
Aachen
Department of Computer Science

Technical Report

On Compositional Failure Detection in

Structured Transition Systems

Ingo Felscher and Wolfgang Thomas

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2011-12

RWTH Aachen · Department of Computer Science · August 2011

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

http://aib.informatik.rwth-aachen.de/

On Compositional Failure Detection in Structured

Transition Systems

Ingo Felscher and Wolfgang Thomas

Lehrstuhl für Informatik 7
RWTH Aachen University, Germany

Email: {felscher,thomas}@automata.rwth-aachen.de

Abstract. In model-checking, systems are often given as products. We propose
an approach that is built on a preprocessing of specifications in terms of appropri-
ate automata. This allows to incorporate information about the local behaviour
and synchronization of the system components into the specification. We develop
a framework of (partially) synchronized automaton products and a format of
corresponding specification automata that allows for a compositional failure de-
tection of linear regular properties (either for finite or for infinite behaviour).
As a result we obtain an algorithm which separates the local and the non-local
segments of system runs, resulting in improved complexity bounds in typical
specifications.

Keywords: model-checking; finitely synchronized products; compositional fail-
ure detection.

1 Introduction

In model-checking we examine whether a given system, normally modelled as a
transition system, satisfies a specification, modelled as a logic formula. The sys-
tems under investigation often arise as products composed of several components
– again transition systems – that may interact with some or all other components
and may also perform actions independently of the other components. The main
problem in this scenario is the question of state space explosion, studied in a
large body of literature, see e. g. [BK08].

The basic problem is to separate aspects of the specification that are lo-
cal (to the components) from each other and from synchronizing features. This
is a natural idea which is also familiar from the “composition method” of al-
gorithmic model theory. The method allows to deduce the truth of a formula
in a product from information about the truth value of formulas in the com-
ponents. In model theory this approach was initiated in the pioneering pa-
per [FV59] of Feferman and Vaught and further developed by numerous au-
thors [CK90,GS98,Hod93,Mak04,Mos52,She75,Tho97a]. For more recent results,
now in the field of model-checking, see [Fel08,FT09,Rab07,WT04]. The complex-
ity of this compositional approach is excessive (in fact, non-elementary in the
size of the given formula – even for modal logic and first-order logic), due to
the large number of auxiliary formulas that have to be constructed. At least for
first-order logic this effect is known to be unavoidable [DGKS07]. (Apart from
this, the classical approach is restricted to (variants of) first-order logic. Already
for modal logic extended by the logical operator EG and for first-order logic with
regular reachability predicates the composition method fails [Rab07,WT04].)

In the present paper we offer a compositional analysis of reachability (moti-
vated by failure detection) that may lead to a considerable reduction of the high
complexity as known from the logical framework. Our approach relies on au-
tomata theoretic specifications. The present paper is an extended and corrected
version of [FT11].

Another advantage of the insistence on automata as specification formalism is
the avoidance of the initial conversion of a given logic formula to an automaton.
In most cases (e. g., for temporal, first-order or monadic second-order logic),
the costs of this conversion of formulas are exponential (or much more) in time
complexity. (It is well-known that an MSO(<) formula can be translated into an
equivalent automaton [Büc60,Elg61] and that the complexity of this translation
is non-elementary [AHU74,Tho97b].)

In the present work we start with the description of undesired behaviour
using a “complement specification”, denoted Spec. The given system is a partially
synchronized product Sys with (binary, labeled) relations and (unary) predicates.
We split Spec into parts which can be checked in the individual components. For
purpose of exposition, we first consider the case of Spec where unary predicates
are missing, and then treat the general case.

The general idea is to split the complement specification automaton into parts
(called “local blocks”) each of which has only labels and predicates from a fixed
set of components. As result we then get the local blocks (as mentioned above, as
specification automata which can be checked in the individual components) and
a “global specification automaton” Glob which describes the possible concatena-
tions of these local block automata. For this, information about the synchroniza-
tion behaviour of a transition is used: the “synchronization profile”. This profile
specifies which of the components are synchronized via the transition’s label. In
the runs of Glob, sequences of transitions with the same synchronization profile
are grouped together.

In the main result, first stated for the case without unary predicates, the
question whether a product of transition systems and a given complement speci-
fication automaton have paths with a common labeling is reduced to the question
whether a path in the global specification automaton exists such that the com-
ponents and parts of the complement specification which are described by the
local blocks of the global specification automaton have paths with common label-
ing. The presented result is limited to complement specifications with “bounded
synchronization”, i. e. specifications which can use only a bounded number of syn-
chronization transitions of the same profile in a sequence. However, in Section 6
we add some remarks how this restriction can be avoided.

For the generalization of the result to specifications with predicates we first
linearize the transition system Sys and the complement specification Spec: We
code the predicates of states in labeled self-loops of these states and thus dis-
solve, for example, the fulfillment of predicates p1,¬p2, p3 at a state s into the
subsequent execution of self loops at s, labeled p1,¬p2, p3. If an action move c is
executable at s, the corresponding c-transition may be taken after the mentioned
self-loops.

The terminological complexity of a compositional framework as developed
here is considerable – an unavoidable feature also known from the literature
above. As a gain of this effort, we will show that the algorithm derived from

4

this automaton composition method will only be double exponential (22
r2

) in the
number of states r the largest component has. Further it will be exponential in the
number of components and of states and predicates the complement specification
has.

Of course, a drawback is the necessity of preprocessing when a logical speci-
fication is given. However, in many practical situations, when specifications are
short, this preprocessing can often be done efficiently in spite of the exponential
standard algorithms [Wol01]. In other cases, one might be able to use automata
theoretic specifications directly.

The applicability of our method depends on an appropriate set-up of the
specification automaton: It should offer as much as possible the potential to
separate the various local and synchronized computations. Of course, in the worst
case as represented by always fully synchronized transitions, the decomposition
does not pay (since only blocks of length one are formed).

The paper is structured as follows: After this introduction we present in
Sect. 2 technical preliminaries. For this, we show our notion of a synchronized
product and the complement specification automaton. These definitions are then
used in Sect. 3 in the main result for specifications without predicates. We further
add a sketch how this result can be generalized to infinite behaviours captured by
Büchi automata. In Sect. 4 we introduce definitions and notions needed for the
generalization of the main result which is shown in Sect. 5. This generalization
allows to capture specifications with unary predicates. We conclude the paper in
Sect. 6 with a summary and some remarks on open problems.

2 Technical Preliminaries

In this section we introduce the basic definitions: In Sect. 2.1 we treat products
of transition systems and in Sect. 2.2 the automaton models used for the comple-
ment specification and its transformation into the global automaton. In Sect. 2.3
we define transition profiles as in [KN01]. Based on these profiles we introduce
in Sect. 2.4 the notion of an effect of an automaton A on an automaton B – the
state changes of A that are possible by words in the language of B.

2.1 Products of Transition Systems

A transition system is a labeled graph K = (S, {Ra | a ∈ Σ}, {Pv | v ∈ V }) with
state set S, transition relations Ra ⊆ S × S and predicates Pv ⊂ S.

We introduce our notion of a synchronized product with asynchronous and
synchronous behaviour: Synchronized transitions are transitions which are taken
at the same time in a subset of the components – captured by the “synchro-
nization profile” – and independently of the transitions of the other components.
Asynchronous transitions are taken independently of the transitions in all other
components. They can be seen as synchronized with a trivial synchronization
profile (i. e. a synchronization profile which contains only one component index).

From now on, we use [m] for m ∈ N as an abbreviation for the set {1, . . . ,m}.

Definition 1 (Synchronized product). Let [n] be a finite set of indices and
Σ an alphabet of labels (for the transitions) and V := {v1, . . . , vl} a set of names

5

K1 :
1 2

K2 :

3

4

a, c

a

c b

b

K̄ :

13 23

14 24

a

c

a

a
b

a
b

b b

Fig. 1. Components K1,K2 and their
product K

ASpec :

q0

q1

q2

q3 q4

a

b

a
a

b

b

c

AGlob :

q0 q3 q4

A
{1}
q0q3

A
{2}
q0q3

A
{1,2}
q3q4,c

Fig. 2. Complement specification and
Global automaton

for the unary predicates. For i ∈ [n] let a component transition system Ki be of
the form Ki = (Si, {R

i
c | c ∈ Σ}, {P i

v | v ∈ V }) as mentioned above.

A synchronization profile sp(c) for c ∈ Σ defines which components are syn-
chronized via c-transitions and is formally defined as sp : Σ → Pot([n]), c 7→ {i |
∣

∣Ri
c

∣

∣ 6= ∅}.
The synchronized product ASys of the components Ki is defined as the transition
system K := (S̄, {R̄c | c ∈ Σ}, {P̄vi | v ∈ V }) where

– the state set S̄ is the product of the component state sets: S̄ :=
∏

i∈[n] Si.

(We write s̄[i] for the state of the i-th component of s̄ ∈ S̄.)

– the synchronized transition relation R̄c is defined by (x̄, ȳ) ∈ R̄c iff ∀i ∈ sp(c):
(x̄[i], ȳ[i]) ∈ Ri

c and ∀j ∈ [n] with j 6∈ sp(c): x̄[j] = ȳ[j].

– the predicate P̄vi is the set {s̄ | s̄[i] ∈ P i
v}.

Example 1. In Fig. 1 we show a synchronized product K of two components K1,
K2 with asynchronous a- and b-transitions in K1, respectively K2, and synchro-
nized c-transitions with synchronization profile {1, 2}. For better readability, the
state names of K1, K2 are chosen differently.

2.2 Automata

In this section we introduce the format of complement specification automata for
a given synchronized product. They are used to express properties that lead to
a failure in the product. Afterwards, we translate the complement specification
automaton into a “global specification automaton”. For this, the complement
specification is split into parts that can be checked in the synchronization profiles.

We restrict ourselves to complement specifications that are able to check only
a bounded number of synchronized transitions of the same non-trivial synchro-
nization profile in a sequence. Note that the definitions in this section do not
treat unary predicates of a product yet. How to cope with the predicates will be
shown in Sect. 4 and 5.

Let us recall usual finite automata to fix notation. A (non-deterministic)
finite automaton is defined by A := (Q,Σ,∆, q0, F) with finite state set Q, input
alphabet Σ, transition relation ∆ ⊆ Q × Σ × Q, initial state q0 ∈ Q and final
state set F ⊆ Q.

6

A (bounded synchronized) complement specification automaton is a finite au-
tomaton, compatible with the alphabet of the transitions of the product, which
uses only fixed numbers of synchronization transitions in a sequence.

Definition 2. A (bounded synchronized) complement specification automaton
without predicates is a finite automaton ASpec = (Q,Σ,∆Spec, q0, F) which is
compatible with the action alphabet of the synchronized product and fulfills the
following property: for every synchronization profile sp(c), c ∈ Σ which is not a
singleton {i}, i ∈ I the restriction of ASpec to all transitions of this synchroniza-
tion profile sp(c) contains no loops.

The global specification automaton of a complement specification combines
subsequent transitions of the same synchronization profile. Such a combination
will result in “super”-transitions labeled from a local block alphabet : the alphabet
of all sub-automata AI

q,q′(,w) of ASpec where AI
q,q′(,w) contains only transitions

from the components of I and q′ is reachable by w from q. The letter AI
q,q′

with trivial set I = {i} is used for a block of asynchronous transitions from the
component index i and the letter AI

q,q′,w with non-trivial I is used for blocks of
synchronized transitions of the component indices from I.

Definition 3 (Global specification automaton). Given a complement spec-
ification automaton ASpec = (Q,Σ,∆Spec, q0, F), let the global specification au-
tomaton of ASpec be AGlob := (G,ΣB ,∆Glob, q0, F) where:

1. the state set G contains all states of Q such that in ASpec there are out-going
and in-coming transitions that belong to different synchronization profiles:
G := {q0} ∪ F ∪ {q ∈ Q | ∃q1, q2 ∈ Q∃(q1, c, q), (q, d, q2) ∈ ∆Spec with sp(c) 6=
sp(d)},

2. the set ΣB is the local block alphabet of

(a) the letters AI
qq′ with q, q′ ∈ G and I = sp(c) is a singleton for a letter

c ∈ Σ of asynchronous transitions and

(b) the letters AI
q,q′,w with q, q′ ∈ G and I = sp(c) for a c-labeled synchronized

transition and there exists a w-labelled path in ASpec from q to q′ using
only letters from the components in I,

3. the transition relation ∆Glob is defined as the set {(q, t, q′) | q, q′ ∈ G such
that there exists a path labelled by a word w from q to q′ in ASpec containing

only labels of the components of I. The letter t is AI
qq′ if I is a singleton and

AI
q,q′,w otherwise.}.

For a given z = t1 . . . tu ∈ L(AGlob) let the projection of z to component i,

denoted by z↾i, be the restriction of z to all tj = A
Ij
qj ,q

′
j
(,w) with i ∈ Ij .

Example 2. Figure 2 shows a complement specification and its transformation
into a global automaton for the product from Fig. 1. Each letter from the local

block alphabet can be interpreted as an automaton AI
q,q′(,w), e. g. the letter A

{1}
q0q3

corresponds to the automaton ASpec with initial state q0, final state set {q3},
and transitions (q0, a, q1), (q1, a, q1) and (q1, a, q3).

7

2.3 Transition Profiles

For an automaton A we now define transition profiles according to [KN01]. In-
formally, a transition profile describes a class of words such that the automaton
acts on these words in the same way.

Definition 4 (Transition profile).
Given an automaton A with state set Q and states p, q ∈ Q. Let p

u
−→ q

iff there exists a u-labeled path in A which starts in p and ends in q. Further,
let p

u
=⇒ q iff p

u
−→ q and the u-labeled path visits at least one final state. The

transition profile tA[u] of a word u ∈ Σ∗ is defined as two lists of tuples: the list
of all states (p, q) with p

u
−→ q in A and the list of all states (p, q) with p

u
=⇒ q in

A. Let TPA denote the set of all transition profiles of A.

Let |Q| = k. Obviously, it holds that |TPA| ≤ 2k
2
. Let u ∼A v iff ∀ p, q ∈

Q : (p
u
−→ q ⇔ p

v
−→ q and p

u
=⇒ q ⇔ p

v
=⇒ q). The relation ∼A is an equivalence

relation. For u ∈ Σ∗ let [u] denote the ∼A-equivalence class of u. The transition
profile tA[u] characterizes the class [u]. Because A has finitely many states, there
are only finitely many transition profiles and the index of ∼A is finite.

Definition 5. Let t1, t2 ∈ TPA be transition profiles of A then t1 ◦ t2 – called
the concatenation of t1 and t2 – is defined as follows: p → q ∈ t1 ◦ t2 iff ∃r ∈ Q:
(p → r ∈ t1 and r → q ∈ t2) and p ⇒ q ∈ t1 ◦ t2 iff ∃r ∈ Q: (p ⇒ r ∈ t1 and
r → q ∈ t2) or (p → r ∈ t1 and r ⇒ q ∈ t2). Let T1, T2 ⊆ TPA be subsets of
transition profiles. The concatenation T1 ◦T2 is defined by T1 ◦T2 = {t1 ◦ t2 | t1 ∈
T1, t2 ∈ T2}.

2.4 Effect of an Automaton

For the proof of the complexity of the main theorem, we use a precalculation of
the “effect” of an automaton A on a transition system (seen as an automaton
B). This effect describes which state changes are possible in B by the words in
the language of A.

We first introduce a concatenation of automata. The concatenation automa-
ton A1 · A2 is defined by the union of A1 and A2 with additional transitions
(p, ε, q0) for all final states p of A1 and where q0 is the initial state of A2. The
concatenation ε-NFA1 recognizes the concatenation of the languages of the in-
volved automata. Formally, A1 · A2 is defined as follows.

Definition 6. Let A1 := (Q1, Σ1,∆1, q01, F1) and A2 := (Q2, Σ2,∆2, q02, F2).
We assume that Q1 and Q2 are disjoint, otherwise we use a renamed copy of
the state set. The concatenation (ε)-NFA A1 · A2 is defined as (Q1∪̇Q2, Σ1 ∪
Σ2,∆, q01, F2) with ∆ := ∆1∪̇∆2∪̇{(p, ε, q02) | p ∈ F1}.

Based on the transition profiles of the last section we now introduce the
notion of an effect of an automaton.

Definition 7 (Effect of an automaton). Given two automata A,B the effect
of A on B is defined by the set of transition profiles of B that are chosen by the
words in the language of A, formally Θ(A,B) := {tB[u] | u ∈ L(A)}.

1 An ε-NFA is a non-deterministic finite automaton (NFA) with ǫ-transitions and can be
converted into an NFA which accepts the same language.

8

The effect of A on B is always a finite set of transition profiles, because
there are only finitely many transition profiles of A at all. We give a sketch
of an algorithm to compute the effect of A := (QA, Σ,∆A, p0, FA) on B :=
(QB, Σ,∆B, q0, FB). Let C := A×B be the product automaton with final state set
FC = FA ×QB. Then (p1 → p′1, p2 → p′2, . . . , pl → p′l, pi1 ⇒ p′i1 , . . . , pim ⇒ p′im)
is in the effect of A on B for l ≤ |QB|, pi, p

′
i ∈ QB, pi 6= pj for i 6= j and

ik ∈ [l] for k ∈ [m] iff there exists a word w ∈ L(C) such that: for all i ≤ l:
(q0, pi)

w
−→ (q, p′i) ∈ ∆∗

C for any q ∈ QA and ∀k ≤ m : pik ⇒ p′ik iff the path of
w in C visits a state (qf , p) with qf ∈ FA and there exists no larger l′ > l and
k′ > k with the same conditions.

It suffices to check a finite number of words w (until we get a state repetition
in C) to determine the effect of A on B. Given automata A1,A2,B the effect of
the concatenation automaton A1 · A2 on B is determined by concatenating the
transition profiles of the effect of A1 on B and A2 on B.

3 Composition: Simple Case

In this section we present the result that reduces the question whether a given
synchronized product and given complement specification (with bounded syn-
chronization) have common labeling sequences to checking whether the compo-
nents of this product and certain parts of the complement specification have
common labeling sequences.

Theorem 1. For a given (bounded synchronized) complement specification au-
tomaton ASpec without predicates and any synchronized product ASys of compo-
nents Ki for i ∈ I, compatible with ASpec, we have:

L(ASys)∩L(ASpec) 6= ∅ ⇔ ∃z ∈ L(AGlob) such that ∀i ∈ I : L(z↾i)∩L(Ki) 6= ∅.

Let us mention that the length of the word z can be restricted. A complexity
analysis is deferred to the treatment of the general case in Sect. 5.

Example 3. The complement specification ASpec from Fig. 2 expresses that a
synchronized transition should never be taken after any component has taken
more than two asynchronous transitions. Obviously, in the product from Fig. 1
there is a path which conflicts with this property, namely (12, a, 13, a, 12, c, 24).

In AGlob there exists a path with label z = A
{1}
q0,q3A

{1,2}
q3,q4,c and for z ↾ 1 =

A
{1}
q0,q3A

{1,2}
q3,q4,c there exists the label sequence aac in K1 and for z ↾2 = A1,2

q3,q4,c

there exists the label sequence c in K2. These sequences lead together to the
failure via aac to state 24 in the product.

We can generalize Theorem 1 to complement specifications given as Büchi
automata. Thus, we can capture all linear time properties which can be con-
verted into Büchi automata with a bounded synchronization. For the conversion
standard techniques can be used.

Corollary 1. For a given bounded synchronized complement specification Büchi
automaton BSpec and any synchronized product ASys compatible with ASpec :
L(ASys) ∩ L(BSpec) 6= ∅ holds iff there exists a word z ∈ L(AGlob) such that
∀i ∈ [n]: L(z↾i) ∩ L(Ki) 6= ∅, where z is

9

– either a finite word and at least one word z↾i ends with Büchi automaton as
local block

– or an ω-word and all local blocks of z↾i are finite automata.

4 Extension to Specifications with Predicates

In this section we discuss specifications with unary predicates. For this, we encode
in Sect. 4.1 the predicates (respectively their negation) in the components (as well
as in the product) as self-loop transitions. In Sect. 4.2 we fix the format we use
for a complement specification automaton that is compatible with the actions
and the predicates of a product and consider a small modification to improve
the results later. For the complement specification we introduce in Sect. 4.3 a
sequential projection which allows us to verify which predicates hold at a state
in the product by checking that all (possibly negated) “predicate” transitions
exist before taking a “normal” transition. Further, we analyse the transition
structure of the complement specification to reduce (in the sequential projection)
the number of checks of “predicate” transitions, if successive “normal” transitions
belong to the same synchronization profiles. We continue in Sect. 4.4 with a
formal definition of a sequential projection of a word: This projection translates
a word with letters like (a, 1, 1, 0)T to words where the predicates are checked via
the self loop transitions, e. g. (a, 1, 1, 0)T is translated to uv¬wa. In Sect. 4.5 we
conclude by splitting the sequential projection into the local blocks of a global
automaton as in Sect. 3.

4.1 Modification of the Product

To store the predicates as self loop transitions, we modify the components by
adding transition relations Ri

v/R
i
¬v with (x, x) ∈ Ri

v/R
i
¬v iff x ∈ Pv/x 6∈ Pv, and

we modify the synchronized product by adding transition relations R̄(¬)vi with

(x̄, ȳ) ∈ R̄(¬)vi iff x̄ = ȳ and (x̄[i], x̄[i]) ∈ Ri
(¬)v .

Example 4. In Fig. 3 three component transition systems K1,K2,K3 and their
synchronized product K̄ are shown. Again, the state names are chosen differently
for the components: S1 := {1, 2}, S2 := {3, 4} and S3 := {5, 6}. We use different
letters for the predicates and only show the corresponding self-loop transitions
(¬)u, (¬)v, (¬)w in K1,K2 respectively K3 (and not the predicates itselves). The
labels a/b are used for asynchronous transitions of K1/K2, i. e. sp(a) = {1}
and sp(b) = {2} and the labels c, d are used for synchronized transitions with
synchronization profile sp(c) = sp(d) = {2, 3}.

To compare the paths of a synchronized product with the complement spec-
ification, we translate ASys in an expanded form AESys, where the values of the

predicates are added to the transition labels, e. g. we have s
(a,1,1,0)
−−−−−→ s′ in AESys

iff ASys contains the transition s
a
−→ s′ and Pu, Pv hold at state s, whereas Pw

does not. Formally, AESys of ASys is defined as (S̄, R̄) with S̄ as in Definition 1
and for c ∈ Σ: (s, (c, b11, . . . , b

n
l)

T , s′) ∈ R̄ holds iff (s, s′) ∈ R̄c and (bij = 1 iff P̄vij

holds at state s).

Now, we introduce a complement specification automaton with predicates.

10

K1 :
1 2

K2 :

3

4

K3 :
5 6

a

a, u

a

¬u

b

d, v

b, c

¬v

c

¬w d,w

K̄ :

135 235

145 245

a

a, u, v,¬w

a

¬u, v,¬w

a

a, u,¬v,¬w

a

¬u,¬v,¬w

b b b b

136 236

146 246

a

a, d, u, v, w

a

d,¬u, v, w

a

a, u,¬v, w

a

¬u,¬v, w

b b b bc

c

Fig. 3. Components K1,K2,K3 and their synchronized product K̄

4.2 Complement Specification with Predicates

Definition 8. A (bounded synchronized) complement specification automaton
with predicates for a synchronized product K̄ is an automaton ASpec, compat-

ible with the action and predicate alphabet of K̄. Formally, ASpec := (Q,Σ ×

B
l·n,∆, q0, F) with l := |V |. A transition has the form (q, (c,B1, . . . , Bn)T , q′)

with c ∈ Σ and Bi := (bi1, . . . , b
i
l) specifies the truth values of the predicates

P̄vi for v ∈ V = {v1, . . . , vl} at the state q. As in Definition 2 the boundedness
condition has to be fulfilled: for every non-trivial synchronization profile sp(c)
of c-labeled transitions the restriction of ASpec to all transitions of this synchro-
nization profile sp(c) contains no loops.

As preparation for the sequential projection of the complement specification
and to reduce the number of checks of “predicate” transitions in it, we introduce
the notion of switching transitions: for subsequent transitions we distinguish
between transitions that use labels of the same synchronization profile as the
transition before and those which switch to another component.

We call a transition with label B = (c, b11, b
1
2, . . . , b

n
l) switching with respect

to a transition with label B′ = (c′, b′11 , . . . , b
′n
l) if c has a synchronization profile

different from c′ (sp(c) 6= sp(c′)) or if there exists at least one predicate valuation
of the other components which does not coincide (∃j ∈ [l] with bkj 6= b′kj for
k 6∈ sp(c)). A transition t is called switching if there exists a predecessor t′ such
that t is switching with respect to t′. A transition is called non-switching if it is
not switching with respect to all predecessors.

For a given complement specification automaton we use a small modification
to improve the results later: we double each state s which has self loop transitions
if all of these transitions are non-switching w.r.t. each other: Let t denote a
transition (s, (c, B̄), s) which is non-switching w.r.t. all other transitions of the
form t′ = (s, (c′, B̄′), s) of ASpec. For all such transitions t we remove t itself,

introduce a new state s′ and add transitions (s, (c, B̄), s′) and (s′, (c, B̄), s′). For

11

q2 q3

q0 q1

(a
0
1
0

)

(a
1
1
0

)

(c
0
0
0

)

(b
1
1
0

)

(a
1
0
0

)

(d
0
1
1

)

q2 q3

q0

q′0

q1

q′1

(a
1
1
0

)

(a
0
1
0

)

(c
0
0
0

)

(a
0
1
0

)

(a
1
1
0

)

(c
0
0
0

)

(b
1
1
0

)

(a
1
0
0

)

(b
1
1
0

)

(a
1
0
0

)

(d
0
1
1

)

Fig. 4. Complement specification Fig. 5. Modified complement specification

all outgoing transitions (s, (c1, B̄1), s1) with s1 6= s and any c1 we further add
a transition (s′, (c1, B̄1), s1). Note that this modification does not change the
language of the automaton, but ensures that after taking the transition from
s to s′ – meaning that we would take the self-loop transition in the original
automaton once – we are now in a state which is only reachable by transitions in
which the values of the predicates of the other components do not change until
we leave this state. Thus, in a run which repeats the state s′ all transitions from
s′ to s′ can be checked in the same component/synchronization profile. Fig. 4
shows a complement specification automaton and Fig. 5 this modification.

4.3 Sequential Projection of a Complement Specification

The sequential projection AProj of a complement specification ASpec = (Q,Σ ×

B
l·n,∆Spec, q0, F) transfers the truth value of the predicates into “predicate

transitions” which are checked before the “normal transitions”. It is defined
as the automaton AProj := (Q ∪ R,Σ ∪ (V × [n]),∆Proj, q0, F) with R :=
(Σ × B

l·n) × [l · n] × Q. We explain the definition of the transition relation
∆Proj: for a transition t = (q, (c,B1, . . . , Bn), q′) ∈ ∆Spec we check the predi-

cates – corresponding to B1, . . . , Bn – one after the other and afterwards the
label c of the transition t. Note that the order in which the predicates have to
be checked can be chosen freely. For each synchronized transition with c ∈ Σ
we first verify that for all components different from sp(c) there exist transitions
for the predicates corresponding to the sets Bj of t before verifying this for the
components of sp(c) and before taking the c-labeled transition. If the transition
is non-switching with respect to all predecessor transitions, we only check the
predicates of the components of sp(c) before taking the c-labeled transition.

To define ∆Proj formally, we introduce for a transition to a state q and
with label B := (a,B1, . . . , Bn), Bi = (bi1, . . . b

i
l) and a fixed number k ∈

{0, l, 2 · l, . . . , (n− 1) · l} the abbreviation (B, k, q)
Bi

99K (B, k+ l, q) to denote the

sequence of transitions (B, k, q)
xi
1−→ · · ·

xi
l−→ (B, k + l, q) where xij = vij if bij = 1

and xij = ¬vij if bij = 0. The transition relation ∆Proj is then defined as follows:
Let t := (q,B, q′) ∈ ∆Spec be a synchronized transition with label c ∈ Σ and syn-
chronization profile sp(c) = {i1, . . . , im}. If there exists a predecessor transition t′

such that t is switching w.r.t. t′, we add the transitions q := (B, 0, q′)
B1

99K · · ·
Bi1−1

99K

(B, (i1 − 1) · l, q′)
Bi1+1

99K · · ·
Bn

99K (B, (n−m) · l, q′)
Bi1

99K · · ·
Bim

99K (B, l · n, q′)
a
−→ q′ to

12

q0

r10 r11 r12

r1

r2

r3

q1

r16r15r14
r7

r8

r9

q′0

r13

r4 r5 r6 q′1

q2r17r18q3

v

¬w u

a

¬u

¬v¬wu

a
v

¬w

u

a

u

¬w

v

b

ε

¬u

¬v

ε

¬u ¬v ¬w

c

ε

vwd

q0

r10 r11

r1

r2

q1

r16r15
r7

r8

r4

q3

A2
q0r10

A3
r10r11

A1
r11r7

A1
r11q1

A2
q1r16

A3
r16r15A1

r15q0

A1
r15r4

A2
q0r1

A3
r1r2 A1

r2q1

A1
r2r7A1

r2r4

A1
q1r7

A3
r7r8

A2
r8r16

A2,3
r4q2,

¬v¬wcvwd

Fig. 6. Complement specification projection Fig. 7. Global specification

∆Proj. If t is non-switching for all predecessors (q∗, (c′, A1, . . . , An), q) ∈ ∆Spec,
only the predicates of the components from sp(c) have to be checked for t so only

the transitions q
ε
−→ (B, (n−m) · l, q′)

Bi1

99K · · ·
Bim

99K (B,n · l, q′)
x
−→ q′ are added to

∆Proj.

Example 5. In Fig. 6 we see the sequential projection of the modified comple-
ment specification from Fig. 5. For readability the states that were added to the
complement specification automaton are abbreviated with ri (1 ≤ i ≤ 16), where
e. g. r10 := ((a, 1, 1, 0)T , 1, q1) and r6 := ((c, 0, 0, 0)T , 3, q2). The transitions for
the predicates Pu, Pv , Pw are labeled with u, v, w, respectively their negation. To
indicate the assigned component, the transitions with labels of K1,K2, respec-
tively K3, are drawn as normal, dashed respectively dotted lines. The transitions
of the synchronization profile sp(c) = sp(d) = {2, 3} are drawn as zigzag lines.

4.4 Sequential Projection of a Word

To be able to compare a run in the complement specification automaton with
a path in the synchronized product using the self-loop transitions for the predi-
cates, we define a sequential projection of a word w. In this sequential projection
the truth values bij = 1/bij = 0 for a letter B = (c, b11, . . . , b

n
l) are tested by

checking the existence of the self-loop transitions with the labels vij/¬v
i
j .

Let Bk = (ck, . . .) and Bk+1 = (ck+1, . . .) be two subsequent letters in w
where ck, ck+1 have the same synchronization profile sp(ck) = sp(ck+1). Be-
cause of the structure of the product, the predicates of the other components
I\sp(ck) cannot change between subsequent transitions in the product with la-
bels Bk, Bk+1 and thus do not have to be checked again if they coincide in Bk

and Bk+1. We define seq(w) as a regular expression which allows that the co-
inciding predicates are not checked again but also that they are checked again.
Further, we allow any possible order in which these predicates are tested. We
now define seq(w) formally.

Let Σ′ := Σ × B
l·n and w = B1 · · ·Blen(w) ∈ Σ′∗ be a word with length

len(w). Further let St be the symmetric group with t elements. The sequential

13

projection seq(w) of the word w is defined by seq(w) := seq(B1) · · · seq(Blen(w))
with seq(Bk) (k ∈ [len(w)]) for a letter Bk = (ck, b

1
1, . . . , b

n
l) defined as follows:

If k = 1 or Bk is switching w.r.t. Bk−1 then the regular expression seq(Bk) is
∨

σ∈Sn·l
zσ(1) · · · zσ(n·l)ck where z(m−1)·l+j = vmj if bmj = 1 and z(m−1)·l+j = ¬vmj

if bmj = 0 for m ∈ [n]. (This allows any sequence in which the predicates (¬)vmj
are checked.)

IfBk is non-switching w.r.t.Bk−1 (k 6= 1) and sp(ck−1) = sp(ck) = {i1, . . . , if}
then in seq(Bk) either the predicates of the components from sp(ck) are checked
in any sequence or all predicates are checked in any sequence. For σ ∈ Sf ·l let
ι : [f · l] → I be a function that assigns the first l numbers to i1, the next l num-
bers to i2 and so on. The function is defined as ι(t) = ij if (j−1) · l < σ(t) ≤ j · l.
Further let γ : [f · l] → [n · l] be defined as γ(t) = (ι(t)− 1) · l+(σ(t) mod l) then
seq(Bk) :=

∨

σ∈Sf ·l
zγ(1) · · · zγ(f ·l)ck ∨

∨

σ∈Sn·l
zσ(1) · · · zσ(n·l)ck.

Example 6. Let w = (a, 1, 1, 0)T (a, 0, 1, 0)T . We have uv¬wa¬ua ∈ L(seq(w))
(where v,¬w are not checked again), but also e. g. v¬wua¬uv¬wa ∈ L(seq(w))
(where all transitions are checked again and we use an other sequence in which
the predicate transitions are checked).

The following lemma shows the connection of the paths in the synchronized
product and the paths of the expanded synchronized product:

Lemma 1. Let ASys be a synchronized product and AESys the expanded syn-
chronized product of ASys and y ∈ Σ′ := Σ × B

l·n then y ∈ L(AESys) holds iff
L(seq(y)) ∩ L(ASys) 6= ∅.

Proof. If y ∈ L(AESys) holds then there exists a path s0
B1−−→ . . .

Bm−−→ sm with
y = B1 . . . Bm and at sk the predicate P i

vj
holds iff bij = 1 of Bk = (c, b11, . . . , b

n
l).

We conclude that in ASys there exist self-loop transitions at sk labeled by
(¬)v11 , . . . , (¬)v

n
l according to bij = 1(/0) and thus L(seq(y)) ⊆ L(ASys).

If L(seq(y)) ∩ L(ASys) 6= ∅ with y = B1 . . . Bm and Bk = (c, b11, . . . , b
n
l) then for

Bk there exists a path from sk−1 by a word wk to sk that checks all predicates
at sk−1 and afterwards uses a c-transition to sk (or it checks only the predicates
of component Ki if a transition of the same component was taken before and
the other predicates did not change). We conclude that in AESys there exists
a transition with label Bk from sk−1 to sk. By the concatenation of the path
y ∈ AESys follows.

4.5 Global Specification

The global specification automaton AGlob := (G,ΣB ,∆Glob, q0, F) for a sequential
projection AProj = (Q ∪ R,Σ,∆Proj, q0, F) of a (bounded synchronized) com-
plement specification automaton is defined as in Definition 3, but the state set
G is the union of the sets

1. {q0} ∪ F

2. {q ∈ Q | ∃r1, r2 ∈ R ∃(r1, c, q), (q, v
i, r2) ∈ ∆Proj : c ∈ Σ ∧ i 6∈ sp(c)}

3. {r = (c,B1, . . . , Bn, k, q) ∈ R | ∃r1, r2 ∈ Q∪R ∃(r1, v
i, r), (r, wj , r2) ∈ ∆Proj :

i 6= j ∧ (i /∈ sp(c) ∨ j /∈ sp(c))}

14

For a local block AI
r,r′,w and i ∈ I let AI

r,r′,w ↾ i := Bi
r,r′ where Bi

r,r′ is the

automaton which results from AI
r,r′,w if we replace all transitions from component

indices different from i by ε-transitions. For a local block AI
r,r′ with singleton

I = {i} we define AI
r,r′↾i to be Ar,r′ itself. For a given z = t1 . . . tu ∈ L(AI) we

define the projection of z to component i, denoted by z ↾ i, as ti1 . . . t
i
len(i) with

len(i) maximal such that for j ∈ [len(i)] : tij = A
Ij
rj ,r

′
j(,w)
↾i (for states rj , r

′
j ∈ G)

and i ∈ Ij in the order in which the A
Ij
rj ,r

′
j(,w) appear in z.

Example 7. In Fig. 7 we show the global specification automaton of the se-
quential projection from Fig. 6. The local blocks are defined as in Sect. 3, e. g.

A
{1}
r11,r7 = ({r11, r12, q1}, {u, a},∆, r11 , {q1}) where∆ contains only the transitions

(r11, u, r12) and (r12, a, q1).

5 Composition: General Case

With the preliminaries from the last section we generalize Theorem 1 to speci-
fications which can also check the predicates of a product. Further, we give an
upper bound for the induced algorithm.

Theorem 2. For a given (bounded synchronized) complement specification au-
tomaton ASpec and any synchronized product AESys of components Ki for i ∈ [n],
compatible with ASpec we have:

L(AESys)∩L(ASpec) 6= ∅ ⇔ ∃z ∈ L(AGlob) such that ∀i ∈ [n] : L(z↾i)∩L(Ki) 6= ∅.

The size of AGlob is quadratic in the size of ASpec and linear in the number
of predicates and components. The length of z is exponential in the maximal
number of states a component has. The tests whether L(z↾i) ∩ L(Ki) 6= ∅ need a
precalculation which is exponential in the number of components, predicates and
states of the complement specification, and in the number of states the largest
component has.

Example 8. In AESys (which is ASys from Fig. 3 with the predicate valuations
of the current state on the outgoing transitions) and in ASpec from Fig. 5
there exist the paths πSpec = (q0, q

′
0, q1, q

′
1, q0, q2, q3) and πESys = (s135, s235,

s135, s145, s245, s236, s236) labeled with (a, 1, 1, 0)T(a, 0, 1, 0)T(b, 1, 1, 0)T(a, 1, 0, 0)T

(c, 0, 0, 0)T(d, 0, 1, 1)T . In ASys there exists a path πSys with the same state se-
quence like πESys, but with each state repeated four times and the label se-
quence v¬wuaε¬uau ¬wvb¬v¬wua¬u¬v¬wcvwd. From the path πSpec we get
a path πProj = (q0, r1, r2, r3, q

′
0, r13, r12, q1, r7, r8, r9, q

′
1, r16, r15, r14, q0, r4, r5, r6,

q2, r17, r18, q3) in AProj of Fig. 6 with the same label sequence.
From πProj we get πGlob = (q0, r1, r2, r7, r8, r16, r15, r4, q3) in AGlob from Fig. 7

for z = A
{2}
q0,r1A

{3}
r1,r2A

{1}
r2,r7A

{3}
r7,r8A

{2}
r8,r16A

{3}
r16,r15 A

{1}
r15,r4A

{2,3}
r4,q3,¬v¬wcvwd. Thus, for

i ∈ {1, 2, 3} there exist a word in L(z↾i) ∩ L(Ki), e. g. for i = 2: z↾2 = A
{2}
q0,r1 ·

A
{2}
r8,r16 · (A

{2,3}
r4,q3,¬v¬wcvwd↾2) and v ·vb¬v ·¬vεcvεd ∈ L(z↾2)∩L(K2) with the path

π2 = (3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3) in K2.

We show correctness, completeness and complexity bounds.

15

Proof (Correctness).
Given L(AESys) ∩ L(ASpec) 6= ∅ then there exists a word y with y ∈ L(ASpec)
and L(seq(y)) ⊆ L(ASys) by the proof of Lemma 1. Because of the construction
of AProj from ASpec, it follows that L(seq(y))∩L(AProj) 6= ∅. Thus, there exists
a word v ∈ L(AProj) ∩ L(ASys). Let πProj be a path induced by v in AProj. We
group the subsequent path segments of πProj which use transitions of the same
component respectively with the same synchronization profile. The path πProj

is decomposable into path segments πProj
1 , πProj

2 , . . . , πProj
u for u ≤ len(πProj)

such that πProj
j uses only transitions with labels of exactly one synchronization

profile sp(c) for c ∈ Σ. Let Ij denote these components sp(c) of the j-th path
segment. We assume that Ij 6= Ij+1 for j ∈ [u− 1], otherwise the corresponding
path segments could be joined to guarantee this property.
Because of the definition of AGlob there exists a path πGlob in AGlob with label
sequence z = AI1

r1,r
′
1(,w)

· · · AIu
ru,r′u(,w) where rj, r

′
j are the first respectively the last

state of the path segment πProj
j and in A

Ij
rj ,r

′
j
the path πProj

j leads from rj to r′j .

Let vj be the label of the path segment πProj
j .

Let πSys be a path induced by v in ASys. Then, there exists a decomposition of

πSys into path segments πSys
1 , . . . , πSys

u with the labels v1, . . . , vu. Because vj uses

only labels of Ij the state “names” in πSys
j differ only in the components Ij . For

all i ∈ Ij let vj↾i be the restriction of vj to the labels of the component Ki, then

vj↾i ∈ L(A
Ij
rj ,r

′
j
↾i) holds and for all i ∈ Ij there exists a path in Ki from a state sij

to a state s′ij labeled by vj↾i. Because of the bounded synchronization condition,
for all i ∈ Ij the restriction of vj↾i to the labels of the “normal” transitions is
the same word. Note that s′ij = sik holds for j < k if there is no path segment

between πSys
j and πSys

k with associated components I with i ∈ I, i. e. there exists

no sim with j < m < k.
We define v[i] to be the restriction of v to all segments with associated component
i, i. e. v[i] := vj1↾ i · vj2↾ i · · · vjz↾ i where j1 < · · · < jz, i ∈ Ij1 , . . . , Ijz and
∀j′ 6∈ {j1, . . . , jz} : i 6∈ Ij′ . It follows that for every component Ki of ASys there
exists a path in Ki labeled by v[i] and v[i] ∈ L(z↾i). Thus, L(z↾i) ∩ L(Ki) 6= ∅.

Proof (Completeness).
It is given that there exists a z ∈ L(AGlob) such that for all i ∈ I there exist words
vi with vi ∈ L(z↾i) ∩ L(Ki). Because of vi ∈ L(z↾i) the word vi is decomposable

into words vi1 · · · v
i
len(i) with vij ∈ L(tij) and tij = A

Ij
rj,r

′
j ,w
↾ i, respectively tij =

A
Ij
rj ,r

′
j
↾i for a local block A

Ij
rj ,r

′
j(,w)

of AGlob that appears in z. From vi ∈ L(Ki) it

follows that in the component Ki there exists a path si0
vi1
 si1 · · ·

vi
len(i)
 si

len(i)

for states sij ∈ Si.
From the construction of AGlob out of AProj we conclude that there exists a
path labeled by w in AProj whereas the word w is defined as the result of the
concatenation of words which are constructed out of the vij in the order as the tij
appear in z. Formally we define w := w1 . . . wu with wk as follows. For tk = AI

r,r′

with singleton I = {i} for an i ∈ [n] there exists a path labeled with a word
wk. For tk = AI

r,r′,wk
with synchronization profile I = {i1, . . . , ic} there exist

j1, . . . , jc such that tidjd = AI
r,r′,wk

↾id for all d ∈ [c]. Let vi1j1 , . . . , v
ic
jc

be the words

16

corresponding to tidjd (d ∈ [c]). We conclude that by definition of AI
r,r′,wk

↾id (d ∈
[c]) and by the bounded synchronization condition there exists an interleaving
of the words vi1j1 , . . . , v

ic
jc

which admits a wk-labeled path AI
r,r′ , because for every

component index the “same” wk is chosen2. Thus, w ∈ AProj holds because of
the definition of AGlob from AProj.
It remains to show that w = w1 . . . wu ∈ L(ASys). Let k ∈ {0, . . . , u−1} and s̄0 :=
(s10, . . . , s

n
0) be the initial state of the synchronized product. For a synchronization

profile Ik+1 = {i1, . . . , ic} there exists a path from s̄k to s̄k+1 by wk+1 because
for all d ∈ [c] there exist paths from s̄k[id] to a state sid =: s̄k+1[id] by vidjd
and the vidjd coincide in the non-predicate transitions, and for all other i′ 6∈ Ik+1 :
s̄k+1[i

′] = sk[i
′] holds. Thus by concatenating these segments, inASys there exists

a path from s̄0 to s̄u by w. We conclude w ∈ L(ASys) ∩ L(AProj). Because of
the construction of AProj from ASpec there exists a word y with w ∈ L(seq(y))
and y ∈ L(ASpec) and w ∈ L(ASys). By Lemma 1 y ∈ L(AESys) holds. Thus,
L(AESys) ∩ L(ASpec) 6= ∅.

Theorem 2 induces the following algorithm for checking whether L(AESys)∩
L(ASpec) 6= ∅ holds:

1. Construct AProj from ASpec.
2. Construct AGlob from AProj.

3. For all local blocks A
{i}
r,r′/A

I
r,r′,w of AGlob calculate the effect of A

{i}
r,r′/A

I
r,r′,w↾i

on Ki.
4. Check for all words z ∈ L(AGlob) up to a maximal length that ∀i ∈ I :

L(z↾i) ∩ L(Ki) 6= ∅ by concatenating the local blocks in z↾i.

We now justify the complexity claims of Theorem 2, by giving more precise
complexity bounds for the induced algorithm. For a synchronized product we use
the following parameters:

– n: the number of components
– l: the number of predicates
– r: the largest number of states of the components (the maximum over all ni)

For a complement specification we use the parameters:

– s: the number of states
– wsyn: the number of synchronizing words for non-trivial synchronization pro-

files (Formally, wsyn is defined as
∑

I⊆[n],I 6={i}w
I
syn where wI

syn is the (finite)
number of words in the complement specification restricted to the synchro-
nisation profile I.)

We show that the size of AGlob is ≤ s2 · l · n + s and the length of the word
z can be restricted to (s2 + wsyn) · l · n · 2r

2
. Further, the complexity of the

precalculation is at most (s2 + wsyn) · l · n · [s2 · l]r·s
2(l·n+1).

Proof (Complexity of the Algorithm).

1. Let t be the number of transitions of ASpec. The automaton AProj has sProj ≤
t · l · n + s ≤ s2 · l · n + s states and tProj ≤ t · (l · n + 1) ≤ s2 · (l · n + 1)
transitions, because for each of the t transitions in ASpec there are at most
l · n additional states and transitions in AProj.

2 “Same” means here that the words coincide if we omit the predicate transitions.

17

2. Let tsw be the number of switching transitions. Because AGlob compresses
the check of transitions of the same synchronization profile into a local block,
AGlob has sGlob ≤ tsw · l · n ≤ s2 · l · n states and there are at most tGlob ≤
(tsw + wsyn) · l · n ≤ (s2 + wsyn) · l · n local blocks.

3. For each local block AI
r,r′(,w)↾i and each component Ki, we have to calculate

the effect of AI
r,r′(,w)↾i on Ki. For this, first, we have to build the product

automaton of AI
r,r′(,w)↾i and Ki (see the remark after Definition 7). The size

of this product is at most tProj · r ≤ s2 · (l · n + 1) · r. Then, we have to
check all words in the product up to the size of the product, i. e. at most
[s2 · l]r·tProj words. Thus, in total, we get a cost of tGlob · [s

2 · l]r·tProj ≤
(s2 + wsyn) · l · n · [s2 · l]r·s

2(l·n+1) for this precalculation.
4. Let TPi be the set of all transition profiles of Ki, tpi := |TPi| the number of

transition profiles for the i-th component and tp := maxi∈I tpi the number
of transition profiles of the largest component. Note that each automaton
AI

r,r′(,w)↾i selects a subset of TPi – the effect of AI
r,r′(,w)↾i on Ki.

For the estimation of the length of z let us note that on the one hand, the
number tGlob of transitions of AGlob is not sufficient because AGlob might have
only one state with a loop (tGlob = 1) and the effect of this loop might contain
only one transition profile, e. g. τ = (1 → 2, . . . , ni−1 → ni). We could get
other transition profiles like (1 → 3, . . . , ni−1 → 1) by repeating τ more than
tGlob = 1 times. On the other hand, tp is also not sufficient for the length of
z because tGlob might be much larger than tp, but for all but one letter the
effect on Ki might be the identity (1 → 1, . . . , ni → ni) and the other effect
might be (1 → 2, . . . , ni−1 → ni). Thus, we could get other transition profiles
with a length > tp of z.
For i ∈ I let RTPi be the set of sets of transition profiles reachable by any
word z↾i for z ∈ L(AGlob). We will now show that the length of z can be
restricted to at most tp·tGlob+1 by proving that RTPi can already be reached
by all words up to length tp · tGlob + 1.
As shown above, it could be the case that the effect in Ki of a loop in AGlob

contains only one transition profile τ different from the identity. The largest
loop without repeating more than one state has to be of size ≤ tGlob, so after
at least tGlob + 1 letters we can be sure that we either have already reached
RTPi or the effect of this word is a transition profile different from t. By
repeating any loops of size ≤ tGlob at most tpi times we can reach RTPi.
Thus, the size of all z↾i can be bounded by tGlob · tp. We conclude that the
maximal length of the word z is tGlob · tp ≤ ((s2 + wsyn) · l · n) · (2

r2).
For each of these words z the effect of z↾i on Ki has to be calculated. Because
the effect of the concatenation of local blocks on Ki is determined by the
concatenation of the effects, we can simply concatenate the precalculated
effects. Thus, we have to check at most (n · tGlob)

tGlob·tp ≤ ((s2 + wsyn) · l ·

n2)((s
2+wsyn)·l·n)·(2r

2
) words.

The generalization to Büchi automata as in Sect. 3 also works in the case
with predicates. The complexity differs only by a constant factor.

The proof idea for the generalization to Büchi automata is the following:
Consider an infinite path in the projection of the complement specification au-
tomaton and its decomposition into path segments πProj

j which use only labels of

18

exactly one synchronization profile (and subsequent segments cannot be joined
while remaining this property). Then there are two cases: either the last path
segment is infinite or there are infinitely many (finite) path segments with dif-
ferent synchronization profiles. This amounts to the two cases for the word z
in the global specification: either z is finite and the last local block is a Büchi
automaton or z is an infinite word of the form z = uvω for finite u, v and all
local blocks are finite automata.

Note that the generalization to Büchi automata only adds a factor 2 to the
length of the word z. For the first case, where a finite z is considered we can use
the same estimation as in the proof of Theorem 1. We want to remark, that for
the last local block of z we have to calculate the effect of a Büchi automaton on
a finite automaton. However, this can be done in an analogous way to the case of
a finite automaton. For the second case where z is infinite of the form z = uvω,
we can use the known estimation for both subwords u and v. Thus, together we
get a complexity which is twice the complexity of the known algorithm.

6 Further Results and Conclusion

We have presented a compositional approach for reducing failure detection in
a product of transition systems to the components, working in an automata
theoretic rather than a logical framework. The method allows us to reduce the
question whether a product of transition systems and a given complement spec-
ification automaton (with bounded synchronization) have paths with a common
labeling to the question whether a path in the global specification automaton ex-
ists such that the components and parts of the complement specification which
are described by the local blocks of the global specification automaton have paths
with common labeling. The composition method uses information about the tran-
sitions in the product – their synchronization profiles – to split the complement
specification automaton into parts. Further, we have shown that the complexity
of the induced algorithm is at most double exponential in the number of states
of the largest component and exponential in the number of components, in the
number of states and predicates the complement specification has. We want to re-
mark that the restriction to bounded synchronization can be removed: Consider
a part of the specification with a fixed synchronization profile and unbounded
synchronization (i. e. this part contains a loop). This part cannot be checked as
a single local block, because there is no guarantee that in all components of the
synchronization profile the same word is chosen. Therefore, we have to use local
blocks for every letter of this part. Of course, in general, we have to pay in com-
plexity for these parts of unbounded synchronization. However, as we estimated
the complexity by s2 in Section 5 the worst case complexity does not change.

The results in this paper complement research on synchronized state/event
systems [BVF+99] in which the descriptional framework is modal logic, and where
model-checking is done by a reduction of the product index set while transforming
the given specification (formula). As another related paper we mention [CK96]
where a different set-up for specifying synchronization is used (via “interface
processes”).

We mention that the present technique can be improved further in appropri-
ate scenarios: E. g., one could use the fact that in the complement specification

19

successive transitions of the same component must have the same valuation of
the predicates of the other components, to reduce the number of transitions by
deleting transitions where this is not the case. A second improvement would be to
duplicate states with incoming transitions of different components and thereby to
split the different paths. However, one would have to ensure that this procedure
does terminate by considering the decomposition of the complement specification
automaton into strongly connected components and aborting the procedure if we
reach the same state of a loop again.

Let us mention two possible generalizations: First, one should aim at a com-
position theorem directly for the language inclusion problem L(Sys) ⊆ L(Spec),
because it is more natural to specify the desired behaviour of a system than the
behaviour of the complement. Second, one should get a deeper understanding
of the technique by looking at how the decomposition of the complement spec-
ification automaton can be translated to a decomposition of a logical formula.
Therefore, one could consider e. g. a variation of linear time temporal logic (LTL)
with additional information about the components, respectively the synchroniza-
tion profile on parts of the formula. Linear time temporal logic is here a better
candidate than classical first-order logic.

References

AHU74. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis

of Computer Algorithms. Addison Wesley, Reading, Massachusetts, 1974.

BK08. Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press,
2008.

Büc60. J. R. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für

mathematische Logik und Grundladen der Mathematik, 6:66–92, 1960.

BVF+99. Nicky O. Bodentien, Jacob Vestergaard, Jakob Friis, K̊are J. Kristoffersen, and
Kim G. Larsen. Verification of state/event systems by quotienting. BRICS, RS-
99-41, December 1999. Nordic Workshop in Programming Theory, Uppsala, Sweden,
October 6–8, 1999.

CK90. Chen Chung Chang and H. J. Keisler. Model Theory. North Holland, Amsterdam,
1990.

CK96. Shing Chi Cheung and Jeff Kramer. Context constraints for compositional reacha-
bility analysis. ACM Trans. Softw. Eng. Methodol., 5:334–377, October 1996.

DGKS07. Anuj Dawar, Martin Grohe, Stephan Kreutzer, and Nicole Schweikardt. Model theory
makes formulas large. In ICALP’07: 34th Int. Colloquium on Automata, Languages

and Programming, volume 4596 of Lecture Notes in Computer Science, pages 913–
924. Springer, 2007.

Elg61. C.C. Elgot. Decision problems of finite automata design and related arithmetics.
Transactions of the American Mathematical Society, 98:21–52, 1961.

Fel08. Ingo Felscher. The compositional method and regular reachability. Electronic Notes

in Theoretical Computer Science, 223:103–117, December 2008.

FT09. Ingo Felscher and Wolfgang Thomas. Compositionality and reachability with condi-
tions on path lengths. Int. Journal of Foundations of Computer Science, 20(5):851–
868, May 2009.

FT11. Ingo Felscher and Wolfgang Thomas. Compositional failure detection in structured
transition systems. Lecture Notes of Computer Science, 6807:130–141, 2011.

FV59. S. Feferman and R. Vaught. The first-order properties of products of algebraic sys-
tems. Fundamenta Mathematicae, 47:57–103, 1959.

GS98. D.M. Gabbay and V.B. Shehtman. Products of modal logics, part 1. Logic Journal

of IGPL, 6(1):73–146, 1998.

Hod93. Wilfrid Hodges. Model theory, volume 42 of Encyclopedia of Mathematics and its

Applications. Cambridge University Press, Cambridge, 1993.

20

KN01. Bakhadyr Khoussainov and Anil Nerode. Automata Theory and its Applications.
Progress in Computer Science and Applied Logic (PCS), Vol. 21. Birkhäuser Boston,
2001.

Mak04. Johann A. Makowsky. Algorithmic uses of the Feferman-Vaught theorem. Annals of
Pure and Applied Logic, 126(1-3):159–213, 2004.

Mos52. Andrzej Mostowski. On direct products of theories. The Journal of Symbolic Logic,
17(1):1–31, 1952.

Rab07. Alexander Rabinovich. On compositionality and its limitations. ACM Transactions

on Computational Logic, 8(1), January 2007.
She75. Saharon Shelah. The monadic theory of order. The Annals of Mathematics,

102(3):379–419, 1975.
Tho97a. Wolfgang Thomas. Ehrenfeucht games, the composition method, and the monadic

theory of ordinal words. In Jan Mycielski, Grzegorz Rozenberg, and Arto Salomaa,
editors, Structures in Logic and Computer Science, A Selection of Essays in Honor

of A. Ehrenfeucht, volume 1261 of LNCS, pages 118–143. Springer–Verlag, 1997.
Tho97b. Wolfgang Thomas. Languages, automata and logic. In G. Rozenberg and A. Salomaa,

editors, Handbook of formal languages, vol. 3 beyond words, volume 3, pages 389–455.
Springer–Verlag, New York, NY, USA, 1997.

Wol01. Pierre Wolper. Constructing automata from temporal logic formulas: A tutorial. In
Ed Brinksma, Holger Hermanns, and Joost-Pieter Katoen, editors, Lec. on Form.

Meth. and Performance Analysis, volume 2090 of LNCS, pages 261–277. Springer
Berlin/Heidelberg, 2001.

WT04. Stefan Wöhrle and Wolfgang Thomas. Model checking synchronized products of
infinite transition systems. In Proceedings of the 19th Annual IEEE Symposium on

Logic in Computer Science, LNCS, pages 2–11, Washington, DC, USA, 2004. IEEE
Computer Society.

21

22

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years.

A complete list of reports dating back to 1987 is available from

http://aib.informatik.rwth-aachen.de/. To obtain copies consult the above

URL or send your request to: Informatik-Bibliothek, RWTH Aachen, Ahorn-

str. 55, 52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007

2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, Harald Zankl: Maximal Termination

2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler

2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations

2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message

Passing Programs

2008-07 Alexander Nyßen, Horst Lichter: The MeDUSA Reference Manual, Sec-

ond Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on

Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-

endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-

Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable

Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-

straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl

Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-

proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers

2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves

2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study

2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving

2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems

2008-19 Dirk Wilking: Empirical Studies for the Application of Agile Methods to

Embedded Systems

2009-02 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Quantitative Model Checking of Continuous-Time Markov Chains

Against Timed Automata Specifications

23

http://aib.informatik.rwth-aachen.de/

2009-03 Alexander Nyßen: Model-Based Construction of Embedded

Real-Time Software - A Methodology for Small Devices

2009-04 Daniel Klünder: Entwurf eingebetteter Software mit abstrakten Zus-

tandsmaschinen und Business Object Notation

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-

erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-

dependent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm

Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the

Correctness of the Upper Bound of a Maximum Independent Set Algo-

rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The

Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in

Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset Games

2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)

2009-15 Joost-Pieter Katoen, Daniel Klink, Martin Neuhäußer: Compositional

Abstraction for Stochastic Systems

2009-16 George B. Mertzios, Derek G. Corneil: Vertex Splitting and the Recog-

nition of Trapezoid Graphs

2009-17 Carsten Kern: Learning Communicating and Nondeterministic Au-

tomata

2009-18 Paul Hänsch, Michaela Slaats, Wolfgang Thomas: Parametrized Regular

Infinite Games and Higher-Order Pushdown Strategies

2010-02 Daniel Neider, Christof Löding: Learning Visibly One-Counter Au-

tomata in Polynomial Time

2010-03 Holger Krahn: MontiCore: Agile Entwicklung von domänenspezifischen

Sprachen im Software-Engineering

2010-04 René Wörzberger: Management dynamischer Geschäftsprozesse auf Ba-

sis statischer Prozessmanagementsysteme

2010-05 Daniel Retkowitz: Softwareunterstützung für adaptive eHome-Systeme

2010-06 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Computing maximum reachability probabilities in Markovian timed au-

tomata

2010-07 George B. Mertzios: A New Intersection Model for Multitolerance

Graphs, Hierarchy, and Efficient Algorithms

2010-08 Carsten Otto, Marc Brockschmidt, Christian von Essen, Jürgen Giesl:

Automated Termination Analysis of Java Bytecode by Term Rewriting

2010-09 George B. Mertzios, Shmuel Zaks: The Structure of the Intersection of

Tolerance and Cocomparability Graphs

24

2010-10 Peter Schneider-Kamp, Jürgen Giesl, Thomas Ströder, Alexander Sere-

brenik, René Thiemann: Automated Termination Analysis for Logic Pro-

grams with Cut

2010-11 Martin Zimmermann: Parametric LTL Games

2010-12 Thomas Ströder, Peter Schneider-Kamp, Jürgen Giesl: Dependency

Triples for Improving Termination Analysis of Logic Programs with Cut

2010-13 Ashraf Armoush: Design Patterns for Safety-Critical Embedded Systems

2010-14 Michael Codish, Carsten Fuhs, Jürgen Giesl, Peter Schneider-Kamp:

Lazy Abstraction for Size-Change Termination

2010-15 Marc Brockschmidt, Carsten Otto, Christian von Essen, Jürgen Giesl:

Termination Graphs for Java Bytecode

2010-16 Christian Berger: Automating Acceptance Tests for Sensor- and

Actuator-based Systems on the Example of Autonomous Vehicles

2010-17 Hans Grönniger: Systemmodell-basierte Definition objektbasierter Mod-

ellierungssprachen mit semantischen Variationspunkten

2010-18 Ibrahim Armaç: Personalisierte eHomes: Mobilität, Privatsphäre und

Sicherheit

2010-19 Felix Reidl: Experimental Evaluation of an Independent Set Algorithm

2010-20 Wladimir Fridman, Christof Löding, Martin Zimmermann: Degrees of

Lookahead in Context-free Infinite Games

2011-02 Marc Brockschmidt, Carsten Otto, Jürgen Giesl: Modular Termination

Proofs of Recursive Java Bytecode Programs by Term Rewriting

2011-03 Lars Noschinski, Fabian Emmes, Jürgen Giesl: A Dependency Pair

Framework for Innermost Complexity Analysis of Term Rewrite Systems

2011-04 Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, Thomas Noll:

A Local Greibach Normal Form for Hyperedge Replacement Grammars

2011-07 Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe: An Operational

Semantics for Activity Diagrams using SMV

2011-08 Thomas Ströder, Fabian Emmes, Peter Schneider-Kamp, Jürgen Giesl,

Carsten Fuhs: A Linear Operational Semantics for Termination and

Complexity Analysis of ISO Prolog

2011-11 Nils Jansen, Erika Ábrahám, Jens Katelaan, Ralf Wimmer, Joost-Pieter

Katoen, Bernd Becker: Hierarchical Counterexamples for Discrete-Time

Markov Chains

2011-13 Michael Förster, Uwe Naumann, Jean Utke: Toward Adjoint OpenMP

2011-14 Daniel Neider, Roman Rabinovich, Martin Zimmermann: Solving Muller

Games via Safety Games

2011-16 Niloofar Safiran, Uwe Naumann: Toward Adjoint OpenFOAM

2011-18 Kamal Barakat: Introducing Timers to pi-Calculus

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

25

	On Compositional Failure Detection in Structured Transition Systems

