The following lemma states that if g is compatible with f then it can process
every repeated f -context into a repeated g-context provided that no rules of
Excg,f were used to create the repeated f -context. If the f -context was produced
by the f -rules Rf , then the resulting g-context can be created by g-rules from
Ruleg,f (α) where α ∈ Rf . Moreover, the variables in the g-context come from
the original f -context or from g’s argument positions Var g,f(α).

Lemma 10 (Compatible Functions on Contexts) Let g be compatible with
f on argument j and let Excg,f ∩Rf = ∅. Then for every repeated f -context Cf

resulting from the rules Rf there is a repeated g-context Cg resulting from the
rules

⋃

α∈Rf
Ruleg,f (α) such that

g(x1, . . . , xj−1, Cf [z1, . . . , zn], xj+1, . . . , xm) →∗
R/T

Cg[g(x1, . . . , xj−1, zi1 , xj+1, . . . , xm), . . . , g(x1, . . . , xj−1, zik , xj+1, . . . , xm)],

where i1, . . . , ik ∈ {1, . . . , n} and V(Cg) ⊆ V(Cf) ∪ {xi | i ∈ Var g,f (α), α ∈ Rf}.

Proof. The lemma is proved by structural induction on Cf . If Cf is a non-re-
peated f -context, then there is a rule α : f(s∗, y∗) → Cf [f(t∗1, y

∗), . . . , f(t∗n, y∗)]
∈ Rf . By the definition of compatible functions (Def. 8) and since Excg,f ∩Rf =
∅, we have

g(x1, . . . , xj−1, Cf [z1, . . . , zn], xj+1, . . . , xm) →∗
Ruleg,f (α)/T

Cg[g(x1, . . . , xj−1, zi1 , xj+1, . . . , xm), . . . , g(x1, . . . , xj−1, zik , xj+1, . . . , xm)]

with i1, . . . , ik ∈ {1, . . . , n} and V(Cg) ⊆ V(Cf)∪{xi | i ∈ Var g,f (α)}. It remains
to show that Cg is a repeated g-context.

Note that every term of the form C[g(r∗1), . . . , g(r∗k)], where C is a repeated
g-context and r∗i only contain symbols from FT can only rewrite to terms of the
same form (since g is T -based). Recall that Cf only contains symbols from FT .
So g(x1, . . . , xj−1, Cf [z1, . . . , zn], xj+1, . . . , xm) is already of this form. Therefore,
Cg[g(. . .), . . . , g(. . .)] must also have that form which means that Cg is indeed a
repeated g-context.

11

If Cf is a repeated f -context then Cf = C[C1, . . . , Ck] for repeated f -contexts
C,C1, . . . , Ck resulting from the rules Rf . By the induction hypothesis, there
exists a repeated g-context D resulting from the rules

⋃

α∈Rf
Ruleg,f (α) with

V(D) ⊆ V(C) ∪ {xi | i ∈ Var g,f (α), α ∈ Rf} such that

g(x1, . . . , xj−1, Cf [z1, . . . , zn], xj+1, . . . , xm) =
g(x1, . . . , xj−1, C[C1, . . . , Ck][z1, . . . , zn], xj+1, . . . , xm) →∗

R/T

D[g(x1, . . . , xj−1, u1, xj+1, . . . , xm), . . . , g(x1, . . . , xj−1, ud, xj+1, . . . , xm)]

where ul ∈ {Ce[z1, . . . , zn] | 1 ≤ e ≤ k} for 1 ≤ l ≤ d. By the induction hypothesis
there also exist repeated g-contexts D1, . . . , Dd from the rules

⋃

α∈Rf
Ruleg,f (α)

with V(Dl) ⊆ V(C1) ∪ . . . ∪ V(Ck) ∪ {xi | i ∈ Var g,f (α), α ∈ Rf} such that

g(x1, . . . , xj−1, ul, xj+1, . . . , xm) →∗
R/T

Dl[g(x1, . . . , xj−1, zl1 , xj+1, . . . , xm), . . . , g(x1, . . . , xj−1, zlkl
, xj+1, . . . , xm)]

with l1, . . . , lkl
∈ {1, . . . , n}. Hence,

g(x1, . . . , xj−1, Cf [z1, . . . , zn], xj+1, . . . , xm) →∗
R/T

D[g(x1, .., xj−1, u1, xj+1, .., xm), . . . , g(x1, .., xj−1, ud, xj+1, .., xm)] →∗
R/T

D[D1, ..., Dd][g(x1, .., xj−1, z11
, xj+1, .., xm), . . . , g(x1, .., xj−1, zdkd

, xj+1, .., xm)],

i.e., Cg = D[D1, . . . , Dd]. ut

The concept of compatibility can be extended to arbitrarily deep nestings.
To this end we define the notion of a compatibility sequence. Regard a term

r := f1(p
∗
1, f2(p

∗
2, f3(x

∗, q∗3), q∗2), q∗1),

where the pairwise different variables x∗ on f3’s inductive positions do not occur
in the terms p∗1, p

∗
2, q

∗
1 , q

∗
2 , q

∗
3. Moreover, let f1(p

∗
1, f2(. . .), q

∗
1) |j1 = f2(. . .) and

f2(p
∗
2, f3(. . .), q

∗
2) |j2 = f3(. . .). The definition of compatibility sequences should

guarantee that if 〈f1, f2, f3〉 is a compatibility sequence on the arguments 〈j1, j2〉,
then in an induction on f3, the resulting context would be propagated outside
of r. Hence, we require that fi must be compatible with fi+1 on argument ji

for all i ∈ {1, 2}. So in Equation (6), 〈s, len, app〉 is a compatibility sequence on
〈1, 1〉 and s(len(app(u, v))) is a term that has this compatibility sequence with
the induction variable u.

An induction on f3 would instantiate x∗ according to the left-hand sides of
f3-rules α : f3(s

∗, y∗) → C[f3(t
∗
1, y

∗), . . . , f3(t
∗
n, y∗)]. For any term r as above, it

should be guaranteed that r[s∗] reduces to a term of the form E[r[t∗i1], . . . , r[t
∗
ik

]]
for some context E. For an instantiation C ′ of C, we clearly have

r[s∗] = f1(p
∗
1, f2(p

∗
2, f3(s

∗, q∗3), q∗2), q∗1)

→R/T f1(p
∗
1, f2(p

∗
2, C ′[f3(t

∗
1, q

∗
3), . . . , f3(t

∗
n, q∗3)], q∗2), q∗1).

12

Since f2 is compatible with f3, C ′ can be moved outside and turned into a
new context D by rewriting f2. But this is only possible if no f3-rule α from
Excf2,f3

was used to create the context C ′. Then, the above term rewrites to

f1(p
∗
1, D[f2(p

∗
2, f3(t

∗
j1 , q

∗
3), q∗2), . . . , f2(p

∗
2, f3(t

∗
jl
, q∗3), q∗2)], q∗1).

As f1 is compatible with f2, f1-rules can move D outside into a new context
E. But again, this is only possible if no f2-rules from Excf1,f2

were used to
produce the context D. For every f3-rule α /∈ Excf2,f3

, the set Rulef2,f3
(α)

contains those f2-rules which were used to create context D. Hence, we must
demand Excf1,f2

∩ Rulef2,f3
(α) = ∅ for all f3-rules α /∈ Excf2,f3

. In this case,
one can apply f1-rules to the above term and obtains E[r[t∗i1], . . . , r[t

∗
ik

]], i.e.,

E[f1(p
∗
1, f2(p

∗
2, f3(t

∗
i1 , q

∗
3), q∗2), q∗1), . . . , f1(p

∗
1, f2(p

∗
2, f3(t

∗
ik

, q∗3), q∗2), q∗1)].

The f1-rules used to create context E are in Rule f1,f2,f3
(α) = Rulef1,f2

(β1)∪
. . .∪Rulef1,f2

(βc), where Rulef2,f3
(α) = {β1, . . . , βc}. Computing Rulef1,f2,f3

(α)
would be required for compatibility sequences of four function symbols 〈f0, f1, f2,
f3〉. In a term of the form f0(p

∗
0, f1(. . .), q

∗
0), we would also have to demand

Excf0,f1
∩ Rulef1,f2,f3

(α) = ∅ for all f3-rules α /∈ Excf2,f3
in order to guaran-

tee that in an f3-induction, all resulting contexts are propagated outwards. So
in general, from Rulef1,f2

(α), . . . ,Rulefd−1,fd
(α) one can immediately compute

the set Rulef1,...,fd
(α). It contains those f1-rules which are needed for rewriting

if the innermost fd-term is instantiated according to the fd-rule α. In Ex. 1,
Rules,len,app(α

app
2) = ∅, since Rule len,app(α

app
2) = {αlen

2 } and Rules,len(α
len
2) = ∅.

Using Var f1,f2
(α), . . . ,Var fd−1,fd

(α), we can define a set Posf1,...,fd
(α). It

contains the positions of those subterms of the original term that can occur in
subgoals during proof attempts. Knowing the positions of these subterms allows
us to formulate conditions for their safe generalization in Sect. 4.

Let us construct the set Posf1,f2,f3
(α) for f3-rules α /∈ Excf2,f3

. It contains
the positions of r’s subterms which may appear in the context E. Assume that we
already know the positions Pos f2,f3

(α) of subterms in f2(p
∗
2, f3(. . .), q

∗
2) which oc-

cur in D. So these subterms are f2(p
∗
2, f3(. . .), q

∗
2) |π for all π ∈ Posf2,f3

(α). These
terms can also appear in the final context E. Since f2(p

∗
2, f3(. . .), q

∗
2) = r|j1 , a sub-

term at position π in f2(p
∗
2, f3(. . .), q

∗
2) is at position j1 π in r. Thus, Posf1,f2,f3

(α)
should contain the positions j1 π for all π ∈ Posf2,f3

(α). Moreover, for every f2-
rule β ∈ Rulef2,f3

(α) which was used to create context D, the subterms of r
at positions Var f1,f2

(β) may occur in the final context E as well. In Ex. 1,
we have Pos s,len,app(α

app
2) = Var s,len(α

len
2) ∪ {1π |π ∈ Pos len,app(α

app
2)} = ∅ (as

Rule len,app(α
app
2) = {αlen

2 } and Pos len,app(α
app
2) = ∅).

Def. 11 defines compatibility sequences of arbitrary length. In particular, 〈f〉
is a singleton compatibility sequence for any T -based f ∈ Fd. Here, if f(p1, ..., pm)
is rewritten with a rule α : f(s1, ..., sm) → C[f(...), ..., f(...)], the resulting con-
text is produced by α itself (i.e., Rulef (α) = {α}). Let i be a non-inductive
position of f . A defined function symbol in pi can only be propagated into the

13

context if V(si) ∩ V(C) 6= ∅. In Ex. 1, 〈+〉 is a compatibility sequence with
Pos+(α+

2) = ∅ and Pos+(α+
1) = {2}, since in the first rule 0+y → y, the second

argument y is moved to the context.

Definition 11 (Compatibility Sequence) Let d ≥ 1, let r ∈ Terms(F ,V),
and let f1, . . . , fd be T -based functions with fd /∈ FT . The sequence 〈f1, . . . , fd〉
is a compatibility sequence on arguments 〈j1, . . . , jd−1〉 and the term r has this
compatibility sequence with pairwise different induction variables x∗ iff

• fi is compatible with fi+1 on argument ji and
Excfi,fi+1

∩ Rulefi+1,...,fd
(α) = ∅,

for all 1 ≤ i ≤ d − 1 and all fd-rules α /∈ Excfd−1,fd

• r = f1(p
∗
1, f2(p

∗
2, . . . fd−1(p

∗
d−1, fd(x

∗, q∗d), q∗d−1) . . . , q∗2), q∗1),
where x∗ are variables on fd’s inductive positions which do not occur else-
where in r, and fi(p

∗
i , fi+1(. . .), q∗i) |ji

= fi+1(. . .) for all 1 ≤ i ≤ d − 1

• Rulefd
(α) = {α} and Posfd

(α) = {i | V(si) ∩ V(C) 6= ∅, i non-inductive},
for all fd-rules α : fd(s1, . . . , sm) → C[fd(...), . . . , fd(...)]

• Rulefi,..,fd
(α) =

⋃

β∈Rulefi+1,..,fd
(α) Rulefi,fi+1

(β) and

Posfi,...,fd
(α) =

⋃

β∈Rulefi+1,..,fd
(α) Var fi,fi+1

(β)

∪ {ji π |π ∈ Posfi+1,..,fd
(α)},

for all 1 ≤ i ≤ d − 1 and all fd-rules α /∈ Excfd−1,fd

Whether 〈f1, . . . , fd〉 is a compatibility sequence depends only on which func-
tions are compatible with each other. This information can be pre-compiled.
Then, it can be decided quickly whether a particular term has a compatibility
sequence. Compatibility sequences and the functions Rule and Pos can also be
computed at compile-time (but of course, these sequences can be arbitrarily long,
so they can also be computed by need and stored for later re-use).

Lemma 12 shows that for a term with the compatibility sequence 〈f1, . . . , fd〉
one can perform induction on fd, as all resulting contexts can be propagated
outwards.

Lemma 12 (Simplifying Terms with Compatibility Sequences) Let r be
a term with the compatibility sequence 〈f1, . . . , fd〉 on the arguments 〈j1, ..., jd−1〉.
For every rule α : fd(s

∗, y∗) → C[fd(t
∗
1, y

∗), . . . , fd(t
∗
n, y∗)] /∈ Excfd−1,fd

, we have
r[s∗] →∗

R/T D[r[t∗i1], . . . , r[t
∗
ik

]] for some i1, . . . , ik ∈ {1, . . . , n} and context D. In

D, defined symbols only occur within terms from {r|π |π∈Posf1,...,fd
(α)}.

Proof. Let rd = fd(xd,1, . . . , xd,j , . . . , xd,md
) and ri = fi(xi,1, . . . , xi,ji−1, ri+1,

xi,ji+1, . . . , xi,mi
) for 1 ≤ i ≤ d−1. Here, xd,1, . . . , xd,j are the induction variables

14

of r. We prove the following statement for all i ∈ {1, . . . , d}:

ri[s
∗] →∗

R/T D[ri[t
∗
j1

], . . . , ri[t
∗
jl
]] for some j1, . . . , jl ∈ {1, . . . , n}

and D is a repeated fi-context from the rules Rulefi,...,fd
(α) with

V(D) ⊆ V(s∗) ∪ {ri|π | π ∈ Posfi,...,fd
(α)}.

(16)

As r = r1σ for some substitution σ, this implies r[s∗] →∗
R/T Dσ[r[t∗j1], . . . , r[t

∗
jl
]].

Since every repeated f1-context D is a context over FT , all defined symbols in
Dσ are introduced by σ. Thus, they only occur on or below variable positions of
D. Since σ does not instantiate the induction variables, the variables in s∗ are
not modified by σ. Thus, (16) implies the lemma, because it states that defined
symbols can only occur within the terms r|π where π ∈ Posf1,...,fd

(α).
We prove (16) by induction on d − i. In the base case i = d we have

rd[s
∗] = fd(s

∗, xd,j+1, . . . , xd,md
)

→R/T C[fd(t
∗
1, xd,j+1, . . . , xd,md

), . . . , fd(t
∗
n, xd,j+1, . . . , xd,md

)]

where C is an fd-context resulting from Rulefd
(α) = {α}. By definition, V(C) ⊆

V(s∗) ∪ {xd,i | i ∈ Posfd
(α)}.

Now we regard the induction step case where i < d. Let y∗
i abbreviate

xi,1, . . . , xi,ji−1 and let z∗i abbreviate xi,ji+1, . . . , xi,mi
. Then the induction hy-

pothesis about ri+1 implies

ri[s
∗] = fi(y

∗
i , ri+1[s

∗], z∗i) →∗
R/T fi(y

∗
i , C[ri+1[t

∗
j1], . . . , ri+1[t

∗
jl
]], z∗i)

where C is a repeated fi+1-context resulting from the rules Rulefi+1,...,fd
(α) with

V(C) ⊆ V(s∗) ∪ {ri+1|π | π ∈ Posfi+1,...,fd
(α)}.

Since Excfi,fi+1
∩Rulefi+1,...,fd

(α) = ∅, Lemma 10 implies that there must be a
repeated fi-context D resulting from the rules

⋃

β∈Rulefi+1,...,fd
(α) Rulefi,fi+1

(β) =

Rulefi,...,fd
(α) such that

fi(y
∗
i , C[ri+1[t

∗
j1

], . . . , ri+1[t
∗
jl
]], z∗i) →∗

R/T

D[fi(y
∗
i , ri+1[t

∗
d1

], z∗i), . . . , fi(y
∗
i , ri+1[t

∗
de

], z∗i)]

and
V(D) ⊆ V(C) ∪ {ri|j | j ∈ Var fi,fi+1

(β), β ∈ Rulefi+1,...,fd
(α)}

⊆ V(s∗) ∪ {ri+1|π | π ∈ Posfi+1,...,fd
(α)}

∪ {ri|j | j ∈ Var fi,fi+1
(β), β ∈ Rulefi+1,...,fd

(α)}
= V(s∗) ∪ {ri|π | π ∈ Posfi,...,fd

(α)}.

ut

In Ex. 1, let r be the term u + dbl(v). Then r has the compatibility sequence
〈+〉 on argument 1 with induction variable u. So on +’s non-inductive position 2
one may have terms like dbl(v) with defined symbols. The set Pos indicates which
subterms may occur in the context of the simplified induction conclusion. Since
Pos+(α+

1) = {2}, r|2 = dbl(v) can occur in the context when simplifying r.

15

Our notion of compatibility extends the one in [11] considerably. We extended
compatibility by exceptions Exc and in a term f1(p

∗
1, f2(x

∗, q∗2), q
∗
1) with a com-

patibility sequence 〈f1, f2〉 and induction variables x∗, we permitted defined sym-
bols in the terms p∗1, q

∗
1, q

∗
2 . Analogous statements hold for terms with longer com-

patibility sequences. For this reason, we had to introduce the sets Rule and Pos
to trace which of the subterms with defined symbols are propagated outwards
when rewriting f1.

Moreover, in contrast to the “compatibility” in [11], we regard contexts C
and D instead of single function symbols, we also permit symbols from FT to be
compatible with other functions, and we allow permutations, duplications, and
removal of recursive arguments in the definition of compatibility. (In Def. 8, the
recursive calls 1, . . . , n of f may be transformed into the calls i1, . . . , ik, which
may be arbitrary calls from 1, . . . , n.) With the notions of [11], the necessary
compatibility requirements would not hold for the conjectures in Ex. 1 and Ex.
2. Indeed, the class of decidable equations recognized with our approach is a
significant superset of the corresponding class in [11].

Finally, the requirement “zi /∈ V(D)” in Def. 8 was erroneously missing in [11].
Without this requirement, simplification and applying the induction hypothesis
does not necessarily result in an equation over FT . A counterexample is a TRS
containing the following rules (besides others) where s, c ∈ FT .

g(s(x)) → c(x, g(x))

f(s(x)) → s(f(x))

If the requirement “zi /∈ V(D)” would be dropped, then g would be compatible
with f. However, if the induction conclusion contains the term g(f(s(x))), then
it simplifies first to g(s(f(x))) and then to c(f(x), g(f(x))). Replacing g(f(x)) by
the other side of the induction hypothesis will still not result in a term over FT

because of the remaining occurrence of f(x).
As in [11], the concept of compatibility can be extended to simultaneous

compatibility. A binary function g is simultaneously compatible with f1 and f2

on argument positions 1 and 2, if f1 and f2 have the same cover set (up to
variable renaming) and if g can simultaneously process the contexts C1 and
C2 resulting from corresponding f1- and f2-rules. More precisely, we must have
f(C1[y1, . . . , yn], C2[z1, . . . , zn]) →∗

R/T D[f(yi1 , zi1), . . . , f(yik , zik)] for a context
D over FT . The general definition for simultaneous compatibility of functions
g (of arbitrary arity) with arbitrary many functions f1, . . . , fm is analogous.
Simultaneous compatibility can also be extended to arbitrarily deep nestings by
defining corresponding compatibility sequences.

Of course, f1 and f2 may be identical. In Ex. 1, min is simultaneously com-
patible with “+” and “+” on the arguments 1 and 2 and thus 〈min, (+,+)〉 is
a simultaneous compatibility sequence. For α+

2 , we have C1 = C2 = s(�) and
min(s(y1), s(z1)) → min(y1, z1), i.e., D = �. Thus, Rulemin,(+,+)(α

+
2) = {αmin

3 },

Posmin,(+,+)(α
+
2) = ∅, and Excmin,(+,+) = {α+

1 }. Moreover, in Ex. 2 the con-
structor “+” is simultaneously compatible with “∗” and “∗” on the arguments 1

16

and 2. To simplify the presentation, in the remainder we use a formulation with
non-simultaneous compatibility in the definitions and theorems.

To guarantee3 that the induction proof attempt for r1 = r2 transforms the
equation into equivalent proof obligations over the theory T , both r1 and r2

must have a compatibility sequence 〈f1, . . . , fd〉 and 〈g1, . . . , ge〉, respectively.
(Alternatively, they may also be terms over FT which covers the equational
conjectures discussed in [11].) If fd and ge have the same cover set (i.e., their
recursion schemas correspond), then by compatibility, the context added on the
arguments of fd and ge in induction conclusions will move outwards by rewrit-
ing. After application of the induction hypotheses, we obtain a proof obliga-
tion C[t1, . . . , tn] = D[s1, . . . , sm] where C and D are contexts over FT and
t1, . . . , tn, s1, . . . , sm are subterms containing defined symbols. These subterms
can already be determined before the induction proofs by inspecting the posi-
tions Posf1,...,fd

(α) and Posg1,...,ge(α) of r1 and r2, respectively.

4 Safe Generalizations by the No-Theory Condition

To define the class of equations where inductive validity is decidable, we need
syntactic criteria to ensure that an equation C[t1, ..., tn] = D[s1, ..., sm] as above
may be generalized to C[xt1 , ..., xtn] = D[xs1

, ..., xsm]. Here, ti and sj are replaced
by fresh variables and identical terms are replaced by the same variable. This
generalized equation is an equation over FT and thus, its (inductive) validity can
be decided by a decision procedure for T . In general, however, inductive validity
of the generalized equation implies inductive validity of the original equation,
but not vice versa. We define a no-theory condition which ensures that this gen-
eralization is safe in the theory of free constructors or Presburger Arithmetic.4

Then an equation is inductively valid if and only if the generalized equation is
inductively valid. Our condition mainly relies on information about the defini-
tions of functions which can again be pre-compiled. A term satisfies the no-theory
condition if it is not equivalent to any term without defined symbols.5

Definition 13 (No-Theory Condition) A term t satisfies the no-theory con-
dition iff there is no q ∈ Terms(FT ,V) with AXT ∪R |=ind t = q. If additionally,
t = f(x∗) for pairwise different variables x∗, we say that f satisfies the no-theory
condition too.

3 Clearly, there are inductively valid equations where compatibility does not hold. Let
half be defined by half(0) → 0, half(s(0)) → 0, half(s(s(x))) → s(half(x)). Then half is
not compatible with “+” and thus, the conjecture min(half(x), half(x + y)) = half(x) is not
in our class DEC of equations where inductive validity is decidable.

4 This criterion is generally applicable for safe generalizations, i.e., also outside of the frame-
work of decidable induction proofs. Moreover, one could refine our approach by performing
such generalizations also at the beginning before the start of the proof.

5 Another criterion for safe generalizations would be to replace surjective terms t by fresh
variables, i.e., terms t such that for all q ∈ Terms(FT) there is a substitution σ such that
AXT ∪ R |=ind tσ = q. However, this approach is very restrictive, since one would have to
require that t’s variables may not occur elsewhere in the formula.

17

Obviously, the no-theory condition is satisfied for almost all defined functions
f (otherwise, the function f is not needed, since one can use the term q instead).
For TC and TPA, the no-theory condition for T -based functions is decidable and
we present syntactic sufficient conditions for the no-theory condition on terms.

If f ∈ Fd does not satisfy the no-theory condition, then there is a term q ∈
Terms(FT ,V) such that q[x∗/s∗] =T r for every non-recursive f -rule f(s∗) → r
(i.e., r ∈ Terms(FT ,V)). In the theory of free constructors, this means that
q[x∗/s∗] and r are syntactically identical. Thus, there are only finitely many
possibilities for the choice of q. By checking whether these choices for q would
contradict the remaining rules of f , we can decide the no-theory condition for f .

Definition 14 (Candidate Set Q(f)) Let T be TC , let f ∈ Fd be a T -based
function of arity m. The candidate set Q(f) is defined as Qs∗(r) for a non-
recursive rule f(s1, . . . , sm) → r. Let x∗ = x1, . . . , xm be pairwise different fresh
variables not occurring in this rule. For any t ∈ Terms(FT ,V), we define Qs∗(t):

Qs∗(x) = {xi | si = x} for x ∈ V,
Qs∗(c(t1, . . . , tk)) = {xi | si = c(t1, . . . , tk)}∪

{c(q1, . . . , qk) | qi ∈ Qs∗(ti) for all 1 ≤ i ≤ k} for c ∈ FT .

Now we show how to decide the no-theory condition for functions in the
theory of free constructors.

Theorem 15 Let T , f be as in Def. 14. The function f satisfies the no-theory
condition iff for every q ∈ Q(f), there is an f -rule l → r with l ↓f(x∗)→q 6=
r↓f(x∗)→q. Here, l↓f(x∗)→q is the normal form of l w.r.t. the rule f(x∗) → q.

Proof. Let s∗, t, q ∈ Terms(FT ,V) where s∗ and t do not contain any of the
variables x∗ in q. Let q[s∗] abbreviate q[x∗/s∗]. We first show that q[s∗] =T t
implies q ∈ Qs∗(t). Note that in the theory of free constructors, two terms from
Terms(FT ,V) can only be =T -equal if they are syntactically identical. Hence, we
have to show that q[s∗] = t implies q ∈ Qs∗(t). (In fact, the other direction holds
as well, i.e., q[s∗] =T t iff q ∈ Qs∗(t).)

We use induction on t. If q[s∗] = x where x /∈ V(q), then this implies q = xi

and si = x for some i. Hence, q ∈ Qs∗(x). If q[s∗] = c(t1, . . . , tk), then there are
again two possibilities. If q is a variable xi, then we must have si = c(t1, . . . , tk)
for some i. Hence, q ∈ Qs∗(c(t1, . . . , tk)). Otherwise, if q /∈ V, then root(q) must
be c. So q has the form c(q1, . . . , qk) where qi[s

∗] = ti. By the induction hypothesis
this implies qi ∈ Qs∗(ti) and therefore q ∈ Qs∗(c(t1, . . . , tk)).

Now we prove Thm. 15. For the “if” direction assume that f does not satisfy
the no-theory condition, i.e., AXT ∪ R |=ind f(x∗) = q holds for some term
q ∈ Terms(FT ,V). Thus, for f ’s non-recursive rule f(s∗) → r which was chosen
in the construction of Q(f), we must have AXT ∪ R |=ind r = q[s∗]. Thus,
q[s∗] = r by Thm. 4 and the fact that we regard the theory of free constructors.
According to the above argumentation this implies q ∈ Qs∗(r). So it suffices

18

to regard only the terms q from Qs∗(r) = Q(f) when checking the no-theory
condition.

By the assumption, there exists a rule l → r such that l↓f(x∗)→q 6= r↓f(x∗)→q.
Since l↓f(x∗)→q and r↓f(x∗)→q are terms over FT , in the theory of free constructors
this implies l↓f(x∗)→q 6=T r↓f(x∗)→q and by Thm. 4, AXT ∪ R 6|=ind l↓f(x∗)→q

= r ↓f(x∗)→q. However, since f(x∗) = q is inductively valid, this would mean
AXT ∪R 6|=ind l = r for a rule from R which is a contradiction.

For the “only if” direction, assume that l ↓f(x∗)→q = r ↓f(x∗)→q holds for
some q ∈ Terms(FT ,V). We show that this implies AXT ∪ R |=ind f(x∗) =
q by induction w.r.t. the cover set Cf (where we do not distinguish between
induction and non-induction variables). Hence, let f(s∗) → C[f(t∗1), . . . , f(t∗n)]
be a rule where C is a context over FT . We have to prove inductive validity of
the induction conclusion f(s∗) = q[s∗], where we may assume inductive validity
of f(t∗i) = q[t∗i] for all i. Normalization of the induction conclusion results in
C[f(t∗1), . . . , f(t∗n)] = q[s∗] and application of the induction hypothesis gives us
the proof obligation C[q[t∗1], . . . , q[t

∗
n]] = q[s∗], i.e., r↓f(x∗)→q = l↓f(x∗)→q for the

rule l → r above. By the assumption, the terms on both sides of the equation are
syntactically identical and hence, the proof obligation is inductively valid. ut

For “+” in Ex. 1, from the non-recursive rule 0 + y → y we obtain Q(+) =
Q0,y(y) = {x2}. However, the choice of q = x2 contradicts the second rule s(x)+
y → s(x + y): normalizing by x1 + x2 → x2 produces non-identical terms y and
s(y). Indeed, “+” (and also min, dbl, len, app) satisfy the no-theory condition.

For the theory of Presburger Arithmetic, if f(x1, . . . , xm) =TPA
q for a q ∈

Terms(FTPA
,V), then q =TPA

a0 + a1 ·x1 + . . .+ am ·xm for ai ∈ IN (see Sect. 1).
We use the f -rules to compute constraints on the values of the coefficients ai. Let
τ map terms to linear polynomials where τ(x) = x for x ∈ V, τ(0) = 0, τ(1) = 1,
τ(s + t) = τ(s) + τ(t), and τ(f(t1, . . . , tm)) = a0 +

∑

1≤i≤m ai · τ(ti). For every
f -rule l → r, we now require τ(l) = τ(r). If V(l) = {y1, . . . , yk}, the polynomials
τ(l) = P0+P1 ·y1+. . .+Pk ·yk and τ(r) = Q0+Q1 ·y1+. . .+Qk ·yk are considered
equal iff the constraints P0 = Q0, . . . , Pk = Qk are satisfied. We generate such
constraints for every f -rule. Since f is T -based, its rules do not contain nested
occurrences of f , and thus, Pi and Qi are linear polynomials over a0, . . . , am.
Thus, it is decidable whether the set of all these constraints is satisfiable. The
constraints are unsatisfiable iff f satisfies the no-theory condition.

For “∗” in Ex. 2, we assume that x∗y =TPA
a0 +a1 ·x+a2 ·y. The mapping τ

is now applied to both defining equations of “∗”. From α∗
1 we get τ(0∗y) = τ(0),

i.e., a0 + a2y = a0. From α∗
2 we obtain τ((x + 1) ∗ y) = τ(x ∗ y + y), i.e.,

a0 +a1 +a1x+a2y = a0 +a1x+(a2 +1)y. Since polynomials are only considered
equal if the corresponding coefficients are equal, the resulting set of constraints
is {a2 =0, a0 + a1 =a0, a2 =a2 + 1} (plus trivial constraints). It is easy to detect
their unsatisfiability and thus, “∗” satisfies the no-theory condition.

We have described how to decide the no-theory condition for functions.
Thm. 16 gives sufficient conditions for the no-theory condition on terms.

19

Theorem 16 Let T be TC or TPA. A term t ∈ Terms(F ,V) satisfies the no-
theory condition if one of the following five conditions is satisfied:

(a) t = f(x∗) for pairwise different x∗ and f satisfies the no-theory condition
(b) tσ satisfies the no-theory condition for a substitution σ : V → Terms(FT ,V)
(c) t →∗

R/T r and r satisfies the no-theory condition

(d) T =TC, t|π satisfies the no-theory condition, t has only FT -symbols above π
(e) T =TPA and t =T C[t1, . . . , tn] for n ≥ 1 and a context C over FTPA

. More-
over, there is an i ∈ {1, . . . , n} such that ti satisfies the no-theory condition
and such that all tj are either identical or variable disjoint to ti.

Proof. Condition (a) is trivial since this holds by the definition of the no-theory
condition for functions. For the remaining conditions, assume that t does not
satisfy the no-theory condition, i.e., that AXT ∪ R |=ind t = q for some q ∈
Terms(FT ,V).

(b) We also have AXT ∪R |=ind tσ = qσ where qσ ∈ Terms(FT ,V), i.e., tσ does
not satisfy the no-theory condition either.

(c) Obviously, t →∗
R/T r implies AXT ∪ R |=ind t = r. Therefore, we have

AXT ∪R |=ind r = q, i.e., r also violates the no-theory condition.
(d) In Condition (d), t has the form C[t1, . . . , ti, . . . , tn] where C is a context

over FT and t|π = ti for some 1 ≤ i ≤ n, but where t1, . . . , ti−1, ti+1, . . . , tn
may be arbitrary terms from Terms(F ,V). In the theory of free constructors,
AXT ∪ R |=ind C[t1, . . . , ti, . . . , tn] = q implies that q = C[q1, . . . , qi, . . . , qn]
where AXT ∪ R |=ind tj = qj for all 1 ≤ j ≤ n. Hence, we also have AXT ∪
R |=ind ti = qi in contradiction to the no-theory condition for ti = t|π.

(e) We first prove the following three statements for all t, t1, . . . , tn ∈ Terms(F ,V)
and all s1, . . . , sm ∈ {0, 1} ∪ V. So in contrast to s1, . . . , sm, the terms
t, t1, . . . , tn may contain defined symbols. Recall that in the theory of Pres-
burger Arithmetic, every term s ∈ Terms(FT ,V) can be written in flattened
form, where s =T s1 + . . . + sm for terms s1, . . . , sm ∈ {0, 1} ∪ V.

(i) If AXT ∪R |=ind x + t1 + . . . + tn = s1 + . . . + sm,
then one of the si is x.

(ii) If AXT ∪R |=ind 1 + t1 + . . . + tn = s1 + . . . + sm,
then one of the si is 1.

(iii) If AXT ∪R |=ind t + . . . + t = s1 + . . . + sm,
then there exist {i1, . . . , ik} ⊆ {1, . . . ,m}
such that AXT ∪R |=ind t = si1 + . . . + sik .

To prove (i), assume that none of the si is x. Let s be the term s1 + . . . + sm

and let σ = {x/s+1}. This implies AXT ∪R |=ind s+1+ t1σ+ . . .+ tnσ = s.
Since AXT contains “x + y = x + z ⇒ y = z”, we have AXT ∪ R |=ind

1 + t1σ + . . . + tnσ = 0 in contradiction to the axiom “¬ 1 + x = 0”.
For (ii), assume that none of the si is 1. If σ is the substitution which replaces
all occurring variables by 0, then this implies siσ =T 0 for all i ∈ {1, . . . ,m}.

20

Hence, we have AXT ∪R |=ind 1+ t1σ + . . .+ tnσ = 0 in contradiction to the
axiom “¬ 1 + x = 0”.

For (iii), let “t + . . . + t” consist of l additions of t. Let d be the number
of those si’s which are 1, i.e., d = |{i | 1 ≤ i ≤ m, si = 1}|. We claim that
d is a multiple of l. To see this, let σ be a substitution which replaces all
occurring variables by 0. By sufficient completeness, tσ evaluates to a term
from Terms(FT) and thus, t =T 1+ . . . + 1 = e · 1 for some e ∈ IN. Moreover,
we have s1σ + . . . + smσ =T d · 1. Thus, tσ + . . . + tσ =T (l · e) · 1 =T d · 1.
The axioms “x + y = x + z ⇒ y = z” and “¬ 1 + x = 0” imply l · e = d, i.e.,
d is a multiple of l.

For any variable x, let dx be the number of those si’s which are x, i.e.,
dx = |{i | 1 ≤ i ≤ m, si = x}|. We claim that dx is also a multiple of l. Let σx

be a substitution which replaces x by 1 and all other occurring variables by
0. By sufficient completeness, tσx evaluates to a term from Terms(FT), i.e.,
t =T 1+. . .+1 = ex ·1 for some ex ∈ IN. Moreover, s1σx+. . .+smσx =T dx ·1.
Thus, we have tσx + . . . + tσx =T (l · ex) · 1 =T dx · 1. Again, the axioms
“x + y = x + z ⇒ y = z” and “¬ 1 + x = 0” imply l · ex = dx, i.e., dx is a
multiple of ex.

Since the number of occurrences of every variable x and also of “1” in
s1, . . . , sm is dividable by l, we can re-order s1, . . . , sm into l identical sub-
sequences si1 , . . . , sik (consisting of e occurrences of “1” and ex occurrences
of “x” for every variable x) plus a number of occurrences of 0. By the axiom
“x + y = x + z ⇒ y = z”, this implies AXT ∪R |=ind t = si1 + . . . + sik .

Now we prove Condition (e). Assume that t does not satisfy the no-theory
condition, i.e., AXT ∪ R |=ind C[t1, . . . , tn] = q for some q ∈ Terms(FT ,V).
Let σ be a substitution which replaces all variables except those occurring in
ti by 0. By sufficient completeness, there exists a context C ′ over FT such
that AXT ∪R |=ind C[t1, . . . , tn]σ = C ′[ti, . . . , ti] and by flattening terms, we
result in a term t′ ∈ Terms(FT ,V) such that AXT ∪ R |=ind C ′[ti, . . . , ti] =
t′ + ti + . . . + ti. Thus, AXT ∪ R |=ind t′ + ti + . . . + ti = qσ. Now (i) and
(ii) imply that qσ =T t′ + q′ for some term q′ ∈ Terms(FT ,V). By the axiom
“x+y = x+z ⇒ y = z” we obtain AXT ∪R |=ind ti+. . .+ti = q′. But now (iii)
implies that there exists a subterm q ′′ of q′ such that AXT ∪R |=ind ti = q′′

in contradiction to the no-theory condition for ti. ut

In TC , dbl(v) satisfies the no-theory condition since dbl satisfies the no-theory
condition. Similarly, s(dbl(v)) satisfies the no-theory condition, since it only has
the symbol s ∈ FT above the no-theory term dbl(v). To benefit from Conditions
(b) and (c), for example one can build all terms reachable from t by narrowing
with non-recursive T -based rules. (So termination is guaranteed, since the num-
ber of defined symbols decreases.) For instance, x+dbl(v) satisfies the no-theory
condition, since it can be narrowed to dbl(v) with the non-recursive rule α+

1 .
Similarly, len(u) + len(v) can be narrowed to len(v) with the non-recursive rules
αlen

1 and α+
1 and thus, it also satisfies the no-theory condition.

21

Condition (d) does not hold in the theory of Presburger Arithmetic. For
example, let R = {f(0) → 0, f(x + 1) → x, g(0) → 0, g(x + 1) → x + 1 + 1}.
Then f(x) and g(x) satisfy the no-theory condition, but f(x) + g(x) does not,
since AXT ∪ R |=ind f(x) + g(x) = x + x. However, in a term C[t1, . . . , tn] one
may first apply a substitution σ (to unify non-variable disjoint terms ti and tj).
If afterwards all remaining terms with defined symbols are variable disjoint from
tiσ and if the term tiσ satisfies the no-theory condition, then this also holds for
the original term. For example, x ∗ v + x ∗ w satisfies the no-theory condition,
because when instantiating v with w, then the instantiated term x ∗ w + x ∗ w
satisfies Condition (e).

Thm. 17 shows that the no-theory condition indeed allows us to replace pair-
wise variable disjoint terms by fresh variables. The “if” direction holds for arbi-
trary terms, but “only if” states that this never leads to “over-generalization”.

Theorem 17 (Safe Generalization) Let T be TC or TPA and let t1, . . . , tn,
s1, . . . , sm be pairwise identical or variable disjoint terms satisfying the no-theory
condition. For all contexts C,D over FT and fresh variables xti and xsj

, we have
AXT ∪R |=ind C[t1, ..., tn] = D[s1, ..., sm] iff C[xt1 , . . . , xtn] =T D[xs1

, . . . , xsm].

Proof. The “if”-direction is trivial. We prove the “only if” direction. Assume
that C[xt1 , . . . , xtn] 6=T D[xs1

, . . . , xsm]. We have to show that this contradicts
the assumption

AXT ∪R |=ind C[t1, . . . , tn] = D[s1, . . . , sm]. (17)

Note that (17) implies {t1, . . . , tn} = {s1, . . . , sm}. Otherwise, without loss of
generality, there exists an si with si /∈ {t1, . . . , tn}. Let σ be a substitution which
replaces all variables from (V(t1)∪ . . .∪V(tn)∪V(s1)∪ . . .∪V(sm)) \ V(si) with
ground terms over FT . By sufficient completeness and variable disjointness of the
terms, there exists a q ∈ Terms(FT ,V) such that AXT ∪R |=ind C[t1, . . . , tn]σ =
q and a context D′ over FT with AXT ∪ R |=ind D[s1, . . . , sm] = D′[si, . . . , si].
Hence, (17) implies AXT ∪R |=ind D′[si, . . . , si] = q which is a contradiction to
the no-theory condition for si (by Thm. 16 (d) and (e), respectively).

First let T be the theory of free constructors. We perform structural induc-
tion on the contexts C and D. If C = �, then the equation in (17) has the form
t = D[t, . . . , t] where D must contain �. If D = �, then we have C[xt1 , . . . , xtn] =
xt = D[xs1

, . . . , xsm] in contradiction to the assumption C[xt1 , . . . , xtn] 6=T

D[xs1
, . . . , xsm]. If D 6= �, then (17) contradicts an axiom “¬c1(. . . c2(. . . cn(. . . x

. . .) . . .) . . .) = x” in AXT which states that no term can be equal to one of its
proper subterms.

Similar to the case C = �, the assumption D = � also leads to a contradic-
tion. So it remains to regard the case where C 6= � and D 6= �. Hence, C =
c(C1, . . . , Cn) and the equation in (17) has the form c(C1, . . . , Cn)[t1, . . . , tn] =
D[s1, . . . , sm]. If the equation would be inductively valid, then due to the fact
that D 6= � and that we regard the theory of free constructors, D would have

22

the form c(D1, . . . , Dn) and all equations Ci[t1, . . . , tn] = Di[s1, . . . , sm] would be
inductively valid. However, this is a contradiction to the induction hypotheses.

Now let T be the theory of Presburger Arithmetic. Let ti1 , . . . , tik be pair-
wise different terms such that {ti1 , . . . , tik} = {t1, . . . , tn}. Since {t1, . . . , tn} =
{s1, . . . , sm}, we have AXT ∪ R |=ind C[t1, . . . , tn] = a1 · ti1 + . . . + ak · tik + q1

and AXT ∪ R |=ind D[s1, . . . , sm] = b1 · ti1 + . . . + bk · tik + q2 for terms
q1, q2 ∈ Terms(FT ,V) and aj , bj ≥ 1.

We claim that aj = bj for all j. To see this, let j ∈ {1, . . . , k} be arbitrary and
let σ be a substitution which replaces all variables from V(ti1) ∪ . . . ∪ V(tij−1

) ∪
V(tij+1

) ∪ . . . ∪ V(tik) by ground terms from Terms(FT). By sufficient complete-
ness and variable disjointness of the terms ti1 , . . . , tik , we have AXT ∪ R |=ind

C[t1, . . . , tn]σ = aj · tij + q′1 and AXT ∪R |=ind D[s1, . . . , sm]σ = bj · tij + q′2 for
terms q′1, q

′
2 ∈ Terms(FT ,V). Without loss of generality let aj ≥ bj. Then (17)

and the axiom “x+y = x+z ⇒ y = z” imply AXT ∪R |=ind (aj−bj)·tij +q′1 = q′2.
Here, “(aj−bj)·tij ” stands for “tij +. . .+tij ” where tij is added (aj−bj) times. If
aj = bj, then it stands for “0”. By the observations (i) and (ii) from the proof of
Thm. 16 (e), there exists a q ∈ Terms(FT ,V) such that AXT ∪R |=ind q′2 = q+q′1
and hence, AXT ∪ R |=ind (aj − bj) · tij = q. By the observation (iii) from the
proof of Thm. 16 (e), this is a contradiction to the no-theory condition of t unless
aj = bj.

So we have proved AXT ∪ R |=ind C[t1, . . . , tn] = a1 · ti1 + . . . + ak · tik +
q1 and AXT ∪ R |=ind D[s1, . . . , sm] = a1 · ti1 + . . . + ak · tik + q2. Now (17)
and the axiom “x + y = x + z ⇒ y = z” imply q1 =T q2. However, this is a
contradiction to the assumption C[xt1 , . . . , xtn] 6=T D[xs1

, . . . , xsm], since AXT ∪
R |=ind C[xt1 , . . . , xtn] = a1 · xti1

+ . . . + ak · xtik
+ q1 and AXT ∪ R |=ind

D[xs1
, . . . , xsm] = a1 · xti1

+ . . . + ak · xtik
+ q2. ut

5 A Decidable Class of Equational Conjectures

Now we define the set DEC of equations whose inductive validity is decidable.
Moreover, for any equation r1 = r2, it is decidable whether r1 = r2 ∈ DEC.
Checking membership in DEC can be done efficiently, since it relies on pre-
compiled information about compatibility and the no-theory condition of func-
tions. Thus, before performing the induction proof one can recognize whether
the equation will simplify to conjectures over the signature FT of the theory.

For r1 = r2 ∈ DEC, r1 and r2 must have compatibility sequences 〈f1, . . . , fd〉
and 〈g1, . . . , ge〉, where fd and ge have identical6 cover sets (up to variable renam-
ing). Then the induction conclusion can be simplified as described in Sect. 2.

The Pos-sets allow us to estimate which subterms of r1 and r2 with defined
symbols will occur after this simplification without actually attempting an in-
duction proof. Let M(α) denote the set of these subterms. Clearly, all r1|π and
r2|π′ for π ∈ Posf1,...,fd

(α) and π′ ∈ Posg1,...,ge(α) are in M(α). Moreover, the

6 This requirement can be weakened by merging cover sets, cf. e.g. [4, 10, 13].

23

right-hand sides r2[t
∗
1], . . . , r2[t

∗
n] of induction hypotheses may also contain de-

fined symbols. Finally, if α ∈ Excfd−1,fd
, then compatibility does not hold for

r1. In this case, M(α) must include the whole simplified instantiated left-hand
side r1. A similar observation holds for the right-hand side r2 if α /∈ Excge−1,ge .
We require that all terms in M(α) with defined function symbols satisfy the
no-theory condition. Then they can be safely generalized in induction proofs.

Definition 18 (DEC) Let r1, r2 be terms in normal form. We define r1 = r2 ∈
DEC iff r1, r2 are syntactically equal or if the following conditions are satisfied:

• r1 ∈ Terms(FT ,V) or r1 has a compatibility sequence 〈f1, . . . , fd〉

• r2 ∈ Terms(FT ,V) or r2 has a compatibility sequence 〈g1, . . . , ge〉

• If r1, r2 /∈ Terms(FT ,V), then the cover sets Cfd
and Cge are identical.

Moreover, r1 and r2 have the same induction variables.

• If r1 /∈ Terms(FT ,V), then for every fd-rule α, terms in M(α)\Terms(FT ,V)
are pairwise identical or variable disjoint and satisfy the no-theory condition.

Here, for α : fd(s
∗, y∗)→C[fd(t

∗
1, y

∗), . . . , fd(t
∗
n, y∗)], α′ is the corresponding7

ge-rule and M(α) = M1(α) ∪ M2(α
′) ∪ {r2[t

∗
1], . . . , r2[t

∗
n]}, where

M1(α) =

{

{r1|π | π∈Posf1,...,fd
(α)} if α /∈ Excfd−1,fd

{r1[s
∗]↓R/T } if α ∈ Excfd−1,fd

M2(α
′) =

{

{r2|π | π∈Posg1,...,ge(α
′)} if α′ /∈ Excge−1,ge

{r2[s
∗]↓R/T } if α′ ∈ Excge−1,ge

For example, the equations (1), (2), (3), (5), (6) are in DEC. For the equation
dbl(u + v) = u + dbl(v), the left-hand side dbl(u + v) has the compatibility
sequence 〈dbl,+〉 and the right-hand side has the compatibility sequence 〈+〉
with the induction variable u. Since Excdbl,+ = {α+

1 } and Pos+(α+
1) = {2},

M(α+
1) consists of r1[0]↓R/T = dbl(0 + v)↓R/T = dbl(v) and of r2|2 = dbl(v). As

Posdbl,+(α+
2) = Pos+(α+

2) = ∅, M(α+
2) only contains r2[x] = x + dbl(v). The

function dbl satisfies the no-theory condition and therefore, the terms dbl(v) and
x + dbl(v) from M(α+

1) and M(α+
2) also fulfill the no-theory condition.

As mentioned in Sect. 3, compatibility may be extended to simultaneous
compatibility and thus, this leads to a more general definition of DEC. Then, the
equations (4) and (8) are also in DEC. For the distributivity equation u∗(v+w) =
u ∗ v + u ∗ w, the left-hand side has the compatibility sequence 〈∗〉 and the
right-hand side has the (simultaneous) sequence 〈+, (∗, ∗)〉. Since Pos ∗(α

∗
1) =

7 Without loss of generality, r1 /∈ Terms(FT ,V) unless r1, r2 ∈ Terms(FT ,V). If r2 ∈
Terms(FT ,V) then M2(...) is empty. Otherwise, for every fd-rule α there is a corresponding
ge-rule α′: ge(s

∗, z∗)→C′[ge(t
∗

1, z
∗), ..., ge(t

∗

n, z∗)]. We sometimes also write α instead of α′.

24

Pos+,(∗,∗)(α
∗
1) = ∅, Pos∗(α

∗
2) = {2}, and Pos+,(∗,∗)(α

∗
2) = {1 2, 2 2}, we obtain

M(α∗
1) = ∅, M1(α

∗
2) = {v + w}, and M2(α

∗
2) = {v, w}. So the only term with

defined symbols in M(α∗
2) is r2[t

∗], i.e., x ∗ v + x ∗ w. Our criteria in Thm. 16
state that this term satisfies the no-theory condition.

The following algorithm can decide inductive validity of all equations in DEC.
Essentially, it uses cover set induction: First, the induction conclusions are nor-
malized8 and then the induction hypotheses are applied, if possible. Afterwards,
all resulting proof obligations are generalized to equations over FT . Finally, a
decision procedure for T is applied to decide their validity. The induction proofs
in Sect. 1 were performed in this way.

Algorithm IND(r1, r2)
1. If r1 and r2 are syntactically identical then return “True”.
2. If r1, r2 ∈ Terms(FT ,V), then use the decision procedure for T to

decide the validity of r1 = r2 and return the respective result.
Otherwise, without loss of generality, assume r1 /∈ Terms(FT ,V).

3. Let T consist of all subterms f(. . .) of r1 which have pairwise different
variables on the inductive positions of f .

4. If T = ∅ then stop and return “False”.
5. Choose f(. . .) ∈ T and set T = T \ {f(. . .)}.
6. For each 〈s∗, {t∗1, . . . , t

∗
n}〉 ∈ Cf :

6.1. Let q1 = r1[s
∗]↓R/T , q2 = r2[s

∗]↓R/T .

6.2. Replace all occurrences of r1[t
∗
i] in q1 by r2[t

∗
i].

6.3. Replace all occurrences of subterms t with root (t) ∈ Fd

in q1 and q2 by fresh variables xt. So multiple occurrences of the same
subterm are replaced by the same variable.

6.4. Use the decision procedure for T to decide the validity of the
resulting equation. If it is invalid, then go to Step 4.

7. Return “True”.

In the definition of DEC we replace terms t ∈ M(α) \ Terms(FT ,V) by new
variables. In contrast in Step 6.3, only the subterms of t that have a defined root
are replaced. For example, when proving the distributivity equation (8) we have
x∗v+x∗w ∈ M(α), but in the algorithm the term x∗v+x∗w would be replaced
by z1 + z2 for new variables z1 and z2. Clearly, if this generalized conjecture is
valid, then the original conjecture is valid, too. If the generalized conjecture is
invalid, then the conjecture where the whole term x ∗ v + x ∗ w would have
been replaced by a new variable would also be invalid. Since DEC guarantees
that even this (larger) generalization does not lead to over-generalization, the
generalization in Step 6.3 is safe as well. Thus, one does not have to know about
M(α) or DEC when performing induction proofs.

8 If the induction hypotheses r1[t
∗

i] = r2[t
∗

i] are not in normal form, then instead of reducing
r1[s

∗] and r2[s
∗] to normal form in Step 6.1, one should stop as soon as r1[t

∗

i] and r2[t
∗

i] are
reached.

25

The following theorem shows that IND is a decision procedure for all equations
in DEC. Its proof can be found in the appendix.

Theorem 19 (Decision Procedure) Let T be TC or TPA, let r1 = r2 ∈ DEC.
Then IND(r1, r2) terminates and it returns “True” iff AXT ∪ R |=ind r1 = r2.
Hence, inductive validity is decidable for all equations in DEC.

6 Conclusion and Further Work

The paper defines a syntactical class DEC of decidable equational conjectures by
allowing defined function symbols to occur on both sides of an equation and also
outside of inductive positions. This is a significant advance compared to earlier
related work: In [11] only one side of an equation could have defined function
symbols (only on inductive positions) and the other side had to be a term over
the signature of the underlying decidable theory. In [8], we considered general
quantifier-free conjectures with such equations as atomic formulas.

Our approach is based on compatibility between functions. Using this infor-
mation, we identify those subterms which might appear in subgoals during a
proof attempt and we require that these terms satisfy the no-theory condition.
Then all subgoals can be safely generalized to formulas over a decidable theory.

Whether an equation belongs to our class DEC mainly depends on the defi-
nitions of functions. Therefore, the required information can be pre-compiled and
checking whether an equation is in DEC can be done efficiently. Moreover, for
every equation in DEC, a failed induction proof attempt refutes the conjecture.
Thus, by restricting induction to this class of equations, one obtains a decision
procedure for induction which can be integrated into fully automatic tools like
model checkers or compilers.

In future work, we plan to relax the conditions imposed on function defi-
nitions further and to evaluate our approach empirically by an implementation.
Moreover, we will try to extend our conditions for safe generalizations beyond the
theories of free constructors and of Presburger Arithmetic. We also want to exam-
ine whether the ideas of [8] can be used to extend DEC to general quantifier-free
conjectures whose atomic formulas are equations with defined symbols occurring
on both sides. This class might be broadened further to include the use of in-
termediate lemmas in proofs, provided these lemmas themselves fall into the
decidable class of inductively valid formulas.

Acknowledgments. We thank M. Subramaniam & R. Thiemann for helpful remarks.

References

1. S. Autexier, D. Hutter, H. Mantel, & A. Schairer. Inka 5.0 - A Logical Voyager. Proc.
CADE-16, LNAI 1632, 1999

2. F. Baader & T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
3. A. Bouhoula & M. Rusinowitch. Implicit Induction in Conditional Theories. Journal of

Automated Reasoning, 14:189–235, 1995.

26

4. R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1979.
5. A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, & A. Smaill. Rippling: A Heuristic for

Guiding Inductive Proofs. Artificial Intelligence, 62:185-253, 1993.
6. A. Bundy. The Automation of Proof by Mathematical Induction. A. Robinson & A.

Voronkov (eds.), Handbook of Automated Reasoning, Vol. 1, pages 845-911, 2001.
7. H. B. Enderton. A Mathematical Introduction to Logic. 2nd edition, Harcourt/Academic

Press, 2001.
8. J. Giesl & D. Kapur. Decidable Classes of Inductive Theorems. Proc. IJCAR ’01, LNAI

2083, pages 469-484, 2001.
9. D. Kapur & H. Zhang. An Overview of Rewrite Rule Laboratory (RRL). Journal of Com-

puter and Mathematics with Applications, 29:91–114, 1995.
10. D. Kapur & M. Subramaniam. New Uses of Linear Arithmetic in Automated Theorem

Proving by Induction. Journal of Automated Reasoning, 16:39–78, 1996.
11. D. Kapur & M. Subramaniam. Extending Decision Procedures with Induction Schemes.

Proc. CADE-17, LNAI 1831, pages 324-345, 2000.
12. M. Kaufmann, P. Manolios, & J S. Moore. Computer-Aided Reasoning: An Approach.

Kluwer, 2000.
13. C. Walther. Mathematical Induction. D. M. Gabbay, C. J. Hogger, & J. A. Robinson

(eds.), Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 2, Oxford
University Press, 1994.

14. H. Zhang, D. Kapur, & M. S. Krishnamoorthy. A Mechanizable Induction Principle for
Equational Specifications. Proc. CADE-9, LNCS 310, 1988.

A Proof of Theorem 19

Theorem 19 (Decision Procedure) Let T be TC or TPA, let r1 = r2 ∈ DEC.
Then IND(r1, r2) terminates and it returns “True” iff AXT ∪ R |=ind r1 = r2.
Hence, inductive validity is decidable for all equations in DEC.

Proof. Termination of the algorithm IND is obvious, i.e., the algorithm always re-
turns “True” or “False”. Hence, we now focus on the correctness of the algorithm
IND.

If r1 and r2 are syntactically identical, then the claim is obvious. For two terms
r1, r2 ∈ Terms(FT ,V) we have AXT ∪ R |=ind r1 = r2 iff AXT |=ind r1 = r2 by
Thm. 4. Since we restrict ourselves to theories where inductive validity of an
equation over FT implies its validity, “AXT |=ind r1 = r2” can be checked by
the decision procedure for T .

Otherwise, since r1 = r2 ∈ DEC, r1 and r2 have “suitable” compatibility
sequences 〈f1, . . . , fd〉 and 〈g1, . . . , ge〉 (if r2 /∈ Terms(FT ,V)) which correspond
to those in Def. 18. In the algorithm IND one also tries inductions which do
not correspond to compatibility sequences (and inductions which correspond
to other compatibility sequences). However, any induction proof is sound, i.e.,
if the algorithm returns “True”, then the formula is really inductively valid.
The reason is that the algorithm performs a sound Noetherian induction. In
contrast, if a particular induction proof attempt fails, then this does not refute
the formula, because of the generalization in Step 6.3. However, the algorithm
IND only returns “False” if all induction proof attempts failed. Hence, then the
attempt with the compatibility sequences from Def. 18 must have failed as well.

27

So it suffices to regard the proof attempt where the subterm “f(. . .)” chosen in
Step 5 is the subterm fd(. . .) of the compatibility sequence in Def. 18. We have
to show that for this proof attempt the algorithm IND only returns “False” if
r1 = r2 is not inductively valid.

By the soundness of Noetherian induction and the sufficient completeness
and termination of R, r1 = r2 is inductively valid iff the conjectures

r1[t
∗
1] = r2[t

∗
1] ∧ . . . ∧ r1[t

∗
n] = r2[t

∗
n] ⇒ r1[s

∗] = r2[s
∗] (18)

are inductively valid for all rules

α : fd(s
∗, y∗) → C[fd(t

∗
1, y

∗), . . . , fd(t
∗
n, y∗)].

After Step 6.2, we obtain an equation q1 = q2 which results from (18) by
rewriting r1[s

∗] and r2[s
∗] and by replacing occurrences of r1[t

∗
i] by r2[t

∗
i]. Clearly,

if q1 = q2 is inductively valid, then (18) is also inductively valid. So if we can
verify q1 = q2 in Step 6.3 and 6.4 of the algorithm and proceed in a similar way
for the other rules of fd, then the algorithm correctly returns “True”. On the
other hand, if the original equation r1 = r2 is inductively valid, then q1 = q2

must also be inductively valid. Thus, if we can refute q1 = q2, then the algorithm
correctly returns “False”. So inductive validity of all these equations q1 = q2 is
equivalent to inductive validity of r1 = r2.

It remains to prove that inductive validity of q1 = q2 is correctly determined
in Step 6.3 and 6.4. To this end, we will now show that after Step 6.2, all subterms
of q1 = q2 with defined root symbol occur in terms of M(α). Once this is shown,
it is clear that the procedure in Step 6.3 and 6.4 indeed determines inductive
validity of q1 = q2 correctly. The reason is that in Step 6.3 of the algorithm,
only subterms of terms in M(α) \ Terms(FT ,V) are replaced by new variables,
which results in an equation s = t over FT . Clearly, if s =T t, then q1 = q2 is
valid, too. Otherwise, let s′ = t′ be the equation which results from q1 = q2 by
replacing all t ∈ M(α) \ Terms(FT ,V) by new variables xt. Since the terms in
M(α) \ Terms(FT ,V) are pairwise identical or variable disjoint and satisfy the
no-theory-condition, by Thm. 17, s′ = t′ is valid iff q1 = q2 is inductively valid.
Note that s = t is an instance of s′ = t′. Thus, if s = t is invalid, then s′ = t′ is
also invalid and thus, q1 = q2 is not inductively valid.

Now we show that after Step 6.2, all subterms of q1 = q2 with defined root
symbol occur within terms of M(α).

Case 1: α /∈ Excfd−1,fd

Lemma 12 implies

r1[s
∗] →∗

R/T C[r1[t
∗
i1], . . . , r1[t

∗
ik

]], (19)

where i1, . . . , ik ∈ {1, . . . , n} and in C, defined symbols only occur within terms
from {r1|π |π ∈ Posf1,...,fd

(α)}.

28

So in Step 6.1 of the algorithm we obtain q1 =T C[r1[t
∗
i1

], . . . , r1[t
∗
ik

]]. By (19),
Conjecture (18) is equivalent to

r1[t
∗
1] = r2[t

∗
1] ∧ . . . ∧ r1[t

∗
n] = r2[t

∗
n] ⇒ C[r1[t

∗
i1], . . . , r1[t

∗
ik

]] = r2[s
∗]. (20)

In Step 6.2 of the algorithm, this formula is transformed by applying the induc-
tion hypotheses. This results in

C[r2[t
∗
i1], . . . , r2[t

∗
ik

]] = r2[s
∗], (21)

i.e., q1 =T C[r2[t
∗
i1

], . . . , r2[t
∗
ik

]].

Case 1.1: r2 ∈ Terms(FT ,V)
In this case, we also have r2[s

∗], r2[t
∗
1], . . . , r2[t

∗
n] ∈ Terms(FT ,V) and q2 =T

r2[s
∗]. Defined symbols in (21) can only occur within C. Thus, they all oc-

cur within terms of {r1|π |π ∈ Posf1,...,fd
} ⊆ M(α). (Here, we have M(α) =

{r1|π |π ∈ Posf1,...,fd
} ∪ {r2[t

∗
1], . . . , r2[t

∗
n]}.)

Case 1.2: r2 /∈ Terms(FT ,V), α′ /∈ Excge−1,ge

In this case, in analogous way to r1, by Lemma 12 we obtain

r2[s
∗] →∗

R/T D[r2[t
∗
j1], . . . , r2[t

∗
jl
]]

and in D, defined symbols only occur in terms from {r2|π |π ∈ Posg1,...,ge(α
′)}.

Thus, q2 is T -equivalent to D[r2[t
∗
j1

], . . . , r2[t
∗
jl
]]. Hence, all subterms of q1 = q2

with defined root symbol occur in terms of M(α) = {r1|π |π ∈ Posf1,...,fd
(α)} ∪

{r2|π |π ∈ Posg1,...,ge(α
′)} ∪ {r2[t

∗
1], . . . , r2[t

∗
n]}.

Case 1.3: r2 /∈ Terms(FT ,V), α′ ∈ Excge−1,ge

Thus, α and α′ are non-recursive rules. Therefore, q1 =T C, q2 =T r2[s
∗]↓R/T ,

and there are no induction hypotheses. Hence, the subterms of q1 = q2 with
defined root symbols occur in terms of M(α) = {r1|π |π ∈ Posf1,...,fd

} ∪
{r2[s

∗]↓R/T }.

Case 2: α ∈ Excfd−1,fd

Again, α is a non-recursive rule and q1 =T r1[s
∗]↓R/T .

Case 2.1: r2 ∈ Terms(FT ,V)
In this case, we also have r2[s

∗] ∈ Terms(FT ,V) and thus defined symbols can
only occur within terms of M(α) = {r1[s

∗]↓R/T }.

Case 2.2: r2 /∈ Terms(FT ,V), α′ /∈ Excge−1,ge

In this case, q2 =T D, since α′ is also non-recursive. Hence, all subterms of q1 = q2

with defined root symbol occur in terms of M(α) = {r1[s
∗]↓R/T } ∪ {r2|π |π ∈

Posg1,...,ge(α
′)}.

29

Case 2.3: r2 /∈ Terms(FT ,V), α′ ∈ Excge−1,ge

Thus, q2 =T r2[s
∗]↓R/T and the subterms of q1 = q2 with defined root symbols

occur in terms of M(α) = {r1[s
∗]↓R/T } ∪ {r2[s

∗]↓R/T }. ut

30

Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports

please consult http://aib.informatik.rwth-aachen.de/ or send your request

to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

95-11 ∗ M. Staudt / K. von Thadden: Subsumption Checking in Knowledge

Bases

95-12 ∗ G.V. Zemanek / H.W. Nissen / H. Hubert / M. Jarke: Requirements

Analysis from Multiple Perspectives: Experiences with Conceptual Mod-

eling Technology

95-13 ∗ M. Staudt / M. Jarke: Incremental Maintenance of Externally Material-

ized Views

95-14 ∗ P. Peters / P. Szczurko / M. Jeusfeld: Business Process Oriented Infor-

mation Management: Conceptual Models at Work

95-15 ∗ S. Rams / M. Jarke: Proceedings of the Fifth Annual Workshop on

Information Technologies & Systems

95-16 ∗ W. Hans / St. Winkler / F. Sáenz: Distributed Execution in Functional

Logic Programming

96-1 ∗ Jahresbericht 1995

96-2 M. Hanus / Chr. Prehofer: Higher-Order Narrowing with Definitional

Trees

96-3 ∗ W. Scheufele / G. Moerkotte: Optimal Ordering of Selections and Joins

in Acyclic Queries with Expensive Predicates

96-4 K. Pohl: PRO-ART: Enabling Requirements Pre-Traceability

96-5 K. Pohl: Requirements Engineering: An Overview

96-6 ∗ M. Jarke / W. Marquardt: Design and Evaluation of Computer–Aided

Process Modelling Tools

96-7 O. Chitil: The ς-Semantics: A Comprehensive Semantics for Functional

Programs

96-8 ∗ S. Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics

96-9 M. Hanus (Ed.): Proceedings of the Poster Session of ALP’96 — Fifth

International Conference on Algebraic and Logic Programming

96-10 R. Conradi / B. Westfechtel: Version Models for Software Configuration

Management

96-11 ∗ C. Weise / D. Lenzkes: A Fast Decision Algorithm for Timed Refinement

96-12 ∗ R. Dömges / K. Pohl / M. Jarke / B. Lohmann / W. Marquardt: PRO-

ART/CE∗ — An Environment for Managing the Evolution of Chemical

Process Simulation Models

96-13 ∗ K. Pohl / R. Klamma / K. Weidenhaupt / R. Dömges / P. Haumer /

M. Jarke: A Framework for Process-Integrated Tools

31

96-14 ∗ R. Gallersdörfer / K. Klabunde / A. Stolz / M. Eßmajor: INDIA — Intel-

ligent Networks as a Data Intensive Application, Final Project Report,

June 1996

96-15 ∗ H. Schimpe / M. Staudt: VAREX: An Environment for Validating and

Refining Rule Bases

96-16 ∗ M. Jarke / M. Gebhardt, S. Jacobs, H. Nissen: Conflict Analysis Across

Heterogeneous Viewpoints: Formalization and Visualization

96-17 M. Jeusfeld / T. X. Bui: Decision Support Components on the Internet

96-18 M. Jeusfeld / M. Papazoglou: Information Brokering: Design, Search and

Transformation

96-19 ∗ P. Peters / M. Jarke: Simulating the impact of information flows in

networked organizations

96-20 M. Jarke / P. Peters / M. Jeusfeld: Model-driven planning and design

of cooperative information systems

96-21 ∗ G. de Michelis / E. Dubois / M. Jarke / F. Matthes / J. Mylopoulos

/ K. Pohl / J. Schmidt / C. Woo / E. Yu: Cooperative information

systems: a manifesto

96-22 ∗ S. Jacobs / M. Gebhardt, S. Kethers, W. Rzasa: Filling HTML forms

simultaneously: CoWeb architecture and functionality

96-23 ∗ M. Gebhardt / S. Jacobs: Conflict Management in Design

97-01 Jahresbericht 1996

97-02 J. Faassen: Using full parallel Boltzmann Machines for Optimization

97-03 A. Winter / A. Schürr: Modules and Updatable Graph Views for PRO-

grammed Graph REwriting Systems

97-04 M. Mohnen / S. Tobies: Implementing Context Patterns in the Glasgow

Haskell Compiler

97-05 ∗ S. Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-

tische Spezifikation inkrementeller Integrationswerkzeuge

97-06 M. Nicola / M. Jarke: Design and Evaluation of Wireless Health Care

Information Systems in Developing Countries

97-07 P. Hofstedt: Taskparallele Skelette für irregulär strukturierte Probleme

in deklarativen Sprachen

97-08 D. Blostein / A. Schürr: Computing with Graphs and Graph Rewriting

97-09 C.-A. Krapp / B. Westfechtel: Feedback Handling in Dynamic Task Nets

97-10 M. Nicola / M. Jarke: Integrating Replication and Communication in

Performance Models of Distributed Databases

97-13 M. Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs

97-14 R. Baumann: Client/Server Distribution in a Structure-Oriented Data-

base Management System

97-15 G. H. Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms

98-01 ∗ Jahresbericht 1997

32

98-02 S. Gruner/ M. Nagel / A. Schürr: Fine-grained and Structure-oriented

Integration Tools are Needed for Product Development Processes

98-03 S. Gruner: Einige Anmerkungen zur graphgrammatischen Spezifikation

von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und

Schürr

98-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments

98-05 M. Leucker / St. Tobies: Truth — A Verification Platform for Distributed

Systems

98-07 M. Arnold / M. Erdmann / M. Glinz / P. Haumer / R. Knoll / B.

Paech / K. Pohl / J. Ryser / R. Studer / K. Weidenhaupt: Survey on

the Scenario Use in Twelve Selected Industrial Projects

98-08 ∗ H. Aust: Sprachverstehen und Dialogmodellierung in natürlichsprach-

lichen Informationssystemen

98-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am

Beispiel intraoraler Radiographien

98-10 ∗ M. Nicola / M. Jarke: Performance Modeling of Distributed and Repli-

cated Databases

98-11 ∗ A. Schleicher / B. Westfechtel / D. Jäger: Modeling Dynamic Software

Processes in UML

98-12 ∗ W. Appelt / M. Jarke: Interoperable Tools for Cooperation Support

using the World Wide Web

98-13 K. Indermark: Semantik rekursiver Funktionsdefinitionen mit Strikt-

heitsinformation

99-01 ∗ Jahresbericht 1998

99-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version

99-03 ∗ R. Gallersdörfer / M. Jarke / M. Nicola: The ADR Replication Manager

99-04 M. Alpuente / M. Hanus / S. Lucas / G. Vidal: Specialization of Func-

tional Logic Programs Based on Needed Narrowing

99-07 Th. Wilke: CTL+ is exponentially more succinct than CTL

99-08 O. Matz: Dot-Depth and Monadic Quantifier Alternation over Pictures

2000-01 ∗ Jahresbericht 1999

2000-02 Jens Vöge / Marcin Jurdzinski: A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-04 Andreas Becks / Stefan Sklorz / Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 Mareike Schoop: Cooperative Document Management

2000-06 Mareike Schoop / Christoph Quix (eds.): Proceedings of the Fifth In-

ternational Workshop on the Language-Action Perspective on Commu-

nication Modelling

2000-07 ∗ Markus Mohnen / Pieter Koopman (Eds.): Proceedings of the 12th In-

ternational Workshop of Functional Languages

33

2000-08 Thomas Arts / Thomas Noll: Verifying Generic Erlang Client-Server

Implementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig / Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig / Martin Leucker / Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig / Martin Leucker / Thomas Noll: Regular MSC Lan-

guages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe / Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop / James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts / Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark / Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl / Aart Middeldorp: Transformation Techniques for

Context-Sensitive Rewrite Systems

2002-03 Benedikt Bollig / Martin Leucker / Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl / Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter / Thomas von der Maßen / Thomas Weiler: Modelling

Requirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl / Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 René Thiemann / Jürgen Giesl: Size-Change Termination for Term

Rewriting

34

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

35

