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Call Tree Reversal is NP-Complete

Uwe Naumann

LUFG Informatik 12, Department of Computer Science, RWTHen University, Aachen, Germany,
naumann@t ce. r vt h- aachen. de

Abstract. The data-flow of a numerical program is reversed in its atljoMe discuss the
combinatorial optimization problem that aims to find optirtlzeckpointing schemes at the
level of call trees. For a given amount of persistent memiogyobjective is to store selected
arguments and/or results of subroutine calls such thatwbeath computational effort (the
total number of floating-point operations performed by ptitdly repeated forward eval-
uations of the program) of the data-flow reversal is minidizeaLL TREEREVERSALIS
shown to be NP-complete.

1 Background

We consider implementations of multi-variate vector fimts F : R" — R™ as com-
puter programy = F(x). The interpretation of reverse mode automatic differeiatiat
(AD) [8] as a semantic source code transformation perforimgd compiler yields
an adjoint codex+ = F(x,y). For givenx andy the vectorx is incremented with
(F'(x))T -y whereF’(x) denotes the Jacobian matrix Bfat x. Adjoint codes are of
particular interest for the evaluation of large gradierstdhee complexity of the adjoint
computation is independent of the gradient’s size. Reft+td] for an impressive col-
lection of applications where adjoint codes are instrumletst making the transition
form pure numerical simulation to optimization of model graeters or even of the
model itself.

In this paper we propose an extension to the notion of joiihtrege reversal [8] with
the potential storage of the results of a subroutine call.cdrfesider call trees as run-
time representations of the interprocedural flow of comtf@ program. Each node in a
call tree corresponds uniquely to a subroutine tallle assume that no checkpointing is
performed at the intraprocedural level, that is, a “stdfessrategy is employed inside
all subroutines. A graphical notation for call tree reversader the said constraints is
proposed in Figure 1. A given subroutine can be executedowitmodifications (“ad-
vance”) or in an augmented form where all values that areimedjdor the evaluation of
its adjoint are stored (taped) on appropriately typed stéttpe (store all)”). We refer
to this memory as the@peassociated with a subroutine call, not to be confused wéh th
kind of tape as generated by AD-tools that use operator @agirhg such as ADOL-C
[9] or variants of the differentiation-enabled NAGWare ffan compiler [14]. The ar-
guments of a subroutine call can be stored (“store argur)esutsl restored (“restore
arguments”). Results of a subroutine call can be treatedaslyn(“store results” and
“restore results”). The adjoint propagation yields theereed data-flow due to popping
the previously pushed values from the corresponding stdakgerse (store all)”). Sub-
routines that only call other subroutines without perfarghany local computation are
represented by “dummy calls.” For example, such wrappeardeaused to visualize ar-
bitrary checkpointing schemes for time evolutions (impéeed as loops whose body

1Generalizations may introduce nodes for various partseptbgram, thus yielding arbitrary check-
pointing schemes.



is wrapped into a subroutine). Moreover they occur in theicédn used for proving
CALL TREE REVERSAL to be NP-complete. Dummy calls can be performed in any of
the other seven modes.

D advance D tape (store all)
D store arguments D restore arguments
D store results D restore results
D reverse (store all) BE‘ dummy call

Fig. 1. Calling modes for interprocedural data-flow reversal.

Figure 2 illustrates the reversal in split (b), classic#@it¢c), and joint with result check-
pointing (d) modes for the call tree in (a). The order of thiksda from left to right and
depth-first.

(@) (b) (© (d)

Fig. 2. Interprocedural data-flow reversal modes: Original cektfa), split reversal (b), joint reversal with
argument checkpointing (c), joint reversal with resultekpointing (d).

For the purpose of conceptual illustration we assume thasires of the tapes of all
three subroutine calls in Figure 2 (a) as well as the cormdipg computational com-
plexities are identically equal to 2 (memaory units / floatpmjnt operation (flop) units).
The respective calls are assumed to occur in the middletheegape associated with
the statements performed by subroutine 1 prior to the cadlubfoutine 2 has size 1.
Consequently the remainder of the tape has the same sizdld@pnanit is performed
prior to a subroutine call which is followed by another uiiihe size of argument and
result checkpoints is assumed to be considerably smaber ttiat of the tapes. Refer
also to footnotes 2 and 3.

Split call tree reversal minimizes the number of flops perfed by the forward
calculation (6 flop units). However an image of the entiregpam execution (6 memory
units) needs to fit into persistent memory which is infeasfbl most relevant problems.
This shortcoming is addressed by classical joint revelsas€d solely on argument
checkpointing). The maximum amount of persistent memosded is reduced to 4
(half of subroutine 1 plus half of subroutine 2 plus subneai8y at the cost of additional

2_..provided that the size of an argument checkpoint of sutbre 3 is less than or equal to one memory
unit, i.e.sizeof (argchp) < 1, and thatsizeof (argchp) < 2.
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6 flop units (a total of 12 flop units is performed). This numban be reduced to 10
flop units (while the maximum memory requirement remainswanged) by storing the
result of subroutine 3 and using it for taping subroutine Eigure 2 (d). The impact of
these savings grows with the depth of the call tree.

Itis trivial to design toy problems that illustrate thiseft impressively. An example
can be found in the appendix. The computation of the paréaldtive of y with respect
to x as arguments of the top-level routine fO in adjoint moelguires the reversal of a
call tree (a simple chain in this case) of depth five. The leafine f5 is computationally
much more expensive than the others. Classical joint ravtakes about 0.6 seconds
whereas additional result checkpointing reduces the mentio 0.25 seconds. These
results were obtained on a state-of-the-art Intel PC. Thee@dle can be obtained by
sending an email to the author. The use of result checkpgimi software tools for AD
such as Tapenade [12], OpenAD [15], or the differentiaBoabled NAGWare Fortran
compiler [14] is the subject of ongoing research and devetq.

Finding an optimal (or at least near-optimal) distributiohthe checkpoints or,
equivalently, corresponding combinations of split andgg¢with argument checkpoint-
ing) reversal applied to subgraphs of the call tree has beepan problem for many
years. In this paper we show that a generalization of thiblpro that allows for subsets
of subroutine arguments and/or results to be taped is NRpleten Hence, we believe
that the likelihood of an efficient exact solution of this plem is low. Heuristics for
finding good reversal schemes are currently being develwpedllaboration with col-
leagues at INRIA, France, and at Argonne National LaboyatdSA.

2 Data-Flow Reversal isNP-Complete

The program that implements should decompose into a straight-line evaluation pro-
cedure

Vi = 0 (W)i<j (1)
for j=1,...,9. We follow the notation in [8]. Hence,< j denotes a direct dependence
of vj onv;. Equation (1) induces a directed acyclic graph (DA&- (V,E) whereV =
{1—n,...,q} and(i, ]) € E< i< j. We consider independent (without predecessors),
intermediate, and dependent (without successors) vertibéhout loss of generality,
themresults are assumed to be represented by the dependecesevtie sep=qg—m.
An example is shown in Figure 3 (a) representing, e.g.,

Xo = Xo-SIN(Xp-X1); X1 =Xo/X1; Xo=C0YXp); Xo=SiN(Xp); Xg =cosX1) . (2)

A representation as in Equation (1) is obtained easily bypimgpthe physical memory
space(xp, X1) onto the single-assignment memory space;, ..., vr).

The problem faced by all developers of adjoint code compdehnology is to gen-
erate the code such that for a given amount of persistent myetine values required
for a correct evaluation of the adjoints can be recoveredieffily by combinations of
storing and recomputing [6, 10, 11]. Load and store costth(bd) are associated with
single read and write accesses to the persistent memaogatégely. Floating-point op-
erations have nontrivial cost 0. The program’s physical memogy= (py,...,Ppy) is

3..provided that sizeof(argchp) + sizeof(reschp) < 2 and sizeof(argchp) +
sizeof(reschp) < 2, where sizeof(reschp) denotes the size of a result checkpoint of subroutine
i (in memory units).



considered to be nonpersistent, i.e. one does not countyoafdhe p; holding useful
values except right after their computation.

A data-flow reversais an algorithm that makes the values of the intermediate var
ables of a given program run (equivalently, its DAG) avd#ah reverse order.

In [13] we propose a proof for the NP-completeness of the DAS/ERSAL prob-
lem. The argument is based on the assumption that writingrgigient memory as well
as performing a floating-point operation have both unit edste the load cost vanishes
identically, e.g. due to prefetching. This special casedwut to be computationally
hard. Hence, the general case cannot be easier. Howewver dieeother special cases
for which efficient algorithms do exist [7].

If the size of the available memory is equahte p, then a store-all (last-in-first-out)
strategy recovers thp intermediate values of a DAG in reverse order at optimal cost
n+ p (store operations) — a sharp lower bound for the solutiom®DAG REVERSAL
problem under the made assumptions. The values ofmthesults are assumed to be
available at the end of the single function evaluation thagquired in any case. One can
now ask for a reversal scheme (assignment of vertices in @& tb persistent memory)
where the memory consumption is minimized while the totat cemains equal to+ p.

A formal statement of this IKED CosTDAG REVERSAL (FCDR) problem is given in
Section 2.1. It turns out that FCDR is equivalent teRf EX COVER [5] on the subgraph
induced by the intermediate vertices. The values of thepieddent vertices need to be
stored in any case as there is no way to recompute them.

Example Consider the DAG in Figure 3 (a) for an intuitive illustratiof the idea be-
hind the proof in [13]. A store-all strategy requires a p&isit memory of size seven.

©® @O © O ©®& O

(@) (b) (©)

Fig. 3. DAG and minimal vertex covers (rectangular nodes) regtri¢o the intermediate vertices.

Alternatively, after storing the two independent values filie intermediate values can
be recovered from stored andvs as in Figure 3 (b) (similarly, andvs in Figure 3 (c)).
Known values of/y andvs allow us to recomputg, andvs at a total cost of two flops.
The value ofv, can be recomputed from at the cost of a single flop making the over-
all cost add up to seven. Bofi, 3} and{2,3} are minimal vertex covers in the graph
spanned by vertices 1.,5.



FCDR is not the problem that we are actually interested ioviag FCDR to be hard
is simply a vehicle for studying the computational compiexif the relevant DAG R-
VERSAL (DAGR) problem. It turns out that a given algorithm for DAGRcbe used to
solve FCDR. In conclusion DAGR must be at least as hard as FCDR

2.1 FIXED CosTDAG REVERSAL

Given are a DAGG and an integen < K < n+ p. Is there a data-flow reversal with cost
n+ pthat usek < K memory units?

Theorem 1. FCDR is NP-complete.

Proof. The proof is by reduction from ¥RTEX COVER as described in [13H

2.2 DAG REVERSAL

Given are a DAGG and integer& andC such than < K < n+ pandK < C. Is there
a data-flow reversal that uses at miistnemory units and costs< C?

Theorem 2. DAGR is NP-complete.

Proof. The idea behind the proof in [13] is the following.

An algorithm for DAGR can be used to solve FCDR as follows: Ko n+ p
“store-all” is a solution of DAGR foIC = n+ p. Now decreas& by one at a time
as long as there is a solution of FCDR for= n+ p. Obviously, the smallesK for
which such a solution exists is the solution of the minimaatversion of FCDR. A
given solution is trivially verified in polynomial time by aating the number of flops
performed by the respective codik.

3 Call Tree Reversal isNP-Complete

An interprocedural data-flow reversdbr a program run (or, equivalently, for its DAG)
is a data-flow reversal that stores only subsets of the inpuistputs of certain subrou-
tine calls while recomputing the other values from the stamees.

A subroutine result checkpointing schemsean interprocedural data-flow reversal
for the corresponding DAG which recovers all intermediza@ugs in reverse order by
storing only subsets of outputs of certain subroutines grmetomputing the other val-
ues from the stored ones. It can be regarded as a specialfd28&R where the values
that are allowed to be stored are restricted to the resultyoated by the performed
subroutine calls.

RESULT CHECKPOINTING (RC) Problem: Given are a DAGG and a call tredl’ of a
program run and integeks andC such thah < K < n+ pandK <C. Is there a subrou-
tine result checkpointing scheme that uses at rhostemory units and that performs
c < Cflops?

Theorem 3. RC is NP-complete.



program main

real p(3)

call f1(); call f2();

call f5(); call f6();
contains

subroutine f1()p

P(3)=p(1xp(2)
end subroutine f1

subroutine f3()

P(3)=p(1xp(3)
end subroutine f3

subroutine f5()

pP(2)=p(3)/p(2)
end subroutine f5

subroutine f7()
p(2)=cos(p(2))
end subroutine f7

end

call

call
call

f3();
f70);

f4.();

subroutine f2()

pP(3)=sin(p(3))
end subroutine f2

subroutine f4()

p(l)=cos(p(3))
end subroutine f4

subroutine 6 ()

p(1)=sin(p(1))
end subroutine f6

Fig. 4. Reduction from DAG RVERSALt0 RESULT CHECKPOINTINGand Call Tree



Proof. The proof constructs a bijection between RC and DAGR. Censd arbitrary
DAG as in DAGR. Let all intermediate and maximal verticesresgnt calls to multi-
variate scalar function§, i =1,...,q, operating on a global memory spgze R*. The

f; are assumed to encapsulate gh&rom Equation (1). Hence, the local tapes are empty
since the single output is computed without evaluation tdrimediate values directly
from the inputs off;. Any given instance of DAGR can thus be mapped uniquely to an
instance of RC and vice versa. A solution for DAGR can be oletiby solving the
corresponding RC problem. Therefore RC must be at leastrdsasaDAGR. A given
solution to RC is trivially verified in polynomial time by cating the number of flops
performedl

Example To obtain the graph in Figure 3 (a) we require seven subresiiiperating on

a nonpersistent global memory of size three and called ineseme by the main program
as shown in Figure 4. The tapes of all subroutines are emgtycé] the cost function

is composed of the costs of executing the subroutines foremgiet of inputs (unit cost
per subroutine) in addition to the cost of generating theired result checkpoints (unit
cost per checkpoint). The values . .., Vs need to be restored in reverse order. The input
valuesv_; andvy are stored in any case.

With a stack of size seven at our disposal a (result-)cheokjadi strategy solves
the FCDR problem. The same optimal cost can be achieved vathck of size four.
For example, checkpoint the results of calling f1 and f3 awbmputess as a function
of v3 andvp, v4 as a function ofi3, andv, as a function of/;. We note that{1,3} is
a vertex cover in the subgraph @fspanned by its intermediate vertices whereas any
single vertex is not.

CALL TREE REVERSAL (CTR) Problem: Given are a DAGG and a call treel’ of a
program run and integeft§ andC such thathn < K < n+ p andK < C. Is there an
interprocedural data-flow reversal f@ that uses at mog{ memory units and that
performsc < C flops?

Theorem 4. CTRis NP-complete.

Proof. With the reduction used in the proof of Theorem 3 any intecpdural data-
flow reversal is equivalent to a subroutine result checkpainscheme. All relevant
subroutine arguments are outputs of other subroutles.

The key prerequisite for the above argument is the relaxaifoargument check-
pointing to subsets of the subroutine inputs.

4 Conclusion

NP-completeness proofs for problems that have been targeth heuristics for some
time can be regarded as late justification for such an aplproHwe algorithmic im-
pact should not be overestimated unless the proof techniglds ideas for the design
of new (better) heuristics and/or approximation algorghmhe evaluation of our pa-
per’s contribution from this perspective is still outstargd Work on robust and efficient
heuristics, in particular for interprocedural data-flowaesals that involve result check-
pointing, has only just started.

Adjoint codes do not necessarily use the values of the Magah Equation (1) in
strictly reverse order. For example, the adjoint of Equa(R) uses the value of ; prior
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to that ofvy. In order to establish the link between strict data-flow reakand adjoint
codes one needs to construct numerical programs whosa&&dgxihibit a suitable data
access pattern. This is done in [13].

Compiler-based code generation needs to be conservdtigebdsed on some sort

of call graph possibly resulting in different call trees ¥arying values of the program’s
inputs. Such call trees do not exists at compile time. Thetiewis to a generally unde-
cidable problem yield a computationally hard problem. Depers of adjoint compiler
technology will have to deal with this additional complicat
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subroutine f0O(x,y)

A Reference Code for Result Checkpointing

subroutine f3(x,y)

double precision x,y double precision x,y
call f1(x,y) call f4(x,y)
y=sin (y) y=sin(y)
end subroutine f0 end subroutine f3
subroutine f1(x,y) subroutine f4(x,y)
double precision x,y double precision x,y
call f2(x,y) call f5(x,y)
y=sin (y) y=sin(y)
end subroutine f1 end subroutine f4
subroutine f2(x,y) subroutine f5(x,y)
double precision x,y double precision x,y
call f3(x,y) integer i
y=sin (y) y=0
end subroutine f2 do 10 i=1,10000000
y=y+X
10 continue

end subroutine f5

Fig. 5. Subroutine result checkpointing scheme for the referende:cEach subroutine is executed twice
(*advance” and “tape (store all)” once, respectively) éagt ofd + 1 times wheral is the depth in the call
tree (starting with zero). Additional persistent memorpégded to store the results of all subroutine calls.
The maximum amount of persistent memory required by therdjode may not be affected as illustrated
by the example in Figure 2.
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