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Call Tree Reversal is NP-Complete

Uwe Naumann

LuFG Informatik 12, Department of Computer Science, RWTH Aachen University, Aachen, Germany,
naumann@stce.rwth-aachen.de

Abstract. The data-flow of a numerical program is reversed in its adjoint. We discuss the
combinatorial optimization problem that aims to find optimal checkpointing schemes at the
level of call trees. For a given amount of persistent memory the objective is to store selected
arguments and/or results of subroutine calls such that the overall computational effort (the
total number of floating-point operations performed by potentially repeated forward eval-
uations of the program) of the data-flow reversal is minimized. CALL TREE REVERSAL is
shown to be NP-complete.

1 Background

We consider implementations of multi-variate vector functions F : IRn → IRm as com-
puter programsy = F(x). The interpretation of reverse mode automatic differentiation
(AD) [8] as a semantic source code transformation performedby a compiler yields
an adjoint codēx+ = F̄(x, ȳ). For given x and ȳ the vectorx̄ is incremented with
(F ′(x))T · ȳ whereF ′(x) denotes the Jacobian matrix ofF at x. Adjoint codes are of
particular interest for the evaluation of large gradients as the complexity of the adjoint
computation is independent of the gradient’s size. Refer to[1–4] for an impressive col-
lection of applications where adjoint codes are instrumental to making the transition
form pure numerical simulation to optimization of model parameters or even of the
model itself.

In this paper we propose an extension to the notion of joint call tree reversal [8] with
the potential storage of the results of a subroutine call. Weconsider call trees as run-
time representations of the interprocedural flow of controlof a program. Each node in a
call tree corresponds uniquely to a subroutine call.1 We assume that no checkpointing is
performed at the intraprocedural level, that is, a “store-all” strategy is employed inside
all subroutines. A graphical notation for call tree reversal under the said constraints is
proposed in Figure 1. A given subroutine can be executed without modifications (“ad-
vance”) or in an augmented form where all values that are required for the evaluation of
its adjoint are stored (taped) on appropriately typed stacks (“tape (store all)”). We refer
to this memory as thetapeassociated with a subroutine call, not to be confused with the
kind of tape as generated by AD-tools that use operator overloading such as ADOL-C
[9] or variants of the differentiation-enabled NAGWare Fortran compiler [14]. The ar-
guments of a subroutine call can be stored (“store arguments”) and restored (“restore
arguments”). Results of a subroutine call can be treated similarly (“store results” and
“restore results”). The adjoint propagation yields the reversed data-flow due to popping
the previously pushed values from the corresponding stacks(“reverse (store all)”). Sub-
routines that only call other subroutines without performing any local computation are
represented by “dummy calls.” For example, such wrappers can be used to visualize ar-
bitrary checkpointing schemes for time evolutions (implemented as loops whose body

1Generalizations may introduce nodes for various parts of the program, thus yielding arbitrary check-
pointing schemes.



is wrapped into a subroutine). Moreover they occur in the reduction used for proving
CALL TREE REVERSAL to be NP-complete. Dummy calls can be performed in any of
the other seven modes.

-
advance

-
- tape (store all)

? store arguments 6 restore arguments

? store results 6 restore results

�
� reverse (store all) dummy call

Fig. 1. Calling modes for interprocedural data-flow reversal.

Figure 2 illustrates the reversal in split (b), classical joint (c), and joint with result check-
pointing (d) modes for the call tree in (a). The order of the calls is from left to right and
depth-first.
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Fig. 2. Interprocedural data-flow reversal modes: Original call tree (a), split reversal (b), joint reversal with
argument checkpointing (c), joint reversal with result checkpointing (d).

For the purpose of conceptual illustration we assume that the sizes of the tapes of all
three subroutine calls in Figure 2 (a) as well as the corresponding computational com-
plexities are identically equal to 2 (memory units / floating-point operation (flop) units).
The respective calls are assumed to occur in the middle, e.g.the tape associated with
the statements performed by subroutine 1 prior to the call ofsubroutine 2 has size 1.
Consequently the remainder of the tape has the same size. Oneflop unit is performed
prior to a subroutine call which is followed by another unit.The size of argument and
result checkpoints is assumed to be considerably smaller than that of the tapes. Refer
also to footnotes 2 and 3.

Split call tree reversal minimizes the number of flops performed by the forward
calculation (6 flop units). However an image of the entire program execution (6 memory
units) needs to fit into persistent memory which is infeasible for most relevant problems.
This shortcoming is addressed by classical joint reversal (based solely on argument
checkpointing). The maximum amount of persistent memory needed is reduced to 4
(half of subroutine 1 plus half of subroutine 2 plus subroutine 3)2 at the cost of additional

2...provided that the size of an argument checkpoint of subroutine 3 is less than or equal to one memory
unit, i.e.sizeof(argchp3) ≤ 1, and thatsizeof(argchp2) ≤ 2.
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6 flop units (a total of 12 flop units is performed). This numbercan be reduced to 10
flop units (while the maximum memory requirement remains unchanged3) by storing the
result of subroutine 3 and using it for taping subroutine 2 inFigure 2 (d). The impact of
these savings grows with the depth of the call tree.

It is trivial to design toy problems that illustrate this effect impressively. An example
can be found in the appendix. The computation of the partial derivative of y with respect
to x as arguments of the top-level routine f0 in adjoint mode requires the reversal of a
call tree (a simple chain in this case) of depth five. The leaf routine f5 is computationally
much more expensive than the others. Classical joint reversal takes about 0.6 seconds
whereas additional result checkpointing reduces the runtime to 0.25 seconds. These
results were obtained on a state-of-the-art Intel PC. The full code can be obtained by
sending an email to the author. The use of result checkpointing in software tools for AD
such as Tapenade [12], OpenAD [15], or the differentiation-enabled NAGWare Fortran
compiler [14] is the subject of ongoing research and development.

Finding an optimal (or at least near-optimal) distributionof the checkpoints or,
equivalently, corresponding combinations of split and joint (with argument checkpoint-
ing) reversal applied to subgraphs of the call tree has been an open problem for many
years. In this paper we show that a generalization of this problem that allows for subsets
of subroutine arguments and/or results to be taped is NP-complete. Hence, we believe
that the likelihood of an efficient exact solution of this problem is low. Heuristics for
finding good reversal schemes are currently being developedin collaboration with col-
leagues at INRIA, France, and at Argonne National Laboratory, USA.

2 Data-Flow Reversal is NP-Complete

The program that implementsF should decompose into a straight-line evaluation pro-
cedure

v j = ϕ j(vi)i≺ j (1)

for j = 1, . . . ,q. We follow the notation in [8]. Hence,i ≺ j denotes a direct dependence
of v j onvi . Equation (1) induces a directed acyclic graph (DAG)G = (V,E) whereV =
{1−n, . . . ,q} and(i, j) ∈ E ⇔ i ≺ j. We consider independent (without predecessors),
intermediate, and dependent (without successors) vertices. Without loss of generality,
them results are assumed to be represented by the dependent vertices. We setp= q−m.
An example is shown in Figure 3 (a) representing, e.g.,

x0 = x0 ·sin(x0 ·x1); x1 = x0/x1; x0 = cos(x0); x0 = sin(x0); x1 = cos(x1) . (2)

A representation as in Equation (1) is obtained easily by mapping the physical memory
space(x0,x1) onto the single-assignment memory space(v−1, . . . ,v7).

The problem faced by all developers of adjoint code compilertechnology is to gen-
erate the code such that for a given amount of persistent memory the values required
for a correct evaluation of the adjoints can be recovered efficiently by combinations of
storing and recomputing [6, 10, 11]. Load and store costs (both≥ 0) are associated with
single read and write accesses to the persistent memory, respectively. Floating-point op-
erations have nontrivial cost> 0. The program’s physical memoryp = (p1, . . . , pµ) is

3...provided that sizeof(argchp2) + sizeof(reschp3) ≤ 2 and sizeof(argchp3) +
sizeof(reschp3) ≤ 2, where sizeof(reschpi) denotes the size of a result checkpoint of subroutine
i (in memory units).
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considered to be nonpersistent, i.e. one does not count on any of the pi holding useful
values except right after their computation.

A data-flow reversalis an algorithm that makes the values of the intermediate vari-
ables of a given program run (equivalently, its DAG) available in reverse order.

In [13] we propose a proof for the NP-completeness of the DAG REVERSAL prob-
lem. The argument is based on the assumption that writing to persistent memory as well
as performing a floating-point operation have both unit costwhile the load cost vanishes
identically, e.g. due to prefetching. This special case turns out to be computationally
hard. Hence, the general case cannot be easier. However, there are other special cases
for which efficient algorithms do exist [7].

If the size of the available memory is equal ton+ p, then a store-all (last-in-first-out)
strategy recovers thep intermediate values of a DAG in reverse order at optimal cost
n+ p (store operations) – a sharp lower bound for the solution of the DAG REVERSAL

problem under the made assumptions. The values of them results are assumed to be
available at the end of the single function evaluation that is required in any case. One can
now ask for a reversal scheme (assignment of vertices in the DAG to persistent memory)
where the memory consumption is minimized while the total cost remains equal ton+ p.
A formal statement of this FIXED COST DAG REVERSAL (FCDR) problem is given in
Section 2.1. It turns out that FCDR is equivalent to VERTEX COVER [5] on the subgraph
induced by the intermediate vertices. The values of the independent vertices need to be
stored in any case as there is no way to recompute them.

Example Consider the DAG in Figure 3 (a) for an intuitive illustration of the idea be-
hind the proof in [13]. A store-all strategy requires a persistent memory of size seven.
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Fig. 3. DAG and minimal vertex covers (rectangular nodes) restricted to the intermediate vertices.

Alternatively, after storing the two independent values the five intermediate values can
be recovered from storedv1 andv3 as in Figure 3 (b) (similarlyv2 andv3 in Figure 3 (c)).
Known values ofv0 andv3 allow us to recomputev4 andv5 at a total cost of two flops.
The value ofv2 can be recomputed fromv1 at the cost of a single flop making the over-
all cost add up to seven. Both{1,3} and{2,3} are minimal vertex covers in the graph
spanned by vertices 1, . . . ,5.
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FCDR is not the problem that we are actually interested in. Proving FCDR to be hard
is simply a vehicle for studying the computational complexity of the relevant DAG RE-
VERSAL (DAGR) problem. It turns out that a given algorithm for DAGR can be used to
solve FCDR. In conclusion DAGR must be at least as hard as FCDR.

2.1 FIXED COST DAG REVERSAL

Given are a DAGG and an integern≤ K ≤ n+ p. Is there a data-flow reversal with cost
n+ p that usesk≤ K memory units?

Theorem 1. FCDR is NP-complete.

Proof. The proof is by reduction from VERTEX COVER as described in [13].�

2.2 DAG REVERSAL

Given are a DAGG and integersK andC such thatn≤ K ≤ n+ p andK ≤C. Is there
a data-flow reversal that uses at mostK memory units and costsc≤C?

Theorem 2. DAGR is NP-complete.

Proof. The idea behind the proof in [13] is the following.
An algorithm for DAGR can be used to solve FCDR as follows: ForK = n+ p

“store-all” is a solution of DAGR forC = n+ p. Now decreaseK by one at a time
as long as there is a solution of FCDR forC = n+ p. Obviously, the smallestK for
which such a solution exists is the solution of the minimization version of FCDR. A
given solution is trivially verified in polynomial time by counting the number of flops
performed by the respective code.�

3 Call Tree Reversal is NP-Complete

An interprocedural data-flow reversalfor a program run (or, equivalently, for its DAG)
is a data-flow reversal that stores only subsets of the inputsor outputs of certain subrou-
tine calls while recomputing the other values from the stored ones.

A subroutine result checkpointing schemeis an interprocedural data-flow reversal
for the corresponding DAG which recovers all intermediate values in reverse order by
storing only subsets of outputs of certain subroutines and by recomputing the other val-
ues from the stored ones. It can be regarded as a special case of DAGR where the values
that are allowed to be stored are restricted to the results computed by the performed
subroutine calls.

RESULT CHECKPOINTING (RC) Problem: Given are a DAGG and a call treeT of a
program run and integersK andC such thatn≤K ≤ n+ p andK ≤C. Is there a subrou-
tine result checkpointing scheme that uses at mostK memory units and that performs
c≤C flops?

Theorem 3. RC is NP-complete.
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program main

r e a l p ( 3 )

c a l l f1 ( ) ; c a l l f2 ( ) ; c a l l f3 ( ) ; c a l l f4 ( ) ;
c a l l f5 ( ) ; c a l l f6 ( ) ; c a l l f7 ( ) ;

c o n t a i n s

s u b r o u t i n e f1 ( ) p s u b r o u t i n e f2 ( )
p (3 )= p ( 1 )∗ p ( 2 ) p (3 )= s i n ( p ( 3 ) )

end s u b r o u t i n e f1 end s u b r o u t i n e f2

s u b r o u t i n e f3 ( ) s u b r o u t i n e f4 ( )
p (3 )= p ( 1 )∗ p ( 3 ) p (1 )= cos ( p ( 3 ) )

end s u b r o u t i n e f3 end s u b r o u t i n e f4

s u b r o u t i n e f5 ( ) s u b r o u t i n e f6 ( )
p (2 )= p ( 3 ) / p ( 2 ) p (1 )= s i n ( p ( 1 ) )

end s u b r o u t i n e f5 end s u b r o u t i n e f6

s u b r o u t i n e f7 ( )
p (2 )= cos ( p ( 2 ) )

end s u b r o u t i n e f7

end

������
���
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XXXXXX- - - - -
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hhhhhhhhh- -

1 2 3 4 5 6 7

Fig. 4. Reduction from DAG REVERSAL to RESULT CHECKPOINTINGand Call Tree
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Proof. The proof constructs a bijection between RC and DAGR. Consider an arbitrary
DAG as in DAGR. Let all intermediate and maximal vertices represent calls to multi-
variate scalar functionsfi , i = 1, . . . ,q, operating on a global memory spacep ∈ IRµ . The
fi are assumed to encapsulate theϕi from Equation (1). Hence, the local tapes are empty
since the single output is computed without evaluation of intermediate values directly
from the inputs offi . Any given instance of DAGR can thus be mapped uniquely to an
instance of RC and vice versa. A solution for DAGR can be obtained by solving the
corresponding RC problem. Therefore RC must be at least as hard as DAGR. A given
solution to RC is trivially verified in polynomial time by counting the number of flops
performed.�

ExampleTo obtain the graph in Figure 3 (a) we require seven subroutines operating on
a nonpersistent global memory of size three and called in sequence by the main program
as shown in Figure 4. The tapes of all subroutines are empty. Hence, the cost function
is composed of the costs of executing the subroutines for a given set of inputs (unit cost
per subroutine) in addition to the cost of generating the required result checkpoints (unit
cost per checkpoint). The valuesv1, . . . ,v5 need to be restored in reverse order. The input
valuesv−1 andv0 are stored in any case.

With a stack of size seven at our disposal a (result-)checkpoint-all strategy solves
the FCDR problem. The same optimal cost can be achieved with astack of size four.
For example, checkpoint the results of calling f1 and f3 and recomputev5 as a function
of v3 andv0, v4 as a function ofv3, andv2 as a function ofv1. We note that{1,3} is
a vertex cover in the subgraph ofG spanned by its intermediate vertices whereas any
single vertex is not.

CALL TREE REVERSAL (CTR) Problem: Given are a DAGG and a call treeT of a
program run and integersK andC such thatn ≤ K ≤ n+ p and K ≤ C. Is there an
interprocedural data-flow reversal forG that uses at mostK memory units and that
performsc≤C flops?

Theorem 4. CTR is NP-complete.

Proof. With the reduction used in the proof of Theorem 3 any interprocedural data-
flow reversal is equivalent to a subroutine result checkpointing scheme. All relevant
subroutine arguments are outputs of other subroutines.�

The key prerequisite for the above argument is the relaxation of argument check-
pointing to subsets of the subroutine inputs.

4 Conclusion

NP-completeness proofs for problems that have been targeted with heuristics for some
time can be regarded as late justification for such an approach. The algorithmic im-
pact should not be overestimated unless the proof techniqueyields ideas for the design
of new (better) heuristics and/or approximation algorithms. The evaluation of our pa-
per’s contribution from this perspective is still outstanding. Work on robust and efficient
heuristics, in particular for interprocedural data-flow reversals that involve result check-
pointing, has only just started.

Adjoint codes do not necessarily use the values of the variables in Equation (1) in
strictly reverse order. For example, the adjoint of Equation (2) uses the value ofv−1 prior
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to that ofv1. In order to establish the link between strict data-flow reversal and adjoint
codes one needs to construct numerical programs whose adjoints exhibit a suitable data
access pattern. This is done in [13].

Compiler-based code generation needs to be conservative. It is based on some sort
of call graph possibly resulting in different call trees forvarying values of the program’s
inputs. Such call trees do not exists at compile time. The solutions to a generally unde-
cidable problem yield a computationally hard problem. Developers of adjoint compiler
technology will have to deal with this additional complication.
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A Reference Code for Result Checkpointing

s u b r o u t i n e f0 ( x , y )
doub le p r e c i s i o n x , y
c a l l f1 ( x , y )
y= s i n ( y )

end s u b r o u t i n e f0

s u b r o u t i n e f1 ( x , y )
doub le p r e c i s i o n x , y
c a l l f2 ( x , y )
y= s i n ( y )

end s u b r o u t i n e f1

s u b r o u t i n e f2 ( x , y )
doub le p r e c i s i o n x , y
c a l l f3 ( x , y )
y= s i n ( y )

end s u b r o u t i n e f2

s u b r o u t i n e f3 ( x , y )
doub le p r e c i s i o n x , y
c a l l f4 ( x , y )
y= s i n ( y )

end s u b r o u t i n e f3

s u b r o u t i n e f4 ( x , y )
doub le p r e c i s i o n x , y
c a l l f5 ( x , y )
y= s i n ( y )

end s u b r o u t i n e f4

s u b r o u t i n e f5 ( x , y )
doub le p r e c i s i o n x , y
i n t e g e r i
y=0
do 10 i =1 ,10000000

y=y+x
10 c o n t i n u e

end s u b r o u t i n e f5
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Fig. 5. Subroutine result checkpointing scheme for the reference code: Each subroutine is executed twice
(“advance” and “tape (store all)” once, respectively) instead ofd+1 times whered is the depth in the call
tree (starting with zero). Additional persistent memory isneeded to store the results of all subroutine calls.
The maximum amount of persistent memory required by the adjoint code may not be affected as illustrated
by the example in Figure 2.
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