
Aachen
Department of Computer Science

Technical Report

Proving Termination by Bounded
Increase

Jürgen Giesl, René Thiemann, Stephan Swiderski, Peter
Schneider-Kamp

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2007-03

RWTH Aachen · Department of Computer Science · May 2007 (revised version)

1

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

2

Proving Termination by Bounded Increase?

Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-Kamp

LuFG Informatik 2, RWTH Aachen, Germany,
{giesl,thiemann,swiderski,psk}@informatik.rwth-aachen.de

Abstract. Most methods and tools for termination analysis of term re-
write systems (TRSs) essentially try to find arguments of functions that
decrease in recursive calls. However, they fail if the reason for termination
is that an argument is increased in recursive calls repeatedly until it
reaches a bound. In this paper, we solve that problem and present a
method to prove innermost termination of TRSs with bounded increase
automatically.

1 Introduction

In programming, one often writes algorithms that terminate because a value is in-
creased until it reaches a bound. Hence, to apply termination techniques of TRSs
in practice, they must be able to deal with those algorithms successfully. But un-
fortunately, all existing methods and tools for automated termination analysis of
TRSs fail on such examples. Therefore, proving termination of TRSs with boun-
ded increase was identified as one of the most urgent and challenging problems
at the annual International Competition of Termination Tools 2006 [16].

Example 1. As an example consider the following TRS for subtraction. TRSs
of this form often result from the transformation of conditional TRSs or from
functional, logic, or imperative programs.

minus(x, y)→ cond(gt(x, y), x, y) (1) gt(0, v)→ false (4)
cond(false, x, y)→ 0 (2) gt(s(u), 0)→ true (5)
cond(true, x, y)→ s(minus(x, s(y))) (3) gt(s(u), s(v))→ gt(u, v) (6)

To handle TRSs like Ex. 1, we propose to use polynomial interpretations [14].
But instead of classical polynomial interpretations on natural numbers, we use
interpretations on integers. Such interpretations can measure the difference be-
tween the first and second argument of minus. Indeed, minus is terminating since
this difference decreases in each recursive call. However, using integer polynomial
interpretations is unsound in the existing termination techniques for TRSs.

This is also true for the dependency pair (DP) method [1], which is a powerful
method for automated termination analysis of TRSs that is implemented in

? Supported by the Deutsche Forschungsgemeinschaft DFG under grant GI 274/5-1
and by the DFG Research Training Group 1298 (AlgoSyn).

virtually all current automated termination tools. This method relies on the use
of reduction pairs (%,�) to compare terms. Here, % is a stable quasi-order and �
is a stable order, where % and � are compatible (i.e., � ◦ % ⊆ � or % ◦ � ⊆ �).
Moreover, % and � have to satisfy the following properties:

(a) % is monotonic (b) � is well founded

After recapitulating the DP method in Sect. 2, in Sect. 3 we extend it to
general reduction pairs (without requirements (a) and (b)). Then one can also
use reduction pairs based on integer polynomial interpretations, which violate
the requirements (a) and (b).

In Sect. 4 we extend the DP method further to exploit implicit conditions.
This is needed to prove that an increase is bounded. For instance, the recursive
call of minus in Ex. 1 only takes place under the condition gt(x, y) = true.1 With
our extensions, termination provers based on DPs can handle most algorithms
with bounded increase that typically occur in practice. In Sect. 5, we discuss
the implementation of our method in our termination tool AProVE [10]. To
demonstrate the power of our approach, the appendix contains a collection of
typical TRSs with bounded increase where all existing techniques and tools failed
up to now, but where the implementation of our new technique succeeds.

2 Dependency Pairs

We assume familiarity with term rewriting [2] and briefly recapitulate the DP
method. See [1, 8, 11–13] for further motivations and extensions.

Definition 2 (Dependency Pairs). For a TRS R, the defined symbols D are
the root symbols of left-hand sides of rules. All other function symbols are called
constructors. For every defined symbol f ∈ D, we introduce a fresh tuple symbol
f] with the same arity. To ease readability, we often write F instead of f], etc.
If t = f(t1, . . . , tn) with f ∈ D, we write t] for f](t1, . . . , tn). If `→ r ∈ R and t
is a subterm of r with defined root symbol, then the rule `] → t] is a dependency
pair of R. The set of all dependency pairs of R is denoted DP(R).

Ex. 1 has the following DPs, where MINUS is the tuple symbol for minus, etc.

MINUS(x, y)→COND(gt(x, y), x, y) (7) COND(true, x, y)→MINUS(x, s(y)) (9)
MINUS(x, y)→GT(x, y) (8) GT(s(u), s(v))→GT(u, v) (10)

1 Proving termination of TRSs like Ex. 1 is far more difficult than proving termi-
nation of programs in a language where one uses a predefined function gt. (For
such languages, there already exist termination techniques that can handle certain
forms of bounded increase [5, 15].) However, if a function like gt is not predefined but
written by the “user”, then the termination technique cannot presuppose any knowl-
edge about gt’s semantics. In contrast, the termination technique has to deduce any
needed informations about gt from the user-defined gt-rules.

4

In this paper, we only focus on innermost termination, i.e., we only regard the
innermost rewrite relation i→. The reason is that proving innermost termination
is considerably easier than proving full termination and there are large classes
of TRSs where innermost termination is already sufficient for termination. In
particular, this holds for non-overlapping TRSs like Ex. 1.

The main result of the DP method for innermost termination states that
a TRS R is innermost terminating iff there is no infinite minimal innermost
(DP (R),R)-chain. For any TRSs P and R, a minimal innermost (P ,R)-chain
is a sequence of (variable renamed) pairs s1 → t1, s2 → t2, . . . from P such that
there is a substitution σ (with possibly infinite domain) where tiσ

i→∗R si+1σ,
where all siσ are in normal form, and where all tiσ are innermost terminating
w.r.t. R.

Termination techniques are now called DP processors and they operate on
sets of dependency pairs (which are called DP problems).2 Formally, a DP
processor Proc takes a DP problem as input and returns a set of new DP prob-
lems which then have to be solved instead. A processor Proc is sound if for
all DP problems P with infinite minimal innermost (P ,R)-chain there is also
a P ′ ∈ Proc(P) with an infinite minimal innermost (P ′,R)-chain. Soundness
of a DP processor is required to prove innermost termination and in partic-
ular, to conclude that there is no infinite minimal innermost (P ,R)-chain if
Proc(P) = {∅}.

So innermost termination proofs in the DP framework start with the initial
DP problem DP (R). Then the DP problem is simplified repeatedly by sound
DP processors. If all resulting DP problems have been simplified to ∅, then
innermost termination is proved. In Thm. 3, we recapitulate one of the most
important processors of the framework, the so-called reduction pair processor.

For a DP problem P , the reduction pair processor generates inequality con-
straints which should be satisfied by a reduction pair (%,�). The constraints
require that all DPs in P are strictly or weakly decreasing and all usable rules
U(P) are weakly decreasing. Then one can delete all strictly decreasing DPs.

The usable rules include all rules that can be used to reduce the terms in
right-hand sides of P when their variables are instantiated with normal forms.
More precisely, for a term containing a defined symbol f , all f -rules are usable.
Moreover, if the f -rules are usable and g occurs in the right-hand side of an
f -rule, then the g-rules are usable as well. In Thm. 3, note that both TRSs and
relations can be seen as sets of pairs of terms. Thus, “P \�” denotes {s → t ∈
P | s 6� t}.

Theorem 3 (Reduction Pair Processor and Usable Rules). Let (%,�)
be a reduction pair. Then the following DP processor Proc is sound.

Proc(P) =

{
{P \�} if P ⊆ �∪ % and U(P) ⊆ %
{P } otherwise

2 To ease readability we use a simpler definition of DP problems than [8], since this
simple definition suffices for the presentation of the new results of this paper.

5

For any function symbol f , let Rls(f) = {` → r ∈ R | root(`) = f}. For any
term t, the usable rules U(t) are the smallest set such that

• U(x) = ∅ for every variable x and
• U(f(t1, . . . , tn)) =Rls(f) ∪ ⋃`→r∈Rls(f) U(r) ∪ ⋃ni=1 U(ti)

For a set of dependency pairs P, its usable rules are U(P) =
⋃
s→t∈P U(t).

For the TRS of Ex. 1, according to Thm. 3 we search for a reduction pair
with s

(
%

)
t for all dependency pairs s→ t ∈ DP (R) = {(7), . . . , (10)} and with

` % r for all usable rules `→ r ∈ U(DP (R)) = {(4), (5), (6)}.
A popular method to search for suitable relations % and � automatically is

the use of polynomial interpretations [14]. A polynomial interpretation Pol maps
every n-ary function symbol f to a polynomial fPol over n variables x1, . . . , xn.
Traditionally, one uses polynomials with coefficients from N = {0, 1, 2, . . .}. This
mapping is then extended to terms by defining [x]Pol = x for all variables x
and by defining [f(t1, . . . , tn)]Pol = fPol([t1]Pol, . . . , [tn]Pol). If Pol is clear from
the context, we also write [t] instead of [t]Pol. Now one defines s �Pol t (resp.
s %Pol t) iff [s] > [t] (resp. [s] ≥ [t]) holds for all instantiations of the variables
with natural numbers. It is easy to see that (%Pol,�Pol) is a reduction pair.

As an example, consider the polynomial interpretation Pol1 with GTPol1 =
x1, MINUSPol1 = x1+1, CONDPol1 = x2+1, sPol1 = x1+1, and fPol1 = 0 for all
other function symbols f . Then the DPs (8) and (10) are strictly decreasing. The
reason for GT(s(x), s(y)) �Pol1 GT(x, y) is that [GT(s(x), s(y))] = x+ 1 is grea-
ter than [GT(x, y)] = x for all natural numbers x. Moreover, all other DPs and
the usable rules are weakly decreasing w.r.t. %Pol1 . Thus, the DPs (8) and (10)
can be removed and the reduction pair processor transforms the initial DP prob-
lem DP (R) into {(7), (9)}. We refer to [4, 7] for efficient algorithms to generate
suitable polynomial interpretations automatically. However, it is impossible to
transform the problem further into the empty DP problem ∅. More precisely,
there is no reduction pair based on polynomial interpretations (or on any other
classical order amenable to automation)3 where one of the DPs (7) and (9) is
strictly decreasing and the other one and the usable rules are weakly decreasing.
Indeed, up to now all implementations of the DP method failed on Ex. 1.

3 General Reduction Pairs

Our aim is to handle integer polynomial interpretations. More precisely, we
want to use polynomial interpretations where all function symbols except tuple

3 There is no such quasi-simplification order and also no polynomial order. The reason
for the latter is the following: We must have MINUS(s(0), 0) � MINUS(s(0), s(0)).
If we had 0 - s(0), then by weak monotonicity we would obtain MINUS(s(0), 0) -
MINUS(s(0), s(0)) which is a contradiction. But since polynomial orders are total on
ground terms, this implies 0 � s(0). Hence, weak monotonicity implies 0 % s(0) %
s(s(0)) % None of the terms in this chain can be ≈-equal, since for i > j we have
MINUS(si(0), sj(0)) � MINUS(si(0), si(0)). But since on ground terms we have % =
� ∪ ≈ for polynomial orders, this implies the contradiction 0 � s(0) � s(s(0)) �

6

symbols are still mapped to polynomials with natural coefficients, but where
tuple symbols may be mapped to polynomials with arbitrary integer coefficients.
For such integer polynomial interpretations, we still define s �Pol t (resp. s %Pol
t) iff [s] > [t] (resp. [s] ≥ [t]) holds for all instantiations of the variables with
natural (not with integer) numbers. If F is the original signature without tuple
symbols, then the relations �Pol and %Pol are F-stable, i.e., s

(
%

)Polt implies
sσ

(
%

)Poltσ for all substitutions σ with terms over F . It is easy to show that F-
stability is sufficient for the reduction pairs used in the reduction pair processor.

To solve the remaining DP problem {(7), (9)}, we want to use the integer
polynomial interpretation Pol2 where MINUSPol2 = x1 − x2, CONDPol2 = x2 −
x3, sPol2 = x1 + 1, and fPol2 = 0 for all other symbols f . Then DP (9) would
be strictly decreasing and could be removed. The resulting DP problem {(7)} is
easy to solve by Pol3 with MINUSPol3 =1 and fPol3 =0 for all other symbols f .

But such integer interpretations may not be used, since (%Pol2 , �Pol2) is no
reduction pair: %Pol2 is not monotonic (e.g., s(0) %Pol2 0, but MINUS(s(0), s(0))
6%Pol2 MINUS(s(0), 0)). Moreover, �Pol2 is not well founded (e.g., MINUS(0, 0)
�Pol2 MINUS(0, s(0)) �Pol2 MINUS(0, s(s(0))) �Pol2 . . .). So integer interpreta-
tions violate both requirements (a) and (b) for reduction pairs, cf. Sect. 1.

Indeed, using such polynomial interpretations in Thm. 3 is unsound. As�Pol2
is not well founded (i.e., as it violates requirement (b)), Pol2 could be used for a
wrong innermost termination proof of the TRS {minus(x, y) → minus(x, s(y))}.
But even if requirement (b) were not violated, a violation of requirement (a)
would still render Thm. 3 unsound. We demonstrate this in Ex. 4.

Example 4. Consider the following TRS which is not innermost terminating.
Here, round(x) = x if x is even and round(x) = s(x) if x is odd.

minus(s(x), x) → minus(s(x), round(x)) (11) round(0)→ 0 (12)
round(s(0))→ s(s(0)) (13)

round(s(s(x))) → s(s(round(x))) (14)

We use a modification Pol′2 of Pol2, where MINUSPol′2 = (x1−x2)2, roundPol′2
= x1 + 1, and ROUNDPol′2 = 0. Now requirement (b) is satisfied. The MINUS-
DPs are strictly decreasing (i.e., MINUS(s(x), x) �Pol′2 MINUS(s(x), round(x))
and MINUS(s(x), x) �Pol′2 ROUND(x)) and the ROUND-DP and the usable rules

are weakly decreasing. Thus, if we were allowed to use Pol′2 in Thm. 3, then we
could remove the MINUS-DPs. The remaining DP problem is easily solved and
thus, we would falsely prove innermost termination of this TRS.

Ex. 4 shows the reason for the unsoundness when dropping requirement (a).
Thm. 3 requires ` % r for all usable rules `→ r. This is meant to ensure that all
reductions with usable rules will weakly decrease the reduced term (w.r.t. %).
However, this only holds if the quasi-order % is monotonic. In Ex. 4, we have
round(x) %Pol′2 x, but MINUS(s(x), round(x)) 6%Pol′2 MINUS(s(x), x).

Therefore, one should take into account on which positions the used quasi-
order % is monotonically increasing and on which positions it is monotonically
decreasing. If a defined function symbol f occurs at a monotonically increasing

7

position in the right-hand side of a dependency pair, then one should require
` % r for all f -rules. If f occurs at a monotonically decreasing position, then
one should require r % `. Finally, if f occurs at a position which is neither
monotonically increasing nor decreasing, one should require ` ≈ r. Here, ≈ is
the equivalence relation associated with %, i.e., ≈ = % ∩ -.

So we modify our definition of usable rules.4 When computing U(f(t1, ..., tn)),
for any i ∈ {1, ..., n} we first check how the quasi-order % treats f ’s i-th argu-
ment. We say that f is %-dependent on i iff there exist terms t1, ..., tn, t

′
i where

f(t1, . . . , ti, ..., tn) 6≈ f(t1, ..., t
′
i, . . . , tn). Moreover, f is %-monotonically increas-

ing (resp. decreasing) on i iff ti % t′i implies f(t1, ..., ti, ..., tn) % f(t1, ..., t
′
i, ..., tn)

(resp. f(t1, ..., ti, ..., tn) - f(t1, ..., t
′
i, ..., tn)) for all terms t1, ..., tn and t′i.

Now if f is not %-dependent on i, then U(ti) does not have to be included in
U(f(t1, . . . , tn)) at all. (This idea was already used in recent refined definitions
of the “usable rules”, cf. [11].) Otherwise, we include the usable rules U(ti) if f is
%-monotonically increasing on i. If it is %-monotonically decreasing, we include
the reversed rules U−1(ti) instead. Finally, if f is %-dependent on i, but neither
%-monotonically increasing nor decreasing, then we include the usable rules of ti
in both directions, i.e., we include U2(ti) which is defined to be U(ti)∪ U−1(ti).

Definition 5 (General Usable Rules). For any function symbol f and any
i ∈ {1, . . . , arity(f)}, we define

ord(f, i) =





0, if f is not %-dependent on i
1, otherwise, if f is %-monotonically increasing on i
−1, otherwise, if f is %-monotonically decreasing on i

2, otherwise

For any TRS U , we define U0 = ∅, U1 = U , U−1 = {r → ` | ` → r ∈ U},
and U2 = U ∪U−1. For any term t, we define U(t) as the smallest set such that5

• U(x) = ∅ for every variable x and
• U(f(t1, . . . , tn)) = Rls(f) ∪ ⋃`→r∈Rls(f) U(r) ∪ ⋃ni=1 Uord(f,i)(ti)

For a set of dependency pairs P, we again define U(P) =
⋃
s→t∈P U(t).

So in Ex. 4, if MINUSPol′2 = (x1 − x2)2 then MINUS is %Pol′2 -dependent on
2, but neither %Pol′2 -monotonically increasing nor decreasing. Hence, the usable
rules include ` → r and r → ` for all round-rules ` → r ∈ {(12), (13), (14)}.
Thus, we cannot falsely prove innermost termination with Pol′2 anymore. Indeed,
with the modified definition of usable rules above, Thm. 3 can also be used for
reduction pairs where % is not monotonic, i.e., where requirement (a) is violated.

We now also show how to omit the requirement (b) that the order � in a
reduction pair has to be well founded. Instead, we replace well-foundedness by
the weaker requirement of non-infinitesimality.

4 Now U(t) is no longer a subset of R. We nevertheless refer to U(t) as “usable” rules
in order to keep the similarity to Thm. 3.

5 To ease readability, for k ∈ {−1, 0, 1, 2} we write “Uk(t)” instead of “(U(t))k”. Note
that Def. 5 can also be combined with recent refined definitions of “usable rules” [9].

8

Definition 6 (Non-Infinitesimal). A relation � is non-infinitesimal if there
do not exist any t, s0, s1, . . . with si � si+1 and si � t for all i ∈ IN.

Any well-founded relation is non-infinitesimal. Thm. 7 shows that integer
polynomial orders (which are not well founded) are non-infinitesimal as well.

Theorem 7 (Non-Infinitesimality of Integer Polynomial Orders). Let
Pol be an integer polynomial interpretation. Then �Pol is non-infinitesimal.

Proof. Suppose that there exist terms t, s0, s1, . . . with si �Pol si+1 and si �Pol
t. Thus, we have [si] > [si+1] and [si] > [t] for all i. This means that these
inequalities hold for all instantiations of the variables with natural numbers.
Hence, if we choose an arbitrary instantiation of the variables (e.g., if we instan-
tiate them all with the number 0), then each polynomial [si] results in a number
ni and the polynomial [t] results in a number m where ni > ni+1 and ni > m
for all i. However, there do not exist any such integers ni and m. ut

Note that non-infinitesimality of �Pol does not hold for polynomial interpre-
tations on rational numbers. To see this, let aPol = 1, bPol = 0, and fPol = x1

2 .
For si = fi(a) and t = b, we get the infinite sequence a �Pol f(a) �Pol f(f(a))
�Pol . . . (i.e., si �Pol si+1 for all i) and fi(a) �Pol b (i.e., si �Pol t) for all i.

We now extend the reduction pair processor from Thm. 3 to general reduction
pairs. A general reduction pair (%,�) consists of an F-stable quasi-order % and
a compatible F-stable non-infinitesimal order �, where F is the original signa-
ture of the TRS, i.e., without tuple symbols. Moreover, the equivalence relation
≈ associated with % must be monotonic (i.e., s ≈ t implies u[s]π ≈ u[t]π for
any position π of any term u). But we do not require monotonicity of % or well-
foundedness of �, i.e., both requirements (a) and (b) are dropped. So for any
integer polynomial interpretation Pol, (%Pol,�Pol) is a general reduction pair.

In contrast to the reduction pair processor from Thm. 3, the new processor
transforms a DP problem into two new problems. As before, the first problem
results from removing all strictly decreasing dependency pairs. The second DP
problem results from removing all DPs s → t from P that are bounded from
below, i.e., DPs which satisfy the inequality s % c for a fresh constant c.

Theorem 8 (General Reduction Pair Processor). Let (%,�) be a general
reduction pair. Let c be a fresh constant not occurring in the signature and let
Pbound = {s → t ∈ P | s % c}. Then the following DP processor Proc is sound.
Here, U(P) is defined as in Def. 5.

Proc(P) =

{
{P \�, P \ Pbound } if P ⊆ �∪ % and U(P) ⊆ %
{P } otherwise

Proof. Let P ⊆ �∪ % and U(P) ⊆ %. Suppose that there is an infinite minimal
innermost (P ,R)-chain s1 → t1, s2 → t2, . . . where tiσ

i→∗R si+1σ, siσ is in
normal form, and tiσ is innermost terminating for all i. We will show that tiσ %
si+1σ holds for all i. Then by non-infinitesimality, there cannot be both infinitely
many i with si � ti and also infinitely many j with sj % c. Thus, the chain has

9

an infinite tail from P \� or from P \ Pbound. It suffices to prove the following
claim, where a normal substitution instantiates all variables by normal forms.

If tσ i→∗R v for a normal substitution σ and U(t) ⊆ %, then tσ % v. (15)

To prove (15) we show the following auxiliary claim for all k ∈ {−1, 0, 1, 2}
which implies (15) as can be shown by a straightforward induction on the length
of the reduction.6

If tσ i→R v for a normal substitution σ and Uk(t) ⊆ %, then {tσ → v}k ⊆ %.
Moreover, v=uσ′ and Uk(u)⊆Uk(t) for a term u and a normal substitution σ′.

(16)

We prove (16) by induction on the position of the redex. This position must
be in t because σ is normal. So t has the form f(t1, . . . , tn).

If the reduction is on the root position, then we have tσ = `σ′ i→R rσ′ = v
where ` → r ∈ Rls(f). As Rlsk(f) ⊆ Uk(t) ⊆ %, we have {tσ → v}k ⊆ %
by stability of %. Note that σ′ is a normal substitution due to the innermost
strategy and by choosing u = r we obtain v = uσ′ and Uk(u) = Uk(r) ⊆ Uk(t).

Now we regard the case where the reduction is not on the root position. Then
tσ = f(t1σ, . . . , tiσ, . . . , tnσ) i→R f(t1σ, . . . , vi, . . . , tnσ) = v where tiσ

i→R vi.
We first prove {tσ → v}k ⊆ %. The claim is trivial for k = 0, thus we

now regard k 6= 0. If f is not %-dependent on i, then we have tσ ≈ v which
implies {tσ → v}k ⊆ %. Otherwise, if f is %-monotonically increasing on i,
then Uk(ti) ⊆ Uk(t). By the induction hypothesis we have {tiσ → vi}k ⊆ %,
which implies {tσ → v}k ⊆ %. Otherwise, if f is %-monotonically decreasing
on i and k ∈ {−1, 1}, then U−k(ti) ⊆ Uk(t) By the induction hypothesis we
have {vi → tiσ}k ⊆ %, which implies {tσ → v}k ⊆ %. Otherwise, we obtain
U2(ti) ⊆ Uk(t). By the induction hypothesis we have tiσ ≈ vi, which implies
{tσ → v}k ⊆ % due to the monotonicity of ≈.

Now we show the existence of a term u and a normal substitution σ′ with
v = uσ′ and Uk(u) ⊆ Uk(t). By the induction hypothesis there is some term
ui and some normal substitution σi with vi = uiσi. Let u′i result from ui by
replacing its variables x by corresponding fresh variables x′. We define σ′(x′) =
σi(x) for all these fresh variables and σ′(x) = σ(x) for all x ∈ V(t). Then for u =
f(t1, . . . , u

′
i, . . . , tn) we obtain v = uσ′. We also have U j(u′i) = U j(ui) ⊆ U j(ti)

for all j ∈ {−1, 0, 1, 2} by the induction hypothesis.
It remains to show Uk(u) ⊆ Uk(t). If f is not %-dependent on i, then we

even have Uk(u) = Uk(t). Otherwise, the only difference between Uk(u) and
Uk(t) is that Uk(t) contains U j(ti) and that Uk(u) contains U j(u′i) instead, for
some j ∈ {−1, 0, 1, 2}. So by the above observation U j(u′i) ⊆ U j(ti) for all j, we
also have Uk(u) ⊆ Uk(t). ut

Example 9. To modify Ex. 4 into an innermost terminating TRS, we replace rule
(11) by minus(s(x), x) → minus(s(x), round(s(x))). We regard the interpretation
Pol′′2 with MINUSPol′′2 = x1 − x2, sPol′′2 = x1 + 1, 0Pol′′2 = 0, roundPol′′2 = x1,

6 This claim corresponds to [11, Lemma 23].

10

ROUNDPol′′2 = 0, and cPol′′2 = 0. Then the MINUS-DPs are strictly decreas-
ing and the ROUND-DP and the usable rules are weakly decreasing. Here, the
usable rules are the reversed round-rules, since MINUS is %-monotonically de-
creasing on 2. Moreover, all dependency pairs are bounded from below (i.e.,
MINUS(s(x), x) %Pol′′2 c and ROUND(s(s(x))) %Pol′′2 c). Thus, we can transform
the initial DP problem P = DP (R) into P \ Pbound = ∅ and into P \�, which
only contains the ROUND-DP. This remaining DP problem is easily solved and
thus, we can prove innermost termination of the TRS.

Since U(P) now depends on %, the constraints that the reduction pair has to
satisfy in Thm. 8 depend on the reduction pair itself. Nevertheless, if one uses re-
duction pairs based on polynomial interpretations, then the search for suitable re-
duction pairs can still be mechanized efficiently. More precisely, one can reformu-
late Thm. 8 in a way where one first generates constraints (that are independent
of %) and searches for a reduction pair satisfying the constraints afterwards. We
showed in [11, Sect. 7.1] how to reformulate “f is %-dependent on i” accordingly
and “f is %-monotonically increasing on i” can be reformulated by requiring
that the partial derivative of fPol w.r.t. xi is non-negative, cf. [1, Footnote 11].

There have already been previous approaches to extend the DP method to
non-monotonic reduction pairs. Hirokawa and Middeldorp [13] allowed interpre-
tations like MINUSPol = max(x1 − x2, 0).7 However, instead of detecting %-
monotonically increasing and decreasing positions, they always require ` ≈ r for
the usable rules. Therefore, their technique fails on Ex. 9, since their constraints
cannot be fulfilled by the interpretations considered in their approach.8

Another approach was presented in [1, Thm. 33] and further extended in
[6]. Essentially, here one permits non-monotonic quasi-orders % provided that
f is %-monotonically increasing on a position i whenever there is a subterm
f(t1, ..., ti, ..., tn) in a right-hand side of a dependency pair or of a usable rule
where ti contains a defined symbol. Then Thm. 3 is still sound (this also follows
from Def. 5 and Thm. 8). However, this approach would not allow us to handle
arbitrary non-monotonic reduction pairs and therefore, it also fails on Ex. 9.

4 Conditions for Bounded Increase

With Thm. 8 we still cannot use our desired integer polynomial interpretation
Pol2 with MINUSPol2 = x1−x2, CONDPol2 = x2−x3, sPol2 = x1 + 1, and fPol2
= 0 for all other function symbols f to prove innermost termination of Ex. 1.
When trying to solve the remaining DP problem {(7), (9)}, the DP (9) would
be strictly decreasing but none of the two DPs would be bounded. The reason is
that we have neither MINUS(x, y) %Pol2 c nor COND(true, x, y) %Pol2 c for any

7 While such interpretations always result in well-founded orders, they are difficult to
generate automatically. In contrast, the search for integer polynomial interpretations
is as for ordinary polynomial interpretations, e.g., by using SAT solving as in [7].

8 The reason is that constructor ground terms built from from 0 and s must be mapped
to infinitely many different numbers. Therefore, the polynomial for round (which
cannot be a constant) would have infinitely many extrema, which is a contradiction.

11

possible value of cPol2 . Thus, the reduction pair processor would return the two9

DP problems {(7)} and {(7), (9)}, i.e., it would not simplify the DP problem.

The solution is to consider conditions when requiring inequalities like s
(
%

)
t

or s % c. For example, to include the DP (7) in Pbound, we do not have to demand
MINUS(x, y) % c for all instantiations of x and y. Instead, it suffices to require the
inequality only for those instantiations of x and y which can be used in potential-
ly infinite minimal innermost chains. So we require MINUS(x, y) % c only for in-
stantiations σ where (7)’s instantiated right-hand side COND(gt(x, y), x, y)σ re-
duces to an instantiated left-hand side uσ for some DP u → v.10 Here, u → v
should again be variable renamed. As our DP problem contains two DPs (7) and
(9), we get the following two constraints (by considering all possibilities u→ v ∈
{(7), (9)}). If both constraints are satisfied, then we can include (7) in Pbound.

COND(gt(x, y), x, y) = MINUS(x′, y′) ⇒ MINUS(x, y) % c (17)
COND(gt(x, y), x, y) = COND(true, x′, y′) ⇒ MINUS(x, y) % c (18)

Def. 10 introduces the syntax and semantics of such conditional constraints.

Definition 10 (Conditional Constraint). For given relations % and �, the
set C of conditional constraints is the smallest set with

• {TRUE , s % t, s � t, s = t} ⊆ C for all terms s and t

• if {ϕ1, ϕ2} ⊆ C, then ϕ1 ⇒ ϕ2 ∈ C and ϕ1 ∧ ϕ2 ∈ C
• if ϕ ∈ C and y ∈ V, then ∀y ϕ ∈ C

Now we define which normal F-substitutions11 σ satisfy a constraint ϕ ∈ C,
denoted “σ |= ϕ”:

• σ |= TRUE for all normal F-substitutions σ

• σ |= s % t iff sσ % tσ and σ |= s � t iff sσ � tσ
• σ |= s = t iff sσ is innermost terminating, sσ i→∗R tσ, tσ is a normal form

• σ |= ϕ1 ⇒ ϕ2 iff σ 6|= ϕ1 or σ |= ϕ2

• σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2

• σ |= ∀y ϕ iff σ′ |= ϕ for all normal F-substitutions σ′ where σ′(x) = σ(x)
for all x 6= y

A constraint ϕ is valid (“ |=ϕ”) iff σ |=ϕ holds for all normal F-substitutions σ.

Now we refine the reduction pair processor by taking conditions into account.
To this end, we modify the definition of Pbound and introduce P� and P%.

9 Since {(7)} ⊆ {(7), (9)}, then it suffices to regard just the DP problem {(7), (9)}.
10 Moreover, COND(gt(x, y), x, y)σ must be innermost terminating, COND(gt(x, y), x, y)σ

i→∗R uσ, and uσ must be in normal form, since we consider minimal innermost chains.
11 A normal F-substitution σ instantiates all variables by normal forms that do not

contain tuple symbols (i.e., for any x ∈ V, all function symbols in σ(x) are from F).

12

Theorem 11 (Conditional General Reduction Pair Processor). Let (%,
�) be a general reduction pair. Let c be a fresh constant and let

P� = { s→ t ∈ P | |= ∧
u→v∈P (t = u′ ⇒ s� t) }

P% = { s→ t ∈ P | |= ∧
u→v∈P (t = u′ ⇒ s% t) }

Pbound = { s→ t ∈ P | |= ∧
u→v∈P (t = u′ ⇒ s%c) }

where u′ results from u by renaming its variables into fresh variables. Then the
following DP processor Proc is sound. Here, U(P) is defined as in Def. 5.

Proc(P) =

{{P \ P�, P \ Pbound } if P� ∪ P% = P and U(P) ⊆ %
{P } otherwise

Proof. Let P�∪P% = P and U(P) ⊆ %. Suppose that there is an infinite minimal
innermost (P ,R)-chain s1 → t1, s2 → t2, . . . So there is a normal substitution
σ where tiσ

i→∗R si+1σ and where tiσ is innermost terminating for all i. Clearly,
one can choose σ to be an F-substitution. Assume that there are both infinitely
many i with si → ti ∈ P� and also infinitely many j with sj → tj ∈ Pbound. Since
tiσ

i→∗R si+1σ and tjσ
i→∗R sj+1σ, we have siσ � tiσ and sjσ % c. Similarly, we

have siσ % tiσ whenever siσ 6� tiσ. As in the proof of Thm. 8, this leads to a
contradiction. Thus, we cannot have both infinitely many strictly decreasing and
infinitely many bounded DPs. Thus, the chain has an infinite tail from P \ P�
or from P \ Pbound. ut

To ease readability, in Thm. 11 we only consider the conditions resulting
from two DPs s→ t and u→ v which follow each other in minimal innermost
chains. To consider also conditions resulting from n+1 adjacent DPs, one would
have to modify P� as follows (of course, P% and Pbound have to be modified
analogously).

P�={s→ t∈P | |=
^

u1→v1,...,un→vn∈P
(t = u′1 ∧ v′1=u′2 ∧ . . . ∧ v′n−1=u′n ⇒ s� t)}

Here, the variables in u′i and v′i must be renamed in order to be disjoint to the
variables in u′j and v′j for j 6= i. Moreover, instead of regarding DPs which follow
s → t in chains, one could also regards DPs which precede s → t. Then instead
of (or in addition to) the premise “t = u′”, one would have the premise “v′ = s”.

The question remains how to check whether conditional constraints are valid,
since this requires reasoning about reductions resp. reachability. We now in-
troduce a calculus of seven rules to simplify conditional constraints. For ex-
ample, the constraint (17) is trivially valid, since its condition is unsatisfiable.
The reason is that there is no substitution σ with σ |= COND(gt(x, y), x, y) =
MINUS(x′, y′), since COND is no defined function symbol (i.e., it is a constructor)
and therefore, COND-terms can only be reduced to COND-terms.

This leads to the first inference rule. In a conjunction ϕ1 ∧ . . .∧ϕn of condi-
tional constraints ϕi, these rules can be used to replace a conjunct ϕi by a new
formula ϕ′i. Of course, TRUE ∧ϕ can always be simplified to ϕ. Eventually, the

13

goal is to remove all equalities “p = q” from the constraints. The soundness of
the rules is shown in Thm. 14: if ϕi is replaced by ϕ′i, then |= ϕ′i implies |= ϕi.

I. Constructor and Different Function Symbol

f(p1, ..., pn) = g(q1, ..., qm)∧ϕ ⇒ ψ

TRUE
if f is a constructor and f 6= g

Rule (II) handles conditions like COND(gt(x, y), x, y) = COND(true, x′, y′)
where both terms start with the constructor COND. So (18) is transformed to

gt(x, y) = true ∧ x = x′ ∧ y = y′ ⇒ MINUS(x, y) % c (19)

II. Same Constructors on Both Sides

f(p1, ..., pn) = f(q1, ..., qn) ∧ ϕ ⇒ ψ

p1 = q1 ∧ . . . ∧ pn = qn ∧ ϕ ⇒ ψ
if f is a constructor

Rule (III) removes conditions of the form “x = q” or “q = x” by applying
the substitution [x/q] to the constraint.12 So (19) is transformed to

gt(x, y) = true ⇒ MINUS(x, y) % c (20)

III. Variable in Equation

x=q ∧ ϕ ⇒ ψ

ϕσ ⇒ ψ σ

if x ∈ V and
σ = [x/q]

q=x ∧ ϕ ⇒ ψ

ϕσ ⇒ ψ σ

if x∈V , q has no
defined symbols,
σ=[x/q]

Of course, one can also omit arbitrary conjuncts from the premise of an impli-
cation. To ease notation, we regard a conjunction as a set of formulas. So their
order is irrelevant and we write ϕ′ ⊆ ϕ iff all conjuncts of ϕ′ are also conjuncts
of ϕ. The empty conjunction is TRUE (i.e., TRUE ⇒ ψ can be simplified to
ψ).

IV. Delete Conditions

ϕ ⇒ ψ

ϕ′ ⇒ ψ
if ϕ′ ⊆ ϕ

Rule (IV) is especially useful for omitting conditions q = x where x is a va-
riable which does not occur anywhere else. So one could also transform (19) to
(20) by Rule (IV). The meaning of (20) is that MINUS(x, y)σ % c must hold

12 To remove the condition q = x, we must ensure that for any normal F-substitution
δ, the term qδ is normal, too. Otherwise, Rule (III) would not be sound: Consider
the TRS {f(a) → b} and the constraint “y = a ∧ f(y) = x ∧ x = x ⇒ a = b”. This
constraint is not valid, since it is not satisfied by the substitution δ with δ(y) = a
and δ(x) = b. But if Rule (III) were allowed to omit the condition f(y) = x and to
replace x by the normal form f(y), then we would obtain “y=a∧f(y)= f(y)⇒ a=b”.
This constraint is valid since “y=a∧ f(y)= f(y)” is unsatisfiable (as f(a) is no normal
form).

14

whenever gt(x, y)σ is innermost terminating and gt(x, y)σ i→∗R true holds for a
normal F-substitution σ. To simplify this constraint further, the next inference
rule performs an induction on the length of gt(x, y)σ’s reduction.13 Since gt(x, y)
and true do not unify, at least one reduction step is needed, i.e., some rule
gt(`1, `2) → r must be applied. To detect all possibilities for the first reduction
step, we consider all narrowings of the term gt(x, y). We obtain

gt(x, y) [x/0,y/v] false, gt(x, y) [x/s(u),y/0] true, gt(x, y) [x/s(u),y/s(v)] gt(u, v)

Thus, we could replace (20) by the following three new constraints where we
always apply the respective narrowing substitution to the whole constraint:

false = true ⇒ MINUS(0, v) % c (21)
true = true ⇒ MINUS(s(u), 0) % c (22)

gt(u, v) = true ⇒ MINUS(s(u), s(v)) % c (23)

So to transform a constraint f(x1, . . . , xn) = q∧ϕ ⇒ ψ, we consider all rules
f(`1, . . . , `n)→ r. Then the constraint could be replaced by the new constraints

r = qσ ∧ ϕσ ⇒ ψσ, where σ = [x1/`1, . . . , xn/`n]. (24)

However, we perform a better transformation. Suppose that r contains a
recursive call, i.e., a subterm f(r1, . . . , rn), and that the ri do not contain defined
symbols. Obviously, f(r1, . . . , rn)σ’s reduction is shorter than the reduction of
f(x1, . . . , xn)σ. Thus for µ = [x1/r1, . . . , xn/rn] one can assume

∀y1, . . . , ym f(r1, . . . , rn) = qµ ∧ ϕµ ⇒ ψµ (25)

as induction hypothesis when requiring (24).14 Here, y1, . . . , ym are all occurring
variables except those in r. Of course, we may assume that variables in rewrite

13 More precisely, we use an induction on i→R ◦ D, where D is the subterm relation. The
idea for this inference rule was inspired by our earlier work on termination of simple
first-order functional programs [3]. But [3] only considered a very restricted form of
functional programs (left-linear, sufficiently complete, non-overlapping constructor
systems without defined symbols in arguments of recursive calls), whereas we regard
arbitrary TRSs. Moreover, we integrate this idea of performing induction into the
whole framework of termination techniques and tools available for TRSs. Finally, in
contrast to [3], we do not need an underlying induction theorem prover. Nevertheless,
our approach is significantly stronger (e.g., [3] fails on examples like Ex. 12, cf. the
appendix).

14 If there is more than one recursive call in r, then one can obtain a corresponding in-
duction hypothesis (25) for each recursive call. But for a similar reason as in Footnote
12, if the ri contain defined symbols, then one may not assume (25) as induction hy-
pothesis. The reason is that we only prove the claims for normal substitutions σ. For
that reason, (25) is only an instance of our original claim, if µσ is normal whenever
σ is normal. Otherwise, we could falsely prove innermost termination of the TRS
{f(a, x, y) → f(g(x, x, x), x, s(y)), g(s(z), s(z), s(z)) → g(e, e, e), g(a, b, z) → a, e →
a, e → b}. We use a polynomial interpretation Pol with FPol = −x3, GPol = x1,
sPol = x1 + 1, and ePol = 0.

15

rules (i.e., in r) are disjoint from variables in constraints (i.e., in q, ϕ, and ψ).
So instead of (24), it suffices to demand (25)⇒ (24), or equivalently

r = qσ ∧ ϕσ ∧ (25) ⇒ ψσ. (26)

This leads to Rule (V). Here, x1, . . . , xn denote pairwise different variables.

V. Induction (Defined Symbol with Pairwise Different Variables)

f(x1, ..., xn) = q ∧ ϕ ⇒ ψ
∧

f(`1,...,`n)→r∈R
(r = q σ ∧ ϕσ ∧ ϕ′ ⇒ ψ σ)

if f is a defined symbol and
f(x1, ..., xn) does not unify
with q

where σ = [x1/`1, ..., xn/`n]

and ϕ′ =





∀y1, ..., ym f(r1, . . . , rn) = qµ ∧ ϕµ⇒ ψ µ, if

• r contains the subterm f(r1, ..., rn),
• there is no defined symbol in any ri,
• µ = [x1/r1, ..., xn/rn], and
• y1, ..., ym are all occurring variables except V(r)

TRUE , otherwise

In our example, the above rule transforms the original constraint (20) into
the three new constraints (21), (22), and (27). Here, (27) is obtained from the
narrowing step gt(x, y) [x/s(u),y/s(v)] gt(u, v), i.e., we have σ = [x/s(u), y/s(v)],
r1 = u, r2 = v, and µ = [x/u, y/v]. There are no variables y1, . . . , ym.

gt(u, v) = true
∧ (gt(u, v) = true ⇒ MINUS(u, v) % c) ⇒ MINUS(s(u), s(v)) % c (27)

To simplify (27) further, now we can “apply” the induction hypothesis, since
its condition gt(u, v) = true is guaranteed to hold. So we can transform (27) to

gt(u, v) = true ∧ MINUS(u, v) % c ⇒ MINUS(s(u), s(v)) % c. (28)

In general, to simplify conditions one may of course also instantiate universally

Both DPs are strictly decreasing and the G-DP is obviously bounded from below.
For the boundedness of the F-DP we would obtain the constraint g(x, x, x) = a ⇒
F(a, x, y) % c. The only narrowing is g(x, x, x) [x/s(z)] g(e, e, e). If we allowed such
non-constructor substitutions µ, then we would only get the new constraint

g(e, e, e) = a ∧ (g(e, e, e) = a⇒ F(a, e, y) % c)⇒ F(a, s(z), y) % c.

This can be simplified to F(a, e, y) % c ⇒ F(a, s(z), y) % c which is satisfied by the
above polynomial interpretation.

16

quantified variables.15 This leads to the following rule.

VI. Simplify Condition

ϕ ∧ (∀y1, . . . , ym ϕ′ ⇒ ψ′) ⇒ ψ

ϕ ∧ ψ′ σ ⇒ ψ

if DOM(σ) ⊆ {y1, . . . , ym},
there is no defined symbol and
no tuple symbol in any σ(yi),
and ϕ′ σ ⊆ ϕ

To simplify the remaining constraints (21), (22), and (28), note that (21) can
be eliminated by Rule (I) since it has an unsatisfiable condition false = true.
Moreover, Rule (II) can delete the trivial condition true = true of the constraint
(22). For (28), with Rule (IV) one can of course always omit conditions like
gt(u, v) = true from conditional constraints. In this way, all conditions with
equalities p = q are removed in the end.

So to finish the termination proof of Ex. 1, we can include the DP (7)
in Pbound if the constraints MINUS(s(u), 0) % c and MINUS(u, v) % c ⇒
MINUS(s(u), s(v)) % c are satisfied. Of course, these constraints obviously hold
for Pol2 if we choose cPol2 = 1. Then the DP (9) is strictly decreasing and (7)
is bounded from below and thus, the reduction pair processor transforms the
remaining DP problem {(7), (9)} into {(7)} and {(9)}. Now the resulting DP
problems are easy to solve and thus, innermost termination of Ex. 1 is proved.

The rules (I) - (VI) are not always sufficient to exploit the conditions of a
constraint. We demonstrate this with the following example.

Example 12. We regard a TRS R containing the gt-rules (4) - (6) together with

plus(n, 0) → n f(true, x, y, z)→ f(gt(x, plus(y, z)), x, s(y), z)
plus(n, s(m))→ s(plus(n,m)) f(true, x, y, z)→ f(gt(x, plus(y, z)), x, y, s(z))

The termination of gt and of plus is easy to show. So the initial DP problem
can easily be transformed into {(29), (30)} with

F(true, x, y, z)→ F(gt(x, plus(y, z)), x, s(y), z) (29)
F(true, x, y, z)→ F(gt(x, plus(y, z)), x, y, s(z)) (30)

To include (29) in Pbound, we have to impose the following constraint:

F(gt(x, plus(y, z)), x, s(y), z) = F(true, x′, y′, z′) ⇒ F(true, x, y, z) % c (31)

15 For a similar reason as in Footnote 12, one may only instantiate them by terms
without defined symbols. Otherwise, we lose soundness. To see this, consider the
TRS {f(a) → a} and the constraint x = a ∧ (∀y TRUE ⇒ y = y)⇒ a = b. Clearly,
this constraint is not valid (for example, the substitution δ = [x/a] is not a model
of this formula). However, if we were allowed to apply rule (VI) with the normal
substitution σ = [y/f(x)] then we would obtain x = a ∧ f(x) = f(x) ⇒ a = b. This
constraint is valid, i.e., it is satisfied by every normal F-substitution δ. The reason
is that δ(x) = a would imply that the right-hand side f(a) of (f(x) = f(x))δ is not in
normal form. Thus, then the premise of the implication does not hold.

17

With the rules (II) and (IV), it can be transformed into

gt(x, plus(y, z)) = true ⇒ F(true, x, y, z) % c (32)

Now we want to use induction. However, Rule (V) is only applicable for con-
ditions f(x1, . . . , xn) = q where x1, . . . , xn are pairwise different variables. To
obtain such conditions, we use the following rule. Here, x denotes a fresh variable.

VII. Defined Symbol without Pairwise Different Variables

f(p1, . . . , pi, . . . , pn) = q ∧ ϕ ⇒ ψ

pi=x ∧ f(p1, . . . , x , . . . , pn) = q ∧ ϕ ⇒ ψ

if f is a defined symbol and
(pi /∈V or pi=pj for a j 6= i)

So the constraint (32) is transformed into

plus(y, z) = w ∧ gt(x,w) = true ⇒ F(true, x, y, z) % c

Example 13. To continue, we can now perform induction on gt which yields

plus(y, z) = v ∧ false = true⇒ F(true, 0, y, z) % c (33)
plus(y, z) = 0 ∧ true = true⇒ F(true, s(u), y, z) % c (34)

plus(y, z) = s(v) ∧ gt(u, v) = true ∧ (36)⇒ F(true, s(u), y, z) % c (35)

Here, (36) is the induction hypothesis:

∀y, z plus(y, z) = v ∧ gt(u, v) = true ⇒ F(true, u, y, z) % c (36)

With Rule (I) we delete constraint (33) and Rule (II) simplifies constraint (34)
to “plus(y, z) = 0 ⇒ F(true, s(u), y, z)% c”. Similar to our previous example,
by induction via plus and by removing the constraint with the unsatisfiable
condition s(plus(n,m)) = 0, we finally transform it to

F(true, s(u), 0, 0) % c (37)

The other constraint (35) is simplified further by induction via plus as well:

n = s(v) ∧ gt(u, v) = true ∧ (36)⇒ F(true, s(u), n, 0) % c (38)
s(plus(n,m))=s(v) ∧ gt(u, v)= true ∧ (36) ∧ ϕ′ ⇒ F(true, s(u), n, s(m))%c (39)

where ϕ′ is the new induction hypothesis. We apply Rules (III) and (IV) on (38)
to obtain “gt(u, v) = true ⇒ F(true, s(u), s(v), 0) % c”. By another induction
on gt and by applying Rules (I), (II), (IV), and (VI) we get the final constraints

F(true, s(s(i)), s(0), 0) % c (40)
F(true, s(i), s(j), 0) % c⇒ F(true, s(s(i)), s(s(j)), 0) % c (41)

In the only remaining constraint (39) we delete ϕ′ with Rule (IV) and by
removing the outermost s in the first condition with Rule (II), we get

plus(n,m) = v ∧ gt(u, v) = true ∧ (36) ⇒ F(true, s(u), n, s(m)) % c

18

Now we can simplify the condition by applying the induction hypothesis (36).
In (36), the variables y and z were universally quantified. We instantiate y
with n and z with m. With Rule (VI) we replace (36) by the new condition
F(true, u, n,m) % c. By deleting the first two remaining conditions we finally get

F(true, u, n,m) % c ⇒ F(true, s(u), n, s(m)) % c (42)

So to summarize, the constraint (31) can be transformed into (37), (40),
(41), and (42). These constraints are satisfied by the interpretation Pol where
FPol = x2 − x3 − x4, sPol = x1 + 1, 0Pol = 0, and cPol = 1. Therefore, we can
include the DP (29) in Pbound. For a similar reason, the other DP (30) is also
bounded. Moreover, both DPs are strictly decreasing and there are no usable
rules since F is not %Pol-dependent on 1. Hence, the reduction pair processor
can remove both DPs and innermost termination of Ex. 12 is proved.

We define ϕ ` ϕ′ iff ϕ′ results from ϕ by repeatedly applying the above
inference rules to the conjuncts of ϕ. Thm. 14 states that these rules are sound.

Theorem 14 (Soundness). If ϕ ` ϕ′, then |= ϕ′ implies |= ϕ.

Proof. Rule (I) is sound, since δ 6|= f(p1, . . . , pn) = g(q1, . . . , qm) holds for all
substitutions δ if f is a constructor and f 6= g. The reason is that f(. . .)δ cannot
reduce to g(. . .)δ.

The soundness of Rule (II) follows since δ |= p1 = q1 ∧ . . . ∧ pn = qn holds
iff δ |= f(p1, . . . , pn) = f(q1, . . . , qn) for any constructor f . The reason is that
every piδ is innermost terminating iff f(p1, . . . , pn)δ is innermost terminating,
that f(p1, . . . , pn)δ i→∗R f(q1, . . . , qn)δ is equivalent to piδ

i→∗R qiδ, and that
every qiδ is in normal form iff f(q1, . . . , qn)δ is in normal form.

For Rule (III), note that if δ |= x = q, then we have xδ = qδ (since δ must
be normal substitution) and qδ is a normal form. Similarly, if δ |= q = x and q
does not contain defined symbols, then qδ is a normal form and xδ = qδ. For
any normal F-substitution δ where xδ = qδ and where qδ is in normal form and
for any constraint ϕ, we have δ |= ϕ[x/q] iff δ |= ϕ.16 This implies the soundness
of Rule (III).

16 Note that
σ2 |= ϕσ1 iff σ1σ2 |= ϕ (43)

holds for all constraints ϕ and all F-substitutions σi where σ2 and σ1σ2 are normal.
With this observation, the above claim immediately follows since [x/q]δ = δ and
since δ and qδ are normal.

The observation (43) can be proved by a straightforward structural induction on
ϕ. It is clear for ϕ = TRUE .

If ϕ has the form s
(
%

)
t, then we have σ2 |= sσ1 (

%
)
tσ1 iff sσ1σ2 (

%
)
tσ1σ2 iff

σ1σ2 |= s
(
%

)
t.

If ϕ has the form s = t, then we have σ2 |= sσ1 = tσ1 iff sσ1σ2 is innermost
terminating, sσ1σ2

i→∗R tσ1σ2, and tσ1σ2 is a normal form. This is equivalent to
σ1σ2 |= s = t.

If ϕ has the form s∧ t or s⇒ t, then (43) immediately follows from the induction
hypothesis.

19

The soundness of Rule (IV) is obvious, since δ |= ϕ′ ⇒ ψ implies δ |= ϕ ⇒
ψ whenever ϕ′ ⊆ ϕ.

For Rule (V), we have to prove that δ |= f(x1, . . . , xn) = q ∧ ϕ ⇒ ψ holds
for all normal F-substitutions δ. As this is obviously true when δ 6|= f(x1, . . . , xn)
= q we only have to consider substitutions δ where f(x1, . . . , xn)δ is innermost
terminating and where f(x1, . . . , xn)δ i→∗R qδ. Innermost termination allows us
to perform induction on f(x1, . . . , xn)δ w.r.t. the induction relation i→R ◦ D,
where D is the subterm relation, cf. Footnote 13. Since f(x1, . . . , xn) and q do
not unify, at least one reduction step is needed for f(x1, . . . , xn)δ i→∗R qδ. Since δ
is a normal substitution, the first reduction step takes place on the root position,
i.e., it is performed with a rule f(`1, . . . , `n) → r. Let σ = [x1/`1, . . . , xn/`n].
Then there is a normal F-substitution σ′ with δ = σσ′ and f(x1, . . . , xn)δ =
f(`1, . . . , `n)σ′ i→R rσ′ i→∗R qδ = qσσ′, where rσ′ is also innermost terminating.
If “|= r = qσ ∧ϕσ ∧ϕ′ ⇒ ψσ”, then this constraint is also satisfied by σ′. Since
σ′ |= r = qσ as shown above, we have

σ′ |= ϕσ ∧ ϕ′ ⇒ ψσ. (44)

It remains to show that σ′ |= ϕ′. Then (44) implies σ′ |= ϕσ ⇒ ψσ, i.e.,17

σσ′ |= ϕ⇒ ψ and thus, δ |= ϕ ⇒ ψ.
Now we show that σ′ |= ϕ′. If ϕ′ 6= TRUE , then we have to prove τ |=

f(x1, . . . , xn)µ = qµ∧ϕµ⇒ ψµ for all normal F-substitutions τ that differ from
σ′ only on y1, . . . , ym. As r does not contain any variable yi we obtain riτ = riσ

′.
Note that µ instantiates all terms by terms without defined or tuple symbols.
So µτ is a normal F-substitution and by the observation in Footnote 43 it is
equivalent to prove µτ |= f(x1, . . . , xn) = q ∧ϕ⇒ ψ. But as f(x1, . . . , xn)δ i→R
rσ′ D f(r1, . . . , rn)σ′ = f(r1, . . . , rn)τ = f(x1, . . . , xn)µτ this follows from the
induction hypothesis.

For Rule (VI), let δ |= ϕ ∧ (∀y1, . . . ym ϕ′ ⇒ ψ′). We define δ′ = σδ. Since
DOM(σ) ⊆ {y1, . . . , ym}, δ′ and δ differ at most on the variables y1, . . . , ym.
Moreover, as σ is a constructorF-substitution and as δ is a normal F-substitution
we also know that δ′ is a normal F-substitution. Hence, by definition δ′ |= ϕ′ ⇒
ψ′. Using the result in Footnote 43 we have δ |= ϕ∧(ϕ′σ ⇒ ψ′σ). Thus, ϕ′ σ ⊆ ϕ
implies δ |= ϕ ∧ ψ′σ. Now |= ϕ ∧ ψ′σ ⇒ ψ implies δ |= ψ.

Finally, for Rule (VII) let δ |= f(p1, . . . , pi, . . . , pn) = q. Then we have
f(p1, . . . , pi, . . . , pn)δ = f(p1δ, . . . , piδ, . . . , pnδ)

i→∗R f(p1δ, . . . , q
′, . . . , pnδ) i→∗R

qδ where piδ
i→∗R q′ and q′ is a normal form. Moreover, f(p1, . . . , pi, . . . , pn)δ

is innermost terminating and thus, the terms piδ and f(p1δ, . . . , q
′, . . . , pnδ) are

If ϕ has the form ∀y ϕ′, then w.l.o.g. we may assume that y is a fresh variable
which does not occur in DOM(σ1) or in σ1(x) for x ∈ DOM(σ1). Thus, σ2 |=
(∀y ϕ′)σ1 iff σ2 |= ∀y (ϕ′σ1). This is equivalent to the requirement that σ′2 |= ϕ′σ1

for all substitutions σ′2 which are like σ2 on all variables except y. By the induction
hypothesis, this holds iff σ1σ

′
2 |= ϕ′ for all such substitutions σ′2. Hence, this holds

iff σ |= ϕ′ for all substitutions σ which are like σ1σ2 on all variables except y. This
is equivalent to σ1σ2 |= ∀y ϕ′.

17 This again follows from the observation (43) since σ′ and δ = σσ′ are normal.

20

innermost terminating as well. Let δ′ be like δ on all variables except x and let
xδ′ = q′. Then we have δ′ |= pi = x and δ′ |= f(p1, . . . , x, . . . , pn) = q. Thus we
also obtain δ′ |= ϕ⇒ ψ and hence, δ |= ϕ⇒ ψ. ut
With Thm. 14 we can now refine the reduction pair processor from Thm. 11.

Corollary 15 (Conditional General Reduction Pair Processor with In-
ference). Let (%,�) be a general reduction pair and let c be a fresh constant.
For every s → t ∈ P and every inequality ψ ∈ { s � t, s % t, s % c },
let ϕψ be a constraint with

∧
u→v∈P (t = u′ ⇒ ψ) ` ϕψ. Here, u′ re-

sults from u by renaming its variables into fresh variables. Then the processor
Proc from Thm. 11 is still sound if we define P� = {s → t ∈ P | |= ϕs�t },
P% = {s→ t ∈ P | |= ϕs%t }, and Pbound = {s→ t ∈ P | |= ϕs%c }.

For automation, one of course needs a strategy for the application of the rules
(I) - (VII). We propose the following heuristic:

• Apply the rules with the priority (I), (II), (IV)′, (VI)′, (III)′, (VII), (V),
where

– (IV)′ is a restriction of (IV) which only deletes conditions q = x where
x is a variable which does not occur anywhere else.

– (VI)′ is a restriction of (VI), i.e., it simplifies conditions ϕ∧ (∀ . . . ϕ′ ⇒
ψ′). Hence, every conjunct of ϕ′ must be mapped to a conjunct of ϕ
that is an instance of it. The difference to (VI) is that this mapping
must be injective. In other words, in the condition “ϕ′σ ⊆ ϕ” we do
not regard conjunctions as sets, but as multisets.

– (III)′ is a restriction of (III) which is not applied for conditions x = q
or q = x where x is the argument of a defined symbol in the left-hand
side of an equation. The reason is that then its effect would be again
“revised” by Rule (VII).

• When applying induction (Rule (V)), we prefer those conditions of the
form f(x1, . . . , xn) = q which were used least often for induction up to
now. Moreover, if f(x1, . . . , xn) = q already resulted from a previous in-
duction, then before applying induction again, we first delete its induction
hypothesis with Rule (IV).
• To ensure termination of the inference rules, one has to impose some limit

on the number of possible inductions with Rule (V). In the end, one ap-
plies the rules (I), (II), (III), and (VI) as often as possible. Afterwards, we
use Rule (IV) to remove all remaining conditions containing “=” or “⇒”.
Moreover, if there are several conditions of the form s

(
%

)
t, we remove all

but one of them.

Thus, the constraints ϕψ in Cor. 15 are conjunctions where the conjuncts
have the form “t1 (

%
)
t2” or “s1 (

%
)
s2 ⇒ t1 (

%
)
t2”. However, most existing meth-

ods and tools for the generation of orders and of polynomial interpretations can
only handle unconditional inequalities [4, 7]. To transform such conditional con-
straints into unconditional ones, note that any constraint “s % c ⇒ t % c” can
be replaced by “t % s”. More generally, if one uses polynomial orders, then any

21

constraint “s1 (
%

)
s2 ⇒ t1 (

%
)
t2” can be replaced by “[t1]− [t2] ≥ [s1]− [s2]”. So

in Ex. 13, instead of (41) and (42), we would require [F(true, s(s(i)), s(s(j)), 0)] ≥
[F(true, s(i), s(j), 0)] and [F(true, s(u), n, s(m))] ≥ [F(true, u, n,m)].

In practice, it is not recommendable to fix the reduction pair (%,�) in ad-
vance and to check the validity of the constraints of the reduction pair processor
afterwards. Instead, one should leave the reduction pair open and first simplify
the constraints of the reduction pair processor using the above inference rules.
Afterwards, one uses the existing techniques to generate a reduction pair (e.g.,
based on integer polynomial interpretations) satisfying the resulting constraints.

More precisely, we start the following procedure REDUCTION PAIR(P) with
P = DP (R). If REDUCTION PAIR(DP (R)) returns “Yes”, then innermost ter-
mination is proved. Of course, this procedure can be refined by also applying
other DP processors than just the reduction pair processor to P .

Procedure REDUCTION PAIR(P)

1. If P = ∅ then stop and return “Yes”.
2. Choose non-empty subsets P� ⊆ P and Pbound ⊆ P . Let P% = P \ P�.
3. Generate the following constraint ϕ (where % and � are not yet fixed):

∧
s→t∈P�, u→v∈P (t = u′ ⇒ s� t) ∧ ∧s→t∈Pbound, u→v∈P (t = u′ ⇒ s%c) ∧∧
s→t∈P%, u→v∈P (t = u′ ⇒ s% t) ∧ ∧`→r∈U(P) (`%r)

4. Use Rules (I) - (VII) to transform ϕ to a constraint ϕ′ without “=”.
5. Generate an integer polynomial interpretation satisfying ϕ′, cf. e.g. [7].
6. If REDUCTION PAIR(P%) = “Yes” and REDUCTION PAIR(P \ Pbound) =

“Yes”, then return “Yes”. Otherwise, return “Maybe”.

5 Conclusion

We have extended the reduction pair processor of the DP method in order to
handle TRSs that terminate because of bounded increase. To be able to measure
the increase of arguments, we permitted the use of general reduction pairs (e.g.,
based on integer polynomial interpretations). Moreover, to exploit the bounds
given by conditions, we developed a calculus based on induction which simplifies
the constraints needed for the reduction pair processor.

We implemented the new reduction pair processor of Cor. 15 in our ter-
mination prover AProVE [10]. Here, we used the heuristic from the end of
Sect. 4 for the application of the inference rules (I) - (VII). To demonstrate the
power of our method, the appendix contains a collection of typical TRSs with
bounded increase. These include examples with non-boolean (possibly nested)
functions in the bound, examples with combinations of bounds, examples con-
taining increasing or decreasing defined symbols, examples with bounds on lists,
examples with different increases in different arguments, increasing TRSs that
go beyond the shape of functional programs, etc. Although AProVE was the

22

most powerful tool for termination analysis of TRSs in the International Com-
petition of Termination Tools, up to now AProVE (as well as all other tools
participating in the competition) failed on all TRSs from our collection. In con-
trast, with the results from this paper, the new version of AProVE can prove
innermost termination for all of them. Thus, these results represent a sub-
stantial advance in automated termination proving. To experiment with our
implementation, the new version of AProVE can be accessed via the web at
http://aprove.informatik.rwth-aachen.de/eval/Increasing/.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge, 1998.
3. J. Brauburger and J. Giesl. Termination analysis by inductive evaluation. In Proc.

15th CADE, LNAI 1421, pages 254–269, 1998.
4. E. Contejean, C. Marché, A. P. Tomás, and X. Urbain. Mechanically proving ter-

mination using polynomial interpretations. J. Aut. Reason., 34(4):325–363, 2005.
5. B. Cook, A. Podelski, and A. Rybalchenko. Terminator: Beyond safety. In Proc.

CAV ’06, LNCS 4144, pages 415–418, 2006.
6. M.-L. Fernández. Relaxing monotonicity for innermost termination. Information

Processing Letters, 93(3):117–123, 2005.
7. C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl.

SAT solving for termination analysis with polynomial interpretations. In Proc.
SAT ’07, LNCS, 2007. To appear.

8. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework:
Combining techniques for automated termination proofs. In Proc. LPAR’04, LNAI
3452, pages 301–331, 2005.

9. J. Giesl, R. Thiemann, P. Schneider-Kamp. Proving and disproving termination
of higher-order functions. In Proc. 5th FroCoS, LNAI 3717, pages 216-231, 2005.

10. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the DP framework. Proc. IJCAR ’06, LNAI 4130, p. 281-286, 2006.

11. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and im-
proving dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

12. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In-
formation and Computation, 199(1,2):172–199, 2005.

13. N. Hirokawa and A. Middeldorp. Tyrolean termination tool: Techniques and fea-
tures. Information and Computation, 205(4):474–511, 2007.

14. D. Lankford. On proving term rewriting systems are Noetherian. Technical Report
MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.

15. P. Manolios and D. Vroon. Termination analysis with calling context graphs. In
Proc. CAV ’06, LNCS 4144, pages 401–414, 2006.

16. C. Marché and H. Zantema. The termination competition. In Proc. RTA ’07, 2007.
To appear.

23

A Examples

The following examples demonstrate the power of our new method for termina-
tion analysis of increasing TRSs. Their innermost termination can be proved au-
tomatically by the new version of AProVE which is available at http://aprove.
informatik.rwth-aachen.de/eval/Increasing/. In contrast, the tools partic-
ipating in the International Competition of Termination Tools 2006 fail on all
of these examples. This is also true for the previous version of AProVE which
did not feature the results of this paper.

A.1 Simple Increasing Example with Bound

This is the first leading example from our paper (Ex. 1).

minus(x, y)→ cond(gt(x, y), x, y)

cond(false, x, y)→ 0

cond(true, x, y)→ s(minus(x, s(y)))

gt(0, v)→ false

gt(s(u), 0)→ true

gt(s(u), s(v))→ gt(u, v)

One can easily reduce the initial DP problem to the problem consisting just of
the following two DPs.

MINUS(x, y)→ COND(gt(x, y), x, y)

COND(true, x, y)→ MINUS(x, s(y))

We use the polynomial interpretation Pol where MINUSPol = x1−x2, CONDPol
= x2−x3, 0Pol = 0, and sPol = x1 +1. Then the first DP is bounded and weakly
decreasing and the second DP is strictly decreasing. Boundedness of the first DP
is shown in Sect. 4.

Note that our method of course also succeeds on examples where instead of
the bound gt(x, y) one has a fixed bound (e.g., gt(s(0), y)).

A.2 Challenge from the Termination Competition

This example (“TRS/Zantema06-while”) was identified as one of the main chal-
lenges for automated termination proving in [16, p. 38].

f(t, x, y)→ f(g(x, y), x, s(y))

g(s(x), 0)→ t

g(s(x), s(y))→ g(x, y)

One can easily reduce the initial DP problem to {(45)}, with

F(t, x, y)→ F(g(x, y), x, s(y)) (45)

24

We use the polynomial interpretation Pol with FPol = x2 − x3, 0Pol = 0, and
sPol = x1 + 1. Then the DP is strictly decreasing. Moreover, it is bounded. We
have to consider the constraint

F(g(x, y), x, s(y)) = F(t, x′, y′) ⇒ F(t, x, y) % c

This can be done as in the previous example.

A.3 Bound which is a Constructor Term

The following example has the bound ge(x, s(y)). So here, one argument of ge is
a constructor term s(y).

minus(x, y)→ cond(ge(x, s(y)), x, y)

cond(false, x, y)→ 0

cond(true, x, y)→ s(minus(x, s(y)))

ge(u, 0)→ true

ge(0, s(v))→ false

ge(s(u), s(v))→ ge(u, v)

One can easily reduce the initial DP problem to {(46), (47)}, with

MINUS(x, y)→ COND(ge(x, s(y)), x, y) (46)

COND(true, x, y)→ MINUS(x, s(y)) (47)

We use the polynomial interpretation Pol with MINUSPol = x1−x2, CONDPol =
x2 −x3, 0Pol = 0, and sPol = x1 + 1. Then (47) is strictly decreasing. Moreover,
we show that (46) is bounded (afterwards the remaining DP problems {(46)}
and {(47)} are easy to solve). We have to consider the constraint

COND(ge(x, s(y)), x, y) = COND(true, x′, y′) ⇒ MINUS(x, y) % c

By Rule (II) and (IV) we obtain

ge(x, s(y)) = true ⇒ MINUS(x, y) % c

Rule (VII) yields

s(y) = z ∧ ge(x, z) = true ⇒ MINUS(x, y) % c

Now we perform induction with Rule (V). If we omit the unsatisfiable constraints
(which are deleted by Rule (I)), then we only result in

s(y) = s(v) ∧ ge(u, v) = true
∧ (∀y s(y) = v ∧ ge(u, v) = true ⇒ MINUS(u, y) % c) ⇒ MINUS(s(u), y) % c

25

By Rule (II) we can replace the condition s(y) = s(v) by y = v and then
substitute y by v using Rule (III). Moreover, we remove the induction hypothesis
with Rule (IV). This yields

ge(u, v) = true ⇒ MINUS(s(u), v) % c

Now we perform induction with Rule (V) again. By Rule (I), one resulting con-
straint is omitted and thus, we result in the constraint

true = true ⇒ MINUS(s(n), 0) % c

and in

ge(n,m) = true
∧ (ge(n,m) = true ⇒ MINUS(s(n),m) % c) ⇒ MINUS(s(s(n)), s(m)) % c

By Rule (II), (VI), and (IV), we finally obtain

MINUS(s(n), 0) % c

MINUS(s(n),m) % c⇒ MINUS(s(s(n)), s(m)) % c

If we have cPol = 1, then these constraints are obviously satisfied.

A.4 Bound with Non-Boolean Function

The following example uses the function min in its bound which computes the
minimum of two numbers. Note that this TRS is neither confluent, nor suffi-
ciently complete, nor left-linear (i.e., it does not have the shape of functional
programs).

minus(x, x) → 0

minus(x, y)→ cond(min(x, y), x, y)

cond(y, x, y)→ s(minus(x, s(y)))

min(0, v)→ 0

min(u, 0)→ 0

min(s(u), s(v)) → s(min(u, v))

One can easily reduce the initial DP problem to {(48), (49)}, with

MINUS(x, y)→ COND(min(x, y), x, y) (48)

COND(y, x, y)→ MINUS(x, s(y)) (49)

We use the polynomial interpretation Pol with MINUSPol = x1−x2, CONDPol =
x2− x3, 0Pol = 0, and sPol = x1 + 1. Then (49) is strictly decreasing. Moreover,
we show that (48) is bounded (afterwards the remaining DP problems {(48)}
and {(49)} are easy to solve). We have to consider the constraint

COND(min(x, y), x, y) = COND(y′, x′, y′) ⇒ MINUS(x, y) % c

26

By Rule (II), (III), and (IV) we obtain

min(x, y′) = y′ ⇒ MINUS(x, y′) % c

Now we perform induction with Rule (V) and result in

0 = v ⇒ MINUS(0, v) % c

0 = 0 ⇒ MINUS(u, 0) % c

and the formula

s(min(u, v)) = s(v)
∧ (min(u, v) = v ⇒ MINUS(u, v) % c) ⇒ MINUS(s(u), s(v)) % c

The first constraint is simplified with Rule (III), the second constraint is simpli-
fied with Rule (II), and in the third one we first remove the outermost s from
the first condition with Rule (II). Then we simplify the condition with Rule (VI)
and afterwards remove conditions with Rule (IV). So we finally result in

MINUS(0, 0) % c

MINUS(u, 0) % c

MINUS(u, v) % c⇒ MINUS(s(u), s(v)) % c

If we have cPol = 0, then these constraints are obviously satisfied.

A.5 Bound with Nested Non-Boolean Function

The following example is similar to the previous one, but uses nested function
symbols in the bound.

minus(x, x)→ 0

minus(x, y)→ cond(equal(min(x, y), y), x, y)

cond(true, x, y)→ s(minus(x, s(y)))

min(0, v)→ 0

min(u, 0)→ 0

min(s(u), s(v))→ s(min(u, v))

equal(0, 0)→ true

equal(s(x), 0)→ false

equal(0, s(y))→ false

equal(s(x), s(y))→ equal(x, y)

One can easily reduce the initial DP problem to {(50), (51)}, with

MINUS(x, y)→ COND(equal(min(x, y), y), x, y) (50)

COND(true, x, y)→ MINUS(x, s(y)) (51)

27

We use the polynomial interpretation Pol with MINUSPol = x1−x2, CONDPol =
x2− x3, 0Pol = 0, and sPol = x1 + 1. Then (51) is strictly decreasing. Moreover,
we show that (50) is bounded (afterwards the remaining DP problems {(50)}
and {(51)} are easy to solve). We have to consider the constraint

COND(equal(min(x, y), y), x, y) = COND(true, x′, y′) ⇒ MINUS(x, y) % c

By Rules (II) and (IV) we obtain

equal(min(x, y), y) = true ⇒ MINUS(x, y) % c

Now Rule (VII) yields

min(x, y) = z ∧ equal(z, y) = true ⇒ MINUS(x, y) % c

We use induction on equal. After removing the constraints with the unsatisfiable
condition false = true we obtain

min(x, 0) = 0 ∧ true = true ⇒ MINUS(x, 0) % c (52)

min(x, s(v)) = s(u) ∧ equal(u, v) = true ∧ (54)⇒ MINUS(x, s(v)) % c (53)

where
∀x min(x, v) = u ∧ equal(u, v) = true ⇒ MINUS(x, v) % c (54)

is the induction hypothesis.
We first continue with (52) where we remove the condition by Rule (IV) and

obtain the final constraint
MINUS(x, 0) % c (55)

For (53), we apply Rule (VII) to get

s(v) = w ∧ min(x,w) = s(u) ∧ equal(u, v) = true ∧ (54)⇒ MINUS(x, s(v)) % c

and process this constraint further by induction on min by Rule (V). After remov-
ing constraints with unsatisfiable premises by Rule (I), the following constraint
remains where ϕ′ is the new induction hypothesis.

s(v) = s(m) ∧ s(min(n,m)) = s(u) ∧ equal(u, v) = true ∧ (54) ∧ ϕ′

⇒ MINUS(s(n), s(v)) % c (56)

We can now use Rules (II), (III), and (VI). When applying the induction hy-
pothesis (54), we instantiate x by n. We obtain

min(n,m) = u ∧ equal(u,m) = true ∧ MINUS(n,m) % c ∧ ϕ′

⇒ MINUS(s(n), s(m)) % c

After removing all conditions containing “=” with Rule (IV), we therefore obtain

MINUS(n,m) % c ⇒ MINUS(s(n), s(m)) % c. (57)

If we have cPol = 0, then the constraints (55) and (57) are obviously satisfied.

28

A.6 Bound with Nested Defined Symbols

The second leading example from our paper (Ex. 12) has nested defined symbols
in its bound. While our induction inference rule was inspired by our earlier work
in [3], the approach of [3] would not succeed on such examples, since it would
only perform induction on plus, but not on gt. For similar reasons, the approach
of [3] fails on most of the examples from this collection. (Moreover, several of
these examples do not have the shape of functional programs and thus, [3] is not
applicable at all.)

f(true, x, y, z)→ f(gt(x, plus(y, z)), x, s(y), z)

f(true, x, y, z)→ f(gt(x, plus(y, z)), x, y, s(z))

plus(n, 0)→ n

plus(n, s(m))→ s(plus(n,m))

gt(0, v)→ false

gt(s(u), 0)→ true

gt(s(u), s(v))→ gt(u, v)

The initial DP problem can easily be reduced to

F(true, x, y, z)→ F(gt(x, plus(y, z)), x, s(y), z)

F(true, x, y, z)→ F(gt(x, plus(y, z)), x, y, s(z))

We used the interpretation Pol where FPol = x2 − x3 − x4, sPol = x1 + 1, and
0Pol = 0. Then both DPs are strictly decreasing. To show that they are bounded,
we proceed as in Sect. 4.

A.7 Bound with Two Conditions

The next example is a variant of Ex. 12. Instead of using plus, now we use two
conditions with gt.

f(true, x, y, z)→ g(gt(x, y), x, y, z)

g(true, x, y, z)→ f(gt(x, z), x, s(y), z)

g(true, x, y, z)→ f(gt(x, z), x, y, s(z))

gt(0, v)→ false

gt(s(u), 0)→ true

gt(s(u), s(v))→ gt(u, v)

One can easily reduce the initial DP problem to {(58), (59), (60)}, with

F(true, x, y, z)→ G(gt(x, y), x, y, z) (58)

G(true, x, y, z)→ F(gt(x, z), x, s(y), z) (59)

G(true, x, y, z)→ F(gt(x, z), x, y, s(z)) (60)

29

We use the polynomial interpretation Pol with FPol = GPol = 2 · x2 − x3 − x4,
0Pol = 0, and sPol = x1+1. Then (59) and (60) are strictly decreasing. Moreover,
we show that they are also both bounded (afterwards the remaining DP problem
{(58)} is easy to solve). Here, we need the refinement of Thm. 11 which considers
more than two adjacent pairs in innermost chains. We only show the boundedness
of (60) (the proof for (59) is analogous). We have to consider the constraint

F(gt(x, z), x, y, s(z)) = F(true, x′, y′, z′)
∧ G(gt(x′, y′), x′, y′, z′) = G(true, x′′, y′′, z′′) ⇒ G(true, x, y, z) % c.

After simplification with Rules (II), (III), and (IV) we obtain

gt(x′, z) = true ∧ gt(x′, y′) = true ⇒ G(true, x′, y′, z) % c

We use Rule (V) to perform induction on gt(x′, z). After simplification with Rule
(II) and (I) we obtain

gt(s(u), y′) = true⇒ G(true, s(u), y′, 0) % c (61)

gt(u, v) = true ∧ gt(s(u), y′) = true ∧ ϕ′ ⇒ G(true, s(u), y′, s(v)) % c (62)

where

ϕ′ : ∀y′ gt(u, v) = true ∧ gt(u, y′) = true ⇒ G(true, u, y′, v) % c.

To transform (61) further, we first apply Rule (VII) to replace gt(s(u), y′) =
true by s(u) = w ∧ gt(w, y′) = true. Then we perform induction on gt(w, y′).
After simplification with Rule (II), (I), and (III) we obtain

G(true, s(n), 0, 0) % c (63)

gt(n,m) = true ∧ ϕ′′ ⇒ G(true, s(n), s(m), 0) % c (64)

for a new induction hypothesis ϕ′′. For (64) we now perform another induction
on gt(n,m) and according to our heuristic, we first delete the condition ϕ′′ with
Rule (IV). Then in the end, we result in

G(true, s(s(i)), s(0), 0) % c (65)

G(true, s(i), s(j), 0) % c⇒ G(true, s(s(i)), s(s(j)), 0) % c (66)

Now we transform (62) further. We again apply Rule (VII) to replace gt(s(u),
y′) = true by s(u) = w∧gt(w, y′) = true. Then we perform induction on gt(w, y′).
In the case where w is instantiated with s(n) and y′ is instantiated with 0, we
obtain

gt(n, v) = true
∧ (∀y′ gt(n, v) = true ∧ gt(n, y′) = true ⇒ G(true, n, y′, v) % c)

⇒ G(true, s(n), 0, s(v)) % c.

30

Now we finally apply Rule (VI) by instantiating y′ with v. Then we end up with

G(true, n, v, s(v)) % c ⇒ G(true, s(n), 0, s(v)) % c (67)

In the case where w is instantiated with s(n) and y′ is instantiated with s(m),
we obtain

gt(n, v) = true ∧ gt(n,m) = true ∧ ϕ′[u/n] ∧ ϕ′′ ⇒ G(true, s(n), s(m), s(v)) % c

for a new induction hypothesis ϕ′′. Now we apply the first induction hypothesis
ϕ′[u/n] by Rule (VI) where we instantiate the universally quantified variable y′

with m. We delete the remaining conditions and end up with

G(true, n,m, v) % c ⇒ G(true, s(n), s(m), s(v)) % c (68)

If we have cPol = 0, then the resulting constraints (63), (65), (66), (67), and
(68) are obviously satisfied.

A.8 Boolean Combination in Condition

The next example is similar to the previous one, but uses a conjunction in the
condition.

f(true, x, y, z)→ f(and(gt(x, y), gt(x, z)), x, s(y), z)

f(true, x, y, z)→ f(and(gt(x, y), gt(x, z)), x, y, s(z))

gt(0, v)→ false

gt(s(u), 0)→ true

gt(s(u), s(v)) → gt(u, v)

and(x, true)→ x

and(x, false)→ false

One can easily reduce the initial DP problem to {(69), (70)}, with

F(true, x, y, z)→ F(and(gt(x, y), gt(x, z)), x, s(y), z) (69)

F(true, x, y, z)→ F(and(gt(x, y), gt(x, z)), x, y, s(z)) (70)

We use the polynomial interpretation Pol with FPol = 2 ·x2−x3−x4, 0Pol = 0,
and sPol = x1 +1. Then (69) and (70) are strictly decreasing. Moreover, we show
that they are also both bounded. We only show the boundedness of (70) (the
proof for (69) is analogous). We have to consider the constraint

F(and(gt(x, y), gt(x, z)), x, y, s(z)) = F(true, x′, y′, z′) ⇒ F(true, x, y, z) % c.

After simplification with Rule (II) and (IV) we obtain

and(gt(x, y), gt(x, z)) = true ⇒ F(true, x, y, z) % c.

31

Rule (VII) yields

gt(x, y) = u ∧ gt(x, z) = v ∧ and(u, v) = true ⇒ F(true, x, y, z) % c.

Now induction on and ends up with

gt(x, y) = true ∧ gt(x, z) = true ⇒ F(true, x, y, z) % c.

The remainder of the proof is similar to the previous example.

A.9 Increasing Defined Symbols

The next example uses the defined symbol round from Ex. 9 to increase an
argument.

f(true, x, y)→ f(gt(x, y), x, round(s(y)))

round(0)→ 0

round(s(0))→ s(s(0))

round(s(s(x))) → s(s(round(x)))

gt(0, v)→ false

gt(s(u), 0)→ true

gt(s(u), s(v))→ gt(u, v)

One can easily reduce the initial DP problem to {(71)}, with

F(true, x, y) → F(gt(x, y), x, round(s(y))) (71)

We use the polynomial interpretation Pol with FPol = x2−x3, 0Pol = 0, sPol =
x1 + 1, and roundPol = x1. The usable rules are the reversed round-rules, since
F is %-monotonically decreasing on 3. The DP is clearly strictly decreasing. To
show that it is bounded, we have to consider the constraint

F(gt(x, y), x, round(s(y))) = F(true, x′, y′) ⇒ F(true, x, y) % c.

By Rule (II) we get

gt(x, y) = true ∧ x = x′ ∧ round(s(y)) = y′ ⇒ F(true, x, y) % c.

Now we delete the conditions x = x′ and round(s(y)) = y′ by Rule (IV) since x′

and y′ do not occur anywhere else. We obtain

gt(x, y) = true ⇒ F(true, x, y) % c.

Now the remainder of the proof works similar to our leading example (Ex. 1).

32

A.10 Decreasing Defined Symbols

The next example uses the defined symbol trunc to (possibly) decrease an ar-
gument. Here, trunc(x) is the highest even number that is less than or equal to
x.

f(true, x, y)→ f(gt(x, y), trunc(x), s(y))

trunc(0)→ 0

trunc(s(0))→ 0

trunc(s(s(x))) → s(s(trunc(x)))

gt(0, v)→ false

gt(s(u), 0)→ true

gt(s(u), s(v))→ gt(u, v)

One can easily reduce the initial DP problem to {(72)}, with

F(true, x, y) → F(gt(x, y), trunc(x), s(y)) (72)

We use the polynomial interpretation Pol with FPol = x2−x3, 0Pol = 0, sPol =
x1 + 1, and truncPol = x1. The usable rules are the trunc-rules, since F is %-
monotonically increasing on 2. The DP is clearly strictly decreasing. To show
that it is bounded, we have to consider the constraint

F(gt(x, y), trunc(x), s(y)) = F(true, x′, y′) ⇒ F(true, x, y) % c.

By Rule (II) we get

gt(x, y) = true ∧ trunc(x) = x′ ∧ s(y) = y′ ⇒ F(true, x, y) % c.

Now we delete the conditions trunc(x) = x′ and s(y) = y′ by Rule (IV) since x′

and y′ do not occur anywhere else. We obtain

gt(x, y) = true ⇒ F(true, x, y) % c.

Now the remainder of the proof works similar to our leading example (Ex. 1).

A.11 Increase in all Arguments

The next example increases the third argument more than the second argument.

f(true, x, y)→ f(gt(x, y), s(x), s(s(y)))

gt(0, v)→ false

gt(s(u), 0)→ true

gt(s(u), s(v))→ gt(u, v)

One can easily reduce the initial DP problem to {(73)}, with

F(true, x, y) → F(gt(x, y), s(x), s(s(y))) (73)

33

We use the polynomial interpretation Pol with FPol = x2 − x3, 0Pol = 0, and
sPol = x1 + 1. The DP is clearly strictly decreasing. To show that it is bounded,
we have to consider the constraint

F(gt(x, y), s(x), s(s(y))) = F(true, x′, y′) ⇒ F(true, x, y) % c

which can be reduced to

gt(x, y) = true ⇒ F(true, x, y) % c

as in the previous examples. Now the remainder of the proof works similar to
our leading example (Ex. 1).

A.12 Increase in all Arguments with Defined Symbol

Similarly to the previous example, this TRS again increases the third argument
more than the second. But the example is more involved, since it uses defined
symbols for this increase. Note also that due to the associativity rule of plus,
this TRS is no constructor system (i.e., it does not have the shape of functional
programs).

f(true, x, y)→ f(and(gt(x, y), gt(y, s(s(0)))), plus(s(0), x), double(y))

gt(0, v)→ false

gt(s(u), 0)→ true

gt(s(u), s(v))→ gt(u, v)

and(x, true)→ x

and(x, false)→ false

plus(n, 0)→ n

plus(n, s(m))→ s(plus(n,m))

plus(plus(n,m), u)→ plus(n, plus(m,u))

double(0)→ 0

double(s(x)) → s(s(double(x)))

One can easily reduce the initial DP problem to {(74)}, with

F(true, x, y) → F(and(gt(x, y), gt(y, s(s(0)))), plus(s(0), x), double(y)) (74)

We use the polynomial interpretation Pol with FPol = x2−x3, 0Pol = 0, sPol =
x1 + 1, plusPol = x1 + x2, and doublePol = 2 · x1. The usable rules are the
plus-rules and the reversed double-rules, both of which are weakly decreasing. To
show that the DP is strictly decreasing, after simplification we have to consider
the constraint

and(gt(x, y), gt(y, s(s(0)))) = true
⇒ F(true, x, y) � F(and(gt(x, y), gt(y, s(s(0)))), plus(s(0), x), double(y))

34

Rule (VII) and induction on and yield

gt(x, y) = true ∧ s(s(0)) = v ∧ gt(y, v) = true
⇒ F(true, x, y) � F(and(gt(x, y), gt(y, s(s(0)))), plus(s(0), x), double(y))

Induction on gt(y, v) twice and omitting all conditions yields

F(true, x, s(s(z))) � F(. . . , plus(s(0), x), double(s(s(z))))

which is satisfied by the above polynomial interpretation.
To show that the DP is also bounded we proceed in a similar way to the

example in Sect. A.8.

A.13 Increase by Addition

As in the previous example, we use plus to increase an argument, but here we
add two terms containing variables. Note that the TRS is neither sufficiently
complete nor a constructor system.

div(x, s(y))→ d(x, s(y), 0)

d(x, s(y), z)→ cond(ge(x, z), x, y, z)

cond(true, x, y, z)→ s(d(x, s(y), plus(s(y), z)))

cond(false, x, y, z)→ 0

ge(u, 0)→ true

ge(0, s(v))→ false

ge(s(u), s(v))→ ge(u, v)

plus(n, 0)→ n

plus(n, s(m))→ s(plus(n,m))

plus(plus(n,m), u)→ plus(n, plus(m,u))

One can easily reduce the initial DP problem to {(75), (76)}, with

D(x, s(y), z)→ COND(ge(x, z), x, y, z) (75)

COND(true, x, y, z)→ D(x, s(y), plus(s(y), z)) (76)

We use the polynomial interpretation Pol with DPol = x1 +x2−x3, CONDPol =
x2 + x3 − x4 + 1, 0Pol = 0, sPol = x1 + 1, and plusPol = x1 + x2. The usable
rules are the reversed plus-rules which are weakly decreasing. Moreover, (75) is
weakly decreasing and (76) is strictly decreasing. To show that (75) is bounded,
we have to consider the constraint

COND(ge(x, z), x, y, z) = COND(true, x′, y′, z′)⇒ D(x, s(y), z) % c

which can be handled as before.

35

A.14 Increase in Different Arguments

The following TRS computes |x− y|.

diff(x, y)→ cond1(equal(x, y), x, y)

cond1(true, x, y)→ 0

cond1(false, x, y)→ cond2(gt(x, y), x, y)

cond2(true, x, y)→ s(diff(x, s(y)))

cond2(false, x, y)→ s(diff(s(x), y))

gt(0, v)→ false

gt(s(u), 0)→ true

gt(s(u), s(v)) → gt(u, v)

equal(0, 0)→ true

equal(s(x), 0)→ false

equal(0, s(y))→ false

equal(s(x), s(y)) → equal(x, y)

One can easily reduce the initial DP problem to {(77), (78), (79), (80)}, with

DIFF(x, y)→ COND1(equal(x, y), x, y) (77)

COND1(false, x, y)→ COND2(gt(x, y), x, y) (78)

COND2(true, x, y)→ DIFF(x, s(y)) (79)

COND2(false, x, y)→ DIFF(s(x), y) (80)

We use the polynomial interpretation Pol with DIFFPol = (x1−x2)2, COND1Pol
= COND2Pol = (x2 − x3)2, 0Pol = 0, and sPol = x1 + 1. It is easy to prove that
all DPs are bounded. Moreover, (79) and (80) are strictly decreasing. Then the
remaining DP problems can easily be solved.

We only show that (80) is strictly decreasing. The proof for (79) is analogous.
Again, we need the refinement of Thm. 11 which considers more than two adja-
cent dependency pairs in innermost chains. Here we regard the dependency pairs
which precede (80), cf. the corresponding refinement of Thm. 11. We consider
the constraint

COND1(equal(x′′, y′′), x′′, y′′) = COND1(false, x′, y′)
∧ COND2(gt(x′, y′), x′, y′) = COND2(false, x, y)

⇒ COND2(false, x, y) � DIFF(s(x), y)

This can be simplified to

equal(x, y) = false ∧ gt(x, y) = false ⇒ COND2(false, x, y) � DIFF(s(x), y)

36

Induction on gt(x, y) and simplifications with Rules (I) and (II) yield

equal(0, v) = false

⇒ COND2(false, 0, v) � DIFF(s(0), v) (81)

equal(s(u), s(v)) = false ∧ gt(u, v) = false ∧ ϕ
⇒ COND2(false, s(u), s(v)) � DIFF(s(s(u)), s(v)) (82)

with the following induction hypothesis ϕ:

equal(u, v) = false ∧ gt(u, v) = false ⇒ COND2(false, u, v) � DIFF(s(u), v)

Constraint (81) is simplified by Rule (VII) and induction on equal yields the
following final constraint after simplifications with Rules (I) and (II).

COND2(false, 0, s(m)) � DIFF(s(0), s(m)) (83)

Constraint (82) is also simplified by Rule (VII) and then we perform induction
on equal. After the application of Rules (I) and (II) we obtain

equal(n,m) = false ∧ u = n ∧ v = m ∧ gt(u, v) = false ∧ ϕ ∧ ϕ′

⇒ COND2(false, s(n), s(m)) � DIFF(s(s(n)), s(m))

with a new induction hypothesis ϕ′. Simplifying with Rule (III) and (VI) using
the induction hypothesis ϕ we result in the final constraint

COND2(false, n,m) � DIFF(s(n),m)

⇒ COND2(false, s(n), s(m)) � DIFF(s(s(n)), s(m)) (84)

Then constraints (83) and (84) are obviously satisfied.

A.15 Sorting Algorithm

The following TRS sorts a list. Here, the bound contains a list `, where max
computes the maximum of a list. The function st(n, `) returns the sorted list of
elements of ` that are greater than or equal to n. Duplicates are removed.

sort(`)→ st(0, `)

st(n, `)→ cond1(member(n, `), n, `)

cond1(true, n, `)→ cons(n, st(s(n), `))

cond1(false, n, `)→ cond2(gt(n,max(`)), n, `)

cond2(true, n, `)→ nil

cond2(false, n, `)→ st(s(n), `)

37

member(n, nil)→ false

member(n, cons(m, `))→ or(equal(n,m),member(n, `))

or(x, true)→ true

or(x, false)→ x

equal(0, 0)→ true

equal(s(x), 0)→ false

equal(0, s(y))→ false

equal(s(x), s(y)) → equal(x, y)

gt(0, v)→ false

gt(s(u), 0)→ true

gt(s(u), s(v)) → gt(u, v)

max(nil)→ 0

max(cons(u, `))→ if(gt(u,max(`)), u,max(`))

if(true, u, v)→ u

if(false, u, v)→ v

One can easily reduce the initial DP problem to {(85), (86), (87), (88)}, with

ST(n, `)→ COND1(member(n, `), n, `) (85)

COND1(true, n, `)→ ST(s(n), `) (86)

COND1(false, n, `)→ COND2(gt(n,max(`)), n, `) (87)

COND2(false, n, `)→ ST(s(n), `) (88)

We use the polynomial interpretation Pol with STPol = x2 − x1, COND1Pol =
COND2Pol = x3−x2, 0Pol = 0, sPol = x1 + 1, nilPol = 0, and consPol = x1 +x2.
It is easy to prove that (85) and (87) are weakly decreasing and (86) and (88) are
strictly decreasing. The DP problem {(85), (87)} without the strictly decreasing
DPs can easily be handled.

We now show that (87) is bounded. Here we obtain the constraint

gt(n,max(`)) = false⇒ COND1(false, n, `) % c

After application of Rule (VII) we have

max(`) = m ∧ gt(n,m) = false⇒ COND1(false, n, `) % c

Now we can perform induction on gt which yields COND1(false, 0, `) % c (which
is satisfied by Pol) and

max(`) = s(v) ∧ gt(u, v) = false ∧ ϕ′ ⇒ COND1(false, s(u), `) % c.

Here ϕ′ is the induction hypothesis, which can be eliminated by Rule (IV) again.
Next we perform induction on max. This yields

38

if(gt(x,max(`′)), x,max(`′)) = s(v) ∧ gt(u, v) = false ∧ ϕ′′
⇒ COND1(false, s(u), cons(x, `′)) % c.

Here ϕ′′ is the induction hypothesis:

ϕ′′ : ∀ u, v max(`′) = s(v) ∧ gt(u, v) = false ⇒ COND1(false, s(u), `′) % c.

We apply Rule (VII) to obtain

gt(x,max(`′)) = a ∧max(`′) = b ∧ if(a, x, b) = s(v) ∧ gt(u, v) = false ∧ ϕ′′
⇒ COND1(false, s(u), cons(x, `′)) % c.

Now we perform induction on if. The first resulting constraint is

gt(x,max(`′)) = true ∧max(`′) = b ∧ x = s(v) ∧ gt(u, v) = false ∧ ϕ′′
⇒ COND1(false, s(u), cons(x, `′)) % c

which is simplified to gt(u, v) = false ⇒ COND1(false, s(u), cons(s(v), `′)) % c.
This constraint can be transformed similar to previous examples.

The other resulting constraint is

gt(x,max(`′)) = false ∧max(`′) = b ∧ b = s(v) ∧ gt(u, v) = false ∧ ϕ′′
⇒ COND1(false, s(u), cons(x, `′)) % c

which is simplified to

max(`′) = s(v) ∧ gt(u, v) = false ∧ ϕ′′ ⇒ ST(s(u), cons(x, `′)) % c

Now we apply the induction hypothesis ϕ′′ and finally obtain

COND1(false, s(u), `′) % c⇒ COND1(false, s(u), cons(x, `′)) % c

which is obviously satisfied by Pol.
Since (87) is bounded, we end up with the DP problem {(85), (86), (88)}.

We now show that (in this reduced DP problem), (85) is bounded. Then all
remaining DP problems are easy to solve. For boundedness of (85), we obtain
the constraint

COND1(member(n, `), n, `) = COND1(true, n′, `′)⇒ ST(n, `) % c

which can be simplified to

member(n, `) = true⇒ ST(n, `) % c

By induction on member, we transform it to

or(equal(n,m),member(n, `′)) = true ∧ ϕ⇒ ST(n, cons(m, `′)) % c

Here, ϕ is the induction hypothesis:

ϕ : member(n, `′) = true⇒ ST(n, `′) % c

39

By applying Rule (VII) and induction on or we obtain the following two con-
straints:

equal(n,m) = x ∧member(n, `′) = true ∧ ϕ⇒ ST(n, cons(m, `′)) % c (89)

equal(n,m) = true ∧member(n, `′) = false ∧ ϕ⇒ ST(n, cons(m, `′)) % c (90)

For (89), we apply the induction hypothesis and end up with the following con-
straint that is obviously satisfied by Pol.

ST(n, `′) % c⇒ ST(n, cons(m, `′)) % c

By induction on equal, Constraint (90) is also transformed into constraints that
are clearly satisfied by Pol.

A.16 Bound on List Length

The function nthtail(n, `) returns the last n elements of the list `.

nthtail(n, `)→ cond(ge(n, length(`)), n, `)

cond(true, n, `)→ `

cond(false, n, `)→ tail(nthtail(s(n), `))

tail(nil)→ nil

tail(cons(x, `))→ `

length(nil)→ 0

length(cons(x, `))→ s(length(`))

ge(u, 0)→ true

ge(0, s(v))→ false

ge(s(u), s(v))→ ge(u, v)

One can easily reduce the initial DP problem to {(91), (92)}, with

NTHTAIL(n, `)→ COND(ge(n, length(`)), n, `) (91)

COND(false, n, `)→ NTHTAIL(s(n), `) (92)

We use the polynomial interpretation Pol with NTHTAILPol = x2−x1, CONDPol
= x3−x2, nilPol = 0, consPol = 1+x1, 0Pol = 0, and sPol = x1 +1. Clearly, (91)
is weakly decreasing and (92) is strictly decreasing. Moreover, (91) is bounded.
We have to regard a constraint which can be simplified to

ge(n, length(`)) = false⇒ NTHTAIL(n, `) % c

We apply Rule (VII) to obtain

length(`) = m ∧ ge(n,m) = false⇒ NTHTAIL(n, `) % c

40

By induction on ge we get NTHTAIL(0, `) % c (which is obviously satisfied by
Pol) and

length(`) = s(v) ∧ ge(u, v) = false ∧ ϕ⇒ NTHTAIL(s(u), `) % c

where ϕ is the following induction hypothesis:

ϕ : ∀ ` length(`) = v ∧ ge(u, v) = false⇒ NTHTAIL(u, `) % c

Now we apply induction on length. We result in

length(`′) = v ∧ ge(u, v) = false ∧ ϕ ∧ ϕ′ ⇒ NTHTAIL(s(u), cons(x, `′)) % c

where ϕ′ is the new induction hypothesis. Now we apply the induction hypothesis
ϕ′ by instantiating ` with `′. Finally, we end up with

NTHTAIL(u, `′) % c % NTHTAIL(s(u), cons(x, `′))

which is satisfied by Pol.

A.17 Bound with Square Function

In the following TRS, log(x, y) computes the smallest power of 2 which is greater
than or equal to logy(x).

log(x, s(s(y)))→ cond(le(x, s(s(y))), x, y)

cond(true, x, y)→ s(0)

cond(false, x, y)→ double(log(x, square(s(s(y)))))

le(0, v)→ true

le(s(u), 0))→ false

le(s(u), s(v))→ le(u, v)

double(0)→ 0

double(s(x))→ s(s(double(x)))

square(0)→ 0

square(s(x))→ s(plus(square(x), double(x)))

plus(n, 0)→ n

plus(n, s(m))→ s(plus(n,m))

One can easily reduce the initial DP problem to {(93), (94)}, with

LOG(x, s(s(y))) → COND(le(x, s(s(y))), x, y) (93)

COND(false, x, y)→ LOG(x, square(s(s(y)))) (94)

We use the polynomial interpretation Pol with LOGPol = x1 − x2, CONDPol
= x2 − x3 − 2, 0Pol = 0, sPol = x1 + 1, squarePol = x1, and plusPol = x. The

41

usable rules are the reversed square- and the reversed plus-rules. Clearly, (93) and
the usable rules are weakly decreasing. To show that (94) is strictly decreasing,
one can use the rewriting technique from [8]. We show that (93) is bounded. The
corresponding constraint is simplified to

le(x, s(s(y))) = false⇒ LOG(x, s(s(y))) % c

and by application of Rule (VII) we obtain

s(s(y)) = z ∧ le(x, z) = false⇒ LOG(x, s(s(y))) % c

Induction on le yields

s(y) = v ∧ le(u, v) = false ∧ ϕ⇒ LOG(s(u), s(s(y))) % c

where ϕ is the induction hypothesis. We eliminate it with Rule (IV) and perform
another induction on le which results in

y = v′ ∧ le(u′, v′) = false ∧ ϕ′ ⇒ LOG(s(s(u′)), s(s(y))) % c

Now Rule (III) yields

le(u′, v′) = false ∧ ϕ′ ⇒ LOG(s(s(u′)), s(s(v′))) % c.

After eliminating the induction hypothesis ϕ′ one can apply another induction
on le, similar to previous examples.

42

Aachener Informatik-Berichte

This list contains all technical reports published during the past five
years. A complete list of reports dating back to 1987 is available from
http://aib.informatik.rwth-aachen.de/. To obtain copies consult the
above URL or send your request to: Informatik-Bibliothek, RWTH
Aachen, Ahornstr. 55, 52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2001-01 ∗ Jahresbericht 2000
2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces
2001-03 Thierry Cachat: The power of one-letter rational languages
2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus
2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages
2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic
2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem
2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication
Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of
term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures
2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung
2002-01 ∗ Jahresbericht 2001
2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems
2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages
2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting
2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines
2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic
Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-
ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java
2002-09 Markus Mohnen: Interfaces with Default Implementations in Java
2002-10 Martin Leucker: Logics for Mazurkiewicz traces
2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

43

2003-01 ∗ Jahresbericht 2002
2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting
2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations
2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs
2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard
2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates
2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-
wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:
Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003
2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic
2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting
2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming
2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming
2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming
2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination
2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information
2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity
2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules
2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004
2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer
School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-
proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for
the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing
Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-
tion

44

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-
ploring a Root-Cause Methodology to Prevent Distributed Denial-of-
Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With
Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General
Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts
2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture
2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-
tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting
Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization
2005-15 Uwe Naumann: The Complexity of Derivative Computation
2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)
2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)
2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,
Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-
Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented
LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-
dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-
bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-
gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit
BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-
ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-
ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:
Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering
with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005
2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems
2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler
2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

45

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,
Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint
Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-
and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-
terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-
Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic
Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,
Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid
MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:
Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:
Replaying Play in and Play out: Synthesis of Design Models from Sce-
narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling
Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,
Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli
Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI
Work Group “Requirements Management Tools for Product Line Engi-
neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical
sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for
Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-
ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006
2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-
ysis with Polynomial Interpretations

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

46

