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Abstract

For term rewrite systems (TRSs), a huge number of automated termination analysis tech-
niques have been developed during the last decades, and by automated transformations
of Prolog programs to TRSs, these techniques can also be used to prove termination of
Prolog programs. Very recently, techniques for automated termination analysis of TRSs
have been adapted to prove asymptotic upper bounds for the runtime complexity of TRSs
automatically. In this paper, we present an automated transformation from Prolog pro-
grams to TRSs such that the runtime of the resulting TRS is an asymptotic upper bound
for the runtime of the original Prolog program (where the runtime of a Prolog program is
measured by the number of unification attempts). Thus, techniques for complexity analysis
of TRSs can now also be applied to prove upper complexity bounds for Prolog programs.

Our experiments show that this transformational approach indeed yields more pre-
cise bounds than existing direct approaches for automated complexity analysis of Prolog.
Moreover, it is also applicable to a larger class of Prolog programs such as non-well-moded
programs or programs using built-in predicates like, e.g., cuts.

KEYWORDS: complexity analysis, automated reasoning, logic programs, term rewriting

1 Introduction

Automated complexity analysis of term rewrite systems has recently gained a lot

of attention (see, e.g., (Avanzini et al. 2008; Avanzini and Moser 2009; Bonfante

et al. 2001; Hirokawa and Moser 2008; Marion and Péchoux 2008; Noschinski et al.

2011; Waldmann 2010; Zankl and Korp 2010)). Most of these complexity analysis

techniques were obtained by adapting existing approaches for termination analysis

of TRSs. Indeed, complexity analysis can be seen as a refinement of termination

analysis: Instead of only asking whether a program will eventually halt, one asks

∗ Supported by the DFG under grant GI 274/5-3, the DFG Research Training Group 1298 (Al-
goSyn), and the Danish Council for Independent Research, Natural Sciences.
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how many steps it will take before the program halts. This view is also apparent in

the competition on automated complexity analysis of TRSs, which takes place as

part of the annual International Termination Competition1 since 2008, and where

most of the competing tools are built on the basis of a termination analyzer.

In the area of termination analysis, there exist several transformational ap-

proaches which permit the use of techniques for automated termination proofs

of TRSs also for termination analysis of logic programs. To this end, logic pro-

grams are automatically transformed into TRSs in a non-termination preserving

way (see, e.g., (Ohlebusch 2001)). In fact, this transformational approach for ter-

mination analysis of logic programs turned out to be more powerful than techniques

to analyze termination of logic programs directly (Schneider-Kamp et al. 2009).

In this paper, we develop a similar transformational approach for complexity

analysis. While there already exists some work on direct complexity analysis for

logic programs (e.g., (Debray and Lin 1993; López-Garćıa et al. 2010)2), these

approaches are restricted to well-moded logic programs. By making complexity

analysis of TRSs applicable to logic programs as well, we obtain an approach for

automated complexity analysis of Prolog which is applicable to a much wider class

of programs (including non-well-moded and non-definite programs).3 Moreover, as

shown by extensive experiments, the implementation of our approach in the tool

AProVE (Giesl et al. 2006) is far more powerful than the previous direct approaches.

We introduce the required notations, the considered operational semantics, and

the notion of complexity for Prolog programs in Sect. 2. In Sect. 3 we show that

existing transformations from logic programs to TRSs, which were originally devel-

oped for termination analysis, cannot be directly used for complexity, as they do

not preserve asymptotic upper complexity bounds. The reason is that backtracking

in the logic program is replaced by non-deterministic choice in the TRS.

Thus, we propose a new transformation based on a derivation graph which repre-

sents all possible executions of a logic program. This is similar to our approach for

termination analysis in (Schneider-Kamp et al. 2010; Ströder et al. 2010) which goes

beyond definite logic programs. In this way, the transformation is also applicable to

Prolog programs using built-in predicates like cuts. We explain derivation graphs

in Sect. 4. Then in Sect. 5, we present a method to obtain TRSs from such graphs

which have at least the same complexity as the original Prolog program. To this end,

we also developed a new criterion for determinacy analysis of Prolog (Hill and King

1997). In Sect. 6, we compare our approach to the existing direct ones empirically.

2 Preliminaries

Let Σ be a set of function symbols. Each f ∈ Σ has an arity n ∈ IN denoted f/n. We

always assume that Σ contains at least one constant symbol. Moreover, let V be a

countably infinite set of variables. The set of terms T (Σ,V) is the least set where

1 See http://www.termination-portal.org/wiki/Termination_Competition
2 Moreover, there also exist approaches to infer lower complexity bounds for logic programs, (e.g.,
(Debray et al. 1997; King et al. 1997)), whereas our approach can only infer upper bounds.

3 However, our implementation currently does not treat built-in integer arithmetic, whereas (De-
bray and Lin 1993; López-Garćıa et al. 2010) can handle linear arithmetic constraints.
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V ⊆ T (Σ,V) and where f(t1, . . . , tn) ∈ T (Σ,V) for all f/n ∈ Σ and t1, . . . , tn ∈

T (Σ,V). V(t) denotes the set resp. the sequence of variables in a term t. For a term

t = f(t1, . . . , tn), we have root(t) = f/n. A position pos ∈ IN∗ in a term t addresses

a subterm t|pos of t. We denote the empty word (and thereby the top position) by

ε. The term t[s]pos results from replacing the subterm t|pos at position pos in t by

the term s. So t|ε = t and t[s]ε = s. For pos = i pos ′, i ∈ IN, and t = f(t1, . . . , tn),

we have t|pos = t|i pos′ = ti|pos′ and t[s]pos = t[s]i pos′ = f(t1, . . . , ti[s]pos′ , . . . , tn).

For the basics of term rewriting, see, e.g., (Baader and Nipkow 1998). A term

rewrite system (TRS) R is a finite set of pairs of terms ℓ→ r (called rules) where

ℓ /∈ V and V(r) ⊆ V(ℓ). The rewrite relation s→R t for two terms s and t holds iff

there is an ℓ→ r ∈ R, a position pos, and a substitution σ such that ℓσ = s|pos and

t = s[rσ]pos . The rewrite step is innermost (denoted s
i
→R t) iff no proper subterm

of ℓσ can be rewritten. The defined symbols of a TRS R are Σd = {root(ℓ) | ℓ →

r ∈ R}, i.e., these are the function symbols that can be “evaluated”.

Different notions of complexity have been proposed for TRSs. In this paper, we

focus on innermost runtime complexity (Hirokawa and Moser 2008), which corre-

sponds to the notion of complexity used for programming languages. Here, one only

considers rewrite sequences starting with basic terms f(t1, . . . , tn), where f ∈ Σd

and t1, . . . , tn do not contain symbols from Σd. The innermost runtime complexity

function ircR maps any n ∈ IN to the length of the longest sequence of
i
→R-steps

starting with a basic term t where |t| ≤ n. Here, |t| is the number of variables

and function symbols occurring in t. To measure the complexity of a TRS R, we

determine the asymptotic size of ircR, i.e., we say that R has linear complexity iff

ircR(n) ∈ O(n), quadratic complexity iff ircR(n) ∈ O(n2), etc.

See, e.g., (Apt 1997) for the basics of logic programming. As in the ISO standard

for Prolog (ISO/IEC 13211-1 1995), we do not distinguish between predicate and

function symbols. A query is a sequence of terms, where � denotes the empty query.

A clause is a pair h :-B where the head h is a term and the body B is a query.

If B is empty, then one writes just “h” instead of “h :-�”. A Prolog program P

is a finite sequence of clauses. In this paper, we consider unification with occurs

check.4 If s and t have no mgu σ, we write mgu(s, t) = fail . SliceP(p(t1, ..., tn)) is

the sequence of all program clauses “h :-B” from P where root(h) = p/n.

We consider the operational semantics in (Ströder et al. 2011) which is equivalent

to the semantics in (ISO/IEC 13211-1 1995). A state has the form 〈G1 | . . . | Gn〉

where G1 | . . . | Gn is a sequence of goals. Essentially, a goal is just a query, i.e., a se-

quence of terms. In addition, a goal can also be labeled by a clause c, where the goal

(t1, . . . , tk)
c indicates that the next resolution step has to be performed with clause

c. Intuitively, a state 〈G1 | . . . | Gn〉 means that we currently have to solve the goal

G1, but that G2, . . . , Gn are the next goals to solve when backtracking.5 The initial

state for a query (t1, . . . , tk) is 〈(t1, . . . , tk)〉, i.e., this state contains just a single goal.

The operational semantics can be defined by a set of inference rules on these states.

4 Our method could be extended to unification without occurs check, but we left this as future
work since the complexity of most programs does not depend on the occurs check.

5 We omit answer substitutions for simplicity, since they do not contribute to the complexity.
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� | S

S
(Suc)

(t, Q) | S

(t, Q)c1 | · · · | (t, Q)ca | S
(Case) if SliceP(t) = (c1, . . . , ca)

(t, Q)h :-B | S

(Bσ,Qσ) | S
(Eval) if mgu(t, h) = σ

(t, Q)h :-B | S

S
(Backtrack) if mgu(t, h)

= fail

Fig. 1. Inference Rules for the Subset of Definite Logic Programs

In Fig. 1, we show the inference rules for the part of Prolog which defines definite

logic programming. Here, S denotes a (possibly empty) sequence of goals. The set

of all inference rules for full Prolog can be found in (Ströder et al. 2011). Since

each state contains all backtracking goals, our semantics is linear (i.e., a derivation

with these rules is just a sequence of states and not a search tree as in the classic

Prolog semantics). As outlined in (Ströder et al. 2011), this makes our semantics

particularly well suited for termination and complexity analysis.

For a Prolog program P and a query Q, we consider the length of the longest

derivation starting in the initial state for Q. As shown in (Ströder et al. 2011), this

length is equal to the number of unification attempts when traversing the whole SLD

tree according to the semantics of (ISO/IEC 13211-1 1995), up to a constant factor.

Thus, we use the length of this longest derivation to measure the complexity

of Prolog programs.6 We consider classes of atomic queries which are described

by a p ∈ Σ and a moding function m : Σ × IN → {in, out}. So m determines

which arguments of a symbol are considered to be input. The corresponding class

of queries is Qp
m = {p(t1, . . . , tn) | V(ti) = ∅ for all i with m(p, i) = in }. For a

moding function m, and any term p(t1, . . . , tn), its moded size is |p(t1, . . . , tn)|m =

Σi∈{1,...,n}:m(p,i)=in |ti|. Thus, for a program P and a class of queries Qp
m, the Prolog

runtime complexity function prcP,Qp
m

maps any n ∈ IN to the length of the longest

derivation starting with the initial state for some query Q ∈ Qp
m with |Q|m ≤ n.

For a program P and a class of queries Qp
m, our aim is to generate a TRS R such

that asymptotically, ircR(n) is an upper bound of prcP,Qp
m
(n).

3 Direct Transformation

Consider the following program sublist.pl from the Termination Problem Data

Base (TPDB)7 with the class of queries Qsublist
m . Here m is a moding function with

m(sublist, 1) = out and m(sublist, 2) = in.

(1) app([],Ys,Ys).

(2) app(.(X,Xs),Ys,.(X,Zs)) :- app(Xs,Ys,Zs).

(3) sublist(X,Y) :- app(P,U,Y), app(V,X,P).

This program computes (by backtracking) all sublists of a given list. Its complexity

6 In contrast, (Debray and Lin 1993; López-Garćıa et al. 2010) use the number of resolution steps
to measure complexity. As long as we do not consider dynamic built-in predicates like assert/1,
these measures are asymptotically equivalent, as the number of failing unification attempts is
bounded by a constant factor (i.e., by the number of clauses in the program).

7 This is the collection of examples used in the annual International Termination Competition.



Automated Complexity Analysis for Prolog by Term Rewriting 5

w.r.t. Qsublist
m is quadratic since the first call to app takes a linear number of unifi-

cation attempts and produces also a linear number of solutions. The second call to

app again needs linear time, but due to backtracking, it is called linearly often.

We now show that the classic transformation from (well-moded) logic programs

to TRSs (see, e.g., (Ohlebusch 2001)) cannot be used for complexity analysis.8

Note that the example program is well moded if m is extended to app by defining

m(app, 1) = m(app, 2) = out and m(app, 3) = in. For each predicate p, the trans-

formation introduces two new function symbols pin and pout. Let “p(~s,~t)” denote

that ~s and ~t are the sequences of terms on p’s in- and out-positions.

• For each fact p(~s,~t), the TRS contains the rule pin(~s)→ pout(~t).
• For each clause c of the form p(~s,~t) :- p1(~s1, ~t1), . . . , pk( ~sk, ~tk), the resulting

TRS contains the following rules:
pin(~s) → uc1(p

in
1 (~s1),V(~s))

uc1(p
out
1 (~t1),V(~s)) → uc2(p

in
2 (~s2),V(~s) ∪ V(~t1))

. . .

uck(p
out
k (~tk),V(~s) ∪ V(~t1) ∪ . . . ∪ V(~tk−1)) → pout(~t)

If the resulting TRS is terminating, then the original logic program terminates for

any query with ground terms on all input positions of the predicates, cf. (Ohlebusch

2001). For our example program, we obtain the following TRS.

appin(Ys)→ appout([ ],Ys)

appin(.(X,Zs))→ u
(2)
1 (appin(Zs), X,Zs)

u
(2)
1 (appout(Xs,Ys), X,Zs)→ appout(.(X,Xs),Ys)

sublistin(Y )→ u
(3)
1 (appin(Y ), Y )

u
(3)
1 (appout(P,U), Y )→ u

(3)
2 (appin(P ), Y, P, U)

u
(3)
2 (appout(V,X), Y, P, U)→ sublistout(X)

However, the complexity of this TRS is linear instead of quadratic. The reason

is that backtracking in Prolog is replaced by non-deterministic choice in the TRS.

While Prolog uses backtracking to traverse the whole SLD-tree, the evaluation of

the TRS corresponds to exactly one branch in the tree. Since the SLD-tree is finitely

branching, this is sound for termination analysis, but not for complexity. So we need

a transformation which takes backtracking into account in order to make complexity

analysis of TRSs applicable for complexity analysis of Prolog.

4 Constructing Derivation Graphs

We now explain the construction of derivation graphs which represent all evalua-

tions of a Prolog program for a certain class of queries, cf. (Schneider-Kamp et al.

2010). Here, we regard abstract states, which represent sets of concrete states. In

addition to the set of “ordinary” variables N , we also use a set of abstract variables

A = {T1, T2, . . .} which represent fixed, but arbitrary terms (thus, V = N ⊎ A).

To instantiate abstract variables, we use special substitutions γ (called concretiza-

8 The same is true for the more refined transformation of (Schneider-Kamp et al. 2009) which
works similarly, but which can also handle non-well-moded programs.
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(t, Q) | S ; G

(t, Q)
c1 | · · · | (t, Q)

ca | S ; G
(Case) if SliceP(t) = (c1, . . . , ca)

� | S ; G

S ; G
(Suc)

S ; G

S
′
; G′

(Inst)
if there is a µ such that S = S′µ and
G =

⋃
T∈G′ V(Tµ).

(t, Q)
h :-B | S ; G

(Bσ,Qσ) | Sσ|G ; G′ S ; G
(Eval)

where mgu(t, h) = σ. W.l.o.g., for all X ∈ V,
V(σ(X)) only contains fresh abstract variables not
occurring in t, Q, S, or G. Moreover, we have G′ =
A(Range(σ|G)).

(t, Q) ; G

t ; G Qδ ; G′
(Split)

where δ replaces all (abstract and non-abstract) vari-
ables from V \ G by fresh abstract variables and G′ =
G ∪ NextG(t,G)δ, i.e., G is extended by the δ-renamings
of those variables which will be instantiated by a ground
term after each successful evaluation of t.

Fig. 2. Inference Rules for Abstract States

tions) where Dom(γ) = A and Range(γ) ⊆ T (Σ,N ). Apart from the sequence of

goals, an abstract state contains a set G ⊆ A of abstract variables that only repre-

sent ground terms (in the derivation graph, we denote such variables by overlining

them). So we only consider concretizations γ where γ(T ) is ground for all T ∈ G.

In Fig. 2 we extend the inference rules of our operational semantics from Sect. 2

to abstract states. For the rules Suc and Case, this is straightforward. For Eval,

however, note that an abstract state may represent both concrete states where

the unification of the current query t with the head h of the next program clause

succeeds or fails. Thus, the abstract Eval rule has two successor states in order to

combine both the concrete Eval and the concrete Backtrack rule. Consequently,

we obtain derivation trees instead of derivation sequences.

In Eval, we assume that mgu(t, h) = σ renames all variables to fresh abstract

variables (to handle sharing effects correctly). If a concretization γ corresponds to

Eval’s first successor (i.e., if tγ and h unify), then for any T ∈ G, Tγ is a ground in-

stance of Tσ. Hence, we replace all T ∈ G by Tσ, i.e., we apply σ|G to the remaining

goals S. The new set G′ of abstract variables that may only be instantiated by

ground terms are the abstract variables occurring in Range(σ|G). Fig. 3 shows the

derivation for our example program when called with queries of the form sublist(T1,

T2) (i.e., the initial state a corresponds to the class of queries Qsublist
m where sublist’s

second argument is ground). The nodes of such a derivation graph are states and

each step from a node to its children is done by the inference rules of Fig. 2.

In Fig. 3, as the child of d, we have the state (〈app(T11, T8, T9)
(1) | app(T11, T8,

T9)
(2)〉 ; G) where G = {T9}. Here, app([],Ys,Ys) must be used for the next evalu-

ation. The Eval rule yields two successors: In the first, we have σ = mgu(app(T11,

T8, T9), app([ ],Ys,Ys)) = {T8/T12, T9/T12, T11/[ ],Ys/T12} which leads to (〈� |

app(T11, T8, T12)
(2)〉 ; {T12}). The second successor is (〈app(T11, T8, T9)

(2)〉 ; G).

If one uses the Eval rule for a state s, then we say that the mgu σ is associated

to the node s and label the edge to its first successor by σ. In these labels, we

restrict the substitutions to those variables occurring in the state. So in Fig. 3, the

substitution {T8/T12, T9/T12, T11/[ ]} is associated to the child of node d.

To represent all possible evaluations in a finite way, we need additional inference

rules to obtain finite derivation graphs instead of infinite derivation trees. To this

end, we use an inference rule which can refer back to already existing states. Such
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sublist(T1, T2)a

sublist(T1, T2)(3)

Case

app(T5, T6, T4), app(T7, T3, T5)b

EvalT1/T3, T2/T4

ε

Eval

app(T11, T8, T9)d

Split
T3/T8, T5/T9, T6/T10, T7/T11

app(T5, T6, T4) c

Split

Inst

T11/T5, T8/T6, T9/T4

app(T11, T8, T9)(1) | app(T11, T8, T9)(2)

Case

� | app(T11, T8, T12)(2)e

Eval

T8/T12, T9/T12, T11/[ ]

app(T11, T8, T12)(2)g

Suc

app(T11, T8, T9)(2) f

Eval

Inst

T12/T9

app(T16, T13, T15)h

Eval
T8/T13,

T12/.(T14, T15),

T11/.(T14, T16)

Inst

T11/T16,
T8/T13,

T9/T15
ε

Eval

Fig. 3. Derivation Graph for the sublist Program

Inst edges can be drawn in

the derivation graph if the

current state s represents

a subset of those concrete

states that are represented

by an already existing state

s′ (i.e., s is an instance of

s′). Essentially, this holds if

there is a matching substi-

tution µ making s′ equal to

s. Moreover, s and s′ must

have the same groundness

information (modulo µ).

Then we say that µ is asso-

ciated to s and label the

Inst edge from s to s′ by

µ. So µ = {T11/T16, T8/T13,

T9/T15} is associated to h

and the edge from h to d is

labeled with µ.

Moreover, we also need a Split inference rule which splits up queries to make the

Inst rule applicable. In our example, we split the query (app(T5, T6, T4), app(T7, T3,

T5)) in state b. Otherwise, when evaluating the first atom app(T5, T6, T4) by the

program clause (2), we use the substitution {T5/.(T12, T14), T6/T15, T4/.(T12, T13),

T7/T16, T3/T10} and reach a state with the query app(T14, T15, T13), app(T16, T10,

.(T12, T14)). But this new state is no instance of the state b, as we would need to

match T5 both to T14 and to .(T12, T14). So without splitting queries, we would get

an infinite derivation where no resulting state is an instance of a former state.

When splitting away the first atom t of a query, we over-approximate the possible

answer substitutions for t by a substitution δ.9 While δ is just a variable renaming

of the abstract variables, we use groundness analysis (see e.g., (Howe and King

2003)) to infer a set NextG(t,G) of abstract variables of t which are instantiated to

ground terms in every successful derivation starting from a concretization of t. More

precisely, let GroundP : Σ×2IN → 2IN be a groundness analysis function. So if p/n ∈

Σ, {i1, . . . , im} ⊆ {1, . . . , n}, and GroundP(p, {i1, . . . , im}) = {j1, . . . , jk}, then any

successful derivation of p(t1, . . . , tn) where ti1 , . . . , tim are ground leads to an answer

substitution θ where tj1θ, . . . , tjkθ are ground. Thus, GroundP approximates which

positions of p will become ground if the “input” positions i1, . . . , im are ground.

Then, we define NextG(p(t1, . . . , tn),G) = {V(tj) | j ∈ GroundP(p, {i | V(ti) ⊆

G})}. In the Split rule, the variables in NextG(t,G) are renamed according to δ

and added to the set G of abstract variables representing ground terms.

In our example, we infer that every successful evaluation of app(T5, T6, T4) instan-

9 The Split rule is only applicable to states containing just a single goal. In our implementation,
we use an additional inference rule to split up sequences of goals, but we omitted it in the paper
for readability. See (Schneider-Kamp et al. 2010) and the appendix for more details.
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tiates the terms represented by T5 and T6 to ground terms. If δ is a renaming with

δ = {T3/T8, T5/T9, T6/T10, T7/T11}, we have NextG(app(T5, T6, T4),G)δ = {δ(T5),

δ(T6)} = {T9, T10}. So while the first successor of the Split rule has the query

app(T5, T6, T4), the second successor has the query app(T11, T8, T9) where T9 only

represents ground terms. We say that δ is associated to the node where we applied

the Split rule and we label the edge from this node to its second successor with δ.

So in our example, δ is associated to b and the edge from b to d is labeled with δ.

See (Schneider-Kamp et al. 2010) for more details, further inference rules (in

order to handle also non-definite programs), and more explanation on the graph

construction. We always require that derivation graphs are finite, that they may

not contain cycles consisting only of Inst edges, and that all leaves of the graph

are states with empty sequences ε of goals. Note that the derivation graph10 in Fig.

3 is already an over-approximation of the original program since rules like Eval

or Split may introduce abstract states representing concrete states which are not

reachable from the initial class of queries.

To obtain a transformation which over-approximates the complexity of the orig-

inal program (i.e., where the innermost runtime complexity of the resulting TRS is

an upper bound for the complexity of the Prolog program), we encode the paths of

the derivation graph. In this way, we can represent backtracking explicitly.

5 Complexity Analysis by Synthesizing TRSs from Derivation Graphs

In Sect. 5.1 we first present our approach to generate TRSs from derivation graphs.

Afterwards, in Sect. 5.2 we show how to use these TRSs in order to obtain an upper

bound on the complexity of the original Prolog program.

5.1 Synthesizing TRSs from Derivation Graphs

For a derivation graph G and an inference rule Rule, let Rule(G) denote all nodes

of G to which Rule has been applied. We denote by Succi(s) the i-th child of node

s and by Succi(Rule(G)) the set of i-th children of all nodes from Rule(G).

To obtain a TRS from G, we encode the states as terms. For each state s, we use

two fresh function symbols f in
s and fout

s . The arguments of f in
s are the abstract va-

riables in G (which represent ground terms). The arguments of fout
s are those ab-

stract variables which will be instantiated by ground terms after the successful eval-

uation of the query in s. To determine them, we again use groundness analysis.

Formally, the encoding of states is done by two functions renin and renout . For b,

we obtain renin(b) = f in
b (T4) (since G = {T4} in b) and renout(b) = fout

b (T5, T6, T7,

T3) (since every successful evaluation of (app(T5, T6, T4), app(T7, T3, T5)) where T4

is instantiated by a ground term instantiates T5, T6, T7, T3 by ground terms as well).

For an Inst node (i.e., a node like c which has an Inst edge labeled by a match-

ing substitution µ to another node d), we do not introduce fresh function symbols.

Instead, we take the terms resulting from its successor d, but we apply the match-

10 The application of inference rules to abstract states is not deterministic and, thus, we may
obtain a different derivation graph if we use a different heuristic for the application of the rules.
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ing substitution µ to them. In other words, we have renin(c) = renin(d)µ =

f in
d (T9)µ = f in

d (T4) and renout(c) = renout(d)µ = fout
d (T11, T8)µ = fout

d (T5, T6).

Definition 4 (Encoding States as Terms)

For an abstract state s = (S;G), we define the functions renin and renout by:

renin(s) =

{

renin(Succ1(s))µ, if s ∈ Inst(G) where µ is associated to s

f in
s (Gin(s)), otherwise, where Gin(S;G) = G ∩ V(S)

renout(s) =















renout(Succ1(s))µ, if s ∈ Inst(G) where µ is associated to s

fout
s (Gout(s)), otherwise, where11 Gout((t1, . . . , tk);G)

= NextG((t1, . . . , tk),G ∩ V(S))

Here, we extended NextG to work not only on atoms, but also on queries:

NextG((t1, . . . , tk),G) = NextG(t1,G) ∪ NextG( (t2, . . . , tk), G ∪ NextG(t1,G) ).

So to compute NextG((t1, . . . , tk),G) for a query (t1, . . . , tk), in the beginning we

only know that the abstract variables in G represent ground terms. Then we com-

pute the variables NextG(t1,G) which are instantiated by ground terms after suc-

cessful evaluation of t1. Next, we compute the variables NextG(t2, G∪NextG(t1,G))

which are instantiated by ground terms after successful evaluation of t2, etc.

Now we encode the paths of G as rewrite rules. However, we only consider certain

connection paths of G which suffice to approximate the complexity of the program.

Connection paths are non-empty paths that start in the root node of the graph or

in a successor state of an Inst or Split node, provided that these states are not

Inst or Split nodes themselves. So the start states in our example are a, d, and g.

Moreover, connection paths end in an Inst, Split, or Suc node or in the successor

of an Inst node, while not traversing Inst or Split nodes or successors of Inst

nodes in between. So in our example, the end states are b, c, d, e, f, g, h, but

apart from e, the paths may not traverse any of these end nodes.

Thus, we have connection paths from a to b, from d to e, from d to f, from d

to g, and from g to h. These paths cover all ways through the graph except for

Inst edges (which are covered by the encoding of states to terms), for graph parts

without cycles or Suc nodes (which are irrelevant since they represent evaluations

which fail in constant time), and for Split edges (which we consider later in Def. 7).

Definition 5 (Connection Path)

A path π = s1 . . . sk is a connection path of a derivation graph G iff k > 1 and

• s1 ∈ {root(G)} ∪ Succ1(Inst(G) ∪ Split(G)) ∪ Succ2(Split(G))

• sk ∈ Inst(G) ∪ Split(G) ∪ Suc(G) ∪ Succ1(Inst(G))

• for all 1 ≤ j < k, sj /∈ Inst(G) ∪ Split(G)

• for all 1 < j < k, sj /∈ Succ1(Inst(G))

This consideration of paths is similar to our approaches for termination analysis

(Schneider-Kamp et al. 2010; Ströder et al. 2010), but now the paths are used to

generate a TRS instead of a logic program. Moreover, for complexity analysis we

11 To ease readability, in the definition of Gout we restricted ourselves to states with only one goal.
See the appendix for a definition considering also states with sequences of goals.
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need a more sophisticated treatment of Split nodes than for termination analysis.

The reason is that for termination, we only have to approximate the form of the

answer substitutions that are computed for the first successor of a Split node. This

suffices to analyze termination of the evaluations starting in the second successor.

For complexity analysis, however, we also need to know how many answer substi-

tutions are computed for the first successor of a Split node, since the evaluation

of the second successor is repeated for each such answer substitution.

To convert connection paths to rewrite rules, the idea is to consider a path as

a clause, where the first state of the path is the clause head, the last state of

the path is the clause body, and we apply all substitutions along the path to the

clause head. For instance, the connection path from a to b is considered as a clause

sublist(T3, T4) :- app(T5, T6, T4), app(T7, T3, T5), where the head of the clause results

from applying the substitution {T1/T3, T2/T4} to the query in state a.

Then we construct TRSs similar to the direct transformation from Sect. 3. So

if π is the connection path from a to b and if σπ are the substitutions on its

edges, then the rewrite rules corresponding to π evaluate the instantiated input

term renin(a)σπ for the start node a to its output term renout(a)σπ provided

that the input term renin(b) for the end node can be evaluated to its output term

renout(b). Thus, we obtain the rules renin(a)σπ → ua,b( ren
in(b), V(renin(a)σπ) )

and ua,b( ren
out(b), V(renin(a)σπ) )→ renout(a)σπ. In our example, this yields

(4a) f in
a (T4)→ ua,b(f

in
b (T4), T4)

(4b) ua,b(f
out
b (T5, T6, T7, T3), T4)→ fout

a (T3)

However, connection paths π′ like the one from d to e where the end node is a Suc

node, are considered like a clause app([ ], T12, T12) :-�, i.e., like a fact. Thus, here

the resulting rewrite rule directly evaluates the instantiated input term renin(d)σπ′

for the start node d to its output term renout(d)σπ′ . Thus, we obtain

(5) f in
d (T12)→ fout

d ([ ], T12)

The rewrite rules for the connection path from d to g encode that the Suc node

e contains another goal which is evaluated as well (when backtracking). So instead

of backtracking, in the TRS we have a non-deterministic choice to decide whether

to apply Rule (5) or the Rules (6a) and (6b) when evaluating a term built with f in
d .

(6a) f in
d (T12)→ ud,g(f

in
g (T12), T12)

(6b) ud,g(f
out
g (T11, T8), T12)→ fout

d (T11, T8)

Definition 6 (Rules for Connection Paths)
For a connection path π = s1 . . . sk, the substitution σπ is obtained by composing all

substitutions on the edges of the path. So formally, we define σπ as follows (where σ

is the associated substitution of the node sk−1 and id is the identical substitution):

σs1...sk =















id, if k = 1

σs1...sk−1
σ, if sk−1 ∈ Eval(G), sk = Succ1(sk−1)

σs1...sk−1
, otherwise

Moreover, we define the rewrite rules corresponding to π as follows. If sk ∈
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Suc(G), then ConnectionRules(π) = {renin(s1)σπ → renout(s1)σπ}. Otherwise,

ConnectionRules(π) = { renin(s1)σπ → us1,sk( ren
in(sk), V(ren

in(s1)σπ) ),

us1,sk( ren
out(sk), V(ren

in(s1)σπ) ) → renout(s1)σπ },

where us1,sk is a fresh function symbol.

So in addition to the rules (4a), (4b), (5), (6a), (6b) above, we obtain the rules

(7a) and (7b) for the path from d to f, and (8a) and (8b) for the path from g to h.

(7a) f in
d (T9)→ ud,f(f

in
g (T9), T9)

(7b) ud,f(f
out
g (T11, T8), T9)→ fout

d (T11, T8)

(8a) f in
g (.(T14, T15))→ ug,h(f

in
d (T15), T14, T15)

(8b) ug,h(f
out
d (T16, T13), T14, T15)→ fout

g (.(T14, T16), T13)

In addition to the rules for the connection paths, we also need rewrite rules to

simulate the evaluation of Split nodes like b. Let δ be the substitution associated

to b (i.e., δ is a variable renaming used to represent the answer substitution of b’s

first successor c). Then the Split node b succeeds (i.e., renin(b) δ can be evaluated

to renout(b) δ) if both successors c and d succeed (i.e., renin(c) δ can be evaluated

to renout(c) δ and renin(d) can be evaluated to renout(d)). So we obtain

(9a) f in
b (T4)→ ub,c(f

in
d (T4), T4)

(9b) ub,c(f
out
d (T9, T10), T4)→ uc,d(f

in
d (T9), T4, T9, T10)

(9c) uc,d(f
out
d (T11, T8), T4, T9, T10)→ fout

b (T9, T10, T11, T8)

Definition 7 (Rules for Split Nodes, Corresponding TRS of a Derivation Graph)
Let s ∈ Split(G), s1 = Succ1(s), and s2 = Succ2(s). Moreover, let δ be the substi-

tution associated to s. Then SplitRules(s) =

{ ren in(s) δ → us,s1( ren
in(s1) δ, V(ren

in(s) δ) ),
us,s1( ren

out(s1) δ, V(ren
in(s) δ) ) → us1,s2( ren

in(s2), V(ren
in(s) δ) ∪ V(renout(s1)δ) ),

us1,s2( ren
out(s2), V(ren

in(s) δ) ∪ V(renout(s1) δ) ) → renout(s) δ }.

So the TRS R(G) corresponding to G consists of ConnectionRules(π) for all con-

nection paths π of G and of SplitRules(s) for all Split nodes s of G.

In our example, R(G) = {(4a), (4b), (5), (6a), (6b), (7a), (7b), (8a), (8b), (9a), (9b), (9c)}.

5.2 Using TRSs for Complexity Analysis of Prolog Programs

By the approach of Sect. 5.1, we can now automatically generate a TRS from a

Prolog program. However, for complexity analysis, this TRS still has similar draw-

backs as the one obtained by the direct transformation of Sect. 3. The problem is

that the evaluation with the TRS still does not simulate the traversal of the whole

SLD tree by backtracking. So the innermost runtime complexity for the TRS R

with the rules (4a), (4b), . . . , (9a), (9b), (9c) is only linear whereas the runtime

complexity of the original Prolog program is quadratic.

The problem is due to the Split nodes of the derivation graph. If the first suc-

cessor of a Split node (i.e., a node like c) has k answer substitutions, then the

evaluation of the second successor of the Split node (i.e., the evaluation of d) is

repeated k times. Currently, this is not reflected in the TRS.
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To solve this problem, we now generate two separate TRSs Rc and Rd for the

subgraphs starting in the two successors c and d of a Split node like b, and multiply

their corresponding complexity functions ircRc,R and ircRd,R. Here, ircRc,R differs

from the ordinary innermost runtime complexity function ircR by only counting

those rewrite steps that are done with the sub-TRS Rc ⊆ R.

So in general, for any R′ ⊆ R, the function ircR′,R maps any n ∈ IN to the maxi-

mal number of
i
→R′ -steps that occur in any sequence of

i
→R-steps starting with a

basic term t where |t| ≤ n. Related notions of “relative” complexity for TRSs were

used in (Avanzini and Moser 2009; Hirokawa and Moser 2008; Noschinski et al.

2011; Zankl and Korp 2010), for example. Existing automated complexity provers

like AProVE can also approximate ircR′,R asymptotically.

The function ircRc,R indeed yields an upper bound for the number k of answer

substitutions for c, because the number of answer substitutions cannot be larger

than the number of evaluation steps. In our example, both the runtime and the

number of answer substitutions for the call app(T5, T6, T4) in node c is linear in the

size of T4’s concretization. Thus, the call app(T11, T8, T9) in node d, which has linear

runtime itself, needs to be repeated a linear number of times. Thus, by multiplying

the linear runtime complexities of ircRc,R and ircRd,R, we obtain the correct result

that the runtime of the original Prolog program is (at most) quadratic.

Note that if the first successor c of a Split node only had a constant number k

of answer substitutions (i.e., if k did not depend on the size of c’s arguments), then

instead of multiplying the runtimes of the two TRSs Rc and Rd for the successors

of the Split node, it would be sufficient to add them. Since such an addition is

already encoded in the SplitRules of Def. 7, we do not need to consider separate

TRSs for the successors of such Split nodes. We call a Split node multiplicative

if the number of answer substitutions of its first successor is not bounded by a

constant and let mults(G) be the set of all multiplicative Split nodes of G. So in

our example, mults(G) = {b}. We will present a sufficient syntactic criterion to

detect non-multiplicative Split nodes in Def. 13.
A

MULTIPLICATIVE SPLIT

B C

MULTIPLICATIVE SPLIT

D E

Fig. 8. Decomposing Graphs

So in order to infer an upper bound on the com-

plexity of a Prolog program, we use the multiplica-

tive Split nodes of its derivation graph G to de-

compose G into subgraphs, such that multiplica-

tive Split nodes only occur as the leaves of sub-

graphs. For example, consider Fig. 8 where a deriva-

tion graph has been decomposed into the subgraphs

A, . . . , E (the subgraphs A and C include the re-

spective multiplicative Split node as one of its

leaves). We now determine the runtime complexi-

ties ircR(GA),R(G), . . . , ircR(GE),R(G) separately and

then we combine them in order to obtain an upper bound for the runtime of the

whole Prolog program. As discussed above, the runtime complexity functions re-

sulting from subgraphs of a multiplicative Split node have to be multiplied. In

contrast, the runtimes of subgraphs above a multiplicative Split node have to be

added. So for the graph in Fig. 8, we obtain ircRA(G),R(G)(n) + ircRB(G),R(G)(n) ·
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(ircRC(G),R(G)(n) + ircRD(G),R(G)(n) · ircRE(G),R(G)(n)) as an approximation for

the complexity of the Prolog program.

To ensure that the derivation graph can indeed be decomposed into subgraphs as

desired, we have to ensure that no multiplicative Split node can reach itself again.

Definition 9 (Decomposable Derivation Graphs)
A derivation graph G is called decomposable iff there is no non-empty path from a

node s ∈ mults(G) to itself.

The graph in Fig. 3 is indeed decomposable. However, decomposability is a real

restriction and there are programs in the TPDB whose complexity we cannot ana-

lyze, because our graph construction yields a non-decomposable derivation graph.

Now for any node s, the subgraph at node s is the subgraph which starts in s and

stops when reaching multiplicative Split nodes.

Definition 10 (Subgraphs of Derivation Graphs)
Let G be a decomposable derivation graph with nodes V and edges E (i.e., G =

(V,E)) and let s ∈ V . Then we define the subgraph of G at node s as the minimal

graph Gs = (Vs, Es) where s ∈ Vs and whenever s1 ∈ Vs\mults(G) and (s1, s2) ∈ E,

then s2 ∈ Vs and (s1, s2) ∈ Es.

Now we decompose the derivation graph into the subgraph at the root node and

into the subgraphs at all successors of multiplicative Split nodes. So the graph in

Fig. 3 is decomposed into Ga, Gc, and Gd, where Ga contains the 4 nodes from a to

b and to ε, Gc contains all other nodes, and Gd contains all nodes of Gc except c.

Here, R(Ga) consists of ConnectionRules(π) for the connection path π from

a to b and of SplitRules(b), i.e., R(Ga) = {(4a), (4b), (9a), (9b), (9c)}. For both

subgraphs Gc and Gd, we get the same TRS, because c is an instance of d, i.e.,

R(Gc) = R(Gd) = {(5), (6a), (6b), (7a), (7b), (8a), (8b)}.

To obtain an upper bound for the complexity of the original logic program, we

now combine the complexities of the sub-TRSs as discussed before. So we multiply

the complexities resulting from subgraphs of multiplicative Split nodes, and add

all other complexities. The function cplx s(n) approximates the runtime of the logic

program which is represented by the subgraph of G at node s.

Definition 11 (Complexity for Subgraphs)
Let G = (V,E) be a decomposable derivation graph. For any s ∈ V and n ∈ IN, let

cplx s(n) =

{

cplxSucc1(s)(n) · cplxSucc2(s)(n), if s ∈ mults(G)

ircR(Gs),R(G)(n) + Σs′ ∈mults(G)∩Gs
cplx s′(n), otherwise

So in our example, we obtain:

cplxa(n) = ircR(Ga),R(G)(n) + cplxb(n)

= ircR(Ga),R(G)(n) + cplxc(n) · cplxd(n)

= ircR(Ga),R(G)(n) + ircR(Gc),R(G)(n) · ircR(Gd),R(G)(n)

Thm. C 13 states that combining the complexities of the TRSs as in Def. 11

indeed yields an upper bound for the complexity of the original Prolog program.12

12 All proofs can be found in the appendix.
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Theorem 12 (Complexity Analysis for Prolog Programs)
Let P be a Prolog program, p ∈ Σ, m a moding function, and G a decomposable

derivation graph for P and the queries Qp
m. Then prcP,Qp

m
(n) ∈ O(cplx root(G)(n)).

For our example program, automated tools for complexity analysis of TRSs like

AProVE automatically prove that13 ircR(Ga),R(G)(n) ∈ O(n), ircR(Gc),R(G)(n) ∈

O(n), and ircR(Gd),R(G)(n) ∈ O(n). This implies cplxa(n) = ircR(Ga),R(G)(n) +

ircR(Gc),R(G)(n) · ircR(Gd),R(G)(n) ∈ O(n2) and, thus, also prcP,Qsublist
m

(n) ∈ O(n2).

It remains to explain how to automatically identify non-multiplicative Split

nodes. To this end, we have to prove that the number of answer substitutions for the

first successor of a Split node is bounded by a constant. In our implementation,

we use a sufficient criterion which can easily be checked automatically, cf. Def. 13

and Thm. 14. As future work, we could improve our analysis by combining it with

other tools for determinacy analysis (e.g., (Kriener and King 2011; López-Garćıa

et al. 2005; Mogensen 1996; Sahlin 1991)). These tools can prove upper bounds on

the number of answer substitutions for a given class of queries.

Definition 13 (Determinacy Criterion)
A node s in G satisfies the determinacy criterion if condition (a) or (b) holds:

(a) All successors of s satisfy the determinacy criterion. Moreover, if s ∈ Suc(G),

then there is no non-empty path from s to a Suc node in G.
(b) The node s is a Split node and at least one of Succ1(s) or Succ2(s) cannot

reach a Suc node in G.

The following theorem shows that the above determinacy criterion can indeed be

used to detect Split nodes that are not multiplicative.

Theorem 14 (Soundness of Determinacy Criterion)
Let G be a complexity graph. Let s be a node in G which satisfies the determinacy

criterion of Def. 13. Then for any concretization of s, its evaluation results in at

most one answer substitution. Thus if s′ is a Split node and Succ1(s
′) satisfies the

determinacy criterion, then s′ is not multiplicative.

6 Experiments and Conclusion

We proposed a new method to determine asymptotic upper bounds for the runtime

complexity of Prolog programs automatically, based on a transformation to term

rewriting. First, we showed that the existing transformations from logic programs to

TRSs can yield a TRS whose runtime complexity is not an asymptotic upper bound

for the runtime complexity of the original logic program. Thus, we presented a novel

transformation where each asymptotic upper bound for the runtime complexity of

the resulting TRS is also an upper bound for the runtime complexity of the original

logic program. This transformation is also applicable to non-well-moded logic pro-

grams and programs using built-in predicates like cuts. For this transformation, we

also developed a new criterion for determinacy of Prolog programs, based on deriva-

13 Note that we even have ircR(Ga),R(G)(n) ∈ O(1), i.e., the linear bound found by AProVE is not
tight. This indicates that our approach does not always yield precise bounds. However, most
bounds detected in our experiments are in fact tight.
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AProVE CASLOG CiaoPP steps ub CiaoPP res steps

O(1) 54 1 3 3
O(n) 108 21 19 18
O(n2) 42 4 4 4
O(n · 2n) 0 3 3 3

Total bounds 204 29 29 28
Runtime in s 6122 7042 5579 5953

Table 1. Results on all 477 programs from the Termination Problem Data Base

tion graphs. We implemented the transformation in our fully automated termination

and complexity prover AProVE (Giesl et al. 2006). To compare its power and per-

formance to existing direct approaches for cost analysis of Prolog, we evaluated it

against the Complexity Analysis System for LOGic (CASLOG) (Debray and Lin 1993)

and against the Ciao Preprocessor (CiaoPP) (Bueno et al. 2004), which implements

the approach of (López-Garćıa et al. 2010). To this end, we ran the three tools on all

477 Prolog programs from the Termination Problem Data Base. For CiaoPP we used

both the original cost analysis (“steps ub”) and CiaoPP’s new resource framework

which allows to measure different forms of costs. Here, we chose the cost measure

“res steps” which approximates the number of resolution steps needed in evalua-

tions. Moreover, we also used CiaoPP to infer the mode and measure information

required by CASLOG. The experiments were run on 2.2 GHz Quad-Opteron 848

Linux machines with a timeout of 60 seconds per program (as in the competition

on automated complexity analysis).

Table 1 shows the results of our experiments with one column for each tool.

The first four rows give the number of programs that could be shown to have a

constant bound (O(1)), a linear or quadratic polynomial bound (O(n) or O(n2)),

or an exponential bound (O(n · 2n)). In Rows 5 and 6 we give the total number

of upper bounds that could be found by the tool and its total runtime on the

whole example set, respectively. We highlight the best tool for each row using

bold font. For the details of this empirical evaluation and to run AProVE via

a web interface, we refer to http://aprove.informatik.rwth-aachen.de/eval/

plcost/.This website also contains an extended version of the paper with all proofs

the appendix.

The table shows that AProVE can find upper bounds for a much larger subset

(> 42%) of the programs than any of the other tools (≈ 6%). However, there are

also 9 examples where CASLOG or CiaoPP can prove constant (1), linear (5), or

exponential bounds (3), whereas AProVE fails (5) or finds a weaker bound (4). In

summary, the experiments clearly demonstrate that our transformational approach

for determining upper bounds advances the state of the art in automated complexity

analysis of logic programs significantly.
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In Appendix A, we first recapitulate the set of inference rules and the construction

of derivation graphs for Prolog using built-in predicates.14 Then we extend the

definitions from the paper to consider this more general setting in Appendix B.

Afterwards, we prove the correctness of our transformation in Appendix C and the

correctness of our determinacy criterion in Appendix D.

Appendix A Full Graph Construction

This section recapitulates all existing work on derivation graphs as used in this pa-

per. The contents of this section are taken from (Schneider-Kamp 2008; Schneider-

Kamp et al. 2010; Ströder 2010; Ströder et al. 2010; Ströder et al. 2011).

The ISO standard for Prolog (ISO/IEC 13211-1 1995) defines a list of built-in

predicates. According to this standard we define the set BuiltInPredicates as the

set containing exactly the following symbols:

• abolish/1

• arg/3

• =:=/2

• =\=/2

• >/2

• >=/2

• </2

• =</2

• asserta/1

• assertz/1

• at end of stream/0

• at end of stream/1

• atom/1

• atom chars/2

• atom codes/2

• atom concat/3

• atom length/2

• atomic/1

• bagof/3

• call/1

• catch/3

• char code/2

• char conversion/2

• clause/2

• close/1

• close/2

• compound/1

• ,/2

• copy term/2

• current char conversion/2

• current input/1

• current op/3

• current output/1

• current predicate/1

• current prolog flag/2

• !/0

• ;/2

• fail/0

• findall/3

• float/1

• flush output/0

• flush output/1

• functor/3

• get byte/1

• get byte/2

• get char/1

• get char/2

• get code/1

• get code/2

• halt/0

• halt/1

• ->/2

• integer/1

• is/2

• nl/0

• nl/1

• nonvar/1

• \+/1

• number/1

• number chars/2

• number codes/2

• once/1

• op/3

• open/3

• open/4

• peek byte/1

• peek byte/2

• peek char/1

• peek char/2

• peek code/1

• peek code/2

• put byte/1

• put byte/2

• put char/1

• put char/2

• put code/1

• put code/2

• read/1

14 While the operational semantics in (Ströder et al. 2011) covers all built-in predicates from
(ISO/IEC 13211-1 1995), only 26 of these built-in predicates are currently supported by the
inference rules on abstract states.
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• read/2

• read term/2

• read term/3

• repeat/0

• retract/1

• set input/1

• set output/1

• set prolog flag/2

• set stream position/2

• setof/3

• stream property/2

• sub atom/5

• @>/2

• @>=/2

• ==/2

• @</2

• @=</2

• \==/2

• throw/1

• true/0

• \=/2

• =/2

• unify with occurs check/2

• =../2

• var/1

• write/1

• write/2

• write canonical/1

• write canonical/2

• write term/2

• write term/3

• writeq/1

• writeq/2

According to the execution model of Prolog as defined in (ISO/IEC 13211-1

1995), there are some special positions inside the terms of clause bodies or goals

which may be executed. When referring to such a term, these positions are exactly

those reachable from the root of the term by a path having only function symbols

from the set GoalJunctors = {,/2, ;/2, ->/2} except for the position itself. For the

clause body or goal, these positions are all such positions in the terms belonging to

the clause body or goal, respectively.

Definition A 1 (Predication Position, Predication)

Given a term t ∈ T (Σ,V) and a position pos ∈ Occ(t), we call pos a predica-

tion position w.r.t. t iff for all positions pos ′ ∈ Occ(t) with pos ′ ⊳ pos we have

root(t|pos′) ∈ GoalJunctors. Furthermore, we call t|pos a predication w.r.t. t. For a

finite list L of terms t1, . . . , tk we also call every predication position posi ∈ Occ(ti)

w.r.t. ti a predication position w.r.t. L and ti|posi a predication w.r.t. L.

Although we do not distinguish between predicate and function symbols, we do

make a distinction between individual cuts to make their scope explicit. However,

this distinction is only necessary and correct if the cuts in question are predica-

tions w.r.t. the goal to execute. Concerning comparison or unification of terms,

we must not make such a distinction. So we define a set of labeled cut operators

Cuts =
⋃

m∈IN{!m/0} which we will use in the following definitions of goals and

their transformation used in the ISO standard. Thus, we have to deal with terms

not only containing function symbols from a signature Σ, but also from Cuts. How-

ever, the latter may only occur in predication positions. For this reason we define

special sets of terms we use in Prolog.

Definition A 2 (Terms in Prolog)

The terms we consider in Prolog are from the set PrologTerms(Σ,V) = {t ∈ T (Σ∪

Cuts,V) | ∀pos ∈ Occ(t) : t|pos ∈ Cuts =⇒ pos is a predication position}. The

definition of predication positions and predications is therefore extended to work

also on terms from PrologTerms(Σ,V). Analogously, we define the set of ground

terms for Prolog as GroundTerms(Σ) = {t ∈ T (Σ ∪ Cuts,∅) | ∀pos ∈ Occ(t) :

t|pos ∈ Cuts =⇒ pos is a predication position}.

A query or goal is a sequence of terms, and the set of all queries is denoted by
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Goal(Σ,V). The empty query is denoted by �, and a non-empty query consisting

of a Prolog-term t and a remaining query Q is denoted by (t, Q).

The set of all substitutions over Σ and V is denoted Subst(Σ,V). If two terms t1
and t2 unify, but we are not interested in a specific unifier, we often write t1 ∼ t2.

Likewise, we sometimes write t1 ≁ t2 as a synonym for mgu(t1, t2) = fail .

In many situations we will consider substitutions which are equal on a certain

set of variables, while they do not replace any other variables. We call such substi-

tutions restricted to a certain set. The restriction of σ to a set of variables V ′ ⊆ V

(denoted σ|V′) is therefore defined as σ|V′(X) = σ(X), if X ∈ V ′, and σ|V′(X) = X,

otherwise. Finally, we often need variables which do not occur anywhere else. We

call such variables fresh variables and denote by Vfresh ⊆ V the subset of fresh

variables. Analogously, we denote the subset of fresh abstract and non-abstract

variables by Afresh and Nfresh , respectively.

Abstract variables represent arbitrary terms in general, but to describe classes

of queries typically specified by a function symbol and argument positions which

should be instantiated by ground terms, we need to constrain the terms by which

the abstract variables may be instantiated. Additionally, we want to keep track

of non-abstract variables which do not occur in the terms represented by ab-

stract variables. Finally, due to failing unifications during the evaluation, we gather

knowledge about non-unifiable terms. Therefore, we add a knowledge base repre-

sentable by a triple KB = (G,F ,U) to a list of goals containing abstract terms

and without candidates for answer substitutions where G ⊆ A, F ⊆ N , and

U ⊆ PrologTerms(Σ,V)×PrologTerms(Σ,V). Here, G is the set of all abstract vari-

ables whose instantiations are restricted to ground terms, while F contains those

non-abstract variables which may not occur in the terms represented by abstract

variables. Moreover, U represents a set of pairs of terms, where a pair of terms (s, t)

represents that s and t are not unifiable after instantiating the abstract variables,

i.e., that we have mgu(sγ, tγ) = fail for a given instantiation γ of the abstract

variables. The set of abstract states AState(Σ,N ,A) is a set of pairs (S;KB) of a

list of goals S without candidates for answer substitutions (i.e., the candidates for

answer substitutions are dropped from the concrete goals) and a knowledge base

KB.

To define which concrete states are represented by an abstract state, we introduce

the notion of a concretization. A concretization is a substitution γ replacing all

and only abstract variables in an abstract state while respecting the knowledge

base (G,F ,U).15 So for an abstract state S;KB with S = G1 | · · · | Gn, we have

Sγ = G1γ | · · · | Gnγ. For a goal G with G = t1, . . . , tk, we have Gγ = (t1γ, . . . , tkγ)

For a goal G with G = (t1, . . . , tk)
c, we have Gγ = (t1γ, . . . , tkγ)

c, and for a goal

G =?m, we have Gγ = G. Moreover, we have γ|A = γ and
⋃

a∈AA(aγ) = ∅. Also,

15 Still, we omit the explicit representation of answer substitutions and candidates for them from
the full operational semantics in (Ströder et al. 2011) since they do not contribute to the
complexity.
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abstract variables from G are only replaced by ground terms, i.e., Range(γ|G) ⊆

GroundTerms(Σ). Likewise, γ may not introduce variables from F . This can be

specified by F(Range(γ)) = ∅. Finally, for all pairs (t, t′) ∈ U we need to ensure

that tγ and t′γ do not unify, i.e., that mgu(tγ, t′γ) = fail . For an abstract state

(S; (G,F ,U)), we define the set of concretized states CON (S; (G,F ,U)) as the set

{Sγ | γ is a concretization w.r.t. the knowledge base (G,F ,U)}.

The ISO standard (ISO/IEC 13211-1 1995) describes a preprocessing transfor-

mation for queries and goals which we mimic by the following function.

Definition A 3 (Transformation of Goals)

The function Transformed : Goal(Σ,V)× IN→ Goal(Σ,V) is recursively defined by

Transformed(�,m) = �

Transformed((x, L),m) = call(x),Transformed(L,m) for x ∈ V

Transformed((!, L),m) = !m,Transformed(L,m)

Transformed((!m′ , L),m) = !m,Transformed(L,m)

Transformed((f(t1, t2), L),m) = f(Transformed(t1,m),Transformed(t2,m)),

Transformed(L,m) for f ∈ GoalJunctors

Transformed((s, L),m) = s,Transformed(L,m) for

s ∈ PrologTerms(Σ,V) \ V with

root(s) /∈ GoalJunctors ∪ {!/0} ∪ Cuts

Sometimes we have to replace some abstract variables by fresh ones to handle

sharing effects correctly. To this end, we use the following substitution.

Definition A 4 (Replacement by Fresh Abstract Variables)

We define αM for a set of variables M as follows:

αM(x) =

{

a if x ∈M \ Vfresh for a ∈ Afresh

x otherwise

Now we state all abstract inference rules which have been developed in (Schneider-

Kamp 2008; Schneider-Kamp et al. 2010; Ströder 2010; Ströder et al. 2010).
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Definition A 5 (Abstract Inference Rules)

� | S;KB

S;KB
(Suc)

?m | S;KB

S;KB
(Failure)

call(x), Q | S;KB

ε;KB
(VariableError)

t, Q | S;KB

ε;KB
(UndefinedError) where SliceP(t) = ∅

!m, Q | S | ?m | S
′;KB

Q | ?m | S
′;KB

(Cut)
where S
contains
no ?m

!m, Q | S;KB

Q;KB
(CutAll)

where S
contains
no ?m

t, Q | S;KB

(t, Q)i1m | . . . | (t, Q)ikm | ?m | S;KB
(Case) where m ∈ IN is fresh, i1 < . . . < ik,

and SliceP(t) = {ci1 , . . . , cik} 6= ∅

call(t′), Q | S;KB

t′′, Q | ?m | S;KB
(Call)

where m ∈ IN is fresh, t′ ∈ PrologTerms(Σ,V) \ V , t′ has only finitely many predi-

cation positions, ∀pos ∈ Occ(t′) : pos is a predication position =⇒ t′|pos /∈ A and

t′′ = Transformed(t′,m)

(t, Q)im | S; (G,F ,U)

S; (G,F ,U)
(Backtrack)

where i 6= b, ci = Hi :-Bi and either mgu(t,Hi) = fail or σ = mgu(t,Hi) with

∃a ∈ G : aσ /∈ PrologTerms(Σ,V) or V(Range(σ)) ⊆ Vfresh , V(Range(σ|G)) ⊆ A

and ∃(s, s′) ∈ U : σ′ = mgu(sσ|G , s
′σ|G) ∧Dom(σ′) ⊆ N ∧ σ′σ′ = σ′

(t, Q)im | S; (G,F ,U)

B′iσ
′, Qσ′ | Sσ|G ; (G

′,F ′,Uσ|G) S; (G,F ∪N (Hi),U ∪ {(t,Hi)})
(Eval)

where i 6= b, ci = Hi :-Bi, mgu(t,Hi) = σ with V(Range(σ)) ⊆ Vfresh ,

V(Range(σ|A)) ⊆ A, Range(σ|G) ⊆ PrologTerms(Σ,A), σ|A is not a variable re-

naming on A, A(Range(σ|N )) ⊆ A(Range(σ|A)), ∀(s, s
′) ∈ U : ∀σ′′ : (sσ|Gσ

′′ =

s′σ|Gσ
′′ =⇒ Dom(σ′′) 6⊆ N ), G′ = G∪A(Range(σ|G)), F

′ = F∪(N (Range(σ|F ))\

N (Range(σ|N\(F∪N (Hi))))) ∪ (N (Bi) \ N (Hi)), σ′ = Approx (σ, t, ci,G,F), and

B′i = Transformed(Bi,m)

(t, Q)im | S; (G,F ,U)

B′iσ
′, Qσ′ | Sσ|G ; (G

′,F ′,Uσ|G)
(OnlyEval)

where i 6= b, ci = Hi :-Bi,mgu(t,Hi) = σ with V(Range(σ)) ⊆ Vfresh , σ|A is a vari-

able renaming on A, A(Range(σ|N )) ⊆ A(Range(σ|A)), G
′ = G ∪ A(Range(σ|G)),

F ′ = F ∪ (N (Range(σ|F )) \ N (Range(σ|N\(F∪N (Hi))))) ∪ (N (Bi) \ N (Hi)), σ
′ =
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Approx (σ, t, ci,G,F), and B′i = Transformed(Bi,m)

S; (G,F ,U)

S′; (G′,F ′,U ′)
(Inst)

if there is a µ such that S = S′′µ for a scope variant S′′ of S′, for all a ∈ G′, aµ ∈

PrologTerms(Σ,G), µ|N is a variable renaming, F ′µ ⊆ F , F ′µ(Range(µ|A)) = ∅,

and U ′µ ⊆ U .

S | S′;KB

S;KB S′;KB
(Parallel) if AC(S) ∩AM(S′) = ∅

Here, the active cuts AC(S) of a state S are defined as the set of all m such that

S = S′ | Q, !m, Q′ | S′′ or S = S′ | (t, Q)jm | S′′ and cj = Hj :-Bj , !, B
′
j , while the

active marks AM(S) of a state S are defined as all m such that S = S′ | ?m | S′′

and S′ 6= ε 6= S′′.

t′, Q; (G,F ,U)

t′; (G,F ,U) Qδ; (G′,F ′,Uδ)
(Split)

where t′ 6=!m for some m ∈ IN, t′ 6= call(x) for some x ∈ V , root(t′) ∈

BuiltInPredicates ∨ SliceP(t
′) 6= ∅, δ = ApproxSub(t′,G,F), G′ =

G ∪ ApproxGnd(t′, δ), and F ′ = F \ F(t′).

Here, ApproxSub approximates the substitutions of the answer sets of all con-

cretizations w.r.t. (G,F ,U) of t′:

ApproxSub(t′,G,F) =















αF(t′) if V(t′) ⊆ G ∪ F

αN (t′)αA\G if A(t′) ⊆ G ∧N (t′) 6⊆ F

αF(t′)αA\GαN\F otherwise

Finally, ApproxGnd approximates the abstract variables that have to be instanti-

ated by ground terms using a given groundness analysis GroundP : Σ× 2IN → 2IN

which given a predicate p and a set of ground argument positions computes the

set of ground arguments positions after a successful computation using the clauses

from P:

ApproxGnd(t′, δ) =

{A(tiδ) | t
′ = p(t1, . . . , tn), i ∈ GroundSliceP(t′)(p, {i | V(ti) ⊆ G})}

Approx replaces some variables by fresh abstract variables:

Approx (σ, t,Hi :-Bi,G,F) =















σ if A(t) ⊆ G and N (t) ⊆ F

σαA\G′ if A(t) ⊆ G and N (t) 6⊆ F

σα(A\G′)∪(N\F ′) if A(t) 6⊆ G
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,(t1, t2), Q | S;KB

t1, t2, Q | S;KB
(Conjunction)

;(t1, t2), Q | S;KB

t1, Q | t2, Q | S;KB
(Disjunction) where root(t1) 6= ->/2 and t1 /∈ A

fail, Q | S;KB

S;KB
(Fail)

halt, Q | S;KB

ε;KB
(Halt)

halt(t′), Q | S;KB

ε;KB
(Halt1)

->(t1, t2), Q | S;KB

call(t1), !m, t2, Q | ?m | S;KB
(IfThen) for a fresh m ∈ IN

;(->(t1, t2), t3), Q | S;KB

call(t1), !m, t2, Q | t3, Q | ?m | S;KB
(IfThenElse) for a fresh m ∈ IN

\+(t′), Q | S;KB

call(t′), !m, fail | Q | ?m | S;KB
(Not) for a fresh m ∈ IN

once(t′), Q | S;KB

call(,(t′, !)), Q | S;KB
(Once)

repeat, Q | S;KB

Q | repeat, Q | S;KB
(Repeat)

throw(t′), Q | S;KB

ε;KB
(Throw)

true, Q | S;KB

Q | S;KB
(True)

==(t1, t1), Q | S;KB

Q | S;KB
(EqualsSuccess)

==(t1, t2), Q | S;KB

S;KB
(EqualsFail) where t1 ≁ t2 or ∀σ with t1σ = t2σ we

have Dom(σ) ∩N 6= ∅

==(t1, t2), Q | S; (G,F ,U)

Qσ, | Sσ; (G′,F ,U ′) S; (G,F ,U)
(EqualsCase)

where t1 6= t2, G
′ = G ∪ A(Range(σ|G)), U

′ = Uσ and mgu(t1, t2) = σ with

Dom(σ) ⊆ A and V(Range(σ)) ⊆ Afresh

\==(t1, t2), Q | S;KB

Q | S;KB
(UnequalsSuccess)

where t1 ≁ t2 or ∀σ
with t1σ = t2σ we have
Dom(σ) ∩N 6= ∅

\==(t1, t1), Q | S;KB

S;KB
(UnequalsFail)

\==(t1, t2), Q | S; (G,F ,U)

Q, | S; (G,F ,U) Sσ; (G′,F ,U ′)
(UnequalsCase)



Automated Complexity Analysis for Prolog by Term Rewriting 25

where t1 6= t2, G
′ = G ∪ A(Range(σ|G)), U

′ = Uσ and mgu(t1, t2) = σ with

Dom(σ) ⊆ A and V(Range(σ)) ⊆ Afresh

=(t1, t2), Q | S; (G,F ,U)

Qσ′ | Sσ|G ; (G
′,F ′,Uσ|G)

(UnifySuccess)

where mgu(t1, t2) = σ with V(Range(σ)) ⊆ Vfresh , Range(σ|A) ⊆ A,

σ|A : Dom(σ|A) → Range(σ|A) is bijective, A(Range(σ|N )) ⊆ A(Range(σ|A)),

G′ = G ∪ A(Range(σ|G)), F
′ = F ∪ (N (Range(σ|F )) \ N (Range(σ|N\F ))) and

σ′ = ApproxUnify(σ, t1, t2,G,F)

=(t1, t2), Q | S; (G,F ,U)

S; (G,F ,U ∪ {(t1, t2)})
(UnifyFail)

where t1 ≁ t2 or σ = mgu(t1, t2) with ∃a ∈ G : aσ /∈ PrologTerms(Σ,V) or

V(Range(σ)) ⊆ Vfresh , V(Range(σ|G)) ⊆ A and ∃(s, s′) ∈ U : σ′ = mgu(sσ|G , s
′σ|G)

∧Dom(σ′) ⊆ F

=(t1, t2), Q | S; (G,F ,U)

Qσ′ | Sσ|G ; (G
′,F ′,Uσ|G) S; (G,F ,U ∪ {(t1, t2)})

(UnifyCase)

wheremgu(t1, t2) = σ with V(Range(σ)) ⊆ Vfresh , V(Range(σ|A)) ⊆ A, Range(σ|G)

⊆ PrologTerms(Σ,A), (Range(σ|A) 6⊆ A ∨ σ|A : Dom(σ|A) → Range(σ|A) is

not bijective), A(Range(σ|N )) ⊆ A(Range(σ|A)), ∀(s, s
′) ∈ U : ∀σ′′ : (sσ|Gσ

′′ =

s′σ|Gσ
′′ =⇒ Dom(σ′′) 6⊆ F), G′ = G∪A(Range(σ|G)), F

′ = F∪(N (Range(σ|F ))\

N (Range(σ|N\F ))) and σ′ = ApproxUnify(σ, t1, t2,G,F)

\=(t1, t2), Q | S; (G,F ,U)

Q | S; (G,F ,U ∪ {(t1, t2)})
(NoUnifySuccess)

where t1 ≁ t2 or σ = mgu(t1, t2) with ∃a ∈ G : aσ /∈ PrologTerms(Σ,V) or

V(Range(σ)) ⊆ Vfresh , V(Range(σ|G)) ⊆ A and ∃(s, s′) ∈ U : σ′ = mgu(sσ|G , s
′σ|G)

∧Dom(σ′) ⊆ F

\=(t1, t2), Q | S; (G,F ,U)

Sσ|G ; (G
′,F ,Uσ|G)

(NoUnifyFail)

where mgu(t1, t2) = σ with V(Range(σ)) ⊆ Vfresh , Range(σ|A) ⊆ A,

σ|A : Dom(σ|A) → Range(σ|A) is bijective, G′ = G ∪ A(Range(σ|G)) and

A(Range(σ|N )) ⊆ A(Range(σ|A))

\=(t1, t2), Q | S; (G,F ,U)

Q | S; (G,F ,U ∪ {(t1, t2)}) Sσ|G ; (G
′,F ,Uσ|G)

(NoUnifyCase)

wheremgu(t1, t2) = σ with V(Range(σ)) ⊆ Vfresh , V(Range(σ|A)) ⊆ A, Range(σ|G)

⊆ PrologTerms(Σ,A), (Range(σ|A) 6⊆ A ∨ σ|A : Dom(σ|A) → Range(σ|A) is not

bijective),A(Range(σ|N )) ⊆ A(Range(σ|A)), G
′ = G∪A(Range(σ|G)) and ∀(s, s

′) ∈

U : ∀σ′′ : (sσ|Gσ
′′ = s′σ|Gσ

′′ =⇒ Dom(σ′′) 6⊆ F)
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ApproxUnify replaces some variables by fresh abstract variables:

ApproxUnify(σ, t1, t2,G,F) =



































σ if A(t1) ∪ A(t2) ⊆ G

and N (t1) ∪N (t2) ⊆ F

σαA\G′ if A(t1) ∪ A(t2) ⊆ G

and N (t1) ∪N (t2) 6⊆ F

σα(A\G′)∪(N\F ′) if A(t1) ∪ A(t2) 6⊆ G

atomic(c), Q | S;KB

Q | S;KB
(AtomicSuccess) where c is a constant

atomic(t′), Q | S;KB

S;KB
(AtomicFail) where t′ is no constant and no

abstract variable

atomic(a), Q | S; (G,F ,U)

Q | S; (G ∪ {a},F ,U) S; (G,F ,U)
(AtomicCase) where a ∈ A

compound(f(t1, . . . , tk)), Q | S;KB

Q | S;KB
(CompoundSuccess)

where f/k ∈ Σ
and ti ∈
PrologTerms(Σ,V)
for all i ∈ {1, . . . , k}

compound(t′), Q | S;KB

S;KB
(CompoundFail) where t′ is a constant or t′ ∈ N

compound(a), Q | S;KB

Q | S;KB S;KB
(CompoundCase) where a ∈ A

nonvar(t′), Q | S; (G,F ,U)

Q | S; (G,F ,U)
(NonvarSuccess) where t′ /∈ V \ G

nonvar(x), Q | S;KB

S;KB
(NonvarFail)

nonvar(a), Q | S; (G,F ,U)

Q | S; (G,F ,U) S; (G,F ,U)
(NonvarCase) where a ∈ A \ G

var(x), Q | S;KB

Q | S;KB
(VarSuccess)

var(t′), Q | S; (G,F ,U)

S; (G,F ,U)
(VarFail) where t′ /∈ V \ G
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flush output, Q | S;KB

Q | S;KB
(FlushOutput)

nl, Q | S;KB

Q | S;KB
(Newline)

write(t′), Q | S;KB

Q | S;KB
(Write)

write canonical(t′), Q | S;KB

Q | S;KB
(WriteCanonical)

writeq(t′), Q | S;KB

Q | S;KB
(Writeq)

For a graph G and an abstract inference rule Rule, we use the notation Rule(G)

to denote all nodes of G to which Rule has been applied. We denote by Succ(i, n)

the i-th child of n and by Succ(i,Rule(G)) the set of i-th children of nodes from

Rule(G).

For identifying different states where the only difference lies in a scope renaming,

we introduce the notion of a scope variant.

Definition A 6 (Scope Variant (Ströder 2010))

Given a concrete (abstract) state S, we call a concrete (abstract) state S′ a scope

variant of S, iff there is a bijection f : IN → IN, both states have the same length

and the following conditions are satisfied for all i ∈ {1, . . . , length(S)} and elements

ei of S at position i and e′i of S
′ at position i:

• If ei is an unlabeled list of terms t, then e′i is an unlabeled list of terms t′ with

t′ = t[!j/!f(j)∀j ∈ IN].

• If ei is a labeled list of terms trs, then e′i is a labeled list of terms t′rf(s) with

t′ = t[!j/!f(j)∀j ∈ IN].

• If ei =?s, then e′i =?f(s).

Lemma A7 (Equivalent Evaluations for Concrete Scope Variants (Ströder 2010))

Given a concrete state S and a scope variant S′ of S, all evaluations possible for S

are also possible for S′.

Proof

To show Lemma A7 it is sufficient to show that for all concrete rules the applica-

bility of a rule for S implies the applicability for S′ and after application of the

rule the resulting states are still scope variants of each other. We perform a case

analysis over the applicability of the concrete inference rules for S.

• Success is applicable:

Then we have S = � | S′′. Since S′ is a scope variant of S, we also have S′ = � | S′′′

and Success is applicable for S′, too. After application of Success we obtain the

states S′′ and S′′′, which are scope variants of each other as � | S′′ and � | S′′′ are

scope variants.

• Failure is applicable:

Then we have S =?s | S
′′ and as S′ is a scope variant of S, we also have S′ =

?f(s) | S
′′′. Thus, Failure is applicable for S′, too. After application of Failure
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we obtain the states S′′ and S′′′, which are scope variants of each other as ?s | S
′′

and ?f(s) | S
′′′ are scope variants.

• VariableError is applicable:

Then we have S = call(x), Q | S′′ and as S′ is a scope variant of S, we also

have S′ = call(x), Q′ | S′′′. Thus, VariableError is applicable for S′, too. After

application of VariableError we obtain the states ε and ε, which clearly are

scope variants of each other.
• UndefinedError is applicable:

Then we have S = t, Q | S′′ where SliceP(t) = ∅ and as S′ is a scope variant of

S, we also have S′ = t′, Q′ | S′′′ with SliceP(t
′) = ∅. Thus, UndefinedError is

applicable for S′, too. After application of VariableError we obtain the states

ε and ε, which clearly are scope variants of each other.
• Cut is applicable:

Then we have S =!s, Q | S′′ |?s | S
′′′ with S′′ contains no ?s and as S′ is a scope

variant of S, we also have S′ =!f(s), Q
′ | S′′′′ |?f(s) | S

′′′′′ with S′′′′ contains no

?f(s). Thus, Cut is applicable for S′, too. After application of Cut we obtain the

states Q |?s | S
′′′ and Q′ |?f(s) | S

′′′′′, which are scope variants of each other as

!s, Q | S
′′ |?s | S

′′′ and !f(s), Q
′ | S′′′′ |?f(s) | S

′′′′′ are scope variants.
• CutAll is applicable:

Then we have S =!s, Q | S′′ with S′′ contains no ?s and as S′ is a scope variant

of S, we also have S′ =!f(s), Q
′ | S′′′ with S′′′ contains no ?f(s). Thus, CutAll

is applicable for S′, too. After application of CutAll we obtain the states Q and

Q′, which are scope variants of each other as !s, Q | S
′′ and !f(s), Q

′ | S′′′ are scope

variants.
• Case is applicable:

Then we have S = t, Q | S′′ and as S′ is a scope variant of S, we also have S′ =

t′, Q′ | S′′′. Thus,Case is applicable for S′, too. After application of Case we obtain

the states (t, Q)i1m | . . . | (t, Q)ikm | ?m | S′′ and (t′, Q′)
i′1
n | . . . | (t′, Q′)

i′
k′
n | ?n | S

′′′,

where m and n are fresh, i1 < . . . < ik, i
′
1 < . . . < i′k′ , SliceP(t) = {ci1 , . . . , cik} and

SliceP(t
′) = {ci′1 , . . . , ci′k′ }. As S and S′ are scope variants, t and t′ have the same

root symbol and, thus, we have SliceP(t) = SliceP(t
′). W.l.o.g. we can also demand

f(m) = n as both m and n are fresh. Hence, the second state is (t′, Q′)i1
f(m) | . . . |

(t′, Q′)ik
f(m) | ?f(m) | S

′′′, which is a scope variant of (t, Q)i1m | . . . | (t, Q)ikm | ?m | S
′′

as t, Q | S′′ and t′, Q′ | S′′′ are scope variants.
• Eval is applicable:

Then we have S = (t, Q)im | S′′ with ci = Hi :-Bi and mgu(t,Hi) = σ and as S′

is a scope variant of S, we also have S′ = (t′, Q′)if(m) | S
′′′ with mgu(t′, Hi) = σ′.

Thus, Eval is applicable for S′, too. After application of Eval we obtain the

states B′iσ,Qσ | S′′ and B′′i σ
′, Q′σ′ | S′′′, where B′i = Transformed(Bi,m) and

B′′i = Transformed(Bi, f(m)). As S and S′ are scope variants, we have for all

terms r ∈ Range(σ) and r′ ∈ Range(σ′) that r′ = r[!j/!f(j)∀j ∈ IN] and Dom(σ) =

Dom(σ′). Hence, B′iσ,Qσ | S′′ and B′′i σ
′, Q′σ′ | S′′′ are scope variants of each other

as (t, Q)im | S
′′ and (t′, Q′)if(m) | S

′′′ are scope variants.
• Backtrack is applicable:

Then we have S = (t, Q)im | S′′ where ci = Hi :-Bi and t ≁ Hi. As S′ is a scope
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variant of S, we also have S′ = (t′, Q′)if(m) | S
′′′ where t′ ≁ Hi. Thus, Backtrack

is applicable for S′, too. After application of Backtrack we obtain the states S′′

and S′′′, which are scope variants of each other as (t, Q)im | S
′′ and (t′, Q′)if(m) | S

′′′

are scope variants.

• Call is applicable:

Then we have S = call(t′), Q | S′′ where t′ ∈ PrologTerms(Σ,V) \ V and t′ has

only finitely many predication positions. As S′ is a scope variant of S, we also

have S′ = call(t′′), Q′ | S′′′ where t′′ ∈ PrologTerms(Σ,V) \ V and t′′ has only

finitely many predication positions. Thus, Call is applicable for S′, too. After

application of Call we obtain the states t′′′, Q | ?m | S′′ and t′′′′, Q′ | ?m′ | S
′′′

where t′′′ = Transformed(t′,m) and t′′′′ = Transformed(t′′,m′). As m and m′

are fresh, we can demand m′ = f(m). Since the transformation by the function

Transformed uses the same scope for all cuts in predication positions, the reached

states are scope variants of each other as call(t′), Q | S′′ and call(t′′), Q′ | S′′′ are

scope variants.

• AtomicFail is applicable:

Then we have S = atomic(t′), Q | S′′ with t′ not being a constant and as S′ is a scope

variant of S, we also have S′ = atomic(t′′), Q′ | S′′′ with t′′ not being a constant.

Thus, AtomicFail is applicable for S′, too. After application of AtomicFail we

obtain the states S′′ and S′′′ which are scope variants of each other as atomic(t′), Q |

S′′ and atomic(t′′), Q′ | S′′′ are scope variants.

• AtomicSuccess is applicable:

Then we have S = atomic(c), Q | S′′ with c being a constant and as S′ is a scope

variant of S, we also have S′ = atomic(c), Q′ | S′′′. Thus, AtomicSuccess is

applicable for S′, too. After application of AtomicSuccess we obtain the states

Q | S′′ and Q′ | S′′′ which are scope variants of each other as atomic(c), Q | S′′ and

atomic(c), Q′ | S′′′ are scope variants.

• CompoundFail is applicable:

Then we have S = compound(t′), Q | S′′ with t′ being a constant or a variable and

as S′ is a scope variant of S, we also have S′ = compound(t′), Q′ | S′′′. Thus, Com-

poundFail is applicable for S′, too. After application of CompoundFail we obtain

the states S′′ and S′′′ which are scope variants of each other as compound(t′), Q | S′′

and compound(t′), Q′ | S′′′ are scope variants.

• CompoundSuccess is applicable:

Then we have S = compound(t′), Q | S′′ with t′ not being a constant or variable

and as S′ is a scope variant of S, we also have S′ = compound(t′′), Q′ | S′′′ with

t′′ not being a constant or variable. Thus, CompoundSuccess is applicable for

S′, too. After application of CompoundSuccess we obtain the states Q | S′′

and Q′ | S′′′ which are scope variants of each other as compound(t′), Q | S′′ and

compound(t′′), Q′ | S′′′ are scope variants.

• Conjunction is applicable:

Then we have S = ,(t1, t2), Q | S′′ and as S′ is a scope variant of S, we also

have S′ = ,(t′1, t
′
2), Q

′ | S′′′. Thus, Conjunction is applicable for S′, too. After

application of Conjunction we obtain the states t1, t2, Q | S′′ and t′1, t
′
2, Q

′ | S′′′
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which are scope variants of each other as ,(t1, t2), Q | S′′ and ,(t′1, t
′
2), Q

′ | S′′′ are

scope variants.

• Disjunction is applicable:

Then we have S = ;(t1, t2), Q | S′′ where root(t1) 6= ->/2 and as S′ is a scope

variant of S, we also have S′ = ;(t′1, t
′
2), Q

′ | S′′′ where root(t′1) 6= ->/2. Thus,

Disjunction is applicable for S′, too. After application of Disjunction we obtain

the states t1, Q | t2, Q | S
′′ and t′1, Q

′ | t′2, Q
′ | S′′′ which are scope variants of each

other as ;(t1, t2), Q | S
′′ and ;(t′1, t

′
2), Q

′ | S′′′ are scope variants.

• EqualsFail is applicable:

Then we have S = ==(t1, t2), Q | S
′′ with t1 6= t2 and as S′ is a scope variant of S,

we also have S′ = ==(t′1, t
′
2), Q

′ | S′′′ with t′1 6= t′2. Thus, EqualsFail is applicable

for S′, too. After application of EqualsFail we obtain the states S′′ and S′′′ which

are scope variants of each other as ==(t1, t2), Q | S′′ and ==(t′1, t
′
2), Q

′ | S′′′ are

scope variants.

• EqualsSuccess is applicable:

Then we have S = ==(t1, t1), Q | S
′′ and as S′ is a scope variant of S, we also have

S′ = ==(t′1, t
′
1), Q

′ | S′′′. Thus, EqualsSuccess is applicable for S′, too. After

application of EqualsSuccess we obtain the states Q | S′′ and Q′ | S′′′ which are

scope variants of each other as ==(t1, t1), Q | S
′′ and ==(t′1, t

′
1), Q

′ | S′′′ are scope

variants.

• Fail is applicable:

Then we have S = fail, Q | S′′ and as S′ is a scope variant of S, we also have

S′ = fail, Q′ | S′′′. Thus, Fail is applicable for S′, too. After application of Fail we

obtain the states S′′ and S′′′ which are scope variants of each other as fail, Q | S′′

and fail, Q′ | S′′′ are scope variants.

• FlushOutput is applicable:

Then we have S = flush output, Q | S′′ and as S′ is a scope variant of S, we also

have S′ = flush output, Q′ | S′′′. Thus, FlushOutput is applicable for S′, too.

After application of FlushOutput we obtain the states Q | S′′ and Q′ | S′′′ which

are scope variants of each other as flush output, Q | S′′ and flush output, Q′ | S′′′

are scope variants.

• Halt is applicable:

Then we have S = halt, Q | S′′ and as S′ is a scope variant of S, we also have

S′ = halt, Q′ | S′′′. Thus, Halt is applicable for S′, too. After application of Halt

we obtain the states ε and ε which clearly are scope variants of each other.

• Halt1 is applicable:

Then we have S = halt(t′), Q | S′′ and as S′ is a scope variant of S, we also have

S′ = halt(t′′), Q′ | S′′′. Thus, Halt1 is applicable for S′, too. After application of

Halt1 we obtain the states ε and ε which clearly are scope variants of each other.

• IfThen is applicable:

Then we have S = ->(t1, t2), Q | S
′′ and as S′ is a scope variant of S, we also have

S′ = ->(t′1, t
′
2), Q

′ | S′′′. Thus, IfThen is applicable for S′, too. After application

of IfThen we obtain the states call(t1), !m, t2, Q | ?m | S′′ and call(t′1), !m′ , t
′
2, Q

′ |

?m′ | S
′′′. As m and m′ are fresh, we can demand that m′ = f(m). So the reached
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states are scope variants of each other as ->(t1, t2), Q | S′′ and ->(t′1, t
′
2), Q

′ | S′′′

are scope variants.

• IfThenElse is applicable:

Then we have S = ;(->(t1, t2), t3), Q | S
′′ and as S′ is a scope variant of S, we also

have S′ = ;(->(t′1, t
′
2), t

′
3), Q

′ | S′′′. Thus, IfThenElse is applicable for S′, too.

After application of IfThenElse we obtain the states call(t1), !m, t2, Q | t3, Q |

?m | S′′ and call(t′1), !m′ , t
′
2, Q

′ | t′3, Q
′ | ?m′ | S

′′′. As m and m′ are fresh, we can

demand that m′ = f(m). So the reached states are scope variants of each other as

;(->(t1, t2), t3), Q | S
′′ and ;(->(t′1, t

′
2), t

′
3), Q

′ | S′′′ are scope variants.

• Newline is applicable:

Then we have S = nl, Q | S′′ and as S′ is a scope variant of S, we also have

S′ = nl, Q′ | S′′′. Thus, Newline is applicable for S′, too. After application of

Newline we obtain the states Q | S′′ and Q′ | S′′′ which are scope variants of each

other as nl, Q | S′′ and nl, Q′ | S′′′ are scope variants.

• NonvarFail is applicable:

Then we have S = nonvar(x), Q | S′′ with x ∈ N and as S′ is a scope variant of

S, we also have S′ = nonvar(x), Q′ | S′′′. Thus, NonvarFail is applicable for S′,

too. After application of NonvarFail we obtain the states S′′ and S′′′ which are

scope variants of each other as nonvar(x), Q | S′′ and nonvar(x), Q′ | S′′′ are scope

variants.

• NonvarSuccess is applicable:

Then we have S = nonvar(t′), Q | S′′ with t′ not being a variable and as S′ is

a scope variant of S, we also have S′ = nonvar(t′′), Q′ | S′′′ with t′′ not being

a variable. Thus, NonvarSuccess is applicable for S′, too. After application of

NonvarSuccess we obtain the states Q | S′′ and Q′ | S′′′ which are scope variants

of each other as nonvar(t′), Q | S′′ and nonvar(t′′), Q′ | S′′′ are scope variants.

• Not is applicable:

Then we have S = \+(t′), Q | S′′ and as S′ is a scope variant of S, we also have

S′ = \+(t′′), Q′ | S′′′. Thus, Not is applicable for S′, too. After application of Not

we obtain the states call(t′), !m, fail | Q | ?m | S
′′ and call(t′′), !m′ , fail | Q

′ | ?m′ | S
′′′.

As m and m′ are fresh, we can demand that m′ = f(m). So the reached states

are scope variants of each other as \+(t′), Q | S′′ and \+(t′′), Q′ | S′′′ are scope

variants.

• NoUnifyFail is applicable:

Then we have S = \=(t1, t2), Q | S
′′ where t1 ∼ t2 and as S′ is a scope variant of S,

we also have S′ = \=(t′1, t
′
2), Q

′ | S′′′ where t′1 ∼ t′2. Thus, NoUnifyFail is applica-

ble for S′, too. After application of NoUnifyFail we obtain the states S′′ and S′′′

which are scope variants of each other as \=(t1, t2), Q | S
′′ and \=(t′1, t

′
2), Q

′ | S′′′

are scope variants.

• NoUnifySuccess is applicable:

Then we have S = \=(t1, t2), Q | S′′ where t1 ≁ t2 and as S′ is a scope variant of

S, we also have S′ = \=(t′1, t
′
2), Q

′ | S′′′ where t′1 ≁ t′2. Thus, NoUnifySuccess is

applicable for S′, too. After application of NoUnifySuccess we obtain the states

Q | S′′ and Q′ | S′′′ which are scope variants of each other as \=(t1, t2), Q | S
′′ and

\=(t′1, t
′
2), Q

′ | S′′′ are scope variants.
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• Once is applicable:

Then we have S = once(t′), Q | S′′ and as S′ is a scope variant of S, we also have

S′ = once(t′′), Q′ | S′′′. Thus, Once is applicable for S′, too. After application of

Once we obtain the states call(,(t′, !)), Q | S′′ and call(,(t′′, !)), Q′ | S′′′ which are

scope variants of each other as once(t′), Q | S′′ and once(t′′), Q′ | S′′′ are scope

variants.

• Repeat is applicable:

Then we have S = repeat, Q | S′′ and as S′ is a scope variant of S, we also have

S′ = repeat, Q′ | S′′′. Thus, Repeat is applicable for S′, too. After application of

Repeat we obtain the states Q | repeat, Q | S′′ and Q′ | repeat, Q′ | S′′′ which are

scope variants of each other as repeat, Q | S′′ and repeat, Q′ | S′′′ are scope variants.

• Throw is applicable:

Then we have S = throw(t′), Q | S′′ and as S′ is a scope variant of S, we also have

S′ = throw(t′′), Q′ | S′′′. Thus, Throw is applicable for S′, too. After application

of Throw we obtain the states ε and ε which clearly are scope variants of each

other.

• True is applicable:

Then we have S = true, Q | S′′ and as S′ is a scope variant of S, we also have

S′ = true, Q′ | S′′′. Thus, True is applicable for S′, too. After application of True

we obtain the states Q | S′′ and Q′ | S′′′ which are scope variants of each other as

true, Q | S′′ and true, Q′ | S′′′ are scope variants.

• UnequalsFail is applicable:

Then we have S = \==(t1, t1), Q | S′′ and as S′ is a scope variant of S, we also

have S′ = \==(t′1, t
′
1), Q

′ | S′′′. Thus, UnequalsFail is applicable for S′, too.

After application of UnequalsFail we obtain the states S′′ and S′′′ which are

scope variants of each other as \==(t1, t1), Q | S′′ and \==(t′1, t
′
1), Q

′ | S′′′ are

scope variants.

• UnequalsSuccess is applicable:

Then we have S = \==(t1, t2), Q | S
′′ where t1 6= t2 and as S′ is a scope variant of S,

we also have S′ = \==(t′1, t
′
2), Q

′ | S′′′ where t′1 6= t′2. Thus, UnequalsSuccess is

applicable for S′, too. After application of UnequalsSuccess we obtain the states

Q | S′′ and Q′ | S′′′ which are scope variants of each other as \==(t1, t2), Q | S′′

and \==(t′1, t
′
2), Q

′ | S′′′ are scope variants.

• UnifyFail is applicable:

Then we have S = =(t1, t2), Q | S
′′ with t1 ≁ t2 and as S′ is a scope variant of S,

we also have S′ = =(t′1, t
′
2), Q

′ | S′′′ with t′1 ≁ t′2. Thus, UnifyFail is applicable

for S′, too. After application of UnifyFail we obtain the states S′′ and S′′′ which

are scope variants of each other as =(t1, t2), Q | S
′′ and =(t′1, t

′
2), Q

′ | S′′′ are scope

variants.

• UnifySuccess is applicable:

Then we have S = =(t1, t2), Q | S′′ where t1 ∼ t2 and as S′ is a scope variant

of S, we also have S′ = =(t′1, t
′
2), Q

′ | S′′′ where t′1 ∼ t′2. Thus, UnifySuccess

is applicable for S′, too. After application of UnifySuccess we obtain the states

Q | S′′ and Q′ | S′′′ which are scope variants of each other as =(t1, t2), Q | S
′′ and

=(t′1, t
′
2), Q

′ | S′′′ are scope variants.
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• VarFail is applicable:

Then we have S = var(t′), Q | S′′ with t′ not being a variable and as S′ is a scope

variant of S, we also have S′ = var(t′′), Q′ | S′′′ with t′′ not being a variable.

Thus, VarFail is applicable for S′, too. After application of VarFail we obtain

the states S′′ and S′′′ which are scope variants of each other as var(t′), Q | S′′ and

var(t′′), Q′ | S′′′ are scope variants.

• VarSuccess is applicable:

Then we have S = var(x), Q | S′′ with x ∈ N and as S′ is a scope variant of S, we

also have S′ = var(x), Q′ | S′′′. Thus, VarSuccess is applicable for S′, too. After

application of VarSuccess we obtain the states Q | S′′ and Q′ | S′′′ which are

scope variants of each other as var(x), Q | S′′ and var(x), Q′ | S′′′ are scope variants.

• Write is applicable:

Then we have S = write(t′), Q | S′′ and as S′ is a scope variant of S, we also have

S′ = write(t′′), Q′ | S′′′. Thus, Write is applicable for S′, too. After application of

Write we obtain the states Q | S′′ and Q′ | S′′′ which are scope variants of each

other as write(t′), Q | S′′ and write(t′′), Q′ | S′′′ are scope variants.

• WriteCanonical is applicable:

Then we have S = write canonical(t′), Q | S′′ and as S′ is a scope variant of S, we

also have S′ = write canonical(t′′), Q′ | S′′′. Thus, WriteCanonical is applicable

for S′, too. After application of WriteCanonical we obtain the states Q | S′′

and Q′ | S′′′ which are scope variants of each other as write canonical(t′), Q | S′′

and write canonical(t′′), Q′ | S′′′ are scope variants.

• Writeq is applicable:

Then we have S = writeq(t′), Q | S′′ and as S′ is a scope variant of S, we also have

S′ = writeq(t′′), Q′ | S′′′. Thus, Writeq is applicable for S′, too. After application

of Writeq we obtain the states Q | S′′ and Q′ | S′′′ which are scope variants of

each other as writeq(t′), Q | S′′ and writeq(t′′), Q′ | S′′′ are scope variants.

Lemma A8 (Equivalent Evaluations for Abstract Scope Variants (Ströder 2010))

Given an abstract state S and a scope variant S′ of S, for every concrete state Sc

represented by S there exists a concrete state S′c represented by S′ such that all

evaluations possible for Sc are also possible for S′c.

Proof

As concretizations only replace abstract variables, we have for every concretization

γ that S′γ is a scope variant of Sγ. By Lemma A7 we obtain that all evaluations

possible for Sγ are also possible for S′γ.

We now state some of the soundness proofs for the abstract inference rules which

are referenced later in the proofs for the correctness of our transformation.

Lemma A9 (Soundness of Parallel, cf. (Schneider-Kamp 2008))

The rule Parallel is sound. Moreover, each derivation for a concrete state repre-

sented by the abstract state, where Parallel is applied to, either reaches a concrete
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state represented by the abstract state’s second successor or drops all goals (except

at most one scope marker) in this second successor due to a cut before they are

evaluated.

Proof

Assume that Sγ | S′γ ∈ CON (S | S′;KB) has an infinite derivation. Then

there are three cases. If Sγ has an infinite derivation, we immediately have that

Sγ ∈ CON (S;KB) has an infinite derivation. If Sγ does not have an infinite

derivation and, after finitely many steps, we reach the state S′γ, we have that

S′γ ∈ CON (S′;KB) has an infinite derivation. Finally, if Sγ has no infinite

derivation, but we do not reach S′γ, S′ must be of the form S′′ | ?m | S′′′ with

S′′ 6= ε and in the derivation of Sγ | S′γ we apply the Cut rule to !m, q | S′′′′γ |

S′′γ |?m | S′′′γ, i.e., m ∈ AC(S). As Sγ | S′γ has an infinite derivation, we get

S′′′ 6= ε. But S′′ 6= ε 6= S′′′ implies m ∈ AM(S′). Thus we have a contradiction to

AC(S) ∩AM(S′) = ∅.

Lemma A10 (Soundness of Split (Ströder 2010))

The rule Split is sound. Additionally, for every concretization γ w.r.t. (G,F ,U)

and for every answer substitution δ′ of a successful evaluation for tγ, there is a

concretization γ′ w.r.t. (G′,F ′,Uδ) such that γδ′ = δγ′ and γ|A(t)∪A(Q)∪G∪A(U) =

γ′|A(t)∪A(Q)∪G∪A(U).

Proof

Assume that t′γ,Qγ ∈ CON (t′, Q; (G,F ,U)) has an infinite evaluation. Then, fol-

lowing the proof in (Schneider-Kamp 2008), there are two cases. If t′γ has an infinite

evaluation, we immediately have that t′γ ∈ CON (t′; (G,F ,U)) has an infinite eval-

uation. If t′γ does not have an infinite evaluation and we did not reach a state of the

form Qγδ′ | S′γ for some answer substitution δ′ and state S′, we would reach the

state ε, which contradicts our assumption that t′γ,Qγ has an infinite evaluation.

Therefore, if t′γ does not have an infinite evaluation, we reach states of the form

Qγδ′ | S′γ for answer substitutions δ′ and states S′. If all Qγδ′ did not have an in-

finite evaluation, this would contradict our assumption that t′γ,Qγ has an infinite

evaluation. Thus, there must be a state Qγδ′ that has an infinite evaluation. We

now show that there is a concretization γ′ w.r.t. (G′,F ′,Uδ) such that γδ′ = δγ′

for all answer substitutions δ′ corresponding to a successful evaluation of tγ. Then,

in particular, we have an infinite evaluation from Qδγ′ ∈ CON (Qδ; (G′,F ′,Uδ)).

There are three subcases.

First, if V(t′) ⊆ G ∪ F we have t′γ ∈ PrologTerms(Σ,F) as γ is a concretization

and, therefore, for all a ∈ G(t′), aγ ∈ GroundTerms(Σ). Thus, we have Dom(δ′) ⊆

F(t′γ). From δ = αF(t′) we know that for all x ∈ F(t′γ) = F(t′), xδ ∈ A is a

fresh variable. We define γ′(xδ) = xδ′ for x ∈ F(t′) and γ′(x) = γ(x) otherwise.

Then, obviously, γδ′ = δγ′ and γ|A(t)∪A(Q) = γ′|A(t)∪A(Q). We are left to show

that γ′ is a concretization w.r.t. (G′,F ′,Uδ), i.e., γ′|A = γ′,
⋃

a∈AA(aγ
′) = ∅,

Range(γ′|G′) ⊆ GroundTerms(Σ), F ′(Range(γ′)) = ∅, and
∧

(s,s′)∈Uδ sγ
′ 6∼ s′γ′.
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All these properties except for Range(γ′|G′) ⊆ GroundTerms(Σ) are shown in

(Schneider-Kamp 2008).

We perform a case analysis based on the partition G′ = G⊎(ApproxGnd(t′, δ)\G).

For a ∈ G we have defined aγ′ = aγ and thus aγ′ ∈ GroundTerms(Σ). For a ∈

ApproxGnd(t′, δ) \ G by definition of ApproxGnd and equality of γδ′ and δγ′ we

know that aγ′ ∈ GroundTerms(Σ).

Second, if A(t′) ⊆ G, but N (t′) 6⊆ F , the answer substitution δ′ can instan-

tiate non-abstract variables in t′ which might occur in the terms represented by

the abstract variables in Q. However, δ′ cannot instantiate non-abstract variables

not occurring in t′. We define γ′ in such a way that γδ′ = δγ′ and γ|A(t)∪A(Q) =

γ′|A(t)∪A(Q). This is always possible because Dom(δ′)∩(N \N (t)) = ∅ and all vari-

ables in Range(δ) are fresh. Then, clearly, Qγδ′ = Qδγ. We are left to show that γ′

is a concretization w.r.t. (G′,F ′,Uδ). As we only need to define γ′ for abstract vari-

ables, clearly γ′|A = γ′. From A(Range(δ′)) = ∅ and
⋃

a∈AA(aγ) = ∅ we know

that
⋃

a∈AA(aγ
′) = ∅. We perform a case analysis based on the partition G′ =

G ⊎ (ApproxGnd(t′, δ) \G). For a ∈ G we have effectively defined aγ′ = aγ and thus

aγ′ ∈ GroundTerms(Σ). For a ∈ ApproxGnd(t′, δ) \ G by definition of ApproxGnd

and equality of γδ′ and δγ′ we again know that aγ′ ∈ GroundTerms(Σ). Fur-

thermore, note that w.l.o.g. F(Range(δ′)) ⊆ F(t′) and F(Range(γ)) = ∅. Thus,

F(Range(γ′)) ⊆ F(t′) and, consequently, F ′(Range(γ′)) = ∅. For all (s, s′) ∈ U

we have sγ 6∼ s′γ and, consequently sγδ′ 6∼ s′γδ′. But from sγδ′ = sδγ′ and

s′γδ′ = s′δγ′ we get sδγ′ 6∼ s′δγ′. Thus, for all (s′′, s′′′) ∈ Uδ, we have sγ′ 6∼ s′γ′.

Third, if V(t′) 6⊆ G ∪ F , the answer substitution δ′ can potentially instantiate

any non-ground term in Qγ except for variables from F(Q) \ F(t′). We define

γ′ in such a way that γδ′ = δγ′ and γ|A(t)∪A(Q) = γ′|A(t)∪A(Q). This is always

possible because Dom(δ′)∩ (F \F(t′)) = ∅ and all variables in Range(δ) are fresh.

Then, clearly, Qγδ′ = Qδγ′. We are left to show that γ′ is a concretization w.r.t.

(G′,F ′,Uδ), i.e., γ′|A = γ′,
⋃

a∈AA(aγ
′) = ∅, Range(γ′|G′) ⊆ GroundTerms(Σ),

F ′(Range(γ′)) = ∅, and
∧

(s,s′)∈Uδ sγ
′ 6∼ s′γ′.

All these properties except for Range(γ′|G′) ⊆ GroundTerms(Σ) are shown in

(Schneider-Kamp 2008).

We perform a case analysis based on the partition G′ = G⊎(ApproxGnd(t′, δ)\G).

For a ∈ G we have effectively defined aγ′ = aγ and thus aγ′ ∈ GroundTerms(Σ).

For a ∈ ApproxGnd(t′, δ) \ G by definition of ApproxGnd and equality of γδ′ and

δγ′ we again know that aγ′ ∈ GroundTerms(Σ).

Lemma A11 (Soundness of Inst (Ströder 2010))

The rule Instance is sound. Additionally, for every concretization γ w.r.t. (G,F ,U)

there is a concretization γ′ w.r.t. (G′,F ′,U ′) such that Sγ = S′′γ′µ|N .

Proof

Assume we have an infinite evaluation starting from Sγ ∈

CON (S; (G,F ,U)). We show that there is a substitution γ′ such that S′γ′ ∈

CON (S′; (G′,F ′,U ′)) and S′γ′ has an infinite evaluation.
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For this purpose, we first show that S′′γ′ ∈ CON (S′′; (G′,F ′,U ′)) has an infinite

evaluation.

Following the proof in (Schneider-Kamp 2008), there must be a µ−1 such that

µ|Nµ−1 = µ−1µ|N = id as µ|N is a variable renaming. Let γ′ = µγµ−1. Clearly,

as S′′µ = S and µ−1 is a variable renaming, S′′γ′ = Sγµ−1 has an infinite evalua-

tion. Additionally, we have that S′′γ′µ|N = Sγµ−1µ|N = Sγ. We are left to show

that γ′ is a concretization w.r.t. (G′,F ′,U ′), i.e., γ′|A = γ′,
⋃

a∈AA(aγ
′) = ∅,

Range(γ′|G′) ⊆ GroundTerms(Σ), F ′(Range(γ′)) = ∅, and
∧

(t,t′)∈U tγ′ 6∼ t′γ′.

All these properties except for Range(γ′|G′) ⊆ GroundTerms(Σ) are shown in

(Schneider-Kamp 2008).

We know that for all a ∈ G′, aµ ∈ PrologTerms(Σ,G). Further, as γ is a con-

cretization w.r.t. (G,F ,U), we know that for all a ∈ G, aγ ∈ GroundTerms(Σ).

Thus, for all a ∈ G′, we have aγ′
Def.γ′

= aµγµ−1 = aµγ ∈ GroundTerms(Σ) and,

therefore, Range(γ′|G′) ⊆ GroundTerms(Σ).

Since S′′ is a scope variant of S′ and γ′ replaces only abstract variables, S′′γ′ is

also a scope variant of S′γ′. As S′′γ′ ∈ CON (S′′; (G′,F ′,U ′)) has an infinite eval-

uation, we obtain by Lemma A8 that S′γ′ ∈ CON (S′; (G′,F ′,U ′)) has an infinite

evaluation, too.
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Appendix B Extended Definitions

We first restrict the Inst rule again such that it does not lose any ground informa-

tion as in the paper. So we only consider derivation graphs where for every node

n ∈ Inst(G) with n = Sinst ;Ginst ,Finst ,Uinst , Succ1(s) = Sof ;Gof ,Fof ,Uof , and

Sof µ = Sinst , we have for each x ∈ Dom(µ) that if V(xµ) ⊆ Ginst holds, then

x ∈ Gof .

Moreover, we extend connections paths to the presence of Parallel nodes.

Definition B 1 (Connection Path)

A path π = s1 . . . sk is a connection path w.r.t. G if, and only if, k > 1 and the

following conditions are satisfied:

• s1 ∈ {root(G)} ∪ Succ1(Inst(G) ∪ Split(G) ∪ Parallel(G)) ∪ Succ2(Split(G) ∪

Parallel(G))

• nk ∈ Inst(G) ∪ Suc(G) ∪ Split(G) ∪ Parallel(G) ∪ Succ1(Inst(G))

• for all 1 ≤ j < k, sj /∈ Inst(G) ∪ Split(G) ∪ Parallel(G)

• for all 1 < j < k, sj /∈ Succ1(Inst(G))

Finally, we adapt the definition of the synthesized TRS.

Definition B 2 (TRS from Derivation Graph)

The TRS for a derivation graph G is defined as R(G) = C(G) ∪ S(G) ∪ P(G) with

C(G) =
⋃

π connection path w.r.t. G ConnectionRules(π),

S(G) =
⋃

n∈Split(G) SplitRules(n) and

P(G) =
⋃

n∈Parallel(G) ParallelRules(n).

For a path π = s1 . . . sk, we define ConnectionRules(π) as follows. If sk ∈ Suc(G),

then ConnectionRules(π) = {renin(s1)σπ,0 → renout(s1, skip(π, 1))σπ,0}. Other-

wise, we have ConnectionRules(π) = {

renin(s1)σπ,0

→

us1,sk(ren
in(sk),V(ren

in(s1)))σπ,0)

} ∪
⋃

j∈{1,...,g}∧ the j-th goal in sk is no scope marker{

us1,sk(ren
out(sk, j),V(ren

in(s1)))σπ,j−1)

→

renout(s1, skip(π, j))σπ,j−1

} where sk has g goals.

Here, us1,sk is a fresh function symbol and the functions renin and renout are defined

as follows:
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renin(s) =























renin(Succ1(s))µ if s ∈ Inst(G) where

µ is the substitution associated with s

f in
s (Gin(s)) otherwise, where f in

s is a fresh function

symbol and Gin(S; (G,F ,U)) = G ∩ V(S).

renout(s, i) =











































































renout(Succ1(s), i)µ if s ∈ Inst(G) where

µ is the substitution associated with s

fout
s,i (G

out(s, i)) otherwise, where fout
s,i is a fresh function

symbol,

t1, . . . , tm is the i-th goal in s, and

Gout(S; (G,F ,U), i)

= (G ∩ V(S))∪

ApproxG([t1, . . . , tm],G∩

V(S)).

The function symbols f in
s and fout

s,i for all i ∈ IN must be different from each other.

Moreover, ApproxG approximates the abstract variables that have to be instanti-

ated by ground terms using a given groundness analysis GroundP : Σ× 2IN → 2IN

which given a predicate p and a set of ground argument positions computes the set

of ground argument positions after a successful computation using the clauses from

P:

ApproxG([],G) = ∅

ApproxG([t|L],G) = NextG(t,G) ∪ ApproxG(L,G ∪ NextG(t,G))

where

NextG(t,G) = {V(ti) | t = p(t1, . . . , tn), i ∈ GroundSliceP(t)(p, {i | V(ti) ⊆ G})}

For a node s ∈ Split(G), we define SplitRules(s) = {

renin(s)δ

→

us,Succ1(s)(ren
in(Succ1(s))δ,V(ren

in(s))δ)

us,Succ1(s)(ren
out(Succ1(s), 1)δ,V(ren

in(s))δ)

→

uSucc1(s),Succ2(s)(ren
in(Succ2(s)), (V(ren

in(s)) ∪ V(renout(Succ1(s), 1)))δ)

uSucc1(s),Succ2(s)(ren
out(Succ2(s), 1), (V(ren

in(s)) ∪ V(renout(Succ1(s), 1)))δ)

→

renout(s, 1)δ

}.

Here, us,Succ1(s) and uSucc1(s),Succ2(s) are fresh function symbols and δ is the sub-

stitution associated with s.

For a node s ∈ Parallel(G), we define ParallelRules(s) = {

renin(s)

→
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us,Succ1(s)(ren
in(Succ1(s)),V(ren

in(s)))

} ∪
⋃

j∈{1,...,g1}∧ the j-th goal in Succ1(s) is no scope marker{

us,Succ1(s)(ren
out(Succ1(s), j),V(ren

in(s)))

→

renout(s, j)

} ∪ {

renin(s)

→

us,Succ2(s)(ren
in(Succ2(s)),V(ren

in(s)))

} ∪
⋃

i∈{1,...,g2}∧ the i-th goal in Succ2(s) is no scope marker{

us,Succ2(s)(ren
out(Succ2(s), i),V(ren

in(s)))

→

renout(s, g1 + i)

} where Succ1(s) has g1 goals and Succ2(s) has g2 goals.

Again, us,Succ1(s) and us,Succ2(s) are fresh function symbols.

Furthermore, skip(π, i) and σπ,i are defined as follows:

skip(s1 . . . sj , i) =



















































































































i if j = 1

skip(s1 . . . sj−1, i+ 1) if (sj−1 ∈ NoUnifyCase(G)∪

UnequalsCase(G), sj = Succ2(sj−1))

or sj−1 ∈ NoUnifyFail(G)

skip(s1 . . . sj−1, if (sj−1 ∈ BacktrackSecond(G),

i+ change(sj−1, sj)) sj = Succ2(sj−1))

or (sj−1 ∈ Backtracking(G))

or (sj−1 ∈ VarCase(G) where sj−1 has k

children and sj = Succ(k, sj−1))

or (sj−1 ∈ Cut(G) and i > 1)

skip(s1 . . . sj−1, if sj−1 ∈ Introducing(G)

reduce(sj−1, sj , i− 1) + 1)

skip(s1 . . . sj−1, i) otherwise
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σs1...sj ,i =



























































































































































































































id if j = 1

σs1...sj−1,iAnsSub(sj−1) if (sj−1 ∈ Split(G), sj = Succ2(sj−1)

or sj−1 ∈ EqualsCase(G), sj = Succ1(sj−i))

or (sj−1 ∈ Eval(G) ∪OnlyEval(G)∪

UnifyCase(G) ∪UnifySuccess(G),

sj = Succ1(sj−1), i = 0)

σs1...sj−1,iBackSub(sj−1) if sj−1 ∈ Eval(G) ∪OnlyEval(G)∪

UnifyCase(G) ∪UnifySuccess(G),

sj = Succ1(sj−1), i > 0

σs1...sj−1,i+1BackSub(sj−1) if (sj−1 ∈ NoUnifyCase(G)∪

UnequalsCase(G), sj = Succ2(sj−1))

or sj−1 ∈ NoUnifyFail(G)

σs1...sj−1,iσc−1 if sj−1 ∈ VarCase(G) where sj−1 has more

than c children, sj = Succ(c, sj−1) and

σc−1 is the substitution used for sj

σs1...sj−1,i+change(sj−1,sj) if (sj−1 ∈ BacktrackSecond(G),

sj = Succ2(sj−1))

or (sj−1 ∈ Backtracking(G))

or (sj−1 ∈ VarCase(G) where sj−1 has k

children and sj = Succ(k, sj−1))

or (sj−1 ∈ Cut(G) and i > 0)

σs1...sj−1,reduce(sj−1,sj ,i) if sj−1 ∈ Introducing(G)

σs1...sj−1,i otherwise
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Here, AnsSub : V → Subst(Σ,V) and BackSub : V → Subst(Σ,V) are defined by:

AnsSub(s) =































































σ if s ∈ EqualsCase(G) where σ is the substitution

used for Succ1(s)

σ′ if s ∈ Eval(G) ∪OnlyEval(G) ∪UnifyCase(G)

∪UnifySuccess(G) where σ′ is the substitution

used for Succ1(s)

δ if s ∈ Split(G) where δ is the substitution

used for Succ2(s)

id otherwise

BackSub(s) =































































σ|G if s ∈ Eval(G) ∪ NoUnifyFail(G) ∪OnlyEval(G)

∪UnifyCase(G) ∪UnifySuccess(G) where

σ|G is the substitution used for Succ1(s)

σ|G if s ∈ NoUnifyCase(G) where σ|G is the

substitution used for Succ2(s)

σ if s ∈ UnequalsCase(G) where σ is the substitution

used for Succ2(s)

id otherwise

The functions change : V ×V → IN and reduce : V ×V × IN→ IN are defined by:

change(s1, s2) =











































































































1 if (s1 ∈ BacktrackSecond(G) \ {Parallel}, s2 = Succ2(s1)) or

(s1 ∈ Backtracking(G)) or (s1 ∈ VarCase(G) where

s1 has k children and s2 = Succ(k, s1)) or

(s1 ∈ Call(G) ∪Disjunction(G) ∪ IfThen(G) ∪ Repeat(G))

2 if s1 ∈ IfThenElse(G) ∪ Not(G)

k if (s1 ∈ Parallel(G), s2 = Succ2(s1),

Succ1(s1) = S1 | . . . | Sk;KB where

Si ∈ Goal(Σ,V) ∀i ∈ {1, . . . , k})

or (s1 ∈ Cut(G), s1 = !m, Q | S1 | . . . | Sk | ?m | S;KB

where Si ∈ Goal(Σ,V) \ {?m} ∀i ∈ {1, . . . , k})

or (s1 ∈ Case(G), s1 = t, Q | S;KB and |SliceP(t)| = k)

0 otherwise

reduce(s1, s2, i) = max(0, i− change(s1, s2))
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Finally, the set Backtracking(G) is defined as the union of the sets

• AtomicFail(G)

• Backtrack(G)

• CompoundFail(G)

• EqualsFail(G)

• Fail(G)

• Failure(G)

• NonvarFail(G)

• Suc(G)

• UnequalsFail(G)

• UnifyFail(G)

• VarFail(G)

while the set BacktrackSecond(G) is defined as the union of the sets

• AtomicCase(G)

• CompoundCase(G)

• EqualsCase(G)

• Eval(G)

• NonvarCase(G)

• Parallel(G)

• UnifyCase(G)

and the set Introducing(G) is defined as the union of the sets

• Call(G)

• Case(G)

• Disjunction(G)

• IfThen(G)

• IfThenElse(G)

• Not(G)

• Repeat(G)
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Appendix C Proving the Correctness of the Transformation

The following lemmata show that R(G) can be used to simulate (at least) all

evaluations of the original Prolog program by innermost rewriting and that the

length of the corresponding rewrite sequences is asymptotically over-approximating

the length of the original evaluations (more precisely, a number of rewrite sequences

can be used as input for a function and the function’s value over-approximates the

length of the corresponding original evaluation).

Before we start to state the lemmata, we introduce the notions of a state prefix

and extension, respectively, which will be used in the following proofs.

Definition C 1 (State Prefix, State Extension)

Let S be a state with S = S1 | · · · | Sk where ∀i ∈ {1, . . . , k} : Si ∈ Goal(Σ,V). Let

S′ be another state. S is a state prefix of S′ iff there is a bijection f : IN→ IN and

S′ = S′1 | · · · | S
′
k | S

′′ for some state S′′ where we have for all i ∈ {1, . . . , k}:

• Si ∈ IN =⇒ f(Si) = S′i
• Si = Q =⇒ S′i = Q′, Q′′ for some list of terms Q′′ where Q′ = Qξ

• Si = (Q)nm =⇒ S′i = (Q′, Q′′)nf(m) for some list of terms Q′′ where Q′ = Qξ

Here, we define ξ = [!i/!f(i)∀i ∈ IN].

For two states S and S′, S′ is a state extension of S iff S is a state prefix of S′.

Example C 2

Consider the state S = t1, t2 | (t3)
i
m. The state t1 is a state prefix of S while the

state t1, t2 | (t3)
i
m | (t4)

i′

m′ is a state extension of S.

The notions of a state prefix and extension respectively are useful to describe the

connection between a derivation graph and the evaluations it represents. Due to

the splitting of backtracking lists and goals with the rules Parallel and Split,

the evaluation may contain states which are not represented by only one abstract

state, but by several different abstract states instead. Still, we have to take this

difference into account while we prove the correctness of our transformation.

Thus, for the simulation of evaluations by derivation graphs, we need to follow

not only linear paths, but tree paths in a derivation graph. This is also due to

the splitting of goals by the Split rule and to the splitting of backtracking lists

we encounter at Parallel nodes. The following definition therefore gives us a

structure for describing the way of an evaluation through a derivation graph.

Definition C 3 (Tree Path)

For a derivation graph G = (V,E) we call a (possibly infinite) word

π = (n0, v0, p0), (n1, v1, p1), (n2, v2, p2), . . . over the set IN × V × IN a tree path

w.r.t. G iff the following conditions are satisfied for all i, j ∈ IN:

• p0 /∈ {n0, n1, n2, . . . }

• ni = nj =⇒ i = j

• i 6= 0 =⇒ pi ∈ {n0, n1, n2, . . . }

• ni = pj =⇒ (vi, vj) ∈ E
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• pi < ni

• there are indices i0, . . . , imi ∈ {n0, n1, n2, . . . } with imi = 0, i0 = i and pir−1 =

nir for all r ∈ {1, . . . ,mi}

• if (ni, vi, pi) has more than one successor, then we have vi ∈ Split(G)∪Parallel(G)

• if (ni, vi, pi) with vi ∈ Split(G) ∪ Parallel(G) has only one successor (nj , vj , ni),

we have vj = Succ1(vi)

Here, we call (nj , vj , pj) a successor of (ni, vi, pi) iff pj = ni. We call (ni, vi, pi) a

leaf of π iff it has no successor. We call (n0, v0, p0) the root of π. For (ni, vi, pi)

and (nj , vj , pj), we call (ni, vi, pi) an ancestor of (nj , vj , pj) iff there are indices

i0, . . . , imi
∈ {n0, n1, n2, . . . } with imi

= i, i0 = j and pir−1
= nir for all r ∈

{1, . . . ,mi}. We call a tree path π′ a subtree of a tree path π iff the root of π′

occurs in π and all (ni, vi, pi) in π, where the root of π′ is an ancestor, also occur

in π′. We call a subtree π′ of π direct iff the root of π′ is a successor of π’s root.

Moreover, for each tree path π we define numOfSuccesses(π) as follows:

numOfSuccesses((n0, v0, p0), . . . ) =










































1 + Σπ′ is a direct subtree of πnumOfSuccesses(π′) if v0 ∈ Suc(G)

numOfSuccesses(π′) · numOfSuccesses(π′′) if v0 ∈ Split(G), π has two

direct subtrees π′ and π′′

0 if v0 ∈ Split(G), π has only one

direct subtree

Σπ′ is a direct subtree of πnumOfSuccesses(π′) otherwise

Finally, for each tree path π we define size(π) as follows:

size((n0, v0, p0), . . . ) =


































1 + size(π′) + numOfSuccesses(π′) · size(π′′) if v0 ∈ Split(G), π has two direct

subtrees π′ and π′′ where the

root of π′ is (nj , vj , n0) and

vj = Succ1(v0)

1 + Σπ′ is a direct subtree of πsize(π
′) otherwise

The following lemma shows how a concrete evaluation is simulated by a deriva-

tion graph, i.e., how a tree path through the graph is constructed for a concrete

evaluation.

Lemma C4 (Tree Paths for Evaluation in Derivation Graph)

Let ♯a(S, S
′) denote the number of answer substitutions which are added between

two concrete states S and S′. Let Sstartγstart ∈ CON (Sstart ;KB start) with

Sstart ;KB start = s ∈ G for a derivation graph G = (V,E) and there is a prefix of an

evaluation with ℓ steps from Sstartγstart to a state Sc
end . Then there are two finite

tree paths πa = (1, va1 , p
a
1), . . . , (ka, v

a
ka
, paka

) and πb = (1, vb1, p
b
1), . . . , (kb, v

b
kb
, pbkb

)

w.r.t. G with the following properties:
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• va1 = vb1 = s

• For all i ∈ {1, . . . , ka} there are concretizations γi and variable renamings ρi on

N such that the evaluation reaches a state extension of Siγiρi where vai = Si;KBi

and Siγi ∈ CON (Si;KBi).

• For all i ∈ {1, . . . , kb} there are concretizations γi and variable renamings ρi on

N such that the evaluation reaches a state extension of Siγiρi where vbi = Si;KBi

and Siγi ∈ CON (Si;KBi).

• ♯a(Sstartγstart , S
c
end) ≤ numOfSuccesses(πa)

• ℓ ∈ O(size(πb))

Proof

We perform the proof by induction over the lexicographic combination of first the

length ℓ of the evaluation and second the edge relation of G′. Here, G′ is like G

except that it only contains outgoing edges of Inst, Parallel, and Split nodes.

Note that this induction relation is indeed well founded as G′ is an acyclic and

finite graph. The reason is that when traversing nodes (S;KB) in G′, the number

of terms in S cannot increase. Since this number is strictly decreased in Parallel

and Split nodes, any infinite path in G′ must in the end only traverse Inst nodes.

This is in contradiction to the definition of termination graphs which disallows

cycles consisting only of Inst edges.

We first show that the lemma holds for nodes Sstart ;KB start where one of the

abstract rules Inst, Parallel, or Split has been applied. Here, whenever we have

to define the concretization γi and the variable renaming ρi and if these are not

specified, then γi = γstart and ρi = id .

• If we applied the Inst rule to s, we have Succ1(s) = Sinst;KB′′ with Sstart =

S′instµ where S′inst is a scope variant of Sinst. By Lemma A11 we know that there

is a concretization γ′′ such that Sinstγ
′′ ∈ CON (Sinst;KB′′) and Sstartγstart =

S′instγ
′′µ|N . As µ|N is a variable renaming and S′inst is a scope variant of Sinst,

we conclude that the evaluation from Sstartγstart to a state extension of Sc
end can

be completely simulated by a corresponding evaluation from Sinstγ
′′ to a state

extension of a state Sc′

end of length ℓ where the only difference is the applica-

tion of µ|N . To be more precise, if Si is the i-th state in the evaluation from

Sstartγstart to a state extension of Sc
end then there also is an i-th state S′i in the

evaluation from Sinstγ
′′ to a state extension of Sc′

end and S′iµ|N = Si. Hence,

we can use the induction hypothesis for the latter evaluation to obtain two tree

paths π′a and π′b, each with root Sinst;KB′′. To obtain πa and πb from π′a and π′b,

we first modify all variable renamings by additionally adding µ|N (ρi = ρ′iµ|N ).

Then we add the node Sstart ;KB start as new root and start the paths with the

edge from Sstart ;KB start to Sinst,KB′′. Obviously, we did not change the num-

ber of answer substitutions and have ♯a(Sstartγstart , S
c
end) = ♯a(Sinstγ

′′, Sc′

end) ≤

numOfSuccesses(π′a) = numOfSuccesses(πa) and ℓ ∈ O(size(π′b)) = O(size(π′b) +

1) = O(size(πb)).

• If we applied the Parallel rule to s, we reach two states S1;KB start and

S2;KB start where Sstart = S1 | S2. There are two cases depending on whether
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the evaluation contains the complete evaluation of S1γstart , i.e., for each evaluation

step from a state S to a state S′ in the evaluation of S1γstart , there are two suc-

cessive states S′′ and S′′′ in the evaluation of Sstartγstart such that S′′ is a state

extension of S, S′′′ is a state extension of S′, and the evaluation step between S′′

and S′′′ is performed with the same inference rule as for S and S′. If the evaluation

contains such a sub-evaluation, we can apply the induction hypothesis to obtain

two tree paths π′a and π′b for the evaluation of S1γstart , since either the evaluation

of Sstartγstart is longer or it has the same length while we have one Parallel edge

less to consider. If the evaluation of Sstartγstart is not longer, then we obtain the

desired tree paths πa and πb by inserting the step from s to Succ1(s) before π′a
and π′b, respectively. Clearly, we have ♯a(Sstartγstart , S

c
end) = ♯a(S1γstart , S

c′

end) ≤

numOfSuccesses(π′a) = numOfSuccesses(πa) and ℓ ∈ O(size(π′b)) = O(size(π′b) +

1) = O(size(πb)). If the evaluation of Sstartγstart is longer than the one of S1γstart ,

then we know by Lemma A9 that S2γstart is reached from Sstartγstart by the eval-

uation or that a state ?m for some m ∈ IN is reached directly after completing the

evaluation of S1γstart . In the latter case, the evaluation takes exactly one more step

to reach Sc
end = ε after completing the evaluation of S1γstart . Again, we obtain

the desired tree paths πa and πb by inserting the step from s to Succ1(s) before

π′a and π′b, respectively. Then we have ♯a(Sstartγstart , S
c
end) = ♯a(S1γstart , S

c′

end) ≤

numOfSuccesses(π′a) = numOfSuccesses(πa) and ℓ = ℓ− 1 + 1 ∈ O(size(π′b) + 1) =

O(size(πb)). In the former case, we can apply the induction hypothesis to Succ2(s)

to obtain two further tree paths π′′a and π′′b . The desired tree paths πa and πb are then

built by having s as the root with two successors: π′a or π′b is the left subtree and π′′a
or π′′b is the right subtree, respectively. Let the evaluation of S1γstart take ℓ′ steps.

Then the remaining evaluation from S2γstart to Sc
end takes ℓ− ℓ′ steps and we have

ℓ = ℓ− ℓ′+ ℓ′ ∈ O(size(π′′b ) + size(π′b)) = O(size(π′′b ) + size(π′b) + 1) = O(size(πb)).

Moreover, we have ♯a(Sstartγstart , S
c
end) = ♯a(S1γstart , S

c′

end) + ♯a(S2γstart , S
c′

end) ≤

numOfSuccesses(π′a) + numOfSuccesses(π′′a) = numOfSuccesses(πa). If the evalua-

tion does not contain the complete evaluation of S1γstart , then the case is analogous

to the case where the comlete evaluation of S1γstart has the same length as the eval-

uation of Sstartγstart , because we know by Lemma A9 that a state prefix of Sc
end

must be reachable from S1γstart .

• If we applied the Split rule to s, we know that Sstart = t, Q, Succ1(s) = t;KB start

and Succ2(s) = Qδ;KB′. We use the induction hypothesis on Succ1(s) to obtain

two tree paths πt
a and πt

b. There are two cases depending on whether the evaluation

produces an answer substitution (in the evaluation, this will only be a candidate

for an answer substitution) for tγstart .

If no answer substitution is produced for tγstart during the evaluation from

Sstartγstart to Sc
end , then we obtain the desired tree paths by simply adding s before

the root of πt
a and πt

b. We obtain ♯a(Sstartγstart , S
c
end) = 0 ≤ numOfSuccesses(πa)

and ℓ ∈ O(size(πt
b)) = O(size(πt

b) + 1) = O(size(πb)).

If tγstart produces at least one answer substitution during the evaluation from

Sstartγstart to Sc
end , then we consider the two (maybe equal) answer substitutions

δa and δb for tγstart such that the evaluation of Qγstartδa produces as many answer

substitutions as possible during the evaluation from Sstartγstart to S
c
end and the eval-
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uation of Qγstartδb is part of the evaluation from Sstartγstart to Sc
end and as long as

possible. By Lemma A10 we know that there are concretizations γa and γb such that

Qγstartδa = Qδγa and Qγstartδb = Qδγb. Thus, we can use the induction hypothesis

for Qδγa to obtain a tree path πQ
a . The desired tree path πa is then built by having

s as its root and πt
a as its first direct subtree and πQ

a as its second direct subtree. We

obtain

♯a(Sstartγstart , S
c
end) = Σδ′ is an answer substitution for tγstart dur-

ing the evaluation from Sstartγstart to Sc
end

♯a(Qγstartδ
′, Sc

end) ≤

numOfSuccesses(πt
a) · numOfSuccesses(πQ

a ) = numOfSuccesses(πa). Moreover, we

use the induction hypothesis for Qδγb to obtain a tree path πQ
b . There are two

cases. If size(πt
b) ≥ numOfSuccesses(πt

a) · size(π
Q
b ), then the desired tree path

πb is built by having s as its root and πt
b as its only direct subtree. Let ℓ′ be

the length of the evaluation of tγstart during the evaluation from Sstartγstart to

Sc
end . We obtain ℓ = ℓ′+Σδ′ is an answer substitution for tγstart dur-

ing the evaluation from Sstartγstart to Sc
end

(ℓ− ℓ′) ∈ O(size(πt
b)+

numOfSuccesses(πt
a) · size(π

Q
b )) = O(size(πt

b)) = O(size(πt
b) + 1) = O(size(πb)).

If size(πt
b) < numOfSuccesses(πt

a) · size(π
Q
b ), then the desired tree path πb is

built by having s as its root, πt
a as its first direct subtree and πQ

b as its second

direct subtree. We obtain ℓ = ℓ′ + Σδ′ is an answer substitution for tγstart dur-
ing the evaluation from Sstartγstart to Sc

end

(ℓ − ℓ′) ∈

O(size(πt
b)+numOfSuccesses(πt

a)·size(π
Q
b )) = O(numOfSuccesses(πt

a)·size(π
Q
b )) ⊆

O(1 + size(πt
a) + numOfSuccesses(πt

a) · size(π
Q
b )) = O(size(πb)).

For ℓ = 0 we know that Sstartγstart = Sc
end ∈ CON (Sstart ;KB start). Thus, for

γ0 = γstart and ρ0 = id we trivially obtain πa = πb = (1, s, 0) as the desired tree

path.

For ℓ > 0, we can assume that the lemma holds for evaluations of length at most

ℓ− 1.

We perform a case analysis over the first concrete inference rule applied in the

evaluation where we can assume that the abstract inference rules Inst, Parallel,

and Split were not applied to s.

• For Case we have Sstart = t, Q | Sr where root(t) /∈ BuiltInPredicates

and SliceP(t) 6= ∅ and the evaluation reaches the state

(t, Q)i1j γstart | · · · | (t, Q)imj γstart | Srγstart . So the only applicable abstract in-

ference rule for s is Case.

By applying the Case rule to s, we reach the state s′ = (t, Q)i1j | · · · | (t, Q)imj |

Sr;KB start . By the induction hypothesis we obtain the tree paths π′a and π′b with

the properties in Lemma C4 for s′. We obtain the desired tree paths πa and πb by

inserting the path from s to s′ before π′a and π′b, respectively.

• For Suc we have Sstart = � | Sr and the evaluation reaches the state Srγstart .

So the only applicable abstract inference rule for s is Suc.

By applying the Suc rule, we reach the state Sr;KB start . By the induction hy-

pothesis we obtain two tree paths π′a and π′b with the properties in Lemma C4

for Sr;KB start . Thus, we obtain the desired tree paths πa and πb by inserting the

path from s to Sr;KB start before π′a and π′b, respectively, using γstart and id for

Sr;KB start .
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• For Failure, Cut, and CutAll, the proof is analogous to the case where the

Suc rule is the first rule in the evaluation.

• For VariableError, we have Sstart = call(x), Q | Sr and the evaluation reaches

the state ε. So the only applicable abstract inference rule for s is VariableError.

By applying the VariableError rule, we reach the state ε;KB start . As the evalua-

tion has to end here, we obtain the desired tree paths πa = πb =

(1, Sstart ;KB start , 0), (2, ε;KB start , 1) using id and id for ε;KB start .

• For UndefinedError, Throw, Halt, and Halt1, the proof is analogous to

the case where the VariableError rule is the first rule in the evaluation.

• For Eval we have Sstart = (t, Q)ij | Sr and the evaluation reaches the state

B′iσ,Qγstartσ | Srγstart as defined in the Eval rule. From the soundness proof of

Backtrack we know that the only applicable abstract inference rules for s are

Eval and OnlyEval.

If we applied the Eval rule, we have Succ1(s) = B′iσ
′, Qσ′ | Srσ|G ;KB′ as defined

in Eval. From the soundness proof of Eval we know that there is a concretization

γ′′ w.r.t. KB′ with B′iσ
′γ′′, Qσ′γ′′ | Srσ|Gγ

′′ = B′iσ,Qγstartσ | Srγstart . By the

induction hypothesis we obtain two tree paths π′a and π′b with the properties in

Lemma C4 for B′iσ
′, Qσ′ | Srσ|G ;KB′. Thus, we obtain the desired tree paths πa

and πb by inserting the path from s to B′iσ
′, Qσ′ | Srσ|G ;KB′ before π′a and π′b,

respectively, using γ′′ and id for B′iσ
′, Qσ′ | Srσ|G ;KB′.

If we applied the OnlyEval rule, we have Succ1(s) = B′iσ
′, Qσ′ | Srσ|G ;KB′ again

and, hence, the same case as for Eval.

• For Backtrack we have Sstart = (t, Q)ij | Sr and the evaluation reaches the

state Srγstart . From the soundness proof of OnlyEval, we know that the only

applicable abstract inference rules for s are Eval and Backtrack.

If we applied the Eval rule, we have Succ2(s) = Sr;KB′ as defined in Eval where

we know by the soundness proof of Eval that γstart is a concretization w.r.t. KB′.

By the induction hypothesis we obtain two tree paths π′a and π′b with the properties

in Lemma C4 for Sr;KB′. Thus, we obtain the desired tree paths πa and πb by

inserting the path from s to Sr;KB′ before π′a and π′b, respectively, using γstart
and id for Sr;KB′.

If we applied the Backtrack rule, we have Succ1(s) = Sr;KB′ and, hence, the

same case for Succ1(s) here as for Succ2(s) in the case of Eval.

• For Call we have Sstart = call(t′), Q | Sr and the evaluation reaches the state

t′′γstart , Qγstart | ?m | Srγstart for t′′ = Transformed(t′,m). So the only applicable

abstract inference rule for s is Call.

By applying the Call rule, we reach the state t′′, Q | ?m | Sr;KB start . By the

induction hypothesis, we obtain two tree paths π′a and π′b with the properties in

Lemma C4 for t′′, Q | ?m | Sr;KB start . Thus, we obtain the desired tree paths πa

and πb by inserting the path from s to t′′, Q | ?m | Sr;KB start before π′a and π′b,

respectively, using γstart and id for t′′, Q | ?m | Sr;KB start .

• For AtomicFail we have Sstart = atomic(t′), Q | Sr where t′γstart is no con-

stant and the evaluation reaches the state Srγstart . So the only applicable abstract

inference rules for s are AtomicFail and AtomicCase.

If we applied the AtomicCase rule, we have Succ2(s) = Sr;KB start . By the in-
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duction hypothesis we obtain two tree paths π′a and π′b with the properties in

Lemma C4 for Sr;KB start . Thus, we obtain the desired tree paths πa and πb by

inserting the path from s to Sr;KB start before π′a and π′b, respectively, using γstart
and id for Sr;KB start .

If we applied the AtomicFail rule, we have Succ1(s) = Sr;KB start and, hence,

the same case for Succ1(s) here as for Succ2(s) in the case of AtomicCase.

• For AtomicSuccess we have Sstart = atomic(t′), Q | Sr where t′γstart is a con-

stant and the evaluation reaches the state Qγstart | Srγstart . So the only applicable

abstract inference rules for s are AtomicSuccess and AtomicCase.

If we applied the AtomicCase rule, we have Succ1(s) = Q | Sr;KB′ as defined for

AtomicCase where we know by the soundness proof of AtomicCase that γstart is

a concretization w.r.t. KB′. By the induction hypothesis we obtain two tree paths

π′a and π′b with the properties in Lemma C4 for Q | Sr;KB′. Thus, we obtain the

desired tree paths πa and πb by inserting the path from s to Q | Sr;KB′ before π′a
and π′b, respectively, using γstart and id for Q | Sr;KB′.

If we applied the AtomicSuccess rule, we have Succ1(s) = Q | Sr;KB′ again and,

hence, the same case as for AtomicCase.

• For CompoundFail, EqualsFail, and NonvarFail, the proof is analogous to

the case for AtomicFail.

• ForCompoundSuccess,NonvarSuccess,NoUnifySuccess, andUnequals-

Success, the proof is analogous to the case for AtomicSuccess.

• For Conjunction we have Sstart = ,(t1, t2), Q | Sr and the evaluation reaches

the state t1, t2, Q | Sr. So the only applicable abstract inference rule for s is Con-

junction.

By applying the Conjunction rule, we have Succ1(s) = t1, t2, Q | Sr;KB start . By

the induction hypothesis, we obtain two tree paths π′a and π′b with the properties

in Lemma C4 for t1, t2, Q | Sr;KB start . Thus, we obtain the desired tree paths

πa and πb by inserting the path from s to t1, t2, Q | Sr;KB start before π′a and π′b,

respetively, using γstart and id for t1, t2, Q | Sr;KB start .

• ForDisjunction, IfThen, IfThenElse,Not,Once, and Repeat, the proof is

analogous to the case where theConjunction rule is the first rule in the evaluation.

• For EqualsSuccess we have Sstart = ==(t1, t2), Q | Sr where t1γstart = t2γstart
and the evaluation reaches the state Qγstart | Srγstart . So the only applicable ab-

stract inference rules for s are EqualsSuccess and EqualsCase.

If we applied the EqualsCase rule, we have Succ1(s) = Qσ | Srσ;KB′ as defined

for EqualsCase where we know by the soundness proof of EqualsCase that

γstart = σγstart is a concretization w.r.t. KB′. By the induction hypothesis, we ob-

tain two tree paths π′a and π′b with the properties in Lemma C4 for Qσ | Srσ;KB′.

Thus, we obtain the desired tree paths πa and πb by inserting the path from s to

Qσ | Srσ;KB′ before π′a and π′b, respetively, using γstart and id for Qσ | Srσ;KB′.

If we applied the EqualsSuccess rule, we have t1 = t2 and Succ1(s) = Q |

Sr;KB start . By the induction hypothesis, we obtain two tree paths π′a and π′b with

the properties in Lemma C4 for Q | Sr;KB start . Thus, we obtain the desired tree

paths πa and πb by inserting the path from s to Q | Sr;KB start before π′a and π′b,

respectively, using γstart and id for Q | Sr;KB start .
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• For Fail we have Sstart = fail, Q | Sr. So the only applicable abstract inference

rule for s is Fail.

By applying the Fail rule, we have Succ1(s) = Sr;KB start . By the induction hy-

pothesis, we obtain two tree paths π′a and π′b with the properties in Lemma C4

for Sr;KB start . Thus, we obtain the desired tree paths πa and πb by inserting the

path from s to Sr;KB start before π′a and π′b, respectively, using γstart and id for

Sr;KB start .

• ForNewline we have Sstart = nl, Q | Sr. So the only applicable abstract inference

rule for s is Newline.

By applying the Newline rule, we have Succ1(s) = Q | Sr;KB start . By the in-

duction hypothesis, we obtain two tree paths π′a and π′b with the properties in

Lemma C4 for Q | Sr;KB start . Thus, we obtain the desired tree paths πa and πb

by inserting the path from s to Q | Sr;KB start before π′a and π′b, respectively.

• For NoUnifyFail we have Sstart = \=(t1, t2), Q | Sr where t1γstart ∼ t2γstart
and the evaluation reaches the state Srγstart . From the soundness proof of NoUni-

fySuccess we know that the only applicable abstract inference rules for s are

NoUnifyCase and NoUnifyFail.

If we applied the NoUnifyCase rule, we have Succ2(s) = Srσ|G ;KB′ as defined

in NoUnifyCase. From the soundness proof of NoUnifyCase we know that

γstart = σGγstart is a concretization w.r.t. KB′. By the induction hypothesis, we

obtain two tree paths π′a and π′b with the properties in Lemma C4 for Srσ|G ;KB′.

Thus, we obtain the desired tree paths πa and πb by inserting the path from s to

Srσ|G ;KB′ before π′a and π′b, respectively, using γstart and id for Srσ|G ;KB′.

If we applied theNoUnifyFail rule, we have Succ1(s) = Srγstart |G ;KB′ again and,

hence the same case for Succ1(s) here as for Succ2(s) in the case of NoUnifyCase.

• For True, the proof is analogous to the case for Newline.

• For UnequalsFail we have Sstart = \==(t1, t2), Q | Sr where t1γstart = t2γstart
and the evaluation reaches the state Srγstart . So the only applicable abstract infer-

ence rules for s are UnequalsFail and UnequalsCase.

If we applied the UnequalsCase rule, we have Succ2(s) = Srσ;KB′ as defined for

UnequalsCase where we know by the soundness proof of UnequalsCase that

γstart = σγstart is a concretization w.r.t. KB′. By the induction hypothesis, we

obtain two tree paths π′a and π′b with the properties in Lemma C4 for Srσ;KB′.

Thus, we obtain the desired tree paths πa and πb by inserting the path from s to

Srσ;KB′ before π′a and π′b, respectively, using γstart and id for Srσ;KB′.

If we applied the UnequalsFail rule, we have t1 = t2 and Succ1(s) = Sr;KB start .

By the induction hypothesis, we obtain two tree paths π′a and π′b with the properties

in Lemma C4 for Sr;KB start . Thus, we obtain the desired tree paths πa and πb by

inserting the path from s to Sr;KB start before π′a and π′b, respectively, using γstart
and id for Sr;KB start .

• For UnifyFail, the proof is analogous to the case for Backtrack.

• For UnifySuccess, the proof is analogous to the case for Eval.

• For VarFail we have Sstart = var(t′), Q | Sr where t′γstart is no variable and

the evaluation reaches the state Srγstart . So the only applicable abstract inference

rules for s are VarFail and VarCase.
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If we applied theVarCase rule and s has j children, we have Succj(s) = Sr;KB start .

By the induction hypothesis we obtain two tree paths π′a and π′b with the properties

in Lemma C4 for Sr;KB start . Thus, we obtain the desired tree paths πa and πb by

inserting the path from s to Sr;KB start before π′a and π′b, respectively, using γstart
and id for Sr;KB start .

If we applied the VarFail rule, we have Succ1(s) = Sr;KB start and, hence, the

same case for Succ1(s) here as for Succj(s) in the case of VarCase.

• For VarSuccess we have Sstart = var(t′), Q | Sr where t′γstart ∈ N and the

evaluation reaches the state Qγstart | Srγstart . So the only applicable abstract

inference rules for s are VarSuccess and VarCase.

Since t′γstart ∈ N , we know that t′ ∈ A \ G.

If we applied the VarCase rule and s has j children, there are two cases depending

on whether t′γstart ∈ N (Q) ∪N (Sr) ∪N (KB start).

If t′γstart ∈ N (Q) ∪N (Sr) ∪N (KB start), then there is an index j′ with 1 < j′ < j

and Succ′j(s) = Qσj′+1 | Srσj′+1;KB startσj′+1 where σj′+1 = [t′/t′γstart ]. Thus, we

have Qσj′+1γstart | Srσj′+1γstart = Qγstart | Srγstart and γstart is a concretization

w.r.t. KB startσj′+1. By the induction hypothesis we obtain two tree paths π′a and

π′b with the properties in Lemma C4 for Qσj′+1 | Srσj′+1;KB startσj′+1. Thus, we

obtain the desired tree paths πa and πb by inserting the path from s to Qσj′+1 |

Srσj′+1;KB startσj′+1 before π′a and π′b, respectively.

If t′γstart /∈ N (Q) ∪ N (Sr) ∪ N (KB start), then we have Succ1(s) =

Qσ0 | Srσ0;KB startσ0 where σ0 = [t′/x] and x ∈ Nfresh . By the soundness proof

of VarCase, we know that there is a concretization γ′′ w.r.t. KB startσ0 and a

variable renaming ρ′ on N such that γstartρ
′ = γ′′ and Qσ0γstartρ

′ | Srσ0γstartρ
′ =

Qσ0γ
′′ | Srσ0γ

′′ = Qγ′′ | Srγ
′′. By the induction hypothesis, we obtain two tree

paths π′a and π′b with the properties in Lemma C4 for Qσ0 | Srσ0;KB startσ0. Thus,

using γstart and ρ′ for Qσ0 | Srσ0;KB startσ0 we obtain the desired tree paths πa

and πb by inserting the path from s to Qσ0 | Srσ0;KB startσ0 before π′a and π′b,

respectively.

If we applied the VarSuccess rule, then we have Succ1(s) = Q | Sr;KB start . By

the induction hypothesis, we obtain two tree paths π′a and π′b with the properties

in Lemma C4 for Q | Sr;KB start . Thus, we obtain the desired tree paths πa and

πb by inserting the path from s to Q | Sr;KB start before π′a and π′b, respectively.

• For Write we have Sstart = write(t′), Q | Sr. So the only applicable abstract

inference rule for s is Write.

By applying the Write rule, we have Succ1(s) = Q | Sr;KB start . By the induction

hypothesis, we obtain two tree paths π′a and π′b with the properties in Lemma C4

for Q | Sr;KB start . Thus, we obtain the desired tree paths πa and πb by inserting

the path from s to Q | Sr;KB start before π′a and π′b, respectively.

• For WriteCanonical and Writeq, the proof is analogous to the case for

Write.

Next, we show that we can use the same concretization and variable renaming

as long as we do not traverse Inst nodes.
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Lemma C5 (Single Concretization and Variable Renaming)

Given a path π = s1 . . . sk with nj /∈ Inst(G) for all j ∈ {1, . . . , k − 1} and an

evaluation such that there are variable renamings ρ1, . . . , ρk and concretizations

γ1, . . . , γk w.r.t. KB1, . . . ,KBk where ni = Si;KBi for all i ∈ {1, . . . , k} and the

evaluation goes from a state extension of S1γ1ρ1 to a state extension of Skγkρk by

reaching state extensions of all Siγiρi, then there is a variable renaming ρ and a

concretization γ w.r.t. all knowledge bases KBi such that Siγiρi = Siγρ.

Proof

We perform the proof by induction over the length k of the path π.

For k = 1, we have s1 = sk and only one variable renaming and concretization

γ1ρ1 = γρ. Hence, the lemma trivially holds.

For k > 1, we can assume the lemma holds for paths of length at most k− 1. By

inspection of all abstract inference rules other than Inst, we know that only fresh

variables are introduced by these rules. We perform a case analysis over s1 and s2.

• If s1 ∈ Split(G) and s2 = Succ2(s1), i.e., we traverse the right child of a Split

node, we have s1 = t, Q;KB and s2 = Qµ;KB′ as defined in the Split rule. By

the induction hypothesis, we obtain a variable renaming ρ and a concretization γ′

w.r.t. KBj for all j ∈ {2, . . . , k} such that Sjγjρj = Sjγ
′ρ. In particular, we have

Qµγ2ρ2 = Qµγ′ρ. By Lemma A10 and the fact that the evaluation reaches a state

extension of Qµγ2ρ2 from a state extension of (t, Q)γ1ρ1 with some answer substitu-

tion µ′, we obtain γ1ρ1µ
′ = µγ2ρ2 with γ1|A(t)∪A(Q)∪A(KB) = γ2|A(t)∪A(Q)∪A(KB)

and ρ1 = ρ2. Since only fresh abstract variables are introduced along π, we have

for all abstract variables T ∈ (A(t) ∪ A(Q) ∪ A(KB)) \ (A(Qµ) ∪ A(KB′)) that

T /∈ A(Sj) ∪ A(KBj). Hence, we can define the concretization γ by Tγ = Tγ1
for T ∈ (A(t) ∪ A(Q) ∪ A(KB)) \ (A(Qµ) ∪ A(KB′)) and Tγ = Tγ′ otherwise.

Then we obviously have Siγρ = Siγiρi for all i ∈ {1, . . . , k} and Sjγρ = Sjγ
′ρ

for all j ∈ {2, . . . , k}. As γ is equally defined to γ′ for all variables occurring in

the knowledge bases KBj , we clearly have that γ is a concretization w.r.t. KBj .

Moreover, as γ is equally defined to γ1 for all variables occurring in KB1, it is also

a concretization w.r.t. KB1.

• If s1 ∈ Eval(G) and s2 = Succ1(s1), i.e., we traverse the left child of an Eval

node, we have s1 = (t, Q)cm | S;KB and s2 = B′cσ
′, Qσ′ | Sσ|G ;KB′ as defined in

the Eval rule. By the induction hypothesis, we obtain a variable renaming ρ and

a concretization γ′ w.r.t. KBj for all j ∈ {2, . . . , k} such that Sjγjρj = Sjγ
′ρ. In

particular, we have B′cσ
′γ2ρ2, Qσ′γ2ρ2 | Sσ|Gγ2ρ2 = B′cσ

′γ′ρ,Qσ′γ′ρ | Sσ|Gγ
′ρ. By

the soundness proof of Eval and the fact that the evaluation reaches a state ex-

tension of B′cσ
′γ2ρ2, Qσ′γ2ρ2 | Sσ|Gγ2ρ2 from a state extension of (t, Q)cmγ1ρ1 |

Sγ1ρ1 with answer substitution σ′′ and ρ1 = ρ2, we obtain γ1ρ1σ
′′ = σ′γ2ρ2

with γ1|A(t)∪A(Q)∪A(S)∪A(KB) = γ2|A(t)∪A(Q)∪A(S)∪A(KB). Since only fresh ab-

stract variables are introduced along π, we have for all abstract variables T ∈

(A(t) ∪ A(Q) ∪ A(S) ∪ A(KB)) \ (A(B′cσ
′) ∪ A(Qσ′) ∪ A(Sσ|G) ∪ A(KB′)) that

T /∈ A(Sj) ∪ A(KBj). Hence, we can define the concretization γ by Tγ = Tγ1 for

T ∈ (A(t)∪A(Q)∪A(S)∪A(KB))\ (A(B′cσ
′)∪A(Qσ′)∪A(Sσ|G)∪A(KB′)) and
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Tγ = Tγ′ otherwise. Then we obviously have Siγρ = Siγiρi for all i ∈ {1, . . . , k}

and Sjγρ = Sjγ
′ρ for all j ∈ {2, . . . , k}. As γ is equally defined to γ′ for all variables

occurring in the knowledge bases KBj , we clearly have that γ is a concretization

w.r.t. KBj . Moreover, as γ is equally defined to γ1 for all variables occurring in

KB1, it is also a concretization w.r.t. KB1.

• If s1 ∈ OnlyEval(G) and s2 = Succ1(s1), i.e., we traverse an OnlyEval node,

we have s1 = (t, Q)cm | S;KB and s2 = B′cσ
′, Qσ′ | Sσ|G ;KB′ as defined in

the OnlyEval rule. By the induction hypothesis, we obtain a variable renaming

ρ and a concretization γ′ w.r.t. KBj for all j ∈ {2, . . . , k} such that Sjγjρj =

Sjγ
′ρ. In particular, we have B′cσ

′γ2ρ2, Qσ′γ2ρ2 | Sσ|Gγ2ρ2 = B′cσ
′γ′ρ,Qσ′γ′ρ |

Sσ|Gγ
′ρ. By the soundness proof of OnlyEval and the fact that the evaluation

reaches a state extension of B′cσ
′γ2ρ2, Qσ′γ2ρ2 | Sσ|Gγ2ρ2 from a state extension of

(t, Q)cmγ1ρ1 | Sγ1ρ1 with answer substitution σ′′ and ρ1 = ρ2, we obtain γ1ρ1σ
′′ =

σ′γ2ρ2 with γ1|A(t)∪A(Q)∪A(S)∪A(KB) = γ2|A(t)∪A(Q)∪A(S)∪A(KB). Since only fresh

abstract variables are introduced along π, we have for all abstract variables T ∈

(A(t) ∪ A(Q) ∪ A(S) ∪ A(KB)) \ (A(B′cσ
′) ∪ A(Qσ′) ∪ A(Sσ|G) ∪ A(KB′)) that

T /∈ A(Sj) ∪ A(KBj). Hence, we can define the concretization γ by Tγ = Tγ1 for

T ∈ (A(t)∪A(Q)∪A(S)∪A(KB))\ (A(B′cσ
′)∪A(Qσ′)∪A(Sσ|G)∪A(KB′)) and

Tγ = Tγ′ otherwise. Then we obviously have Siγρ = Siγiρi for all i ∈ {1, . . . , k}

and Sjγρ = Sjγ
′ρ for all j ∈ {2, . . . , k}. As γ is equally defined to γ′ for all variables

occurring in the knowledge bases KBj , we clearly have that γ is a concretization

w.r.t. KBj . Moreover, as γ is equally defined to γ1 for all variables occurring in

KB1, it is also a concretization w.r.t. KB1.

• If s1 ∈ UnifyCase(G) and s2 = Succ1(s1), i.e., we traverse the left child of a

UnifyCase node, we have s1 = =(t1, t2), Q | S;KB and s2 = Qσ′ | Sσ|G ;KB′ as

defined in the UnifyCase rule. By the induction hypothesis we obtain a variable

renaming ρ and a concretization γ′ w.r.t. KBj for all j ∈ {2, . . . , k} such that

Sjγjρj = Sjγ
′ρ. In particular, we have Qσ′γ2ρ2 | Sσ|Gγ2ρ2 = Qσ′γ′ρ | Sσ|Gγ

′ρ.

By the soundness proof of UnifyCase and the fact that the evaluation reaches a

state extension of Qσ′γ2ρ2 | Sσ|Gγ2ρ2 from a state extension of (=(t1, t2), Q)γ1ρ1 |

Sγ1ρ1 with answer substitution σ′′ and ρ1 = ρ2, we obtain γ1ρ1σ
′′ = σ′γ2ρ2 with

γ1|A(t1)∪A(t2)∪A(Q)∪A(S)∪A(KB) = γ2|A(t1)∪A(t2)∪A(Q)∪A(S)∪A(KB). Since only fresh

abstract variables are introduced along π, we have for all abstract variables T ∈

(A(t1) ∪ A(t2) ∪ A(Q) ∪ A(S) ∪ A(KB)) \ (A(Qσ′) ∪ A(Sσ|G) ∪ A(KB′)) that

T /∈ A(Sj) ∪ A(KBj). Hence, we can define the concretization γ by Tγ = Tγ1 for

T ∈ (A(t1) ∪A(t2) ∪A(Q) ∪A(S) ∪A(KB)) \ (A(Qσ′) ∪A(Sσ|G) ∪A(KB′)) and

Tγ = Tγ′ otherwise. Then we obviously have Siγρ = Siγiρi for all i ∈ {1, . . . , k}

and Sjγρ = Sjγ
′ρ for all j ∈ {2, . . . , k}. As γ is equally defined to γ′ for all variables

occurring in the knowledge bases KBj , we clearly have that γ is a concretization

w.r.t. KBj . Moreover, as γ is equally defined to γ1 for all variables occurring in

KB1, it is also a concretization w.r.t. KB1.

• If s1 ∈ UnifySuccess(G) and s2 = Succ1(s1), i.e., we traverse a UnifySuccess

node, we have s1 = =(t1, t2), Q | S;KB and s2 = Qσ′ | Sσ|G ;KB′ as defined

in the UnifySuccess rule. By the induction hypothesis, we obtain a variable

renaming ρ and a concretization γ′ w.r.t. KBj for all j ∈ {2, . . . , k} such that
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Sjγjρj = Sjγ
′ρ. In particular, we have Qσ′γ2ρ2 | Sσ|Gγ2ρ2 = Qσ′γ′ρ | Sσ|Gγ

′ρ. By

the soundness proof of UnifySuccess and the fact that the evaluation reaches a

state extension of Qσ′γ2ρ2 | Sσ|Gγ2ρ2 from a state extension of (=(t1, t2), Q)γ1ρ1 |

Sγ1ρ1 with answer substitution σ′′ and ρ1 = ρ2, we obtain γ1ρ1σ
′′ = σ′γ2ρ2

with γ1|A(t1)∪A(t2)∪A(Q)∪A(S)∪A(KB) = γ2|A(t1)∪A(t2)∪A(Q)∪A(S)∪A(KB). Since only

fresh abstract variables are introduced along π, we have for all abstract variables

T ∈ (A(t1)∪A(t2)∪A(Q)∪A(S)∪A(KB)) \ (A(Qσ′)∪A(Sσ|G)∪A(KB′)) that

T /∈ A(Sj) ∪ A(KBj). Hence, we can define the concretization γ by Tγ = Tγ1 for

T ∈ (A(t1) ∪A(t2) ∪A(Q) ∪A(S) ∪A(KB)) \ (A(Qσ′) ∪A(Sσ|G) ∪A(KB′)) and

Tγ = Tγ′ otherwise. Then we obviously have Siγρ = Siγiρi for all i ∈ {1, . . . , k}

and Sjγρ = Sjγ
′ρ for all j ∈ {2, . . . , k}. As γ is equally defined to γ′ for all variables

occurring in the knowledge bases KBj , we clearly have that γ is a concretization

w.r.t. KBj . Moreover, as γ is equally defined to γ1 for all variables occurring in

KB1, it is also a concretization w.r.t. KB1.

• If s1 ∈ NoUnifyCase(G) and s2 = Succ2(s1), i.e., we traverse the right child of

a NoUnifyCase node, we have s1 = \=(t1, t2), Q | S;KB and s2 = Sσ|G ;KB′

as defined in the NoUnifyCase rule. By the induction hypothesis we obtain a

variable renaming ρ and a concretization γ′ w.r.t. KBj for all j ∈ {2, . . . , k}

such that Sjγjρj = Sjγ
′ρ. In particular, we have Sσ|Gγ2ρ2 = Sσ|Gγ

′ρ. By the

soundness proof of NoUnifyCase and the fact that the evaluation reaches a state

extension of Sσ|Gγ2ρ2 from a state extension of (\=(t1, t2), Q)γ1ρ1 | Sγ1ρ1 with

answer substitution σ′′ and ρ1 = ρ2, we obtain γ1ρ1σ
′′ = σ′γ2ρ2 with

γ1|A(t1)∪A(t2)∪A(Q)∪A(S)∪A(KB) = γ2|A(t1)∪A(t2)∪A(Q)∪A(S)∪A(KB). Since only fresh

abstract variables are introduced along π, we have for all abstract variables T ∈

(A(t1) ∪ A(t2) ∪ A(Q) ∪ A(S) ∪ A(KB)) \ (A(Qσ′) ∪ A(Sσ|G) ∪ A(KB′)) that

T /∈ A(Sj) ∪ A(KBj). Hence, we can define the concretization γ by Tγ = Tγ1 for

T ∈ (A(t1) ∪A(t2) ∪A(Q) ∪A(S) ∪A(KB)) \ (A(Qσ′) ∪A(Sσ|G) ∪A(KB′)) and

Tγ = Tγ′ otherwise. Then we obviously have Siγρ = Siγiρi for all i ∈ {1, . . . , k}

and Sjγρ = Sjγ
′ρ for all j ∈ {2, . . . , k}. As γ is equally defined to γ′ for all variables

occurring in the knowledge bases KBj , we clearly have that γ is a concretization

w.r.t. KBj . Moreover, as γ is equally defined to γ1 for all variables occurring in

KB1, it is also a concretization w.r.t. KB1.

• If s1 ∈ NoUnifyFail(G) and s2 = Succ1(s1), i.e., we traverse a NoUnifyFail

node, we have s1 = \=(t1, t2), Q | S;KB and s2 = Sσ|G ;KB′ as defined in the

NoUnifyFail rule. By the induction hypothesis, we obtain a variable renaming ρ

and a concretization γ′ w.r.t. KBj for all j ∈ {2, . . . , k} such that Sjγjρj = Sjγ
′ρ.

In particular, we have Sσ|Gγ2ρ2 = Sσ|Gγ
′ρ. By the soundness proof of NoUni-

fyFail and the fact that the evaluation reaches a state extension of Sσ|Gγ2ρ2
from a state extension of (\=(t1, t2), Q)γ1ρ1 | Sγ1ρ1 with answer substitution σ′′

and ρ1 = ρ2, we obtain γ1ρ1σ
′′ = σ′γ2ρ2 with γ1|A(t1)∪A(t2)∪A(Q)∪A(S)∪A(KB) =

γ2|A(t1)∪A(t2)∪A(Q)∪A(S)∪A(KB). Since only fresh abstract variables are introduced

along π, we have for all abstract variables T ∈ (A(t1) ∪ A(t2) ∪ A(Q) ∪ A(S) ∪

A(KB))\ (A(Qσ′)∪A(Sσ|G)∪A(KB′)) that T /∈ A(Sj)∪A(KBj). Hence, we can

define the concretization γ by Tγ = Tγ1 for T ∈ (A(t1) ∪ A(t2) ∪ A(Q) ∪ A(S) ∪

A(KB))\(A(Qσ′)∪A(Sσ|G)∪A(KB′)) and Tγ = Tγ′ otherwise. Then we obviously
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have Siγρ = Siγiρi for all i ∈ {1, . . . , k} and Sjγρ = Sjγ
′ρ for all j ∈ {2, . . . , k}. As

γ is equally defined to γ′ for all variables occurring in the knowledge bases KBj , we

clearly have that γ is a concretization w.r.t. KBj . Moreover, as γ is equally defined

to γ1 for all variables occurring in KB1, it is also a concretization w.r.t. KB1.

• If s1 ∈ VarCase(G) and s2 = Succ1(s1), i.e., we traverse the first child of a

VarCase node where we introduce a fresh non-abstract variable, we have s1 =

var(a), Q | S;KB with a ∈ A \ G and s2 = Qσ0 | Sσ0;KBσ0 with σ0 = [a/x]

and x ∈ Nfresh as defined in the VarCase rule. By the induction hypothesis

we obtain a variable renaming ρ′ and a concretization γ′ w.r.t. KBj for all j ∈

{2, . . . , k} such that Sjγjρj = Sjγ
′ρ′. In particular, we have Qσ0γ2ρ2 | Sσ0γ2ρ2 =

Qσ0γ
′ρ′ | Sσ0γ

′ρ′. By the soundness proof of VarCase and the fact that the

evaluation reaches a state extension of Qσ0γ2ρ2 | Sσ0γ2ρ2 from a state exten-

sion of (var(a), Q)γ1ρ1 | Sγ1ρ1 with an empty answer substitution, we obtain

a variable renaming ρ such that γ1ρ1ρ = σ0γ1ρ2 = σ0γ2ρ2 and a′γ1 = a′γ2
for a′ 6= a. We define γ by a′γ = a′γ′ for a′ 6= a and aγ = aγ1. Since x is

fresh and only fresh variables are introduced along π, we have for all non-abstract

variables x′ ∈ (N (Q) ∪ N (S) ∪ N (KB)) \ (N (Qσ0) ∪ N (Sσ0) ∪ N (KB′)) that

x′ /∈ N (Sj) ∪ N (KBj). Hence, we can define the variable renaming ρ by xρ = aγ2
and x′ρ = x′ρ′ for x′ ∈ (N (Q)∪N (S)∪N (KB)) \ (N (Qσ0)∪N (Sσ0)∪N (KB′)).

Then we obviously have Siγρ = Siγiρi for all i ∈ {1, . . . , k} and Sjγρ = Sjγ
′ρ′

for all j ∈ {2, . . . , k}. Since γ is equally defined to γ′ for all variables occurring in

the knowledge bases KBj , we clearly have that γ is a concretization w.r.t. KBj .

Moreover, as γ is equally defined to γ1 for all variables occurring in KB1, it is also

a concretization w.r.t. KB1.

• For all other cases we know that γ1ρ1 = γ2ρ2. Hence, the lemma follows by the

induction hypothesis.

Furthermore, we show that our definition of skip values follows exactly the num-

ber of backtracked or cut state elements at the beginning of a state. For this we can

already use the result of Lemma C5 and show this only for evaluations using the

same concretization and variable renaming along a path. Moreover, we can assume

that the path does not end in an empty state as we cannot have any connection

paths with such a path as a subpath.

Lemma C6 (Skip Values Correspond to Backtracking or Cutting)

Given a path π = s1 . . . sk with k > 1, sj /∈ Inst(G) for all j ∈ {1, . . . , k − 1}, an

evaluation such that there is a variable renaming ρ and a concretization γ w.r.t.

KB1, . . . ,KBk where si = Si;KBi for all i ∈ {1, . . . , k} and the evaluation goes

from a state extension of S1γρ to a state extension of Skγρ by reaching state

extensions of all Siγρ, and Sk 6= ε, then σπ,0 = σs1s2,dσs2...sk,0 iff the evaluation

backtracks or cuts the first d state elements of the state extension of S2γρ until it

reaches the state extension of Skγρ.
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Proof

We perform the proof by induction over the length k of π.

For k = 2 we have σπ,0 = σs1s2,0 = σs1s2,0id = σs1s2,0σs2,0 and as the evaluation

cannot backtrack or cut any state elements from the state extension of S2 to the

same state extension of S2, the lemma holds.

For k > 2 we can assume the lemma holds for paths of length at most k − 1.

By the induction hypothesis, we obtain that σs2...sk,0 = σs2s3,d′σs3...sk,0 iff the

evaluation backtracks or cuts d′ state elements of S3γρ until it reaches the state

extension of Skγρ. By Def. B 2 we also know that σπ,0 = σs1s2,dσs2...sk for some

d ∈ IN. We perform a case analysis over s2 and s3.

• If s2 ∈ NoUnifyCase(G)∪UnequalsCase(G) and s3 = Succ2(s2), i.e., we traverse

the right child of a NoUnifyCase or UnequalsCase node, we have d = d′ + 1.

Furthermore, the evaluation backtracks exactly one state element from the state

extension of S2γρ to the state extension of S3γρ. As the evaluation backtracks or

cuts the first d′ state elements of the state extension of S3γρ, it backtracks or cuts

the first d′ + 1 = d state elements of the state extension of S2γρ and the lemma

holds.

• If s2 ∈ Parallel(G) and s3 = Succ2(s2), i.e., we traverse the right child of a

Parallel node, we have d = d′ + j where Succ1(s2) contains j state elements.

Furthermore, as the evaluation reaches a state extension of S3γρ from a state ex-

tension of S2γρ, it must backtrack or cut the first j state elements of S2γρ from the

state extension of S2γρ to the state extension of S3γρ. As the evaluation backtracks

or cuts the first d′ state elements of the state extension of S3γρ, it backtracks or

cuts the first d′+j = d state elements of the state extension of S2γρ and the lemma

holds.

• If s2 ∈ Cut(G) and s3 = Succ1(s2), i.e., we traverse a Cut node, there are two

cases depending on whether d′ = 0. If d′ = 0, then we have d = 0 and the evaluation

does not backtrack or cut any state element before the first state element of the

state extension of S3γρ. Since this first state element of the state extension of S3γρ

corresponds to the first state element of the state extension of S2γρ the evaluation

does not backtrack or cut any state element before the first state element of the

state extension of S2γρ and the lemma holds. If otherwise d′ > 0, then we have

d = d′ + j where s2 = !m, Q | S′1 | . . . | S
′
j | ?m | S′ and S′i ∈ Goal(Σ,V) \ {?m}

∀i ∈ {1, . . . , j}. Furthermore, the evaluation cuts exactly j state element from the

state extension of S2γρ to the state extension of S3γρ. Since d′ > 0, these state

elements must belong to the first state elements of the state extension of S2γρ which

are backtracked or cut during the evaluation. As the evaluation backtracks or cuts

the first d′ state elements of the state extension of S3γρ, it backtracks or cuts the

first d′ + j = d state elements of the state extension of S2γρ and the lemma holds.

• If s2 ∈ CutAll(G) and s3 = Succ1(s2), i.e., we traverse a CutAll node, we must

have d′ = 0 since otherwise the evaluation would have backtracked or cut at least

one state element of the state extension of S3γρ. As S3 contains only one state

element, this is in contradiction to the condition Sk 6= ε. So we have d = 0 and

the evaluation does not backtrack or cut any state element before the first state
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element of the state extension of S3γρ. Since this first state element of the state

extension of S3γρ corresponds to the first state element of the state extension of

S2γρ the evaluation does not backtrack or cut any state element before the first

state element of the state extension of S2γρ and the lemma holds.

• If s2 ∈ BacktrackSecond(G)\{Parallel} and s3 = Succ2(s2), we have d = d′+1.

Furthermore, the evaluation backtracks exactly one state element from the state

extension of S2γρ to the state extension of S3γρ. As the evaluation backtracks or

cuts the first d′ state elements of the state extension of S3γρ, it backtracks or cuts

the first d′ + 1 = d state elements of the state extension of S2γρ and the lemma

holds.

• If s2 ∈ Backtracking(G) and s3 = Succ1(s2), we have d = d′+1. Furthermore, the

evaluation backtracks exactly one state element from the state extension of S2γρ to

the state extension of S3γρ. As the evaluation backtracks or cuts the first d′ state

elements of the state extension of S3γρ, it backtracks or cuts the first d′ + 1 = d

state elements of the state extension of S2γρ and the lemma holds.

• If s2 ∈ VarCase(G) and s3 = Succ(j, s2) where s2 has j children, then we have

d = d′ + 1. Furthermore, the evaluation backtracks exactly one state element from

the state extension of S2γρ to the state extension of S3γρ. As the evaluation back-

tracks or cuts the first d′ state elements of the state extension of S3γρ, it backtracks

or cuts the first d′ + 1 = d state elements of the state extension of S2γρ and the

lemma holds.

• If s2 ∈ Call(G) ∪ Disjunction(G) ∪ IfThen(G) ∪ Repeat(G) and s3 = Succ1(s2),

i.e., we traverse a Call, Disjunction, IfThen, or Repeat node, then we have

d = max(0, d′−1). There are two cases depending on whether d′ > 1. If d′ > 1, then

we have d = d′ − 1. Furthermore, the evaluation introduces exactly one additional

state element from the state extension of S2γρ to the state extension of S3γρ which

belongs to the first d′ state elements of the state extension of S3γρ. As the evaluation

backtracks or cuts the first d′ state elements of the state extension of S3γρ, it

backtracks or cuts the first d′− 1 = d state elements of the state extension of S2γρ

and the lemma holds. If otherwise d′ ≤ 1, then we have d = 0. Furthermore, the

evaluation introduces exactly one additional state element from the state extension

of S2γρ to the state extension of S3γρ. As the evaluation backtracks or cuts the

first d′ state elements of the state extension of S3γρ and, thus, backtracks or cuts

at most as many state elements as introduced from the state extension of S2γρ to

the state extension of S3γρ, it backtracks or cuts no state elements before the first

state element of the state extension of S2γρ and the lemma holds.

• If s2 ∈ IfThenElse(G) ∪ Not(G) and s3 = Succ1(s2), i.e., we traverse an

IfThenElse or Not node, we have d = max(0, d′ − 2). There are two cases de-

pending on whether d′ > 2. If d′ > 2, then we have d = d′ − 2. Furthermore, the

evaluation introduces exactly two additional state elements from the state extension

of S2γρ to the state extension of S3γρ which belong to the first d′ state elements of

the state extension of S3γρ. As the evaluation backtracks or cuts the first d′ state

elements of the state extension of S3γρ, it backtracks or cuts the first d′ − 2 = d

state elements of the state extension of S2γρ and the lemma holds. If otherwise

d′ ≤ 2, then we have d = 0. Furthermore, the evaluation introduces exactly two
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additional state element from the state extension of S2γρ to the state extension of

S3γρ. As the evaluation backtracks or cuts the first d′ state elements of the state

extension of S3γρ and, thus, backtracks or cuts at most as many state elements as

introduced from the state extension of S2γρ to the state extension of S3γρ, it back-

tracks or cuts no state elements before the first state element of the state extension

of S2γρ and the lemma holds.

• If s2 ∈ Case(G) and s3 = Succ1(s2), i.e., we traverse a Case node, we have

d = max(0, d′ − j) where S2 = t, Q | Sr and |SliceP(t)| = j. There are two cases

depending on whether d′ > j. If d′ > j, then we have d = d′ − j. Furthermore, the

evaluation introduces exactly j additional state elements from the state extension

of S2γρ to the state extension of S3γρ which belong to the first d′ state elements of

the state extension of S3γρ. As the evaluation backtracks or cuts the first d′ state

elements of the state extension of S3γρ, it backtracks or cuts the first d
′−j = d state

elements of the state extension of S2γρ and the lemma holds. If otherwise d′ ≤ j,

then we have d = 0. Furthermore, the evaluation introduces exactly j additional

state element from the state extension of S2γρ to the state extension of S3γρ. As

the evaluation backtracks or cuts the first d′ state elements of the state extension

of S3γρ and, thus, backtracks or cuts at most as many state elements as introduced

from the state extension of S2γρ to the state extension of S3γρ, it backtracks or

cuts no state elements before the first state element of the state extension of S2γρ

and the lemma holds.

• For all other cases we have d = d′ and the evaluation neither backtracks or cuts

nor introduces state elements from the state extension of S2γρ to the state extension

of S3γρ. Thus, the lemma holds.

Now we can show that the substitutions we use for a path (and, thus, for the

rules of the TRS) correspond to the answer substitutions of the evaluations along

the respective path.

Lemma C7 (Answer Substitutions are Instances of Path Substitutions)

Given a path π = s1 . . . sk with sj /∈ Inst(G) for all j ∈ {1, . . . , k − 1} and an

evaluation such that there is a variable renaming ρ and a concretization γ w.r.t.

KB1, . . . ,KBk where si = Si;KBi for all i ∈ {1, . . . , k} and the evaluation goes

from a state extension of S1γρ to a state extension of Skγρ with answer substitution

δ by reaching state extensions of all Siγρ, then σπ,0γρ = γρδ and Skγρδ = Skγρ.

Proof

We perform the proof by induction over the length k of the path π.

For k = 1 we have s1 = sk and the empty answer substitution δ = id = σs1,0.

Hence, the lemma trivially holds.

For k > 1 we can assume the lemma holds for paths of length at most k− 1. We

perform a case analysis over s1 and s2.

• If s1 ∈ Split(G) and s2 = Succ2(s1), i.e., we traverse the right child of a Split

node, we have s1 = t, Q;KB and s2 = Qδ′;KB′ as defined in the Split rule.
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By the induction hypothesis, we obtain σs2...sk,0γρ = γρδ′′ where δ′′ is the answer

substitution of the evaluation from a state extension of Qδ′γρ to a state extension

of Skγρ and Skγρδ
′′ = Skγρ. For any answer substitution δ′′′ of the evaluation from

a state extension of (t, Q)γρ to a state extension of Qδ′γρ we know by Lemma A10

that γρδ′′′ = δ′γρ. Therefore, we have γρδ = γρδ′′′δ′′ = δ′γρδ′′ = δ′σs2...sk,0γρ =

σπ,0γρ. Furthermore, we know that δ′ is idempotent as all variables in the range

of δ′ are fresh. As we applied δ′ to S2 already and we know by inspection of the

abstract inference rules other than Inst that only fresh variables are introduced

along π, we obtain Skδ
′ = Sk. Hence, we have Skγρδ = Skγρδ

′′′δ′′ = Skδ
′γρδ′′ =

Skγρδ
′′ = Skγρ.

• If s1 ∈ Eval(G) and s2 = Succ1(s1), i.e., we traverse the left child of an Eval

node, then we have s1 = (t, Q)cm | S;KB and s2 = B′cσ
′, Qσ′ | Sσ|G ;KB′ as

defined in the Eval rule. By the induction hypothesis, we obtain σs2...sk,0γρ = γρδ′′

where δ′′ is the answer substitution of the evaluation from a state extension of

B′cσ
′γρ,Qσ′γρ | Sσ|Gγρ to a state extension of Skγρ and Skγρδ

′′ = Skγρ. For the

answer substitution σ′′ of the evaluation from a state extension of (t, Q)cmγρ | Sγρ

to a state extension of B′cσ
′γρ,Qσ′γρ | Sσ|Gγρ we know by the soundness proof

of Eval that γρσ′′ = σ′γρ and γρ = σ|Gγρ. Furthermore, we know that σ′ is

idempotent as the range of σ′ contains only fresh variables. Now there are two

cases depending on whether σπ,0 starts with σ′ or σ|G . In the first case we know

by definition of σπ,0 and Lemma C6 that the evaluation did not backtrack the

substitution σ′′. Hence, we obtain γρδ = γρσ′′δ′′ = σ′γρδ′′ = σ′σs2...sk,0γρ =

σπ,0γρ. Additionally, we already applied σ′ to S2. As we know by inspection of all

abstract inference rules other than Inst that only fresh variables are introduced

along π, we obtain Skσ
′ = Sk by σ′ being idempotent. Hence, we have Skγρδ =

Skγρσ
′′δ′′ = Skσ

′γρδ′′ = Skγρδ
′′ = Skγρ. In the second case, we know by definition

of σπ,0 and Lemma C6 that the evaluation did backtrack the substitution σ′′ and

we have the same answer substitution δ′′ for the complete evaluation. This amounts

to γρδ = γρδ′′ = σGγρδ
′′ = σGσs2...sk,0γρ = σπ,0γρ. Moreover, we obtain Skγρδ =

Skγρδ
′′ = Skγρ.

• If s1 ∈ OnlyEval(G) and s2 = Succ1(s1), i.e., we traverse an OnlyEval node,

we have s1 = (t, Q)cm | S;KB and s2 = B′cσ
′, Qσ′ | Sσ|G ;KB′ as defined in

the OnlyEval rule. By the induction hypothesis we obtain σs2...sk,0γρ = γρδ′′

where δ′′ is the answer substitution of the evaluation from a state extension of

B′cσ
′γρ,Qσ′γρ | Sσ|Gγρ to a state extension of Skγρ and Skγρδ

′′ = Skγρ. For the

answer substitution σ′′ of the evaluation from a state extension of (t, Q)cmγρ | Sγρ

to a state extension of B′cσ
′γρ,Qσ′γρ | Sσ|Gγρ we know by the soundness proof

of OnlyEval that γρσ′′ = σ′γρ and γρ = σ|Gγρ. Furthermore, we know that

σ′ is idempotent as the range of σ′ contains only fresh variables. Now there are

two cases depending on whether σπ,0 starts with σ′ or σ|G . In the first case we

know by definition of σπ,0 and Lemma C6 that the evaluation did not backtrack

the substitution σ′′. Hence, we obtain γρδ = γρσ′′δ′′ = σ′γρδ′′ = σ′σs2...sk,0γρ =

σπ,0γρ. Additionally, we already applied σ′ to S2. As we know by inspection of all

abstract inference rules other than Inst that only fresh variables are introduced

along π, we obtain Skσ
′ = Sk by σ′ being idempotent. Hence, we have Skγρδ =
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Skγρσ
′′δ′′ = Skσ

′γρδ′′ = Skγρδ
′′ = Skγρ. In the second case we know by definition

of σπ,0 and Lemma C6 that the evaluation did backtrack the substitution σ′′ and

we have the same answer substitution δ′′ for the complete evaluation. This amounts

to γρδ = γρδ′′ = σGγρδ
′′ = σGσs2...sk,0γρ = σπ,0γρ. Moreover, we obtain Skγρδ =

Skγρδ
′′ = Skγρ.

• If s1 ∈ UnifyCase(G) and s2 = Succ1(s1), i.e., we traverse the left child of a

UnifyCase node, we have s1 = =(t1, t2), Q | S;KB and s2 = Qσ′ | Sσ|G ;KB′ as

defined in theUnifyCase rule. By the induction hypothesis we obtain σs2...sk,0γρ =

γρδ′′ where δ′′ is the answer substitution of the evaluation from a state extension

of Qσ′γρ | Sσ|Gγρ to a state extension of Skγρ and Skγρδ
′′ = Skγρ. For the

answer substitution σ′′ of the evaluation from a state extension of (=(t1, t2), Q)γρ |

Sγρ to a state extension of Qσ′γρ | Sσ|Gγρ we know by the soundness proof of

UnifyCase that γρσ′′ = σ′γρ and γρ = σ|Gγρ. Furthermore, we know that σ′

is idempotent as the range of σ′ contains only fresh variables. Now there are two

cases depending on whether σπ,0 starts with σ′ or σ|G . In the first case we know

by definition of σπ,0 and Lemma C6 that the evaluation did not backtrack the

substitution σ′′. Hence, we obtain γρδ = γρσ′′δ′′ = σ′γρδ′′ = σ′σs2...sk,0γρ =

σπ,0γρ. Additionally, we already applied σ′ to S2. As we know by inspection of all

abstract inference rules other than Inst that only fresh variables are introduced

along π, we obtain Skσ
′ = Sk by σ′ being idempotent. Hence, we have Skγρδ =

Skγρσ
′′δ′′ = Skσ

′γρδ′′ = Skγρδ
′′ = Skγρ. In the second case we know by definition

of σπ,0 and Lemma C6 that the evaluation did backtrack the substitution σ′′ and

we have the same answer substitution δ′′ for the complete evaluation. This amounts

to γρδ = γρδ′′ = σGγρδ
′′ = σGσs2...sk,0γρ = σπ,0γρ. Moreover, we obtain Skγρδ =

Skγρδ
′′ = Skγρ.

• If s1 ∈ UnifySuccess(G) and s2 = Succ1(s1), i.e., we traverse a UnifySuccess

node, we have s1 = =(t1, t2), Q | S;KB and s2 = Qσ′ | Sσ|G ;KB′ as defined

in the UnifySuccess rule. By the induction hypothesis we obtain σs2...sk,0γρ =

γρδ′′ where δ′′ is the answer substitution of the evaluation from a state extension

of Qσ′γρ | Sσ|Gγρ to a state extension of Skγρ and Skγρδ
′′ = Skγρ. For the

answer substitution σ′′ of the evaluation from a state extension of (=(t1, t2), Q)γρ |

Sγρ to a state extension of Qσ′γρ | Sσ|Gγρ we know by the soundness proof of

UnifySuccess that γρσ′′ = σ′γρ and γρ = σ|Gγρ. Furthermore, we know that

σ′ is idempotent as the range of σ′ contains only fresh variables. Now there are

two cases depending on whether σπ,0 starts with σ′ or σ|G . In the first case we

know by definition of σπ,0 and Lemma C6 that the evaluation did not backtrack

the substitution σ′′. Hence, we obtain γρδ = γρσ′′δ′′ = σ′γρδ′′ = σ′σs2...sk,0γρ =

σπ,0γρ. Additionally, we already applied σ′ to S2. As we know by inspection of all

abstract inference rules other than Inst that only fresh variables are introduced

along π, we obtain Skσ
′ = Sk by σ′ being idempotent. Hence, we have Skγρδ =

Skγρσ
′′δ′′ = Skσ

′γρδ′′ = Skγρδ
′′ = Skγρ. In the second case we know by definition

of σπ,0 and Lemma C6 that the evaluation did backtrack the substitution σ′′ and

we have the same answer substitution δ′′ for the complete evaluation. This amounts

to γρδ = γρδ′′ = σGγρδ
′′ = σGσs2...sk,0γρ = σπ,0γρ. Moreover, we obtain Skγρδ =

Skγρδ
′′ = Skγρ.
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• If s1 ∈ NoUnifyCase(G) and s2 = Succ2(s1), i.e., we traverse the right child of a

NoUnifyCase node, we have s1 = \=(t1, t2), Q | S;KB and s2 = Sσ|G ;KB′

as defined in the NoUnifyCase rule. By the induction hypothesis we obtain

σs2...sk,0γρ = γρδ′′ where δ′′ is the answer substitution of the evaluation from a

state extension of Sσ|Gγρ to a state extension of Skγρ and Skγρδ
′′ = Skγρ. We

know by the soundness proof of NoUnifyCase that γρ = σ|Gγρ. As the answer

substitution of the evaluation from a state extension of (\=(t1, t2), Q)γρ | Sγρ to a

state extension of Sσ|Gγρ is empty, we know that δ = δ′′ and, hence, γρδ = γρδ′′ =

σGγρδ
′′ = σGσs2...sk,0γρ = σπ,0γρ. Moreover, we obtain Skγρδ = Skγρδ

′′ = Skγρ.

• If s1 ∈ NoUnifyFail(G) and s2 = Succ1(s1), i.e., we traverse a NoUnifyFail

node, we have s1 = \=(t1, t2), Q | S;KB and s2 = Sσ|G ;KB′ as defined in the

NoUnifyFail rule. By the induction hypothesis we obtain σs2...sk,0γρ = γρδ′′

where δ′′ is the answer substitution of the evaluation from a state extension of

Sσ|Gγρ to a state extension of Skγρ and Skγρδ
′′ = Skγρ. We know by the sound-

ness proof of NoUnifyFail that γρ = σ|Gγρ. As the answer substitution of the

evaluation from a state extension of (\=(t1, t2), Q)γρ | Sγρ to a state extension

of Sσ|Gγρ is empty, we know that δ = δ′′ and, hence, γρδ = γρδ′′ = σGγρδ
′′ =

σGσs2...sk,0γρ = σπ,0γρ. Moreover, we obtain Skγρδ = Skγρδ
′′ = Skγρ.

• If s1 ∈ EqualsCase(G) and s2 = Succ1(s1), i.e., we traverse the left child of

an EqualsCase node, we have s1 = ==(t1, t2), Q | S;KB and s2 = Qσ |

Sσ;KB′ as defined in the EqualsCase rule. By the induction hypothesis we ob-

tain σs2...sk,0γρ = γρδ′′ where δ′′ is the answer substitution of the evaluation from

a state extension of Qσγρ | Sσγρ to a state extension of Skγρ and Skγρδ
′′ = Skγρ.

We know by the soundness proof of EqualsCase that γρ = σγρ. As the answer

substitution of the evaluation from a state extension of (==(t1, t2), Q)γρ | Sγρ

to a state extension of Qσγρ | Sσγρ is empty, we know that δ = δ′′ and, hence,

γρδ = γρδ′′ = σγρδ′′ = σσs2...sk,0γρ = σπ,0γρ. Moreover, we obtain Skγρδ =

Skγρδ
′′ = Skγρ.

• If s1 ∈ UnequalsCase(G) and s2 = Succ2(s1), i.e., we traverse the right child of

an UnequalsCase node, we have s1 = \==(t1, t2), Q | S;KB and s2 = Sσ;KB′

as defined in the UnequalsCase rule. By the induction hypothesis we obtain

σs2...sk,0γρ = γρδ′′ where δ′′ is the answer substitution of the evaluation from a

state extension of Sσγρ to a state extension of Skγρ and Skγρδ
′′ = Skγρ. We

know by the soundness proof of UnequalsCase that γρ = σγρ. As the answer

substitution of the evaluation from a state extension of (\==(t1, t2), Q)γρ | Sγρ to

a state extension of Sσγρ is empty, we know that δ = δ′′ and, hence, γρδ = γρδ′′ =

σγρδ′′ = σσs2...sk,0γρ = σπ,0γρ. Moreover, we obtain Skγρδ = Skγρδ
′′ = Skγρ.

• For all other cases we know that the evaluation has the empty answer substitution

from the state extension of S1γρ to the state extension of S2γρ. By the induction

hypothesis we obtain σs2...sk,0γρ = γρδ′′ where δ′′ is the answer substitution of

the evaluation from a state extension of S2γρ to a state extension of Skγρ and

Skγρδ
′′ = Skγρ. Then we have γρδ = γρδ′′ = σs2...sk,0γρ = σπ,0γρ and Skγρδ =

Skγρδ
′′ = Skγρ.
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Now, using the preceding results, we can simulate the traversal of a tree path by

the rewrite rules of the corresponding TRS. To this end, we first need the notions of

a relative derivation length (in order to show that the function value of ircR(Gs),R(G)

for a node s in a derivation graph G is at least as high as the length of a certain

derivation) and a full subgraph.

Definition C 8 (Relative Derivation Length)

Let R be a TRS, R′ ⊆ R, and d = (t →ℓ1→r1 t1 →ℓ2→r2 . . . →ℓk→rk tk) be a

derivation w.r.t. R. Then the relative length RelLengthR′(d) is |{i | ℓi → ri ∈ R
′}|.

Moreover, for a composable derivation graph G which is decomposed into the

subgraphs G1, . . . , Gk according to Def. 10, a node s in G which is the root of G, a

multiplicative Split node in G or a successor of a multiplicative Split node in G,

and derivations d1, . . . , dk such that there is a function f mapping each successor

of a multiplicative Split node and the root to an index of one subgraph, we define

cplx s(d1, . . . , dk) =

{

cplxSucc1(s)(d1, . . . , dk) · cplxSucc2(s)(d1, . . . , dk), if s ∈ mults(G)

RelLengthR(Gs)(df(s)) + Σs′ ∈mults(G)∩Gs
cplx s′(d1, . . . , dk), otherwise.

Definition C 9 (Full Subgraph)

Let G be a derivation graph with nodes V and edges E (i.e., G = (V,E)) and let

s ∈ V . Then we define the full subgraph of G at node s as the minimal graph

Gs = (Vs, Es) where s ∈ Vs and whenever s1 ∈ Vs and (s1, s2) ∈ E, then s2 ∈ Vs

and (s1, s2) ∈ Es.

We first show that subgraphs without Inst edges (i.e., acyclic subgraphs) can

only represent evaluations whose length is bounded by a constant.

Lemma C10 (Constant (Sub-)Graphs)

Let G be a derivation graph with k nodes, |Split(G)| = j ≤ k, and Inst(G) = ∅.

Then for all Q ∈ CON (root(G)), the evaluation of Q takes at most k2
j

steps.

Moreover, any tree path π in G has size(π) ≤ k2
j

.

Proof

Let Q ∈ CON (root(G)). We perform the proof of the lemma by induction over the

number k of nodes in G. Note that size(π) is always at least as big as

numOfSuccesses(π).

If k = 1, then we must have root(G) = ε;KB and Q = ε whose evaluation

takes 0 < 1 = 12
0

steps. Moreover, the only tree path in G is root(G) which has

size(root(G)) = 1 = 12
0

.

If k > 1, then we assume that the evaluation of Q takes more than 0 steps and π

consists of at least two nodes, since otherwise, there is nothing to show. We perform

a case analysis over s = root(G).

• If root(G) ∈ Parallel(G), then we have root(G) = S1 | S2;KB and Q = Q1 |

Q2 with Q1 6= ε and Q2 6= ε such that Q1 ∈ CON (Succ1(root(G))) and Q2 ∈
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CON (Succ2(root(G))). Therefore, we have k > 4. As root(G) is not reachable from

its successors and no successor of root(G) can reach the other successor, we can

consider the respective subgraphs G1 and G2 at the successors of root(G). Let G1

contain k′ nodes and |Split(G1)| = j′. Then we have 0 < k′ < k−1, G2 has k−k′−1

nodes, and |Split(G2)| = j − j′ ≥ 0. Thus, we can use the induction hypothesis to

obtain that the evaluation of Q1 takes at most (k′)2
j′

steps, any tree path π1 in G1

has size(π1) ≤ (k′)2
j′

, the evaluation of Q2 takes at most (k − k′ − 1)2
j−j′

steps,

and any tree path π2 in G2 has size(π2) ≤ (k − k′ − 1)2
j−j′

. Furthermore, we show

two little helping propositions. First (∗), for all a, b > 1, we have a+ b ≤ a · b. This

is shown by induction over a. If a = 2, then we have 2+ b
2≤b

≤ b+ b = 2 · b. If a > 2,

then we have

a+ b = 1 + (a− 1 + b)
induction hypothesis

≤ 1 + (a− 1) · b

= a · b− b+ 1
b>1
< a · b.

Second (∗∗), for all a, b, c with 0 ≤ b ≤ a and c > 0, we have b+ (a− b)c ≤ ac. We

show this proposition by induction over c. If c = 1, then we have b+ (a− b) = a. If

c > 1, we first consider the case a = b = 0. Then we obtain 0 + (0− 0)c = 0 = 0c.

Otherwise, we have a > 0 and obtain

b+ (a− b)c = b+ ((b+ (a− b)c−1)− b) · (a− b)
induction hypothesis

≤ b+ (ac−1 − b) · (a− b)

= b+ ac−1 · (a− b)− b · (a− b)

= b+ ac−1 · a− ac−1 · b− b · a+ b2

= ac + b− b · ac−1 − b · a+ b2

= ac + b · (1− ac−1 − a+ b)
c>1,a>0

≤ ac + b · (1− 1− a+ b)

= ac + b · (b− a)
b≤a

≤ ac + b · 0

= ac.

Now we continue with the proof. If j = j′ = 0, then we obtain that the evaluation

of Q cannot take more than k′ + (k− k′ − 1) = k− 1 < k steps. Moreover, we have

size(π) ≤ k′ + (k − k′ − 1) + 1 = k. Now consider j > 0. If j′ = 0, then we know

that the evaluation of Q has at most length

k′ + (k − k′ − 1)2
j 0<k′<k−1,(∗∗)

≤ (k − 1)2
j

< k2
j

.
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Moreover, we have

size(π) ≤ k′ + (k − k′ − 1)2
j

+ 1

0<k′<k−1,(∗∗)

≤ (k − 1)2
j

+ 1

≤ k2
j

.

If j′ = j, then we obtain a length of at most

(k′)2
j

+ (k − k′ − 1)
0<k′<k−1,(∗∗)

≤ (k′ + k − k′ − 1)2
j

= (k − 1)2
j

< k2
j

and

size(π) ≤ (k′)2
j

+ (k − k′ − 1) + 1

0<k′<k−1,(∗∗)

≤ (k′ + k − k′ − 1)2
j

+ 1

= (k − 1)2
j

+ 1

≤ k2
j

.

Finally, we have 0 < j′ < j and know that the evaluation of Q cannot take more

than

(k′)2
j′

+ (k − k′ − 1)2
j−j′ 0<k′<k−1

≤ (k − 2)2
j′

+ (k − 2)2
j−j′

k>4,(∗)

≤ (k − 2)2
j′

· (k − 2)2
j−j′

= (k − 2)2
j′+2j−j′

0<j′<j,(∗)

≤ (k − 2)2
j′ ·2j−j′

= (k − 2)2
j′+j−j′

= (k − 2)2
j

< k2
j

steps. Furthermore, we have

size(π) ≤ (k′)2
j′

+ (k − k′ − 1)2
j−j′

+ 1

0<k′<k−1
≤ (k − 2)2

j′

+ (k − 2)2
j−j′

+ 1

k>4,(∗)

≤ (k − 2)2
j′

· (k − 2)2
j−j′

+ 1

= (k − 2)2
j′+2j−j′

+ 1

0<j′<j,(∗)

≤ (k − 2)2
j′ ·2j−j′

+ 1

= (k − 2)2
j′+j−j′

+ 1

= (k − 2)2
j

+ 1

≤ k2
j

.
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• If root(G) ∈ Split(G), then we have root(G) = t′, Q′;KB and Q = t, Q′′ with t 6=

ε andQ′′ 6= ε such that t ∈ CON (Succ1(root(G))) andQ′′ ∈ CON (Succ2(root(G))).

Therefore, we have k > 4. As root(G) is not reachable from its successors and no

successor of root(G) can reach the other successor, we can consider the respective

subgraphs G1 and G2 at the successors of root(G). Let G1 contain k′ nodes and

|Split(G1)| = j′. Then we have 0 < k′ < k − 1, j′ < j, G2 has k − k′ − 1 nodes,

and |Split(G2)| = j − j′ − 1. Thus, we can use the induction hypothesis to obtain

that the evaluation of t takes at most (k′)2
j′

steps, any tree path π1 in G1 has

size(π1) ≤ (k′)2
j′

, the evaluation of Q′′ takes at most (k− k′ − 1)2
j−j′−1

steps, and

any tree path π2 in G2 has size(π2) ≤ (k − k′ − 1)2
j−j′−1

. If j′ = 0, then we obtain

that the evaluation of Q cannot take more than

k′ · (k − k′ − 1)2
j−1 0<k′<k−1

< k · k2
j−1

= k2
j−1+1

j>0

≤ k2
j

steps. Moreover, we have

size(π) ≤ k′ · (k − k′ − 1)2
j−1

+ 1

0<k′<k−1
≤ k · k2

j−1

= k2
j−1+1

j>0

≤ k2
j

.

If j′ = j − 1, then we obtain a length of

(k′)2
j−1

· (k − k′ − 1)
0<k′<k−1

< k2
j−1

· k

= k2
j−1+1

j>0

≤ k2
j

and

size(π) ≤ (k′)2
j−1

· (k − k′ − 1) + 1

0<k′<k−1
≤ k2

j−1

· k

= k2
j−1+1

j>0

≤ k2
j

.
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Finally, if 0 < j′ < j − 1, then we know that the evaluation of Q takes at most

(k′)2
j′

· (k − k′ − 1)2
j−j′−1 0<k′<k−1

≤ (k − 2)2
j′

· (k − 2)2
j−j′−1

= (k − 2)2
j′+2j−j′−1

0<j′<j−1,(∗)

≤ (k − 2)2
j′ ·2j−j′−1

= (k − 2)2
j′+j−j′−1

< (k − 2)2
j

< k2
j

steps and we have

size(π) ≤ (k′)2
j′

· (k − k′ − 1)2
j−j′−1

+ 1

0<k′<k−1
≤ (k − 2)2

j′

· (k − 2)2
j−j′−1

+ 1

= (k − 2)2
j′+2j−j′−1

+ 1

0<j′<j−1,(∗)

≤ (k − 2)2
j′ ·2j−j′−1

+ 1

= (k − 2)2
j′+j−j′−1

+ 1

≤ (k − 2)2
j

< k2
j

.

• Otherwise, the second state in the evaluation ofQ is represented by one of the suc-

cessors of root(G). As root(G) is not reachable from its successors, we can consider

the subgraph at this successor which has at most k − 1 nodes. We use the induc-

tion hypothesis to obtain that the remaining evaluation takes at most (k − 1)2
j

steps. Together with the first step, we obtain that the evaluation takes at most

(k − 1)2
j

+ 1
k>1
≤ k2

j

steps. For π we also know that its root can only have one

successor as branching is only possible in a tree path at Parallel or Split nodes.

Thus we have size(π) ≤ (k − 1)2
j

+ 1
k>1
≤ k2

j

.

We need to be able to simulate arbitrary answer substitutions. This is shown in

the following lemma.

Lemma C11 (Simulating Answers)

Let G be a derivation graph and Q = Sγ ∈ CON (root(G)) where Q does not

contain the goal �. Then we have renin(root(G))γ →∗
R(G) renout(root(G), i)γδ if

the i-th goal in Q produces the answer substitution δ in finitely many steps.

Proof

We consider a finite prefix with length ℓ of the evaluation of Q. We perform the

proof by induction over the lexicographic combination of first ℓ and second the

edge relation of G restricted to Inst, Parallel, and Split edges. Note that this

induction relation is indeed well founded as the sum of the number of terms and
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goals in a state is strictly decreased by applying the rules Parallel or Split

while it stays equal by applying the Inst rule. So every infinite sequence of rule

applications with only these rules must eventually only use the Inst rule. This is

in contradiction to the requirement that derivation graphs do not contain cycles

consisting of Inst edges only.

If ℓ = 0, then the prefix of the evaluation does not produce any answer substitu-

tion and the lemma trivially holds.

If ℓ > 0, then we perform a case analysis over s = root(G).

• If s ∈ Inst(G), then we consider Succ1(s) and γ′ = µγ instead of s and γ where

Q = Succ1(s)γ
′ (the latter follows from the soundness proof of Inst). By the in-

duction hypothesis, we obtain that renin(Succ1(s))γ
′ →∗

R(G) ren
out(Succ1(s), i)γ

′δ.

By γ′ = µγ, renin(s) = renin(Succ1(s))µ, and renout(s, i) = renout(Succ1(s), i)µ,

we conclude renin(s)γ →∗
R(G) ren

out(s, i)γδ.

• If s ∈ Parallel(G), then we have the rules

renin(s)

→

us,Succ1(s)(ren
in(Succ1(s)),V(ren

in(s))),

renin(s)

→

us,Succ2(s)(ren
in(Succ2(s)),V(ren

in(s)))

in R(G). Moreover, we have for all j ∈ {1, . . . , k1} where Succ1(s) has k1 goals and

the j-th goal is no scope marker the rule

us,Succ1(s)(ren
out(Succ1(s), j),V(ren

in(s)))

→

renout(s, j)

in R(G) and for all j ∈ {1, . . . , k2} where Succ2(s) has k2 goals and the j-th goal

is no scope marker the rule

us,Succ2(s)(ren
out(Succ2(s), j),V(ren

in(s)))

→

renout(s, j + k1)

in R(G). There are two cases.

If the i-th goal is contained in Succ1(s), then we rewrite renin(s)γ to

us,Succ1(s)(ren
in(Succ1(s)),V(ren

in(s)))γ. By the induction hypothesis, we obtain

renin(Succ1(s))γ →
∗
R(G) ren

out(Succ1(s), i)γδ. Thus, we have

us,Succ1(s)(ren
in(Succ1(s)),V(ren

in(s)))γ

→∗
R(G)

us,Succ1(s)(ren
out(Succ1(s), i),V(ren

in(s)))γδ

→R(G)

renout(s, i)γδ.
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If the i-th goal of s is contained in Succ2(s), let i′ be the index of this goal

in Succ2(s), i.e., i = k1 + i′. Then we rewrite renin(s)γ to

us,Succ2(s)(ren
in(Succ2(s)),V(ren

in(s)))γ. By the induction hypothesis, we obtain

renin(Succ2(s))γ →
∗
R(G) ren

out(Succ2(s), i
′)γδ. Thus, we have

us,Succ2(s)(ren
in(Succ2(s)),V(ren

in(s)))γ

→∗
R(G)

us,Succ2(s)(ren
out(Succ2(s), i

′),V(renin(s)))γδ

→R(G)

renout(s, i′ + k1)γδ = renout(s, i)γδ.

• If s ∈ Split(G), we have S = t, Q′ and the rules

renin(s)δ′

→

us,Succ1(s)(ren
in(Succ1(s)),V(ren

in(s)))δ′,

us,Succ1(s)(ren
out(Succ1(s), 1),V(ren

in(s)))δ′

→

uSucc1(s),Succ2(s)(ren
in(Succ2(s)), (V(ren

in(s)) ∪ V(renout(Succ1(s), 1)))δ
′), and

uSucc1(s),Succ2(s)(ren
out(Succ2(s), 1), (V(ren

in(s)) ∪ V(renout(Succ1(s), 1)))δ
′)

→

renout(s, 1)δ′

where δ′ is the substitution associated to s in R(G). Since δ is an answer substi-

tution for the whole goal, there must be a corresponding answer substitution δ′′

for tγ. By Lemma A10 we know that there is a γ′ with γδ′′ = δ′γ′. So we can

rewrite renin(s)γ to us,Succ1(s)(ren
in(Succ1(s)),V(ren

in(s)))δ′γ′. By the induction

hypothesis and Lemma A10, we obtain renin(Succ1(s))δ
′γ′ →∗

R(G)

renout(Succ1(s), 1)δ
′γ′. Thus, we have

us,Succ1(s)(ren
in(Succ1(s)),V(ren

in(s)))δ′γ′

→∗
R(G)

us,Succ1(s)(ren
out(Succ1(s), 1),V(ren

in(s)))δ′γ′

→R(G)

uSucc1(s),Succ2(s)(ren
in(Succ2(s)), (V(ren

in(s)) ∪ V(renout(Succ1(s), 1)))δ
′)γ′.

Again, by the induction hypothesis we obtain renin(Succ2(s))γ
′ →∗

R(G)

renout(Succ2(s), 1)δ
′′′ where δ = δ′′δ′′′. Together, we obtain

uSucc1(s),Succ2(s)(ren
in(Succ2(s)), (V(ren

in(s)) ∪ V(renout(Succ1(s), 1)))δ
′)γ′

→∗
R(G)

uSucc1(s),Succ2(s)(ren
out(Succ2(s), 1), (V(ren

in(s)) ∪ V(renout(Succ1(s), 1)))δ
′)γ′δ′′′

→R(G)

renout(s, 1)δ′γ′δ′′′ = renout(s, 1)γδ′′δ′′′ = renout(s, 1)γδ.

• Otherwise, we consider the nodes from s to the first node s′ ∈ Suc(G)∪Inst(G)∪

Parallel(G)∪ Split(G)∪ Succ1(Inst(G)) reached by the evaluation of Q. If no such
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node as s′ exists, then Q cannot produce any answer substitutions and the lemma

trivially holds. Thus, we consider the case that such a node s′ exists. Then we

directly have that the path from s to s′ is a connection path πc in G. Thus we

have the rule renin(s)σπc,0 → us,s′(ren
in(s′),V(renin(s)))σπc,0) in R(G) and for all

j ∈ {1, . . . , k} where s′ has k goals and the j-th goal is no scope marker, we have

the rule

us,s′(ren
out(s′, j),V(renin(s)))σπc,j−1)

→

renout(s, skip(πc, j))σπc,j−1

in R(G). By Lemma C7, we know that σπc,0 is an instance of the answer substitu-

tion along πc. In particular, we know that renin(s)σπc,0 matches t by γ and we can

rewrite t to us,s′(ren
in(s′),V(renin(s)))σπc,0)γ. For the i-th goal of s producing an

answer substitution, there must be a corresponding j-th goal in s′ producing an

answer substitution δ′. We use the induction hypothesis for s′ to obtain that the

term renin(s′)γ rewrites to the term renout(s′, j)γδ′. Thus, we have

us,s′(ren
in(s′),V(renin(s)))σπc,0)γ →∗

R(G)

us,s′(ren
out(s′, j),V(renin(s)))σπc,0)γδ

′ →R(G) renout(s, i)γδ′δ′′

where δ = δ′δ′′.

As we can simulate answer substitutions, we can also simulate tree paths and,

hence, evaluations.

Lemma C12 (Simulating Tree Paths)

Let G be a decomposable derivation graph which is decomposed into k subgraphs

according to Def. 10, root(G) = s = S;KB, R(G) 6= ∅, and π be a tree path in G

for a prefix of the evaluation of a query Q = Sγ ∈ CON (s) with the properties from

Lemma C4 for the tree path πb. Then the term t = renin(s)γ is a basic term w.r.t.

R(G) and starts k derivations d1 = (t →R(G) . . . →R(G) t1), . . . , dk = (t →R(G)

. . .→R(G) tk) such that size(π) ∈ O(cplx s(d1, . . . , dk)).

Proof

We first show that t is a basic term w.r.t. R(G), i.e., there is a rule f(a1, . . . , aj)→

r ∈ R(G) with f = root(t) and t does not contain any defined symbols at a non-

empty position. The latter is obviously true since in R(G), we only used fresh

function symbols. So Q cannot contain them and, hence, γ cannot replace the

variables in renin(root(G)) by terms with such symbols. For a rule as desired to

be in R(G), we need a connection path starting in root(G) or root(G) being a

Parallel or a Split node. Then the other condition is easily seen by inspection of

ConnectionRules , ParallelRules , and SplitRules . So assume we have no connection

path starting in root(G) and root(G) is neither a Parallel nor a Split node. Then

there is no node in Inst(G)∪Suc(G)∪Parallel(G)∪Split(G)∪Succ1(Inst(G)) which

is reachable from root(G). This again means that no start node for a connection
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path and no Parallel or Split node exists in G. Thus, we would have R(G) = ∅

which contradicts our assumptions and, hence, proves that t is a basic term w.r.t.

R(G). We are left to show that t starts k derivations d1, . . . , dk w.r.t. R(G) such

that size(π) ∈ O(cplx root(G)(d1, . . . , dk)). We perform the proof of this proposition

by induction over size(π).

For size(π) = 0, we trivially have size(π) ∈ O(1) ⊆ O(1+cplx root(G)(d1, . . . , dk))

= O(cplx root(G)(d1, . . . , dk)).

For size(π) > 0, we perform a case analysis on the first node s = root(G) in π.

• If s ∈ Inst(G), we know that renin(s) = renin(Succ1(s))µ where µ is associated to

s. Thus, we have t = renin(s)γ = renin(Succ1(s))µγ. By Lemma A11, we know that

Q ∈ CON (Succ1(s)). Thus, we can consider the full subgraphG′ at Succ1(s) instead

of G for which the root of the only direct subtree π′ of π is the root node and apply

the induction hypothesis to obtain that size(π′) ∈ O(cplx root(G′)(d1, . . . , dk)). We

conclude that size(π) = size(π′) + 1 ∈ O(cplx root(G′)(d1, . . . , dk) + 1) =

O(cplx root(G′)(d1, . . . , dk)) ⊆ O(cplx root(G)(d1, . . . , dk)).

• If s ∈ Parallel(G), we have the rules

renin(s)

→

us,Succ1(s)(ren
in(Succ1(s)),V(ren

in(s)))

and

renin(s)

→

us,Succ2(s)(ren
in(Succ2(s)),V(ren

in(s)))

in R(G). Let π1 denote the first direct subtree of π and π2 denote the second one

if it exists. There are two cases.

If π only has one direct subtree or if size(π1) ≥ size(π2), then we have renin(s)γ

→R(G) us,Succ1(s)(ren
in(Succ1(s)),V(ren

in(s)))γ. Thus, we use the induction hy-

pothesis for Succ1(s) to obtain k derivations d′1, . . . , d
′
k with size(π1) ∈

O(cplxSucc1(s)(d
′
1, . . . , d

′
k)). Adding the first rewrite step to all k derivations, we

obtain the derivations d1, . . . , dk with size(π) ≤ 1 + 2 · size(π1) ∈ O(1 + 2 ·

cplxSucc1(s)(d
′
1, . . . , d

′
k)) = O(cplxSucc1(s)(d

′
1, . . . , d

′
k)) ⊆ O(cplx s(d1, . . . , dk)).

If π has two direct subtrees and size(π1) < size(π2), then we have renin(s)γ

→R(G) us,Succ2(s)(ren
in(Succ2(s)),V(ren

in(s)))γ. Thus, we use the induction hy-

pothesis for Succ2(s) to obtain k derivations d′1, . . . , d
′
k with size(π2) ∈

O(cplxSucc2(s)(d
′
1, . . . , d

′
k)). Adding the first rewrite step to all k derivations, we

obtain the derivations d1, . . . , dk with size(π) ≤ 1 + 2 · size(π2) ∈ O(1 + 2 ·

cplxSucc2(s)(d
′
1, . . . , d

′
k)) = O(cplxSucc2(s)(d

′
1, . . . , d

′
k)) ⊆ O(cplx s(d1, . . . , dk)).

• If s ∈ Split(G), then we have the rules

renin(s)δ

→

us,Succ1(s)(ren
in(Succ1(s))δ,V(ren

in(s))δ),

us,Succ1(s)(ren
out(Succ1(s), 1)δ,V(ren

in(s))δ)
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→

uSucc1(s),Succ2(s)(ren
in(Succ2(s)), (V(ren

in(s)) ∪ V(renout(Succ1(s), 1)))δ), and

uSucc1(s),Succ2(s)(ren
out(Succ2(s), 1), (V(ren

in(s)) ∪ V(renout(Succ1(s), 1)))δ)

→

renout(s, 1)δ

where δ is the substitution associated to s in R(G). Let π1 denote the first di-

rect subtree of π and π2 denote the second direct subtree of π if it exists. By

Lemma C7 and Lemma A10, we know that there is a γ′ such that renin(s)γ →R(G)

us,Succ1(s)(ren
in(Succ1(s))δ,V(ren

in(s))δ)γ′.

If π has only one direct subtree, then it must start with Succ1(s) and we use the

induction hypothesis on it and the term renin(Succ1(s)δ to obtain k derivations

d′1, . . . , d
′
k such that size(π1) ∈ O(cplxSucc1(s)(d

′
1, . . . , d

′
k)). Adding the first rewrite

step to all k derivations, we obtain the derivations d1, . . . , dk with size(π) ≤ 1 +

2 · size(π1) ∈ O(1 + 2 · cplxSucc1(s)(d
′
1, . . . , d

′
k)) = O(cplxSucc1(s)(d

′
1, . . . , d

′
k)) ⊆

O(cplx s(d1, . . . , dk)).

If size(π1) ≥ numOfSuccesses(π1)·size(π2), the proof is analogous to the case where

π has only one direct subtree.

So let size(π1) < numOfSuccesses(π1)·size(π2). By Lemma C11 we obtain a deriva-

tion renin(Succ1(s))δγ
′ →∗

R(G) ren
out(Succ1(s), 1)δγ

′. Hence, we have

us,Succ1(s)(ren
in(Succ1(s))δ,V(ren

in(s))δ)γ′

→∗
R(G)

us,Succ1(s)(ren
out(Succ1(s), 1)δ,V(ren

in(s))δ)γ′

→R(G)

uSucc1(s),Succ2(s)(ren
in(Succ2(s)), (V(ren

in(s)) ∪ V(renout(Succ1(s), 1)))δ)γ
′.

If s is not multiplicative, i.e., numOfSuccesses(π1) is bounded by a constant c, then

we use the induction hypothesis on Succ2(s) and the term renin(Succ2(s))γ
′ to

obtain k derivations d′1, . . . , d
′
k with size(π2) ∈ O(cplxSucc2(s)(d

′
1, . . . , d

′
k)). Adding

the derivation from renin(s)γ to uSucc1(s),Succ2(s)(ren
in(Succ2(s)), (V(ren

in(s)) ∪

V(renout(Succ1(s), 1)))δ)γ
′ to all k derivations, we obtain the derivations d1, . . . , dk

with size(π) ≤ 1 + 2 · c · size(π2) ∈ O(1 + 2 · c · cplxSucc2(s)(d
′
1, . . . , d

′
k)) =

O(cplxSucc2(s)(d
′
1, . . . , d

′
k)) ⊆ O(cplx s(d1, . . . , dk)).

If s is multiplicative, then we use the induction hypothesis on both Succ1(s) and

Succ2(s) to obtain the derivations da1 , . . . , d
a
k for renin(Succ1(s))δγ

′ and db1, . . . , d
b
k

for renin(Succ2(s))γ
′ with size(π1) ∈ O(cplxSucc1(s)(d

a
1 , . . . , d

a
k)) and size(π2) ∈

O(cplxSucc2(s)(d
b
1, . . . , d

b
k)). As G is decomposed into k subgraphs, only k′ < k

subgraphs can be reached from Succ1(s). We choose those k′ indices corresponding

to these subgraphs to take k′ derivations from da1 , . . . , d
a
k and the other ones from

db1, . . . , d
b
k after adding the derivation from

renin(s)γ

to

us,Succ1(s)(ren
in(Succ1(s))δ,V(ren

in(s))δ)γ′

to the k′ derivations and the derivation from



72 Ströder et al.

renin(s)γ

to

uSucc1(s),Succ2(s)(ren
in(Succ2(s)), (V(ren

in(s)) ∪ V(renout(Succ1(s), 1)))δ)γ
′

to the other ones. Thus, we obtain k derivations d1, . . . , dk with size(π) ≤ 1 + 2 ·

size(π1) · size(π2) ∈ O(1 + 2 · cplxSucc1(s)(d
a
1 , . . . , d

a
k) · cplxSucc2(s)(d

b
1, . . . , d

b
k)) =

O(cplxSucc1(s)(d
a
1 , . . . , d

a
k) · cplxSucc2(s)(d

b
1, . . . , d

b
k)) ⊆ O(cplx s(d1, . . . , dk)).

• Otherwise, we consider the nodes in π from s to the first node s′ ∈ Inst(G) ∪

Parallel(G) ∪ Split(G) ∪ Succ1(Inst(G)). If no such node s′ exists, then π has only

one branch and is contained in a subgraph of G without any Inst nodes. By

Lemma C10, we know that then size(π) ∈ O(1) ⊆ O(1+ cplx root(G)(d1, . . . , dk)) =

O(cplx root(G)(d1, . . . , dk)). Thus, we consider the case that such a node s′ exists.

Then we directly have that the path from s to s′ is a connection path πc in

G. Thus, we have the rule renin(s)σπc,0 → us,s′(ren
in(s′),V(renin(s)))σπc,0) in

R(G). By Lemma C7, we know that σπc,0 is an instance of the answer substi-

tution along πc. In particular, we know that renin(s)σπc,0 matches t by γ and

we can rewrite t to us,s′(ren
in(s′),V(renin(s)))σπc,0)γ. We use the induction hy-

pothesis for π′ which is the subtree from s′ of π and the full subgraph G′ at s′

to obtain that the term renin(s′)γ starts k derivation d′1, . . . , d
′
k with size(π′) ∈

O(cplx root(G′)(d
′
1, . . . , d

′
k)). Together with the first rewrite step, we obtain size(π) =

|πc|−1+size(π′) ∈ O(|πc|−1+cplx root(G′)(d
′
1, . . . , d

′
k)) = O(cplx root(G′)(d

′
1, . . . , d

′
k))

⊆ O(cplx root(G)(d1, . . . , dk)).

We can now state the central theorem of this paper where we prove that the

complexity of the resulting relative complexity problem is an asymptotic upper

bound for the comeplexity of the original Prolog program w.r.t. the specified set of

queries.

Theorem C13 (Complexity Analysis for Prolog Programs)

Let P be a Prolog program, p ∈ Σ be a predicate, m be a moding function, and G

be a decomposable derivation graph built for P and the class of queries Qp
m. Then

we have prcP,Qp
m
(n) ∈ O(cplx root(G)(n)).

Proof

Let Q = p(t1, . . . , tk) ∈ Q
p
m with |Q|m ≤ n such that the evaluation of Q takes

ℓ steps and ℓ is maximal, i.e., prcP,Qp
m
(n) = ℓ. By the construction of derivation

graphs, we know that root(G) = s = p(T1, . . . , Tk); (G,F ,U), there is a γ with Q =

p(T1, . . . , Tk)γ ∈ CON (S; (G,F ,U)) and G = {Ti | m(p, i) = in}. Thus, we know

that |renin(s)γ| = |Q|m. By Lemma C4 we obtain a tree path πb for the evaluation

ofQ with ℓ ∈ O(size(πb)). IfR(G) = ∅, then there is no Parallel or Split node in

G and no connection path in G. In particular, we cannot reach any Inst node from

s. By Lemma C10, we conclude that ℓ ∈ O(1) ⊆ O(1 + cplx s(n)) = O(cplx s(n)).

Thus, we consider the case R(G) 6= ∅. By Lemma C12, we know that renin(s)γ

is a basic term w.r.t. R(G) and starts k derivations d1, . . . , dk with the rules from

R(G) such that size(πb) ∈ O(cplx s(d1, . . . , dk)) ⊆ O(cplx s(n)). Together, we obtain
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prcP,Qp
m
(n) = ℓ ∈ O(size(πb)) ⊆ O(cplx s(d1, . . . , dk)) ⊆ O(cplx s(n)) and, hence,

our theorem.
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Appendix D Proving Correctness of the Determinacy Criterion

Finally, we have to prove our result on the determinacy criterion. We first show a

simple lemma.

Lemma D1 (No Success without Suc Nodes)

Let G be a derivation graph. Let s be a node in G which does not reach any Suc

node in G. Then for any concretization of s, its evaluation does not produce any

answer substitutions.

Proof

Let γ be a concretization w.r.t. s = S;KB. We perform the proof of the lemma

by contradiction, assuming that from Sγ in ℓ steps we first reach a node where the

Suc rule is applied, and by induction over the lexicographic combination of first

the length ℓ of the evaluation of Sγ and second the edge relation of G restricted to

Inst, Parallel, and Split edges. Note that this induction relation is indeed well

founded as the sum of the number of terms and goals in a state is strictly decreased

by applying the rules Parallel or Split while it stays equal by applying the

Inst rule. So every infinite sequence of rule applications with only these rules must

eventually only use the Inst rule. This is in contradiction to the requirement that

derivation graphs do not contain cycles consisting of Inst edges only.

For ℓ = 0, we trivially have that the number of answer substitutions produced

for Sγ is 0.

For ℓ > 0, we perform a case analysis on s:

• If s ∈ Inst(G), then we know that there is a variable renaming ρ such that

Sγρ ∈ CON (Succ1(s)). As the number of answer substitutions is independent of

variable renamings, we can use the induction hypothesis directly to obtain the

lemma.

• If s ∈ Parallel(G), then we either have that the evaluation of Sγ reaches a

concrete state in CON (Succ2(s)) or not. If not, then we know by Lemma A9 that

all goals in Succ2(s) (possibly except for the last one if it is a scope marker) must be

dropped due to a cut. Then there is a concrete state S′ ∈ CON (Succ1(s)) such that

its evaluation is identical to the one of Sγ (possibly except for the last Failure

step which might be missing for S′). Thus, we can use the induction hypothesis

for Succ1(s) (we have traversed a Parallel edge) and directly obtain that the

evaluation produces 0 answer substitutions. If the evaluation of Sγ does reach a

concrete state in CON (Succ2(s)), however, we obtain by the induction hypothesis

that the evaluations of the corresponding backtracking goals in the two successors of

s do not produce any answer substitutions (we can apply the induction hypothesis

as the evaluation parts for the two successors of s are both shorter than the complete

evaluation). Thus, the evaluation of Sγ produces 0 + 0 = 0 answer substitutions.

• If s ∈ Split(G), then we have S = t, Q and we know that the evaluation of tγ is

at most as long as the one of Sγ. Thus, we can use the induction hypothesis on the

first successor of s (there we have one less Split edge to traverse) and obtain that

no answer substitution is produced for tγ. It follows immediately that then Sγ can
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also produce no answer substitutions (since Q is only called if tγ succeeds, which

is not the case).

• Otherwise, we applied a rule to s where the next concrete state of the evaluation is

represented by one successor of s. We obtain the lemma by the induction hypothesis.

The determinacy criterion must be extended in the presence of Parallel rules.

Definition D2 (Determinacy Criterion)

A node s in G satisfies the determinacy criterion if condition (a) or (b) holds:

(a) All successors of s satisfy the determinacy criterion. Moreover, if s ∈ Suc(G),

then there is no non-empty path from s to some Suc node in G. Furthermore,

if s ∈ Parallel(G), then at most one successor of s can reach some Suc node in

G and if some Suc node is reachable from s, then there is no non-empty path

from s to itself in G.
(b) The node s is a Split node and at least one of Succ1(s) or Succ2(s) cannot

reach a Suc node in G.

Note that this definition in fact corresponds to Def. 14 when no Parallel nodes

exist in G. Now we are ready to prove the correctness of the determinacy criterion.

Theorem D3 (Soundness of Determinacy Criterion)

Let G be a derivation graph. Let s be a node in G which satisfies the (extended)

determinacy criterion of Def. D 2. Then for any concretization of s, its evaluation

results in at most one answer substitution. Thus if s′ is a Split node and Succ1(s
′)

satisfies the determinacy criterion, then s′ is not multiplicative.

Proof

Let γ be a concretization w.r.t. s = S;KB. We perform the proof of the first part

of the theorem by contradiction, assuming that from Sγ in ℓ steps for the second

time we reach a node where the Suc rule is applied, and by induction over the

lexicographic combination of first the length ℓ of the evaluation of Sγ and second

the edge relation of G restricted to Inst, Parallel, and Split edges. Note that

this induction relation is indeed well founded as the sum of the number of terms

and goals in a state is strictly decreased by applying the rules Parallel or Split

while it stays equal by applying the Inst rule. So every infinite sequence of rule

applications with only these rules must eventually only use the Inst rule. This is

in contradiction to the requirement that derivation graphs do not contain cycles

consisting of Inst edges only.

For ℓ = 0, we trivially have that the number of answer substitutions produced

for Sγ is 0 ≤ 1.

For ℓ > 0, we perform a case analysis on s:

• If s ∈ Inst(G), then we know that there is a variable renaming ρ such that

Sγρ ∈ CON (Succ1(s)). As the number of answer substitutions is independent of

variable renamings, we can use the induction hypothesis directly to obtain the first

part of the theorem.
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• If s ∈ Suc(G), then we know that the evaluation must start with one application

of the Suc rule resulting in a concrete state S′ and producing one answer substi-

tution for this step. Moreover, we know that S′ ∈ CON (Succ1(s)). By Def. D 2 we

know that Succ1(s) cannot reach any Suc node. Thus, we obtain by Lemma D1

that the evaluation of S′ does not produce any additional answer substitutions and,

hence, it follows that the evaluation of Sγ produces exactly one answer substitution.

• If s ∈ Parallel(G), then we either have that the evaluation of Sγ does reach a

concrete state in CON (Succ2(s)) or not. If not, then we know by Lemma A9 that

all goals in Succ2(s) (possibly except for the last one if it is a scope marker) must be

dropped due to a cut. Then there is a concrete state S′ ∈ CON (Succ1(s)) such that

its evaluation is identical to the one of Sγ (possibly except for the last Failure

step which might be missing for S′). Thus, we can use the induction hypothesis

for Succ1(s) and directly obtain that the evaluation produces at most one answer

substitution. If the evaluation of Sγ reaches a concrete state in CON (Succ2(s)),

however, we can use the knowledge that s cannot reach itself or it cannot reach

any Suc node. If s cannot reach any Suc node, so do both successors of s and

we obtain by Lemma D1 that the evaluations of the corresponding backtracking

goals do not produce any answer substitutions. Thus, the evaluation of Sγ produces

0+0 = 0 answer substitutions. If s cannot reach itself, Succ1(s) and Succ2(s) cannot

reach s, either. Moreover, we know that only one successor of s can reach a Suc

node. W.l.o.g. let Succ1(s) reach a Suc node (the other case is symmetric). By the

induction hypothesis, we obtain that the evaluation of the backtracking goals in

Succ1(s) produce at most one answer substitution while we know by Lemma D1

that the backtracking goals in Succ2(s) produce no answer substitution. So the

total number of answer substitutions for Sγ is at most 1.

• If s ∈ Split(G), then we have S = t, Q and we know that the evaluation of tγ

is at most as long as the one of Sγ. Thus, we can use the induction hypothesis

on the first successor of s and obtain that at most one answer substitution δ is

produced for tγ. Hence, in case the evaluation reaches a state Qγδ, this state is

represented by Succ2(s) as we know by Lemma A10. The induction hypothesis

is therefore applicable to Succ2(s) as well and we obtain that the evaluation of

Qγδ also produces at most one answer substitution. Together, the evaluation of Sγ

produces at most one answer substitution as the numbers of solutions for tγ and

Qγδ have to be multiplied. If already tγ does not produce any solutions, so does Sγ

and the first part of the theorem holds. If s cannot reach any Suc node, we know

by Lemma D1 that Sγ produces no answer substitutions.

• Otherwise, we applied a rule to s where the next concrete state of the evaluation

is represented by one successor of s and no answer substitution is produced in that

step. We obtain the first part of the theorem by the induction hypothesis.

For the last part of the theorem, we now know that Succ1(s
′) produces at most one

answer substitution, i.e., the number of answer substitutions for the first successor

of s′ is bounded by a constant. Hence, s′ is not multiplicative.
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